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Moment-Ratio Diagrams for Univariate
Distributions

Erik Vargo, Raghu Pasupathy, and Lawrence M. Leemis

Abstract We present two moment-ratio diagrams along with guidance for
their interpretation. The first moment-ratio diagram is a graph of skewness vs.
kurtosis for common univariate probability distributions. The second moment-
ratio diagram is a graph of coefficient of variation vs. skewness for common
univariate probability distributions. Both of these diagrams, to our knowl-
edge, are the most comprehensive to date. The diagrams serve four purposes:
(1) they quantify the proximity between various univariate distributions based
on their second, third, and fourth moments, (2) they illustrate the versatil-
ity of a particular distribution based on the range of values that the various
moments can assume, (3) they can be used to create a short list of poten-
tial probability models based on a data set, and (4) they clarify the limiting
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150 12 Moment-Ratio Diagrams for Univariate Distributions

relationships between various well-known distribution families. The use of the
moment-ratio diagrams for choosing a distribution that models given data is
illustrated.

Keywords Coefficient of variation • Kurtosis • Skewness

12.1 Introduction

The moment-ratio diagram for a distribution refers to the locus of a pair of
standardized moments plotted on a single set of coordinate axes (Kotz and
Johnson [82]). By standardized moments we mean: the coefficient of variation
(CV)

γ2 =
σX

μX
,

the skewness (or third standardized moment)

γ3 = E

[(
X − μX

σX

)3
]
,

and the kurtosis (or fourth standardized moment)

γ4 = E

[(
X − μX

σX

)4
]
,

where μX and σX are the mean and the standard deviation of the implied (uni-
variate) random variable X. The classical form of the moment-ratio diagram,
plotted upside down, shows the third standardized moment γ3 (or sometimes
its square γ2

3) plotted as abscissa and the fourth standardized moment γ4
plotted as ordinate. The plot usually includes all possible pairs (γ3, γ4) that
a distribution can attain. Since γ4 − γ2

3 − 1 ≥ 0 (see [156, Exercise 3.19,
page 121]), the moment-ratio diagram for a distribution occupies some subset
of the shaded region shown in Figure 12.1.

Moment-ratio diagrams, apparently first introduced by Craig [36] and later
popularized by Johnson et al. [71] especially through the plotting of multi-
ple distributions on the same axes, have found enormous expediency among
engineers and statisticians. The primary usefulness stems from the diagram’s
ability to provide a ready “snapshot” of the relative versatility of various dis-
tributions in terms of representing a range of shapes. Distributions occupying
a greater proportion of the moment-ratio region are thought to be more ver-
satile owing to the fact a larger subset of the allowable moment pairs can be
modeled by the distribution. Accordingly, when faced with the problem of hav-
ing to choose a distribution to model data, modelers often estimate the third
and fourth standardized moments (along with their standard error estimates),
and plot them on a moment-ratio diagram to get a sense of which distributions
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Fig. 12.1. The shaded region represents the set of attainable pairs of third and
fourth standardized moments (γ3, γ4) for any distribution. The solid line is the limit
γ4 = 1 + γ2

3 for all distributions

may be capable of representing the shapes implicit in the provided data. In
this sense, a modeler can compare several “candidate” distributions simulta-
neously in terms of their moments. Another use for these diagrams has been
in getting a sense of the limiting relationships between distributions, and also
between various distributions within a system. An excellent example of the
latter is the Pearson system of frequency curves where the region occupied
by the various distributions comprising the system neatly divides the (γ2

3 , γ4)
plane (Johnson et al. [71, page 23]).

Since Craig [36] published the original moment-ratio diagram, various au-
thors have expanded and published updated versions. The most popular of
these happen to be the various diagrams appearing in Johnson et al. [71]
(e.g., pages 23, 390). Rodriguez [138], in clarifying the region occupied by
the Burr Type XII distribution in relation to others, provides a fairly com-
prehensive version of the moment-ratio diagram showing several important
regions. Tadikamalla [158] provides a similar but limited version in clarifying
the region occupied by the Burr Type III region.
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More recently, Cox and Oakes [35] have popularized a moment-ratio
diagram of a different kind—one that plots the CV (γ2) as the abscissa and
the third standardized moment (γ3) as the ordinate. Admittedly, this vari-
ation is location and scale dependent unlike the classical moment-ratio dia-
grams involving the third and fourth standardized moments. Nevertheless, the
diagram has become unquestionably useful for modelers. A slightly expanded
version of this variation appears in Meeker and Escobar [113].

