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Preface

In the spring of 1994 at the College of William & Mary, we started work
on a project that would end up being a long-lasting source of research. We
explored the idea of combining a computer algebra system (Maple V at the
time) and probability results to see if the computer could be useful in per-
forming operations on random variables and finding new distributions. Over
the next 4 years, a series of procedures written in Maple started to form its
own programming language, soon to be called A Probability Programming
Language (APPL). Furthermore, the language and the results that the lan-
guage helped produce were starting to contribute to a field of research we
called computational probability. The program APPL, unlike statistical soft-
ware that works on data values, is designed to work on random variables and
the various functions that describe their distribution. APPL helps derive dis-
tributions of functions of random variables, probabilistic models, and other
transformations. Soon after, Diane Evans joined the team and wrote proce-
dures for discrete distributions. The two sets of procedures were put together,
and in a 2001 article in The American Statistician [60], the launch of this
open-source software began.

In 2008, John Drew, along with Evans, Glen, and Leemis, put together a
monograph explaining the creation of APPL and some of the important re-
sults from the research. This book, Computational Probability: Algorithms and
Applications in the Mathematical Sciences [46], established the state of APPL
at the time, primarily how it evolved and its major algorithms. Camille Price
contacted us recently and requested that we update the original monograph
and write a second monograph that summarizes some more recent work. The
purpose of this, the second monograph, is twofold. First, we want to combine
in this one document some of the recent results that have come about with
the language. Second, we want to inspire future users, professors, students,
and researchers to bring APPL into their work, their classroom, and their
mindset. Just as Word, Excel, LATEX, and PowerPoint are vital yet ubiqui-
tous elements to many researchers, we hope that APPL will become such a
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research tool that enables a probabilist or statistician the ability to explore
new ideas, methods, and models.

Much of what is contained in the chapters that follow was published in
journals over the last 20 years. Some of the works in the monograph are
original efforts, yet to be published. These works highlight interesting exam-
ples, often done by undergraduate students and graduate students, that can
serve as templates for future work. Each chapter is a stand-alone publication,
with the authors recognized, and a short description of the importance that
APPL had in the research. Furthermore, as an open-source language, it sets
the foundation for future algorithms to augment the original code. Some pa-
pers heavily rely on APPL procedures; others enjoy the ease of use of data
structures. Still others have added procedures to the base language.

The editors would like to thank the many people who have contributed,
supported, and encouraged this effort. Each chapter author clearly has been
instrumental in furthering this cause, and they are recognized at the start of
each chapter. Many friends and colleagues have also been immensely support-
ive over the years. We would especially like to recognize the lifelong support of
our wives, Jill Leemis and Lisa Glen, who have put up with our wild ideas, even
though if often meant more work for them in other areas. Our children Lind-
sey, Mark, Logan, Andrea, Rebecca, Mary, Grace, Gabriel, Anna, Michael,
and Claire have all been supportive and patient “listeners” to their fathers.
Our many colleagues over the years deserve our heartfelt thanks: Richard
Bell, Roger Berger, Barry Bodt, Fr. Gabriel Costa, Kevin Cumminskey, Sam
Ellis, James Fritz, Ben Garlick, Grant Hartman, Steven Horton, Ted Hro-
madka, Michael Huber, Steven Janke, Rex Kincaid, Chris Marks, Joe Myers,
Bill Pulleyblank, Tess Powers, Matthew Robinson, Mick Smith, Alex Stodala,
Rod Sturdivant, Fred Tinsley, Dave Webb, Chris Weld, Joanne Whitner, and
Wei Yin-Loh.

The editors gratefully acknowledge support from the Army Research Office
for providing funding in their grant number 67906-MA.

Colorado Springs, CO, USA Andrew G. Glen
Williamsburg, VA, USA Lawrence M. Leemis
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1

Accurate Estimation with One Order Statistic

Andrew G. Glen

Abstract Estimating parameters from certain survival distributions is shown
to suffer little loss of accuracy in the presence of left censoring. The variance
of maximum likelihood estimates (MLE) in the presence of Type II right-
censoring is almost un-degraded if there also is heavy left-censoring when
estimating certain parameters. In fact, if only a single data point, the rth
recorded failure time, is available, the MLE estimates using the one data
point are similar in variance to the estimates using all r failure points for all
but the most extreme values of r. Analytic results are presented for the case
of the exponential and Rayleigh distributions, to include the exact distribu-
tions of the estimators for the parameters. Simulated results are also presented
for the gamma distribution. Implications in life test design, and cost savings
are explained as a result. Also, computational considerations for finding an-
alytic results, as well as simulated results in a computer algebra system, are
discussed.

This paper, originally published in Computational Statistics and Data Analysis, Vol-
ume 54 in 2011, is an arch-typical article that relied on APPL as its palette for
conducting exploratory research. Originally designed to determine how much infor-
mation was lost in censoring, the article instead reports on how little information is
lost as long as one knows at least one of the order statistics of a lifetest. The use of
APPL’s OrderStat procedure to derive the PDF of an order statistic is of primary
importance to this paper. Furthermore, in the span of over a year, the author cre-
ated dozens of Maple worksheets with APPL code that eventually resulted in this
paper. APPL was used in simulations, transformations, and maximum likelihood
estimation. APPL derives exact distributions of test statistics so that exact p-values
were calculable.

A.G. Glen (�)
Department of Mathematics and Computer Science, The Colorado College,
Colorado Springs, CO, USA
e-mail: andrew.glen.1984@gmail.com

© Springer International Publishing Switzerland 2017
A.G. Glen, L.M. Leemis (eds.), Computational Probability Applications,
International Series in Operations Research & Management Science 247,
DOI 10.1007/978-3-319-43317-2 1
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2 1 Accurate Estimation with One Order Statistic

Keywords Maximum likelihood • Order statistics • Type II right
censoring • Computational probability

1.1 Introduction

So much is known about the exponential distribution, that finding new and
useful results is difficult. While studying the effects of increasing left censor-
ship on life test data, it was observed that very little accuracy (variance and
mean square error (MSE) of the estimates) was lost as more of the “left”
portion of the data was censored. So much so, that this study evolved into ex-
amining the effects of estimating parameters when the left and right censored
values met and only one order statistic was observed. For various survival dis-
tributions in the case of extreme left and right censorship, it was noted that
very little accuracy was lost for most order statistics. What was meant as a
study to show degradation of missing observations instead reveals that little
accuracy is lost due to censoring, so much so that accurate estimation with
only one order statistic is possible.

For background purposes, consider the following. In a life test, in which
n units are simultaneously placed on test, it is often the case that inference
is needed prior to the last item failing. Right-censoring is common, often in
the form of Type II right-censoring, in which the first r failure times are
observed. There are many studies on inference for various types of right-
censoring, to include maximum likelihood estimation of parameters. While
there are many studies on right-censoring in life tests, there is remarkably
little discussion of left-censoring, especially left-censoring that accompanies
right-censoring. Left-censoring can occur in a number of ways. An example
presented by Nelson [120] reports that the first five readings of certain contam-
inants were missing because the values were too small to be read by the instru-
ments. Another example of a similar situation is presented in Leemis and Shih
[97, p. 183]. Anderson and Rønn [3] consider experiments in which subjects are
evaluated at only one point in their life, thus, left-censoring or right-censoring
is encountered if the factor in question is present or not on the subject. Goto
[62] discusses left-censoring when considering unemployment durations and
proposes conditional MLE methods to handle these cases. Other articles on
the subject of left-censoring include Cui [39], discussing non-parametric es-
timation, and Samson et al. [143], applying stochastic approximations to an
HIV model. Also, left-censoring can also occur if a failure event happens when
the observer is unavailable, either by accident or design. There are a number
of papers on using Fisher information matrices to find asymptotic variances
for estimators, see Gupta and Kundu [63] as well as Gertsbakh [58], for exam-
ple. Also, Zheng and Park [178] compare the asymptotic efficiencies of MLE
estimates for complete samples of size n compared to censored samples of
right censored at n but from a sample size of N > n. This article finds ex-
act distributions for the estimators, which result in exact variances, so Fisher
matrices are not needed for asymptotic results.
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1.2 The Case of the Exponential Distribution

In the case of the exponential distribution, in which only one order statistic
is known, the exact distribution of the estimator is calculable and its variance
is demonstrably small for most of the order statistics. Let X(r) be the rth
order statistic from a life test with n items on test. Also, let l be the position
of the first data point observed, and r be the position of the last data point
observed. Furthermore, let all observations prior the lth be unknown (left-
censored data), all observations after the rth be unknown (right-censored
data), and all points in between be known. The probability density function
(PDF) of the exponential distribution is

f(x) =
1

θ
e−x/θ x, θ > 0.

The general maximum likelihood function with left- and right-censored data
is proportional to

L(θ) = F (x(l))
(l−1) ×

r∏

i=l

f(x(i))× S(x(r))
(n−r)

in which f, F, S correspond to the PDF, cumulative distribution function
(CDF), and survivor function (SF) of the random variable X with param-
eter θ. In the case when only the rth data point is known, in other words
l = r, the likelihood function reduces to

L(θ) = F (x(r))
(r−1) × f(x(r))× S(x(r))

(n−r).

Taking the natural logarithm and substituting the exponential PDF, CDF,
and SF, the resulting log-likelihood function becomes

lnL(θ) = − ln (θ)− ln
(
1− exp(−x(r)/θ)

)r−1
+
(
x(r) + nx(r) − rx(r)

)
θ−1.

The first derivative of ln L is

∂ lnL(θ)

∂θ
=

exp(x(r)/θ)(−θ + x(r) + nx(r) − rx(r)) + θ − nx(r)

θ2 exp(x(r)/θ)− 1
.

Setting the first derivative equal to zero and solving for θ results in the fol-
lowing equation for the maximum likelihood estimator

θ̂ = cn,r x(r),

for

cn,r =
−1

RootOf(ez − z − zn+ znez + zr − 1)
.



4 1 Accurate Estimation with One Order Statistic

The denominator requires finding the root of the expression for the variable z.
Although the denominator of cn,r does not solve algebraically, it is straightfor-
ward to calculate numerically. By inspection, one (trivial) root of the denom-
inator is zero, and further graphical analysis shows that the other real root is
negative. Therefore, cn,r is a positive number that starts at cn,1 = n for the
first order statistic and gets smaller, approaching zero, as r approaches n. In
other words, an order statistic for the exponential distribution is proportional
to its mean and vice versa. Table 1.1 gives the cn,r values to four digits for
various n and r combinations.

Table 1.1. Values of cn,r for various n and r values for the exponential distribution
Note the value that is italicized is used in the calculations of the exponential example
in Section 1.3 of the article

r n  = 5  n  = 10  n  = 15  n  = 20  n  = 25  n  = 30  n  = 35  n  = 40  n  = 45  n  = 50
1 5.0000 10.0000 15.0000 20.0000 25.0000 30.0000 35.0000 40.0000 45.0000 50.0000
2 2.2314 4.7412 7.2443 9.7457 12.2466 14.7472 17.2476 19.7479 22.2481 24.7483
3 1.2907 2.9814 4.6547 6.3246 7.9931 9.6609 11.3284 12.9957 14.6629 16.3299
4 0.7987 2.0953 3.3564 4.6115 5.8643 7.1162 8.3675 9.6185 10.8693 12.1198
5 0.4671 1.5575 2.5742 3.5814 4.5855 5.5881 6.5899 7.5912 8.5922 9.5931
6 1.1924 2.0496 2.8927 3.7314 4.5681 5.4038 6.2389 7.0735 7.9079
7 0.9242 1.6718 2.3989 3.1200 3.8386 4.5558 5.2722 5.9881 6.7036
8 0.7135 1.3853 2.0267 2.6602 3.2904 3.9189 4.5465 5.1734 5.7999
9 0.5358 1.1591 1.7353 2.3012 2.8631 3.4228 3.9814 4.5393 5.0966

10 0.3673 0.9743 1.5004 2.0129 2.5203 3.0253 3.5288 4.0314 4.5335
3270.44516.39751.33996.20932.27577.12603.18818.011
6786.33862.32848.29624.27300.29675.13241.17386.021
8163.32479.27585.29591.27308.13704.14100.12265.031
1280.36127.22063.21799.14136.17062.10878.09644.041
3938.23205.22461.22428.12184.12231.12867.08423.051
6626.20013.22299.13276.19843.12810.15866.061
5834.20041.29938.16735.11132.10619.01675.071
0172.24889.11407.11714.14521.13328.08784.081
8021.23258.10285.17803.18920.13837.02993.091
3589.15927.16174.13012.15249.03956.07992.002
3268.19716.12173.16021.13268.07485.012
3057.11615.14972.12830.10887.01315.022

:::
8564.10752.16440.14528.06095.05282.052

:::
8111.18139.00547.07245.08962.003

: :
35 0.2598 0.5069 0.6860 0.8497
: :

40 0.2517 0.4791 0.6405
: :

45 0.2450 0.4566
: :

50 0.2392

Logically, the values of cn,r for the smaller order statistics are less than
the mean of the exponential(θ) and so to estimate that mean, one multiplies
the smaller order statistics by a cn,r > 1. Then as the order statistic position
approaches the median, cn,r tends towards 1 (but because the exponential is
skewed, the constant of the median will be larger than 1). Finally, for the later
order statistics, cn,r gets closer to zero, as the order statistics are greater than
the mean. More importantly, knowing the value of cn,r enables one to find the

exact distribution of the estimator θ̂ in the case of assumed exponentiality
as well as exact confidence limits for θ. First consider the random variable,
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θ̂ = cn,r X(r). One can derive the distribution of X(r) and find the distribution

of θ̂ using the transformation technique from mathematical statistics to find
the PDF of the estimator. Furthermore, while it is possible to do by hand,
this type of exploration is made less tedious using computer algebra software.
In this case the author uses A Probability Programming Language (APPL)
[46] and [60] running in Maple for all of the derivations in this paper. APPL
is an open source set of procedures available from the author. Also, all code
in this paper is available from the author. An illustration using APPL code
is provided below for finding the distribution of the estimator.

> assume(n::posint); # set up assumptions

> assume(r::posint);

> assume(theta > 0);

> assume(cnr > 0);

> additionally(n >= r);

> X := [[x -> exp(-x / theta) / theta],[0, infinity],

["Continuous", "PDF"]];

# creates an unspecified exponential distribution with

# parameter theta

> Xos := OrderStat(X, n, r);

# calculates the unspecified PDF of the rth order statistic

> Thetahat := Transform(Xos, [[x -> cnr * x],[0, infinity]]);

# calculates the PDF of the estimator

The result is the PDF of the estimator

fθ̂(y|θ) =
n! (1− exp(−y/(θ cn,r)))

r−1 exp(−(n− r + 1) y/(θ cn,r))

(r − 1)! (n− r)! θ cn,r
y > 0.

Further, for any fixed n and r, the expected value and variance of the estimator
are calculable. For example, consider the 22nd order statistic for increasing
values of n = 30, 35, 40, and 50. The mean and variance of each of these
estimators are calculated in APPL with the additional commands similar to

> Mean(subs({n = 30, r = 22, cnr = 0.78803}, Thetahat));

> Variance(subs({n = 30, r = 22, cnr = 1.038175}, Thetahat));

The resulting values for the mean and variance of θ̂ are listed in Table 1.2.
Note that we can calculate the exact bias of the estimator. Furthermore, as

we would expect, because MLEs are asymptotically unbiased, we see the bias
decreasing as n increases. Also shown is the effect on variance of changing n, in
case an experimenter knows a desired variance threshold in advance. This type
of analysis helps one design an experiment, especially choosing appropriate n
and r that will produce a timely end to the experiment. Also, it was noted
(but not shown in this table) that E(cn,1X(1)) = θ, in other words the MLE
using the first order statistic is unbiased (although it has extraordinarily high
variance). For each subsequent order statistic there is increasing bias, so much
so that about half-way through the order statistics, the bias factor is on the
order of 1.004, which is still less than one-half a percent of the value of θ.
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Table 1.2. Exact mean and variance for estimators using only the 22nd order
statistic from various sample sizes

Order statistic Mean Variance
n = 30, r = 22 1.006418θ 0.052616θ2

n = 35, r = 22 1.003550θ 0.049442θ2

n = 40, r = 22 1.002293θ 0.048040θ2

n = 50, r = 22 1.001204θ 0.046817θ2

As mentioned in the introduction, the variance of the single order statistic
estimators compare very favorably with the MLE estimators when there is
no left censoring and all of the first r order statistics are known. Because
the exact distribution of estimator for the single order statistic is known, its
exact variance can be calculated. Likewise, for the estimates from Type II
right censoring, it is well established that

2rθ̂

θ
∼ χ2

2r,

(see Leemis [93, p. 199], for example) so that exact variances can be calcu-
lated for this estimator as well. Figure 1.1 displays the variances of these two
estimators for various r and n = 30. The lower set of points is the variance
of the MLE θ̂ if all order statistics x(1), x(2), . . . , x(r) are observed. The upper
set of points is the variance of the estimator if only one order statistic, x(r),
is observed.

Note that the variances of these two estimators indicate that knowing more
than just the rth order statistic gives only marginal increase in estimation ac-
curacy. In fact, it is evident by smaller variance, that the estimate found with
only the single order statistic x(16) is more accurate than an estimate found
by knowing all of the first 14 order statistics. Note also, as expected, the vari-
ance of both estimators decreases until the right censored value approaches n,
the sample size. At that point the variances separate with the point estimate
from a single order statistic gaining in variance. The form of the estimator
θ̂ = cn,r X(r) helps explain this increase in variance for the single point estima-

tor. Clearly the variance of the estimator V (θ̂) = V (cn,r X(r)) = c2n,r V (X(r)).
The explanation of the decreasing-then-increasing variance can be found in the
“tension” between the two terms c2n,r and V (X(r)). For the exponential distri-
bution it can be shown that V (X(r)) starts low and increases as r increases.
On the other hand, c2n,r starts out very high and then decreases. The early
extreme values of c2n,r eclipse the smaller values of the variance of V (X(r))
at the smaller values of r. This makes the variance of the estimator is high.
For intermediate values of r, both terms are relatively low and the variance of
the estimator is also low. However, for the larger values of r, the small values
of the term c2n,r are eclipsed by the much higher values of V (X(r)) and the
variance of the estimator grows again.
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Fig. 1.1. Exact variances of the single point estimators are overlaid on the ex-
act MLE variances for all r observations assuming the underlying distribution is
exponential with θ = 100 and n = 30

Exact interval estimates for θ can be calculated. Using the pivotal quan-
tity method for interval estimates (see Casella and Berger [28], for example),

and choosing Q = θ̂/θ as the pivotal quantity, we can find the exact distri-
bution that is free of the parameter θ. In APPL (or by hand again using the
transformation technique) one computes:

> Qpdf := Transform(Thetahat, [[x -> x / theta],[0, infinity]]);

which calculates the PDF of Q to be

fQ(q) =
n! (1− exp(−q/cn,r))

r−1
exp(− (n− r + 1) q/cn,r)

(r − 1)! (n− r)! cn,r
q > 0.

Thus, the two-tailed confidence limits for a given n and r are determined by
setting

P

(
Qα/2 <

θ̂

θ
< Q1−α/2

)
= 1− α

then inverting the probability statement and isolating θ yields

P

(
θ̂

Q1−α/2
< θ <

θ̂

Qα/2

)
= 1− α.

1.3 An Example for the Exponential Distribution

An illustrative example based on a previously reported problem is instructive.
Meeker and Escobar [113, p. 167] describe a life test of 25 specimens of a new
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insulating material. The test was run until 15 items failed, with failure times
1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20, 35.90, 43.50, 44.00, 45.20,
45.70, 46.30, and 47.80. Using standard MLE with Type II right censoring
and the first r = 15 points known, the following are computed: point estimate
θ̂ = 63.392, a 95% confidence interval for θ of (40.48, 113.26), and a standard
error of the estimate of SEθ̂ = 16.37. Using this paper’s proposed, single
order statistic estimator, the estimates are found as follows. For n = 25 and
r = 15, from Table 1.1 we identify c25,15 = 1.132179, (see the table entry
that is italicized). Therefore, we can derive the distribution and the estimate

for the parameter using the following relationship θ̂ = 1.132179X(15). For

x(15) = 47.80, we calculate the point estimate θ̂ = 1.132179×47.80 = 54.1181.
Using the transformation of variables technique in APPL, the PDF of the
estimator is

fθ̂(y|θ) =
1

θ
43307088.20 (1− exp(−0.883 y/θ))

14
exp(−9.72 y/θ) y > 0,

and the PDF of the pivot quantity Q = θ̂/θ is

fQ(q) = 43307088.20 (1− exp(−0.883 q))
14

exp(−9.72 q) q > 0.

From the first distribution the mean of the estimate is calculated to be
E(θ̂) = 1.004231θ which is a bias of less than one-half percent larger than
the true value of θ. Also, that distribution yields a standard deviation (sub-

stituting θ̂ in for θ) of SEθ̂ = 14.493. Finally, from the pivot point distribution,
we get two critical values of the confidence interval to be Q1−α/2 = 1.59692
and Qα/2 = 0.5534 for a 95% confidence interval for θ of (33.89, 97.79). These
compare vary favorably to the standard MLE method that required knowing
the value of all 15 failure times, reported in Meeker and Escobar.

As an interesting extension, one could examine the behavior of the
estimates at each of the last six single order statistics to investigate how
the estimates were changing. Table 1.3 lists estimates, confidence intervals
and standard errors for each of the previous order statistics. As expected, as

Table 1.3. Estimates from single order statistics that relate to the example from
Section. 1.3

r x(r) θ̂ 95% C. I. SEθ̂

15 47.8 54.11 33.89 < θ < 97.79 14.93
14 46.3 58.37 36.16 < θ < 107.76 16.07
13 45.7 64.32 39.35 < θ < 121.70 18.27
12 45.2 71.27 42.97 < θ < 138.78 20.98
11 44.0 78.13 46.30 < θ < 157.29 23.92
10 43.5 87.56 50.86 < θ < 183.30 28.03

r decreases, the standard errors of the estimates increase and the intervals
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get wider. Interestingly, the estimates themselves became larger as r becomes
smaller. A quick verification of the standard MLEs using all 15 points showed
similar behavior. This type of analysis lends itself to some extensions, such as
considering linear combinations of these estimates to see if there is improve-
ment.

1.4 The Rayleigh and Weibull Distribution Extensions

Analytic results are also attainable for the Rayleigh distribution and, to some
extent, the Weibull distribution. Consider the Weibull distribution with PDF

fX(x) = θ−κxκ−1κ e−θ−κxκ

x, κ, and θ > 0.

Analytic results were not found for both parameters simultaneously. However,
when κ = 2, the Weibull distribution becomes the Rayleigh distribution. Thus,
the following analysis was conducted assuming a Weibull distribution with κ
known. Clearly this condition has limited value for the general situation of the
Weibull distribution, but it is very applicable for the Rayleigh distribution.
In exploratory simulations of the Rayleigh distribution, the same decreasing
variance was noted for the single point estimators. This effect was the catalyst
to find analytic results for the Rayleigh distribution that follow.

Similar to what was described in Section 1.2, the likelihood function in the
case in which only the rth ordered observation is known is proportional to

L(θ) = F (x(r))
(r−1) × f(x(r))× S(x(r))

(n−r).

Letting x� = (x(r)/θ)
κ the log-likelihood function is

lnL(θ) = r ln(1 − e−x�

)− ln(1− e−x�

)− κ ln θ + κ lnx(r) − lnx(r) + lnκ

−x� − nx� + r x�.

The first partial derivative of ln L(θ) with respect to θ is

∂ lnL(θ)

∂θ
=

κ
(−ex

�

+ 1 + x� ex
�

+ nx�ex
� − nx� − rx�ex

�)

θ (ex� − 1)
.

Setting the first derivative equal to zero and solving for θ results in the fol-
lowing equation for the estimator

θ̂ = cn,r x(r),

for

cn,r =

(
1

RootOf(zez + znez − zn− zrez − ez + 1)

)1/κ

.
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For the case of the Rayleigh distribution, κ = 2, it can be shown that the
constants cn,r for the Rayleigh distribution are merely the square root of the
constants for the exponential distribution with the same values of n and r,
thus, the values in Table 1.1 can be appropriately adjusted to derive these
constants. Likewise, for the Weibull case in which κ is known, the constants
cn,r for the Weibull distribution are merely the constants for the exponential
distribution raised to the 1/κ power.

Variances for the single order statistic and r order statistics estimators are
compared for the Rayleigh distribution in Figure 1.2. The upper points are the
exact variances of the single point estimators. The lower points are estimated
variances (found with Monte Carlo simulation, as exact variances are not
available for the Rayleigh) for the estimates from using all r order statistics.
The marginal increase in accuracy from knowing all r values is again small.
As in the case of the exponential distribution, distribution functions for the
estimator and the pivotal quantity are calculable for the Rayleigh distribution.
The PDF of the rth order statistic from the Rayleigh distribution is

fX(r)
(x(r)) =

2nx exp(−x2
(r)/θ

2)
(
1− exp(−x2

(r)/θ
2)
)r−1 (

exp(−x2
(r)/θ

2)
)n−r

(r − 1)!(n− r)!θ2

for x(r) > 0. Transforming that distribution by the relationship θ̂ = cn,r X(r)

produces the distribution of the estimator

fθ̂(y|θ) =
2ny exp

[−(n− r + 1)y2/(θ2c2n,r)
] (

1− exp
[−y2/(θ2c2n,r)

])r−1

(r − 1)!(n− r)!θ2c2n,r
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Fig. 1.2. Exact variances for the single point estimators compared to simulated
variance of the r-point estimator for the Rayleigh distribution with θ = 100 and
n = 30
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for y > 0. This distribution allows us to calculate bias and variance of the esti-
mator, which behaves in a similar fashion to the exponential distribution. The
pivotal quantity Q = θ̂/θ is again used to transform the estimator distribution
into a pivotal quantity with PDF

fQ(q) =
2nq exp

[−(n− r + 1)q2/c2n,r
] (

1− exp
[−q2/c2n,r

])r−1

(r − 1)!(n− r)!c2n,r
q > 0.

With this distribution, confidence intervals for the Rayleigh can be formed in a
similar manner as the exponential distribution. Alternatively, transformations
from the Rayleigh to the exponential distributions can be performed to arrive
at similar results.

1.5 Simulations and Computational Issues

The phenomenon of decreasing variance for single point order statistic estima-
tors was noticed in some other distributions as well. For the simplistic case of
the gamma distribution in which one parameter was known, but the other was
not, a similar result was inferred from a simulation. In this case, the gamma
distribution with PDF

f(x) =
α(αx)β−1e−αx

Γ(β)
x, α, andβ > 0,

was explored. The gamma distribution simulation (as well as a similar Weibull
simulation) only produced this phenomenon when the shape parameter, in
this case β, was fixed. This, again, is not a desired condition, as in most two-
parameter survival distributions, both parameters need to be estimated simul-
taneously. Furthermore, analytic results were not attainable for the gamma
distribution. Figure 1.3 shows the result of estimating the one free param-
eter α with only one order statistic in the case of underlying gamma data
for n = 30. Again, we see this notion that the variance of estimating with
only one order statistic is almost as good as knowing all r order statistics.
Note that in Figure 1.3 the simulation stopped at the r = 28 censoring value.
This stopping point was arbitrary and could have been extended, producing
a similar divergence in the two variances.

A note on computational issues is worthwhile. This analysis was done in
APPL running inside of a Maple worksheet. Some of the code is included in
this article for explanatory reasons. While most of this work could have been
done by hand, the step of creating the cn,r constants required solving for θ the
first derivative set equal to zero. The result of this step is an expression that
needed roots, shown as RootOf(·) in Maple output. The function itself needs
to be solved numerically, but if left alone in RootOf form, it represents an
exact relationship. Finding this root is not easily done by hand, if at all, yet
is straightforward with a working knowledge of computer algebra software,
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Fig. 1.3. Results of Monte Carlo simulation estimating variance of the two estima-
tors of α for the gamma distribution with n = 30

especially enhanced with the procedures of APPL. In fact, there is a steadily
growing number of results being published that use computer algebra software
to do some or all of the analysis. A list of these types of articles is available
from the author. Unlike statistical software, APPL is designed to work with
symbolic expressions, not just numerical values, in order to generate new dis-
tributions. Another software package, MathStatica [139], is similar to APPL
in that it uses procedures in Mathematica to do mathematical statistics op-
erations. This software is not open source, however.

1.6 Implications for Design of Life Tests

These results create certain practical opportunities for improving the execu-
tion of some life tests. Although limited to only the exponential and Rayleigh
distributions, this relatively simple method could be useful in input modeling
for simulations. Simple input models can be accurately estimated with only
one order statistic. If more than one order statistic is known, standard MLE
estimates are still attainable, but with only a marginally smaller variance of
the estimate, approaching that of the variance when all r lifetimes are known.
For those life tests needing only a scale parameter estimate, it is possible to
consider using fewer resources in observing failures. Perhaps in studies that
take a long time to complete, it is be possible to eliminate continuous monitor-
ing by evaluators and go to only periodic monitoring. Furthermore, combining
these results with calculating an expected time to completion (see Leemis [93,
p. 213], for example) one can design experiments with very high n, planning
on terminating the experiment at the moderately low time of a smaller r
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value, say n = 50 and r = 7. The result will be a shortened time on test,
with reasonable variance of the estimators, should there be any left-censoring.
Also, the increasing right tails in Figures 1.1, 1.2, and 1.3 do not necessar-
ily present a problem concerning the left-censored estimation. Clearly, by the
time the later order statistics occur, the experiment is so far along towards
termination, that it is unreasonable in most cases to think that one could not
observe that many failures over such a long time.

1.7 Conclusions

In this paper, results are presented that indicate little accuracy is lost in left-
censoring on a life test. When only a single parameter is needed, even extreme
left-censored data sets give almost the same quality of the estimator. Analytic
results are presented for point and interval estimates for the exponential and
Rayleigh distribution in the case in which only one order statistic is known.
Exact distributions for the estimators are calculated, with a number of advan-
tages that go along with knowing that distribution. Also, computational issues
are presented that explain some advantages of doing mathematical statistics
operations in a computer algebra system, a practice that is not very often
mentioned in the literature. Clearly, more practical conditions require further
research, not the least of which is considering estimating two or more pa-
rameters simultaneously. The author is also conducting similar research on
distributions with left tails, such as the normal, and also the case were only
a few order statistics are observed, not necessarily consecutive ones.



2

On the Inverse Gamma as a Survival
Distribution

Andrew G. Glen

Abstract This paper presents properties of the inverse gamma distribution
and how it can be used as a survival distribution. A result is included that
shows that the inverse gamma distribution always has an upside-down bath-
tub (UBT) shaped hazard function, thus, adding to the limited number of
available distributions with this property. A review of the utility of UBT
distributions is provided as well. Probabilistic properties are presented first,
followed by statistical properties to demonstrate its usefulness as a survival
distribution. As the inverse gamma distribution is discussed in a limited and
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16 2 On the Inverse Gamma as a Survival Distribution

2.1 Introduction

The inverse gamma distribution with parameters α and β, IG(α, β), is men-
tioned infrequently in statistical literature, and usually for a specific purpose.
Also called the inverted gamma distribution or the reciprocal gamma dis-
tribution, it is most often used as a conjugate prior distribution in Bayesian
statistics. This article has three primary contributions regarding the IG distri-
bution. First it proves that the IG distribution falls into the class of upside-
down bathtub shaped (UBT) distributions, an unreported result. Secondly
this paper demonstrates how the IG distribution can be used as a survival
distribution, a use that appears unreported. Thirdly this paper collects the
scattered properties of the IG distribution into one source, similar to the type
of summary found in popular works like Evans et al. [50].

The number of established UBT distributions is relatively small compared
to the more common increasing failure rate distributions. However, UBT dis-
tributions have been shown to provide excellent models for certain situations.
For example, Aalen and Gjessing [1] show that the UBT class of distributions
are good models of absorption times for stochastic models called Wiener pro-
cesses. Also, Bae et al. [5] show that degradation paths often are modeled
by a restricted set of distributions, with certain paths requiring UBT distri-
butions. Crowder et al. [38] have a conjecture that UBT distributions best
model a particular data set of ball bearing failure times. Lai and Xie [85]
point out that UBT distributions model certain mixtures as well as failure
time models in which failure is primarily due to fatigue or corrosion. To date,
the well known UBT distributions are the inverse Gaussian, log-logistic, and
the log-normal. Thus, a need for more UBT distributions is certainly recog-
nized. We will show that the IG distribution fits in a moment ratio diagram
in between the log-logistic and the log-normal, thus, filling a void in the UBT
area (see Figure 2.3).

One primary use of the IG distribution is for Bayesian estimation of the
mean of the one parameter exponential distribution (see for example Johnson
et al. [72, p. 524] or Phillips and Sweeting [131, p. 777]), as well as estimat-
ing variance in a normal regression (see for example Gelman et al. [57]). It is
one of the Pearson Type V distributions, as is the Wald distribution (a.k.a.
the inverse Gaussian distribution, see Johnson et al. [72, p. 21]). A num-
ber of brief descriptions of the properties of the distribution are available,
mostly in text books on Bayesian methods, often in the econometrics litera-
ture, e.g., Poirier [133] and Koch [81]. Kleiber and Kotz [78] list some basic
properties of the IG distribution and also model incomes with the distri-
bution. Milevsky and Posner [115] discuss the inverse gamma distribution
and point out that estimation by the method of moments is tractable al-
gebraically. There is a different distribution with, coincidentally, the same
name in Zellner [175] that is derived with the square root of the inverse of
a gamma random variable. Witkovsky [169, 170] derived the characteristic
function of the inverse gamma. The most complete listing of some of the
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properties of the inverse gamma distribution is found on the Wikipedia web-
site at http://en.wikipedia.org/wiki/Inverse gamma distribution, an
anonymously written summary that does not list any sources or references.
That summary is limited to the basic properties, the PDF, CDF, MGF, char-
acteristic function, median, entropy, and the first four moments. There appears
to be no comprehensive effort in the literature to employ the IG distribution
as a survival distribution. This article will do that, specifically exploring the
probabilistic and statistical properties of the IG distribution. Further, it is
shown that the IG distribution fills a void in the available UBT distribution
list, as seen in a moment ratio diagram to follow.

2.2 Probabilistic Properties

This section presents a number of probabilistic properties that are useful
when considering the IG distribution as a survival distribution. An inverse
gamma random variable X can be derived by transforming a random variable
Y ∼ gamma(α, β) with the multiplicative inverse, i.e., X = 1/Y . Thus, for
the gamma PDF

fY (y) =
βα

Γ(α)
yα−1e−βy y, α, β > 0,

the resulting distribution, the IG(α, β), has PDF, CDF, survivor function,
and hazard function (HF)

f(x) =
βα

Γ(α)

(
1

x

)α+1

e−β/x,

F (x) =
Γ(α, β/x)

Γ(α)
,

S(x) = 1− Γ(α, β/x)

Γ(α)
,

h(x) =
f(x)

1− F (x)
=

βα

Γ(a, 0, β/x)

(
1

x

)α+1

e−β/x,

all with x, shape α, and scale β > 0. Recall that Γ(·) is the Euler gamma
function, Γ(·, ·) is the incomplete gamma function, and Γ(·, ·, ·) is the general-
ized incomplete gamma function (see Wolfram [172] for example). Figures 2.1
and 2.2 show various PDFs and HFs for certain parameter values to indicate
the shape of these functions. One of the more important aspects of a sur-
vival distribution is the shape of its hazard function. The four main classes of
hazard functions for survival distributions are increasing failure rate (IFR),
decreasing failure rate (DFR), bathtub-shaped (BT) and upside-down bath-
tub shaped (UBT). Appendix 1 shows that the IG distribution will always
have a UBT hazard function.
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In addition to the IG distribution always being in the UBT class, there are
a number of important properties that the IG distribution has as a survival
distribution.

• Moments are calculable, and the rth moment about the origin is as follows

Fig. 2.1. Examples of PDFs of the inverse gamma distribution. Note the dashed
PDF has a heavy right-hand tail, resulting in an undefined mean because α < 1

E(Xr) =

∫ ∞

0

xrf(x)dx =
β rΓ(α− r)

Γ(α)
, α > r.

This function is sometimes referred to as the moment function, and while
it is typical that r = 1, 2, . . . , the function holds true for non negative real
values of r. Some asymptotic results also are calculable:

lim
α→∞E(Xr) = 0 and lim

α→0
E(Xr) = ∞.

• Method of moments estimation techniques are straightforward, because the
mean and variance are expressed in closed-form. The first two moments
about the mean are

μ =
β

α− 1
, α > 1 and σ2 =

β2

(α− 1) (α− 2)2
, α > 2,

so the method of moments estimators can be found by algebraically in-
verting the set of equations in which the sample moments are set equal to
the distribution moments, i.e.,
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Fig. 2.2. Examples of the inverse gamma distribution hazard functions for various
parameters. Note the dashed HF has a heavy tail, resulting in an undefined mean
because α < 1

α̂ =
x̄2 + 2s

s
and β̂ =

x̄ (x̄2 + s)

s
,

in which x̄ is the sample mean and s is the sample standard deviation.
This relationship is useful for finding initial estimate for numeric solutions
of the MLEs.

• The limiting distribution as α → ∞ is degenerate at x = 0.
• One comparison technique when choosing among survival distributions is

to plot the coefficient of variation γ2 = σ/μ versus skewness

γ3 =
E((X − μ)3)

σ3
, see Cox and Oakes [35, p. 27]. A modeler would plot

(γ̂2, γ̂3) on such a graph to see which curve appears to be closest to the
data as a start to model selection. Lan and Leemis [86] expand that graph
to include the logistic-exponential distribution. Figure 2.3 takes their fig-
ure and adds the IG curve to the set of distributions that now include the
Weibull, gamma, log-logistic, log-normal, log-exponential, inverse gamma,
and the exponential distributions. The curve for the IG distribution falls in
between the log-logistic and the log-normal distributions, in effect, helping
to fill the gap between those two well-known UBT survival distributions.
A more complete listing of moment ratio diagrams can be found in Vargo
et al. [163], which includes the inverse gamma distribution in its figures.

• Closed-form inverse distribution functions do not exist for the IG distri-
bution, so calculating quantiles, to include the median, must be done with
numerical methods.

• Variate generation for the IG distribution can be done by inverting a
variate from a gamma distribution. However, gamma variate generation
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is not straightforward (as the gamma inverse distribution function (IDF)
also does not exist in closed-form). Leemis and Park [96], Chap. 7, provide
an explanation of various algorithms for generating gamma variates.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.5

1

1.5

2

2.5

3

3.5

4

logistic - exponential

gammaWeibulllog-normalinverse
gamma

log
logistic

γ3

exponential

γ
2

Waldgamma
ratio

Fig. 2.3. Various two-parameter survival models with corresponding coefficient of
variation versus skewness plotted. The heavier solid line is the inverse gamma dis-
tribution and the lighter solid line is the gamma ratio distribution

• Special cases and transformations of the IG distribution are equivalent
to other known distributions (beside the obvious inverse transformation
back to a gamma distribution). The IG(1, λ) distribution is the inverse
exponential distribution with PDF

f(x) =
λe−λ/x

x2
λ, x > 0.

The IG(ν/2, 1/2) distribution is the inverse χ2
ν distribution with PDF

f(x) =
(ν/2)ν/2 x−1−ν/2 e−ν/(2x)

Γ(ν/2)
x, ν > 0.

The IG(1/2, c/2) distribution is the Levy distribution with PDF

f(x) =
(c/(2π))

1/2
e−c/(2x)

x3/2
x, c > 0.
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The IG(ν/2, s2/2) distribution is also called the scaled inverse χ2 dis-
tribution, which is the form of the IG distribution that is typically
used for Bayesian estimation of σ2 in normal regression (see for exam-
ple Robert [137]).

• The negative log-gamma distribution is obtained by letting Y ∼ IG(α, β)
and deriving the PDF of X = lnY to be

f(x) =
βαe−αx−βe−x

Γ (α)
−∞ < x < ∞.

The log-gamma distribution is a well-behaved distribution with calcula-
ble moments and derivable inference, e.g., see Lawless [90]. Clearly, the
negative log-gamma distribution is similarly behaved.

• An interesting new one-parameter survival distribution, which will be
called the gamma ratio distribution, is derived as follows. Let Y ∼
gamma(α, β) and X ∼ IG(α, β) be independent random variables. The
distribution of V = XY has PDF

f(v) =
vα−1Γ

(
α+ 1

2

) (
1
4 + 1

2v +
1
4v

2
)−α

2
√
πΓ (α)

α, v > 0.

Note, this distribution is alternately formed by the ratio of two iid IG
distributed random variables (which is the same as the ratio of two iid
gamma distributed random variables). The rth moments about the origin
for V are calculable,

E(V r) =

∫ ∞

0

vrf(v)dv =
22α−1

√
2Γ (α− r) Γ (α+ r)

22α−
1
2 (Γ (α))

2 α > r

and the mean is close to one, as is expected by its construction,

μV =
α

α− 1
α > 1

with variance

σ2
V =

(2α− 1)α

(α− 2)(α− 1)2
α > 2.

The CDF and hazard function are calculable, but require special functions
in Maple. The gamma ratio distribution is of interest because it joins the
exponential and the Rayleigh distributions as a one parameter survival
distribution. For parameter values of α > 1 it can be shown to have a
UBT failure rate, however for 0 < α ≤ 1 it appears to have a decreasing
failure rate. This conjecture still needs to be proven, but can be shown
anecdotally. When α ≤ 1 the distribution has a very heavy right tail,
further indicating that no first moment exists. Furthermore, the PDF is
hump-shaped for α > 1, as is the Rayleigh, a shape the exponential can
not attain. The gamma ratio distribution fits nicely in the moment ratio
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diagram, see Figure 2.3, as it further fills the gap between the log-logistic
and the log-normal distributions. A disadvantage to this distribution be-
ing used as a survival distribution is that the parameter α is a shape
parameter, but not a scale parameter, thus, limiting its flexibility as units
of measure change. This distribution warrants further research as another
survival distribution, as it is in a small class of one-parameter distributions
as well as in the UBT class.

• The distribution of a sum of iid IG random variables does not pro-
duce a closed-form PDF. However, products are better behaved. Let
Xi ∼ IG(α, β), for i = 1, 2 be iid, then Z = X1X2 has PDF

f(z) =
2z−1−αβ 2αBesselK

(
0, 2 β√

z

)

(
Γ(α)

)2 z > 0.

2.3 Statistical Inference

In order for a survival distribution to be viable for empirical modeling, statis-
tical methods must be reasonably tractable. The inverse gamma distribution
can produce statistical inference for both complete and right-censored data
sets. Some likelihood theory and examples of fitting each type of data set are
presented.

2.3.1 Complete Data Sets

For the uncensored case, let t1, t2, . . ., tn be the failure times from an exper-
iment. The likelihood function is

L(α, β) =

n∏

i=1

f(ti, α, β) =

n∏

i=1

βα

Γ(α)

(
1

ti

)α+1

e−β/ti.

Taking the natural logarithm and simplifying produces

lnL(α, β) = nα lnβ − n ln
(
Γ(α)

)
+ (α+ 1)

n∑

i=1

ln

(
1

ti

)
− β

n∑

i=1

1

ti
.

The first partial derivatives of lnL(α, β) with respect to the two parame-
ters are

∂ lnL(α, β)

∂α
= n lnβ − nΨ(α) +

n∑

i=1

ln

(
1

ti

)

and

∂ lnL(α, β)

∂β
=

nα

β
−

n∑

i=1

1

ti
,
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for Ψ(α) = d
dα ln Γ(α) is the digamma function. Equating these two partial

derivatives to zero and solving for the parameters does not yield closed-form
solutions for the maximum likelihood estimators α̂ and β̂ but the system of
equations is well behaved in numerical methods. If initial estimates are needed,
the method of moments can be used. When the equations are set equal to zero,
one finds β = nα(

∑
t−1
i )−1, which reduces the problem to a single parameter

equation

n lnn+ n lnα− ln

(
n∑

i=1

t−1
i

)
− nΨ(α)−

n∑

i=1

ln ti = 0,

which must be solved by iterative methods.
Confidence intervals for the MLEs can be obtained with the observed in-

formation matrix, O(α̂, β̂). Cox and Oakes [35] show that it is a consistent
estimator of the Fisher information matrix. Taking the observed information
matrix

O(α̂, β̂) =

( −∂2 lnL(α,β)
∂α2

−∂2 lnL(α,β)
∂α∂β

−∂2 lnL(α,β)
∂β∂α

−∂2 lnL(α,β)
∂β2

)

α=α̂,β=β̂

,

one then inverts the matrix and uses the square root of the diagonal ele-
ments as estimates of the standard deviations of the MLEs to form confidence
intervals.

To illustrate the use of the inverse gamma distribution as a survival dis-
tribution, consider Lieblein and Zelen’s [101] data set of n = 23 ball bearing
failure times (each measurement in 106 revolutions):

17.88 28.92 33.00 41.52 42.12 45.60 48.48
51.84 51.96 54.12 55.56 67.80 68.64 68.64
68.88 84.12 93.12 98.64 105.12 105.84 127.92
128.04 173.40

This is an appropriate example because Crowder et al. [38, p. 63] conjectured
that UBT shaped distributions might fit the ball bearing data better than
IFR distributions based on the values of the log likelihood function at the
maximum likelihood estimators. Using Maple’s numeric solver fsolve(), the
MLEs are α̂ = 3.6785, β̂ = 202.5369. Figure 2.4 gives a graphical comparison
of the survivor functions for the Weibull and inverse gamma distributions fit
to the empirical data.

The observed information matrix can be calculated from the MLEs of the
ball bearing set:

O(α̂, β̂) =

(
7.1783 −0.1136
−0.1136 0.0021

)
.
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The inverse of this matrix gives the estimate of the variance–covariance matrix
for the MLEs:

O−1(α̂, β̂) =

(
1.080 59.472
59.472 3759.361

)
.

Fig. 2.4. The empirical, fitted inverse gamma, and fitted Weibull distributions for
the ball bearing data set

The square roots of the diagonal elements give estimates of standard devia-
tions for the MLEs SEα̂ =

√
1.080 ∼= 1.039 and SEβ̂ =

√
3759 ∼= 61.31. Thus,

the approximate 95% confidence intervals for the estimates are

1.550 < α < 5.807 and 85.511 < β < 319.563.

The off-diagonal elements give us the covariance estimates. Note the positive
covariance between the two estimates, a fact that is made evident in the
following method for joint confidence regions.

There are a number of different methods to get joint confidence regions
for these two estimates. Chapter 8 of Meeker and Escobar [113] gives a good
summary of many of these techniques. One such method, finding the joint con-
fidence region for α and β, relies on the fact that the likelihood ratio statistic,
2
(
lnL(α̂, β̂)− lnL(α, β)

)
, is asymptotically distributed as a χ2

2 random vari-
able. Because χ2

2,0.05 = 5.99, the 95% confidence region is the set of all (α, β)
pairs satisfying
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2
(
lnL(α̂, β̂)− lnL(α, β)

)
= 2
(−114.154− lnL(α, β)

)
< 5.99.

The boundary of the region, found by solving this inequality numerically as
an equality, is displayed in Figure 2.5 for the ball bearing failure times. Note
in this figure the positive correlation between the two parameter estimates,
displayed by the positive incline to the shape of the confidence region.

Fig. 2.5. The 95% joint confidence region for α and β for the ball bearing data

Comparisons can be made with other survival distributions. Lan and
Leemis [86], as well as Glen and Leemis [61], compare the Kolmogorov–
Smirnov (K–S) goodness of fit statistic D23 at their MLE values for a number
of typical survival distributions. Table 2.1 inserts the inverse gamma into that
comparison. Note that the inverse gamma has a better fit than any of the IFR
class of distributions (to include its ‘parent,’ the gamma distribution). The
inverse gamma also fits similarly to the other UBT distributions, giving more
credence to Crowder’s conjecture that ball bearing data is better fit by UBT
models.

2.3.2 Censored Data Sets

It is important that survival distributions are capable of producing inference
for censored data as well. The statistical methods are similar to uncensored
data, but the derivatives of the likelihood equation are not in closed-form,
thus, the numerical methods require some more assistance in the form of initial
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estimates. Mirroring the process of Glen and Leemis [61] and Lan and Leemis
[86], initial estimates will be derived from a “method of fractiles” estimation.
The data set to be used comes from Gehan’s [56] test data of remission times
for leukemia patients given the drug 6-MP of which r = 9 observed remissions
were combined with 12 randomly right censored patients. Denoting the right
censored patients with an asterisk, the remission times in weeks are:

6 6 6 6∗ 7 9∗ 10
10∗ 11∗ 13 16 17∗ 19∗ 20∗
22 23 25∗ 32∗ 32∗ 34∗ 35∗

Table 2.1. Kolmogorov–Smirnov goodness-of-fit Statistics for the ball bearing data
at the respective MLEs

Distribution Class D23

Exponential IFR 0.301
Weibull IFR 0.152
Gamma IFR 0.123
Logistic-exponential UBT 0.109
Inverse gamma UBT 0.104
Inverse Gaussian UBT 0.099
Log-logistic UBT 0.094
Arctangent UBT 0.093
Log-normal UBT 0.090

To fit the inverse gamma distribution to this data, let t1, t2, . . . , tn be the n
remission times and let c1, c2, . . . , cm be the m associated censoring times.
Our maximum likelihood function is derived as follows:

L(α, β) =
∏

i∈U

f(ti, α, β)
∏

i∈C

S(ci, α, β)

in which U and C are the sets of indices of uncensored and censored obser-
vations, respectively. The log likelihood function does not simplify nicely as
natural logarithms of S(x) are functions that cannot be expressed in closed-
form. Programming environments like Maple and Mathematica will produce
the log likelihood function, but it is not compact, thus, it is not shown here. It
is, however, available from the author. A method of fractiles initial estimate
sets the empirical fractiles equal to the S(x) evaluated at the appropriate ob-
servation in a 2 × 2 set of equations. In the case of the 6-MP data set, two
reasonable choices for the equations are

S(10) ∼= 0.80 = 1− Γ(α, β
10 )

Γ(α)
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and

S(21) ∼= 0.55 = 1− Γ(α, β
21 )

Γ(α)
,

which produce initial estimates α̂0 = 0.9033 and β̂0 = 14.6507. Initial val-
ues of S (i.e., in this case S(10) and S(21)) should be chosen to adequately
represent a reasonable spread of the data, not being too close together, and
not being too close to an edge. The goal is to find two values that will act as
initial estimates for the numeric method for finding the true MLEs that will
cause the numerical method to converge. One may have to iterate on finding
two productive S values. Then one must use these initial estimates required
by numerical methods, take the two partial derivatives of the log likelihood
with respect to α and β, set them equal to zero, and solve numerically for
the MLEs, which are α̂ = 0.9314 and β̂ = 15.4766. A plot of the inverse
gamma and the arctangent distributions (see Glen and Leemis [61]) along
with the Kaplan–Meier non parametric estimator are presented in Figure 2.6.
The inverse gamma has a superior fit in the earlier part of the distribution.

Fig. 2.6. The MLE fits of the inverse gamma distribution (solid curve) and the
arctangent distribution (dashed curve) against the censored 6-MP data set
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2.4 Conclusions

This paper presents the inverse gamma distribution as a survival distribution.
A result is proved that shows that the inverse gamma distribution is another
survival distribution in the UBT class. The well-known UBT distributions are
relatively few, so it is helpful to have an alternative when dealing with UBT
models. Since sporadic mention is made in the literature of the distribution,
as well as very little probability or statistical information, this paper helps fill
this gap in the literature. Probabilistic properties and statistical methods are
provided to assist the practitioner with using the distribution. Finally, many
properties, previous published in a scattered manner, are combined into this
one article.

Appendix 1

In this appendix it is shown that the hazard function of the inverse gamma
distribution can only have the UBT shape and the mode, x�, of the hazard
function is bounded by 0 < x� < 2β

α+1 .
In order to show that the hazard function is always UBT in shape, the

following is sufficient: (1) lim
x→0

h(x) = 0, (2) lim
x→∞h(x) = 0, and (3) h(x) is

unimodal. Because all hazard functions are positive and have infinite area un-
derneath the hazard curve, Rolle’s theorem, taken with (1) and (2) guarantees
at least one maximum point (mode). So it must be shown that there is only
one maximum value of h(x) on the interval 0 < x < ∞ to prove than h is
UBT in shape.

First consider (1) that lim
x→0

h(x) = 0. If we make a change of variable

z = 1/x then the limit to be evaluated becomes

lim
z→∞

βαe−βz z α+1

Γ(α, 0, βz)
.

The denominator is an incomplete gamma function which in the limit becomes
the complete gamma function, Γ(α) = Γ(α, 0,∞), a constant. The numerator
can be rewritten as

βαzα+1

ezβ

so that it has the form ∞/∞ in the limit and can therefore be evalu-
ated with �α	 (the next highest integer if α is not an integer) successive
applications of L’Hospital’s rule. Thus, the limit of the numerator of h is
lim
z→∞ βαe−zβ z α+1 = 0. Consequently lim

x→0
h(x) = 0 and (1) is satisfied.

Next, consider (2) that lim
x→∞h(x) = 0. Again applying L’Hospital’s rule,

this time only once, the first derivative of the numerator with respect to x is
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−βαe−β/x

(
1

x

)3+α

(−β + x+ αx).

The first derivative of the denominator with respect to x is

−βαe−β/x
(
1
x

)−1+α

x2
.

Dividing the numerator’s derivative by the denominator’s derivative and sim-
plifying we get

lim
x→∞

−β + x+ αx

x2
= 0

and (2) is satisfied.
Rolle’s Theorem allows us to conclude that because the left and right limits

of h(x) are both zero, and because h is a positive function, there must be some
value ξ such that h′(ξ) = 0 on the interval 0 < ξ < ∞. Because h has a left
limit at the origin, it cannot have a DFR or a BT shape. Because h has a
right limit at zero, it cannot have an IFR shape. Also, because h is a positive
function, there is at least one critical point at x = ξ that must be a maximum.

Finally, considering element (3) of the proof, one must rely on the Lemma
E.1 and Theorem E.2 of Marshall and Olkin [107, pp. 134–135]. That theorem
and lemma establish that

ρ(x) = −f ′(x)
f(x)

and h(x) have the same number of sign changes and in the same order. Further
the critical point of ρ is an upper bound for the critical point of h. For this
distribution,

ρ(x) =
−β + x+ αx

x2
,

which has first derivative

ρ′(x) =
2β − (1 + α)x

x3
,

and can be shown to be positive from 0 < x < 2β
α+1 and negative from

2β
α+1 < x < ∞. Thus, h has only one change in the sign of its slope, is therefore

UBT in shape, and has a single mode x� < 2β
α+1 .

Appendix 2

This appendix summarizes the key properties of the inverse gamma distribu-
tion that have not already been reported in the rest of the paper. The purpose
of this appendix is ensure that all the major properties of the IG distribution
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are in one document, as to date no manuscript appears to be this comprehen-
sive. Most of the properties reported in the appendix are found in the works
previously cited or are derived with straightforward methods.

• Mode:
β

α+ 1
• Coefficient of variation: σ/μ = (α− 1)−1/2

• Skewness: E

[(
X − μ

σ

)3
]
=

4
√
α− 1

α− 3
for all α > 3

• Excess kurtosis: E

[(
X − μ

σ

)4
]
=

30α− 66

(α− 3)(α− 4)
for all α > 4

• Entropy: α− (1 + α)Ψ(α) + ln
(
βΓ(α)

)

• Moment generating function:
−2βtα/2BesselK

(
α, 2

√−βt
)

Γ (α)

• Characteristic function:
−2iβtα/2BesselK

(
α, 2

√−iβt
)

Γ (α)

• Laplace transform:
2βsα/2BesselK

(
α, 2

√−βs
)

Γ (α)

• Mellin transform:
βs−1Γ (1− s+ α)

Γ (α)
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Order Statistics in Goodness-of-Fit Testing

Andrew G. Glen, Donald R. Barr, and Lawrence M. Leemis

Abstract A new method is presented for using order statistics to judge the fit
of a distribution to data. A test statistic based on quantiles of order statistics
compares favorably with the Kolmogorov–Smirnov and Anderson–Darling test
statistics. The performance of the new goodness-of-fit test statistic is examined
with simulation experiments. For certain hypothesis tests, the test statistic
is more powerful than the Kolmogorov–Smirnov and Anderson–Darling test
statistics. The new test statistic is calculated using a computer algebra system
because of the need to compute exact distributions of order statistics.

Keywords Computational algebra system • Goodness-of-fit • Model
adequacy • Order statistics • Power
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Acronyms

CDF Cumulative distribution function
iid s-Independent and identically distributed
PDF Probability density function
K–S Kolmogorov–Smirnov
A–D Anderson–Darling
MLE Maximum likelihood estimator
APPL A Probability Programming Language

Notation

n Sample size
F (x) CDF, F (x) = Pr{X ≤ x}
f(x) PDF
Fn(x) Empirical CDF
Dn K–S test statistic
U(0, 1) Uniform distribution between 0 and 1
N(μ, σ2) Normal distribution with mean μ and variance σ2

X1, X2, . . . , Xn Random sample
X(1), X(2), . . . , X(n) Order statistics
P P-vector
pi = FX(i)

(x(i)) ith Element of the P-vector

λ̂, κ̂ Weibull distribution MLEs
θ0 Value of the parameter θ under the null hypothesis
1− β Power of a hypothesis test

3.1 Introduction

There are a wide variety of applications of order statistics in statistical-
inference procedures concerning:

• behavior in the tails of a parent distribution, e.g., outlier tests in Tietjen
[160],

• situations in which the ordered data are collected over time, e.g., life testing
in Barlow and Proschan [7],

• estimation of parameters in terms of linear combinations of order statistics,
e.g., David [41],

• adapting procedures for use with censored samples, e.g., Cox and Oakes
[35] and David [41].

A large literature on the subject exists (see, for example, David and Nagaraja
[43] and references cited therein).

One important class of problems involving order statistics is goodness-of-
fit testing see, for example D’Agostino and Stevens [40]. The Shapiro–Wilks
normality test [73] is based on a statistic that uses, in part, the s-expected
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value of each order statistic. Because many goodness-of-fit test statistics com-
monly used are defined through the empirical CDF Fn (a piecewise constant
function that takes an upward step of 1/n at each data value), they may be
considered to be functions of the underlying order statistics. It is common
practice to transform order statistics from a parent population for the contin-
uous random variable X with CDF F to corresponding U(0, 1) order statistics
through the probability integral transformation, U = F (X). If the proposed
test statistic is invariant under this transformation, it follows that its distri-
bution can be derived for a U(0, 1) parent distribution, and applied for any
other continuous parent distribution. That is, the procedure in this case is
distribution-free.

An example of such a test is the K–S one-sample test, based on the
test statistic Dn = supx |F (x) − Fn(x)|. Because the L∞ norm is invari-
ant under transformations on x, it follows that one can find critical val-
ues for Dn using the distribution of maxi{max{|ui − i−1

n |, |ui − i
n |}}, for

ui = F (x(i)), i = 1, 2, . . . , n. Following the development of the K–S test, many
articles adapted the test to related order statistic-based tests:

• tests for data on a circle, e.g., Kuiper [83] and Stephens [151],
• tests with parameters estimated from data, e.g., Lilliefors [102, 103]
• tests for censored samples, e.g., Barr and Davison [8].

In addition to its use in non-parametric goodness-of-fit testing, the K–S proce-
dure may be used in a general way to obtain confidence regions for parameter
vectors as in Barr and Zehna [9], which is a parametric problem.

Section 3.2 defines a vector of statistics obtained by transforming the order
statistics through each of the n hypothesized order statistic CDFs. It suggests
possible uses of the vector in a variety of statistical problems. Section 3.3
considers the practical aspects associated with determining the values in the
vector. Section 3.4 applies these ideas to define a goodness-of-fit statistic.
Section 3.5 uses Monte Carlo simulation to show that it’s performance is
comparable to the K–S and A–D tests in certain settings. Section 3.6 outlines
possible extensions.

3.2 P-Vector

The real-valued P-vector is proposed as a measure of the goodness-of-fit
of empirical data by a hypothesized distribution. Let X1, X2, . . . , Xn de-
note a random sample from a population with continuous CDF FX , and let
X(1), X(2), . . . , X(n) be the corresponding order statistics. Then the individual
order statistics have marginal pdfs given by [87]

fX(i)
(x) =

n!

(i − 1)!(n− i)!
[FX(x)]i−1[1− FX(x)]n−ifX(x) i = 1, 2, . . . , n,

for fX(x) = F ′
X(x). In principle, one can use these distributions to determine

the quantiles for each ordered observation in its respective distribution. Let
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P ≡ [FX(1)
(x(1)), FX(2)

(x(2)), . . . , FX(n)
(x(n))].

For notational simplicity, let pi = FX(i)
(x(i)), i = 1, 2, . . . , n. Intuitively, poor

fit is indicated by extreme components in P . Thus, under the null hypothesis
H0: X has CDF FX(x) with n = 3 observations, for example, a P-vector of
[0.453, 0.267, 0.623] intuitively indicates a good fit more so than a P-vector of
[0.001, 0.005, 0.997].

Because the pi values are the result of the probability integral transfor-
mation, then Pi ∼ U(0, 1), i = 1, 2, . . . , n, for any continuous population
CDF FX . While the Pi are identically distributed, they are not s-independent.
There is positive autocorrelation among elements of the P-vector.

The P-vector has several potential uses as a basis for distribution-free sta-
tistical procedures. It can provide an distribution-free tool to identify outliers.
Tietjen [160] mentions in his paper on outliers “We shall discuss here only the
underlying assumption of normality because there is very little theory for any
other case.” As explained in Section 3.3, it is possible and practical to calcu-
late all pi for nearly any hypothesized continuous distribution, so one may use
the P-vector as a basis to identify outliers from any specified continuous dis-
tribution. A reasonable approach is to examine the first and last few elements
of P (e.g., p1 and pn) to determine whether they are s-significant.

Example 3.1. Consider the following example, using Lieblein and Ze-
len’s [101] data set of n = 23 ball bearing failure times (measured in
106 revolutions):

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

This data set is often fitted by the Weibull distribution with MLE’s
λ̂ ∼= 0.0122 and κ̂ ∼= 2.10 [93]. The corresponding P-vector for this
set, assuming H0 corresponds to the fitted Weibull as the underlying
population distribution, is:

[0.609, 0.717, 0.631, 0.755, 0.589, 0.546, 0.487, 0.456,
0.296, 0.234, 0.161, 0.460, 0.334, 0.198, 0.107, 0.425,
0.570, 0.569, 0.578, 0.386, 0.736, 0.460, 0.833].

A possible interpretation of this P-vector is that neither x(1) nor x(23)

is an outlier. Furthermore, the value that is furthest from the me-
dian of its distribution is the 15th ordered data point, 68.88, with
p-value equal to 0.10575. The inference here is not exact due to the
use of MLEs. It is reasonable, however, to conclude that the Weibull
distribution adequately models the entire range of the data set.

Other possible uses of the P-vector are in statistical inferences involving cen-
sored sampling and estimation based on order-agreement. The main applica-
tion investigated here, however, is goodness-of-fit testing using test statistics
based on the P-vector.
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3.3 Computation of the P-Vector

Computing the elements of the P-vector can be accomplished using compu-
tational algebra languages, such as Maple [65]. APPL determines the distri-
butions of transformations, sums, products, and order statistic distributions
of continuous random variables [60]. The APPL procedure OrderStat(X,

n, r), for example, determines the distribution of the rth out of n order
statistics. Combined with the procedure CDF(X, x), which returns FX(x),
the elements pi are calculated. In the previous example, for instance, the P-
vector can be calculated and stored in the Maple list p with the following
APPL statements:

> data := [17.88, 28.92, 33.00, ..., 173.40];

> n := 23;

> hat := MLEWeibull(data);

> p := [ ];

> X := WeibullRV(hat[1], hat[2]);

> for r from 1 to n do

> Y := OrderStat(X, n, r);

> p := [op(p), CDF(Y, data[r])];

> od;

It is preferable to calculate the P-vector by first transforming to U(0, 1)
order statistics, and then determining the quantiles pi using corresponding
beta CDFs, which are relatively simple polynomials, as indicated in Figure 3.1.
The calculation of pi = FX(i)

(x(i)) is depicted by the path shown by a solid
line in Figure 3.1. This method of computation relies on the ability to calculate
quantiles of all of the order statistics X(i), although recurrence relations for
CDFs of order statistics might speed computation [43]. An alternate approach,
using beta CDFs, is depicted by the dashed line in Figure 3.1. It requires the
transformation of the x(i) into U(0, 1) random variables and then determines
their quantiles using appropriate beta CDFs. A simple theorem (omitted for
brevity) shows that both paths are equivalent, i.e., FZ(i)

(z(i)) = FX(i)
(x(i)),

for Z = FX(X).
The quantile pi following the lower dotted path in Figure 3.1 could also be

considered. The path indicated in Figure 3.1 by the dashed line is generally
preferred, because the distributions leading to the pi elements are polynomials.
The computations needed for the solid path are calculable, although they
typically take appreciably longer to calculate. Also, the CDF of X is typically
more tractable than the CDFs of the X(i) values.

3.4 Goodness-of-Fit Testing

In general, goodness-of-fit testing involves stating an assumed null hypothesis,
H0: fX(x; θ) = f0(x; θ0) and then assessing whether there is sufficient evidence
in a random sample to reject H0. Because the P-vector was derived under H0,
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its elements provide a direct judgment of fit. Any pi too low or too high may
indicate a poor fit. We want to form a single statistic based on the pi’s that
indicate good or bad fit. Some obvious candidate test statistics are

X(i) ~ FX(i)
Xi ~ FX

Zi ~ U(0,1)

Zi = FX ( Xi )

order

order

Z(i) = FX ( X(i))

Z(i) ~
beta(i, n – i + 1)

Pi = FZ (Z(i))

Pi ~ U(0,1)

Pi = FX (X(i))

order P(i)

(i)

(i)

Fig. 3.1. Transformations from iid observations X1, X2, . . . , Xn to the sorted P-
vector elements P(1), P(2), . . . , P(n)

n∑

i=1

|pi − 0.5|,
n∑

i=1

(pi − 0.5)2, and

n∑

i=1

∣∣∣∣p(i) −
i

n+ 1

∣∣∣∣ .

Based on a modest set of simulations, all three of these test statistics appear
to suffer from low power. Instead, we rely on a variation of the form of the
A–D A2 statistic, when calculated with the probability integral transforma-
tion [153]. The A–D A2 statistic is developed with the Z(i) values which are
depicted in the lower-right of Figure 3.1. We define a test statistic in terms of
a linear combination of the natural logarithms of pi and 1−pi. This test statis-
tic is large whenever at least one pi is too close to 0 or 1. Sort the elements of
the P-vector so that p(1) is the smallest of the elements of the P-vector and
p(n) is the largest. The test statistic Ps is

Ps ≡ −n− 1

n

n∑

i=1

[
(2n+ 1− 2i) ln(p(i)) + (2i− 1) ln(1− p(i))

]
.

The coefficients 2n+ 1− 2i and 2i− 1 are exchanged from the position they
would appear in the A–D statistic. This switch resulted in higher power in
our simulations, because it results in a higher test statistic for more extreme
observations. We examined the power of Ps by simulation. The goodness-of-fit
tests based on Ps have power about that of A

2 in most cases, and both Ps and
A2 generally out-perform the K–S test, as stated in D’Agostino and Stevens
[40], for the A–D test. There is at least one case in which Ps out-performs
the A–D test: the case of guarding against an improper variance parameter
under the null and alternate hypotheses of normality, as illustrated in the next
section.
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3.5 Power Estimates for Test Statistics

The hypothesis test that uses Ps as a test statistic is appreciably more powerful
than both the K–S and A–D tests in the simulation experiment described here.
We approximated the power of the three tests, and a fourth test P �

s using pi
in place of p(i) in the definition of Ps. The hypothesis test is

• H0: N(0, 1),
• H1: N(0, σ2) for σ2 �= 1.

Random samples of size 10 were generated from N(0, σ2) populations, for σ
varied from 0.1, 0.2, . . . , 3.0. Figure 3.2 is a plot of each test’s estimated power
for various σ, based on 1000 replications of the simulation.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

K-S

K-S

A2

A2

Ps

Ps

Ps
*

Ps
*

σ

1− β
^

Fig. 3.2. Power functions for testing H0: X ∼ N(0, 1) versus H1: X ∼ N(0, σ2) at
level of significance α = 0.05 using the K–S test statistic, A–D test statistic, and
two test statistics based on the P-vector

Figure 3.2 shows that:

• both Ps and P �
s have significantly higher power than have A2 and Dn for

σ > 1,
• P �

s slightly outperforms Ps for σ > 1,
• Ps clearly outperforms A2 and Dn for σ < 1, and P �

s has very low power.

The strong performance of Ps, four times the power of A2 at σ = 0.30, for
example, causes us to conjecture that this is a strong omnibus test statistic
for guarding against departures from H0. An estimate of the standard devia-

tion of the estimate of a power value 1 − β is less than

√
(0.001)(β̂)(1 − β̂),

or about 0.015 for individual values plotted in the mid-height range of Fig-
ure 3.2. Thus, the improvement in power of Ps over A2 shown in Figure 3.2 is
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indeed statistically significant. Because Ps seems to provide protection in both
directions of departure of σ from 1, we decided to investigate the distribution
of its critical points more fully.

Due to the dependence of the pi elements, finding an analytic expres-
sion for the distribution of these statistics seems untenable; however, using
simulation, we have approximated critical points for the Ps values shown in
Table 3.1. The critical points of all statistics are those of the fully specified
null distribution, case zero in D’Agostino’s [40]. The simulation for this table
relied on 10,000 iterations of each sample size, so only two digits are signifi-
cant. The distribution of Ps seems to have a heavy right-hand tail, and as n
increases, the tail becomes heavier. For n ≤ 25 the three critical values shown
in Table 3.1 increase in a nearly linear fashion.

3.6 Further Research

Coding up the procedures in a compiled language for execution speed would
allow larger sample sizes to be considered. The APPL code used to compute
the critical values in Table 3.1 is about 50 lines. Embedded in that code is the
ability to find the n-fold vector of polynomials representing the FZ(i)

, each
of degree up to n, that make up the beta distributed CDFs used to calculate

Table 3.1. Estimated critical values for Ps at various sample sizes and levels of
s-significance

n α = 0.10 α = 0.05 α = 0.01
2 4.9 6.1 8.9
3 7.6 9.1 13.4
4 10.1 12.1 17.0
5 12.6 15.3 21.5
6 15.1 18.1 24.4
7 17.7 21.1 28.2
8 20.4 23.9 32.0
9 22.7 26.8 36.5
10 24.9 29.4 39.5
11 27.9 32.2 43.7
12 30.0 35.2 48.0
15 37.5 44.0 59.6
20 50.7 58.7 81.1
25 63.2 76.2 116.5
30 80.0 107.1 218.4
40 445.0 576.5 776.8
50 1025.4 1108.8 1231.6
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the P-vector elements. The leverage in our approach through the Z(i) is that
Maple creates and stores the CDFs. The same simulation in FORTRAN or
C might be possible with public-domain subroutines that calculate a specific
statistic, i.e., in this case pi. One difficulty in this transition that the order
statistics may have extremely large integers for the coefficients of the terms, as
well as for their exponents. Maple is able to conduct the mathematical oper-
ations without representing these constants as floating point approximations.
Thus, our precision exceeds an implementation in a high-level algorithmic lan-
guage. We believe that the performance of Ps suggests attractive procedures
for outlier detection and inferences with censored samples may be defined in
terms of the P-vector.
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Abstract How one estimates the parameter in a Poisson process depends
critically on the rule used to terminate the sampling period. For observation
until the kth arrival, or observation until time t, well-known maximum like-
lihood estimators (MLEs) can be used, although they can be biased if the
sampling period is such that the expected number of arrivals is small. If one
uses a stopping rule such as “observe until the kth arrival or time t,” the form
of the MLE becomes more complex. In the latter case, it appears a simple ad
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4.1 Introduction

One of the topics in an undergraduate probabilistic modeling course we teach
is queuing. To maintain an applications focus we send students into the com-
munity to observe queuing systems and ask them to model those systems.
Most students collect arrival and other data on simple queuing situations and
attempt to fit models involving a Poisson arrival process. Initially, estimating
the arrival rate for this process appeared straightforward, but as the exercise
progressed, a debate developed concerning whether one should use an estima-
tor based on mean interarrival times or one based on the observed number of
arrivals. More specifically, suppose we observe a Poisson process with positive
rate λ over a period of time t in which there were k arrivals, say at times
x1, x2, . . . , xk. Two possible estimates of the arrival rate λ are:

λ1 = # arrivals/observed time = k/t

λ2 = 1/mean interarrival time = k/xk, for k > 0.

Consider the following example: Arrivals at a cashier are observed for
a 10-min period. Three customers arrive, at times 1.5min, 5.1min, and
8.0min, respectively. Because this concerns the number of arrivals in a fixed
observation period, one would most likely estimate the arrival rate to be
λ̂1 = 0.3 arrivals/min. If one had estimated arrival rate as the reciprocal

of the mean interarrival time, the value λ̂2 = 0.375 arrivals/min would have
been obtained. As we shall see, the second estimate is inappropriate in this
case because it ignores the right-censored (k + 1)st interarrival time.

As we attempted to provide guidance to our students, we realized that
arrival rate estimation poses an interesting problem that requires careful con-
sideration of the sampling plan. We surveyed several texts that address basic
queuing principles and applications, such as Ross [140] and Cook and Rus-
sell [34], and found none discussed this estimation problem. It is addressed
in more advanced monographs, such as Basawa and Rao [10], but these are
somewhat inaccessible to undergraduate and beginning graduate students.

In what follows, we develop maximum likelihood estimators (MLEs) of the
arrival rate λ in a Poisson process for each of three sampling plans. The first
two cases, illustrated in the previous example, lead to the familiar estimators
applied there; we compare performance of these estimators in the two plans.
To avoid wasting our students’ time, we had suggested they observe a selected
queuing system for 30min or until 30 arrivals occurred. This defines a third
sampling plan that leads to a slightly more challenging estimation problem in
which finding the MLE involves a numerical solution of the normal equation.
We return to the problem of estimating arrival rate with this sampling plan
(which we call “sampling plan 3”) after first considering the two simpler plans
and the two estimators mentioned above. A fourth plausible sampling plan
would be to observe the process until both of the conditions (at least 30
arrivals in a time span of at least 30min) are met, possibly to assure a “good
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set of data” is obtained. An approach analogous to the one we outline for
sampling plan 3 could be applied in the latter case, but we do not pursue it
here.

We use upper-case characters to represent random variables and corre-
sponding lower-case characters to denote their outcomes (so an observation

on the estimator Λ̂1 for the parameter λ gives the estimate λ̂1, for example).
There are many related applications areas. Feller [53] discussed the prob-

lem of estimating the size of an animal population from recapture data, in
which animals are caught sequentially, tagged, and released. One can estimate
population size using various sampling plans such as counting the number of
catches until the kth time a tagged animal is caught, or counting the number
of tagged animals observed in a total of n catches. Observing a Poisson process
for a fixed period of time, as in the example above, gives a censored sample
of interarrival times. Estimation of population characteristics with censored
data is a common problem in reliability applications and survival analysis (see
Cox and Oakes [35], for example).

Development and evaluation of estimators for use with these plans involves
several statistical ideas and facts and is generally quite tractable mathemati-
cally. It also illustrates the point that choice of an estimator generally depends
critically upon how the data were collected (in our case, on the sampling
plan used). We believe it makes an excellent assignment for a senior- or early
graduate-level course that includes statistical inference or data analysis.

4.1.1 Sampling Plan 1: Time Sampling

Sampling plan 1 calls for observing the Poisson process until the kth arrival,
for k pre-selected. In this case, T ∼ gamma(k, λ) (see Parzen [129]), so the
likelihood function is proportional to λke−λt and the MLE of λ is Λ̂3 = k/T .

Because t = xk, one would compute the same value for λ̂1 and λ̂2, so we
can say either estimate is a value of Λ̂3 in this case, even though Λ̂1 , Λ̂2,
(defined in the following) and Λ̂3 are different random variables. Integrating
with respect to the gamma density it follows that

E(Λ̂3) = kE(1/T ) = k

∫ ∞

0

1

t

λk

Γ(k)
tk−1e−λtdt

=
kλ

k − 1

∫ ∞

0

λk−1

Γ(k − 1)
t(k−1)−1e−λtdt,

and because the latter integrand is a gamma(k − 1, λ) density, we have
E(Λ̂3) = λ(k/k − 1) so Λ̂3 is biased, seriously for small k. An unbiased estima-
tor in this case could be obtained by “adjusting” Λ̂3, in the spirit used to ob-
tain the usual adjusted MLE for σ2 based on a random sample from a N(μ, σ2)
population. The resulting unbiased estimator, Λ̂3a = Λ̂3(k−1)/k = (k−1)/T ,
also has a smaller variance than Λ̂3. Indeed, for k > 2,
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V (Λ̂3a) = (k − 1)2E(1/T 2)− E2(Λ̂3a)

= (k − 1)2
∫ ∞

0

1

t2
λk

Γ(k)
tk−1e−λtdt− λ2

=
(k − 1)2λ2

(k − 1)(k − 2)

∫ ∞

0

λk−2

Γ(k − 2)
t(k−2)−1e−λtdt− λ2

= λ2

[
k − 1

k − 2
− 1

]
=

λ2

k − 2
.

4.1.2 Sampling Plan 2: Count Sampling

Under sampling plan 2, the Poisson process is observed for a preselected period
of time, t. Because K ∼ Poisson(λt), it is easy to see the likelihood function
is again proportional to λke−λt and it follows that Λ̂1 = K/t is the MLE of λ
in this case. One could alternately develop the MLE in terms of the censored
sample of interarrival times as follows. We have observed an outcome on the
interarrival times X1−0, X2−X1, . . . , Xk−Xk−1, together with the censored
interarrival time, t−Xk. One may ignore censoring of the first interarrival time
(censored because we start observation some time after the arrival preceding
the first in our sample), due to the memoryless property of the exponential
distribution of interarrival times. (Feller [54] discussed this in the context of a
“waiting time paradox.”) The likelihood function is therefore the product of k
exponential density values, times the exponential survivor function evaluated
at the censored value:

L(λ) =
k∏

i=1

λe−λ(xi−xi−1) ·
(
1−
[
1− e−λ(t−xk)

])
= λke−λt,

and because this is proportional to the likelihood value obtained with the
Poisson model, the same MLE results.

With data from count sampling, λ1 is different from λ2, and it is of interest
to compare the performance of Λ̂1 with that of Λ̂2 = K/XK in this case.
Without conditioning on K > 1, Λ̂1 is unbiased, because by the Poisson
model, E(Λ̂1) = (1/t)E(K) = (1/t)λt = λ. Using similar reasoning, we see
Λ̂1 has variance V (Λ̂1) = λ/t in that case. However, given K > 1, Λ̂1 has
expected value

E(Λ̂1) = λ · 1− e−λt

1− e−λt [1 + λt]
,

which approaches λ from above as t increases, and variance

V (Λ̂1) =
λ
(
1− e−λt [1 + λt]

) (
1 + λt− e−λt

)− λt
(
1− 2e−λt + e−2λt

)

t (1− e−λt [1 + λt])
2

which increases toward λ/t as t increases. Plots of these conditional moments
of Λ̂1 are shown in Figure 4.1.
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Properties of Λ̂2 are not so easily determined in this case, because both
K and the sum of interarrival times XK are random. We find the conditional
mean of Λ̂2 given K = k for k > 1, then take the expectation of that with
respect to the conditional Poisson distribution of K, given K > 1.

It is well-known that, given K = k arrivals in an interval (0, t], the arrival
times (the X ’s) are jointly distributed identically as k U(0, t) order statistics
(see Parzen [129], for example). Thus, Xk is distributed as t times a beta(k, 1)
random variable Y , because the largest in a random sample of size k from
a U(0, 1) distribution is distributed beta(k, 1) (see Barr and Zehna [9], for
example). With Y ∼ beta(k, 1), we have fY (y) = kyk−1; 0 < y < 1 so,
assuming k > 1,

Fig. 4.1. Plot of the mean (top curve) and variance of Λ1 (bottom curve), given
K > 1, in the case λ = 1

E

(
1

Y

)
= k

∫ 1

0

1

y
yk−1dy =

k

k − 1

=⇒ E(Λ2|K = k) =
k

t
· k

k − 1
.

(The first result provides yet another opportunity to warn students about the
difference between E(1/Y ) and 1/E(Y ) = (k + 1)/k.)
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We now “un-condition” by taking the expectation of K2/t(K − 1) with
respect to the Poisson distribution of K, conditioned by the event K > 1: for
any fixed integer n > 2,

EK

[
E(Λ̂2|K)|K > 1

]
=

1

tP [K > 1]

∞∑

k=2

k2m(k)

k − 1

∼= 1

tP [K > 1]

[
n−1∑

k=2

k2m(k)

k − 1
+

∞∑

k=n

km(k)

]
,

in which m(·) denotes the Poisson (λt) mass function and the approximation
involves replacing k/(k−1) by 1 for k larger than n−1. Clearly, the approxima-
tion becomes exact as n → ∞ and it will be good for sufficiently large n. The
series in the approximation above can be expressed as λt−m(l)−∑n−1

k=2 km(k)
so the approximate expression can be written in the form λA(λt)+B(λt, n)/t,
for A(λt) = P [K > 0]/P [K > 1], and

B(λt, n) =

n−1∑

k=2

km(k)

(k − 1)P [K > 1]
.

BecauseA(λt) > 1 and for any n > 2,B(λt, n) > P [1 < K < n]/P [1 < K] > 0,
it follows that Λ̂2 is biased. (This is also suggested by the fact that for any

k > 1, E(Λ̂2|K = k) = λ̂1k/(k − 1) > λ̂1 and Λ̂1 is unbiased.) The error of
the approximation is bounded above by the succession of increasing bounds

(
n

n− 1
− 1

) ∞∑

k=n

km(k) <
1

n− 1
(λt− P [K < n]) <

1

n− 1
λt,

so the error is certainly less than σ when n−1 > λt/σ. We computed numerical
approximations for the case λ = 1, for t = 0.5, 1.0, . . . , 40.0, using n values
guaranteeing error less than 10−6. A plot of these values is shown in Figure 4.2.

We observed that A(λt) converges rapidly down to 1.0 and for sufficiently
large n, B(λt, n) converges fairly rapidly down to 1.0 as t increases, so for t
greater than 6 or so, the bias is approximately 1/t. [This is numerical confirma-
tion of the fact that limn→∞ B(λt, n) approaches 1 from above as t increases.]
We have plotted 1+ 1/t in Figure 4.2 for comparison purposes. This suggests
one can get reasonable estimates of the bias of Λ̂2, for a given value of t and
for parameter λ other than 1.0, by considering the values on the abscissa of
Figure 4.2 to be values of λt (so if λ = 2 the bias for a plan with t = 3 can
be read from Figure 4.2 at the value 6 on the abscissa, for example). A plot
of these values is shown in Figure 4.2.

Again, one might use the adjusted estimator

Λ̂2at/(t+ 1) · Λ̂2 = tK/(t+ 1)XK ,

which would also reduce the variance. An argument along the lines used to
approximate the mean of Λ̂2 might be used to get an approximation for its
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variance as well, but it seems to be mathematically intractable, so we turned
to a Monte Carlo simulation to examine the mean and variance of the adjusted
MLE, and to compare them with corresponding moments of Λ̂1. A summary
of the results are shown in Table 4.1, in which estimates are conditioned on the
event [K > 1]. In general, it appears the MLE is superior with this sampling
plan, especially for small to moderate values of t.

Table 4.1. Mean and standard error of Λ̂1 and Λ̂2a for count sampling, given K > 1;
for λ = 1. MSE ratio is the ratio of the sample mean square error of Λ̂1 to that of Λ̂2a

t Avg Λ̂1 Std dev Λ̂1 Avg Λ̂2a Std dev Λ̂2a MSE ratio P [K > 1]
0.5 4.35 0.88 2.72 3.36 0.843 0.090
1.0 2.40 0.68 2.07 1.69 0.607 0.264
2.0 1.46 0.54 1.53 1.26 0.272 0.594
5.0 1.03 0.42 1.10 0.64 0.425 0.960
10.0 1.00 0.31 1.01 0.30 1.050 0.999
25.0 1.00 0.20 1.00 0.20 1.030 1.000

4.1.3 Sampling Plan 3: Limit Both Time and Arrivals

The sampling plan we unwittingly gave our students complicates arrival rate
estimation. Our instructions (restated) were: for pre-selected limits k� and t�,
observe the system until the first occurrence of either of the events [K = k�]
or [T = t�]. With this stopping rule the process will pass through the point
(k�, t�) with probability zero, so there are two mutually exclusive and exhaus-
tive cases to consider: (1) 1 < K < k� and T = t�; and (2) K = k� and
T < t�. Let us consider maximum likelihood estimation of λ for this sampling
plan. The (conditional) likelihood function for each case is as follows:

Case 1. 1 < K < k� and T = t�.
This will occur with probability

p1 = P [fewer than k� arrivals as of time t�|at least two arrivals]

=

k�−1∑

j=2

m(j;λt�)/ [1−M(1;λt�)] ,

in which m(j;λt�) is the Poisson(t�) mass function evaluated at j and M
is the corresponding CDF. The conditional likelihood m(k|l < K < k�) is,
for integer k in the interval (1, k�), the Poisson mass function divided by
p1[1−M(1;λk�)].

Case 2. K = k� and T < t�. This situation will occur with probability
p2 = 1 − p1. The conditional likelihood, f(t|T < t�), for 0 < t < t�, is just
the gamma (k�, λ) density divided by p2[1 − M(1;λt�)] because [T < t�] is
equivalent to [k� or more arrivals by time t�].



48 4 The “Straightforward” Nature of Arrival Rate Estimation?

t

Fig. 4.2. Approximate Mean of Λ2 (top curve) and 1+1/t (bottom curve), for λ = 1

The likelihood function L(λ; k, t) can be found by multiplying each of the
preceding conditional expressions by the corresponding probability p that it
occurs, given at least two arrivals:

L(λ; k, t|k > 1) =

⎧
⎨

⎩

λk(t�)ke−λt�

Γ(k+1)[1−M(1;λt�] if 1 < k < k�

λk�
tk

�−1e−λt

Γ(k�)[1−M(1;λt�] if 0 < t < t�.

We wish to maximize the first expression if Case 1 occurs, otherwise maxi-
mize the second expression. Equating the derivatives of these expressions with
respect to λ to zero, we obtain the normal equation

e−λ̂t� =
D

λ̂2t�2 + (1− λ̂t�)D
, (4.1)

in which D = k − λt� if (k, t�) is observed, and D = k� − λt if (k�, t) is
observed.

When the experiment is performed, we will observe either the point (k�, t)
or the point (k, t�) (although, if k < 2, we perform another experiment), so
to compute the value of the MLE, Λ̂4, it suffices to solve the normal equa-
tion (4.1), using the appropriate value of D. Note that the first expression
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with k set equal to its upper bound is equivalent to the second expression
with t set equal to t�, so the two cases give the same estimate on the bound-
ary (k�, t�). Note also in Case 1, substitution of λ̂1 = k/t� for λ̂ in the normal

equation gives the expression e−k = 0. Thus, for k larger than 12 or so, λ̂1 is
an excellent approximate solution. A similar comment holds for Case 2 and
the approximate solution λ̂3 = k�/t.

We used numerical methods to find approximate solutions to these equa-
tions using the APPL running in Maple Version 4 software. We chose Maple
because of its robust solving engine, using the solve command, which does
not require initial estimates, unlike the secant method, for example. We cre-
ated samples of λ̂4 of size 10,000 for several combinations of t� and k� (smaller
sample sizes when k� was too large for Maple to compute without crashing
on our machine). We also calculated corresponding estimates λ̂1 = k/t� and

λ̂3a = (k� − l)/t in each iteration. In addition, we calculated estimates, λ̂5,
with an ad hoc estimator defined as follows:

Λ̂5 =

{
Λ̂1 if (K, t�) is observed

Λ̂3a if (k�, T ) is observed.

This estimator is suggested by the relatively good performance of Λ̂1 with
count sampling and Λ̂3a with time sampling, and the idea that when (K, t�)
is observed the outcome is (conditionally) on a count sample, and similarly
for (k�, T ) and time sampling.

In Table 4.2 we show the averages of 10,000 realizations of Λ̂1, Λ̂3a, Λ̂4,
and Λ̂5, together with the corresponding estimated standard errors. To the
right of the standard error data in Table 4.2 is a column showing the ratio of
sample mean square errors of Λ̂5 and Λ̂4. We expected Λ̂3a to perform well
when there are few occurrences of Case 2, but it actually does fairly well in all
cases shown in Table 4.2, except when there is a heavy preponderance of Case 1
outcomes. On the other hand, Λ̂1 performs poorly except when there is a heavy
preponderance of Case 1 outcomes. This suggests Λ̂5, which “takes the best of
both Λ̂1 and Λ̂3a,” should perform well. Indeed, Λ̂5 outperforms the maximum
likelihood estimator, Λ̂4, in all the cases we examined, as demonstrated in the
“MSE ratio” column of Table 4.2. We see good asymptotic properties of the
MLE showing up toward the bottom of the table, for k� large. Together with
its ease of application, the ad hoc estimator Λ̂5 would seem to be the preferred
estimator for our third sampling plan.

4.2 Conclusions

Our attempt to avoid wasting students’ time by suggesting the third sampling
plan was reasonable, when an estimator appropriate for this case is used. For
this sampling plan, it appears the ad hoc estimator Λ̂5 is generally superior,
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especially in light of the ease of computing its outcomes. It seems slightly sim-
pler, and thus, possibly preferable, to use count sampling and the estimator
Λ̂1 = K/t or time sampling and the estimator Λ̂3a = (k−1)/T . As a practical
matter, the estimates obtained with the latter estimators will be similar (dif-
fering by 1/t) when xk is not too small. In classroom discussionsof estimation

Table 4.2. Simulation comparison of several estimators with the plan “sample until
[T = t� or K = k�].” Ten thousand simulation replications (fewer when k� > 10)
were made with λ = 1 for each (k�, t�) case. The estimator Λ̂4 is the MLE for this
case; λ̂1 = k/t�; λ̂2a = (k� − 1)/t; and Λ̂5 is an ad hoc estimator that takes value of
λ̂1 when (k, t�) is observed and value λ̂3a when (k�, t). “MSE Ratio” is the ratio of
the estimated mean square error of λ̂5 and that of λ̂4

Plan Mean Std error MSE Case 1 Case 2

k� t� λ̂1 λ̂3a λ̂4 λ̂5 λ̂1 λ̂3a λ̂4 λ̂5 ratio Count Count

3 3 1.73 1.12 1.60 1.21 2.14 1.45 1.69 1.40 0.68 2778 7222
3 5 1.56 1.03 1.45 1.05 1.46 0.98 1.49 0.97 0.42 852 9148
5 3 1.30 0.93 1.19 1.19 0.75 0.67 0.81 0.56 0.48 7711 2289
5 5 1.23 0.96 1.19 1.04 0.79 0.66 0.82 0.60 0.54 4204 5796
5 5 1.23 0.95 1.19 1.04 0.74 0.61 0.76 0.55 0.52 4111 5889
5 10 1.25 1.00 1.22 1.00 0.71 0.57 0.73 0.57 0.61 303 9697
5 25 1.24 0.99 1.21 0.99 0.69 0.55 0.71 0.55 0.61 0 10,000
10 5 1.10 0.90 1.06 1.08 0.52 0.51 0.55 0.48 0.76 9270 730
10 10 1.07 0.95 1.07 1.00 0.43 0.40 0.43 0.36 0.70 4591 5409
10 25 1.12 1.01 1.12 1.01 0.40 0.36 0.40 0.36 0.81 0 10,000
25 5 1.03 0.83 0.98 1.03 0.35 0.35 0.38 0.35 0.87 7000 0
25 10 0.99 0.89 0.99 0.99 0.28 0.28 0.29 0.28 0.97 8000 0
25 25 1.02 0.98 1.02 1.00 0.19 0.19 0.19 0.17 0.83 3296 3704
25 30 1.04 1.00 1.04 1.00 0.16 0.15 0.16 0.15 0.87 773 4227
30 25 1.00 0.96 1.00 1.00 0.15 0.15 0.15 0.14 0.89 4101 899
30 30 1.02 0.98 1.02 1.00 0.15 0.15 0.15 0.14 0.84 2387 2613

of the intensity of a Poisson process, it is important to remind students to
design the sampling plan in advance, and to adhere to the plan once data
collection has begun. A seemingly inconsequential difference in deciding when
to stop observing a Poisson process can make a big difference in how λ̂ should
be estimated.
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Abstract A family of probability distributions is constructed using the
incomplete gamma function ratio. The family includes a number of popu-
lar univariate survival distributions, including the gamma, chi square, expo-
nential, and half-normal. Examples that demonstrate the generation of new
distributions are provided.
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5.1 Introduction

The gamma function

Γ(α) =

∫ ∞

0

e−ttα−1 dt

for α > 0 is a generalization of the factorial function that is prevalent in
probability and statistics. When the lower limit of the integral is replaced by
x, the resulting function is defined as the incomplete gamma function

This original method for finding new probability distribution families relies heavily
on APPL as its foundation for computational exploration. The use of APPL was
pervasive in everything from creating the new distributions to finding their moments
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butions with known families of distributions to rule out redundancies.
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Γ(α, x) =

∫ ∞

x

e−ttα−1 dt

for α > 0 and x > 0. The incomplete gamma ratio

Γ(α, x)

Γ(α)

for α > 0 and x > 0 is bounded below at 0 and bounded above at 1, as
the numerator is always smaller than the denominator. Let g(x) be a mono-
tonic and increasing function that assumes non negative values on the interval
(0,∞). Furthermore, assume that limx→0+ g(x) = 0 and limx→∞ g(x) = ∞.
Likewise, let r(x) be a monotonic and decreasing function that assumes non
negative values on the interval (0,∞). Furthermore, let g and r be differ-
entiable on the interval (0,∞). Also, assume that limx→0+ r(x) = ∞ and
limx→∞ r(x) = 0. A family of survival distributions for a random variable X
is generated with CDFs

F (x) = 1− Γ
(
α, g(x)

)

Γ(α)
x > 0 (5.1)

for any α > 0, and

F (x) =
Γ
(
α, r(x)

)

Γ(α)
x > 0

for any α > 0. The conditions on g(x) and r(x) ensure that F (x) will be a
monotonically increasing function with F (0) = 0 and limx→∞ F (x) = 1.

The PDF for this family when g(x) is specified is found by differentiating
the CDF:

f(x) = F ′(x) =
d

dx

(
1−
∫ ∞

g(x)

e−ttα−1dt

)/
Γ(α).

By the chain rule of differentiation, this reduces to

f(x) = e−g(x)g(x)α−1g′(x)/ Γ(α) x > 0

for α > 0. When r(x) is specified, the PDF is found as

f(x) = F ′(x) =
d

dx

(∫ ∞

r(x)

e−ttα−1dt

)/
Γ(α)

which reduces to

f(x) = −e−r(x)r(x)α−1r′(x)/ Γ(α) x > 0

for α > 0.
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This method of creating new distribution functions from this ratio of
gamma functions has a very nice graphical representation. The integrand of
the gamma function b(x) = e−xxα−1 can be considered the base function of
the ratio. It is a positive function and has finite area underneath it on the in-
terval (0,∞). Thus, the denominator in Eq. (5.1) is the entire area under b(x).
The numerator is the right tailed area under b(x) on the interval (g(x),∞).
Clearly the ratio in Eq. (5.1) is bounded between 0 and 1, thus, it represents

b(x)

g(x)
| x

0

Fig. 5.1. The base function has finite area underneath it and the shaded area
represents the portion of that area to the right of g(x)

the survivor function of a random variable. Figure 5.1 shows this relationship,
in which the shaded area represents a portion of the entire area under the
base, b(x).

A number of popular lifetime distributions can be derived using PDFs of
this form. Table 5.1 shows the appropriate g(x) or r(x) functions and α values
associated with a number of PDFs, many of which are defined in Meeker and
Escobar [113]. In the table and the analysis and examples that follow, let n
be a positive integer and let α, λ, κ, and σ be positive parameters.

5.2 Properties and Results

The chosen function g(x) or r(x) is related to the hazard function of the
resulting distribution. Let f(x), F (x), S(x), and h(x) = f(x)/S(x) be the
population PDF, CDF, survivor function, and hazard function, respectively.
These three results follow.