12.1.1 Contribution

Our contributions in this paper are threefold, stated here in order of impor-
tance. First, we provide a moment-ratio diagram of the CV versus skewness
(γ2, γ3) involving 36 distributions, four of which occupy two-dimensional re-
gions within the plot. To our knowledge, this is most comprehensive diagram
available to date. Furthermore, it is the first time the entire region occupied by
important two-parameter families within the CV versus skewness plot (e.g.,
generalized gamma, beta, Burr type XII) has been calculated and depicted.
The CV versus skewness plot first appeared in Cox and Oakes [35], and later
in Meeker and Escobar [113]. The diagrams appearing in both these origi-
nal sources either depict only families with a single shape parameter (e.g.,
gamma), or vary only one of the shape parameters while fixing all others.
Second, we provide a classical moment-ratio diagram (γ3, γ4) that includes 37
distributions, four of which occupy two-dimensional regions within the plot.
While such diagrams are widely available, the diagram we provide is the most
comprehensive among the sources we know, and seems particularly useful due
to its depiction of all distributions in the same plot. In constructing the two
moment-ratio diagrams, we have had to derive the limiting behavior of a num-
ber of distributions, some of which seem to be new. Expressions for γ2, γ3, and
γ4 for some of these distributions are listed in the appendix. We also host the
moment-ratio diagrams in a publicly accessible website where particular re-
gions of the diagram can magnified for clearer viewing. Third, using an actual
data set, we demonstrate what a modeler might do when having to choose
candidate distributions that “model” given data.

12.1.2 Organization

The rest of the paper is organized as follows. We present the two moment-
ratio diagrams along with cues for interpretation in Sections 12.2, 12.3, and
12.4. Following that, we demonstrate the use of the moment-ratio diagrams
for choosing a distribution that models given data in Section 12.5. Finally,
we present conclusions and suggestions for further research in Section 12.6.
This is followed by the appendix, where we provide analytical expressions for
the moment-ratio locus corresponding to some of the distributions depicted
in the diagrams, along with some of the APPL code that was used to create
the diagrams.
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Fig. 12.2. Skewness (γ3) versus Kurtosis (γ4)

12.2 Reading the Moment-Ratio Diagrams

Two moment-ratio diagrams are presented in this paper. The first, shown
in Figure 12.2, is a plot containing the (γ3, γ4) regions for 37 distributions.
Figure 12.3 is a plot containing the (γ2, γ3) regions for 36 distributions.
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Fig. 12.3. CV (γ2) versus Skewness (γ3)

For convenience, in both diagrams, we have chosen to include discrete and
continuous distributions on the same plot. In what follows we provide a com-
mon list of cues that will be useful in reading the diagrams correctly.
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• Distributions whose moment-ratio regions correspond to single points (e.g.,
normal) are represented by black solid dots, curves (e.g., gamma) are rep-
resented by solid black lines, and areas (e.g., Burr Type XII) are repre-
sented by colored regions.

• The names of continuous distributions occupying a region are set in sans
serif type; the names of continuous distributions occupying a point or
curve are set in roman type; the names of discrete distributions occupying
a point or curve are set in italics type.

• The end points of curves, when not attained by the distribution in question,
are represented by an unfilled circle (e.g., logistic exponential).

• When the boundary of a moment-ratio area is obscured by another area,
we include a dotted line (Figure 12.2) or an arrow (Figure 12.3) to clarify
the location of the obscured boundary.

• When a distribution represented by points in one of the moment-ratio
diagrams converges as one of its parameters approaches a limiting value
(e.g., a t random variable as its degrees of freedom approaches infinity),
we often decrease the font size of the labels to minimize interference.

• The parameterizations used for the distributions are from Leemis and Mc-
Queston [95] unless indicated otherwise in the paper.