Theorem 5.1 Let the random variable X have PDF as defined above for a
specified g(x) and α = 1. Then the hazard function h(x) = g′(x), for x > 0,
which implies the g(x) is the cumulative hazard function for the distribution.
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Proof. The hazard function of X is

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
=

e−g(x)g′(x)
Γ
(
1, g(x)

) =
e−g(x)g′(x)∫∞
g(x)

e−tdt
=

e−g(x)g′(x)
e−g(x)

= g′(x)

for x > 0. �

Table 5.1. Parametric special cases

Distribution g(x) unless r(x) α f(x)

Exponential λx α = 1 λe−λx

Weibull (λx)κ α = 1 λκxκ−1κ e−(λx)κ

Rayleigh (λx)2 α = 1 2λ2xe−(λx)2

Lomax ln
(
(λx+ 1)κ

)
α = 1 λκ/(1 + λx)κ+1

Muth (1/λ)eλx − λx− 1/λ α = 1 (eλx − λ)e−(1/λ)eλx+λx+1/λ

Half-normal x2/(2σ2) α = 1/2
√
2 e−x2/(2σ2)/ (σ

√
π)

Chi square x/2 α = n/2 2−n/2xn/2−1e−x/2/Γ(n/2)

Erlang x/λ α = n xn−1e−x/λ/
(
λn(n− 1)!

)

Gamma x/λ – λ−αxα−1e−x/λ/Γ(α)

Generalized gamma (x/λ)κ – κλ−καxκα−1e−(x/λ)κ/ Γ(α)

Inverse gamma r(x) = (λx)−1 – λ−αx−α−1e−1/(λx)/Γ(α)

Theorem 5.2 Let the random variable X have PDF as defined above for a
specified r(x) and α = 1. The hazard function h(x) = −r′(x)/(er(x) − 1), for
x > 0.

Proof. The hazard function of X is

h(x) =
f(x)

1− F (x)
=

−e−r(x)r′(x)
1− Γ

(
1, r(x)

) =
−e−r(x)r′(x)
1− ∫∞

r(x)
e−tdt

=
−e−r(x)r′(x)
1− e−r(x)

=
−r′(x)
er(x) − 1

for x > 0. �

Comparing the well-known distributions in Table 5.1 to their hazard func-
tions confirms these results. For example, the exponential distribution has a
constant hazard rate h(x) = λ for x > 0. The Weibull distribution has a
hazard rate λκκxκ−1 for x > 0. It is well-known that the Weibull distribution
has an increasing failure rate when κ > 1 and a decreasing failure rate when
κ < 1. This can be seen from the corresponding function g(x) = (λx)κ. When
κ > 1, g′(x) will be a monotonically increasing function.

These results tell us that a distribution specified by g(x) and α = 1 will
have an increasing failure rate if g′′(x) > 0 for all x > 0. The distribution will
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have a decreasing failure rate if g′′(x) < 0 for all x > 0. Although the result
in the r(x) case is less tractable, similar conclusions can be made.

Next we consider taking transformations of random variables in this family.
We will show that the proposed family of distributions is closed under certain
1–1 transformations. The following result holds in the case in which g(x) is
specified.

Theorem 5.3 Let the random variable X have PDF as defined above for a
specified g(x) and unspecified α. If Y = φ(X) is a 1–1 transformation from
{x |x > 0} to {y | y > 0}, then the PDF of Y is in the same family.

Proof. Let the random variable X have PDF

fX(x) = e−g(x)g(x)α−1g′(x)/ Γ(α) x > 0,

for α > 0 and g(x) for which the properties in Section 5.1 hold. Consider
first the case of Y = φ(X) monotonically increasing. So Y = φ(X) is a 1–1
transformation from {x |x > 0} to {y | y > 0} with inverse

X = φ−1(Y )

and Jacobian

J =
dX

dY
=

d

dY
φ−1(Y ).

By the transformation technique, the PDF of Y is

fY (y) = fX
(
φ−1(y)

) · J

=
e−g
(
φ−1(y)

)
g
(
φ−1(y)

)α−1
g′
(
φ−1(y)

)

Γ(α)
· d

dy
φ−1(y)

=
e−g
(
φ−1(y)

)
g
(
φ−1(y)

)α−1

Γ(α)
· d

dy
g
(
φ−1(y)

)
y > 0,

because
d

dy
g
(
φ−1(y)

)
= g′
(
φ−1(y)

) · d

dy
φ−1(y)

by the chain rule of differentiation. This PDF can be recognized as being from
the proposed family and is constructed using the g(x) function g

(
φ−1(y)

)
. The

case of Y = φ(X) monotonically decreasing is handled in a similar fashion. �

A similar result can be shown for the case in which r(x) is specified. This
means that the proposed family is closed under transformations such as, for
example, Y = φ(X) = c0 X

c1 for positive, real constants c0 and c1.
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5.3 Examples

New distributions can be developed by defining g(x) or r(x) functions satis-
fying the conditions in Section 5.1 that may fit a particular purpose. Here we
present three examples of new distributions. Each example displays different
design features that make the new distributions desirable. While each could be
further developed (as in publications such as Forbes et al. [55]), the following
examples demonstrate how new distributions with certain useful properties
are generated.

Example 5.1. A new life distribution with determinable hazard func-
tion properties can be derived. Let g(x) = (λx)κ, for λ, κ > 0. Let
α > 0 be unspecified. This creates a distribution with PDF

f(x) =
κe−(λx)κxκα−1λκα

Γ(α)
x > 0.

When α = 1, this reduces to the Weibull(λ, κ) distribution. When
α = 2, this creates a “semi-Weibull” distribution with PDF of X

f(x) = κλ2κx2κ−1e−(λx)κ x > 0.

This PDF is quite similar to that of a Weibull(λ, κ) random variable.
The hazard function in this case is

h(x) =
κλ2κx2κ−1

(λx)κ + 1
x > 0.

The CDF and survivor function can also be obtained in closed form.
This distribution will have a decreasing failure rate when κ ≤ 1 and an
increasing failure rate when κ ≥ 1. Another special case of this family
occurs when we further assume that κ = 1. The PDF reduces to

f(x) = λ2xe−λx x > 0,

which is the PDF of an Erlang random variable with rate λ and n = 2
stages.

Example 5.2. New distributions can be created by expanding existing
distributions with the α parameter. Consider the Lomax distribution
with the additional parameter α. Let g(x) = ln(x + 1). This example
introduces some likelihood calculations. The PDF is

f(x) =
1

Γ(α)(x + 1)2
[ln(x+ 1)]α−1 x > 0.
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The likelihood function is

L(α) =
n∏

i=1

f(xi) = [Γ(α)]−n

(
n∏

i=1

1

(1 + xi)2

)[
n∏

i=1

ln(1 + xi)

]α−1

and the log likelihood function is

lnL(α) = −n ln
(
Γ(α)

) − 2

n∑

i=1

ln(1 + xi) + (α− 1)

n∑

i=1

ln
(
ln(1 + xi)

)
.

The score is

∂ lnL(α)

∂α
= −nΓ′(α)

Γ(α)
+

n∑

i=1

ln
(
ln(1 + xi)

)
.

The equation

Γ′(α)
Γ(α)

=
1

n

n∑

i=1

ln
(
ln(1 + xi)

)

must be solved numerically to compute the maximum likelihood esti-
mator α̂ for a particular data set.

Example 5.3. New distributions with closed-form moments are possi-
ble. Let g(x) = λx1/α. This yields the PDF

f(x) =
exp(−λx1/α)λα

Γ (α+ 1)
x > 0.

This distribution has mean

μ =
λ−α4αΓ (α+ 1/2)

2
√
π

and variance

σ2 =
λ−2α

(
4πΓ (3α)− 16α

(
Γ
(
α+ 1/2

))2
Γ (α)

)

4πΓ (α)
.

Furthermore, all integer moments about the origin can be calculated
with the moment function

E(Xn) =

∫ ∞

0

xnf(x) dx =
λ−nαΓ (α+ αn)

Γ (α)
.
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5.4 Conclusions

An unlimited number of survivor distributions can be generated using the
incomplete gamma function ratio. Several popular survivor distributions, such
as the Weibull and gamma distributions, are included in this class. The class
is closed under monotonic transformations. Future research is showing that
any base function that is positive and has finite area can be used to generate
further new distributions.



6

An Inference Methodology for Life Tests with
Full Samples or Type II Right Censoring

Andrew G. Glen and Bobbie L. Foote

Abstract We present a methodology for performing statistical inference
procedures during the actual conduct of a life test experiment that can re-
duce time on test and cost. The method relies on properties of conditional
order statistic distributions to convert censored data into iid uniform random
variables. A secondary result presents a new test for uniformity based on the
convolution of these iid uniform random variables that is higher in power than
the benchmark Anderson–Darling test statistic in certain cases.

Keywords Computational algebra systems • Goodness-of-fit • Probability
integral transform • Uniformity testing

Originally published in IEEE Transactions on Reliability, Volume 58, Number 4, in
2009, this paper is one of best uses of APPL in the conduct of the research as well
as in the final result. A new procedure in APPL calculates the goodness-of-fit test
statistic, its distribution under H0, and the exact p-value of the test statistic. The
APPL procedures OrderStat and Truncate enable the derivation of conditional
order statistics that transform into iid uniform random variables under the null
hypothesis. This algorithm was granted a patent for its innovative use.

A.G. Glen
Department of Mathematics and Computer Science, The Colorado College,
Colorado Springs, CO, USA
e-mail: andrew.glen.1984@gmail.com

B.L. Foote (�)
USMA, West Point, NY, USA

© Springer International Publishing Switzerland 2017
A.G. Glen, L.M. Leemis (eds.), Computational Probability Applications,
International Series in Operations Research & Management Science 247,
DOI 10.1007/978-3-319-43317-2 6

59



60 6 An Inference Methodology for Life Tests with Full Samples...

Notation

n Sample size
r Right censored item number of highest observation
X(25:10) The tenth order statistic from a sample of 25 items
FX(n:i)

The CDF of the ith order statistic from a sample of size n

Tr The T statistic for a r known order statistics of a lifetest
μ The expected value of a random variable
σ2 The variance of a random variable

Acronyms

PIT Probability Integral Transformation
A–D Anderson–Darling
APPL A Probability Programming Language

6.1 Introduction and Literature Review

Life test experiments are designed to gain an understanding of the proba-
bilistic properties of the lifetime of, for example, a new electrical circuit, a
drug treatment, a mechanical component, or a system of components. Often,
the costs of life tests, in both time and money, constrain the design of the
experiment, limiting the number of items placed on test and the length of the
test. Many times the length of the experiment cannot be estimated accurately
in advance and often one is faced with censored data in an ongoing experi-
ment. For such cases, we propose a methodology that gives exact statistical
inference on full or censored samples. Further, while this methodology can be
combined with existing test statistics, such as the Anderson Darling (A–D),
we introduce a new statistic that has higher power than the A–D when the
true mean decreases.

Consider a system, process, or component with a fully specified lifetime
CDF F (x). Should an improved system, process, or component come along,
both producers and consumers would like to verify that the new item is better
than the existing item, often by determining if its mean lifetime has improved.
In the life test, it would be highly desirable to stop the test when enough
evidence exists to support either claim. Such censoring, commonly called Type
I (stop after time t) or Type II (stop after r items fail), can produce statistical
inference.

We propose a methodology that will allow for Type II right censoring in
the design and conduct the life test or a complete sample if the data are
available. If, for example, one could afford a life test with n = 10 items to
fail, a certain level of statistical power could be achieved if the test continued
until the completion of n failures. Consider, however, an example in which
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n = 25 items are placed on test with r = 10 as the designated censoring value.
Obviously, the second test would conclude more quickly, as the expected time
on test would be the mean failure time of X(25:10), the tenth order statistic
from a sample of 25 items, under the null hypothesis. Now, consider a slightly
different example, where n = 25 items are placed on test. Experimenters note
that, after r = 3 failures, lifetimes seem to be substantially longer than the
original system. After r = 6 failures, they are convinced, at least anecdotally,
that the new system has a longer expected lifetime. It is desirable to gain
inference at each r value, as it may be possible to terminate the life test with
an early, satisfactory statistical result.

What follows is a new methodology that will allow for instantaneous as-
sessment of the life test at every failure. We rely on properties of conditional
order statistic distributions to provide inference for censored data. We further
rely on the advances of computer algebra systems, especially APPL (Glen
et al. [60], as well as Drew et al. [46]), as our technique requires calculat-
ing many CDFs of conditional order statistics and possibly the distribution
of the test statistics. The method we propose transforms either a complete
data set or a right-censored data set, via two probability integral transforma-
tions (PIT) and conditional order statistics, into an un-ordered, iid sample
of uniformly distributed data on the open interval (0,1), which we abbrevi-
ate U(0, 1). At this point, one may then apply any test of uniformity to gain
inference. We next investigate the test statistic Tr, based on the sum of r
iid U(0, 1) random variables, which can result in higher power than the A–D
statistic when finding differences in the mean of the item in question. As an
outcome, experimenters may purposefully design life tests with higher values
of n so that the test can be terminated early, thus, saving time, money, and
items that were destroyed during the testing.

Obtaining statistical inference while reducing time on test has been an
ongoing research topic. Nelson [117, 118] investigated the idea of “precedence
testing” which compares two samples in a non-parametric setting to deter-
mine which sample appears to be preferred and can give early indications of
the outcome. More recently, Wu et al. [174] extended the research of Bala-
sooriya [6] to obtain statistical inference from censored samples. Wu et al.
expanded the research to the Weibull distribution from the two-parameter
exponential distribution. Our results adopt a different approach and are ap-
plicable for most continuous distributions, not just the Weibull distribution.
Testing for uniformity of a sample has many applications, many of which
are explained in Chap. 8 of D’Agostino and Stephens [40]. Rosenblatt [142]
presents theory that transforms joint conditional random variables to ordered,
uniformly distributed random variables for the censored case (we will instead
transform censored data to a complete un-ordered set of iid uniform data).
David [43] discusses the Markov nature of conditional order statistics. He ex-
plains a technique that equates conditional order statistics with specific trun-
cated order statistics, a result that we will use as part of our method. O’Reilly
and Stephens [125] use a Rosenblatt transform, then invert that transformed
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data to test ordered uniform data (we will create un-ordered uniform data).
Hegazy and Green [66] present work on goodness-of-fit using expected values
of order statistics with approximations used for critical values. Evans et al. [52]
present exact distributions for order statistics for discrete random variables.
Leemis and Evans [94] also worked with convolutions of discrete random vari-
ables to produce exact distributions. In both these articles, the authors make
use of computer algebra systems in a similar way that we do for exploring new
statistical procedures. Michael and Schucany [114] also present a transforma-
tion that takes censored data and transforms it into ordered uniform data.
They, as well as Stephens [152], point out that the A–D statistic is generally
more powerful than the other well-known goodness-of-fit statistics in the case
when the mean has shifted. Thus, we will compare the power of Tr with only
that of A–D to show higher power than A–D in detecting decreases in the
mean. Additionally, this method was approved for a patent by the US Patent
Office, a government held patent attributed to the authors, number 7010463
(US Patent Office [162]). The authors approve of the free, noncommercial use
of this methodology by the reader.

6.2 The Methodology for Censored Data

Assume that the lifetime of an existing item is distributed by the all-
parameters-known continuous random variableX with CDF F (x). Let n items
be on life test and let r be the Type II right censoring order statistic number.
Recall that, in a life test, failure data arrive in increasing magnitude; in other
words, in the form of order statistics. The ordered lifetime data x(n:i) have
CDFs from their appropriate order statistics FX(n:i)

(x(n:i)), i = 1, 2, . . . , r,
(note X(n:i) will now be abbreviated X(i)). In his work on order statistics,
David and Nagaraja [43, p. 20] explains two useful properties that we employ:
that order statistics form a Markov chain, in that for r < s,

fX(s)|X(r)=x(r),X(r−1)=x(r−1),...,X(1)=x(1)
(y) = fX(s)|X(r)=x(r)

(y);

and that deriving the distribution of these order statistics is made simpler
with truncated distributions. Theorem 2.7 on the same page of David and
Nagaraja’s text explains “For a random sample of n from a continuous par-
ent, the conditional distribution of X(s), given X(r) = x (s > r), is just the
distribution of the (s − r)th order statistic in a sample of n − r drawn from
f(y)/[1 − F (x)] (y ≥ x), i.e., from the parent distribution truncated on the
left at x.” Thus, for our purposes, the CDF of the ith order statistic, given
the (i − 1)th data point, F (x(i)|x(i−1)), is that of the random variable X(1)

with support x(i−1) < x(i) < 1. David and Nagaraja show this is the first
order statistic from a sample size n− (i−1) from the parent distribution of X
truncated on the left at x(i−1). In other words, the distribution is independent
of x(1), x(2), . . . , x(i−3), and x(i−2); and is therefore memoryless. Because each
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of the conditional distributions can be computed, conducting separate PITs
on each data value, FX(i)|X(i−1)

(x(i)), i = 2, 3, . . . , r will produce a sample
of r iid U(0, 1) random variates, see Rosenblatt [142, p. 470] to which any
uniformity test can be applied. We estimate power curves for Tr and the A–D
test. In cases where the mean decreases from μ0, the test based on Tr has
higher power. In cases where the mean increases from μ0, the A–D has higher
power. As shown in the next section, Tr is defined as

Tr =
r∑

i=1

FX(i)|X(i−1)
(x(i)),

where FX(1)|X(0)
is defined to be FX(1)

and r is the size of the censored sample.
The distribution of Tr is that of the sum of r iid U(0, 1) random variables.

6.3 The Uniformity Test Statistic

The test statistic we propose has the distribution of the convolution of iid
U(0, 1) random variables and can be written in two forms:

Tn =

n∑

i=1

Ui =

n∑

i=1

FX(Xi)

for a complete data set and

Tr =

r∑

i=1

FX(i)|X(i−1)
(x(i))

for a Type II right censored sample. Prior to settling on this statistic, we ex-
plored other functions of iid U(0, 1) random variables. One option we explored
was finding the distribution of C =

∑n
i=1 csc(Ui), as the cosecant function

magnifies the statistic when the tails are too heavy. The magnification hap-
pens at a quicker rate than that of − ln(U), (the basis of A–D test statistic)
and we found this statistic had slightly higher power than A–D, when test-
ing for shifts in σa away from σ0. The statistic had appreciably less power,
though, when testing for changes in μ, a fact geometrically understandable, as
the changes in μ do not exaggerate the test statistic. Furthermore, the exact
distribution of C could not be found and critical points had to be estimated
with Monte Carlo simulation, an inconvenience we wanted to avoid. We also
considered min(U1, U2, . . . , Un) and

∑n
i=1 tan(Ui) and found similar results.

We found success with the test statistic Tn =
∑n

i=1 Ui as a test for uni-
formity. Finding the distribution of the convolution of n iid U(0, 1) random
variables is calculable; see, for instance, Johnson et al. [72]. We have also
derived (in APPL) the exact distributions of Tn for reasonable sample sizes,
currently n ≤ 50. An example of a complete PDF for the distribution of T7,
for example, is
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The distributions of Tn for n ≤ 50 are available from the first author.
Because the distribution function of Tn is known, exact critical values and p-
values are calculable. Tables of critical values used for our power simulations
are available from the first author and are left out of this article for brevity.
Furthermore, as APPL can find exact p-values for these distributions, tables
such as these are becoming less necessary. As an aside, it is well known that
convolutions of uniform random variables tend quickly toward normality as n
increases. Thus, it becomes less necessary to find the exact distribution of the
statistic well before n = 50 as normal approximations are virtually identical.
However, for lower values of n (and r, as we will show in the next section),
it is important to have a way to calculate the exact p-values using APPL, or
some other algorithm.

6.4 Implementation Using APPL

The theory of the method and the statistic are straightforward; however, due
to the need for multiple exact distribution functions that have support val-
ues which depend on the data, the implementation is made practicable only
with automated probabilistic software. We implement the new method and
new statistic in APPL for a number of reasons. APPL allows for the use of
any continuous distribution (well-known distributions, as well as ad hoc) to
specify the null hypothesis and conducts the necessary PITs for these distri-
butions. APPL calculates the CDFs of order statistics, as well as truncated
distributions. In effect, APPL-based Monte Carlo simulations allow for ran-
dom functions to be simulated. APPL also has the distributions for sums of iid
uniform random variables already computed, so exact p-values are calculable.
The algorithm for the methodology follows.

• Specify the lifetime distribution of the existing (old) system, F (x).
• During the life test experiment, note n and create the vector of r observed

failure times.
• Calculate z(i) = F (x(i)), i = 1, 2, . . . , r, which are distributed as the first

r order statistics out of a sample of n U(0, 1) random variables.
• Calculate the un-ordered, iid U(0, 1) (under the null hypothesis)

ui = FZ(i)|Z(i−1)
(z(i)), i = 1, 2, . . . , r. Note: we perform the PIT with F (x)

and then conduct the conditional order statistics PIT using the uniform
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conditional order statistic distributions instead of the other way around.
These two ways have been shown to be equivalent [59], but this method
is preferred because the conditional order statistics of the uniform distri-
butions are much more tractable than conditional order statistics using
the parent distribution F . Also, note that we find the conditional order
statistic using the truncation of the parent distribution method outlined
by David and Nagaraja [43].

• Sum the ui values to get the Tr statistic, or use any test of uniformity on
the ui values.

• Calculate the p-value with twice the area of the outer tail of the Tr distri-
bution, or use tables for the A–D statistic. For Tr, we set the p-value to
two times the probability of the outer tail in order to guard against shifts
in the mean in both directions. The statistic is obviously symmetric and
is treated much like a two-tailed Student t test statistic when comparing
to the omnibus A–D. One tailed tests can also be performed, but clearly
not compared to the two-tailed A–D.

The APPL code that implements this algorithm to calculate the statistic is
as follows.

> # take the r censored values in ‘data’ and PIT them into the

> # list ‘Zdata’

> for i from 1 to r, do

> Zdata := [op(Zdata), CDF(Nulldist, data[i])];

> od;

> # tt sum the independent uniforms to for the statistic ‘t_stat’

> # starting with the first failure

> t_stat:=CDF(OrderStat(U(0, 1), n, 1), Zdata[1]);

> # then add up the subsequent failures until r is reached

> if (r > 1), then

> for i from 2 to r, do

> t_stat := t_stat + CDF(OrderStat(Truncate(U(0, 1),

> evalf(Zdata[i-1]), 1), n - (i - 1), 1), Zdata[i]);

> end do;

> end if;

> Tr_distn := cat(‘T’,r);

> # now return the statistic, the lower and upper tail p-values

> # using APPL’s ‘CDF’ command

> RETURN(t\stat, 2 * CDF(Tr_distn, t_stat),

> 2 * (1 - CDF(Tr_distn, t_stat)));

This algorithm is implemented in a new APPL procedure called CensoredT

and its use is illustrated in appendix of this paper. The code is available from
the first author.



66 6 An Inference Methodology for Life Tests with Full Samples...

6.5 Power Simulation Results

In this section, we discuss the results of power simulations that compare the
Tr statistic to the A–D test statistic using a level of significance of α = 0.05
for data from the normal, Weibull and gamma distributions. We also rely on
previous power studies by Stephens [152] and Michael and Schucany [114] that
establish the A–D test statistic as generally more powerful than other statistics
in testing for uniformity, especially when detecting a shift in μ. These other
statistics include the Kolmogorov–SmirnovD, D+, and D− test statistics, the
Cramér–von Mises W 2 test statistic, the Kupier test statistic, and the Watson
U2 test statistic. As the A–D test statistic is generally more powerful than
these statistics, we opine that it is sufficient to benchmark the new Tr test
statistic against the A–D test statistic. As our intended purpose for the test
statistic is to determine if the life testing indicates changes in mean lifetime,
this power simulation varies μ1 from μ0, but fixes the variance. In every case,
for the normal, gamma, and Weibull distributions, we fixed σ2

0 = 10 and only
varied μ above and below μ0 = 100.0. Thus, the hypotheses considered are

H0 : μ = 100 versus H1 : μ �= 100.

For clarity, the parameterization of the Weibull distributions uses PDF
f(x) = κλκxκ−1e−(λx)κ for x, κ, λ > 0. The gamma distributions uses the

parameterization with PDF f(x) = α (αx)
β−1

e−αx/Γ (β) for x, α, β,> 0.
Parameter values used to generate the variates from each of these distribu-
tions were found by solving the 2 × 2 set of equations comprised of setting
the expression of the mean equal to 100 and the expression for the variance
equal to 10. The actual parameters for the Weibull and gamma distributions
that correspond to the simulations in Figures 6.1, 6.2, 6.3 are presented in
Table 6.1. Those of the normal distributions are self-evident from the mo-
ments. Figures 6.1, 6.2, 6.3 show the power curves for both the Tr test statistic
(shown as a solid curve) and A–D test statistic (shown as a dashed curve).
In each plot, the horizontal axis is r, the right censored number. The verti-
cal axes are the simulated power curves. Note in Figures 6.1, 6.2, 6.3, the Tr

outperforms the A–D whenever the data were simulated from a distribution
with μ < μ0. This simulated result holds true for all values of r, except for
some early values of r < 5. However, in the cases where μ0 < μ, the A–D test
outperformed the Tr test for all three families of distributions. Thus, we see
that Tr and A–D compete with one another depending on the direction of the
shift in the mean. Each simulation created 2000 samples for each parameter
value and both Tr and A–D were computed at each iteration. One may es-

timate the standard deviation of each power estimate with

√
β̂(1− β̂)/2000,

which is approximately 0.01 for mid-values in each figure. Most differences
between the pairs of power estimates of Tr test statistic and A–D test statis-
tic are multiple standard deviations apart. Furthermore, because the power
of Tr test statistic is higher than the power of A–D test statistic in all cases
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Table 6.1. The simulations shown in Figures 6.1, 6.2, 6.3 were created from distri-
butions with the following parameters that match the desired μ and σ2 values in
the two left hand columns

Normal Weibull Gamma
μ σ2 λ κ α β

97.5 10 0.01011 38.832 9.75 950.625
98.0 10 0.01005 39.034 9.80 960.400
98.5 10 0.01000 39.237 9.85 970.225
99.0 10 0.00995 39.440 9.90 980.100
99.5 10 0.00991 39.643 9.95 990.025

null
100.0 10 0.00986 39.845 10.00 1000

where r > 5 for all three families at all μ values, a simple signs test is statis-
tically significant evidence of the higher power of the Tr test statistic. Thus,
the improvement of Tr test over A–D test is statistically significant for all but
the earliest values of r when μ < μ0. Many different distributions were in-
vestigated for various families, parameter values, sample sizes (n values) and
censoring values (r). What we presented is representative of what we have
found in general. The particular families, parameters, and censoring values
were chosen so that power curves can be shown graphically, which we opine
as more instructive than a typical tabular presentation of power values.

An important note involves the complexity of the Monte Carlo simula-
tions. The simulations require, among other things, the CDF of the parent
distributions (non-trivial in the case of the gamma), the ability to conduct a
PIT on the data, the exact CDFs of truncated order statistics created from
the data, and, when using Tr, the exact distribution of the test statistic. None
of this is practicable outside of a computer algebra system, certainly not in
well-known statistics software packages. APPL enables researchers to simulate
with functions of random variables, not just random numbers, instantaneously
creating CDFs that only get used once. To see some of these distributions and
to get an appreciation for the simple case of r = 5 refer to the example in the
appendix.

6.6 Some Applications and Implications

This methodology has potential for significant advances in reliability engineer-
ing life testing, pharmaceutical drug tests, or any sort of experiment where
data come naturally in ordered form. The sequential testing ability allows for
a test to be terminated early, hence ending an expensive experiment. Other
implications of this research are as follows.
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Fig. 6.1. Power curves displaying the results of Monte Carlo power simulation with
underlying normally distributed data, σ2 = 10, α = 0.05 and n = 25. Under H0,
μ = 100. The solid line is the Tr power curve and the dashed line is the A–D power
curve. Note, as the true value of μ decreases from 100, the test based on the Tr test
statistic outperforms the test based on the A–D test statistic

• Good statistical power for censored samples is possible for a wide range of
experiments.

• Experiments can be designed with intentionally large values of n, knowing
that they could stop at a (possibly predetermined) relatively small value
of r.

• Experiments can be tracked in real-time to determine whether a pattern of
p-values that indicates enough evidence of improvement has been attained.

• Computer algebra systems are adept enough for computing the multiple
CDFs needed for such a statistic and methodology to be practical in its
implementation.

• Creating Monte Carlo simulations with functions of random variables, not
just random numbers, is possible in the APPL environment.

6.7 Conclusions and Further Research

A new life test methodology and a new uniformity test statistic have been de-
veloped, tested, and presented. Increases in power have been found compared
to the benchmark A–D test statistic in cases where the true mean decreased in
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Fig. 6.2. Power curves displaying the results of Monte Carlo power simulation with
underlying Weibull distribution of data, σ2 = 10, α = 0.05 and n = 25. Under H0,
μ = 100. The solid line is the Tr power curve and the dashed line is the A–D power
curve. Note, as the true value of μ decreases from 100, the test based on the Tr test
statistic outperforms the test based on the A–D test statistic

value. Additionally, exact p-values for this test statistic are achievable. Also,
relatively high power is achieved using the Tr test statistic on censored sam-
ples, allowing for life tests to be terminated early. Further research is needed
to investigate how high to set n and r in experimental designs to gain possi-
ble advantages in lower time on test, lower cost, and fewer failed items as a
result of the experiment. For example, if a budget can afford 25 items failing,
perhaps it would be more effective to put 50 items on test, knowing ahead of
time that, if the desired change in μ is present, it should be evident by about
the r = 10th failure and the test can be terminated early. Thus, the potential
for time savings and component savings are evident. Interestingly, one of our
goals was to find the exact power functions instead of using simulation to
compute power. Due to the complexity of sending data from one distribution
thru the PIT of another, the resulting transformations were so complicated
that we could only find the exact power function for the exponential parent
with r = 2. We are currently working on parameter estimation using the in-
verse test statistic technique on Tr. We are establishing confidence intervals
for one-parameter distributions and confidence regions for two or more pa-
rameter distributions. Research can also be extended to the case where the
null hypothesis distribution is not fully specified, but must be estimated from
the data, a much more difficult case.
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Appendix

In this appendix, we will show the computations needed to find the p-value for
a small censored sample. Assume there exists a mechanical system that has
an established time-to-completion that is modeled by the gamma(2.1, 4.41)
distribution, where time is measured in hours. A new process is developed and
experimenters hope to show an improvement (decrease) in completion time.
The new process is applied simultaneously with n = 25 different machines and
it is noted that the first five completion times are 0.40, 0.54, 0.66, 0.75, and
0.77 h. Completion of the full experiment, under the null hypothesis, has an
expected time of E(X(25)) ∼= 4.52 h, the expected completion time of the slow-
est machine. However, the fifth machine to finish has an expected completion
time, under the null hypothesis, of E(X(5)) ∼= 1.21 h. Because the observed
time of the fifth machine’s completion was only 0.77h, it would be useful to
know if there is enough statistical evidence to stop the experiment, conclud-
ing that the new process is faster. The following APPL code will analyze this
Type II censored experiment.
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> Old_Process := GammaRV(2.1, 4.41);

> n := 25;

> data := [0.40, 0.54, 0.66, 0.75, 0.77];

> CensoredT(Old_Process, data, n);

The procedure output is the test statistic, the lower tail p-value, and the
upper tail p-value. In this case, those values are 1.038165719, 0.0100496,
0.989950. Because we consider this a two-tailed test, we have a p-value of
0.0100496× 2 = 0.02, significant evidence that the new process is faster and
we can consider terminating the experiment.

The calculations that follow are intended to explain more fully how the
process works. The existing process has time to completion distribution X
distributed according to the gamma(2.1, 4.41) random variable with PDF
f(x) = 2.565595x3.41e−2.1x, 0 < x < ∞, and CDF, calculated in APPL, of
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x > 0, relying on Maple’s WhittakerM function, a solution to a differential
equation. The null hypothesis is that μnew = μold and the alternate hypothesis
is that μnew �= μold. The algorithm first transforms these data values thru the
gamma CDF, z(i) = F (x(i)), i = 1, 2, . . . , 5 (the first PIT) to come up with
five transformed values 0.005203, 0.015494, 0.030823, 0.046777, and 0.050857.

For each of the z(i), it is necessary to calculate the appropriate conditional
order statistic CDF so that the un-ordered uniform variates can be calculated.
The first data point has CDF

FX(1)
(x) = x25 − 25x24 + 300x23 − 2300x22 + 12650x21 − 53130x20 + 177100x19

−480700x18 + 1081575x17 − 2042975x16 + 3268760x15 − 4457400x14

+5200300x13 − 5200300x12 + 4457400x11 − 3268760x10 + 2042975x9

−1081575x8 + 480700x7 − 177100x6 + 53130x5 − 12650x4 + 2300x3

−300x2 + 25x,

for 0 < x < 1. Thus, the first iid U(0, 1) p-value (from the second PIT) is
FX(1)

(0.005203) = 0.122263. The second data value comes from the truncated
order statistic from the U(0, 1) distribution with n = 24 and r = 1 truncated
on the left at z(1) = 0.005203. The CDF for this point is
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F (x) = −1.1334x24 + 27.2008x23 − 312.809x22 + 2293.94x21 − 12043.2x20

+48172.6x19 − 152546.7x18 + 392262.9x17 − 833558.6x16 + 1481882.0x15

−2222823.1x14 + 2829047.5x13 − 3064801.5x12 + 2829047.5x11 − 2222823.0x10

+1481882.0x9 − 833558.6x8 + 392262.9x7 − 152546.7x6 + 48172.6x5

−12043.2x4 + 2293.94x3 − 312.809x2 + 27.201x− 0.1334,

for 0.005203 < x < 1. The second p-value is F (0.015494) = 0.220857.
Similarly, the third data value comes from the truncated order statistic
U(0, 1) distribution from n = 23 and r = 1, truncated on the left at
z(2) = 0.01549350642. The CDF for this point is

F (x) = 1.4320x23 − 32.9382x22 + 362.321x21 − 2536.24x20 + 12681.2x19

−48188.6x18 + 144565.9x17 − 351088.7x16 + 702177.4x15 − 1170295.6x14

+1638413.9x13 − 1936307.3x12 + 1936307.3x11 − 1638413.9x10 + 1170295.6x9

−702177.4x8 + 351088.7x7 − 144565.9x6 + 48188.6x5 − 12681.2x4

+2536.24x3 − 362.32x2 + 32.94x− 0.4321,

for 0.015494 < x < 1. The third p-value is F (0.030823) = 0.302984. Likewise,
the fourth data value comes from CDF

F (x) = −1.9913x22 + 43.8082x21 − 459.986x20 + 3066.58x19 − 14566.2x18

+52438.4x17 − 148575.6x16 + 339601.3x15 − 636752.4x14 + 990503.7x13

−1287654.9x12 + 1404714.4x11 − 1287654.9x10 + 990503.7x9 − 636752.5x8

+339601.3x7 − 148575.6x6 + 52438.4x5 − 14566.2x4 + 3066.58x3

−459.986x2 + 43.808x − 0.99128,

for 0.030823 < x < 1. The fourth p-value is F (0.046777) = 0.305921. Finally,
the fifth data value comes from the CDF

F (x) = 2.7348x21 − 57.4298x20 + 574.298x19 − 3637.22x18 + 16367.5x17

−55649.5x16 + 148398.7x15 − 317997.2x14 + 556495.0x13 − 803826.2x12

+964591.4x11 − 964591.4x10 + 803826.2x9 − 556495.0x8 + 317997.2x7

−148398.7x6 + 55649.5x5 − 16367.5x4 + 3637.22x3 − 574.298x2

+57.4298x − 1.7347,

for 0.046777 < x < 1. The fifth p-value is F (0.050857) = 0.086139. The test
statistic is the sum of the five p-values, t = 1.038166, and has a CDF based
on the null hypothesis of that of convolution of five U(0, 1) random variables:
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The lower tail p-value is therefore 2 × F (1.309743407) = 2 × 0.01000496 ∼=
0.0200, a low p-value suggesting the expected completion time for the new
process is faster than that of the existing process.
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Abstract A variation of maximum likelihood estimation (MLE) of parame-
ters that uses PDFs of order statistic is presented. Results of this method are
compared with traditional maximum likelihood estimation for complete and
right-censored samples in a life test. Further, while the concept can be applied
to most types of censored data sets, results are presented in the case of order
statistic interval censoring, in which even a few order statistics estimate well,
compared to estimates from complete and right-censored samples. Popula-
tion distributions investigated include the exponential, Rayleigh, and normal
distributions. Computation methods using APPL are simpler than existing
methods using various numerical method algorithms.
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7.1 Introduction

Using the PDFs of order statistics has some intuitive appeal when estimating
parameters for survival distributions. In a life test, for example, n items are
placed on test simultaneously and run until failure. As items fail, the failure
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times are presented in order, from the smallest failure time to the largest
failure time. These ordered failure times are in fact order statistics. Life tests
have the advantage of presenting data as order statistics, so the properties of
order statistics can be used to analyze the experiment, even before the nth
item fails. Oftentimes some sort of censoring of the data occurs, the most
common being with only the first r failure times are known, a case called
Type II right-censoring.

Let n items from a population with lifetime modeled by a random variable
X have a life distribution with PDF fX . Let X(1), X(2), . . . , X(n) be the order
statistics if the experiment was allowed to continue until all n items failed.
Each of these statistics has a PDF, as introduced in mathematical statistics
books. If all n items fail, then a typical likelihood function takes on the form

L(θ) =

n∏

i=1

fX(xi, θ).

If only the first r items are observed to fail, then it is typical to use the
resulting Type II right-censored likelihood function that is proportional to

L(θ) =

r∏

i=1

fX(x(i), θ)×
(
1− FX(x(r), θ)

)n−r
,

in which FX is the CDF of X . But if random censoring occurs, where only
some order statistics are known, this article proposes constructing likelihood
equations based on the PDFs of the distributions of only the known order
statistics. In other words, let K be the set of order statistic indices for the
observed failure times, then one could construct the likelihood function

LK(θ) =
∏

i∈K

fX(i)
(x(i), θ),

in which fX(i)
is the PDF of the marginal distribution of the ith order statistic.

This method will be referred to as maximum likelihood estimation with order
statistics (MLEOS). In Section 7.3, we will show the utility of this type of
estimation.

The literature on estimating with order statistics is very comprehensive.
However, in almost every article or book, order statistics are used in closed
form estimation formulas, based on certain properties that some distribu-
tions might have as advantages. For example, Leemis and Shih [97] derive
estimators for the parameters of the exponential and Rayleigh distributions
for left-censored data sets. In his comprehensive study on order statistics,
David and Nagaraja [43, p. 245] devotes all of the sixth chapter to a dis-
cussion on estimating and hypothesis testing with order statistics. All of his
results, though, are again limited to closed-form estimators that use the val-
ues of the order statistics, not the PDFs of the order statistics. Estimators
that can be expressed in closed form often have advantages over those that
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require numerical methods for their calculation. Some of the estimators that
can be expressed in closed form allow the calculation of the distribution of
the estimator, which can be used, for example, to derive exact confidence in-
tervals. However, some of these closed-form estimators are dependent on un-
derlying distributions for some of these advantages. This method’s proposal
of a non-closed form estimator can be applied to many distributions with
many types of parameters. Usually, non-closed-form estimators require some
form of numerical method to calculate the estimates, Newton–Raphson or
expectation–maximization (EM) algorithms for examples. This research uses
of APPL [46] to make direct use of calculus on exact likelihood functions to
estimate parameters. Further, APPL, an open source set of procedures avail-
able from the author, is specifically designed to use PDFs and create new ones
where necessary. APPL in effect turns Maple into a mathematical statistics
pallet for designing new distributions as well as simulating more complicated
random functions without resorting to heavy coding in more basic computer
languages. Thus, some estimates are found exactly, without numerical meth-
ods. In the cases where numerical solutions are needed, it is a more seamless
action using built-in commands of the computer algebra software. A side ad-
vantage of using APPL is that one’s knowledge of estimating parameters does
not necessarily need to be augmented with knowledge of numerical methods.

7.2 MLEOS with Complete Samples

First, MLEOS is presented in the case of complete samples. It is not expected
to improve upon standard MLE for complete samples, since the standard
methods are asymptotically minimum variance and unbiased. However, it is
instructive to see the intuition of the process, and this intuition is easily shown
below with complete samples. The MLEOS approach to estimation borrows
from the intuition associated with traditional maximum likelihood estimation.
In his Figure 7.7, Leemis [93, pp. 172–173] gives a graphical interpretation of
the MLE method. Leemis suggests the goal of MLE is to find the parameter θ
that “maximizes the product of the density values at the data points,” which
he shows graphically using a number of vertical lines underneath one expo-
nential PDF. Since in MLE one seeks a value of θ that maximizes the product
of these density values from the PDF, it is a logical extension to investigate
what would happen if the product of the density values of the n order statistics
was maximized. Maximizing the product of the “hump-shaped” order statistic
PDFs evaluated at their respective ordered data values is graphically depicted
in Figure 7.1, the PDFs of the four order statistics of the unit exponential dis-
tribution with n = 4. In effect one is finding a θ̂ value that maximizes the
product of the lengths of the vertical lines (the lines from the ordered data
points to their ordered density values). A good estimate for θ ‘moves’ the cen-
ters of the n humps of the n PDFs near the data values. Therefore, MLEOS
finds a θ̂ that maximizes the products of the respective density values. While
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Fig. 7.1. The PDFs of the four order statistics from a complete sample of n = 4
from a unit exponential distribution. The vertical lines represent the four factors
that comprise the likelihood function for MLEOS

MLE has the property that the likelihood function is also the joint distribution
PDF, this is not the case for MLEOS. Since the order statistics are dependent,
the product for LK is not a joint distribution function. Note, in Figure 7.1,
the filled circles on the horizontal axis correspond to the complete sample
[0.2, 0.4, 0.9, 1.5]. For the case of complete data sets, parameter estimates
were computed from various population distributions from simulation using
both MLE and MLEOS. The variance of the two estimation techniques were
compared. Complete sample estimates for θ from the exponential distribution,
μ and σ from the normal distribution, and θ from the U(0, θ) distribution were
investigated. Of all these population distributions, only the last case, estimat-
ing θ from the uniform distribution, resulted in a slight improvement in the
mean of the estimator. Since some maximum likelihood (ML) estimators are
also minimum variance unbiased estimators (MVUE), it is not expected that
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many MLEOS estimates will outperform MLE with respect to variance in the
case of complete samples with sufficient sample size. This is the case for es-
timating θ for the exponential distribution and μ for the normal distribution
[77]. However, the parameter σ from the normal distribution is not a MVUE
[77, p. 10] and the MLE for θ in the uniform distribution is biased [87, p. 244].
For the uniform distribution, the reason that the MLEOS estimator was less
biased than the MLE estimator is easy to see. Each MLE θ̂ is the largest data
value in the sample. The MLEOS θ̂ is either the maximum data value, or

the solution to ∂L(x,θ)
∂θ = 0. While it is possible that the maximum likelihood

value of θ̂ is less than the maximum of the sample, that maximum is clearly a
lower bound of the parameter. In about 54% of the samples, the solution to
this equation was greater than the maximum of the sample. The comparisons
of the MLE, an unbiased estimator, and the MLEOS estimator are given in
Table 7.1. Analytic methods were used to calculate E(θ̂) and V (θ̂) for MLE

and unbiased estimate. Simulation was used for approximating E(θ̂) and V (θ̂)
for MLEOS. All results in Table 7.1 were based on a sample size of n = 25.
The simulation was based on 50,000 replication. It was assumed that θ = 1.
The MLEOS estimator had less bias but higher variance than the MLE es-
timator. As could be expected, however, the unbiased estimator is better for
both bias and variance than MLEOS.

While applying MLEOS to complete samples is interesting and instruc-
tive for understanding the concept, it is generally not expected to outperform
standard MLE, as that method is well established and has many useful prop-
erties. The real advantage to MLEOS becomes apparent in censored samples,
as presented in the next section.

7.3 Applying MLEOS to Censored Samples

An important area that benefits from MLEOS is found in life tests with cen-
soring. Censoring mechanisms include left-censoring, right-censoring of Type I
and Type II, and random censoring. Helpful explanations of these types of cen-
soring are presented in Leemis [93, p. 184] and Lee [92, pp. 2–3], and especially
in the graphs on page 8 of Nelson [119]. Further information on the subject

Table 7.1. The variance of the MLE, MLEOS, and MLE with unbiasing factor for
the uniform distribution on a complete sample of n = 25 observations

Technique E(θ̂) V (θ̂)
MLE (exact) 25/26 ∼= 0.9615 25/18252 ∼= 0.001370
MLEOS (simulated) 0.9882 0.003018
MLE with unbiasing factor (exact) 1 1/675 ∼= 0.001481
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of estimation is available from Lawless [91], Deshpande and Purohit [45] and
Kalbfleisch and Prentice [75]. Klein and Moeschberger [79, Chap. 3] describe
the more general cases of doubly-censored data, progressively censored data,
and interval censored data. They describe a general likelihood function that
encompasses in part the occurrence of interval censoring. While much is re-
ported in the literature for right-censoring, less is available on left-censoring,
and even less for interval censoring. Oller et al. [124] considered likelihood
estimation in the case when the random nature of the interval is assumed
to be set in advance. This paper’s proposed estimation with MLEOS is not
limited to that assumption. Odell et al. [123] compared maximum likelihood
estimation with and without an assumed midpoint in an interval-censored
data simulation for an accelerated failure time regression model, using nu-
merical methods to solve for the estimates, and a relatively small number of
replications (100). Estimation with MLEOS does not need an assumed mid-
point and employs the computer algebra combination of Maple and APPL
to simulate more replications (10,000) and compute exact estimates (in some
cases). Sun [157] discusses non-parametric estimation of survival distributions
with a separate (but similar) type of censoring, random censoring, however
there is a clear distinction between interval censoring and random censoring,
pointed out by a number of these references.

Interval censoring occurs in a life test when a subject’s lifetime is not
known, but left and right limits of the lifetime are known for that subject.
Sometimes in interval censoring, while the lower and upper limits of a failure
time are known, there may be no single failure time observed. An example
of such interval censoring is given on page 8 of Nelson [119]. This paper con-
siders a special case of interval censoring that will be termed “order statistic
interval censoring.” Such is the case when an item’s failure time is known, or
its unknown failure time is before the first known order statistic, between two
known order statistics, or after the last known order statistic. Consider, for
example, 30 subjects on a life test. By time L, four subjects have failed (and
are observed), at times x(1), x(2), x(3), x(4). The observers then leave for the
day. By time R, the observers return to find three additional subjects failed
overnight, censoring the values of the 5th, 6th, and 7th order statistics. Then
the 8th failure is observed, x(8), upon which the life test is terminated similarly
to a Type II right-censored experiment. In this case the three missing obser-
vations are in the interval (L,R) but they are also bounded by x(4) and x(8).
Since only the first four and the 8th order statistics are known, the likelihood
function is comprised of these five order statistics PDFs defined by the set
K = {1, 2, 3, 4, 8}:

LK(θ) = fX(1)
(x(1), θ) × . . .× fX(4)

(x(4), θ)× fX(8)
(x(8), θ).

In general, the MLEOS likelihood function for order statistic interval cen-
soring is as follows:

LK(θ) =
∏

i∈K

fX(i)
(x(i), θ),
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where K is the set of order statistic indices for the observed failure times.
Note, it is not necessary to add survivor functions to the likelihood func-
tion, as in other interval censoring techniques, e.g., Klein and Moeschberger
[79, p. 66], since the PDFs of the existing order statistics help account for the
missing information from the censored items. Clearly order statistic interval
censoring is a more general censoring mechanism that includes all Type II
right-censoring as well as some left and doubly censoring schemes.

It is generally preferred to find a closed-form function for parameter es-
timation. In other words one wants to find a function for θ̂ that is only a
function of the known data, i.e., θ̂ = f(X(i∈k)), which is the case with many
estimators with complete samples. Unfortunately, with order statistic PDFs,
only part of this desired condition is attainable. Consider the case of knowing
only two order statistics under assumed exponential data with the PDF

f(x) =
1

θ
e−x/θ x, θ > 0.

Let the two known order statistics be x(l) and x(r) with 0 < l < r ≤ n and
K = {l, r}. The maximum likelihood function with order statistic interval
censored data is therefore proportional to

LK(θ) = fX(l)
(x(l)) · fX(r)

(x(r))

where fX(l)
is the PDF of the marginal distribution for the lth order statistic

and fX(r)
is the PDF of the marginal distribution for the rth order statistic.

Substituting in the PDFs of the exponential order statistics, the likelihood
function becomes

LK(θ) =
(n!)

2 (
1− e−x(l)/θ

)l−1 (
e−x(l)/θ

)n−l
e−x(l)/θ

(
1− e−x(r)/θ

)r−1

(l − 1)!(r − 1)!(n− l)!(n− r)!θ2

·
(
e−x(r)/θ

)n−r

e−x(r)/θ.

The log likelihood function is therefore

lnLK(θ) = −2 ln θ + lnA,

where

A =
(n!)

2 (
1− e−x(l)/θ

)l−1
e−

x(l)n−x(l)l+x(l)+x(r)n−x(r)r+x(r)
θ

(
1− e−x(r)/θ

)r−1

(l − 1)!(r − 1)!(n− l)!(n− r)!
.

The derivative of lnLK is

∂ lnLK(θ)

∂θ
=

−B

θ2
(−1 + e−x(l)/θ

) (−1 + e−x(r)/θ
) ,
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where

B = 2θ − 2θe−x(r)/θ − 2θe−x(l)/θ + 2θe−
x(l)+x(r)

θ + x(r)e
−x(l)/θ + x(l)e

−x(r)/θ

−x(l)ne
−x(l)+x(r)

θ − x(r)ne
−x(l)+x(r)

θ + x(l)ne
−x(l)/θ − x(l)le

−x(r)/θ

+x(l)ne
−x(r)/θ − x(r)re

−x(l)/θ + x(r)ne
−x(l)/θ + x(r)ne

−x(r)/θ

−x(l) − x(r) − x(l)n+ x(l)l − x(r)n+ x(r)r.

Setting the first derivative equal to zero and solving for θ results in the fol-
lowing equation for the estimator

θ̂ =
−x(r)

RootOf(C)
,

where

C = 2x(r)e
z+zx(l)/x(r) − 2ezx(r) − ezznx(r) − ezzx(l) + zx(l)ne

z+zx(l)/x(r)

+znx(r)e
z+zx(l)/x(r) + ezzx(l)l − ezzx(l)n− 2ezx(l)/x(r)x(r) + 2x(r) + zx(l)

+zx(r) + zx(l)n− zezx(l)/x(r)x(r) − zx(l)ne
zx(l)/x(r) + zre

zx(l)
x(r) x(r)

−znezx(l)/x(r)x(r) − zx(l)l + znx(r) − zrx(r),

and the RootOf command is a Maple procedure that evaluates the root of
the expression for variable z. This expression was found with APPL running
inside a Maple session. It is possible to isolate the parameter θ and find an
expression for the value of θ̂ that maximizes the likelihood function. Unfortu-
nately, while the expression for θ̂ is calculable, finding the distribution of the
estimator is not. The transformation implied in this equation is far too com-
plicated for transformation techniques available in mathematical statistics.
Thus, expressions for bias, variance and confidence intervals of the estimator
can not be found analytically, but must be simulated. Of course, as more or-
der statistics are known, and the population PDFs become more complicated,
these likelihood functions become even more untenable. Thus, as is typical
with MLE under censorship of various types, one must resort to simulation to
calculate properties of the estimates, such as bias, variance, and mean square
error of the estimates.

To show the value of MLEOS in order statistic interval censoring, a set
of simulations was conducted for various censoring patterns. Data generated
from the exponential, Rayleigh, and normal distributions were then used to
estimate parameters for the complete sample with n = 30, Type II right-
censored sample and different patterns of known order statistics. Comparisons
are made between the best case of all r order statistics observed (estimated
by MLE) versus degraded cases where only a subset up to and including the
rth order statistic are observed (estimated by MLEOS). The results of these
simulations are shown in Table 7.2.
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In each case, a sample of 30 variates was created, then the different esti-
mates were calculated from that sample so that a comparison of the average
and the variance of each estimator was possible. Mean square error of the
estimate was also considered and behaved similarly to estimator variance,
thus, while available from the author, is omitted from discussion here. There
were 10,000 samples created for the exponential and Rayleigh simulations and
2500 samples created for the normal distribution. These simulations were con-
ducted with APPL running in a Maple session. The code is available from the
editors. The exponential and Rayleigh distributions were chosen because they
are well known, one-parameter survival distributions. Parameterizations for
these two distributions are, respectively,

f(x) =
1

θ
e−x/θ x > 0, and

f(x) =
2x

θ2
e−x2/θ2

x > 0.

The normal distribution, while not typically a survival distribution, was cho-
sen because of its infinite tail on the left of the support, resulting in an un-
expected outcome that is mentioned in the next paragraph. For the normal
distribution, the mean was fixed at μ = 100 (arbitrarily) and the standard

Table 7.2. Outcomes of simulations for various estimates and various distributions
The darkened circles represent the order statistics that were observed, while the
clear circles represent the order statistics that were not observed. Even though up
to r = 20 order statistics are shown, the data are censored from a set with n = 30

Type of estimation average variance average variance average variance
MLE complete sample n  = 30
MLEOS 
MLEOS
MLEOS 
MLEOS
MLEOS 
MLEOS
MLEOS 
MLEOS
MLEOS 
MLEOS
MLEOS 
MLEOS
MLEOS 
MLEOS 
MLEOS
MLEOS 
MLEOS 
MLEOS 
MLEOS 
MLEOS 
MLEOS

9.97
9.82
9.78
9.83
9.74
9.69
9.75
9.69
9.77
8.46
9.80
9.09
9.81
8.83
9.28
9.81
8.45
8.81
9.11
9.41
9.75
9.86

1.73
4.80
3.83
4.13
3.64
4.76
3.58
4.55
3.51

24.12
3.41

11.61
3.21

18.97
8.69
3.13

19.98
18.22
16.23
13.16

3.78
2.55

99.53
96.04
95.95
97.51
97.40
98.39
98.06
98.67
98.54
99.16
98.94
99.15
99.00
99.24
99.17
99.09
99.38
99.41
99.40
99.39
99.35
99.28

83.52
859.15
770.77
552.03
452.81
351.54
292.52
295.16
241.11
191.00
184.42
187.52
171.79
171.16
184.30
161.33
133.85
131.85
131.69
135.28
144.85
123.29

99.94
100.11
102.69

99.84
101.80

99.96
100.75

99.93
100.93
100.00
100.62
99.95

100.46
100.07

99.98
100.46
100.52
100.49
100.39
100.26
100.14
100.06

328.23
3595.52
3573.50
2282.39
1989.89
1450.03
1203.56
1210.62

989.57
790.07
736.19
769.93
688.18
700.42
756.86
644.68
543.75
534.64
534.08
547.27
587.53
499.57

Normal, s  = 10 Rayleigh q  = 100 Exponential q  = 100
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deviation was estimated from the sample, similar to the process of finding
the distribution of residuals in regression. In Table 7.2 the status of the order
statistics is indicated the clear circles for censored times and dark circles for
observed times. Each MLEOS estimate is compared with the associated MLE
method for all r observations. For example, in the first MLEOS estimate, the
2nd and 3rd circles are darkened, indicating that only the 2nd and 3rd or-
der statistics were observed. This is compared in the next line with an MLE
estimate based on all r = 3 observations known. Note how in the case of
the exponential distribution, the estimates have identical mean and variance
(between the MLEOS and the MLE estimates). For both the exponential and
Rayleigh distributions, the MLEOS estimates with the later lifetimes observed
(e.g., closest to the 20th order statistic), gave the lowest variance and least
evident bias in the mean. Even in the case where only the 19th and 20th order
statistics were known, the mean and variance were very close to that of the
right-censored MLE. This is remarkable, because in effect observing the first
18 failure times gave little additional accuracy to θ̂ when r = 20. Also, for the
exponential and Rayleigh distributions, the mean of the estimators with later
order statistics is closer to the true mean than the Type II right-censored es-
timator. This too is remarkable, since the standard MLE estimator uses more
failure times, but produces a more biased estimate. For these two distribu-
tions, the MLEOS that only had the earliest order statistics known gave the
highest variance and substantial evidence of bias. Interestingly, the opposite
is true for the normal distribution. The first few order statistics by themselves
gave almost the same quality of estimate as the complete and right-censored
estimates. These estimators contain as few as two order statistics, the 2nd
and 3rd. To achieve that level of quality in an estimator with only a few early
observed order statistics is very useful. Conversely, the estimates comprised
of only the later observed order statistics suffered from high variance and ap-
parent bias. The last two rows of estimates calculate θ̂ when all r = 20 order
statistics are observed for both MLEOS and MLE. This is for comparison only
as standard MLE for Type II right censoring should be used as that method
has many statistical advantages that are well established in the literature.

In some distributions, the early order statistics give better estimates, and
in other distributions the later order statistics are better. Recall that the
early order statistics of the exponential distribution are high in variance, thus,
poorer estimates. The opposite is true for the early order statistics of the nor-
mal distribution, which have low variance, possibly due to the support of
negative infinity on the left. A possible explanation for the exponential distri-
bution’s behavior can be found in the fourth graph of Figure 7.1. That fourth
order statistic distribution has a high variance, thus, the value of x(4) has a

lot of room to move and still not effect the value of θ̂ by much. Conversely,
the first order statistic graphed shows that small movements in x(1) can have

a disproportionately large effect on the value of θ̂.



7.4 Conclusions and Further Research 85

Clearly these results have some implications about conducting life tests.
In the case in which missing data points exist, this study provides another
method for inference. More deliberately, though, this study could be used as
justification to reduce resource requirements of observing life tests. Depending
on expected failure rates, researchers can relax to some extent the vigilance
needed to observe certain types of life tests, especially those that are expen-
sive to have complete time observers. Also, some medical life tests with only
periodic checking of subjects may benefit from this type of inference.

7.4 Conclusions and Further Research

This paper presents an estimation technique that uses PDFs of order statistics
to create maximum likelihood estimates. The method can be applied to many
types of complete and censored samples, especially in the area of life tests.
The method can be used for any continuous survival distribution. Promising
results are presented in the case of interval censoring of life test data, where
the intervals are defined by the known order statistics, for the case of the
exponential, Rayleigh, and normal distributions. Tabular results of estimation
simulations show how MLEOS estimates are almost as good as Type II right-
censored estimates, even in the case of only observing two order statistics.
Implications are presented for the design of life tests, especially in the conduct
of the test itself.
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8.1 Introduction

The Wilcoxon signed-rank test is an invaluable nonparametric statistical
hypothesis test. Wilcoxon [166] introduced both this test and the rank-sum
test in a discussion of methods of comparing treatments. The signed-rank test,
used for paired data, tests the null hypothesis that the population median of
the differences between pairs is equal to 0 against the alternative hypothesis
that the population median of the differences is not equal to 0. The details of
the test will be explained later in this paper.

The Wilcoxon signed-rank test has been studied extensively in the lit-
erature. A basic introduction to the test is in Woolson [173]. There are a
number of ways to obtain tail probabilities to draw conclusions using this
test. Wilcoxon [166] provides tables of significance levels for sample sizes from
7 to 16. McCornack [112] provides a recursive algorithm for generating the
coefficients of the probability mass function of the test statistic under H0.
Wilcoxon [167] notes that the distribution of the test statistic under H0 ap-
proaches a normal distribution in the limit as n goes to infinity. Bellera et al.
[11] provide a number of graphics demonstrating the convergence of the distri-
bution of the Wilcoxon statistic to a normal distribution. A good introduction
to nonparametric statistics can be found in Hollander and Wolfe [68]. A dis-
cussion of non parametric methods appears in Siegel [146]. Hájek et al. [64]
provide an introduction to tests involving ranks. Conover and Iman [33] dis-
cuss ranking procedures and their relationship to both parametric and non
parametric statistics.

There has been very little work done in computing the exact power of the
Wilcoxon signed-rank test. Büning and Qari [22] use Monte Carlo simulation
to investigate the power of both the Wilcoxon test and the sign test under
different configurations. Further, Monte Carlo studies include Blair and Hig-
gins [15] and Bridge and Sawilowsky [21]. Pagano [127] plots a power curve
for the sign test for slightly altered null and alternative hypotheses. Arnold
[4] considers the problem of calculating power using multiple integrals. Klotz
[80] uses a recursive strategy for power computations.

The goal of this paper is to analyze the distribution of the Wilcoxon test
statistic and investigate the power of the Wilcoxon test. We use APPL to plot
power curves and compare the power of two non parametric statistical tests—
the Wilcoxon signed-rank test and the sign test. We also compare the power
of the Wilcoxon test for several population distributions. Some interesting
conclusions emerge.

Plotting these power curves is nontrivial. While the distribution of the test
statistic under the null hypothesis is independent of the distribution of the
data, the same is not true under an alternative hypothesis. The distribution of
the test statistic under the null hypothesis is based on the assumption that the
sign of a difference between pairs is independent of the rank of the absolute
value of the difference. This assumption fails under an alternative hypothesis
because the distribution is not symmetric around zero. Thus, power curves for
the Wilcoxon signed-rank test can only be plotted when the distribution of
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the data is assumed. Tail probabilities of the distribution of the test statistic
under an alternative hypothesis can be found using the joint PDF of the
sample.

An algorithm is presented here that uses a computer algebra system to
compute the necessary probabilities. This allows us to plot power curves for
the Wilcoxon signed-rank test, compare these to power curves of the sign
test, and compare how the power of the signed-rank test changes when the
distribution of the data changes.

Section 8.2 contains a discussion of the Wilcoxon signed-rank test and the
sign test. Section 8.3 introduces the distribution of the test statistic under H0.
Sections 8.4 and 8.5 discuss an algorithm for computing power functions for
the Wilcoxon test. Section 8.6 contains a comparison of the Wilcoxon signed-
rank test and the sign test and a discussion of how power is affected by the
sample size and the distribution of the data. Sections 8.7–8.9 introduce and
analyze the Wilcoxon–Mann–Whitney test using the symbolic capabilities of
Maple and APPL. Section 8.10 contains conclusions.

8.2 Explanation of the Tests

The Wilcoxon signed-rank test is a non parametric statistical hypothesis test.
It is typically used with a set of paired data in which the differences between
pairs is of interest. It can also be used for the one-sample location problem
under the assumption of symmetry. Let the random variables X and Y rep-
resent two observations from two continuous populations, and let the random
variable Z = X − Y be their difference. Let (xi, yi) be observed pairs of data,
for i = 1, 2, . . . , n. Let zi = xi−yi for i = 1, 2, . . . , n. Let θ be the population
median of Z and consider the hypothesis test

H0 : θ = 0 H1 : θ �= 0.

One ranks the zi values in order of increasing absolute value and then com-
putes W+ and W− as the sum of the ranks of the positive and negative zi,
respectively. When ties occur, the average rank is given to all values that are
tied. Consider the distribution of W+ and W−. Under H0, W

+ and W− are
distributed identically. However, when one is known, the other is uniquely
determined. This is because

W+ +W− =
n(n+ 1)

2

always holds. In other words, W+ and W− have correlation −1. Thus, it
suffices to look at only one of W+ and W−. Wilcoxon [166] recommends
using whichever is smaller. Others recommend using W+ or W+−W− as the
test statistic. For this analysis, let the test statistic be W = W+. Once the
test statistic is observed, the null hypothesis is rejected if the probability of
obtaining the observed test statistic or one more extreme under H0 (i.e., the
p-value) is smaller than a prescribed significance level α.
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The distribution of Z is of interest. The only assumptions on Z are that the
distribution is continuous and symmetric around a median θ. Furthermore, we
assume that the sample values Z1, Z2, . . . , Zn are mutually independent. In
practice, one must deal with ties in the ranking of the data. However, because
of the continuity assumption, this is not a concern when working with Z.

The sign test is a simpler version of the Wilcoxon signed-rank test. As
before, let (xi, yi) be pairs of data, for i = 1, 2, . . . , n, and let zi = xi − yi
for i = 1, 2, . . . , n. Let θ be the population median of the differences, and
consider testing the same hypotheses as above. Instead of ranking, we simply
count R+ and R− as the number of the observed zi that are above and below
0, respectively. The test statistic is R = R+. Again, the null hypothesis will
be rejected if the probability under H0 of obtaining the observed test statistic
or one more extreme is smaller than a prescribed significance level.

For the rest of this paper, let X and Y be continuous random variables
with unknown distributions unless a distribution is specified. Let the random
variable Z = X − Y, and let θ and μ be population median and mean of Z,
respectively.

8.3 Distribution of the Test Statistic Under H0

The exact distribution ofW underH0 is mathematically intractable. However,
W can be expressed as a function of n Bernoulli random variables. Under H0,
we assume that P (Z < 0) = 1/2 because the population median is θ = 0. We
assume that the probability that Zi falls below 0 is independent of the rank
of Zi because the distribution is symmetric around the median. This is shown
in Hogg et al. [67, p. 532]. Thus, the contribution to W associated with the
first rank is equally likely to be 0 or 1. It is a Bernoulli(1/2) random variable.
The contribution to W associated with the second rank is equally likely to be
0 or 2. It is two times a Bernoulli(1/2) random variable. Iterating this process
yields the expression

W =

n∑

i=1

iVi,

where the Vi are mutually independent and identically distributed
Bernoulli(1/2) random variables. A normal approximation is often used when
n is sufficiently large. The standard advice is to use the normal approximation
when n ≥ 10, e.g., Hogg et al. [67, p. 534]. The mean and variance of W under
H0 are

E[W ] = E[V1 + 2V2 + · · ·+ nVn]

= (1 + 2 + · · ·+ n)E[V1]

=
n(n+ 1)

4
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and

V [W ] = V [V1 + 2V2 + · · ·+ nVn]

=
(
1 + 22 + · · ·+ n2

)
V [V1]

=
n(n+ 1)(2n+ 1)

24
.

The Wilcoxon test statistic under H0 shows a rapid convergence to the normal
distribution. The exact distribution of W can be determined using the APPL
code generates the p-value of the Wilcoxon test for n = 10 and arbitrarily
chosen test statistic w = 46.

> n := 10;

> V := BernoulliRV(1 / 2);

> for i from 2 to n do

> T := [[1 / 2, 1 / 2], [0, i], ["Discrete", "PDF"]];

> V := Convolution(V, T);

> od:

> 2 * SF(V, 46);

This yields a p-value p = 33/512 ∼= 0.064. Note that the code doubles the
value of the survivor function because the alternative hypothesis is two-sided.
APPL can also be used to plot the exact probability mass function of the
Wilcoxon statistic under H0. This is plotted in Figure 8.1 for n = 10. The
support of W ranges from 0 to n(n + 1)/2 = 10 · 11/2 = 55. Note that
the lowest and highest three values of the probability mass function are all
1/1024. The normal approximation, thus, seems dubious even for n = 10. This
underscores the need for software to perform these calculations for small and
moderate values of n. In the next three sections we turn our attention to using
a computer algebra system to plot power curves for the Wilcoxon signed-rank
test and the sign test.

8.4 Wilcoxon Power Curves for n = 2

We now turn to an analytical approach to plotting power curves for the
Wilcoxon signed-rank test when n = 2 with the hopes that the same strategy
can be generalized to larger sample sizes. Let n = 2. The sample of interest is
Z1, Z2. We assume that Z1 and Z2 are independent and come from the same
continuous, symmetric probability distribution. If we assume a distribution
for Z, we do not need to know the distribution of X and Y to conduct the
test. Because Xi and Yi are paired, they are likely not independent. However,
it makes sense to choose distributions for Z that seem likely to result from
common distributions for X and Y .

As an example, assume that Z has the triangular distribution, and
is symmetric around median θ. This situation seems reasonable because
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Fig. 8.1. Probability mass function when n = 10

the difference of two independent uniform random variables with the
same width will always have a symmetric triangular distribution. Let
Z ∼ triangular(−4− δ,−δ, 4− δ) for −4 < δ < 4. Under the null hypothesis,
X and Y have the same median, which corresponds to δ = 0. The distribution
of Z satisfies the symmetry assumption with median θ = −δ. The PDF of Z is

fZ(z) =

{
(z + δ + 4)/16 −4− δ < z < −δ

(−z − δ + 4)/16 −δ ≤ z < 4− δ.

Because Z1 and Z2 are independent, the joint PDF of Z1 and Z2 is simply the
product of the marginal PDF fZ1(z1) and fZ2(z2). The joint PDF is defined
on the square where both Z1 and Z2 range from −4− δ to 4− δ. It is defined
in a piecewise fashion, with changes in the definition occurring at the lines
z1 = −δ and z2 = −δ. Probabilities related to these two random variables can
be found by computing double integrals of the joint PDF. The support of the
joint PDF of Z1 and Z2 is plotted in Figure 8.2 for δ = −2. The support of
Z1 and Z2 is the entire square [−2, 6]× [−2, 6].

The joint PDF of Z1 and Z2 for δ = −2 is

fZ1,Z2(z1, z2) =

⎧
⎪⎪⎨

⎪⎪⎩

(z1z2 + 2z1 + 2z2 + 4)/256 −2 < z1 < 2, −2 < z2 < 2
(−z1z2 + 6z1 − 2z2 + 12)/256 −2 < z1 < 2, 2 ≤ z2 < 6
(−z1z2 − 2z1 + 6z2 + 12)/256 2 ≤ z1 < 6, −2 < z2 < 2
(z1z2 − 6z1 − 6z2 + 36)/256 2 ≤ z1 < 6, 2 ≤ z2 < 6.
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Fig. 8.2. The support of Z1 and Z2 for δ = −2

As δ varies between −4 and 4, the square defining its support will move along
the 45◦ line z2 = z1.

The support of the test statisticW is {0, 1, 2, 3}. Define the rejection region
as {w |w ≤ 0 orw ≥ 3}. Only two values of W will result in rejecting the null
hypothesis: W = 0 and W = 3. The areas corresponding to W = 0 and
W = 3 are shaded in Figure 8.2. The square to the southwest of the origin
corresponds to W = 0; the square to the northeast of the origin corresponds
to W = 3. There are four possible arrangements of the zi values above and
below zero. The possible arrangements are plotted in Figure 8.3.

w = 0

w = 1

w = 2

w = 3

0

z1 z2

z1 z2

z1 z2

z1 z2

Fig. 8.3. Possible arrangements of z1 and z2
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Ignoring the possible cases resulting from switching z1 and z2, two of the
four cases plotted result in rejecting the null hypothesis. The probabilities of
these two configurations can be calculated as double integrals. When both
sample points are negative, W = 0. When both sample points are positive,
W = 3. If fZ1,Z2(z1, z2) is the joint PDF under the alternative hypothesis that
the population median of Z is θ, we can calculate the power of the test as

Q(θ) = P (rejectH0 | θ)
= P (W = 0 | θ) + P (W = 3 | θ)

=

∫ 0

−∞

∫ 0

−∞
fZ1,Z2(z1, z2)dz1dz2 +

∫ ∞

0

∫ ∞

0

fZ1,Z2(z1, z2)dz1dz2.

The integration required is complicated because the joint PDF is a piecewise
function. Computing the above integrals for values of δ such that −4 < δ < 4
yields the power curve plotted in Figure 8.4. The Maple code to compute the
double integrals of the triangular PDF for various values of δ is given below.

> # Computes power over a range of delta values

> powSeq := NULL;

> for delta from -4 to 0 by 0.1 do

> f1 := x -> 2 * (x + 4 + delta) / (8 * 4);

> f2 := x -> 2 * (4 - delta - x) / (8 * 4);

> W0 := 2 * int(int(f1(z1) * f1(z2),

> z2 = -4 - delta .. z1), z1 = -4 - delta .. 0);

> W3 := 1 / 4;

> W3 := W3 + 2 * int(int(f1(z1) * f1(z2),

> z2 = 0 .. z1), z1 = 0 .. -delta);

> W3 := W3 + 2 * int(int(f2(z1) * f1(z2),

> z2 = 0 .. -delta), z1 = -delta .. 4 - delta);

> pow := W0 + W3;

> powSeq := powSeq, pow;

> od:

> print(powSeq);

8.5 Generalization to Larger Sample Sizes

We present an algorithm for computing the power of the Wilcoxon signed-rank
test against any alternative hypothesis for any sample size. Let Z1, Z2, . . . Zn

be the sample differences, and let fZ1, Z2,...,Zn(z1, z2, . . . , zn) be the joint PDF
of the sample under a given alternative hypothesis. An algorithm for comput-
ing the power of the test against the simple alternative hypothesis Ha : θ = θa
is as follows.

• Enumerate all possible arrangements of the ranks above and below 0.
• Determine the corresponding value of w for each arrangement.
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Fig. 8.4. Power function for triangular Z and n = 2

• Determine which arrangements correspond to a w in the rejection region.
• Arbitrarily order the zi and integrate over proper regions of the joint PDF.
• Multiply some of the integrals by n! as needed to account for switching

indices, and sum the integrals.

As an example, let n = 3. The support ofW is the set {0, 1, . . . , 6}. Define
the rejection region as {w |w ≤ 1 or w ≥ 5}. This corresponds to a significance
level α = 1/2. The power of the test is

Q(θ) = P (rejectH0 | θ)
= P (W = 0 | θ) + P (W = 1 | θ) + P (W = 5 | θ) + P (W = 6 | θ)
=
∫ 0
−∞
∫ 0
−∞
∫ 0
−∞ fZ1,Z2,Z3(z1, z2, z3)dz1dz2dz3+

6
∫ 0
−∞
∫ 0
z3

∫ −z2
0

fZ1,Z2,Z3(z1, z2, z3)dz1dz2dz3+

6
∫∞
0

∫ z3
0

∫ 0
−z2

fZ1,Z2,Z3(z1, z2, z3)dz1dz2dz3+∫∞
0

∫∞
0

∫∞
0

fZ1,Z2,Z3(z1, z2, z3)dz1dz2dz3,

where n! = 6 accounts for switching the indices. Note that the integrals cor-
responding to P (W = 0) and P (W = 6) do not need to be multiplied by n!.
In general, all the n-fold integrals except those at extreme values of W must
be multiplied by n!. Using this algorithm and a computer algebra system, one
can compute power functions for the Wilcoxon signed-rank test for any n.

The computations become intractable for large values for n because of CPU
time. Assuming a uniform distribution for Z allows for extending the analysis
to larger sample sizes. The PDF of the uniform distribution is constant, which
makes it simple to integrate. Letting Z have a uniform distribution with width



96 8 Notes on Rank Statistics

−2 −1 0 1 2

0.0

0.25

0.50

0.75

1.00

θ

Q(θ)

Fig. 8.5. Power function for uniform Z and n = 10

4 and median −2 < θ < 2 yields the power curve in Figure 8.5 for n = 10. The
rejection region is {w |w ≤ 4 or w ≥ 51}. This corresponds to a significance
level α = 7/512 ∼= 0.01367.

In the next section, we consider a comparison of the power of the Wilcoxon
signed-rank test for different sample sizes and population distributions.

8.6 Comparisons and Analysis

One would expect that, as the sample size increases, the power of the test will
increase. However, it may not be obvious how much the power will increase for
a given increase in the sample size. Figure 8.6 plots the power of the Wilcoxon
signed-rank test when Z is normally distributed for n = 2 and n = 3 with
rejection for the extreme values of W using the algorithm.

As expected, the power of the test is higher for n = 3 than for n = 2. Even
for a small increase in the sample size, there is a notable increase in power.
We now look at the effect the distribution of Z has on power.

Because the Wilcoxon signed-rank test is a non parametric test, the dis-
tribution of W under H0 does not depend on the distribution of Z. Under
H1, however, the distribution of W changes depending on the assumed distri-
bution for Z. This is because the distribution of Z is not symmetric around
0 under H1. Thus, the assumption that the sign of Zi is independent of the
rank of Zi does not hold. Power curves will differ for different distributions
for Z.

We consider a comparison of the power of the test with two assumed
distributions for Z: normal and triangular. We consider the symmetric
triangular(−4− δ,−δ, 4− δ) distribution as before. It can be shown that the
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Fig. 8.6. Power functions for normal Z and n = 2 and n = 3

variance of this distribution is V [Z] = 8/3. To compare the two distributions
on equal footing, we will consider a normal distribution with the same vari-
ance. The power curves for these two population distributions and n = 4 are
plotted in Figure 8.7. The power curves for the two distributions are quite
close. The power of the test for triangular Z is slightly higher for values of θ
far from zero. The power of the test for normal Z is slightly higher for values
of θ close to zero. Because the power curves are so close and the variances
of the population distributions are equal, it seems that the power of the test
depends more on the variance of the population than the population distri-
bution itself. For values of θ far from zero, it is possible that the power is
higher for a distribution with less weight in the tails. If the distribution of Z
has less weight in the tails, it is less likely that a small number of high ranked
sample points on the opposite side of 0 from the true median will cause the
test statistic to fall out of the rejection region. For the case in which Z is
triangular, the support of the joint distribution of the sample is confined to
the square from Figure 8.2. Thus, when |θ| ≥ 4, the power of the test will be
1. When Z is normally distributed, the power will never reach 1 because the
support is unbounded.

Next we consider a comparison of the Wilcoxon signed-rank test to the sign
test discussed in Section 8.2. One would expect the Wilcoxon signed-rank test
to be more powerful because it utilizes both the sign and the magnitude of
the zi values.

Assuming that Z has the uniform distribution, we can find power curves
for n = 6 such that the significance level for both tests is α = 7/32 = 0.21875.
This is the smallest sample size for which nontrivial rejection regions can be
defined for both tests with the same significance level α. The power curves
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for both tests are plotted together in Figure 8.8 for sampling from normal
populations. As expected, the Wilcoxon signed-rank test shows higher power
than the sign test.

8.7 The Wilcoxon–Mann–Whitney Test

The Wilcoxon–Mann–Whitney test goes by many names, including the
Wilcoxon rank sum test and the Mann–Whitney U -test. The first descrip-
tion of what became the Wilcoxon–Mann–Whitney test is in Wilcoxon [166],
where he describes both unpaired and paired examples of rank tests. He ex-
plains one method of calculating the exact distribution of the test statistic
under the null hypothesis. Mann and Whitney [105] take a different approach
with this test and transform it into the equivalent U -test. They defined a re-
currence relation used to calculate the null distribution of U in the absence
of ties.

−4 −3 −2 −1 0 1 2 3 4

0.0

0.25

0.50

0.75

1.00

θ

Q(θ)

normal triangular

Fig. 8.7. Power functions for normal Z and triangular Z, equal variances

It is of interest to know how to compute the exact distribution of the
test statistic in the Wilcoxon–Mann–Whitney test. Mundry and Fischer [116]
explain that statistical programs at the time would use asymptotic tests for
small samples when an exact procedure was more appropriate. One problem
that arises in this test is the presence of ties in the samples. Bergman et al.
[12] found significant differences across various statistical packages in regards
to how the Wilcoxon–Mann–Whitney test is dealt with. They conducted the
test on a data set containing ties on 11 different statistical programs and found
that the data was handled very differently in each one. Of the 11 programs,
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Fig. 8.8. Power curves for the sign test (ST) and the Wilcoxon signed-rank test
(WSRT) for n = 6

only four used an exact permutation. Most programs corrected for ties in
some manner and others performed pseudo-exact calculations. It is unclear
what the exact distribution of the Wilcoxon–Mann–Whitney test statistic is
in the presence of ties.

8.8 Explanation of the Test

Similar to the Wilcoxon signed-rank test, the Wilcoxon–Mann–Whitney rank
sum test is a non parametric statistical hypothesis test. It is used with two
random samples of data that are not paired; therefore, the two samples do not
need to be of equal sizes. The test determines whether the samples could have
come from the same population. Let x1, x2, . . . , xm be the data values associ-
ated with a random sample drawn from the first population; let y1, y2, . . . , yn
be the data values associated with a random sample from the second pop-
ulation. We assume without loss of generality that m ≤ n. Let FX denote
the CDF of the population; let FY denote the CDF of the second population.
A two-sided hypothesis test is most commonly performed. The associated null
and alternative hypotheses are

H0 : FX = FY H1 : FX �= FY .

The samples are combined and ranked in increasing value from 1 to N ,
where N = m + n. If ties are present, the average rank is given to the tied
values. Because this test goes by many names, there are many variants of the
test statistic. Let Rxi be the ranks of the data values from the first population.
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Due to its simplicity, the following test statistic will be used: W =
m∑
i=1

Rxi ,

i.e., W is the sum of the ranks of the data values from the first population.
Most texts refer to tables for determining the rejection region forW . These

tables are only accurate for cases when no ties are present. When ties are
present, statistical packages often use a normal or chi square approximation
for the test to determine the p-value, regardless of sample size. This method
is also implemented for large sample sizes (though what constitutes a large
sample size varies depending on the software).

8.9 Three Cases of the Distribution of W Under H0

The exact distribution for W under H0 is of interest. The distribution without
ties is quite simple to obtain (even for large sample sizes given a computer
with enough power). However, the distribution of W in the presence of ties is
much more difficult to determine. Using simple examples with samples sizes
m = 2 and n = 3, the following cases will be addressed: no ties, ties present
within one sample exclusively, and ties present between both samples.

8.9.1 Case I: No Ties

To determine the distribution of W without ties, we simply have to calculate
the frequencies of the sums of all combinations of the ranks. Consider the
following two samples with m = 2 and n = 3:

Sample from population 1 7.5 5.6
Sample from population 2 3.0 4.9 6.6

Since the smaller sample is from the first population, W is sum of the ranks
of x1 and x2. The first step to finding the distribution of W is to combine the
samples and rank them.

Sample y1 y2 x2 y3 x1

Value 3.0 4.9 5.6 6.6 7.5
Rank 1 2 3 4 5

We can see that the ranks for x1 and x2 are 5 and 3, so W = 8. Now let’s
look at the probability of obtaining W = 8.

There are
(
N
m

)
=
(
5
2

)
= 10 possible ways to select two ranks for the two

values from the first population from the rank values 1 to 5. Since N and m
are small, we can enumerate all ten possible pairs and their sums:

Combinations (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
Sums 3 4 5 6 5 6 7 7 8 9

Under H0, each of these pairs of ranks is equally likely, so we can tabulate the
probability mass function of W under H0.
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Sums 3 4 5 6 7 8 9
Frequency 1 1 2 2 2 1 1
Probability 0.1 0.1 0.2 0.2 0.2 0.1 0.1

This probability mass function is plotted in Figure 8.9. The probability mass
function of W is symmetric for all values of m and n, with minimum support
value m(m+ 1)/2 and maximum support value N(N + 1)/2− n(n+ 1)/2.
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Fig. 8.9. Probability mass function when m = 2 and n = 3 with no ties in the
samples

We now have the distribution of W under H0. We can calculate a p-value
for a two-sided hypothesis test with α = 0.20. The test is two sided and, given
that our distribution is symmetric, our p-value is P(W ≥ 8) + P(W ≤ 4) =
0.40. Since our p-value is large, we fail to reject the null hypothesis.

We can calculate this p-value in R using the exactRankTests library with
the code below:

> library(exactRankTests)

> x = c(7.5, 5.6)

> y = c(3.0, 4.9, 6.6)

> wilcox.exact(x, y, paired = FALSE, alternative = "two.sided",

exact = TRUE, conf.level = 0.80)

# Exact Wilcoxon rank sum test

# data: x and y

# W = 5, p-value = 0.4

# alternative hypothesis: true mu is not equal to 0

This yields a p-value of 0.40 as expected and calculates the test statis-
tic as W = 5. The difference in the two test statistics is due to a variant
of the test statistic in which the smallest possible value for W is subtracted
from

∑
Rxi . This results in the distribution of W having support starting

at 0 rather than m(m + 1)/2. In this example, the test statistic in R is∑
Rxi −m(m+ 1)/2 = 8− 3 = 5. The two test statistics are equivalent.
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Using Table 21 from Kanji [76], which uses our form of the test statistic,
the critical value for the two-sided test at our given α is 3. So test statistic
values less than or equal to 3 and greater than or equal to 9 would result
in a rejection of the null hypothesis. However, our test statistic W = 8 is in
between the two values, so we again fail to reject the null hypothesis.

The general algorithm for obtaining the distribution of W under H0 with-
out ties is to find all

(
N
m

)
combinations, sum the combination values, and divide

the frequencies of these sums by the number of total combinations
(
N
m

)
. The

following APPL code calculates this given values for m and n and returns in
the correct list-of-lists format for random variables.

> WMWRV := proc(m :: posint, n :: posint)

> local N, mmax, nmax, Nmax, bino, Supp, Prob, Comb, i, j,

> sumc, ListOfLists:

> N := m + n:

> mmax := m * (m + 1) / 2:

> nmax := n * (n + 1) / 2:

> Nmax := N * (N + 1) / 2:

> bino := binomial(N, m):

> Supp := []:

> Prob := []:

> for i from mmax to (Nmax - nmax) do

> Supp := [op(Supp), i]:

> Prob := [op(Prob), 0]:

> od:

> Comb := []:

> for i from 1 to m do

> Comb := [op(Comb), i]:

> od:

> for i from 1 to bino do

> sumc := add(Comb[j], j = 1 .. m):

> Prob[sumc - mmax + 1] := Prob[sumc - mmax + 1] + 1 / bino:

> Comb := NextCombination(Comb, N):

> od:

> ListOfLists := [Prob, Supp, ["Discrete", "PDF"]]:

> RETURN(ListOfLists):

> end:

> WMWRV(2, 3);

8.9.2 Case II: Ties Only Within Each Sample

Though ties do present a problem for calculating the distribution W , when
the ties are present within individual samples, they are easier to deal with.
Consider the following two samples with m = 2 and n = 3:
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Sample from population 1 5.6 5.6
Sample from population 2 3.0 4.9 6.6

In theory, tied observations will not occur for samples drawn from contin-
uous distributions, but due to limitations of the precision of measurements
and rounding, ties occur quite often. Therefore it would not be unusual to see
a tie such as the one in the first sample. Continuing with the example, rank
the values next.

Sample y1 y2 x1 x2 y3
Value 3.0 4.9 5.6 5.6 6.6
Rank 1 2 3.5 3.5 5

The test statistic for this data set is w = 7. If we had not taken the average
ranks of the tied values and assuming two integer-valued ranks are assigned
at random, the test statistic would still be w = 7 because the ranks for x1

and x2 would have been 3 and 4. From here, there are two ways to assess the
distribution. First, because the test statistic is the same value it would have
been without accounting for ties, the distribution of W can be viewed as the
same as it was in our previous example in Figure 8.9. We have a p-value of
P(W ≤ 5) + P(W ≥ 7) = 0.80. The second way to look at this distribution is
to make a conditional distribution dependent on the data. As before, we have
ten combinations and their sums.

Combinations (1, 2) (1, 3.5) (1, 3.5) (1, 5) (2, 3.5) (2, 3.5) (2, 5) (3.5, 3.5)
Sums 3 4.5 4.5 6 5.5 5.5 7 7

Combinations (3.5, 5) (3.5, 5)
Sums 8.5 8.5

We tabulate the frequencies and plot the corresponding probability mass func-
tion in Figure 8.10.

Sums 3 4.5 5.5 6 7 8.5
Frequency 1 2 2 1 2 2
Probability 0.1 0.2 0.2 0.1 0.2 0.2

Using the R code below, we get the p-value:

> x = c(5.6, 5.6)

> y = c(3.0, 4.9, 6.6)

> wilcox.exact(x, y, paired = FALSE,

> alternative = "two.sided", exact = TRUE)

# Exact Wilcoxon rank sum test

# data: x and y

# W = 4, p-value = 0.7

# alternative hypothesis: true mu is not equal to 0
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Fig. 8.10. Probability mass function when m = 2 and n = 3 with ties within a
sample

Though the conditional distribution of W is not symmetric, R
still calculates the p-value in the same way. So in this case,
P(W ≤ 5) + P(W ≥ 7) = 0.70. Again, the test statistic computed by R is just
a shifted version of the test statistic defined here, so the two are equivalent.
The wilcox.exact function uses the shift-algorithm formulated by Streitberg
and Rohmel [155], which calculates the same conditional distribution that is
presented here. In both scenarios for the distribution of W with a tie within
one sample, we fail to reject the null hypothesis. Using the conditional dis-
tribution yielded a smaller p-value, which may have resulted in a different
conclusion in a hypothesis test had it been small enough.

8.9.3 Case III: Ties Between Both Samples

Now that we have seen the simplest example of a tie within a single sample,
consider the case in which there is a tied value that is common between the
two samples.

Sample from population 1 7.5 5.6
Sample from population 2 5.6 4.9 6.6

The tied value, 5.6, is present in both samples. We can calculate the con-
ditional distribution given the data values as we did in our previous example,
but our test statistic will no longer necessarily be an integer.

Sample y2 x2 y1 y3 x1

Value 4.9 5.6 5.6 6.6 7.5
Rank 1 2.5 2.5 4 5

Since we have two values of 5.6, one in each sample, we cannot say that
the test statistic will remain the same regardless of ties because our tied
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value from population 1 could have a rank of 2 or 3 before it was averaged.
The test statistic is W = 7.5. As in the previous example, we can calculate
the conditional probability distribution based on the data.

Combinations (1, 2.5) (1, 2.5) (1, 4) (1, 5) (2.5, 2.5) (2.5, 4) (2.5, 5)
Sums 3.5 3.5 5 6 5 6.5 7.5

Combinations (2.5, 4) (2.5, 5) (4, 5)
Sums 6.5 7.5 9

We can now determine the conditional distribution in the table below. The
probability mass function is plotted in Figure 8.11.

Sums 3.5 5 6 6.5 7.5 9
Frequency 2 2 1 2 2 1
Probability 0.2 0.2 0.1 0.2 0.2 0.1

The R code below calculates the p-value.

> x = c(7.5, 5.6)

> y = c(5.6, 4.9, 6.6)

> wilcox.exact(x, y, paired = FALSE, alternative = "two.sided",

> exact = TRUE)

# Exact Wilcoxon rank sum test

# data: x and y

# W = 4.5, p-value = 0.5

# alternative hypothesis: true mu is not equal to 0

As with the previous conditional distribution, though it is not symmetric,
the p-value is calculated the same way: P(W ≥ 7.5) + P(W ≤ 4.5) = 0.50.
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Fig. 8.11. Probability mass function when m = 2 and n = 3 with ties present
between samples
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8.10 Conclusions

We have presented notes on two rank statistics. We have presented an alg-
orithm for computing the power of the Wilcoxon signed-rank test for small
sample sizes. If computational power were available, this algorithm should
generalize to larger sample sizes. The power of the Wilcoxon signed-rank test
changes when the assumed distribution of Z changes. Furthermore, there is
a relationship between the power of the test and the weight in the tails of
the assumed distribution. As expected, the Wilcoxon test is more powerful
than the sign test. However, the degree to which the Wilcoxon test is more
powerful changes with the assumed distribution. For the Mann–Whitney test,
we have determined distributions under the null hypothesis for the case of
ties within and between samples. Future work in this area could be done to
increase the sample size for which these methods are efficient. There are also
a wide variety of statistical tests that could benefit from work with computer
algebra systems. Computing the power of non parametric tests is not a trivial
matter because of the distribution-free assumption. There is a great future in
the use of computer algebra systems to make difficult statistical computations
more tractable.
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Control Chart Constants for Non-normal
Sampling

William H. Kaczynski and Lawrence M. Leemis

Abstract Statistical process control chart constants are bias correction
factors used to establish three-sigma limits that are used to identify assignable
variation. These constants have been tabulated for normal sampling. Subse-
quent research has verified the robustness for non-normal sampling. This paper
explores exact results for both the normal distribution and select non-normal
distributions using a computer algebra system to compute the exact values of
the constants.

Keywords Normal sampling • Process control • Statistical quality control

9.1 Introduction

Control charts are widely used in industry to provide insight on process be-
havior and identify assignable causes associated with a shift in the mean value
of the process. These charts were first proposed by Walter Shewhart in 1923
at Bell Telephone Laboratories [145]. To create the control limits, estimates
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for the mean and standard error of the data’s population are required, along
with constants that serve as bias correction factors. The first control chart
constants, then denoted by d2 and d3 (for the sample range), were proposed
by Tippett [161]. McKay and Pearson [111] obtained the exact distribution of
the sample range for n = 3 observations drawn from a normal distribution.
Pearson and Hartley [130] tabulated the fractiles of the mean of the sample
range for n = 2 to n = 20, see also Wheeler [165]. The terms bias correction
factor and control chart constant are used interchangeably.

Bias correction factors for standard deviations followed a similar devel-
opment. They too are based on an underlying normal distribution. For both
sets of constants, extensive work exists, such as Wheeler [165], showing the
robustness of these constants for data from non-normal distributions. For the
most part, similar constants for non-normal distributions do not appear in
the literature for two reasons: (1) most applications involve sampling from
normal populations, and (2) they are not easily computed. The purpose of
this paper is to offer an alternative method of computation using APPL to
compute exact values of these control chart constants. Additionally, APPL
typically provides exact results rather than approximations. Although normal
sampling can be assumed in the vast majority of statistical process control
applications, occasions will arise where non-normal sampling is an appropri-
ate assumption. The development here allows an engineer to easily obtain the
appropriate control chart constants in these alternate settings.

9.2 Constants d2, d3

The aforementioned constants d2 and d3 relate to the distribution of the sam-
ple range, denoted by R. The correction factor d2 accounts for the discrepancy
between the mean of the sample range and the population standard devia-
tion. Given a random sample X1, X2, . . . , Xn from a population with CDF
F (x), PDF f(x), finite unknown variance σ2

X , and associated order statistics
X(1), X(2), . . . , X(n), the sample range, R, is

R = X(n) −X(1). (9.1)

The joint PDF of the order statistics X(i) and X(j) associated with a
sample size n given by Hogg et al. [67] is

fX(i),X(j)
(x(i), x(j)) =

n!

(i− 1)!(j − i − 1)!(n− j)!

[
F (x(j))− F (x(i))

]j−i−1

× [F (x(i))
]i−1 [

1− F (x(j))
]n−j

× f(x(i))f(x(j)) x(i) < x(j)
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for integers 1 ≤ i < j ≤ n and for i = 1, j = n, this simplifies to

fX(1),X(n)
(x(1), x(n)) = n(n− 1)

[
F (x(n))− F (x(1))

]n−2

×f(x(1))f(x(n)) x(1) < x(n). (9.2)

Burr [23] uses a change of variable, X(n) = X(1) + R (since, by definition
R = X(n) −X(1)) in Eq. (9.2) to find the joint PDF of X(1) and R and then
integrates out X(1) to find the PDF of R. This, of course, works well for dis-
tributions with closed-form CDFs; however, CDFs involving mathematically
intractable integrals are problematic. Once the distribution of R is obtained,
it is used it to correct bias by

E [R] = d2σX . (9.3)

Burr [23] also suggests an easier approach to find E[R], which lends itself
well to implementation in APPL. Using Eq. (9.1), for a sample of size n, the
expected value of the sample range is

E [R] = E
[
X(n)

]− E
[
X(1)

]
, (9.4)

therefore, using Eqs. (9.3) and (9.4), we can express d2 as

d2 =
E [R]

σX
=

E
[
X(n)

]− E
[
X(1)

]

σX
.

This result can be implemented using the APPL RangeStat procedure for
select distributions. This procedure returns the distribution of the sample
range for a sample of size n. Equivalently, we can use the OrderStat proce-
dure, and return d2 values exactly. For sampling from a normally distributed
population, we can always remove the mean by subtraction, resulting in a
random variable with mean zero. For n = 3 consider the APPL statements

> n := 3:

> X := NormalRV(0, sigma):

> (Mean(OrderStat(X, n, n)) - Mean(OrderStat(X, n, 1)))

/ sqrt(Variance(X));

which yield the exact value of d2 = 3/
√
π. Though this is convenient, APPL

is only capable of returning the exact symbolic expression of d2 for n = 2 and
n = 3. For n > 3, the problem is mathematically intractable and the integrals
must be solved numerically. However, if population distribution parameter
values are input for the code above APPL is capable of solving for d2 when
n ≥ 3. Since d2 depends only on n (and is independent of μ, σ), assigning
values to these distribution parameters does not affect d2.

We will proceed in a similar manner for d3, which corrects for the standard
deviation of the range. The relationship is

σR = d3σX ⇒ d3 =
σR

σX
.
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Since APPL can compute the exact distribution of R, we can also obtain σR

easily for select distributions.

Example 9.1. Given that X1, X2, and X3 are iid exponential(λ) ran-
dom variables, find the bias correction factors d2 and d3 for the sample
range. The APPL statements

> n := 3:

> X := ExponentialRV(lambda):

> R := RangeStat(X, n):

> d2 := Mean(R) / sqrt(Variance(X));

> d3 := sqrt(Variance(R)) / sqrt(Variance(X));

yield
d2 = 3/2 and d3 =

√
5/2 ∼= 1.118.

Likewise, when n = 18,

d2 =
42142223

12252240
∼= 3.440 and d3 =

√
238357395880861

12252240
∼= 1.260.

Table 9.1 compares values for d2 and d3, given the sample is drawn from ex-
ponential, normal, Rayleigh, and U(0, 1) distributions for sample sizes n = 2
to n = 20. These constants do not depend on the rate parameter λ (for the
exponential and Rayleigh distributions) nor μ or σ (for the normal distribu-
tion).