12.3 The Skewness-Kurtosis Diagram

Whether the locus corresponding to a distribution in Figure 12.2 is a point,
curve, or region usually depends on the number of shape parameters. For ex-
ample, the normal distribution has no shape parameters and its locus in Fig-
ure 12.2 corresponds to the point (0, 3). By contrast, since the gamma distribu-
tion has one shape parameter, its locus corresponds to the curve γ3 = 1.5γ2

2+3.
An example of a distribution that has two shape parameters is the Burr Type
XII distribution. It accordingly occupies an entire region in Figure 12.2. In
all, Figure 12.2 has 37 distributions with 4 continuous distributions repre-
sented by regions, 19 distributions (15 continuous and 4 discrete) represented
by curves, and 14 distributions (13 continuous and 1 discrete) represented by
one or more points. A list of other useful facts relating to Figure 12.2 follows.

• The “T” plotted at (γ3, γ4) = (0, 9) corresponds to the t distribution with
five degrees of freedom, which is the smallest number of degrees of freedom
in which the kurtosis exists.

• The chi square (S) and Erlang (X) distributions coincide when the chi
square distribution has an even number of degrees of freedom. This ac-
counts for the alternating pattern of “S” and “SX” labels that occur along
the curve associated with the gamma distribution.

• Numerous distributions start at (or include) the locus of the normal dis-
tribution and end at (or include) the locus of the exponential distribution.
Two examples of such are the gamma distribution and the inverted beta
distribution.
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• Space limitations prevented us from plotting the values associated with
the discrete uniform distribution between its limits as a two-mass value
with (γ3, γ4) = (0, 1) and its limiting distribution (as the number of mass
values increases) with (γ3, γ4) = (0, 1.8). It is plotted as a thick line.

• The regime occupied by the inverted beta distribution has the curves cor-
responding to inverted gamma and the gamma distributions as limits.

• The regime occupied by the generalized gamma distribution has the curves
corresponding to the power distribution and the log gamma distribution
as partial limits.

• The regime occupied by the Burr Type XII distribution has the curve
corresponding to the Weibull distribution as a partial limit.

• Barring extreme negative skewness values, virtually all of the regime
occupied by the generalized gamma distribution is subsumed by the beta
distribution.

• The beta and the Burr Type XII distributions seem complementary in the
sense that the beta distribution occupies the “outer” regions of the diagram
while the Burr Type XII distribution occupies the “inner” regions of the
diagram. Furthermore, the collective regime of the beta and Burr Type
XII distributions, with a few exceptions (e.g., Laplace), encompasses all
other distributions included in the plot.

12.4 The CV-Skewness Diagram

Unlike in the skewness-kurtosis diagram (Figure 12.2), the locus of a distribu-
tion in the CV-skewness diagram (Figure 12.3) depends on the distribution’s
location and scale parameters. For this reason, in Figure 12.3, there are fewer
distributions (compared to Figure 12.2) whose locus is a singleton. Figure 12.3
represents a total of 36 distributions with 4 continuous distributions repre-
sented by regions, 24 distributions (19 continuous and 5 discrete) represented
by curves and 8 distributions (7 continuous and 1 discrete) represented by one
or more points. A list of other useful facts relating to Figure 12.3 follows.

• Distributions that are symmetric about the mean have γ3 = 0. Since CV
can be adjusted to take any value (by controlling the location and scale),
symmetric distributions, e.g., error, normal, uniform, logistic, have the
locus γ3 = 0 in Figure 12.3.

• The regime occupied by the beta family has the gamma curve γ3 = 2γ2,
γ2 ∈ (0, 1) and the Bernoulli curve γ3 = γ2 − 1/γ2 as limits.

• The regime occupied by the inverted beta distribution has the gamma
curve γ3 = 2γ2, γ2 ∈ (0, 1) and the inverted gamma curve
γ3 = 4γ2/ (1− γ2

2), γ2 ∈ (0, 1) as limits.
• The regime occupied by the generalized gamma distribution has the curves

corresponding to the power distribution and the Pareto distribution as
partial limits.
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• The regime occupied by the Burr Type XII distribution has the curves
corresponding to the Weibull and Pareto distributions as limits.

12.5 Application

The moment-ratio diagrams can be used to identify likely candidate distri-
butions for a data set, particularly through a novel use of bootstrapping
techniques, e.g., Cheng [31] and Ross [141]. Toward illustrating this, we first
formally set up the problem. Let X1, X2, . . . , Xn be iid observations of a ran-
dom variable having an unknown CDF F (x). Suppose θ is some parameter
concerning the population distribution (e.g., the coefficient of variation γ2),

and let θ̂ be its estimator (e.g., the sample coefficient of variation γ̂2 con-
structed from X1, X2, . . . , Xn). Also let Fn(x) denote the usual empirical CDF
constructed from the data X1, X2, . . . , Xn, i.e.,

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}.