As shown in Table 9.1, APPL is able to calculate exact values of d2 and d3
for the exponential, Rayleigh, and standard uniform distributions. All other
distributions required numerical integration with estimated values of the pa-
rameters. So, in theory, we could estimate d2 and d3 for any arbitrary sam-
pling distribution. While this might be novel, it really is not special to APPL
because we are really using Maple’s capability to estimate the result with
numerical integration. If we do provide numeric values for parameters, we
can take advantage of APPL to calculate the constants. In some cases, as
illustrated in Example 9.2, APPL provides exact results.

There may be applications (e.g., life testing associated with bulbs or fuses)
where a non-normal distribution is appropriate, and this provides an easy way
to calculate control chart constants. Additionally, Tadikamalla et al. [159] sub-
stantiate non-normal applications providing examples that calculate the up-
per and lower control limits for the logistic and Laplace distributions. Though
they only consider symmetric distributions, the same practice can be consid-
ered for non symmetric cases using APPL, with an added advantage of never
referring to a chart calculated for specific values of n and kurtosis estimates.

Example 9.2. Given that X1 and X2 are iid Weibull(2, 3) random
variables, find the bias correction factor d2 for the sample range. The
APPL statements
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> n := 2:

> X := WeibullRV(2, 3):

> d2 := Mean(OrderStat(X, n, n))

> - Mean(OrderStat(X, n, 1))) / sqrt(Variance(X)):

yield

d2 =
π
√
6
[(
4− 22/3

)
/18− 22/3

√
3/6
]

√
9Γ(2/3)

3 − 2π2

∼= 1.135.

The APPL procedure OrderStat(X, n, r) computes the exact distribution
of the rth order statistic drawn from a sample of size n drawn from a popu-
lation described by the random variable X .

In order to find d2 and d3 from first principles (as provided by Wheeler
[165]) given an underlying parametric distribution, we must assign values to
the distribution parameters. Even with small sample sizes, the process control
literature provides well-established parameter estimation methods. However,
given the normal distribution’s wide acceptance in process control, current lit-
erature focuses on the normal distribution’s mean μ and standard deviation σ,
potentially suggesting an area of further work. Conceivably, if we knew enough
about the observed process data to use a non-normal parametric model, we
should also be confident in estimating the distribution’s parameters. Thus,
APPL provides an efficient foundation for calculating d2 and d3.

Selecting a distribution to adequately model observed data has many trou-
bling issues. If the researcher does not want to make assumptions accompany-
ing a certain parametric distribution nor introduce potential error in selection,
he or she can also create a distribution via bootstrapping with well-established
statistical properties established by Efron and Tibshirani [49]. Once a PDF is
created using bootstrapping, APPL can compute the constants d2 and d3 as
shown in Example 9.3 using the BootstrapRV procedure.

Example 9.3. Given the arbitrary PDF fX(x) created by bootstrap-
ping for the observed order statistics x(1) = 1, x(2) = 3, x(3) = 4, and
x(4) = 7, compute the constants d2 and d3 for sample size n = 3. The
APPL statements

> data := [1, 3, 4, 7]:

> X := BootstrapRV(data):

> R := RangeStat(X, 3):

> d2 := Mean(R) / sqrt(Variance(X));

> d3 := sqrt(Variance(R)) / sqrt(Variance(X));

yield

d2 = 19
√
3/20 ∼= 1.645 and d3 =

√
2637/60 ∼= 0.856.
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Table 9.1. Comparison of d2 and d3 for exponential, normal, Rayleigh, and U(0, 1)
sampling distributions

d2 d3
n Expon Normal Rayleigh U(0, 1) Expon Normal Rayleigh U(0, 1)
2 1.000 1.128 1.121 1.155 1.000 0.853 0.863 0.816
3 1.500 1.693 1.681 1.732 1.118 0.888 0.897 0.775
4 1.833 2.059 2.041 2.078 1.167 0.880 0.885 0.693
5 2.083 2.326 2.300 2.309 1.193 0.864 0.866 0.617
6 2.283 2.534 2.501 2.474 1.210 0.848 0.848 0.553
7 2.450 2.704 2.663 2.598 1.221 0.833 0.830 0.500
8 2.593 2.847 2.797 2.694 1.230 0.820 0.815 0.455
9 2.718 2.970 2.912 2.771 1.235 0.808 0.802 0.418
10 2.829 3.078 3.012 2.834 1.241 0.797 0.790 0.386
11 2.929 3.173 3.100 2.887 1.245 0.787 0.779 0.358
12 3.020 3.258 3.179 2.931 1.248 0.778 0.769 0.334
13 3.103 3.336 3.250 2.969 1.251 0.770 0.759 0.313
14 3.180 3.407 3.314 3.002 1.253 0.762 0.752 0.294
15 3.252 3.472 3.373 3.031 1.255 0.755 0.745 0.278
16 3.318 3.532 3.427 3.057 1.257 0.749 0.738 0.263
17 3.381 3.588 3.477 3.079 1.259 0.743 0.731 0.250
18 3.440 3.640 3.524 3.099 1.260 0.738 0.726 0.238
19 3.495 3.689 3.568 3.118 1.261 0.733 0.720 0.227
20 3.548 3.735 3.608 3.134 1.263 0.729 0.715 0.217

9.3 Constants c4, c5

Similar to d2 and d3, the control chart constants c4 and c5 are also bias cor-
rection factors. However, as d2 and d3 corrected for the mean and standard
deviation of the sample range R, c4 and c5 correct for the mean of the sample
standard deviation, S, and its standard error. This is unusual because we usu-
ally discuss a sample’s mean and standard deviation, but we are now focused
on the sample’s mean standard deviation and the variance of the standard de-
viation. We denote the mean of the standard deviation by μS and its standard
deviation by σS . Thus, the relationships are

μS = E [S] = c4σX (9.5)

and
σS =

√
Var(S) = c5σX . (9.6)

9.3.1 Normal Sampling

The derivations of c4 and c5 are based on the fact that E
[
S2
]
= σ2

X and the
well-known result
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(n− 1)S2

σ2
X

∼ χ2
n−1 (9.7)

for normal sampling (Hogg et al. [67]), where χ2
n−1 denotes a chi square ran-

dom variable with n−1 degrees of freedom. The mean of the sample standard
deviation is

c4σX = E [S]

= E
[√

S2
]

= E

[√

S2
n− 1

n− 1
· σ

2
X

σ2
X

]

= E

[
σX√
n− 1

√
(n− 1)S2

σ2
X

]

=
σX√
n− 1

E

[√
χ2
n−1

]
.

Solving for c4 yields

c4 =
E [χn−1 ]√

n− 1
,

where χn−1 denotes a chi random variable with n− 1 degrees of freedom. The
standard deviation of the sample standard deviation is

c5σX = σS

=
√
Var [S]

=

√
E [S2]− [E [S]]

2

=
√
σ2
X − E [S]E [S]

=

√

σ2
X − σ2

X

n− 1
E

[√
χ2
n−1

]2

= σX

√

1− E [χn−1 ]
2

n− 1
.

Solving for c5 yields

c5 =

√

1− E [χn−1 ]
2

n− 1
.
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The result provided in Eq. (9.7) yields a distinct advantage for finding c4 and
c5 in the normal sampling case. We can use APPL to perform the calculations
independently of the parameters σ and μ, producing the exact results for c4
and c5 which depend only on the sample size n. The procedure c4(n), written
in APPL, is given below. A similar procedure, c5(n), was written for c5.

> c4 := proc(n)

> local X, c4;

> X := ChiRV(n - 1):

> c4 := Mean(X) / sqrt(n - 1):

> return(c4);

> end proc;

A call to c4 and c5 with the argument n = 4, for example, yields the exact
values

c4 =
2
√
6

3
√
π
∼= 0.921 and c5 =

1

3

√
9− 24

π
∼= 0.389.

These symbolic expressions are somewhat novel in that these constants are
typically tabulated in decimal form rather than exactly in symbolic form.
Furthermore, to illustrate the value of APPL and Maple’s symbolic computa-
tional ability in this context, consider the unlikely large sample size n = 100.
A call to c4(100) produces

c4 =
39614081257132168796771975168

√
22

105095150568296034723763017975
√
π
∼= 0.997.

The associated exact expression for c5 is much too large to fit here, but the
numerical value is c5 ∼= 0.071. The CPU time to compute these constants is
negligible.

9.3.2 Non-normal Sampling

Given that observations X1, X2, . . . , Xn, are sampled from a non-normal dis-
tribution calculating c4 and c5 is much more complicated. We first derive a
general form of each, then investigate its calculation for select distributions.
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Using Eq. (9.5), the general derivation of c4 is

c4σX = E [S]

= E
[√

S2
]

= E

⎡

⎣

√√√√ 1

n− 1

n∑

i=1

(
Xi − X̄

)2
⎤

⎦

=
1√
n− 1

E

⎡

⎣

√√√√
n∑

i=1

X2
i − 2nX̄2 + nX̄2

⎤

⎦

=
1√
n− 1

E

⎡

⎣

√√√√
n∑

i=1

X2
i − nX̄2

⎤

⎦

=
1√
n− 1

E

⎡

⎢⎣

√√√√
n∑

i=1

X2
i −
[

n∑

i=1

Xi

]2/
n

⎤

⎥⎦ .

Therefore, we calculate c4 as

c4 = σ−1
X

⎡

⎢⎣
1√
n− 1

E

⎡

⎢⎣

√√√√
n∑

i=1

X2
i −
[

n∑

i=1

Xi

]2/
n

⎤

⎥⎦

⎤

⎥⎦ . (9.8)

In a similar manner, and using Eq. (9.6), it can be shown that a general
expression for c5 is

c5 = σ−1
X

√√√√√√σ2
X − 1

n− 1

⎛

⎜⎝E

⎡

⎢⎣

√√√√
n∑

i=1

X2
i −
(

n∑

i=1

Xi

)2/
n

⎤

⎥⎦

⎞

⎟⎠

2

.

Burr [25] also presents c5 in terms of c4 via the relationship

c5 =
√
1− c24.

Therefore, if we are successful in finding c4 we can easily evaluate c5, narrowing
the focus of evaluation to c4. Substituting n = 2 into 9.8, we conclude that
the numerator, E[S], is

E [S] =
1√
2
E [ |X1 −X2| ] .
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The bias correction factor is then calculated via

c4 = E [S] /σX =
1√
2σX

E [ |X1 −X2| ] .

Given that the parameter σX appears in the denominator of the expression,
we require it to also appear in the numerator forcing a cancellation and a
numerical c4 value that is independent of σX . Unfortunately, this only occurs
for distributions in which a single parameter involving the standard deviation
appears. The next example highlights such an occurrence.

Example 9.4. Given that X1, and X2 are iid exponential(λ) random
variables, find the bias correction factor c4 for the sample standard
deviation. The APPL statements

> X := ExponentialRV(lambda):

> Y := Difference(X, X):

> g := [[x -> -x, x -> x], [-infinity, 0, infinity]]:

> Z := Transform(Y, g):

> Mean(Z) / sqrt(2 * Variance(X)):

yield c4 =
√
2/2 ∼= 0.707.

APPL also successfully executes the same code for n = 2 for the normal
distribution (c4 =

√
2/π ∼= 0.798, which matches the n = 2 tabulated value

exactly), exponential distribution (c4 =
√
2/2 ∼= 0.707), Erlang distribution

(c4 = 3/4), hyperbolic secant distribution (c4 ∼= 0.768), Rayleigh distribution

(c4 =
√
2π−√

π√
4−π

∼= 0.792), and the U(0, 1) distribution (c4 =
√
6/3 ∼= 0.816).

When n = 3, the mean of the sample standard deviation is

E [S] =
1√
6
E

[√
2X2

1 + 2X2
2 + 2X2

3 − 2X1X2 − 2X1X3 − 2X2X3

]
.

The appearance of the random variables X1, X2, and X3 at various positions
in the expected value expression make the evaluation of E [S] more difficult.
Monte Carlo simulation must be relied on to provide the bias correction fac-
tors c4 and c5. Table 9.2 provides estimates of c4 and c5 using ten million
replications (which ensures that the factors are accurate to three digits after
the decimal point) for the same distributions considered in Table 9.1. The
n = 2 row and normal columns are consistent with the exact results provided
by APPL.

9.4 Conclusions

The control chart constants d2, d3, c4, and c5 can be calculated symboli-
cally using a computer algebra system in the case of sampling from a normal
population. In addition, d2 and d3 can be calculated symbolically for several
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Table 9.2. Values of c4 and c5 for exponential, normal, Rayleigh, and U(0, 1) sam-
pling distributions obtained by Monte Carlo simulation

c4 c5
n Expon Normal Rayleigh U(0, 1) Expon Normal Rayleigh U(0, 1)
2 0.707 0.798 0.792 0.816 0.707 0.602 0.610 0.577
3 0.797 0.886 0.882 0.912 0.604 0.463 0.472 0.410
4 0.839 0.920 0.917 0.946 0.544 0.393 0.398 0.324
5 0.865 0.938 0.935 0.962 0.501 0.346 0.354 0.272
6 0.883 0.949 0.948 0.972 0.469 0.314 0.318 0.237
7 0.897 0.957 0.956 0.977 0.443 0.289 0.294 0.212
8 0.907 0.963 0.964 0.981 0.420 0.270 0.267 0.194
9 0.916 0.967 0.967 0.984 0.401 0.254 0.254 0.180
10 0.923 0.971 0.969 0.986 0.386 0.240 0.245 0.169

non-normal populations and c4 and c5 can be calculated symbolically for sev-
eral non-normal populations when n = 2. These calculations were performed
with the aid of the Maple-based APPL software. Monte Carlo simulation can
be used to estimate control chart constants that cannot be calculated sym-
bolically.

One area of further study might exist in searching for relationships anal-
ogous to Eq. (9.7), which depend only on the single parameter n. Burr [24]
presents a strong case for normal sampling applications; however, Wheeler
[165] notes a trough in Burr’s skewness versus kurtosis plot (especially in U-
shaped distributions) where using normal-sampling-based control chart con-
stants would severely misrepresent the population.
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to f(x) that has a simpler functional form. We construct an approximation,

denoted f̂(x), that is composed of piecewise-linear segments and is therefore
easier to manipulate. To illustrate, Figure 10.1 is a plot of the PDF of a
beta(2, 4) random variable with f̂(x) constructed using n = 10 endpoints
(which define nine line segments).

Given that we wish to approximate f(x) with n − 1 piecewise linear seg-
ments, we must decide where the n endpoints of our segments, x1, x2, . . . , xn,
should be placed. There are many sensible methods for placing the endpoints.
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0.5
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x

f(x), f(x)^

Fig. 10.1. A piecewise linear approximation to the beta(2, 4) distribution with
n = 10

The Mathematica function ListInterpolation can be used to approximate
a function, but relies on the user to provide the endpoints, or simply defaults
to equal spacing [171]. Interpolation using higher-order polynomials typically
seeks optimal Lebesgue constants and is discussed by Brutman [26] and Smith
[148]. Nguyen et al. [122] describe a method for approximation of parameter-
ized functions that employs optimization techniques along with a rejection of
a generalized basis set (such as polynomials) in favor of a problem-specific
basis set. Rivlin [136] provides an overview of function approximation using
various techniques.

In order to decide between the methods we present, a quantity must be
defined that measures the quality of the fit. Given two piecewise-linear PDFs
that approximate f(x) with n endpoints, we select the approximation with
the smallest L2 distance from f(x). So our metric is

D = D(x1, x2, . . . , xn) =

√∫ ∞

−∞

(
f̂(x) − f(x)

)2
dx.
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The method is organized as follows. In Section 10.2, we describe four meth-
ods for endpoint placement. This is followed by a comparison of the methods
for several popular parametric distributions in Section 10.3. Section 10.4 con-
tains an application based on the convolution of independent random vari-
ables. Section 10.5 contains conclusions.

10.2 Methods for Endpoint Placement

With the metric in mind, we must decide where to place the endpoints of
the line segments in order to obtain the best approximation to f(x). This
section describes four methods for choosing x1, x2, . . . , xn to minimize D.
Note that each of these methods requires that x1 is equal to the lower bound
of the support, and xn is equal to the upper bound of the support. In the
case of a support that is unbounded in both directions, we arbitrarily set x1

to the 1st percentile of the distribution and set xn to the 99th percentile.
If the distribution is not bounded above (below), we define upper (lower)
bound of the support as the 99th (1st) percentile of the original distribution.
Additionally, because these approximations will not generally integrate to one,
we normalize the piecewise linear approximation so that it integrates to one.

10.2.1 Equal Spacing

The simplest rule for endpoint placement is to evenly space them along the
support of the distribution. For instance, if we seek to approximate a beta dis-
tribution, which has its support on the interval [0, 1], with four line segments
(n = 5), the endpoints are

x1 = 0, x2 = 1/4, x3 = 1/2, x4 = 3/4, x5 = 1.

This is a very fast method from a computational standpoint, but does not
take into account any information about the PDF other than its support. Our
next method attempts to utilize some information about the distribution in
an attempt to improve the quality of the approximation.

10.2.2 Placement by Percentiles

Another simple method for point placement employs equally-spaced per-
centiles. If, for example, we want to use n = 5 endpoints to approximate
a distribution with finite support, we place points at the minimum and maxi-
mum of the support, as well as the 25th, 50th, and 75th percentiles. Figure 10.2
shows how to place endpoints using percentiles with n = 10 points yielding
an approximation to the beta(2, 4) distribution.

This method ignores the shape of f(x), but takes into account some in-
formation about what may be considered the important aspects of f(x). We
next introduce a method that uses information about the shape of f(x) to
place points.
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10.2.3 Curvature-Based Approach

In order to take the shape of f(x) into account, we examine the curvature of
the distribution. If y = f(x), the curvature of f(x) is given by Stewart [154]
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Fig. 10.2. Selection of endpoints using equally spaced percentiles

κ(x) =
|y′′|

(
1 + (y′)2

)3/2 .

This function quantifies the non linearity of f(x). The greater the magnitude
of the curvature over an interval, the more the function deviates from linearity
on that interval. This suggests that more points should be placed in intervals
for which the curvature has a higher magnitude.

The curvature function is not typically easy to manipulate. Therefore,
we must evaluate the function at several points over the support of f(x).
Additionally, we want to find the points at which the function deviates from
linearity the most without regard to the direction of the concavity. To address
these concerns, we simply discretize the cumulative curvature function, which
we define as

K(x) =

∫ x

−∞
κ(x)dx =

∫ x

−∞

|y′′|
(
1 + (y′)2

)3/2 dx.

If we apply the method of placement by percentiles to this cumulative
curvature function instead of F (x), we get points that are placed more densely
along the support of f(x) when the function deviates more from linearity.
Because K(x) tends to increase very quickly, and therefore cluster too many
endpoints too tightly, we need to take logarithms of κ(x) to spread the points
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out. So we instead apply the method of placement by percentiles to K̃(x),
which we define as

K̃(x) =

∫ x

−∞
ln
(
ln (κ(x) + 1) + 1

)
dx.

Figure 10.3 shows how we place our points when we consider a beta(2, 4)
distribution with n = 10, while Figure 10.4 shows where the points are actually
placed on f(x). For this distribution, the curvature is given by

κ(x) =

∣∣−240x2 + 360x− 120
∣∣

(
1 + 400 (−4x3 + 9x2 − 6x+ 1)2

)3/2

for 0 < x < 1. Then K̃(x) evaluated at x = 1 is

K̃(1) ∼= 0.466.
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Fig. 10.3. Selection of endpoints using curvature

10.2.4 Optimization-Based Approach

Our fourth method is based on a mathematical program designed to mini-
mize D. Given a PDF f(x) with support [a, b], we wish to solve the following
constrained optimization problem

min
x1,x2,...,xn

D(x1, x2, . . . , xn)

s.t. x1 = a
xn = b∫∞
−∞ f̂(x)dx = 1

x1 < x2 < · · · < xn.
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Fig. 10.4. Endpoint placement on f(x)

However, we prefer to avoid the use of an optimization package to solve this
problem, so we must come up with a similar formulation that does not require
an objective function. In order to make this a more solvable problem, we first
remove the constraint requiring that f̂(x) integrates to one. We simply correct

our f̂(x) after we find appropriate endpoints so that it integrates to one. We
then note that this problem can be broken into pieces according to each line
segment and that minimizing D yields the same solution as minimizing D2.
Now our problem becomes

min
x1,x2,...,xn

D(x1, x2)
2 +D(x2, x3)

2 + · · ·+D(xn−1, xn)
2

s.t.
∫ x2

x1

(
f̂(x)− f(x)

)2
dx = D(x1, x2)

2

∫ x3

x2

(
f̂(x)− f(x)

)2
dx = D(x2, x3)

2

...
...∫ xn

xn−1

(
f̂(x) − f(x)

)2
dx = D(xn−1, xn)

2

x1 = a
xn = b
x1 < x2 < · · · < xn,

where D(xi, xi+1)
2 is defined as the square of the L2 distance between f(x)

and the line segment passing through the points
(
xi, f(xi)

)
and
(
xi+1, f(xi+1)

)

on the interval [xi, xi+1].
This modified formulation has n variables of the form xi and n−1 variables

of the form D(xi, xi+1)
2, accompanied by n+1 equations. If we then constrain

D(x1, x2)
2 = D(x2, x3)

2 = · · · = D(xn−1, xn)
2 = C, we have reduced our

problem to
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min
x1,x2,...,xn

C(n− 1)

s.t.
∫ x2

x1

(
f̂(x) − f(x)

)2
dx = C

∫ x3

x2

(
f̂(x) − f(x)

)2
dx = C

...
...∫ xn

xn−1

(
f̂(x)− f(x)

)2
dx = C

x1 = a
xn = b.

We now have n + 1 equations and n + 1 unknowns, potentially giving us a
unique feasible solution. We no longer need to rely on an optimization package,
which makes the problem much easier to solve with a variety of different tools.
This set of equations is solved numerically using equally-spaced endpoints as
the initial estimate. Our solution for x1, x2, . . . , xn using this heuristic will
serve as our endpoints for f̂(x).

10.3 Comparison of the Methods

In addition to the metric D defined above, it is useful to plot the approximate
PDFs to observe where each method succeeds and fails. For the beta(2, 4)
distribution, plots of the approximate PDFs generated by all four methods
are shown in Figure 10.5 for n = 10. As expected the optimization-based
method yields the smallest value for D, and appears to conform to the shape
of the original distribution better than the other approximations.

To see how the methods compare for a range of other problems, we test
various distributions and display the resulting values for D in Table 10.1. The
column with the smallest value of D is set in boldface type.

The optimization-based method displays a clear advantage overall, with no
method performing better on any test case. The method of percentiles tends to
perform the worst, as it seldom provides a D value that is close to the best. In
the next section, we present an example that employs the approximate PDF.

10.4 Application

Suppose we desire the value of the 80th percentile of the convolution of a
beta(9/4, 17/4) random variable and a beta(21/4, 9/4) random variable, as
well as the PDF of the convolution. Assuming independence, we present three
techniques for finding our solutions. The convolution theorem is the first tech-
nique, and may supply us with the exact solution. Monte Carlo simulation is
the second technique and is appealing for the 80th percentile, but is not well
suited for finding the PDF of the convolution. Our third technique is to apply
the convolution theorem to two approximate PDFs. Let Z = X + Y , where
X and Y are independent random variables with X ∼ beta(9/4, 17/4) and
Y ∼ beta(21/4, 9/4).
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Fig. 10.5. Approximations to the beta(2, 4) distribution

10.4.1 Convolution Theorem

The convolution theorem gives an analytic method for finding the exact distri-
bution of the convolution of two independent random variables. The theorem
states that

fZ(z) =

∫ ∞

−∞
fX(y − z)fY (z)dz.

The APPL code

> X := BetaRV(9 / 4, 17 / 4);

> Y := BetaRV(21 / 4, 9 / 4);

> Z := Convolution(X, Y);

fails to yield the exact distribution of the convolution in closed form due
to mathematical intractability. Therefore, we must proceed to approximate
techniques.

10.4.2 Monte Carlo Approximation

The Monte Carlo approximation of the 80th percentile is easy to find. Using
50 samples of size 10,000, we get a 95% approximate confidence interval on
the 80th percentile of
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Table 10.1. Comparison of approximation methods with n = 10

Equal spacing Percentiles Curvature Optimization
Standard normal 0.0202 0.0317 0.0209 0.0195
Beta(2, 4) 0.0406 0.1574 0.1681 0.0214
Beta(4, 2) 0.0406 0.1574 0.1681 0.0214
Chi square(4) 0.0340 0.0279 0.0744 0.0087
Chi square(10) 0.0109 0.0335 0.0177 0.0076
Chi square(20) 0.0089 0.0482 0.0105 0.0061
Exponential(1) 0.0121 0.0391 0.0190 0.0090
Weibull(1, 3) 0.0277 0.0840 0.0336 0.0246
Gamma(1, 2) 0.0481 0.0395 0.0443 0.0124
Gamma(1, 5) 0.0155 0.0473 0.0237 0.0107
Gamma(1, 10) 0.0126 0.0682 0.0148 0.0086
Standard Cauchy 0.3088 0.1953 0.2805 0.0566
Pareto(1, 2) 0.1849 0.1396 0.1244 0.0227
Logistic(1, 1) 0.0163 0.0372 0.0173 0.0142
Logistic(1/2, 1) 0.0115 0.0263 0.0128 0.0101
Logistic(2, 1) 0.0481 0.0675 0.0468 0.0468

1.2461± 0.0009.

Thus, to two decimal places, we report the 80th percentile as 1.25. Using
Monte Carlo simulation, we are able to plot the histogram which gives insight
into the shape of the distribution of the convolution, but no functional form
for the PDF. Figure 10.6 is the histogram based on a sample of size 100, 000.
We are unsatisfied with the histogram as an approximation to the PDF, so
we proceed to the convolution of approximate PDFs.

0.5 1.0 1.5

0

5000

10000

15000

z

Frequency

Fig. 10.6. Histogram of the convolution of X and Y
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Fig. 10.7. The true and approximate distribution of X

10.4.3 Convolution of Approximate PDFs

Using the optimization-based method for selecting points, we find f̂X(x) and

f̂Y (y). Figure 10.7 shows the true distribution and the approximated distribu-

tion of X with n = 10. We now apply the convolution theorem to f̂X(x) and

f̂Y (y), each with n = 10, to find f̂Z(z). This gives an estimated 80th percentile
of 1.2478 which, to two decimal places, matches the value from Monte Carlo
simulation. Figure 10.8 is a plot of the estimated distribution which exhibits
the same shape as the histogram obtained via Monte Carlo simulation, but has
the advantage of retaining continuity. This curve has n2 − 1 = 99 segments.
(If X and Y were independent and identically distributed, for example, there
would be fewer segments in the support of Z = X+Y .) The functional form of
the PDF is obviously too lengthy to display here. The APPL code to estimate
the 80th percentile and PDF of Z is

> X := BetaRV(9 / 4, 17 / 4);

> Y := BetaRV(21 / 4, 9 / 4);

> Z := Convolution(ApproximateRV(X, 10), ApproximateRV(Y, 10));

> IDF(Z, 0.80);

> PlotDist(Z);

The code for ApproximateRV is listed in the appendix.
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Fig. 10.8. Approximation of the convolution of X and Y and its 80th percentile

10.5 Conclusions

Functions of random variables, such as sums and products, can lead to prob-
lems that cannot be solved in closed form. These functions require approxima-
tion techniques that may yield unsatisfying results. We present a method for
approximating a PDF with linear segments, which are easily manipulated, and
four heuristics for endpoint placement: (1) equal spacing of points, (2) equally-
spaced percentiles, (3) a curvature-based approach, and (4) an approach based
on optimization of the L2 distance. The optimization-based approach yields
the best results in terms of the L2 distance as well as approximating the shape
of the original distribution.

Appendix: APPL Code for ApproximateRV

The following APPL code shows the complete algorithm for fitting linear PDF
approximations to a continuous PDF.

#

# ApproximateRV returns an approximate continuous pdf with

# n - 1 segments

# INPUTS: OrigRV -> a random variable in APPL format

# npoints -> any integer >= 3

#

# OUTPUTS ApproxRV -> the approx. random variable with npoints - 1

# linear segments approaching the original

# random variable

#

> ApproximateRV := proc(OrigRV :: list(list),
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> npoints :: {positive, integer})

> local i, n, nsegments, ApproxRV, leftend, rightend, supportsize, X,

> ns, pdflist, newseg, area, fX, pdflist2, xlist, C, eqns,

> vars, ans, j, range, tmpeqn, eqspc;

> if (nargs <> 2) then

> print(‘ERROR(ApproximateRV): This proc requires 2 arguments‘):

> RETURN():

> fi:

> nsegments := npoints - 1;

> if (nsegments < 2) then

> print(‘ERROR(ApproximateRV): Second parameter must be > 2‘):

> RETURN():

> fi:

> X := PDF(OrigRV);

#

# Calculate the new support

#

> if (X[2][1] = -infinity) then

> leftend := IDF(X, 1 / 100)

> else

> leftend := X[2][1]

> fi;

> supportsize := nops(X[2]);

> if (X[2][supportsize] = infinity) then

> rightend := IDF(X, 99 / 100)

> else

> rightend := X[2][supportsize]

> fi;

#

# Calculate equal spacing for initial solutions for x1, x2, ..., xn

#

> eqspc := [leftend];

> for i from 1 to nsegments - 1 do

> eqspc := [op(eqspc), eqspc[i] + (rightend - leftend)

> * (1 / (npoints - 1))];

> od;

> eqspc := [op(eqspc), rightend];

#

# Formulate equations and format for fsolve

#

> eqns := [];

> xlist := [seq(xlist[i],i = 1 .. npoints)];

> xlist[1] := leftend;

> vars := [];

> for i from 2 to npoints do

> tmpeqn := int(((((X[1][1](xlist[i]) - X[1][1](xlist[i - 1]))) /

> (xlist[i] - xlist[i - 1])) * (x - xlist[i - 1]) +

> X[1][1](xlist[i - 1]) - X[1][1](x)) ^ 2,

> x = xlist[i - 1] .. xlist[i]) = C;
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> eqns := [op(eqns), tmpeqn];

> vars := [op(vars), xlist[i] = eqspc[i]];

> od;

> eqns := [op(eqns), xlist[npoints] = rightend];

> vars := [op(vars), C = 0.01];

> range := [];

> for i from 1 to nops(vars) do

> if (i < nops(vars)) then

> range := [op(range), lhs(vars[i]) = leftend .. rightend];

> else

> range := [op(range) , lhs(vars[i]) = 0..1];

> fi;

> od;

> ans := [op(fsolve({op(eqns)}, {op(vars)}))];

> for i from 1 to nops(ans) do

> for j from 1 to nops(ans) do

> if (lhs(ans[j]) = xlist[i]) then

> xlist[i] := rhs(ans[j]);

> fi;

> if (lhs(ans[j]) = C) then

> C := rhs(ans[j]);

> fi;

> od;

> od;

> ns := xlist;

#

# Calculate the segments of the PDF

#

> pdflist := [];

> for i from 1 to nsegments do

> newseg := (PDF(X, ns[i + 1]) - PDF(X, ns[i]))

> / (ns[i + 1] - ns[i]) *(x - ns[i])

> + PDF(X, ns[i]);

> pdflist := [op(pdflist), unapply(newseg, x)]

> od;

#

# Normalize the PDF so that it integrates to 1

#

> area := 0;

> fX := [pdflist, ns, ["Continuous", "PDF"]];

> for i from 1 to nsegments do

> area := area + evalf(int(fX[1][i](y),

> y = fX[2][i] .. fX[2][i + 1])):

> od:

> pdflist2 := [];

> for i from 1 to nsegments do

> newseg := fX[1][i](x) / area;

> pdflist2 := [op(pdflist2), unapply(newseg, x)]
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> od;

> ApproxRV := [pdflist2, ns, ["Continuous", "PDF"]];

> RETURN(ApproxRV);

> end:
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distribution family; and (c) relationships between the various distributions,
including special cases, transformations, limiting distributions, and Bayesian
relationships. The interactive graphic went on-line on 11/30/12 at the URL
www.math.wm.edu/∼leemis/chart/UDR/UDR.html. As of May 2016, the site
has had 42,000 page views from 35,000 unique visitors.

Keywords Continuous distributions • Discrete distributions • Distribu-
tion properties • Limiting distributions • Special cases • Transformations •
Univariate distributions

11.1 Introduction

Introductory textbooks in probability and statistics often introduce univariate
probability distributions in separate sections, which obscures both an under-
standing of the relationships between distributions and the properties that
many of them have in common. Leemis and McQueston [95] designed a figure
to highlight these relationships and properties. Song and Chen [150] redesigned
the figure in a matrix format, making it easier to locate distributions. This
article contains a description of a website that contains an interactive graphic
of the figure at www.math.wm.edu/∼leemis/chart/UDR/UDR.html. The user
can also find proofs of the relationships and properties at this website.

The figure in Leemis and McQueston [95] contains 76 probability distribu-
tions. Of these, 19 are discrete and 57 are continuous. Figure 11.1 contains a
screenshot of the upper-left-hand corner of the interactive graphic. An alpha-
betical list of the discrete and continuous probability distributions is displayed
on the left-hand side of the screen, along with a slider bar to scroll through the
list. Just above this list are four buttons labeled CHART, ABOUT, LINKS,
and CONTACT. The CHART button displays the chart that contains the dis-
tributions. The ABOUT button gives information concerning the chart. The
LINKS button contains links that might be of interest to a visitor. One such
link connects the user to plots of the coefficient of variation vs. the skewness
and the skewness vs. the kurtosis for the various distributions included in the
website. The CONTACT button gives contact information for the developers
of the interactive graphic. There are two ways to highlight a probability dis-
tribution. The first is to hover over the name of the distribution on the list at
the far left side of the screen, which brings the probability distribution into
view on the chart. The second is to hover over the name of the distribution
in the body of the chart. In Figure 11.1, the cursor is hovering over the Zipf
distribution. When hovering over the Zipf distribution, in either of the two
manners just described, five changes occur on the interactive graphic. First,
the Zipf distribution is highlighted in blue (colors may vary depending on the
browser). Second, the boxes associated with distributions connected to the
Zipf distribution are highlighted in black. Third, the arrows and labels associ-
ated with outgoing relationships from the Zipf distribution are highlighted in
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blue. Fourth, the arrows and labels associated with incoming relationships to
the Zipf distribution (there are no such relationships for the Zipf distribution)
are highlighted in black. Fifth, the other distributions that are not connected
to the Zipf distribution are lightened in intensity. The number of distribu-
tions that are highlighted is helpful to indicate which distributions are at the
center of probability theory (for example, the normal, binomial, exponential,
uniform, and chi square distributions) and which are at the periphery (for ex-
ample, the Polya, generalized Pareto, and doubly non central F distributions).
Finally, just to the northwest of the box for the Zipf distribution are a + and
− button for zooming.

Fig. 11.1. Hovering over the Zipf distribution

Each box contains the distribution’s name, its parameters, and a list of
its properties using a single letter as a code (for example, C for the con-
volution property). For example, Figure 11.2 shows the interactive graphic
when the cursor is hovering over the geometric distribution. The geometric
distribution is highlighted in blue, while the Pascal (negative binomial) and
discrete Weibull distributions are highlighted in black because they are con-
nected to the geometric distribution. Since all three of these distributions are
discrete, they are placed in rectangular boxes (the boxes for continuous distri-
butions have rounded corners). The geometric distribution has one parame-
ter, p, the probability of success. The Pascal distribution has two parameters,
n, the number of successes, and p, the probability of success. The discrete
Weibull distribution has two parameters, p and β. The geometric distribution
has properties F (forgetfulness), M (minimum), and V (variate generation).
Clicking the ABOUT tab reveals more detail about these properties. A legend
in the lower-left-hand corner of the chart portion of the interactive graphic
also contains the definitions of these properties. The Pascal distribution has
the C (convolution) property, but only when the p parameter is fixed. The
discrete Weibull distribution has the V (variate generation) property. More
detail about the properties is given in Section 11.2. The interactive graphic
also indicates how the two distributions are related by the arrows connect-
ing the distributions. The cursor is hovering over the geometric distribution,
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so outgoing arrows are blue and the incoming arrows are black. The blue
outgoing arrow indicates that the sum of mutually iid geometric (p) random
variables has the Pascal distribution. This is known as a transformation. The
incoming black arrows indicate that the geometric distribution is a special
case of the Pascal distribution when n = 1 and a special case of the discrete
Weibull distribution when β = 1. These are known as special cases. More
detail about the relationships between distributions is given in Section 11.3.

Figure 11.3 shows the screen when the cursor hovers over the standard
normal distribution. Solid arrows denote transformations and special cases.

Geometric (p)
Pascal(n,p)F, M, V

beta
n=1

V
Standard normal

XΣb = 1
i

(iid)
Cp

Discrete Weibull(p, b )

p ~

Fig. 11.2. Hovering over the geometric distribution

Dashed arrows denote asymptotic relationships, and dotted arrows denote
Bayesian relationships. Some of the facts concerning the standard normal
distribution from Figure 11.3 are listed below.

• The ratio of two independent standard normal random variables has the
standard Cauchy distribution.

• The t distribution approaches the standard normal distribution as its de-
grees of freedom n → ∞.

• The absolute value of a standard normal random variable has the chi
distribution.

• The sum of squares of mutually independent standard normal random
variables has the chi square distribution.

• The standard normal distribution is a special case of the normal distribu-
tion in which μ = 0 and σ = 1.

• There is a one-to-one transformation between the normal distribution and
standard normal distribution. Standardizing a normal random variable re-
sults in a standard normal random variable, which is useful for probability
calculations. Multiplying a standard normal random variable by σ and
adding μ results in a normal random variable, which is useful for random
variate generation.

When the name of a distribution is clicked (either from the list at the far
left or on the chart itself), a window appears or a download commences with
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a short description of the distribution. This description typically contains the
PDF f(x), the CDF F (x), a graph of the PDF for various parameter values,
the moment generating function, and the first four moments (the population
mean, variance, skewness, and kurtosis). When these values are not mathe-
matically tractable, they are excluded. In addition, when the cursor hovers
over a property of a distribution, the associated letter turns red. Furthermore,
when the user clicks on on the letter associated with a property of a distribu-
tion, a window opens with a proof of that particular property if a proof exists.
For example, the URL for the minimum property of the geometric distribution

Fig. 11.3. Hovering over the standard normal distribution

is http://www.math.wm.edu/∼leemis/chart/UDR/PDFs/GeometricM.pdf.
Similar naming conventions are used for other distributions and their proper-
ties. An arrow turns red when the cursor is placed over the arrow. When an
arrow is clicked, a window opens with a proof of the associated relationship if
a proof exists. In some browsers, clicking on the backarrow button will return
the user to the chart. In other browsers, simply closing the window returns
the user to the chart. The authors were not able to prove the relationship, for
example, between the inverse Gaussian distribution and the standard normal
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distribution. So when the associated arrow is clicked, a web page opens that
cites the result and gives an unfinished proof. An invitation to the statistics
community to complete any unfinished proofs and share the proofs with the
developers for posting is hereby extended.

The interactive graphic is designed for practitioners who are interested in
specific information about a distribution. It is also designed for instructors
who are teaching courses in a mathematical statistics sequence. Listed here
are several uses of classroom applications for the interactive graphic. First,
in the initial probability class, typically fewer than a dozen discrete and con-
tinuous probability distributions are introduced. Exposing the students to
the interactive graphic, however briefly, will let them know that there are a
large number of more obscure univariate distributions that might arise in a
modeling situation, many with well-developed theory. Second, the interactive
graphic is an important reminder to the students that the univariate distri-
butions are oftentimes related to one another. Third, when a proof of one of
the properties or relationships is assigned as a homework exercise, the website
can be used by students to see some of the techniques that are used to prove
the relationships in the interactive graphic. Certain relationships between dis-
tributions were not included in the interactive graphic to keep the network
of distributions planar. These “missing” proofs remain as viable homework
exercises for students using the interactive graphic. The relationships can be
between two distributions (for example, the floor of an exponential random
variable has the geometric distribution), or combining two distributions to
arrive at a third distribution (for example, the ratio of a standard normal
random variable to the square root of an independent chi square random vari-
able with n degrees of freedom divided by n is a t random variable with n
degrees of freedom).

In Section 11.2 of this article we discuss the distribution properties shown
in the interactive graphic. In Section 11.3, we discuss the relationships be-
tween distributions shown in the interactive graphic. Section 11.4 contains
conclusions.

11.2 Discussion of Properties

In this section, we discuss a number of distribution properties. These proper-
ties apply to a single distribution, and are denoted with a capital letter in the
online interactive graphic. Clicking on a property on the chart opens up a file
containing a proof of the associated property that the distribution satisfies.
In our discussion, the abbreviations used in the interactive graphic are listed
in parentheses after the name of the property.

• The Convolution property (C) means that the sum of mutually indepen-
dent random variables following this distribution belongs to the same
family of distributions. In other words, if X1, X2, . . . , Xn are mutually
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independent random variables from a given distribution family with this
property, then

∑n
i=1 Xi belongs to the same distribution family.

• The Forgetfulness property (F), also known as the memoryless property,
means that the conditional distribution of the random variable following
this distribution is identical to the unconditional distribution. In other
words, a random variable X that follows a distribution with the forgetful-
ness property satisfies P (X > t+ s|X > t) = P (X > s) for all values of s
and t. The term forgetfulness is used in place of the more common “mem-
orylessness” designation because the letter M was taken by the minimum
property.

• The Inverse property (I) means that the inverse (reciprocal) of a random
variable following this distribution family belongs to the same distribution
family. In other words, if X belongs to a given distribution family with
this property, then 1/X belongs to the same distribution family.

• The Linear Combination property (L) means that a linear combination of
mutually independent random variables following this distribution belongs
to the same family of distributions. In other words, if X1, X2, . . . , Xn are
mutually independent random variables from a given distribution fam-
ily with this property, and a1, a2, . . . , an are real-valued constants, then∑n

i=1 aiXi belongs to the same distribution family.
• The Minimum property (M) means that the minimum of n mutually inde-

pendent random variables following this distribution belongs to the same
family of distributions. In other words, if X1, X2, . . . , Xn are mutually in-
dependent random variables following a given distribution family with this
property, then X(1) (the first order statistic) belongs to the same distribu-
tion family.

• The Product property (P) means that the product of mutually independent
random variables from this distribution belongs to the same family of
distributions. In other words, if X1, X2, . . . , Xn are mutually independent
random variables from a given distribution family with this property, then∏n

i=1 Xi belongs to the same distribution family.
• The Residual property (R) means that the conditional distribution of a

random variable from this distribution family that is left-truncated at a
value in its support belongs to the same distribution family.

• The Scaling property (S) means that a random variable from this distri-
bution family that is multiplied by a positive, real-valued constant belongs
to the same distribution family. In other words, if X is a random variable
following this distribution family, and a is a positive, real-valued constant,
then aX belongs to the same distribution family.

• The Variate Generation property (V) means that the inverse of the CDF
for this distribution family can be obtained in closed form. The inverse
CDF can be used in a simple and fast algorithm to generate random vari-
ates from this distribution family for Monte Carlo and discrete-event sim-
ulation.
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• The Maximum property (X) means that the maximum of mutually in-
dependent random variables from this distribution family belongs to the
same distribution family. In other words, if X1, X2, . . . , Xn are mutually
independent random variables from a given distribution family with this
property, then X(n) (the nth order statistic) belongs to the same distribu-
tion family.

Note that property L implies properties C and S, and property F implies
property R. These implications are listed in the legend in the lower-left-hand
corner of the interactive graphic. We also note that certain properties only
hold under restricted conditions. These properties are denoted on the chart
with subscripts. For example, the binomial distribution is marked with Cp to
show that the binomial distribution satisfies the Convolution property only
when p is fixed.

11.3 Discussion of Relationships

There are many relationships between distributions. Some of the distributions
that are included in the interactive graphic are generalizations of other distri-
butions. For example, the exponential and chi square distributions are special
cases of the gamma distribution. The Erlang distribution is the sum of mu-
tually independent and identically distributed exponential random variables.
The chi square distribution is the sum of squares of mutually independent
standard normal random variables. The gamma distribution approaches the
normal distribution as its shape parameter goes to infinity. We will now dis-
cuss each different type of relationship in more detail.

11.3.1 Special Cases

Many distributions are simply special cases of others. One well-known example
is the standard normal distribution, which is a special case of the normal
distribution where μ = 0 and σ2 = 1. In this example, the values of the
parameters of the distribution are fully specified. There are other examples
where only some of the parameters need to be specified. The exponential(α)
distribution is a special case of the Weibull(α, β) distribution in which β = 1.
In this case, α can remain unspecified.

11.3.2 Transformations

Other distributions are created through transformations. One way of distin-
guishing a transformation from a special case (since both are depicted by
a solid arrow) is to recognize that a capital X will appear in the label by
the arrow for a transformation. One of the most common transformations
is to sum random variables. The binomial distribution with parameters n
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and p, for example, is the sum of n mutually independent Bernoulli(p) ran-
dom variables. The Pascal distribution with parameters n and p is the sum
of n mutually independent geometric (p) random variables. In situations in
which a sum is involved, the relationship between two distributions can be
adequately described either with a transformation or a special case. For ex-
ample, an Erlang(α, n) random variable is the sum of n mutually independent
exponential(α) random variables. The exponential(α) distribution is a special
case of the Erlang(α, n) distribution in which n = 1.

There are other transformations that are used to define random variables
that do not involve a sum. For example, a chi random variable is the square
root of a chi square random variable. A Rayleigh random variable is defined
as the square of an exponential random variable. Transformations like these,
which are expressed as one-to-one functions, can be inverted.

11.3.3 Limiting Distributions

A third type of relationship is a limiting distribution. This occurs when one
distribution converges asymptotically to another distribution as one or more
of the parameters approaches a limiting value. One important example is
the gamma distribution, which converges to the normal distribution as the
shape parameter β goes to infinity. This means that the gamma distribution
can be used as a model when a normal distribution does not quite fit, or
when an approximately normal distribution is needed, but only on positive
support. Another important example is the t distribution, which approaches
the standard normal distribution as the degrees of freedom, n, goes to infinity,
which is widely used in statistical hypothesis tests.

Many non central models have a limiting distribution as the non central-
ity parameter approaches 0. For example, the non central F distribution con-
verges to the F distribution as δ approaches 0. Finally, limiting distributions
can give us insight into the behavior of the sum of random variables as the
sample size becomes very large. The binomial, as the sum of mutually inde-
pendent Bernoulli random variables, and the Erlang, as the sum of mutually
independent exponential random variables, are examples of this. These both
approach a normal distribution as n → ∞ by the Central Limit Theorem.

11.3.4 Bayesian Models

A fourth type of relationship that is included on the chart is a stochastic pa-
rameter model. The familiar binomial model has parameters n and p, where
n is a positive integer and 0 < p < 1. Both parameters are assumed to be con-
stants. But what of the case when one or both of the parameters are random
variables? The dotted arrow that connects the binomial distribution to the
beta-binomial distribution illustrates the case of allowing the parameter p to
be a random variable having the beta distribution. The beta-Pascal, gamma-
Poisson, and beta-binomial illustrate the particular type of relationship.
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11.4 The Binomial Distribution

The following information is presented when one clicks on the binomial dis-
tribution bubble on the chart. Note the APPL commands at the end will
produce the various properties of this distribution (as well as the others).

The shorthand X ∼ binomial(n, p) is used to indicate that the random
variable X has the binomial distribution for positive integer parameter n and
real parameter p satisfying 0 < p < 1. The binomial distribution models the
number of successes in n mutually independent Bernoulli trials, each with
probability of success p. The random variable X ∼ binomial(n, p) has PDF

f(x) =

(
n

x

)
px (1− p)

n−x
x = 0, 1, 2, . . . , n.

The binomial distribution can be used to model the number of people in a
group of n people with a particular characteristic, the number of defective
items in a batch of n items, the number of fours in n rolls of a fair die, or the
number of rainy days in a month. Stated more generically, a binomial random
variable is the number of successes in n mutually independent Bernoulli trials.
Three illustrations of the shape of the PDF for n = 30 and p = 1/6, 1/2, 5/6
are given in Figure 11.4.

0 10 20 30
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0.05

0.10

0.15

0.20

0 10 20 30 0 10 20 30

n = 30n = 30n = 30
p = 1/6 p = 1/2 p = 5/6

xxx

f (x)f (x)f (x)

Fig. 11.4. Binomial PDFs for various values of n and p

The CDF on the support of X is

F (x) = P (X ≤ x) =

x∑

k=0

(
n

k

)
pk(1− p)n−k x = 0, 1, 2, . . . , n.
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The survivor function on the support of X is

S(x) = P (X ≥ x) =
n∑

k=x

(
n

k

)
pk(1− p)n−k x = 0, 1, 2, . . . , n.

The moment generating function of X is

M(t) = E
[
etX
]
=
(
1− p+ pet

)n −∞ < t < ∞.

The characteristic function of X is

φ(t) = E
[
eitX
]
=
(
1− p+ peit

)n −∞ < t < ∞.

The population mean and variance of a binomial(n, p) random variable are

E[X ] = np and V [X ] = np(1− p)

and the population skewness and kurtosis are

E

[(
X − μ

σ

)3
]

=
1− 2p

√
np (1− p)

and E

[(
X − μ

σ

)4
]

= 3 +
1− 6p(1− p)

np(1− p)
.

The population skewness and kurtosis converge to 0 and 3, respectively, in
the limit as n → ∞.

Let x1, x2, . . . , xn be realizations of mutually independent Bernoulli(p) ran-
dom variables. Assume that n is a fixed constant and that p is an unknown
parameter satisfying 0 < p < 1. The maximum likelihood estimator for p is

p̂ =
1

n

n∑

i=1

xi,

which is an unbiased estimator of p, that is E [p̂] = p. An approximate
(1− α)100% confidence interval for p is

p̂− zα/2

√
p̂(1− p̂)

n
< p < p̂+ zα/2

√
p̂(1− p̂)

n
,

where zα/2 is the 1−α/2 percentile of the standard normal distribution. This
confidence interval is symmetric about p̂ and allows for an upper limit that
is greater than 1 and a lower limit that is less than 0. A second approximate
(1− α)100% confidence interval for p is

p̂+
z2
α/2

2n + zα/2

√
p̂(1−p̂)

n +
z2
α/2

4n2

1 + z2α/2/n
< p <

p̂+
z2
α/2

2n − zα/2

√
p̂(1−p̂)

n +
z2
α/2

4n2

1 + z2α/2/n
.

A third approximate (1− α)100% confidence interval for p that is based on
the Poisson approximation to the binomial distribution is
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1

2n
χ2
2y, 1−α/2 < p <

1

2n
χ2
2(y+1), α/2,

where y = x1 + x2 + · · ·+ xn and χ2
q, β is the 1− β percentile of a chi square

distribution with q degrees of freedom. A fourth approximate (1− α) · 100%
confidence interval for p is

(
1 +

n− y + 1

yF2y, 2(n−y+1), 1−α/2

)−1

< p <

(
1 +

n− y

(y + 1)F2(y+1), 2(n−y), α/2

)−1

,

where Fq, r, β is the 1 − β percentile of an F random variable with q and r
degrees of freedom.

APPL verification: The APPL statements

> X := BinomialRV(n, p);

> Mean(X);

> Variance(X);

> Skewness(X);

> Kurtosis(X);

> MGF(X);

verify the population mean, variance, skewness, kurtosis, and moment gener-
ating function.

11.5 The Exponential Distribution

The following is the information presented when you click on the exponential
distribution in the chart. The shorthand X ∼ exponential(α) is used to indi-
cate that the random variableX has the exponential distribution with positive
scale parameter α. The exponential distribution can be parameterized by its
mean α with the PDF

f(x) =
1

α
e−x/α x > 0,

for α > 0. An exponential random variable X can also be parameterized by
its rate λ via the PDF

f(x) = λe−λx x > 0,

for λ > 0. When the second parameterization is used, the meaning of the rate
parameter depends on the application (for example, failure rate for reliability,
arrival rate or service rate for queueing, recidivism rate in criminal justice).
The exponential distribution is used in reliability to model the lifetime of an
object which, in a statistical sense, does not age (for example, a fuse or light
bulb). This property is known as the memoryless property. The exponential
distribution is the only continuous distribution that possesses this property.
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The only discrete distribution with the memoryless property is the geometric
distribution. The exponential distribution is used in queueing theory to model
the times between customer arrivals and the service times. The exponential
distribution is used in survival analysis to model the lifetime of an organism
or the survival time after treatment. The PDF using the first parametrization
with α = 0.5, 1, 2 is shown in Figure 11.5 below.

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

α = 1
α = 2

α = 0.5

x

f (x)

Fig. 11.5. Exponential PDFs for various values of α

Using the first parameterization, the CDF on the support of X is

F (x) = P (X ≤ x) = 1− e−x/α x > 0.

The survivor function on the support of X is

S(x) = P (X ≥ x) = e−x/α x > 0.

The hazard function on the support of X is

h(x) =
f(x)

S(x)
=

1

α
x > 0.

The cumulative hazard function on the support of X is

H(x) = − lnS(x) =
x

α
x > 0.

The inverse distribution function of X is

F−1(u) = −α ln(1− u) 0 < u < 1.

The median of X is
α ln 2.



146 11 Univariate Probability Distributions

The moment generating function of X is

M(t) = E
[
etx
]
= (1− α t)−1 t <

1

α
.

The characteristic function of X is

φ(t) = E
[
eitX
]
= (1− α it)−1 t <

1

α
.

The population mean, variance, skewness, and kurtosis of X are

E[X ] = α, V [X ] = α2, E

[(
X − μ

σ

)3
]
= 2, E

[(
X − μ

σ

)4
]
= 9.

For X1, X2, . . . , Xn mutually independent exponential(α) random variables,
the maximum likelihood estimator for α is

α̂ =

∑n
i=1 Xi

n
,

which is the sample mean. This is also the method of moments estimator.

APPL verification: The APPL statements

> assume(alpha > 0);

> X := [[x -> exp(-x / alpha) / alpha], [0, infinity],

> ["Continuous", "PDF"]];

> CDF(X);

> SF(X);

> HF(X);

> CHF(X);

> Mean(X);

> Variance(X);

> Skewness(X);

> Kurtosis(X);

> MGF(X);

verify the CDF, survivor function, hazard function, cumulative hazard func-
tion, population mean, variance, skewness, kurtosis, and moment generating
function.

11.6 Conclusions

The figure presented by Leemis and McQueston [95] is a helpful tool for stu-
dents and instructors in the study of univariate probability distributions. It
presents distributions simultaneously, as opposed to one at a time. It high-
lights how the distributions are related to each other, how distributions share



11.6 Conclusions 147

many important properties, and how distributions are formed from other dis-
tributions. This figure is now available online as an interactive graphic. The
online chart is more useful than the figure because it allows a user to click on
distributions, properties, and relationships to display additional information,
such as a proof, a graph, or various moments associated with a distribution.
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Moment-Ratio Diagrams for Univariate
Distributions

Erik Vargo, Raghu Pasupathy, and Lawrence M. Leemis

Abstract We present two moment-ratio diagrams along with guidance for
their interpretation. The first moment-ratio diagram is a graph of skewness vs.
kurtosis for common univariate probability distributions. The second moment-
ratio diagram is a graph of coefficient of variation vs. skewness for common
univariate probability distributions. Both of these diagrams, to our knowl-
edge, are the most comprehensive to date. The diagrams serve four purposes:
(1) they quantify the proximity between various univariate distributions based
on their second, third, and fourth moments, (2) they illustrate the versatil-
ity of a particular distribution based on the range of values that the various
moments can assume, (3) they can be used to create a short list of poten-
tial probability models based on a data set, and (4) they clarify the limiting
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relationships between various well-known distribution families. The use of the
moment-ratio diagrams for choosing a distribution that models given data is
illustrated.

Keywords Coefficient of variation • Kurtosis • Skewness

12.1 Introduction

The moment-ratio diagram for a distribution refers to the locus of a pair of
standardized moments plotted on a single set of coordinate axes (Kotz and
Johnson [82]). By standardized moments we mean: the coefficient of variation
(CV)

γ2 =
σX

μX
,

the skewness (or third standardized moment)

γ3 = E

[(
X − μX

σX

)3
]
,

and the kurtosis (or fourth standardized moment)

γ4 = E

[(
X − μX

σX

)4
]
,

where μX and σX are the mean and the standard deviation of the implied (uni-
variate) random variable X . The classical form of the moment-ratio diagram,
plotted upside down, shows the third standardized moment γ3 (or sometimes
its square γ2

3) plotted as abscissa and the fourth standardized moment γ4
plotted as ordinate. The plot usually includes all possible pairs (γ3, γ4) that
a distribution can attain. Since γ4 − γ2

3 − 1 ≥ 0 (see [156, Exercise 3.19,
page 121]), the moment-ratio diagram for a distribution occupies some subset
of the shaded region shown in Figure 12.1.

Moment-ratio diagrams, apparently first introduced by Craig [36] and later
popularized by Johnson et al. [71] especially through the plotting of multi-
ple distributions on the same axes, have found enormous expediency among
engineers and statisticians. The primary usefulness stems from the diagram’s
ability to provide a ready “snapshot” of the relative versatility of various dis-
tributions in terms of representing a range of shapes. Distributions occupying
a greater proportion of the moment-ratio region are thought to be more ver-
satile owing to the fact a larger subset of the allowable moment pairs can be
modeled by the distribution. Accordingly, when faced with the problem of hav-
ing to choose a distribution to model data, modelers often estimate the third
and fourth standardized moments (along with their standard error estimates),
and plot them on a moment-ratio diagram to get a sense of which distributions
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Fig. 12.1. The shaded region represents the set of attainable pairs of third and
fourth standardized moments (γ3, γ4) for any distribution. The solid line is the limit
γ4 = 1 + γ2

3 for all distributions

may be capable of representing the shapes implicit in the provided data. In
this sense, a modeler can compare several “candidate” distributions simulta-
neously in terms of their moments. Another use for these diagrams has been
in getting a sense of the limiting relationships between distributions, and also
between various distributions within a system. An excellent example of the
latter is the Pearson system of frequency curves where the region occupied
by the various distributions comprising the system neatly divides the (γ2

3 , γ4)
plane (Johnson et al. [71, page 23]).

Since Craig [36] published the original moment-ratio diagram, various au-
thors have expanded and published updated versions. The most popular of
these happen to be the various diagrams appearing in Johnson et al. [71]
(e.g., pages 23, 390). Rodriguez [138], in clarifying the region occupied by
the Burr Type XII distribution in relation to others, provides a fairly com-
prehensive version of the moment-ratio diagram showing several important
regions. Tadikamalla [158] provides a similar but limited version in clarifying
the region occupied by the Burr Type III region.
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More recently, Cox and Oakes [35] have popularized a moment-ratio
diagram of a different kind—one that plots the CV (γ2) as the abscissa and
the third standardized moment (γ3) as the ordinate. Admittedly, this vari-
ation is location and scale dependent unlike the classical moment-ratio dia-
grams involving the third and fourth standardized moments. Nevertheless, the
diagram has become unquestionably useful for modelers. A slightly expanded
version of this variation appears in Meeker and Escobar [113].

12.1.1 Contribution

Our contributions in this paper are threefold, stated here in order of impor-
tance. First, we provide a moment-ratio diagram of the CV versus skewness
(γ2, γ3) involving 36 distributions, four of which occupy two-dimensional re-
gions within the plot. To our knowledge, this is most comprehensive diagram
available to date. Furthermore, it is the first time the entire region occupied by
important two-parameter families within the CV versus skewness plot (e.g.,
generalized gamma, beta, Burr type XII) has been calculated and depicted.
The CV versus skewness plot first appeared in Cox and Oakes [35], and later
in Meeker and Escobar [113]. The diagrams appearing in both these origi-
nal sources either depict only families with a single shape parameter (e.g.,
gamma), or vary only one of the shape parameters while fixing all others.
Second, we provide a classical moment-ratio diagram (γ3, γ4) that includes 37
distributions, four of which occupy two-dimensional regions within the plot.
While such diagrams are widely available, the diagram we provide is the most
comprehensive among the sources we know, and seems particularly useful due
to its depiction of all distributions in the same plot. In constructing the two
moment-ratio diagrams, we have had to derive the limiting behavior of a num-
ber of distributions, some of which seem to be new. Expressions for γ2, γ3, and
γ4 for some of these distributions are listed in the appendix. We also host the
moment-ratio diagrams in a publicly accessible website where particular re-
gions of the diagram can magnified for clearer viewing. Third, using an actual
data set, we demonstrate what a modeler might do when having to choose
candidate distributions that “model” given data.

12.1.2 Organization

The rest of the paper is organized as follows. We present the two moment-
ratio diagrams along with cues for interpretation in Sections 12.2, 12.3, and
12.4. Following that, we demonstrate the use of the moment-ratio diagrams
for choosing a distribution that models given data in Section 12.5. Finally,
we present conclusions and suggestions for further research in Section 12.6.
This is followed by the appendix, where we provide analytical expressions for
the moment-ratio locus corresponding to some of the distributions depicted
in the diagrams, along with some of the APPL code that was used to create
the diagrams.
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Fig. 12.2. Skewness (γ3) versus Kurtosis (γ4)

12.2 Reading the Moment-Ratio Diagrams

Two moment-ratio diagrams are presented in this paper. The first, shown
in Figure 12.2, is a plot containing the (γ3, γ4) regions for 37 distributions.
Figure 12.3 is a plot containing the (γ2, γ3) regions for 36 distributions.
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For convenience, in both diagrams, we have chosen to include discrete and
continuous distributions on the same plot. In what follows we provide a com-
mon list of cues that will be useful in reading the diagrams correctly.
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• Distributions whose moment-ratio regions correspond to single points (e.g.,
normal) are represented by black solid dots, curves (e.g., gamma) are rep-
resented by solid black lines, and areas (e.g., Burr Type XII) are repre-
sented by colored regions.

• The names of continuous distributions occupying a region are set in sans
serif type; the names of continuous distributions occupying a point or
curve are set in roman type; the names of discrete distributions occupying
a point or curve are set in italics type.

• The end points of curves, when not attained by the distribution in question,
are represented by an unfilled circle (e.g., logistic exponential).

• When the boundary of a moment-ratio area is obscured by another area,
we include a dotted line (Figure 12.2) or an arrow (Figure 12.3) to clarify
the location of the obscured boundary.

• When a distribution represented by points in one of the moment-ratio
diagrams converges as one of its parameters approaches a limiting value
(e.g., a t random variable as its degrees of freedom approaches infinity),
we often decrease the font size of the labels to minimize interference.

• The parameterizations used for the distributions are from Leemis and Mc-
Queston [95] unless indicated otherwise in the paper.

12.3 The Skewness-Kurtosis Diagram

Whether the locus corresponding to a distribution in Figure 12.2 is a point,
curve, or region usually depends on the number of shape parameters. For ex-
ample, the normal distribution has no shape parameters and its locus in Fig-
ure 12.2 corresponds to the point (0, 3). By contrast, since the gamma distribu-
tion has one shape parameter, its locus corresponds to the curve γ3 = 1.5γ2

2+3.
An example of a distribution that has two shape parameters is the Burr Type
XII distribution. It accordingly occupies an entire region in Figure 12.2. In
all, Figure 12.2 has 37 distributions with 4 continuous distributions repre-
sented by regions, 19 distributions (15 continuous and 4 discrete) represented
by curves, and 14 distributions (13 continuous and 1 discrete) represented by
one or more points. A list of other useful facts relating to Figure 12.2 follows.

• The “T” plotted at (γ3, γ4) = (0, 9) corresponds to the t distribution with
five degrees of freedom, which is the smallest number of degrees of freedom
in which the kurtosis exists.

• The chi square (S) and Erlang (X) distributions coincide when the chi
square distribution has an even number of degrees of freedom. This ac-
counts for the alternating pattern of “S” and “SX” labels that occur along
the curve associated with the gamma distribution.

• Numerous distributions start at (or include) the locus of the normal dis-
tribution and end at (or include) the locus of the exponential distribution.
Two examples of such are the gamma distribution and the inverted beta
distribution.
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• Space limitations prevented us from plotting the values associated with
the discrete uniform distribution between its limits as a two-mass value
with (γ3, γ4) = (0, 1) and its limiting distribution (as the number of mass
values increases) with (γ3, γ4) = (0, 1.8). It is plotted as a thick line.

• The regime occupied by the inverted beta distribution has the curves cor-
responding to inverted gamma and the gamma distributions as limits.

• The regime occupied by the generalized gamma distribution has the curves
corresponding to the power distribution and the log gamma distribution
as partial limits.

• The regime occupied by the Burr Type XII distribution has the curve
corresponding to the Weibull distribution as a partial limit.

• Barring extreme negative skewness values, virtually all of the regime
occupied by the generalized gamma distribution is subsumed by the beta
distribution.

• The beta and the Burr Type XII distributions seem complementary in the
sense that the beta distribution occupies the “outer” regions of the diagram
while the Burr Type XII distribution occupies the “inner” regions of the
diagram. Furthermore, the collective regime of the beta and Burr Type
XII distributions, with a few exceptions (e.g., Laplace), encompasses all
other distributions included in the plot.

12.4 The CV-Skewness Diagram

Unlike in the skewness-kurtosis diagram (Figure 12.2), the locus of a distribu-
tion in the CV-skewness diagram (Figure 12.3) depends on the distribution’s
location and scale parameters. For this reason, in Figure 12.3, there are fewer
distributions (compared to Figure 12.2) whose locus is a singleton. Figure 12.3
represents a total of 36 distributions with 4 continuous distributions repre-
sented by regions, 24 distributions (19 continuous and 5 discrete) represented
by curves and 8 distributions (7 continuous and 1 discrete) represented by one
or more points. A list of other useful facts relating to Figure 12.3 follows.

• Distributions that are symmetric about the mean have γ3 = 0. Since CV
can be adjusted to take any value (by controlling the location and scale),
symmetric distributions, e.g., error, normal, uniform, logistic, have the
locus γ3 = 0 in Figure 12.3.

• The regime occupied by the beta family has the gamma curve γ3 = 2γ2,
γ2 ∈ (0, 1) and the Bernoulli curve γ3 = γ2 − 1/γ2 as limits.

• The regime occupied by the inverted beta distribution has the gamma
curve γ3 = 2γ2, γ2 ∈ (0, 1) and the inverted gamma curve
γ3 = 4γ2/ (1− γ2

2), γ2 ∈ (0, 1) as limits.
• The regime occupied by the generalized gamma distribution has the curves

corresponding to the power distribution and the Pareto distribution as
partial limits.
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• The regime occupied by the Burr Type XII distribution has the curves
corresponding to the Weibull and Pareto distributions as limits.

12.5 Application

The moment-ratio diagrams can be used to identify likely candidate distri-
butions for a data set, particularly through a novel use of bootstrapping
techniques, e.g., Cheng [31] and Ross [141]. Toward illustrating this, we first
formally set up the problem. Let X1, X2, . . . , Xn be iid observations of a ran-
dom variable having an unknown CDF F (x). Suppose θ is some parameter
concerning the population distribution (e.g., the coefficient of variation γ2),

and let θ̂ be its estimator (e.g., the sample coefficient of variation γ̂2 con-
structed fromX1, X2, . . . , Xn). Also let Fn(x) denote the usual empirical CDF
constructed from the data X1, X2, . . . , Xn, i.e.,

Fn(x) =
1

n

n∑

i=1

I{Xi ≤ x}.

A lot is known about how well Fn(x) approximates F (x). For example, the
Glivenko–Cantelli theorem (from Billingsley [13]) states that Fn → F uni-
formly in x as n → ∞. Furthermore, the deviation of Fn(x) from F (x) can be
characterized fully through Sanov’s theorem (from Dembo and Zeitouni [44])
under certain conditions.

We are now ready to demonstrate how the above can be used toward
identifying candidate distributions to which a given set of dataX1, X2, . . . , Xn

might belong. As usual, the sample mean and sample standard deviation are
calculated as

X̄ =
1

n

n∑

i=1

Xi and S =

√√√√ 1

n− 1

n∑

i=1

(
Xi − X̄

)2
.

In order to obtain a nonzero standard deviation, we assume that at least two
of the data values are distinct. The point estimates for the CV, skewness, and
kurtosis are

γ̂2 =
S

X̄
, γ̂3 =

1

n

n∑

i=1

(
Xi − X̄

S

)3

, γ̂4 =
1

n

n∑

i=1

(
Xi − X̄

S

)4

,

for X̄ �= 0. The points (γ̂3, γ̂4) and (γ̂2, γ̂3) can be plotted in Figures 12.2 and
12.3 to give a modeler guidance concerning which distributions are potential
parametric models for statistical inference. Probability distributions in the
vicinity of the point estimates are strong candidates for probability models.
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Unfortunately, these point estimates do not give the modeler a sense of their
precision, so we develop an approximate interval estimate in the paragraph
below.

Bootstrapping can be used to obtain a measure of the precision of the point
estimates (γ̂3, γ̂4) and (γ̂2, γ̂3). Let B denote the number of bootstrap samples
(a bootstrap sample consists of n observations drawn with replacement from
the original data set). For each bootstrap sample, the two parameters of inter-
est (e.g., skewness and kurtosis) are estimated using the procedure described
in the previous paragraph and stored. After the B bootstrap samples have
been calculated, the bivariate normal distribution is fitted to the B data pairs
using standard techniques. Two of the five parameters of the bivariate normal
distribution, namely, the two sample bootstrap means, are replaced by the
point estimators to assure that the bivariate normal distribution is centered
about the point estimators that were calculated and plotted in the previous
paragraph. Finally, a concentration ellipse is plotted around the point esti-
mate. The tilt associated with the concentration ellipse gives the modeler a
sense of the correlation between the two parameters of interest.

Example 12.1. Consider the n = 23 deep-groove ball bearing failure
times (measured in 106 revolutions)

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40.

from Lieblein and Zelen [101], which is discussed in Caroni [27]. For
brevity, we consider the plotting of the point and associated con-
centration ellipse for only the CV vs. skewness moment ratio dia-
gram (Figure 12.3). The first step is to calculate and plot the point
(γ̂2, γ̂3) ∼= (0.519, 0.881). We then take B = 200 bootstrap samples of
n = 23 failure times with replacement from the data set. (The value of
B was chosen arbitrarily.) The bivariate normal distribution is fitted
to the B data pairs and a concentration ellipse is then overlaid on the
plot of the CV vs. skewness as a visual aid to identify likely candi-
date distributions for modeling the ball bearing lifetimes. The results
of this process are displayed in Figure 12.4 which provides a close-up
view of the concentration ellipse. In terms of candidate distributions,
the following conclusions can be drawn.
• Because ball bearing lifetimes are inherently continuous, all of the

discrete distributions should be eliminated from consideration.
• The position of the concentration ellipse implies that several distri-

butions associated with regions in the (γ2, γ3) graph are candidate
distributions: the gamma distribution (and its special cases), and
the Weibull distribution (and the Rayleigh distribution as a special
case) are likely to be models that fit the data well.

• The gamma and Weibull distributions both have shape parameters
that are greater than 1 within the concentration ellipse, confirming
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modeling given data) through estimation and bootstrapping
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the intuition that an appropriate model is in the IFR class (Cox
and Oakes [35]) of survival distributions (i.e., the ball bearings are
wearing out). Consistent with this conclusion, note that the point
for the exponential distribution is far away from the concentration
ellipse.

• Distributions that are close to the concentration ellipse should also
be included as candidates. For this data set, the log normal distri-
bution is just outside of the concentration ellipse, but provides a
good fit to the data (see Crowder et al. [38] pages 37–38 and 42–43
for details ). Any distribution in or near the concentration ellipse
should be considered a candidate distribution. This is confirmed
by the four graphs in Figure 12.5, which show the fitted Weibull,
gamma, lognormal, and exponential distributions, along with the
empirical CDF associated with the ball bearing failure data. The
three distributions that are within or close to the concentration
ellipse provide reasonable fits to the data; the exponential distri-
bution, which is far away from the concentration ellipse, provides
a poor fit to the data.

The size of the concentration ellipse also gives guidelines with respect to
sample size. If the concentration ellipse is so large that dozens of probability
distribution are viable candidates, then a larger sample size is required. As
expected, there is generally more variability on the higher-level moments.

Also, the eccentricity and tilt of the concentration ellipse provide insight on
the magnitudes of the variances of the point estimates and their correlation.
For the ball bearing failure times, the standard error of the skewness is almost
an order of magnitude larger than the standard error of the coefficient of
variation. The slight tilt of the concentration ellipse indicates that there is a
small positive correlation between the coefficient of variation and the skewness.

If point estimates and concentration ellipses are plotted on both of the
moment-ratio diagrams in Figures 12.2 and 12.3, the candidate distributions
might not be consistent. The authors believe that the coefficient of variation
vs. the skewness plot is more reliable because it is based on lower-order mo-
ments. The moment-ratio diagrams can be used in tandem when using any
one diagram still leaves a large number of candidate distributions.

12.6 Conclusions and Further Research

The two moment-ratio diagrams presented in Figures 12.2 and 12.3 are use-
ful for insight concerning univariate probability distributions and for model
discrimination for a particular data set. Plotting a concentration ellipse asso-
ciated with bootstrap samples on either chart provides guidance concerning
potential probability distributions that provide an adequate fit to a data set.
These diagrams are one of the few ways that data analysts can simultaneously
evaluate multiple univariate distributions.
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Fig. 12.5. Empirical and fitted CDFs for the Weibull, gamma, log normal, and
exponential distributions for the ball bearing data set

Data sets associated with actuarial science, biostatistics, and reliability
engineering often contain censored observations, with right-censored observa-
tions being the most common. Plotting the various moments is problematic
for censored observations. Block and Leemis [16] provide techniques for over-
coming censoring that are based on kernel density function estimation and
competing risks theory. These techniques can be adapted to produce point
estimators and concentration ellipses.

Further research work associated with these diagrams would include a
Monte Carlo study that evaluates the effectiveness of the concentration ellipse
in identifying candidate distributions. This study would indicate which of the
two moment-ratio diagrams is better for model discrimination.
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Appendix

In this section, we provide exact expressions for the CV, skewness, and
kurtosis, for the four distributions that occupy (two-dimensional) regions in
Figures 12.2 and 12.3.

Beta

The beta family (see Johnson et al. [72, Chap. 25, page 210]) has two shape
parameters p, q > 0 with

γ2 =

√
q√

p2 + pq + p
, p, q > 0;

γ3 =
2(q − p)

√
1/p+ 1/q + 1/pq

p+ q + 2
, p, q > 0;

γ4 = 3(p+ q + 1)
2(p+ q)2 + pq(p+ q − 6)

pq(p+ q + 2)(p+ q + 3)
, p, q > 0.

The regime in the (γ2, γ3) plane is bounded above by the line γ3 = 2γ2 corre-
sponding to the gamma family, and below by the curve γ3 = γ2 − 1/γ2. The
regime in the (γ3, γ4) plane is bounded below by the limiting curve γ4 = 1+γ2

3

for all distributions, and above by the curve γ4 = 3 + 3
2γ

2
3 corresponding to

the gamma family.

Inverted Beta

The beta-prime or the Pearson Type VI family (see Johnson et al. [72,
Chap. 25, page 248]), also known as the inverted beta family, has two shape
parameters α, β > 0 with

γ2 =

√
α+ β − 1

α(β − 2)
, β > 2;

γ3 =

√
4(β − 2)

(α+ β − 1)α
· 2α+ β − 1

β − 3
, β > 3;

γ4 =
3(α− 2 + 1

2 (β − 3)γ2
2)

β − 4
, β > 4.

The regime in the (γ2, γ3) plane is bounded above by the curve
γ3 = 4γ2/(1− γ2

2), γ2 ∈ (0, 1), and below by the curve γ3 = 2γ2 corresponding
to the gamma family. The regime in the (γ3, γ4) plane is bounded above by
the curve

γ3 =
4
√
α− 2

α− 3
, γ4 = 3 +

30α− 66

(α− 3)(α− 4)
, α > 4

corresponding to the inverse gamma family, and below by the curve
γ4 = 3 + 3γ2

3/2 corresponding to the gamma family.
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Generalized Gamma

The generalized gamma family (see Johnson et al. [71, page 388]) has two
shape parameters α, λ > 0 with the rth raw moment μ′

r = Γ(α + rλ)/Γ(α).
The regime in the (γ2, γ3) plane is bounded below by the curve

γ2 =
1√

p(p+ 2)
, γ3 =

1− p

p+ 3
· 2√

1 + 2/p
, p > 0

corresponding to the power family, and above by the curve

γ2 =
1√

p(p− 2)
, γ3 =

1 + p

p− 3
· 2√

1− 2/p
, p > 3

corresponding to the Pareto family. The regime in the (γ3, γ4) plane is bounded
above by the curve

γ3 =
1 + p

p− 3

2√
1− 2/p

, γ4 =
3(1 + 2/p)(3p2 − p+ 2)

(p+ 3)(p+ 4)
, p > 0

corresponding to the power family, bounded below to the right by the
curve corresponding to the generalized gamma family with λ = −0.54, and
bounded below to the left by the curve corresponding to the log gamma fam-
ily. [Recall that the log gamma family with shape parameter α > 0 has the rth

cumulant κr = Ψ(r)(α), where Ψ(r)(z) is the (r + 1)th derivative of ln Γ(z).]

Burr Type XII

The Burr Type XII family (see Rodriques [138]) has two shape parame-
ters c, k > 0 with the rth raw moment μ′

r = Γ(r/c + 1)Γ(k − r/c)/Γ(k),
c > 0, k > 0, r < ck. The regime in the (γ2, γ3) plane is bounded below by the
curve corresponding to the Weibull family (rth raw moment μ′

r = Γ(r/c+ 1),
where c > 0 is the Weibull shape parameter), and above by the curve

γ2 =
1√

p(p− 2)
, γ3 =

1 + p

p− 3
· 2√

1− 2/p
, p > 3

corresponding to the Pareto family. The regime in the (γ3, γ4) plane is bounded
below by the curve corresponding to the Weibull family, bounded above to
the right by the curve corresponding to the Burr Type XII family with k = 1,
and bounded above to the left by the curve corresponding to the Burr Type
XII family with c = ∞.

APPL Code for the Diagrams

The moment-ratio diagrams in this paper were created in two steps. For each
distribution, an algorithm is used to create the sets of points that will pro-
duce the curves. These sets of points are then imported into R to produce
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the graphs. The APPL code to generate the points for the χ2 distribution
moment curves follow. Other distribution curves are produced similarly. Note
the variable X establishes the χ2

n distribution. The APPL commands in the
fprintf statements find the desired moments of X for various values of n.

> file := fopen("ChiSquare.d", WRITE);

> n := 1;

> i := 1;

> while n < 30 do

> X := ChiSquareRV(n);

> fprintf(file, "%g %g %g %g\n", evalf(n), evalf(CoefOfVar(X)),

> evalf(Skewness(X)),evalf(Kurtosis(X))):

> i := i + 1:

> n := i ^ 2:

> end do;

> for n to 100 do

> X := ChiSquareRV(n);

> if ‘mod‘(n, 2) <> 0 then

> fprintf(file, "%g %g %g %g\n", evalf(n), evalf(CoefOfVar(X)),

> evalf(Skewness(X)), evalf(Kurtosis(X))):

> end if

> end do:

> fprintf(file, "%g %g %g %g\n", evalf(999999), evalf(0), evalf(0),

> evalf(3)):

> fclose(file):
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13.1 The Kolmogorov–Smirnov Test Statistic

The Kolmogorov–Smirnov (K–S) goodness-of-fit test compares a hypothetical
or fitted CDF F̂ (x) with an empirical CDF Fn(x) in order to assess fit. The
empirical CDF Fn(x) is the proportion of the observations X1, X2, . . . , Xn

that are less than or equal to x and is defined as

Fn(x) =
I(x)

n
,

where n is the size of the random sample and I(x) is the number of Xi’s less
than or equal to x.

The K–S test statistic Dn is the largest vertical distance between Fn(x)
and F̂ (x) for all values of x, i.e.,

Dn = sup
x
{|Fn(x) − F̂ (x)|}.

The statistic Dn can be computed by calculating (see, for example, Law [88,
page 364])

D+
n = max

i=1,2, ..., n

{
i

n
− F̂ (X(i))

}
, D−

n = max
i=1,2, ..., n

{
F̂ (X(i))− i− 1

n

}
,

where X(i) is the ith order statistic, and letting

Dn = max{D+
n , D

−
n }.

Although the test statistic Dn is easy to calculate, its distribution is math-
ematically intractable. Drew et al. [47] provide an algorithm for calculating
the CDF of Dn when all the parameters of the hypothetical CDF F̂ (x) are
known (referred to as the all-parameters-known case). Assuming that F̂ (x)
is continuous, the distribution of Dn under H0, where X1, X2, . . . , Xn are iid
observations from a population with CDF F (x), is a function of n, but does
not depend on F (x). Marsaglia et al. [106] provide a numerical algorithm for
computing Pr(Dn ≤ d).

The more common and practical situation occurs when the parameters are
unknown and are estimated from sample data, using an estimation technique
such as maximum likelihood. In this case, the distribution of Dn depends
upon both n and the particular distribution that is being fit to the data.
Lilliefors [103] provides a table (obtained via Monte Carlo simulation) of se-
lected percentiles of the K–S test statistic Dn for testing whether a set of



13.1 The Kolmogorov–Smirnov Test Statistic 167

observations is from an exponential population with unknown mean. Durbin
[48] also provides a table (obtained by series expansions) of selected percentiles
of the distribution ofDn. This paper presents the derivation of the distribution
of Dn in the case of exponential sampling for n = 1, n = 2, and n = 3. Ad-
ditionally, the distribution of the Cramer–von Mises and Anderson–Darling
test statistics for n = 1 and n = 2 are derived in Section 13.2. Two case
studies that analyze real-world data sets (Space shuttle accidents and com-
mercial nuclear power accidents), where n = 2 and the fit to an exponential
distribution is important, are given in Section 13.3. Future work involves ex-
tending the formulas established for the exponential distribution with samples
of size n = 1, 2, and 3 to additional distributions and larger samples. For a
summary of the literature available on these test statistics and goodness-of-fit
techniques (including tabled values, comparative merits, and examples), see
D’Agostino and Stephens [40].

We now define notation that will be used throughout this chapter. Let

X be an exponential random variable with PDF f(x) =
1

θ
e−x/θ and CDF

F (x) = 1− e−x/θ for x > 0 and fixed, unknown parameter θ > 0. If
x1, x2, . . . , xn are the sample data values, then the maximum likelihood esti-
mator (MLE) θ̂ is

θ̂ =
1

n

n∑

i=1

xi.

We test the null hypothesis H0 that X1, X2, . . . , Xn are iid exponential(θ)
random variables.

13.1.1 Distribution of D1 for Exponential Sampling

If there is only n = 1 sample data value, which we will call x1, then θ̂ = x1.
Therefore, the fitted CDF is

F̂ (x) = 1− e−x/θ̂ = 1− e−x/x1 x > 0.

As shown in Figure 13.1, the largest vertical distance between the empirical
CDF F1(x) and F̂ (x) occurs at x1 and has the value 1− 1/e, regardless of the
value of x1. Thus, the distribution of D1 is degenerate at 1− 1/e with CDF

FD1(d) =

{
0 d < 1− 1/e
1 d ≥ 1− 1/e.
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Fig. 13.1. The empirical and fitted exponential distribution for one data value x1,
where D−

1 = 1 − 1/e and D+
1 = 1/e. [Note: The riser of the empirical CDF in this

and other figures has been included to aid in comparing the lengths of D−
1 and D+

1 ]

13.1.2 Distribution of D2 for Exponential Sampling

If there are n = 2 sample data values, then the MLE is θ̂ = (x1 + x2)/2, and
thus, the fitted CDF is

F̂ (x) = 1− e−x/θ̂ = 1− e−2x/(x1+x2) x > 0.

A maximal scale invariant statistic (see Lehmann [99, page 215]) is

x1

x1 + x2
.

The associated statistic which is invariant to re-ordering is

y =
x(1)

x(1) + x(2)
,

where x(1) = min{x1, x2}, x(2) = max{x1, x2}, and 0 < y ≤ 1/2 because

0 < x(1) ≤ x(2). The fitted CDF F̂ (x) at the values x(1) and x(2) is

F̂ (x(1)) = 1− e−2x(1)/(x(1)+x(2)) = 1− e−2y

and

F̂ (x(2)) = 1− e−2x(2)/(x(1)+x(2)) = 1− e−2(1−y).
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It is worth noting that the fitted CDF F̂ (x) always intersects the second
riser of the empirical CDF F2(x). This is due to the fact that F̂ (x(2)) can
range from 1 − 1/e ∼= 0.6321 (when y = 1/2) to 1 − 1/e2 ∼= 0.8647 (when
y = 0), which are both included in the second riser’s extension from 0.5 to 1.
Conversely, the fitted CDF F̂ (x) may intersect the first riser of the empirical

CDF F2(x), depending on the value of y. When 0 < y ≤ ln(2)
2

∼= 0.3466,

the first riser is intersected by F̂ (x) (as displayed in Figure 13.2), but when
ln(2)
2 < y ≤ 1/2, F̂ (x) lies entirely above the first riser (as subsequently

displayed in Figure 13.6).
Define the random lengths A, B, C, and D according to the diagram in

Figure 13.2. With y = x(1)/(x(1) + x(2)), the lengths A, B, C and D (as
functions of y) are

A =
(
1− e−2y

)− 0 = 1− e−2y 0 < y ≤ 1/2,

B =
∣∣ 1
2 − (1− e−2y

)∣∣ =

{
e−2y − 1

2 0 < y ≤ ln(2)
2 ,

1
2 − e−2y ln(2)

2 < y ≤ 1/2,

C =
(
1− e−2(1−y)

)− 1
2 = 1

2 − e−2(1−y) 0 < y ≤ 1/2,
D = 1− (1− e−2(1−y)

)
= e−2(1−y) 0 < y ≤ 1/2,

where absolute value signs are used in the definition of B to cover the case in
which F̂ (x) does not intersect the first riser.
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Fig. 13.2. The empirical and fitted exponential distribution for two data values
x(1) and x(2). In this particular plot, 0 < y ≤ ln(2)

2
, so the first riser of the empirical

CDF F2(x) is intersected by the fitted CDF F̂ (x)
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Fig. 13.3. Lengths A, B, C, and D from Figure 13.2 for n = 2 and 0 < y ≤ 1/2

Figure 13.3 is a graph of the lengths A, B, C, and D plotted as func-
tions of y, for 0 < y ≤ 1/2. For any y ∈ (0, 1/2], the K–S test statistic is
D2 = max{A,B,C,D}. Since the length D is less than max{A, B, C} for all
y ∈ (0, 1/2], only A, B, C, and the y-values of their intersections (denoted by
y∗ and y∗∗ in Figure 13.3) are needed to define D2.

The values of y∗, C(y∗), y∗∗, and C(y∗∗) are:

y∗ = 1 +
1

2
ln

(
1

2
− 1

2

√
1− 4

e2

)
∼= 0.0880,

C(y∗) =
1

2

√
1− 4

e2
∼= 0.3386,

y∗∗ = 1 +
1

2
ln

(
1

4

√
1 +

16

e2
− 1

4

)
∼= 0.1821,

C(y∗∗) =
3

4
− 1

4

√
1 +

16

e2
∼= 0.3052.

Thus, the largest vertical distance D2 is computed using the length formula
for A(Y ), B(Y ), or C(Y ) depending on the value of the random variable
Y = X(1)/(X(1) +X(2)), i.e.,

D2 =

⎧
⎨

⎩

B(Y ) 0 < Y ≤ y∗

C(Y ) y∗ < Y ≤ y∗∗

A(Y ) y∗∗ < Y ≤ 1/2.

Determining the Distribution of Y = X(1)/(X(1) +X(2)). Let X1, X2 be
a random sample drawn from a population having PDF
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f(x) =
1

θ
e−x/θ x > 0,

for θ > 0. In order to determine the distribution of D2, we must determine
the distribution of Y = X(1)/(X(1) +X(2)), where X(1) = min{X1, X2} and
X(2) = max{X1, X2}.

Using an order statistic result from (Hogg et al. [67, page 193]) the joint
PDF of X(1) and X(2) is

g(x(1), x(2)) = 2! · 1
θ
e−x(1)/θ · 1

θ
e−x(2)/θ =

(
2

θ2

)
e−(x(1)+x(2))/θ 0 < x(1) ≤ x(2).

In order to determine the PDF of Y = X(1)/(X(1) + X(2)), define the
dummy transformation Z = X(2). The random variables Y and Z define
a one-to-one transformation that maps A = {(x(1), x(2)) | 0 < x(1) ≤ x(2)} to
B = {(y, z) | 0 < y ≤ 1/2, z > 0}. Since x(1) = yz/(1 − y), x(2) = z, and the
Jacobian of the inverse transformation is z/(1− y)2, the joint PDF of Y and
Z is

h(y, z) =
2

θ2
e−(z+yz/(1−y))/θ ·

∣∣∣∣
z

(1 − y)2

∣∣∣∣ =
2z

θ2(1− y)2
e−z/(1−y)θ

for 0 < y ≤ 1/2, z > 0. Integrating the joint PDF by parts yields the marginal
PDF of Y :

fY (y) =
2

θ2(1− y)2

∫ ∞

0

ze−z/(1−y)θ dz = 2 0 < y ≤ 1/2,

i.e., Y ∼ U(0, 1/2).
The final step in determining the probability distribution of D2 is to

project max{A, B, C} (displayed in Figure 13.4) onto the vertical axis,
weighting appropriately to account for the distribution of Y . Since lim

y↓0
B(y) = 1/2,

in order to determine the CDF for D2, we must determine the functions Fα,
Fβ , and Fγ associated with the following intervals for the CDF of D2:

FD2(d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 d ≤ C(y∗∗)

Fα(d) C(y∗∗) < d ≤ C(y∗)

Fβ(d) C(y∗) < d ≤ 1
2

Fγ(d)
1
2 < d ≤ 1− 1

e

1 d > 1− 1
e .

Determining the Distribution of D2. In order to determine Fα, Fβ , and
Fγ , it is necessary to find the point of intersection of a horizontal line of height
d ∈ [C(y∗∗), 1 − 1/e] with A(y), B(y), and C(y), displayed in Figure 13.4.
These points of intersection will provide integration limits for determining
the distribution of D2.
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Solving each of the equations B(y) = d, C(y) = d, and D(y) = d for
y yields y = − 1

2 ln
(
d+ 1

2

)
, y = 1 + 1

2 ln
(
1
2 − d

)
, and y = − 1

2 ln (1− d),
respectively. Using these three y-values, we can determine the functions Fα,
Fβ , and Fγ :
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0.5

0.6
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Fig. 13.4. D2 = max{A,B,C} for n = 2 and 0 < y ≤ 1/2

Fα(d) = Pr(D2 ≤ d)

=

∫ − 1
2 ln(1−d)

1+ 1
2 ln( 1

2−d)
fY (y) dy

= −2− ln[(1/2− d)(1 − d)] C(y∗∗) ≤ d < C(y∗),
Fβ(d) = Pr(D2 ≤ d)

=

∫ − 1
2 ln(1−d)

− 1
2 ln(d+ 1

2 )
fY (y) dy

= ln

(
d+ 1/2

1− d

)
C(y∗) ≤ d < 1/2, and

Fγ(d) = Pr(D2 ≤ d)

=

∫ − 1
2 ln(1−d)

0

fY (y) dy

= − ln(1− d) 1/2 ≤ d < 1− 1/e.
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Putting the pieces together, the CDF of D2 is

FD2 (d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 d < C(y∗∗)

−2− ln(1/2− d)− ln(1 − d) C(y∗∗) ≤ d < C(y∗)

ln(d+ 1/2)− ln(1− d) C(y∗) ≤ d < 1
2

− ln(1− d) 1
2 ≤ d < 1− 1

e

1 d ≥ 1− 1
e .

Differentiating with respect to d, the PDF of D2 is

fD2(d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1− d
+

1

1/2 + d
+

2d

(1/2 + d)(1/2− d)
C(y∗∗) < d < C(y∗)

1

1− d
+

1

1/2 + d
C(y∗) < d < 1/2

1

1− d
1/2 < d < 1− 1/e,

which is plotted in Figure 13.5. The percentiles of this distribution match the
tabled values from Durbin [48].
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(  )d

Fig. 13.5. The PDF of D2

The distribution of D2 can also be derived using APPL. The distribu-
tion’s exact mean, variance, skewness (expected value of the standardized,
centralized third moment), and kurtosis (expected value of the standardized,
centralized fourth moment) can be determined in Maple with the following
APPL statements:
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> Y := UniformRV(0, 1 / 2);

> A := 1 - exp(-2 * y);

> B := exp(-2 * y) - 1 / 2;

> C := 1 / 2 - exp(-2 * (1 - y));

> ys := solve(B = C, y)[1];

> yss := solve(A = C, y)[1];

> g := [[unapply(B, y), unapply(C, y), unapply(A, y)],

> [0, ys, yss, 1 / 2]];

> D2 := Transform(Y, g);

> Mean(D2);

> Variance(D2);

> Skewness(D2);

> Kurtosis(D2);

The Maple solve procedure is used to find y∗ and y∗∗ (the variables ys and
yss) and the APPL Transform procedure transforms the random variable Y
toD2 using the piecewise segments B, C, and A. The expressions for the mean,
variance, skewness, and kurtosis are given in terms of radicals, exponentials,
and logarithms, e.g.,

E[D2] = −1 +

(
1

2e

)
2− r − 2s

+

(
1

2

)
2 ln(e2 + er) + 6 ln 2 + ln(er − e2)− ln(e2 − es) + ln(e2 + es),

where r =
√
e2 + 16 and s =

√
e2 − 4. The others are too lengthy to display

here, but the decimal approximations for the mean, variance, skewness, and
kurtosis are, respectively, E(D2) ∼= 0.4430, V (D2) ∼= 0.0100, γ3 ∼= 0.2877, and
γ4 ∼= 1.7907.

Example 13.1. Suppose that two data values, x(1) = 95 and x(2) = 100,
constitute a random sample from an unknown population. The hy-
pothesis test

H0 : F (x) = F0(x)

H1 : F (x) �= F0(x),

where F0(x) = 1 − e−x/θ, is used to test the legitimacy of mod-
eling the data set with an exponential distribution. The MLE is
θ̂ = (95 + 100)/2 = 97.5. The empirical distribution function, fitted
exponential distribution, and corresponding lengths A, B, C, and D
are displayed in Figure 13.6.
The ratio y = x(1)/(x(1) + x(2)) = 95/195 corresponds to A being the
maximum of A, B, C, and D. This yields the test statistic

d2 = 1− e−2(95/195) ∼= 0.6226,



13.1 The Kolmogorov–Smirnov Test Statistic 175

0 20 40 60 80 100 140

0.0

0.2

0.4

0.6

0.8

1.0

Empirical CDF

Fitted CDF

x

F(  )  x

A

B C

D

120

Fig. 13.6. The empirical and fitted exponential distribution for two data values
x(1) = 95 and x(2) = 100. In this example, y > ln(2)

2
, so the first riser of the

empirical CDF is not intersected by the fitted CDF

which falls in the right-hand tail of the distribution of D2, as displayed
in Figure 13.7. (The two breakpoints in the CDF are also indicated
in Figure 13.7.) Hence, the test statistic provides evidence to reject
the null hypothesis for the goodness-of-fit test. Since large values of
the test statistic lead to rejecting H0, the p-value associated with this
particular data set is

p = 1−FD2

(
1−e−2(95/195)) = 1+ln

(
1−

[
1− e−2(95/195)

])
=

1

39
∼= 0.02564.

Using the exact PDF of D2 to determine the p-value is superior to
using tables (e.g., Durbin [48]) since the approximation associated
with linear interpolation is avoided. The exact PDF is also preferred
to approximations from Stephens [152] and Law [88], which often do
not perform well for small values of n. Since the distribution of D2

is not a function of θ, the power of the hypothesis test as a function
of θ is constant with a value of 1 − α. Since there appears to be a
pattern to the functional forms associated with the three segments of
the PDF of D2, we derive the distribution of D3 in the appendix in
an attempt to establish a pattern.

The focus of the paper now shifts to investigating the distributions of other
goodness-of-fit statistics.
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Fig. 13.7. The CDF of D2 and the test statistic D2 = 1− e−2(95/195) ∼= 0.6226

13.2 Other Measures of Fit

The K–S test statistic measures the distance between Fn(x) and F̂ (x) by using
the L∞ norm. The square of the L2 norm gives the test statistic

L2
2 =

∫ ∞

−∞

(
Fn(x)− F̂ (x)

)2
dx,

which, for exponential sampling and n = 1 data value, is

L2
2 =

∫ x1

0

(
1− e−x/x1

)2
dx+

∫ ∞

x1

e−2x/x1 dx =

(
4− e

2e

)
x1.