A lot is known about how well Fn(x) approximates F (x). For example, the
Glivenko–Cantelli theorem (from Billingsley [13]) states that Fn → F uni-
formly in x as n → ∞. Furthermore, the deviation of Fn(x) from F (x) can be
characterized fully through Sanov’s theorem (from Dembo and Zeitouni [44])
under certain conditions.

We are now ready to demonstrate how the above can be used toward
identifying candidate distributions to which a given set of dataX1, X2, . . . , Xn

might belong. As usual, the sample mean and sample standard deviation are
calculated as

X̄ =
1

n

n∑
i=1

Xi and S =

√√√√ 1

n− 1

n∑
i=1

(
Xi − X̄

)2
.

In order to obtain a nonzero standard deviation, we assume that at least two
of the data values are distinct. The point estimates for the CV, skewness, and
kurtosis are

γ̂2 =
S

X̄
, γ̂3 =

1

n

n∑
i=1

(
Xi − X̄

S

)3

, γ̂4 =
1

n

n∑
i=1

(
Xi − X̄

S

)4

,

for X̄ �= 0. The points (γ̂3, γ̂4) and (γ̂2, γ̂3) can be plotted in Figures 12.2 and
12.3 to give a modeler guidance concerning which distributions are potential
parametric models for statistical inference. Probability distributions in the
vicinity of the point estimates are strong candidates for probability models.
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Unfortunately, these point estimates do not give the modeler a sense of their
precision, so we develop an approximate interval estimate in the paragraph
below.

Bootstrapping can be used to obtain a measure of the precision of the point
estimates (γ̂3, γ̂4) and (γ̂2, γ̂3). Let B denote the number of bootstrap samples
(a bootstrap sample consists of n observations drawn with replacement from
the original data set). For each bootstrap sample, the two parameters of inter-
est (e.g., skewness and kurtosis) are estimated using the procedure described
in the previous paragraph and stored. After the B bootstrap samples have
been calculated, the bivariate normal distribution is fitted to the B data pairs
using standard techniques. Two of the five parameters of the bivariate normal
distribution, namely, the two sample bootstrap means, are replaced by the
point estimators to assure that the bivariate normal distribution is centered
about the point estimators that were calculated and plotted in the previous
paragraph. Finally, a concentration ellipse is plotted around the point esti-
mate. The tilt associated with the concentration ellipse gives the modeler a
sense of the correlation between the two parameters of interest.

Example 12.1. Consider the n = 23 deep-groove ball bearing failure
times (measured in 106 revolutions)

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40.

from Lieblein and Zelen [101], which is discussed in Caroni [27]. For
brevity, we consider the plotting of the point and associated con-
centration ellipse for only the CV vs. skewness moment ratio dia-
gram (Figure 12.3). The first step is to calculate and plot the point
(γ̂2, γ̂3) ∼= (0.519, 0.881). We then take B = 200 bootstrap samples of
n = 23 failure times with replacement from the data set. (The value of
B was chosen arbitrarily.) The bivariate normal distribution is fitted
to the B data pairs and a concentration ellipse is then overlaid on the
plot of the CV vs. skewness as a visual aid to identify likely candi-
date distributions for modeling the ball bearing lifetimes. The results
of this process are displayed in Figure 12.4 which provides a close-up
view of the concentration ellipse. In terms of candidate distributions,
the following conclusions can be drawn.
• Because ball bearing lifetimes are inherently continuous, all of the

discrete distributions should be eliminated from consideration.
• The position of the concentration ellipse implies that several distri-

butions associated with regions in the (γ2, γ3) graph are candidate
distributions: the gamma distribution (and its special cases), and
the Weibull distribution (and the Rayleigh distribution as a special
case) are likely to be models that fit the data well.

• The gamma and Weibull distributions both have shape parameters
that are greater than 1 within the concentration ellipse, confirming
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the intuition that an appropriate model is in the IFR class (Cox
and Oakes [35]) of survival distributions (i.e., the ball bearings are
wearing out). Consistent with this conclusion, note that the point
for the exponential distribution is far away from the concentration
ellipse.