Since X1 ∼ exponential(θ), L2
2 ∼ exponential

(
4−e
2e θ
)
. Unlike the K–S test

statistic, the square of the L2 norm is dependent on θ. For exponential sam-
pling with n = 2, the square of the L2 norm is also dependent on θ:

L2
2 =

∫ ∞

0

(
F2(x)− F̂ (x)

)2
dx

=

∫ x(1)

0

F̂ (x)2 dx+

∫ x(2)

x(1)

(
F̂ (x) − 1

2

)2

dx+

∫ ∞

x(2)

(
1− F̂ (x)

)2
dx

=

∫ x(1)

0

(
1− e−2x/(x1+x2)

)2
dx+

∫ x(2)

x(1)

(
1

2
− e−2x/(x1+x2)

)2

dx

+

∫ ∞

x(2)

(
e−2x/(x1+x2)

)2
dx

= −x(2)

2
+

x(1) + x(2)

2
·
(
e−2x(1)/(x(1)+x(2)) + e−2x(2)/(x(1)+x(2))

)
,
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where X(1) ∼ exponential(2θ) and X(2) has the marginal PDF

fX(2)
(x) = 2

(
1− e−x/θ

)(1
θ
e−x/θ

)
, x > 0.

Unlike the square of the L2 norm, the Cramer–von Mises and Anderson–
Darling test statistics (see Lawless [91]) are distribution-free. They can be
defined as

W 2
n = n

∫ ∞

−∞

(
Fn(x) − F̂ (x)

)2
dF̂ (x)

and

A2
n = n

∫ ∞

−∞

(
Fn(x)− F̂ (x)

)2

F̂ (x)
[
1− F̂ (x)

] dF̂ (x),

where n is the sample size. The computational formulas for these statistics
are

W 2
n =

n∑

i=1

(
F̂ (x(i))− i− 0.5

n

)2

+
1

12n

and

A2
n = −

n∑

i=1

2i− 1

n

(
ln
(
F̂ (x(i))

)
+ ln
(
1− F̂ (x(n+1−i))

))− n.

13.2.1 Distribution of W 2
1 and A2

1 for Exponential Sampling

When n = 1 and sampling is from an exponential population, the Cramer–von
Mises test statistic is

W 2
1 =

(
1

2
− 1

e

)2

+
1

12
=

1

3
− 1

e
+

1

e2
.

Thus, the Cramer–von Mises test statistic is degenerate for n = 1 with CDF

FW 2
1
(w) =

⎧
⎪⎨

⎪⎩

0 w <
1

3
− 1

e
+

1

e2

1 w ≥ 1

3
− 1

e
+

1

e2
.

When n = 1 and sampling is from an exponential population, the
Anderson–Darling test statistic is

A2
1 = − ln(1− e−1)− ln(e−1)− 1 = 1− ln(e − 1).

It is also degenerate for n = 1 with CDF

FA2
1
(a) =

{
0 a < 1− ln(e− 1)
1 a ≥ 1− ln(e− 1).
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13.2.2 Distribution of W 2
2 and A2

2 for Exponential Sampling

When n = 2 and sampling is from an exponential population, the Cramer–von
Mises test statistic is

W 2
2 =

(
e−x(1)/θ̂ − 3

4

)2

+

(
e−x(2)/θ̂ − 1

4

)2

+
1

24
,

where θ̂ = (x1 + x2)/2. The Anderson–Darling test statistic is

A2
2 = 2− 1

2
ln
(
ex(1)/θ̂ − 1

)
− 3

2
ln
(
ex(2)/θ̂ − 1

)
.

If we let y = x(1)/(x(1) + x(2)), as we did when working with D2, we obtain
the following formulas for W 2

2 and A2
2 in terms of y,

W 2
2 =

(
e−2y − 3

4

)2

+

(
e−2(1−y) − 1

4

)2

+
1

24
,

and

A2
2 = 2− 1

2
ln
(
e2y − 1

)− 3

2
ln
(
e2(1−y) − 1

)
,

for 0 < y ≤ 1/2. Graphs of D2, W
2
2 , and A2

2 are displayed in Figure 13.8.
Although the ranges of the three functions are quite different, they share
similar shapes.

Each of the three functions plotted in Figure 13.8 achieves a minimum
between y = 0.15 and y = 0.2. The Cramer–von Mises test statistic W 2

2

achieves a minimum at y∗∗∗ that satisfies

4e−4y − 3e−2y − 4e−4(1−y) + e−2(1−y) = 0

for 0 < y ≤ 1/2. This is equivalent to fourth-degree polynomial in e2y that can
be solved exactly using radicals. The minimum is achieved at y∗∗∗ ∼= 0.1549.
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Fig. 13.8. Graphs of D2, W
2
2 , and A2

2 for n = 2 and 0 < y ≤ 1/2
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Likewise, the Anderson–Darling test statistic A2
2 achieves a minimum at y∗∗∗∗

that satisfies
e2y + 2e2 − 3e2(1−y) = 0

for 0 < y ≤ 1/2, which yields

y∗∗∗∗ =
1

2
+

1

2
ln
(√

e2 + 3− e
) ∼= 0.1583.

These values and other pertinent values associated with D2, W
2
2 , and A2

2 are
summarized in Table 13.1.

Table 13.1. Pertinent values associated with the test statistics D2, W
2
2 , and A2

2

Test Value when Minimized Global minimum Value when

statistic y = 0 at on (0, 1/2] y = 1/2

D2
1

2
y∗∗ ∼= 0.1821 D2(y

∗∗) ∼= 0.3052 1− 1

e
∼= 0.6321

W 2
2

1

6
+

1

e4
− 1

2e2
y∗∗∗ ∼= 0.1549 W 2

2 (y
∗∗∗) ∼= 0.04623

2

e2
− 2

e
+

2

3
∼= 0.2016

∼= 0.1173

A2
2 +∞ y∗∗∗∗ ∼= 0.1583 A2

2(y
∗∗∗∗) ∼= 0.2769 2− 2 ln(e− 1) ∼= 0.9174

Figure 13.8 can be helpful in determining which of the three goodness-of-fit
statistics is appropriate in a particular application. Consider, for instance, a
reliability engineer who is interested in detecting whether reliability growth or
reliability degradation is occurring for a repairable system. One would expect
a shorter failure time followed by a longer failure time if reliability growth were
occurring; one would expect a longer failure time followed by a shorter failure
time if reliability degradation were occurring. In either case, these correspond
to a small value of y, so Figure 13.8 indicates that the Anderson–Darling test
is preferred due to the vertical asymptote at y = 0.

For notational convenience below, let D2(y), W
2
2 (y), and A2

2(y) denote the
values of D2, W

2
2 , and A2

2, respectively, corresponding to a specific value of y.
For example, W 2

2 (1/4) denotes the value of W 2
2 when y = 1/4.

Example 13.2. Consider again the data from Example 13.1: x(1) = 95
and x(2) = 100. Since y = 95/195 = 19/39, the Cramer–von Mises
test statistic is

w2
2 =
(
e−38/39 − 3/4

)2
+
(
e−40/39 − 1/4

)2
+ 1/24 ∼= 0.1923.

The p-value for this test statistic is the same as the p-value for the
K–S test statistic, namely



180 13 Kolmogorov–Smirnov, Cramer–von Mises, etc.

∫ 1/2

19/39

fY (y)dy =

∫ 1/2

19/39

2dy = 1/39 ∼= 0.0256.

More generally, for each value of y such that both D2(y) > D2(0) and
W 2

2 (y) > W 2
2 (0),

FD2 (D2(y)) = FY (y) = FW 2
2

(
W 2

2 (y)
)
.

The Anderson–Darling test statistic for x(1) = 95 and x(2) = 100 is

a22 = 2− 1

2
ln
(
e38/39 − 1

)
− 3

2
ln
(
e40/39 − 1

) ∼= 0.8774.

Since the value of A2
2(y) exceeds the test statistic a22

∼= 0.8774 only
for y < y′ = 0.02044 [where y′ is the first intersection point of A2

2(y)
and the horizontal line with height A2

2(19/39)] and for y > 19/39, the
p-value for the Anderson–Darling goodness-of-fit test is given by

p =

∫ y′

0

2 dy +

∫ 1/2

19/39

2 dy = 2y′ + (1− 38/39) ∼= 0.06654.

Determining the Distribution of W 2
2 and A2

2. As was the case with D2,
we can find exact expressions for the PDFs of W 2

2 and A2
2. Consider W

2
2 first.

For w values in the interval W 2
2 (y

∗∗∗) ≤ w < W 2
2 (0), the CDF of W 2

2 is

FW 2
2
(w) =

∫ y2

y1

fY (y) dy = 2(y2 − y1),

where y1 and y2 are the ordered solutions to W 2
2 = w. For w values in the

interval W 2
2 (0) ≤ w < W 2

2 (1/2), the CDF of W 2
2 is

FW 2
2
(w) =

∫ y1

0

fY (y) dy = 2y1,

where y1 is the solution to W 2
2 = w on 0 < y < 1/2. The following APPL

code can be used to find the PDF of W 2
2 .

> Y := UniformRV(0, 1 / 2);

> W := (exp(-2 * y) - 3 / 4) ^ 2

> + (exp(-2 * (1 - y)) - 1 / 4) ^ 2 + 1 / 24;

> ysss := solve(diff(W, y) = 0, y)[1];

> g := [[unapply(W, y), unapply(W, y)], [0, ysss, 1 / 2]];

> W2 := Transform(Y, g);
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The Transform procedure requires that the transformation g be input in
piecewise monotone segments. The resulting PDF for W 2

2 is too lengthy to
display here.

Now consider A2
2. For a value in the interval A2

2(y
∗∗∗∗) ≤ a < A2

2(1/2), the
CDF of A2

2 is

FA2
2
(a) =

∫ y2

y1

fY (y) dy = 2(y2 − y1),

where y1 and y2 are the ordered solutions to A2
2 = a on 0 < y ≤ 1/2. For a

values in the interval A2
2(1/2) ≤ a < ∞, the CDF of A2

2 is

FA2
2
(a) =

∫ 1/2

y1

fY (y) dy = 1− 2y1,

where y1 is the solution to A2
2 = a on 0 < y < 1/2. The following APPL code

can be used to find the PDF of A2
2.

> Y := UniformRV(0, 1 / 2);

> A := 2 - ln(exp(2 * y) - 1) / 2 - 3

> * ln(exp(2 * (1 - y)) - 1) / 2;

> yssss := solve(diff(A, y) = 0, y)[1];

> g := [[unapply(A, y), unapply(A, y)], [0, yssss, 1/2]];

> A2 := Transform(Y, g);

The resulting PDF for A2
2 is again too lengthy to display here.

13.3 Applications

Although statisticians prefer large sample sizes because of the associated de-
sirable statistical properties of estimators as the sample size n becomes large,
there are examples of real-world data sets with only n = 2 observations in
which the fit to an exponential distribution is important. In this section,
we focus on two applications: U.S. Space Shuttle flights and the world-wide
commercial nuclear power industry. Both applications involve significant gov-
ernment expenditures associated with decisions that must be made based on
limited data. In both cases, “events” are failures and the desire is to test
whether a homogeneous Poisson process model or other (e.g., a nonhomoge-
neous Poisson process) model is appropriate, i.e., determining whether failures
occur randomly over time. Deciding which of the models is appropriate is im-
portant to reliability engineers since a nonhomogeneous Poisson process with
a decreasing intensity function may be a sign of reliability growth or improve-
ment over time (Rigdon and Basu [135]).
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Example 13.3. NASA’s Space Shuttle program has experienced n = 2
catastrophic failures which have implications for the way in which the
United States will pursue future space exploration. On January 28,
1986, the Challenger exploded 72 s after liftoff. Failure of an O-ring
was determined as the most likely cause of the accident. On Febru-
ary 1, 2003, Shuttle Columbia was lost during its return to Earth.
Investigators believed that tile damage during ascent caused the ac-
cident. These two failures occurred on the 25th and 113th Shuttle
flights. A goodness-of-fit test is appropriate to determine whether the
failures occurred randomly, or equivalently, whether a Poisson process
model is appropriate. The hope is that the data will fail this test due
to the fact that reliability growth has occurred due to the many im-
provements that have been made to the Shuttle (particularly after the
Challenger accident), and perhaps a nonhomogeneous Poisson process
with a decreasing intensity function is a more appropriate stochastic
model for failure times. Certainly, large amounts of money have been
spent and some judgments about the safety and direction of the future
of the Shuttle program should be made on the basis of these two data
values.
The appropriate manner to model time in this application is non-
trivial. There is almost certainly increased risk on liftoff and landing,
but the time spent on the mission should also be included because
an increased mission time means an increased exposure to internal
and external failures while a Shuttle is in orbit. Because of this inher-
ent difficulty in quantifying time, we do our numerical analysis on an
example in an application area where time is more easily measured.

Example 13.4. The world-wide commercial nuclear power industry has
experienced n = 2 core meltdowns in its history. The first was at the
Three Mile Island nuclear facility on March 28, 1979. The second was
at Chernobyl on April 26, 1986. As in the case of the Space Shuttle
accidents, it is again of interest to know whether the meltdowns can be
considered to be events from a Poisson process. The hypothesis test of
interest here is whether the two times to meltdown are independent
observations from an exponential population with a rate parameter
estimated from data. Measuring time in this case is not trivial because
of the commissioning and decommissioning of facilities over time. The
first nuclear power plant was the Calder Hall I facility in the United
Kingdom, commissioned on October 1, 1956. Figure 13.9 shows the
evolution of the number of active commercial reactors between that
date and the Chernobyl accident on April 26, 1986. The commissioning
and decommissioning dates of all commercial nuclear reactors is given
in Cho and Spiegelberg–Planer [32]. Downtime for maintenance has
been ignored in determining the times of the two accidents.
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Fig. 13.9. Number of operating commercial nuclear power plants world-wide
between October 1, 1956 and April 26, 1986

Using the data illustrated in Figure 13.9, the time of the two accidents mea-
sured in cumulative commercial nuclear reactor years is found by integrating
under the curve. The calendar dates were converted to decimal values using
Julian dates, adjusting for leap years. The two accidents occurred at 1548.02
and 3372.27 cumulative operating years, respectively. This means that the
hypothesis test is to see whether the times between accidents, namely 1548.02
and 3372.27−1548.02 = 1824.25 years can be considered independent observa-
tions from an exponential population. The maximum likelihood estimator for
the mean time between core meltdowns is θ̂ = 1686.14 years. This results in
a y-value of y = 1548.02/(1548.02+ 1824.25) = 0.459 and a K–S test statistic
of d2 = 0.601. This corresponds to a p-value for the associated goodness-of-fit
test of p = 1+ ln(1− d2) = 0.082. There is not enough statistical evidence to
conclude a nonhomogeneous model is appropriate here, so it is reasonable to
model nuclear power accidents as random events. Figure 13.10 shows a plot
of the fitted CDF and associated values of A, B, C, and D for this data set.
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Appendix: Distribution of D3 for Exponential Sampling

The pattern that emerged in the piecewise representation of the PDF of D2

led us to derive the PDF of D3 to see if any similar patterns arose. This ap-
pendix contains a derivation of the distribution of the K–S test statistic when
n = 3 observations x1, x2, and x3 are drawn from an exponential population
with fixed, positive, unknown mean θ. The maximum likelihood estimator is
θ̂ = (x1 + x2 + x3)/3, which results in the fitted CDF

F̂ (x) = 1− e−x/θ̂ x > 0.

Analogous to the n = 2 case, define

y =
x(1)

x(1) + x(2) + x(3)

and

z =
x(2)

x(1) + x(2) + x(3)

so that

1− y − z =
x(3)

x(1) + x(2) + x(3)
.

The domain of definition of y and z is

D = {(y, z) | 0 < y < z < (1− y)/2}.
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The values of the fitted CDF at the three order statistics are

F̂ (x(1)) = 1− e−x(1)/θ̂ = 1− e−3y,

F̂ (x(2)) = 1− e−x(2)/θ̂ = 1− e−3z,

and
F̂ (x(3)) = 1− e−x(3)/θ̂ = 1− e−3(1−y−z).

The vertical distances A, B, C, D, E, and F (as functions of y and z) are
defined in a similar fashion to the n = 2 case (see Figure 13.2):

A = 1− e−3y

B =
∣∣1
3 − (1− e−3y

)∣∣ =
∣∣e−3y − 2

3

∣∣

C =
∣∣(1− e−3z

)− 1
3

∣∣ =
∣∣e−3z − 2

3

∣∣

D =
∣∣2
3 − (1− e−3z

)∣∣ =
∣∣e−3z − 1

3

∣∣

E =
∣∣(1− e−3(1−y−z)

)− 2
3

∣∣ =
∣∣e−3(1−y−z) − 1

3

∣∣

F = 1− (1− e−3(1−y−z)
)

= e−3(1−y−z)

for (y, z) ∈ D.
Figure 13.11 shows the regions associated with the maximum of A, B, C,

D, E, F for (y, z) ∈ D. In three dimensions, with D3 = max{A,B,C,D,E, F}
as the third axis, this figure appears to be a container with the region E at
the bottom of the container and with each of the other four sides rising as
they move away from their intersection with E. The absolute value signs
that appear in the final formulas for B, C, D, and E above can be easily
removed since, over the region D associated with D3, the expressions within
the absolute value signs are always positive for B and D, but always negative
for C and E. The distance F is never the largest of the six distances for any
(y, z) ∈ D, so it can be excluded from consideration. Table 13.2 gives the
functional forms of the two-way intersections between the five regions shown
in Figure 13.11. Note that the BC and AD curves, and the AC and BD
curves, are identical.

In order to determine the breakpoints in the support for D3, it is necessary
to find the (y, z) coordinates of the three-way intersections of the five regions
in Figure 13.11 and the two-way intersections of the regions on the boundary of
D. Table 13.3 gives the values of y and z for these breakpoints on the boundary
of D, along with the value of D3 = max{A,B,C,D,E, F} at these values,
beginning at (y, z) = (0, 1/2) and proceeding in a counterclockwise direction.
One point has been excluded from Table 13.3 because of the intractability
of the values (y, z). The three-way intersection between regions A, C, and
the line z = (1 − y)/2 can only be expressed in terms of the solution to a
cubic equation. After some algebra, the point of intersection is the decimal
approximation (y, z) ∼= (0.1608, 0.4196) and the associated value of D3 is 2/3
minus the only real solution to the cubic equation



186 13 Kolmogorov–Smirnov, Cramer–von Mises, etc.

0.0 0.1 0.2 0.3

0.0

0.1

0.2

0.3

0.4

0.5

A
B

C

D

E

y

z

Fig. 13.11. Regions associated with max{A,B,C,D,E, F} over (y, z) ∈ D

Table 13.2. Intersections of regions A, B, C, D, and E in D

Region intersection Function

AD z = − 1
3 ln
(
4
3 − e−3y

)

BD z = − 1
3 ln
(
e−3y − 1

3

)

BC z = − 1
3 ln
(
4
3 − e−3y

)

AC z = − 1
3 ln
(
e−3y − 1

3

)

AE z = 1
3 ln
[
e3(1−y)

(
e−3y − 2

3

)]

DE z = 1
3 ln
[
1
3e

3(1−y)
(
1−

√
1− 9e−3(1−y)

)]

BE z = 1
3 ln
[
e3(1−y)

(
1− e−3y

)]

CE z = 1
3 ln
[
1
6e

3(1−y)
(
−1 +

√
1 + 36e−3(1−y)

)]

3d3 + d2 − 3e−3 = 0,

which yields

dAC =
7

9
− 1

18

(
2916e−3 − 8 + c

)1/3 − 2

9

(
2916e−3 − 8 + c

)−1/3 ∼= 0.3827,
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where c = 108
√
729e−6 − 4e−3.

Table 13.3. Intersection points along the boundary of D

y z D3

0 1/2 2/3− e−3/2 ∼= 0.4435
0 ln(3)/3 1/3 ∼= 0.3333
0 ln(3/2)/3 1/3 ∼= 0.3333
0 0 2/3 ∼= 0.6667

ln(3/2)/3 ln(3/2)/3 1/3 ∼= 0.3333
1/3 1/2 1− 1/e ∼= 0.6321

The three-way intersection points in the interior of D are more difficult to
determine than those on the boundary. The value of D3 associated with each
of these four points is the single real root of a cubic equation on the support
of D3. These equations and approximate solution values, in ascending order,
are given in Table 13.4. For example, consider the value of the maximum at
the intersection of regions A, C, and E in Figure 13.11. The value of D3 must
satisfy the cubic equation

e3 (1− d)

(
2

3
− d

)(
1

3
− d

)
= 1,

which yields

dACE =
(243 + c)2/3 122/3c− 243 (243 + c)2/3 122/3 + 144e5 − 124/3e4(243 + c)1/3

216e5
,

or approximately dACE
∼= 0.19998, in which c =

√
59049− 12e6.

Table 13.4. Three-way interior intersection points of regions A, B, C, D, and E
in D

Regions Cubic equation Approximate solution

ACE e3 (1− d)
(
2
3 − d

) (
1
3 − d

)
= 1 dACE

∼= 0.2000

BCE e3
(
1
3 − d

) (
d+ 2

3

) (
2
3 − d

)
= 1 dBCE

∼= 0.2091

ADE e3
(
1
3 − d

) (
d+ 1

3

)
(1− d) = 1 dADE

∼= 0.2178

BDE e3
(
d+ 2

3

) (
d+ 1

3

) (
1
3 − d

)
= 1 dBDE

∼= 0.2366

The largest value of D3 = max{A,B,C,D,E} on D occurs at the origin
(y = 0 and z = 0) and has value 2/3, which is the upper limit of the support
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of D3. The smallest value of D3 on D occurs at the intersection ACE and is
dACE

∼= 0.19998, which is the lower limit of the support of D3.

Determining the Joint Distribution of Y and Z. The next step is
to determine the distribution of Y = X(1)/(X(1) +X(2) +X(3)) and Z =
X(2)/(X(1) + X(2) + X(3)). Using an order statistic result from Hogg et al.
[67, page 193], the joint PDF of X(1), X(2), and X(3) is

g(x(1), x(2), x(3)) =
3!

θ3
exp
(−(x(1)+x(2)+x(3))/θ

)
0 < x(1) ≤ x(2) ≤ x(3).

In order to determine the joint PDF of Y = X(1)/(X(1) +X(2) +X(3)) and
Z = X(2)/(X(1) +X(2) +X(3)), define the dummy transformation W = X(3).
The random variables Y , Z, and W define a one-to-one transformation from
A = {(x(1), x(2), x(3)) | 0 < x(1) ≤ x(2) ≤ x(3))} to B = {(y, z, w) | 0 < y < z <
(1 − y)/2, w > 0}. Since x(1) = yw/(1 − y − z), x(2) = zw/(1 − y − z), and
x(3) = w, and the Jacobian of the inverse transformation is w2/(1 − y − z)3,
the joint PDF of Y , Z, and W on B is

h(y, z, w) =
6

θ3
exp

(
−
(
yw + zw

1− y − z
+ w

)
/θ

) ∣∣∣∣
w2

(1− y − z)3

∣∣∣∣

=
6w2

θ3(1− y − z)3
exp

(
− w

(1− y − z)θ

)
(y, z, w) ∈ B.

Integrating by parts, the joint PDF of Y and Z on D is

fY,Z(y, z) =
6

θ3(1− y − z)3

∫ ∞

0

w2 exp

(
− w

(1− y − z)θ

)
dw = 12 (y, z, w) ∈ D,

i.e., Y and Z are uniformly distributed on D.

Determining the Distribution of D3. The CDF of D3 will be defined
in a piecewise manner, with breakpoints at the following ordered quantities:
dACE , dBCE , dADE , dBDE , 1/3, dAC ,

2
3 − e−3/2, 1 − 1

e , and 2/3. The CDF
FD3(d) = Pr(D3 ≤ d) is found by integrating the joint PDF of Y and Z over
the appropriate limits, yielding
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FD3
(d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 d < dACE

2
3

[
ln
(
e3[1− d]

[
2
3
− d

] [
1
3
− d

])]2
dACE ≤ d < dBCE

2
3
ln
[
e6(1− d)

(
2
3
− d

)2 ( 2
3
+ d

) (
1
3
− d

)2]

× ln
(

1−d
2/3+d

)
dBCE ≤ d < dADE

4
3
ln
(

d+1/3
2/3−d

)
ln

(
d+2/3
1−d

)

− 2
3

[
ln
(
e3

[
d+ 2

3

] [
d+ 1

3

] [
1
3
− d

])]2
dADE ≤ d < dBDE

4
3
ln
(

d+1/3
2/3−d

)
ln

(
d+2/3
1−d

)
dBDE ≤ d < 1

3

4
3
ln
(

2/3−d
d+1/3

)
ln(1− d)− 2

3

[
ln

(
d+1/3
1−d

)]2
1
3
≤ d < dAC

1− 2
3

[
ln

(
d+ 1

3
)
)]2 − [1 + ln (1− d)]2

−3
[
1 + 2

3
ln

(
2
3
− d

)]2
dAC ≤ d < 2

3
− e−3/2

1− 2
3

[
ln

(
d+ 1

3
)
)]2 − [1 + ln (1− d)]2 2

3
− e−3/2 ≤ d < 1− e−1

1− 2
3

[
ln

(
d+ 1

3
)
)]2

1− e−1 ≤ d < 2
3

1 d ≥ 2
3
,

which is plotted in Figure 13.12. Dots have been plotted at the breakpoints,
with each of the lower four tightly-clustered breakpoints from Table 13.4 cor-
responding to a horizontal plane intersecting one of the four corners of region
E in Figure 13.11. Percentiles of this distribution match the tabled values
from Durbin [48]. We were not able to establish a pattern between the CDF
of D2 and the CDF of D3 that might lead to a general expression for any n.

APPL was again used to calculate moments of D3. The decimal approx-
imations for the mean, variance, skewness, and kurtosis, are, respectively,
E(D3) ∼= 0.3727, V (D3) ∼= 0.008804, γ3 ∼= 0.4541, and γ4 ∼= 2.6538. Al-
though the functional form of the eight-segment PDF of D3 is too lengthy to
display here, it is plotted in Figure 13.13, with the only non-obvious break-
point being on the initial nearly-vertical segment at

(
dBCE , fD3(dBCE)

) ∼=
(0.2091, 1.5624).
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Parametric Model Discrimination for Heavily
Censored Survival Data

A. Daniel Block and Lawrence M. Leemis

Abstract Simultaneous discrimination among various parametric lifetime
models is an important step in the parametric analysis of survival data. We
consider a plot of the skewness versus the coefficient of variation for the pur-
pose of discriminating among parametric survival models. We extend the
method of Cox and Oakes (1984, Analysis of Survival Data, Chapman &
Hall/CRC) from complete to censored data by developing an algorithm based
on a competing risks model and kernel function estimation. A by-product of
this algorithm is a non-parametric survival function estimate.
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14.1 Introduction

A well-known technique for choosing a probability model to approximate sur-
vival data is plot of the standardized third moment (skewness) versus the co-
efficient of variation as illustrated in Cox and Oakes [35]. Their plot gives the
trajectory of the population skewness versus population coefficient of variation
for several popular parametric lifetime models (e.g., Weibull and log-logistic).
The sample skewness and the sample coefficient of variation can be plotted for
a data set containing no censored data values. The proximity of the sample
point to the population distribution values can be helpful in ruling in and
ruling out particular parametric distributions as potential survival models.

This technique is superior to many of the standard exploratory data
techniques for survival data (QQ plots, PP plots, probability plots, his-
tograms, PDF estimation via kernel functions, empirical CDF estimation via
the Kaplan–Meier product–limit estimate) in the sense that several compet-
ing models are easily viewed simultaneously. The weaknesses of this technique
are (a) it considers only second and third moments which, for example, might
do a poor job of detecting appropriate tail behavior, and (b) it is not easily
adaptable to right-censored data sets. The focus of this paper is overcoming
the second weakness. We limit our discussion to survival models.

Cox and Oakes’ technique is extended here to allow the calculation of these
statistics in the presence of heavy right censoring. Censored data is common
in reliability and survival analysis. Recent work in the area includes works
from Jiang and Jardine [69], Jiang et al. [70], Kundu and Sarhan [84], Li and
Fard [100], Park [128], Sarhan [144], Soliman [149], and Zhang et al. [176, 177].
While data sets with light censoring (as is Cox and Oakes’ example with the
cancer data from Boag [18]) may be handled in a variety of ways (e.g., doubling
censoring times or treating them as failures) without introducing significant
error, heavily censored data leaves a data analyst with only heuristic methods
that will significantly influence the position of the sample point. In this paper,
we will present an analytical approach for plotting a point on the Cox and
Oakes graph regardless of the fraction of censored observations in the data set.

Our approach assumes a random censoring scheme, in which the censor-
ing times and the failure times are independent random variables. Treating
censoring and failing as risks allows us to analyze the data set using a com-
peting risks framework. We then treat the censored observations as coming
from one distribution, and the failures as coming from a second distribution.
We use kernel estimation to create empirical PDFs for these two data sets.
Using a mathematically tractable distribution for the PDF, the competing
risks model is used to estimate the failure time distribution as if censoring
were not present. Because the failed and censored data are observed in the
presence of another risk, these random variables represent crude lifetimes.
A crude lifetime, as defined in David and Moeschberger [42], is the lifetime
of an observation in the presence of other risks (also called a cause-specific
distribution or cause-specific lifetime). Competing risks models are surveyed
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in more recently in Crowder [37] and Pintilie [132]. The goal of this paper is to
find an estimate of the net lifetimes of the failure time distribution (i.e., when
no censoring is present). The net lifetime is the lifetime of an observation only
at risk of failing by one cause. We will use the crude lifetimes and statistical
methods to “eliminate” the presence of the censoring risk. The result will be
the distribution of the net lifetime of the time to failure which can then be
treated as any other distribution of observed failures. The skewness and co-
efficient of variation associated with this distribution will then be plotted on
the graph. The proximity of this point to curves associated with parametric
survival models can be used to provide a list of appropriate models for data
fitting purposes.

14.2 Literature Review

Since several methodologies are used in the algorithm that plots the sample
skewness versus the sample coefficient of variation, we discuss their litera-
ture in the following subsections: (a) Cox and Oakes’ methodology, (b) kernel
functions, (c) competing risks.

Cox and Oakes’ Methodology. Section 2.4 of Cox and Oakes [35] outlines
four methods for plotting or tabulating data to select a parametric survival
distribution. One of these methods (illustrated on page 27) is a plot of the
standardized third moment (skewness) γ3 = E[(T−μ

σ )3] versus the coefficient
of variation γ = σ/μ, where μ and σ are the mean and standard deviation
of the lifetime T . Cox and Oakes plot γ3 versus γ for several popular dis-
tributions. Their graph is replicated in Figure 14.1 using APPL code given
in Appendix 1. The code has been modified and augmented from Evans and
Leemis [51].

The exponential distribution occurs at the intersection of the Weibull and
gamma curves at γ = 1 and γ3 = 2. As stated earlier, Cox and Oakes “rea-
sonably extrapolate” the light censoring in their example data set. Had the
censoring been heavier, however, their analysis would have been unable to
attain objective results. The square, cross, and diamond in Figure 14.1 are
from the heavily-censored 6-MP treatment group from Gehan [56]:

6, 6, 6, 6∗, 7, 9∗, 10, 10∗, 11∗, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗, 32∗, 34∗, 35∗,

where an asterisk indicates a censored value. In this data set, there are n = 21
individuals at risk, 12 of which are right-censored. The points on the graph,
starting from the left, treat the censored observations heuristically as follows:

1. Censored observations are treated as failures (square).
2. Censored observations are doubled, then treated as failures (diamond).
3. Censored observations are quadrupled, then treated as failures (cross).
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The considerable scatter in these three points gives sufficient impetus to search
for a parameter-free technique for plotting skewness versus coefficient of vari-
ation for a given data set. A goal of this paper is to devise an algorithm based
on non parametric methods that will handle randomly right-censored data
and not require parameters from an analyst.

gamma

Weibulllog-normallog-logistic

−1

0

1

2

3

skew

0.2 0.4 0.6 0.8 1 1.2 1.4
cv

Fig. 14.1. The Cox and Oakes graph with three heuristic methods

Kernel Functions/Density Estimation. Bowman and Azzalini [20] give
an excellent introductory framework for density estimation. They define a
kernel density estimate as:

f̂(y) =
1

n

n∑

i=1

w(y − yi;h),

where w, known as a kernel function, is a probability PDF whose variance is
controlled by the smoothing parameter h and y1, y2, . . . , yn are the data values.
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The primary issue then, becomes the choice of the kernel function. For their
example kernel function, Bowman and Azzalini use the normal distribution
at y − yi with mean 0 and standard deviation h.

Section 3.4 of Silverman [147] gives comprehensive coverage on the topic of
choosing the smoothing parameter h. Since density estimation is not a central
topic of this paper, we will choose an h for use in the remainder of this work.
Silverman gives two “quick ways of choosing” the smoothing parameter based
on the properties of the sample data. The first is h1 = 0.79Rn−1/5, where R
is the sample interquartile range, and the second is h2 = 0.9An−1/5, where
A = min{S,R/1.34} and S is the sample standard deviation. Based on the
discussion in Silverman, we will choose h2, although this choice will have little
influence on our results. Biswas and Sundaram [14] apply kernels functions to
survival analysis.

Competing Risks. Treatment of censoring as a risk for use in a compet-
ing risks model is mentioned in Williams and Lagakos [168], Prentice and
Kalbfleisch [134], David and Moeschberger [42], and Kalbfleisch and MacKay
[74]. The articles of primary interest involve risk elimination and net/crude
relationships.

Williams and Lagakos [168] address a common assumption in many censor-
ing models that states that the survival mechanism and the censoring mecha-
nism are independent. They give examples of cases in which this is an invalid
assumption, and then examine the consequences of survival times and cen-
soring times being dependent. They also discuss the testability of a data set
for censoring influences on the survival mechanism. Where applicable, they
give statistical tests that may be performed. Framed in the context of this
paper, they discuss situations in which the crude lives of the observed data
failing from different causes are dependent. Here, however, we will assume that
the remaining longevity of an observation has no influence on its “surviving”
censoring.

Prentice and Kalbfleisch [134] address three main issues: influence of re-
gression coefficients on some, but not all failure causes, the interrelation be-
tween failure types, and the estimation of failure rates for one cause given the
removal of some or all of the other causes. Starting from the assumption that
the cause-specific hazard function is the only truly estimable portion of the
competing risks model, they build models to address these three issues. While
the first two issues are not relevant to this paper, the third is. They raise a
list of concerns regarding cause-removal methods, and write about the most
important concern: “In effect, the stochastic mechanism generating failures
is assumed to continue beyond latent failure times for causes that have been
removed until the smallest operative failure time is reached.” The authors do
not present a quantitative model. Their concerns were raised in response to
Chiang [29] and do not effect our technique. Finally, the authors deal with
censoring as a cause of failure. They abandon their previous concerns of cause
removal stating, “the marginal distribution that arises from the elimination of
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censoring is clearly the relevant target of estimation.” This is, of course, the
very goal of this paper. They do, however, cite Williams and Lagakos [168]
and raise the issue of the independence of survival and censoring—an issue
we will avoid.

Kalbfleisch and MacKay [74] extend the work of Williams and Lagakos
[168] and show that the constant-sum condition is equivalent to a simple
relationship between hazard functions. David and Moeschberger [42] formulate
a mathematical model for competing risks in their monograph. They mention
the notion of treating censored data as a risk in their first chapter. Their main
work, as it pertains to this paper, is in the area of net versus crude lifetimes.
Leemis [93] also discusses the relationships between net and crude lifetimes.
Section 5.1 contains an equation that will be central in making the analytical
connection between net and crude lifetimes. This equation is proved in Leemis’
Appendix 3 and states that, under the assumption of independent risks,

hYj (t) =
πjfXj (t)∑k
i=1 πiSXi(t)

, (14.1)

where Yj denotes the net lifetime associated with risk j, Xj denotes the crude
lifetime associated with risk j, πj is the probability of failure from risk j,
and f , S, and h denote the probability density, survivor, and hazard func-
tions, respectively. The details on computing hYj (t) are given in Appendix 2.
More recent references in the competing risks literature are given by Bousquet
et al. [19].

14.3 A Parametric Example

Although the main emphasis of the work here is non parametric, the follow-
ing parametric example demonstrates the calculation of the net lifetime of a
failure distribution. For this example, we make the assumption that both the
failure times and censoring times are exponentially distributed. That is, both
failure times and censoring times are independent exponential random vari-
ables with different rates. For illustration, we will turn to the 6-MP treatment
group data set listed earlier and found in Gehan [56]. Using competing risks
terminology, risk 1 corresponds to censoring and risk 2 corresponds to failure.
In the 6-MP data set, there are n = 21 patients on test and the number of
observed failures (leukemia remissions) is r = 9. Using maximum likelihood,
the failure rate associated with the first crude lifetime is

λ̂X1 =
n− r∑
i|δi=0 xi

=
12

250
,

where δi = 0 denotes a censored observation, xi = min{ci, ti}, ci is the censor-
ing time for patient i and ti is the failure time for patient i, for i = 1, 2, . . . , n.
The failure rate associated with the second crude lifetime is
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λ̂X2 =
r∑

i|δi=1 xi
=

9

109
,

where δi = 1 denotes a observed failure (i = 1, 2, . . . , n). We estimate π1 and
π2 as

π̂1 =
n− r

n
=

12

21
and π̂2 =

r

n
=

9

21
.

Because of our exponential assumption:

f̂X1(t) = λ̂X1e
−λ̂X1

t, ŜX1(t) = e−λ̂X1
t, f̂X2(t) = λ̂X2e

−λ̂X2
t, ŜX2(t) = e−λ̂X2

t,

for t > 0. Using Eq. (14.1) we compose the hazard function for the net lifetime
of the failure data:

hY2(t) =
π2fX2(t)

π1SX1(t) + π2SX2(t)
,

for t > 0, which is estimated by

ĥY2(t) =
π̂2λ̂X2e

−λ̂X2 t

π̂1e
−λ̂X1 t + π̂2e

−λ̂X2 t
=

27
109e

−9t/109

4e−12t/250 + 3e−9t/109
,

for t > 0. The PDF of the net lifetime associated with failure is

fY2(t) = hY2(t)e
− ∫

t
0
hY2 (τ)dτ ,

and is estimated by

f̂Y2(t) = ĥY2(t)e
− ∫

t
0
ĥY2 (τ)dτ

for t > 0. This estimated PDF of the net lifetime of the failure data can be used
to calculate the skewness and coefficient of variation of the failure data. These
statistics are (γ̂, γ̂3) = (1.40, 2.55). In the remainder of the paper, we develop
a non parametric method in order to avoid the assumption of exponentiality
for the failure time and the censoring mechanism. Computation will be greatly
simplified with the help of APPL.

14.4 Methodology

This section details the steps involved in extracting a survival distribution es-
timate from the observed failure and censoring times. We will use the following
eight-point data set in our examples:

x = [0.25∗, 0.25, 0.35∗, 0.45∗, 1.00, 1.15∗, 1.25, 1.35],

where an asterisk indicates a right-censored observation. The data could also
be described as:
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x = [0.25, 0.25, 0.35, 0.45, 1.00, 1.15, 1.25, 1.35],

δ = [0, 1, 0, 0, 1, 0, 1, 1],

where xi = min{ti, ci}, ti is the failure time, ci is the censoring time, δi is 1
when xi = ti and 0 when xi = ci for i = 1, 2, . . . , 8. The random variables for
failure times and censoring times are assumed to be independent. To verify
the correctness of our method and the CalcNetHaz algorithm, we will work
through two small examples.

The normal distribution was an obvious choice for a kernel function. There
are, however, several issues that preclude its use. The first issue is the range of
support. Establishing a normal kernel around any data value will include neg-
ative support values—an impossibility in lifetime data analysis because neg-
ative lifetimes never occur. The second issue is the intractability of the CDF.
While APPL was able to return and plot a (rather complicated) CDF, it was
unable to calculate the coefficient of variation or the skewness.

We will instead use the PDFs of the uniform and triangular distributions
as kernel functions. These distributions allow for simple, tractable, CDFs and
allow us to exploit APPL’s piecewise function processing capability. We have
avoided the problem of negative lifetimes with these distributions by carefully
choosing our example data values and h so as to avoid negative support for
the kernel function.

14.4.1 Uniform Kernel Function

Our method treats censored and observed data as coming from two different
distributions. For simplicity in formulating, implementing and testing our al-
gorithm we split the data into [0.25, 0.35, 0.45, 1.15] and [0.25, 1.0, 1.25, 1.35]
where the first list contains the censoring times and the second list contains the
failure times. These data values were chosen arbitrarily with preference given
to ease of verification by hand. According to the chosen method for calculat-
ing bin width discussed in Silverman [147], we calculate h as h = 0.9sn−1/5,
where s is the sample standard deviation of the four values. For the first list,
h = 0.241 and for the second, h = 0.294. We will, however, simplify by us-
ing h = 0.25 for our calculations in order to ease arithmetic and simplify
verification. The first step is to create the two random variables with APPL:

> h := 0.25;

> C1 := UniformRV(0.25 - h, 0.25 + h);

> C2 := UniformRV(0.35 - h, 0.35 + h);

> C3 := UniformRV(0.45 - h, 0.45 + h);

> C4 := UniformRV(1.15 - h, 1.15 + h);

> X1 := Mixture([1 / 4, 1 / 4, 1 / 4, 1 / 4], [C1, C2, C3, C4]);

> F1 := UniformRV(0.25 - h, 0.25 + h);

> F2 := UniformRV(1.0 - h, 1.0 + h);

> F3 := UniformRV(1.25 - h, 1.25 + h);

> F4 := UniformRV(1.35 - h, 1.35 + h);

> X2 := Mixture([1 / 4, 1 / 4, 1 / 4, 1 / 4], [F1, F2, F3, F4]);
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At this point, APPL has created two PDFs, f̂X1(t) and f̂X2(t). The ker-
nel functions for these PDFs are uniformly distributed and centered at the
observation with a width of 2h. This APPL code returns the kernel function
estimate for the crude censoring time PDF as

f̂X1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 0 < t < 0.1
1 0.1 < t < 0.2
3/2 0.2 < t < 0.5
1 0.5 < t < 0.6
1/2 0.6 < t < 0.7
0 0.7 < t < 0.9
1/2 0.9 < t < 1.4.

Similarly, this APPL code returns the kernel function estimate for the crude
failure time as

f̂X2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 0 < t < 0.5
0 0.5 < t < 0.75
1/2 0.75 < t < 1.0
1 1.0 < t < 1.1
3/2 1.1 < t < 1.25
1 1.25 < t < 1.5
1/2 1.5 < t < 1.6.

Unless otherwise noted, all of the following plots were created using APPL’s
PlotDist command. Figure 14.2 is a plot of f̂X1(t) and Figure 14.3 is a plot

of f̂X2(t).
In order to call the CalcNetHaz procedure, we must first compute a mix-

ture of these PDFs. This mixture will serve as the denominator π1SX1(t) +
π2SX2(t) in the calculation of hY2(t). The πi values come from the competing
risks discussion and are the probability of failing due to the ith risk. In our
example, four of the observations “fail” by censoring and the other four are
observed failures. Therefore, π̂1 = π̂2 = 0.5. In general, for a data set with n
items on test and r observed failures, π̂1 = n−r

n and π̂2 = r
n . With APPL’s

Mixture procedure, we compute this denominator as a mixture of PDFs and
convert it to a survivor function before passing it to CalcNetHaz.

> X12 := Mixture([1 / 2, 1 / 2], [X1, X2]);

This PDF f̂X12(t) has the following mathematical form and is plotted in
Figure 14.4:
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Fig. 14.2. Uniform kernel density estimate for the crude censoring time X1

f̂X12(t) = 0.5f̂X1(t) + 0.5f̂X2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 0 < t < 0.1
3/4 0.1 < t < 0.2
1 0.2 < t < 0.5
1/2 0.5 < t < 0.6
1/4 0.6 < t < 0.7
0 0.7 < t < 0.75
1/4 0.75 < t < 0.9
1/2 0.9 < t < 1.0
3/4 1.0 < t < 1.1
1 1.1 < t < 1.25
3/4 1.25 < t < 1.4
1/2 1.4 < t < 1.5
1/4 1.5 < t < 1.6.

Referring back to Eq. (14.1) to calculate a net lifetime from the crude
lifetimes, the hazard function estimate for the net lifetime Y2 associated with
the crude lifetime X2 is:
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Fig. 14.3. Uniform kernel density estimate for the crude failure time X2

hY2(t) =
π2fX2(t)

π1SX1(t) + π2SX2(t)
.

The denominator has been calculated in Maple in its density form and can
be converted to a survivor function with the APPL function SF. A call to
CalcNetHazwith these three parameters gives the net lifetime hazard function
for the observed failures.

> Y2 := CalcNetHaz(X2, SF(X12), 0.5);

Because X is the crude lifetime distribution and Y is the net lifetime distri-
bution, we now have
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Fig. 14.4. Uniform kernel density estimate for X12

ĥY2(t) =
π2f̂X2(t)

π1ŜX1(t) + π2ŜX2(t)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4−2t 0 < t < 0.1

10
41−30t 0.1 < t < 0.2

10
43−40t 0.2 < t < 0.5

0 0.5 < t < 0.75
4

11−4t 0.75 < t < 0.9
20

73−40t 0.9 < t < 1.0
40

3(31−20t) 1.0 < t < 1.1
12

23−16t 1.1 < t < 1.25
4

3(3−2t) 1.25 < t < 1.4
20

31−20t 1.4 < t < 1.5
5

8−5t 1.5 < t < 1.6.

The functional form of this hazard function, as computed by CalcNetHaz,
has been verified by hand. Figure 14.5 contains a plot of ĥY2(t), which has a
vertical asymptote at t = 1.6. The following additional APPL statements give
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the coordinates of a point that can be plotted on Cox and Oakes’ parametric
model discrimination plot:

> cv := CoefOfVar(Y2);

> skew := Skewness(Y2);

These statements yield the point (γ̂, γ̂3) = (0.3608,−1.2320). When this same
technique is applied to the 6-MP treatment group data with h2 = 5.798 for
the censored data and h2 = 3.970 for the failure data, the point obtained is
(γ̂, γ̂3) = (0.7338, 0.0425). Table 14.1 compares this point with the three points
plotted in Figure 14.1. There is considerable difference between the heuristic
approaches, the parametric analysis, and the competing risks approach.
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Fig. 14.5. Uniform kernel hazard function estimate for net lifetime of observed
failures Y2

14.4.2 Triangular Kernel Function

This section follows the technique and data set from Section 14.4.1 but uses
the triangular distribution for the kernel function in the density estimation
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Table 14.1. γ̂ and γ̂3 for different methods for handling censoring

Method γ̂ γ̂3
Increase censoring times by 0% 0.58 0.55
Increase censoring times by 50% 0.69 0.76
Increase censoring times by 100% 0.76 0.80
Parametric (exponential) analysis 1.40 2.55
Competing risks (uniform kernel) 0.73 0.04

method. The APPL code the calculating the kernel estimate for the PDFs of
the crude lifetimes is:

> h := 0.25;

> C1 := TriangularRV(0.25 - h, 0.25, 0.25 + h);

> C2 := TriangularRV(0.35 - h, 0.35, 0.35 + h);

> C3 := TriangularRV(0.45 - h, 0.45, 0.45 + h);

> C4 := TriangularRV(1.15 - h, 1.15, 1.15 + h);

> X1 := Mixture([1 / 4, 1 / 4, 1 / 4, 1 / 4], [C1, C2, C3, C4]);

> F1 := TriangularRV(0.25 - h, 0.25, 0.25 + h);

> F2 := TriangularRV(1.0 - h, 1.0, 1.0 + h);

> F3 := TriangularRV(1.25 - h, 1.25, 1.25 + h);

> F4 := TriangularRV(1.35 - h, 1.35, 1.35 + h);

> X2 := Mixture([1 / 4, 1 / 4, 1 / 4, 1 / 4], [F1, F2, F3, F4]);

The three parameters in TriangularRV are the minimum, mode, and max-
imum. Again, f̂X1(t) and f̂X2(t) are the PDF on estimates. Their kernel func-
tions are now the triangular distributions centered at the observation and
having a width of 2h.

f̂X1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t 0 < t < 0.1

8t− 2
5 0.1 < t < 0.2

12t− 6
5 0.2 < t < 0.25

4t+ 4
5 0.25 < t < 0.35

−4t+ 18
5 0.35 < t < 0.45

−12t+ 36
5 0.45 < t < 0.5

−8t+ 26
5 0.5 < t < 0.6

−4t+ 14
5 0.6 < t < 0.7

0 0.7 < t < 0.9

4t− 18
5 0.9 < t < 1.15

−4t+ 28
5 1.15 < t < 1.4.
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f̂X2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t 0 < t < 0.25

2− 4t 0.25 < t < 0.5

0 0.5 < t < 0.75

4t− 3 0.75 < t < 1.0

1 1.0 < t < 1.10

4t− 17
5 1.10 < t < 1.25

8
5 1.25 < t < 1.35
62
5 − 8t 1.35 < t < 1.5
32
5 − 4t 1.5 < t < 1.6.

These PDF estimates are plotted in Figures. 14.6 and 14.7.
As in the uniform case, we compute a mixture of these density functions

to be the denominator of Eq. (14.1).

> X12 := Mixture([1 / 2, 1 / 2], [X1, X2]);

The PDF f̂X12(t) has the following form and is plotted in Figure 14.8:
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Fig. 14.6. Triangular kernel density estimate for crude censoring time X1
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f̂X12(t) = 0.5f̂X1(t) + 0.5f̂X2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t 0 < t < 0.1

6t− 1
5 0.1 < t < 0.2

8t− 3
5 0.2 < t < 0.25

7
5 0.25 < t < 0.35

−4t+ 14
5 0.35 < t < 0.45

−8t+ 23
5 0.45 < t < 0.5

−4t+ 13
5 0.5 < t < 0.6

−2t+ 7
5 0.6 < t < 0.7

0 0.7 < t < 0.75

2t− 3
2 0.75 < t < 0.9

4t− 33
10 0.9 < t < 1.0

2t− 13
10 1.0 < t < 1.1

4t− 7
2 1.1 < t < 1.15

11
10 1.15 < t < 1.25

−2t+ 18
5 1.25 < t < 1.35

−6t+ 9 1.35 < t < 1.4

−4t+ 31
5 1.4 < t < 1.5

−2t+ 31
5 1.5 < t < 1.6.

Using Eq. (14.1) as before, we want to calculate the hazard function of the
net lifetime for the observed failures. A call to CalcNetHaz with these three
parameters gives the hazard function for the net lifetimes for the observed
failures.

> Y2 := CalcNetHaz(X2, SF(X12), 0.5);

If X is the crude lifetime distribution and Y is the net lifetime distribution
for a random variable, the following hazard function results:
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Fig. 14.7. Triangular kernel density estimate for crude failure time X2

ĥY2(t) =
π2f̂X2(t)

π1ŜX1(t) + π2ŜX2(t)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t
−2t2+1 0 < t < 0.1

200t
99+20t−300t2 0.1 < t < 0.2

40t
19+12t−80t2 0.2 < t < 0.25
5(2t−1)
−6+7t 0.25 < t < 0.35
−200(2t−1)

289−560t+400t2 0.35 < t < 0.45

−20(2t−1)
37−92t+80t2 0.45 < t < 0.5

0 0.5 < t < 0.75
−8(4t−3)

1−24t+16t2 0.75 < t < 0.9
−200(4t−3)

349−1320t+800t2 0.9 < t < 1.0
200

51+520t−400t2 1.0 < t < 1.1

−40(−17+20t)
433−1400t+800t2 1.1 < t < 1.15

8(−17+20t)
125−88t 1.15 < t < 1.25

32
125−144t+40t2 1.25 < t < 1.35
−20(−31+20t)
677−900t+300t2 1.35 < t < 1.4
−20(−31+20t)
481−620t+200t2 1.4 < t < 1.5
10

8−5t 1.5 < t < 1.6.
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Fig. 14.8. Triangular kernel density estimate for X12

The functional form of this hazard function has also been verified by hand.
It is plotted in Figure 14.9. As in the uniform case, ĥY2(t) has a vertical
asymptote at 1.6. Using APPL, the coordinates of this distribution on Cox
and Oakes’ parametric model discrimination plot are calculated as follows:

> cv := CoefOfVar(Y2);

> skew := Skewness(Y2);

which yields the point (γ̂, γ̂3) = (0.3452,−1.3390). Not surprisingly, this point
is in reasonable proximity to the point (0.3608,−1.2320) obtained with the
uniform kernel.

14.5 Monte Carlo Simulation Analysis

The Monte Carlo analysis of our algorithm begins with a plot of γ̂3 vs. γ̂ for
several parametric distributions which will serve as a baseline to assess how
well our algorithm adapts to censored data values. The plot for variousWeibull
and log-logistic distributions appears in Figure 14.10. The points plotted are
associated with a sample size of n = 1000 for each of four parametric distri-
butions (one log-logistic and three Weibull with shape parameters 4, 2, and
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Fig. 14.9. Triangular kernel hazard function estimate

0.8 from left to right). The plotted values cluster around the correct point on
the chart, but have considerable dispersion for such a large sample size. Not
surprisingly, the dispersion associated with the skewness consistently exceeds
the dispersion associated with the coefficient of variation. Also, as the shape
parameter in the Weibull distribution decreases, the points spread. Some of
the parameter choices exhibit a positive correlation between γ̂ and γ̂3.

Appendix 3 contains a Maple implementation of a Monte Carlo simulation
of the method described here. Figure 14.11 displays points on the Cox and
Oakes’ graph where the lifetimes are drawn from a Weibull population with
a shape parameter of 5 and were calculated from data sets of n = 200 values.
Computational time requirements (since Maple-based APPL is interpreted)
prevented the plotting of as many values as in Figure 14.10. The points cluster
around the appropriate point on the Weibull curve, although there are several
points that fall significantly to the southeast of the target. The smaller number
of items on test relative to the simulation illustrated in Figure 14.10 results
in a wider dispersion of the plotted values.
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Fig. 14.10. Complete data sets for Weibull with κ = 4, 2, 0.8 and log-logistic with
κ = 6

14.6 Conclusions and Further Work

Cox and Oakes’ parametric survival model discrimination plot has been ex-
tended to the case of a right-censored survival data set using kernel functions
to estimate PDFs of the crude lifetime PDFs and a competing risks frame-
work to adjust for the effect of right-censoring. APPL and Maple were used for
numerical and analytical computations as well as for bookkeeping piecewise
functions.

Future work on this topic could proceed in several directions. Other kernel
functions could be used to obtain a scatter-plot of skewness versus coeffi-
cient of variation. Using the Weibull distribution with κ = 1

1−ln(2)
∼= 3.25889

(where the mode equals the median to give a bell-shaped kernel density func-
tion estimate) would be a reasonable approximation to the normal distribution
and would prevent negative lifetime support. In addition, since the Weibull
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Fig. 14.11. Censored data sets for Weibull with shape parameter 5 with sample
size n = 200

distribution has positive support, there will be fewer piecewise segments to
account for. The influence that h has on a plotted point could also be inves-
tigated.

Appendix 1

This appendix contains the APPL code to create the Cox and Oakes’ graph
shown in Figure 14.1.

> unassign(’kappa’):

> lambda := 1:

> X := GammaRV(lambda, kappa):

> c := CoefOfVar(X):

> s := Skewness(X):

> GammaPlot := plot([c, s, kappa = 0.5 .. 999], labels = ["cv",
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> " skew"]):

> unassign(’kappa’):

> lambda := 1:

> X := WeibullRV(lambda, kappa):

> c := CoefOfVar(X):

> s := Skewness(X):

> WeibullPlot := plot([c, s, kappa = 0.7 .. 50.7]):

> unassign(’kappa’):

> lambda := 1:

> Y := LogNormalRV(lambda, kappa):

> c := CoefOfVar(Y):

> s := Skewness(Y):

> LogNormalPlot := plot([c, s, kappa = 0.01 .. 0.775]):

> unassign(’kappa’):

> lambda := 1:

> Y := LogLogisticRV(lambda, kappa):

> c := CoefOfVar(Y):

> s := Skewness(Y):

> LogLogisticPlot := plot([c, s, kappa = 4.3 .. 200.5]):

> cnsrgrp := plot([[0.5849304, 0.5531863]], style = point,

> symbol = box):

> cnsrgrp15 := plot([[0.6883908, 0.760566]], style = point,

> symbol = cross):

> cnsrgrp20 := plot([[0.7633863, 0.8009897]], style = point,

> symbol = diamond):

> with(plots):

> lll := textplot([0.17, 3.3, "log-logistic"], ’align =

> {ABOVE, RIGHT}’):

> lnl := textplot([0.59, 3.3, "log-normal"], ’align =

> {ABOVE, RIGHT}’):

> wbl := textplot([1.2, 3.3, "Weibull"], ’align =

> {ABOVE, RIGHT}’):

> gml := textplot([1.3, 2.44, "gamma"], ’align =

> {ABOVE, RIGHT}’):

> plots[display]({lll, lnl, wbl, gml, GammaPlot, WeibullPlot,

> LogNormalPlot, LogLogisticPlot, cnsrgrp, cnsrgrp15,

> cnsrgrp20}, scaling = unconstrained);

Appendix 2

Computational Issues. With our kernel density estimates being mixtures
of large numbers of random variables, it became clear that even small data
sets could result in piecewise functions with an unmanageable number of seg-
ments. To assist in the computation of these functions, we turned to APPL.
In addition, APPL allows for the creation and combination of all types of
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standard random variables (uniform, normal, triangular, Weibull, etc.)—the
very random variables we use in our kernel functions. The flexibility of APPL
will allow for the efficient manipulation of many random variables.

Despite APPL’s comprehensive random variable handling ability, the equa-
tion at the core of our analysis, Eq. (14.1) has not been implemented. This ne-
cessitated our devising an algorithm (using the APPL language as a platform)
that could perform the implementation of Eq. (14.1) for random variables de-
fined in a piecewise manner. The Maple function CalcNetHaz calculates hYj (t)
for crude lifetimes defined in a piecewise manner. It must be passed the APPL
PDF for the numerator fXj (t), a mixture of APPL survival functions for the
denominator, and the numerator’s πj values. The procedure CalcNetHaz re-
turns the hazard function of the time to failure using Eq. (14.1). The code
used to check for

• the correct number of arguments,
• the correct format for the PDF of the numerator and mixture of survivor

functions in the denominator,
• the correct type (continuous) of random variables X1, X2, . . . , Xk,
• the numerator given as a PDF and the denominator as a SF,
• 0 < πj < 1,

is suppressed for brevity. Since the kernel estimate for the failure and censoring
distributions may be defined in a piecewise fashion (e.g., for a uniform or
triangular kernel), the procedure accommodates piecewise distributions.

> CalcNetHaz := proc(num :: list(list), denom :: list(list),

> NumPI :: float)

> local retval, nsegn, i, j:

> retval := []:

> nsegn := nops(num[2]):

> i := 1:

> for j from 2 by 1 to nsegn do

> while denom[2][i] < num[2][j] do

> retval := [op(retval), unapply(simplify(

> (NumPI * num[1][j - 1])

> / denom[1][i])(x), x)]:

> i := i + 1:

> end do:

> end do:

> return([retval, denom[2], ["Continuous", "HF"]]):

> end:

The first two arguments to CalcNetHaz are lists of three lists, the last
argument, πj , is a scalar. The first list in the first parameter’s three lists is
of the numerator’s n − 1 PDFs. These correspond to the n breakpoints in
the numerator. The first list in the second parameter’s three lists is of the
denominator’s m − 1 PDFs. These correspond to the m breakpoints in the
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denominator. These breakpoints are found in the second of the three lists.
The third list contains the strings "Continuous" and either "PDF" or "SF"

to denote the type of distribution representation. For each of the segments,
the algorithm calculates a hazard function for the current segment based on
Eq. (14.1). The algorithm assumes that the denominator is a mixture distri-
bution involving the term in the numerator. This assumption can be made
because in Eq. (14.1), since SXj in the denominator is derived from fXj in
the numerator (or vice-versa) and results in denominator segment breaks that
are a superset of those in the numerator. After looping through each of the
segments, the algorithm returns the list of hazard functions along with the
segment breaks of the denominator.

Appendix 3

This appendix contains the Monte Carlo simulation code in APPL necessary
to conduct the experiments described in Section 14.5.

> n := 1000:

> kappa := 5:

> for i from 1 to 80 do

> r := 0:

> X1 := [ ]:

> X2 := [ ]:

> for k from 1 to n do

> f := -log(UniformVariate()) ^ (1 / kappa):

> c := -log(UniformVariate()) ^ (1 / kappa):

> if f < c then

> r := r + 1:

> X2 := [op(X2), f]:

> else

> X1 := [op(X1), c]:

> end if:

> end do:

> if r < n and r > 0 then

> dists := [ ]:

> weights := [ ]:

> R := describe[quartile[3]](X1) - describe[quartile[1]](X1):

> h := 0.79 * R * (n - r) ^ (-0.2):

> for j from 1 to n - r do

> weights := [op(weights), 1 / (n - r)]:

> if h > sort(X1)[1] then

> fd := fopen("mapsim2", APPEND):

> fprintf(fd, "The following line was padded:

> h=%g min=%g\n", h, sort(X1)[1]):

> fclose(fd):

> h := sort(X1)[1]:

> end if:



14.6 Conclusions and Further Work 215

> dists := [op(dists), UniformRV(X1[j] - h, X1[j] + h)]:

> od:

> f_X1 := Mixture(weights, dists):

> dists := [ ]:

> weights := [ ]:

> R := describe[quartile[3]](X2) - describe[quartile[1]](X2):

> h := 0.79 * R * (r ^ (-0.2)):

> for j from 1 to r do

> weights := [op(weights), 1 / r]:

> if h > sort(X2)[1] then

> fd := fopen("mapsim2", APPEND):

> fprintf(fd, "The following line was padded: h=%g

> min=%g\n", h, sort(X2)[1]):

> fclose(fd):

> h := sort(X2)[1]:

> end if:

> dists := [op(dists), UniformRV(X2[j] - h, X2[j] + h)]:

> od:

> f_X2 := Mixture(weights, dists):

> f_X12 := Mixture([(n - r) / n, r / n], [f_X1, f_X2]):

> h_Y2 := CalcNetHaz(f_X2, SF(f_X12), evalf(r / n)):

> f_Y2 := PDF(h_Y2):

> mu := Mean(f_Y2):

> ExpValueXSqrd := ExpectedValue(f_Y2, x -> x ^ 2):

> sigma := sqrt(ExpValueXSqrd - mu ^ 2):

> Term1 := ExpectedValue(f_Y2, x -> x ^ 3):

> Term2 := 3 * mu * ExpValueXSqrd:

> Term3 := 2 * mu ^ 3:

> skew := (Term1 - Term2 + Term3) / sigma ^ 3:

> cov := sigma / mu:

> fd := fopen("mapsim2", APPEND):

> fprintf(fd, "[[%g, %g]], \n", Re(cov), Re(skew)):

> fclose(fd):

> elif r = n then

> skew := describe[skewness](X2):

> cov := describe[coefficientofvariation](X2):

> fd := fopen("mapsim4", APPEND):

> fprintf(fd, "[[%g, %g]], \n", Re(cov), Re(skew)):

> fclose(fd):

> end if:

> end do:
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(1 − α)100% lower confidence bound on the system reliability. When a com-
ponent with perfect test results is encountered, a beta prior distribution is
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15.1 Introduction

We consider the problem of determining a (1−α)100% lower confidence bound
on the system reliability for a coherent system of k components using the fail-
ure data (yi, ni), where yi is the number of components of type i that pass the
test and ni is the number of components of type i on test, i = 1, 2, . . . , k. We
assume throughout that the components fail independently, e.g., no common-
cause failures. The outline of the article is as follows. We begin with the case
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and y components pass the test. The Clopper–Pearson lower bound is used
to provide a lower bound on the reliability. This model is then generalized to
the case of multiple (k > 1) components. Bootstrapping is used to estimate
the lower confidence bound on system reliability. We then address a weakness
in the bootstrapping approach—the fact that the sample size is moot in the
case of perfect test results, e.g., when yi = ni for some i. This weakness is
overcome by using a beta prior distribution to model the component reliabil-
ity before performing the bootstrapping. Two subsections consider methods
for estimating the parameters in the beta prior distribution for components
with perfect test results. The first subsection considers the case when previous
test results are available, and the second subsection considers the case when
no previous test results are available. A simulation study compares various
algorithms for calculating a lower confidence bound on the system reliability.
The last section contains conclusions.

15.2 Single-Component Systems

Single-component systems are considered first because (1) there are known
approximate confidence intervals for the lower reliability confidence bound
and (2) these intervals will be used later in the paper to help determine the
appropriate parameters for the beta distribution in the case where no prior
test results exist on the component of interest.

Let n components be placed on test and let y of these components pass
the test. Under the assumption that the test values (1 for pass, 0 for failure)
X1, X2, . . . , Xn are independent and identically distributed Bernoulli random
variables with unknown parameter p, Y =

∑n
i=1 Xi is a binomial random

variable with parameters n and p. The maximum likelihood estimator for p
is p̂ = Y/n, which is unbiased and consistent. The interest here is in a lower
confidence bound for the reliability p.

There is a wide literature on confidence intervals of this type since a con-
fidence interval on a proportion is of interest on anything from a political
poll to consumer preference. Vollset [164] compares 13 confidence intervals
and Newcombe [121] compares 7 confidence intervals. Rather than fine-tuning
these intervals as has been suggested by many authors, we have settled on us-
ing the Clopper–Pearson (CP) “exact” interval even though Newcombe [121,
page 201] points out that its status as a gold standard has been disputed re-
cently because the method is conservative, i.e., the actual coverage is greater
than or equal to the stated coverage (see Agresti and Coull [2] for details).

Let pL < p < pU be an “exact” (see Blyth [17]) CP two-sided confidence
interval for p, where pL and pU are functions of the sample size n, the num-
ber of successes y, and the stated coverage of the interval, 1 − α. This is an
approximate confidence interval due to the discrete nature of the binomial dis-
tribution. For y = 1, 2, . . . , n− 1 the lower limit pL satisfies (see, for example,
Agresti and Coull [2])
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n∑

k=y

(
n

k

)
pkL(1− pL)

n−k = α/2.

For y = 1, 2, . . . , n− 1, the upper limit pU satisfies

y∑

k=0

(
n

k

)
pkU (1− pU )

n−k = α/2.

As shown in Leemis and Trivedi [98], these confidence interval limits can be
expressed in terms of quantiles of the F distribution:

(
1 +

n− y + 1

yF2y,2(n−y+1),1−α/2

)−1

< p <

(
1 +

n− y

(y + 1)F2(y+1),2(n−y),α/2

)−1

,

where the third subscript on F refers to the right-hand tail probability.
Simply reallocating the probability α to the lower limit gives the following

lower confidence bound for the reliability:

pL =

(
1 +

n− y + 1

yF2y,2(n−y+1),1−α

)−1

for y = 1, 2, . . . , n − 1. For the case of all failures (y = 0), the lower bound
is, of course, pL = 0. For the case of all passes (y = n), the lower bound is
pL = α1/n.

Example 15.1. For CP lower confidence interval bounds, we use the
following four sets of values for n and y, which give point estimates
and 95% CP lower confidence interval bounds for the reliability:

n = 10, y = 7 ⇒ p̂ = 0.7, pL = 0.393.
n = 100, y = 97 ⇒ p̂ = 0.97, pL = 0.924.
n = 10, y = 10 ⇒ p̂ = 1.0, pL = 0.741.
n = 100, y = 100 ⇒ p̂ = 1.04, pL = 0.970.

An S-Plus function named confintlower is given in Appendix 1 which
can be used to calculate these lower confidence interval bounds. Fig-
ure 15.1 is a plot of y vs. pL when n = 10 for α = 0.10, 0.05, 0.01,
with the points connected with line segments. Figure 15.2 contains a
similar plot for n = 100. The lower bounds are monotonic in y, n,
and α.

15.3 Multiple-Component Systems

A three-component (k = 3) series system is used as an example throughout
this section, although the techniques described here apply to any coherent
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system of k independent components. The number of components tested and
the number of passes for each type of component for the example are given in
Table 15.1. The point estimate for the system reliability is

21

23
· 27
28

· 82
84

=
1107

1288
∼= 0.8595.

The remainder of this section involves the use of bootstrapping (Efron and
Tibshirani [49]) to calculate a lower 95% confidence interval bound. Other
authors (e.g., Martin [108] and Padgett and Tomlinson [126]) have used boot-
strapping for determining confidence limits. The approach used here differs
conceptually from the standard bootstrap problem, where the standard error
of a single unknown distribution is estimated by resampling iid data. In our
setting, there are k different distributions (one for each component) and we
resample component reliabilities and combine using the reliability function to
yield the system reliability.

Table 15.1. Failure data for a three-component series system example

Component number i = 1 i = 2 i = 3
Number passing (yi) 21 27 82
Number on test (ni) 23 28 84

Bootstrapping resamples B of the systems, calculates the system reliabil-
ity, then outputs the αBth ordered system reliability. More specifically, for
the three-component system of interest, the bootstrapping algorithm follows
the following steps.

• For the first component, the data set (21 ones and 2 zeros) is sampled with
replacement 23 times.

• These values are summed and divided by 23 yielding a reliability estimate
for the first component.

• The previous two steps are repeated for components 2 and 3.
• The product of the reliability estimates for the three components are mul-

tiplied (because the components are arranged in series and their failures
are independent) to give a system reliability estimate.

The above procedure is repeated B times. The B system reliability estimates
are then sorted. Finally, the αBth ordered system reliability is output, which
is used as a lower bound on the system reliability.

The algorithm for estimating the (1 − α)100% lower confidence interval
bound is given in Table 15.2, where p̃i is a bootstrap estimate for the reliability
of component i and zj is a bootstrap estimate of the system reliability. The
binomial distribution is appropriate because the resampling from the data set
is performed with replacement. In the pseudocode in Table 15.2, indentation
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is used to indicate begin-end blocks. The returned value zαB is the order
statistic associated with the zj ’s generated in the outside loop. See Law and
Kelton [89] for handling the case when αB is not an integer.

This algorithm has been implemented in S-Plus as a function named
seriessystemboot which is given in Appendix 2. The first two arguments,

Table 15.2. Bootstrap algorithm for calculating a (1 − α)100% lower confidence
bound for the reliability of a k-component series system

for j from 1 to B [resampling loop]
for i from 1 to k [loop through components]

p̃i ← Binomial(ni, yi/ni)/ni [component i reliability]

zj ←
∏k

i=1 p̃i [calculate system reliability]
sort z [sort the system reliability values]
return zαB [return the estimate for the lower bound]

n and y, are vectors of length k, and the third argument, alpha, is a real
number between 0 and 1, e.g.,

> seriessystemboot(c(23, 28, 84), c(21, 27, 82), 0.05)

prints a point estimate and a 95% lower confidence interval bound on the
system reliability for the three-component series system considered in this
section. After a call to set.seed(3) to set the random number seed, five calls
to seriessystemboot yield the following estimates for pL:

0.7426057 0.7482993 0.7456744 0.7486690 0.7453416.

The dispersion associated with these five estimates is due to the finite choice
of B, i.e., B = 10, 000.

Resampling error can be eliminated using APPL. The APPL statements
given in Appendix 3 utilize the Product and Transform procedures. This
alternative approach to determining a lower 95% bootstrap confidence inter-
val bound for the system reliability is equivalent to using an infinite value
for B. Since p̃i can assume any one of ni + 1 values, there are a possible
24 · 29 · 85 = 59, 160 potential mass values for the random variable T de-
termined by the Product procedure. Of these, only 6, 633 are distinct since
the Product procedure combines repeated values. Since the random variable T
from the APPL code plays an analogous role to the vector z from the bootstrap
algorithm in Table 15.2, the lower 95% bootstrap confidence interval bound
is the 0.05 fractile of the distribution of T, which is pL = 6723/9016 ∼= 0.746.
This result using APPL is consistent with the standard resampling approach
for finding the lower confidence interval limit based on the five results pre-
sented earlier (one equals 6723/9016 exactly, two fall above 6723/9016, and
two fall below 6723/9016).
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How Well Does the Bootstrap Procedure Perform? This question is
difficult to address because there is no exact interval to compare with, even
in the case of a single component. It is instructive, however, to isolate one
component and compare the CP approach described in the previous section
with bootstrapping. Arbitrarily choosing the second component with n2 = 28
items on test, Figure 15.3 shows the CP lower confidence bound and the
bootstrap lower confidence bound for α = 0.05 and for y2 = 10, 11, . . . , 28.
The bootstrap lower confidence interval limit does not require any iteration,
since the value plotted is q/28, where q is the smallest integer that satisfies

q∑

k=0

(
n2

k

)( y2
28

)k (
1−
( y2
28

))n2−k

≥ α,

i.e., q is the α-quantile of a binomial distribution with n2 = 28 trials and
probability of success y2/28. Figure 15.3 shows that

• the bootstrap interval is more susceptible to the discrete nature of the
binomial sampling scheme

• the CP interval is wider than the bootstrap interval.

Figure 15.3 also points out a glaring deficiency in the bootstrapping ap-
proach that was not revealed in the example in this section because all three of
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lower 95% confidence bound for the reliability of component 2 based on a sample
of size n2 = 28
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the system components had one or more failures during their life test. When
component i has perfect test results (e.g., yi = ni), the sample size becomes
irrelevant. Thus, a test where two components out of two pass the test is
equivalent to one where 100 components out of 100 pass the test from the
perspective of the bootstrapping algorithm. This is clearly unacceptable. The
next section gives a modification to the bootstrapping approach that adjusts
for these perfect tests.

15.4 Perfect Component Test Results

The problem created by perfect component test results is likely to occur for
components and systems with moderate to high reliability. As suggested by
Chick [30] and Martz and Waller [110, pages 265–266], a beta(α1, α2) prior
distribution can be placed on the component reliability. The beta distribution
is a logical choice for a prior distribution of the component reliability due
to (1) the flexibility in the shape of its PDF, (2) its (0, 1) support, and (3)
its analytically tractable conjugate posterior distribution. Determining the
values of the parameters α1 and α2 is a problem that will be addressed in the
following two subsections.

The beta distribution has PDF

f(x) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
xα1−1(1− x)α2−1 0 < x < 1,

where α1 and α2 are positive shape parameters. This is the standard parame-
terization, although Martz and Waller [110] use a slightly different form. The
mean of a beta(α1, α2) random variable is

μ = E[X ] =
α1

α1 + α2

and the variance is

σ2 = V [X ] =
α1α2

(α1 + α2)2(α1 + α2 + 1)
.

If the prior distribution of a reliability P ∼ beta(α1, α2) and the sam-
pling is binomial (as it is in our case), then the posterior distribution of P is
beta(α1 + y, α2 + n− y), where n is the number of components on test and y
is the number of passes. The difficulty in our case is in determining the appro-
priate values for α1 and α2. For the time being, we will proceed as if we know
the values of α1 and α2 and give an algorithm for finding the lower reliability
confidence bound pL. Estimating α1 and α2 will be addressed subsequently.

A lower reliability confidence bound pL can be determined by generating a
bootstrap beta random variate (rather than a binomial) when the component
test results are perfect. An algorithm for determining pL for a k-component
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Table 15.3. Bootstrap algorithm for calculating a (1 − α)100% lower confidence
bound for the reliability of a k-component series system when some components
have perfect test results

for j from 1 to B [resampling loop]
for i from 1 to k [loop through components]

if (yi = ni) p̃i ← Beta(α1i + yi, α2i) [comp. i reliability: perfect test]
else p̃i ← Binomial(ni, yi/ni)/ni [comp. i reliability: failure(s) occur]

zj ←
∏k

i=1 p̃i [calculate system reliability]
sort z [sort the system reliability values]
return zαB [return estimate for lower bound]

series system using B resamplings with some or all components having perfect
tests is given Table 15.3. If component i has perfect test results (e.g., yi = ni)
then the analyst must define the prior beta parameters α1i and α2i.

Example 15.2. Next is an example of a three-component series system.
Table 15.4 is identical to Table 15.1, except that component 2 now
has perfect (28/28) test results. The point estimate for the system
reliability increases to

21

23
· 28
28

· 82
84

=
41

46
∼= 0.8913.

Thus, the effect of the one additional component that passed the test
increases the system reliability estimate from approximately 0.86 to
approximately 0.89. This increase should be reflected in an appropriate
increase in the lower confidence limit pL.

Table 15.4. Failure data for a three-component series system

Component number i = 1 i = 2 i = 3
Number passing (yi) 21 28 82
Number on test (ni) 23 28 84

This algorithm has been implemented as the S-Plus function series-

systembayesboot given in Appendix 4 (the number of bootstrap repli-
cations B = 10, 000 and values of the beta parameters α12 = 1 and
α22 = 1 are arbitrary). As before, n and y are vectors of length k, and
alpha is a real number between 0 and 1, e.g.,

> seriessystembayesboot(c(23, 28, 84), c(21, 28, 82),

0.05)
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prints a point estimate and a 95% lower confidence interval bound
on the system reliability for the three-component series system. After
a call to set.seed(3) to set the random number seed, five calls to
seriessystembayesboot yield the following values for pL:

0.7474437 0.7484738 0.7492014 0.7484301
0.7495972.

With the choice α1 = α2 = 1, the increase of approximately 0.03 in
the point estimate of the system reliability from the previous example
results in only a tiny increase in the lower confidence interval limits.
This is clearly unacceptable. What happened? The arbitrary choice of
α1 = 1 and α2 = 1 has resulted in a uniform prior distribution, which
is an overly pessimistic assessment of the reliability of component 2,
particularly in light of the perfect test results.

What choice would make more sense? It is important to skew the PDF of
the beta prior distribution so that its mean is greater than 1/2, or, equiva-
lently, choose α2 < α1. There are four different shapes of the PDF associated
with the choice of parameters that satisfy the constraint α2 < α1. Most im-
portant is the value of the PDF near f(1), since these are the particular
reliability values of interest. The following four cases demark various features
of the PDF.

• f(0) = 0 and f(1) = 0 when 1 < α2 < α1 (Case I).
• f(1) is finite when 1 = α2 < α1 (Case II).
• a vertical asymptote at x = 1 and f(0) > 0 when α2 < 1 = α1 (Case III).
• a vertical asymptote at x = 1 and f(0) = 0 when α2 < 1 < α1 (Case IV).

We have disregarded the case α2 < α1 < 1 because this results in a vertical
asymptote at both 0 and 1, which is inconsistent with the PDF of a high
reliability component. The most intuitively appealing of the four cases listed
above it the fourth case, α2 < 1 < α1, since this minimizes the probability of
generating a small beta variate (since f(0) = 0) and pushes as much of the
probability near 1 as possible due to the vertical asymptote near 1.

Table 15.5 gives means of the beta prior distribution and lower confidence
interval bounds for several combinations of α1 and α2 satisfying the constraint
α2 < α1. The lower bounds are determined by taking the sample median of five
runs of seriessystembayesboot with B = 10, 000 resampled series systems
per run. The subscript on the lower bound indicates which of the shapes in
the list given above is represented. The value of the lower bound is quite
sensitive to the choices of α1 and α2. There are many (α1, α2) pairs that yield
a reasonable lower bound.

The following two subsections outline methods for estimating the param-
eters of the prior distribution. The first subsection considers the case when
previous test results exist, so data are available to estimate α̂1 and α̂2. The
second subsection considers the case when no previous test data are available.
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Previous Test Data Exists. When previous test data that is representa-
tive of the current test data for a perfect component exists, this data can be
fit to yield parameter estimates α̂1 and α̂2 for the prior beta distribution.
Let z1, z2, . . . , zn denote the fraction surviving for previous tests on a com-
ponentof interest with equal sample sizes (which has perfect test results and

Table 15.5. Prior beta distribution mean and lower 95% confidence interval limit
estimate for the system reliability

α1

�
�
��

α2 0.1 1 10

1 0.909/0.779III — —
10 0.990/0.783IV 0.909/0.759II —
100 0.999/0.783IV 0.990/0.779II 0.909/0.725I

need a beta prior distribution). The maximum likelihood estimators satisfy
the simultaneous equations (Evans et al. [50, page 41]):

ψ(α̂1)− ψ(α̂1 + α̂2) =
1

n

n∑

i=1

log zi,

ψ(α̂2)− ψ(α̂1 + α̂2) =
1

n

n∑

i=1

log(1− zi),

where ψ is the digamma function. Law and Kelton [89] outline methods for
calculating α̂1 and α̂2. These equations have no closed-form solution, and
must be solved iteratively. Alternatively, the method of moments estimates
are found by equating the population mean μ and population variance σ2 to
the associated sample moments:

z̄ =
1

n

n∑

i=1

zi, s2 =
1

n

n∑

i=1

(zi − z̄)2,

which results in the closed-form method of moments estimators:

α̂1 =
(1 − z̄)z̄2

s2
− z̄, α̂2 =

α̂1(1− z̄)

z̄
.

Example 15.3. Next is an example of estimating the beta parameters
from previous experiments. Consider the previous example, where pre-
vious test results on component 2 have yielded the following n = 4
fractions surviving:
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z1 =
27

28
, z2 =

28

28
, z3 =

26

28
, z4 =

27

28
.

Because the sample mean and variance are

z̄ =
1

n

n∑

i=1

zi =
27

28
∼= 0.964 and s2 =

1

n

n∑

i=1

(zi−z̄)2 =
1

1568
∼= 0.000638,

the method of moments estimators are (these correspond to Case I
from the previous list):

α̂1 =
1431

28
∼= 51.11, α̂2 =

53

28
∼= 1.89.

When these values for the parameters are used in seriessystembayes-

boot, the median of five lower 95% confidence bounds with B =
10, 000 for the system reliability is 0.763.

No Previous Test Data Exists. We now turn to the more difficult case of
determining the prior beta distribution parameter estimates α̂1 and α̂2 in the
case of a component with perfect test results and when no previous test data
are available. For such a component, the point estimate of the component
reliability is p̂ = 1 and the CP lower reliability bound is pL = α1/n. One
heuristic technique for determining the parameters is to choose α̂1 and α̂2

such that F (pL) = α, i.e.,

∫ pL

0

Γ(α̂1 + α̂2)

Γ(α̂1)Γ(α̂2)
xα̂1−1(1 − x)α̂2−1dx = α. (15.1)

The intuition behind this choice is that 100α% of the time, a prior component
reliability (which will be modified subsequently by the data set) will assume
a value less than pL. One problem with this criteria is that there are an
infinite number of α̂1 and α̂2 that satisfy this equation. Further refinement is
necessary.

For a sample of size n > 1, the (α̂1, α̂2) pair satisfying Eq. (15.1) will
(a) intersect the line α̂1 = 1 on 0 < α̂2 < 1 and (b) intersect the line α̂2 = 1 on
α̂1 > 1. One technique for determining a (α̂1, α̂2) pair is to find the intersection
of the values of α̂1 and α̂2 that satisfy Eq. (15.1) and the lines α̂1 = 1 and
α̂2 = 1. These two points of intersection, or any point on the line segment
connecting them can be used as prior beta distribution parameter estimates.
It is interesting to note that

• the intersection of Eq. (15.1) and the line α̂1 = 1 corresponds to Case III
for the beta distribution parameters (Scenario 1)

• the intersection of Eq. (15.1) and the line α̂2 = 1 corresponds to Case II
for the beta distribution parameters (Scenario 2)
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• any point on the line segment connecting the two intersection points (not
including the endpoints of the segment) corresponds to Case IV for the
beta distribution parameters (Scenario 3)

We first consider the intersection of Eq. (15.1) and α1 = 1. Integration of
the beta PDF is analytic in this case, yielding

1− (1− pL)
α̂2 = α

or

α̂2 =
log(1− α)

log(1− α1/n)
.

Next, we first consider the intersection of Eq. (15.1) and α2 = 1. The integra-
tion of the beta PDF is analytic in this case as well, yielding

pα̂1

L = α

or
α̂1 = n.

Example 15.4. Next is an example of a three-component series system
with beta prior distributions. Consider again the three-component se-
ries systems. System 1 has test results displayed in Table 15.1. Sys-
tem 2 has test results displayed in Table 15.4. The point estimate for
the system reliability of System 1 is

21

23
· 27
28

· 82
84

=
1107

1288
∼= 0.8595

and the point estimate for the system reliability of System 2 is

21

23
· 28
28

· 82
84

=
41

46
∼= 0.8913.

Hence the slight difference between the two test results (the perfect
test results for component 2) has resulted in a 0.8913−0.8595 = 0.0318
increase in the point estimate for the system reliability. A similar
increase in the lower bound for the system reliability for a reasonable
procedure is expected.
The earlier analysis of System 1 using APPL has resulted in an exact
(no resampling variability) bootstrap 95% lower limit on the system
reliability of 0.746. Table 15.6 contains 95% lower confidence limits
for the system reliability using four different combinations of prior
beta distribution parameter estimates α̂1 and α̂2 for component 2.
The parameter estimates for Scenario 3 are found by averaging the
parameter estimates for Scenarios 1 and 2. The lower bounds pL are
determined by taking the median result of five runs with B = 10, 000
replications using the bootstrap procedure described earlier. The col-
umn labeled ΔpL gives the difference between the lower confidence
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limit for System 2 and the lower confidence limit for System 1. The
uniform prior model is too wide because the 0.748 − 0.746 = 0.002
increase in the lower bound is inconsistent with the 0.0318 increase in
the point estimate for the system reliability. Based on this example
only, Scenarios 1 and 3 seem to be the most appropriate since their in-
creases in the lower bound bracket the increase in the point estimator
for the system reliability.

Table 15.6. Lower reliability bounds (α = 0.05) for the system reliability of a
three-component series system with alternative beta prior parameters

Model α̂1 α̂2 pL ΔpL
Uniform prior 1 1 0.748 0.002
Scenario 1 1 0.022418 0.785 0.039
Scenario 2 28 1 0.769 0.023
Scenario 3 14.5 0.511209 0.772 0.026

Our heuristic, which chooses α̂1 and α̂2 such that F (pL) = α works rea-
sonably well in the example with one component having perfect test results,
but will likely need to be modified if several components have perfect test
results. A large-scale Monte Carlo simulation which involves varying α, the
number of system components, the configuration of the system components,
and the expected fraction of cases where perfect test results are encountered
is the only way to evaluate the techniques presented here, and to compare
them, for example, with the asymptotic techniques presented in Mann et al.
[104, page 498]. Such a simulation is appropriate on a system-by-system basis.

15.5 Simulation

Monte Carlo simulation is used to test several heuristic methods along with
the techniques developed in this paper. We begin with a pilot simulation that
is used to evaluate a large number of methods in order to thin the number of
methods considered.

Simulation Study A. The system considered in this pilot study is a three-
component series system with identical components. In keeping with the ear-
lier example, there are n1 = 23, n2 = 28, and n3 = 84 components of each
type placed on test. There are B = 1000 bootstrap replications used and 1000
simulation replications conducted. The stated coverage of the lower confidence
interval bound for the system reliability is 0.95. If the intervals cover approx-
imately 95% of the true system reliability values for a wide range of true
component reliabilities, then the confidence interval procedure is performing
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adequately. Using the two-sided CP confidence interval procedure for a single
component described earlier, the acceptable range for the fraction of simulated
confidence intervals (at α = 0.01) covering the true system reliability is from
0.931 to 0.968 inclusive. The simulations are run in S-Plus using the set.seed
command prior to each run to exploit the common random numbers variance
reduction technique.

In addition, the number of components that achieve perfect test results is
computed for general true component reliabilities p1, p2, and p3. For general
n1, n2, and n3, let the random variable W be the number of components with
perfect test results. The PDF of W is

f(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − pn1
1 )(1− pn2

2 )(1− pn3
3 ) w = 0

(1 − pn1
1 )(1− pn2

2 )pn3
3 + (1− pn1

1 )pn2
2 (1− pn3

3 )
+ pn1

1 (1− pn2
2 )(1− pn3

3 ) w = 1
(1 − pn1

1 )pn2
2 pn3

3 + pn1
1 (1− pn2

2 )pn3
3 + pn1

1 pn2
2 (1− pn3

3 ) w = 2
pn1
1 pn2

2 pn3
3 w = 3.

These values are computed and given in Table 15.7 for various true, identical
component reliabilities ranging from 0.60 to 0.99.

Nine algorithms for handling the case of one or more components with
perfect test results are compared in the pilot simulation. We have included
algorithms of an ad hoc nature (e.g., Algorithms 2 and 3) and those with
some theoretical basis (e.g., Algorithm 9) in order to show that the beta prior
approach dominates the other approaches as component reliability increases.

• Algorithm 1: Pure bootstrapping. A component with a perfect test al-
ways generates perfect simulated results.

• Algorithm 2: Always assume a failure. When component i has perfect
test results (i.e., yi = ni), introduce an artificial failure by assuming that
yi = ni − 1, for i = 1, 2, . . . , n.

• Algorithm 3: Increase the sample size. For perfect test results, artificially
increase sample size to approximate the lower confidence bounds with a
single failure using the confidence intervals for a single component given
earlier in the paper, then bootstrap. In our case, n1 = 37 (y1 = 36),
n2 = 45 (y2 = 44), and n3 = 134 (y3 = 133).

• Algorithm 4: Bayes bootstrapping with α1 = 1 and α2 = 1 (i.e., uniform
prior).

• Algorithm 5: Bayes bootstrapping with α1 = 1 for all components, and
α2 = log(1− α)/ log(1− α1/ni), for i = 1, 2, . . . , k, as described earlier.

• Algorithm 6: Bayes bootstrapping with α1 = ni, for i = 1, 2, . . . , k, and
α2 = 1 for all components, as described earlier.

• Algorithm 7: Bayes bootstrapping with α1 and α2 that are averages of
the values given in Algorithms 5 and 6.

• Algorithm 8: Bayes bootstrapping with α1 = 100 and α2 = 1.
• Algorithm 9: A procedure from Mann et al. [104, pages 497–499] which,

using asymptotic normal theory, calculates a lower bound as:



232 15 Lower Confidence Bounds for System Reliability from Binary. . .

k∏

i=1

yi
ni

− zα

√√√√
k∏

i=1

(
yi
ni

)2 k∑

j=1

(
1

yj
− 1

nj

)
.

The performance of the confidence intervals given in Table 15.7 is as ex-
pected. Algorithm 1, for example, which takes the overly optimistic, pure
bootstrapping approach, produces lower confidence limits that are shifted up,
resulting in fewer-than-expected lower confidence limits that fall below the
true system reliability. The opposite case is true for the pessimistic uniform
prior distribution in Algorithm 4. In fact, once the Bayesian portion of the al-
gorithm began to dominate (i.e., when the component reliabilities are large),
all nine algorithms fail to deliver confidence intervals with the appropriate
coverage. We experimented with the confidence interval that performed the
best (Algorithm 7, which averages the parameter estimates of Algorithms 5
and 6) by replacing “average” with “linear combination,” but did not produce
results that were significantly better than those presented in Table 15.7.

The abysmal performance of all of these algorithms for high-reliability
components is consistent with the work of Martz and Duran [109], who con-
sidered lower confidence bounds for the system reliability of 20 system con-
figurations and component reliabilities using three algorithms and two values
of α (0.05 and 0.10). Their intervals also diverged from the stated coverages.

Simulation Study B. This poor performance led us to re-code our algo-
rithms in C and to do an exhaustive search in the (α1, α2) plane for values
of the beta prior parameters α1 and α2 that yield reasonable coverages for
lower confidence bounds on the system reliability. We returned to the case of
a single component. Figure 15.4 shows the results of this exhaustive search
for n = 23 components on test. Every (α1, α2) pair that resulted in a confi-
dence interval whose coverage did not statistically differ from 0.95 was plotted
for p = 0.91, 0.92, . . . , 0.99. For each particular population reliability p shown
in Figure 15.4, the areas where appropriate coverages are achieved are quite
narrow. Unfortunately, the graph in Figure 15.4 shows that there is no single
(α1, α2) pair that will work for all values of p.

The following procedure has been developed as a compromise that allows
reasonable lower confidence limit coverage in the case of a system with one or
more components having perfect test results:

• For each of the components in the system, consult with someone familiar
with the component to get a point estimate of the component reliability
p∗i , i = 1, 2, . . . , k.

• Determine the number of components to be tested n1, n2, . . . , nk.
• For each (p∗i , ni) pair, perform an exhaustive search of the (α1, α2) plane

to find a (α̃1, α̃2) pair which yields appropriate coverage.
• Perform Bayesian bootstrapping as described earlier in this paper using the

test results (ni, yi) and the appropriate (α̃1, α̃2) values from the previous
step.
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Example 15.5. The final example illustrates this technique for a single-
component system. Figure 15.5 contains a graph of the actual coverage
for 1000 simulation replications of a single-component system with
n = 28 and a three-component system with n1 = 23, n2 = 28, and
n3 = 84.
All true component reliabilities are equal, and plotted on the hori-
zontal axis. The stated coverage on all intervals is 0.95. The usual
bounds around 0.95 (at 0.931 and 0.968) which denote confidence in-
tervals whose actual coverage does not differ significantly from the
specification are given as horizontal dashed lines. All Bayesian proce-
dures use (α1, α2) = (252.28, 4.67), which were values that fell outside
of the axes in Figure 15.4 associated with the p∗ = 0.97 estimate for
the reliability of the second component. The jagged appearance for the
coverage for the interval for a single component (dotted) is consistent
with the same pattern shown by Blyth [17]. The three-component sys-
tem (solid), on the other hand, has different numbers of components
on test that seem to “average out” these fluctuations, resulting in
appropriate coverage through p = 0.97.
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Fig. 15.4. Prior distribution parameter pairs that give accurate coverage for the
example as a function of the reliability p when n = 23



15.6 Conclusions 235

0.60 0.70 0.80 0.90 1.00

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Single component

Three-component series system

p

Coverage

Fig. 15.5. Lower 95% confidence bound coverage for a single component system
(dotted) and a three-component system (solid) and region not statistically different
from the specification (dashed)

15.6 Conclusions

Determining lower confidence bounds from binary data remains an important
yet elusive question. The Bayesian bootstrapping procedures developed here
yield adequate coverages given that an expert is able make a good initial
estimate of the reliabilities of individual components. The estimates discussed
here improve with increasing system complexity.
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Appendix 1

S-Plus code for calculating a CP (1 − α)100% lower confidence bound for a
single component for n components on test and y passes. This function was
used to generate the lower confidence bounds in Example 15.1.
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> confintlower <- function(n, y, alpha) {

> if (y == 0) {

> pl <- 0

> }

> if (y == n) {

> pl <- alpha ^ (1 / n)

> }

> if (y > 0 && y < n) {

> fcrit1 <- qf(alpha, 2 * y, 2 * (n - y + 1))

> pl <- 1 / (1 + (n - y + 1) / (y * fcrit1))

> }

> pl

> }

Appendix 2

S-Plus code for calculating a bootstrap (1−α)100% lower confidence interval
bound for a k-component series system of independent components using B
bootstrap replications. This implements the algorithm given in Table 15.2.

> seriessystemboot <- function(n, y, alpha) {

> k <- length(n)

> b <- 10000

> z <- rep(1, b)

>

> point <- prod(y) / prod(n)

>

> for (j in 1:b) {

> for (i in 1:k) {

> z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]

> }

> }

> z <- sort(z)

> pl <- z[floor(alpha * b)]

> c(point, pl)

> }

Appendix 3

APPL code for calculating a bootstrap (1−α)100% lower confidence interval
bound for a k-component series system of independent components using the
equivalent of B = +∞ bootstrap replications.
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> n1 := 23;

> y1 := 21;

> X1 := BinomialRV(n1, y1 / n1);

> X1 := Transform(X1, [[x -> x / n1], [-infinity, infinity]]);

> n2 := 28;

> y2 := 27;

> X2 := BinomialRV(n2, y2 / n2);

> X2 := Transform(X2, [[x -> x / n2], [-infinity, infinity]]);

> n3 := 84;

> y3 := 82;

> X3 := BinomialRV(n3, y3 / n3);

> X3 := Transform(X3, [[x -> x / n3], [-infinity, infinity]]);

> Temp := Product(X1, X2);

> T := Product(Temp, X3);

Appendix 4

S-Plus code for calculating a bootstrap (1−α)100% lower confidence interval
bound for a k-component series system of independent component with some
perfect component test results using B bootstrap replications. This imple-
ments the algorithm given in Table 15.3.

> seriessystembayesboot <- function(n, y, alpha) {

> k <- length(n)

> alpha1 <- 1

> alpha2 <- 1

> b <- 10000

> z <- rep(1, b)

>

> point <- prod(y) / prod(n)

>

> for (j in 1:b) {

> for (i in 1:k) {

> if (y[i] == n[i]) z[j] <- z[j] * rbeta(1, alpha1 + y[i],

> alpha2)

> else z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]

> }

> }

> z <- sort(z)

> pl <- z[floor(alpha * b)]

> c(point, pl)

> }
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