• Distributions that are close to the concentration ellipse should also
be included as candidates. For this data set, the log normal distri-
bution is just outside of the concentration ellipse, but provides a
good fit to the data (see Crowder et al. [38] pages 37–38 and 42–43
for details ). Any distribution in or near the concentration ellipse
should be considered a candidate distribution. This is confirmed
by the four graphs in Figure 12.5, which show the fitted Weibull,
gamma, lognormal, and exponential distributions, along with the
empirical CDF associated with the ball bearing failure data. The
three distributions that are within or close to the concentration
ellipse provide reasonable fits to the data; the exponential distri-
bution, which is far away from the concentration ellipse, provides
a poor fit to the data.

The size of the concentration ellipse also gives guidelines with respect to
sample size. If the concentration ellipse is so large that dozens of probability
distribution are viable candidates, then a larger sample size is required. As
expected, there is generally more variability on the higher-level moments.

Also, the eccentricity and tilt of the concentration ellipse provide insight on
the magnitudes of the variances of the point estimates and their correlation.
For the ball bearing failure times, the standard error of the skewness is almost
an order of magnitude larger than the standard error of the coefficient of
variation. The slight tilt of the concentration ellipse indicates that there is a
small positive correlation between the coefficient of variation and the skewness.

If point estimates and concentration ellipses are plotted on both of the
moment-ratio diagrams in Figures 12.2 and 12.3, the candidate distributions
might not be consistent. The authors believe that the coefficient of variation
vs. the skewness plot is more reliable because it is based on lower-order mo-
ments. The moment-ratio diagrams can be used in tandem when using any
one diagram still leaves a large number of candidate distributions.

12.6 Conclusions and Further Research

The two moment-ratio diagrams presented in Figures 12.2 and 12.3 are use-
ful for insight concerning univariate probability distributions and for model
discrimination for a particular data set. Plotting a concentration ellipse asso-
ciated with bootstrap samples on either chart provides guidance concerning
potential probability distributions that provide an adequate fit to a data set.
These diagrams are one of the few ways that data analysts can simultaneously
evaluate multiple univariate distributions.
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Fig. 12.5. Empirical and fitted CDFs for the Weibull, gamma, log normal, and
exponential distributions for the ball bearing data set

Data sets associated with actuarial science, biostatistics, and reliability
engineering often contain censored observations, with right-censored observa-
tions being the most common. Plotting the various moments is problematic
for censored observations. Block and Leemis [16] provide techniques for over-
coming censoring that are based on kernel density function estimation and
competing risks theory. These techniques can be adapted to produce point
estimators and concentration ellipses.

Further research work associated with these diagrams would include a
Monte Carlo study that evaluates the effectiveness of the concentration ellipse
in identifying candidate distributions. This study would indicate which of the
two moment-ratio diagrams is better for model discrimination.
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Appendix

In this section, we provide exact expressions for the CV, skewness, and
kurtosis, for the four distributions that occupy (two-dimensional) regions in
Figures 12.2 and 12.3.

Beta

The beta family (see Johnson et al. [72, Chap. 25, page 210]) has two shape
parameters p, q > 0 with

γ2 =

√
q√

p2 + pq + p
, p, q > 0;

γ3 =
2(q − p)

√
1/p+ 1/q + 1/pq

p+ q + 2
, p, q > 0;

γ4 = 3(p+ q + 1)
2(p+ q)2 + pq(p+ q − 6)

pq(p+ q + 2)(p+ q + 3)
, p, q > 0.

The regime in the (γ2, γ3) plane is bounded above by the line γ3 = 2γ2 corre-
sponding to the gamma family, and below by the curve γ3 = γ2 − 1/γ2. The
regime in the (γ3, γ4) plane is bounded below by the limiting curve γ4 = 1+γ2

3

for all distributions, and above by the curve γ4 = 3 + 3
2γ

2
3 corresponding to

the gamma family.

Inverted Beta

The beta-prime or the Pearson Type VI family (see Johnson et al. [72,
Chap. 25, page 248]), also known as the inverted beta family, has two shape
parameters α, β > 0 with

γ2 =

√
α+ β − 1

α(β − 2)
, β > 2;

γ3 =

√
4(β − 2)

(α+ β − 1)α
· 2α+ β − 1

β − 3
, β > 3;

γ4 =
3(α− 2 + 1

2 (β − 3)γ2
2)

β − 4
, β > 4.

The regime in the (γ2, γ3) plane is bounded above by the curve
γ3 = 4γ2/(1− γ2

2), γ2 ∈ (0, 1), and below by the curve γ3 = 2γ2 corresponding
to the gamma family. The regime in the (γ3, γ4) plane is bounded above by
the curve

γ3 =
4
√
α− 2

α− 3
, γ4 = 3 +

30α− 66

(α− 3)(α− 4)
, α > 4

corresponding to the inverse gamma family, and below by the curve
γ4 = 3 + 3γ2

3/2 corresponding to the gamma family.
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Generalized Gamma

The generalized gamma family (see Johnson et al. [71, page 388]) has two
shape parameters α, λ > 0 with the rth raw moment μ′

r = Γ(α + rλ)/Γ(α).
The regime in the (γ2, γ3) plane is bounded below by the curve

γ2 =
1√

p(p+ 2)
, γ3 =

1− p

p+ 3
· 2√

1 + 2/p
, p > 0

corresponding to the power family, and above by the curve

γ2 =
1√

p(p− 2)
, γ3 =

1 + p

p− 3
· 2√

1− 2/p
, p > 3

corresponding to the Pareto family. The regime in the (γ3, γ4) plane is bounded
above by the curve

γ3 =
1 + p

p− 3

2√
1− 2/p

, γ4 =
3(1 + 2/p)(3p2 − p+ 2)

(p+ 3)(p+ 4)
, p > 0

corresponding to the power family, bounded below to the right by the
curve corresponding to the generalized gamma family with λ = −0.54, and
bounded below to the left by the curve corresponding to the log gamma fam-
ily. [Recall that the log gamma family with shape parameter α > 0 has the rth

cumulant κr = Ψ(r)(α), where Ψ(r)(z) is the (r + 1)th derivative of ln Γ(z).]

Burr Type XII

The Burr Type XII family (see Rodriques [138]) has two shape parame-
ters c, k > 0 with the rth raw moment μ′

r = Γ(r/c + 1)Γ(k − r/c)/Γ(k),
c > 0, k > 0, r < ck. The regime in the (γ2, γ3) plane is bounded below by the
curve corresponding to the Weibull family (rth raw moment μ′

r = Γ(r/c+ 1),
where c > 0 is the Weibull shape parameter), and above by the curve

γ2 =
1√

p(p− 2)
, γ3 =

1 + p

p− 3
· 2√

1− 2/p
, p > 3

corresponding to the Pareto family. The regime in the (γ3, γ4) plane is bounded
below by the curve corresponding to the Weibull family, bounded above to
the right by the curve corresponding to the Burr Type XII family with k = 1,
and bounded above to the left by the curve corresponding to the Burr Type
XII family with c = ∞.

APPL Code for the Diagrams

The moment-ratio diagrams in this paper were created in two steps. For each
distribution, an algorithm is used to create the sets of points that will pro-
duce the curves. These sets of points are then imported into R to produce
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the graphs. The APPL code to generate the points for the χ2 distribution
moment curves follow. Other distribution curves are produced similarly. Note
the variable X establishes the χ2

n distribution. The APPL commands in the
fprintf statements find the desired moments of X for various values of n.

> file := fopen("ChiSquare.d", WRITE);

> n := 1;

> i := 1;

> while n < 30 do

> X := ChiSquareRV(n);

> fprintf(file, "%g %g %g %g\n", evalf(n), evalf(CoefOfVar(X)),

> evalf(Skewness(X)),evalf(Kurtosis(X))):

> i := i + 1:

> n := i ^ 2:

> end do;

> for n to 100 do

> X := ChiSquareRV(n);

> if ‘mod‘(n, 2) <> 0 then

> fprintf(file, "%g %g %g %g\n", evalf(n), evalf(CoefOfVar(X)),

> evalf(Skewness(X)), evalf(Kurtosis(X))):

> end if

> end do:

> fprintf(file, "%g %g %g %g\n", evalf(999999), evalf(0), evalf(0),

> evalf(3)):

> fclose(file):
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