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Abstract
Thyroid hormones are essential for normal development, growth and differentia-
tion of numerous tissues, and metabolic regulation. Structurally, they are unique 
because they contain iodine. Their synthesis in thyroid follicles thus requires a 
sufficient nutritional iodide intake, transport into the thyroid cells, and efflux into 
the follicular lumen where the actual biosynthesis occurs. Historically, Pendred 
syndrome has been defined by the triad of sensorineural deafness/hearing impair-
ment in combination with goiter and an abnormal organification of iodide. After 
the identification of the molecular basis of Pendred syndrome, which is caused by 
biallelic mutations in the SLC26A4/PDS gene, functional studies revealed that 
pendrin is a multifunctional anion exchanger with affinity, among others, for chlo-
ride, iodide, and bicarbonate. This observation, together with the demonstration 
of pendrin protein expression at the apical membrane of thyrocytes, led to the 
hypothesis that pendrin might be involved in the efflux of iodide into the follicular 
lumen. Several experimental observations do indeed support a potential role of 
pendrin in mediating iodide efflux. However, iodide efflux is also possible in the 
absence of pendrin, and Slc26a4 −/− knockout mice do not have a thyroidal phe-
notype. These findings indicate that other exchangers or channels have a redun-
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dant or perhaps predominant function. A potential candidate is anoctamin 1 
(ANO1/TMEM16A), a calcium-activated anion channel. Anoctamin is also 
expressed at the apical membrane of thyrocytes, and it has affinity for iodide.

Further studies are needed in order to define the relative physiological role of 
pendrin and anoctamin in mediating iodide efflux, to characterize their affinity 
for iodide, and to analyze their species-specific expression pattern.

7.1	 �Introduction

Thyroid hormones are essential for normal development, differentiation, and metab-
olism of the majority of organs. Their synthesis requires intact follicles, which form 
the functional units of the gland, several regulated biochemical steps, and an ade-
quate nutritional iodide uptake (Kopp 2012; Pesce and Kopp 2014). At the basolat-
eral membrane of thyroid follicular cells, iodide uptake is mediated by the 
sodium-iodide symporter (NIS) (Portulano et  al. 2014). The function of NIS is 
dependent on the sodium gradient generated by the Na+/K+-ATPase (Fig. 7.1), and 
a constitutively active potassium channel consisting of the KCNQ1 and KCNE2 
subunits, which promotes K+ efflux (Frohlich et al. 2011; Roepke et al. 2009). At the 
apical membrane, iodide enters the follicular lumen where the actual thyroid hor-
mone synthesis occurs. Within the follicular lumen, iodide is oxidized by the 
membrane-bound heme enzyme thyroid peroxidase. The oxidation requires the 
presence of hydrogen peroxide (H2O2), which is generated by the dual oxidase 
(DUOX) system (Moreno and Visser 2007). Subsequently, oxidized iodide is organ-
ified into defined tyrosyl residues of thyroglobulin, which serves as the scaffold for 
thyroid hormone synthesis. Thyroglobulin is a heavily glycosylated and very large 
protein (330  kDa) that forms dimers (Di Jeso and Arvan 2016). In a first step, 
referred to as organification, the iodination leads to the formation of mono- and 
diiodotyrosines (MIT, DIT). A donor and an acceptor iodotyrosine are then fused in 
the coupling reaction, which generates T4 or T3. Iodinated thyroglobulin is digested 
by several endopeptidases, both in the follicular lumen and after uptake into the 
cells through macro- and micropinocytosis (Di Jeso and Arvan 2016). T4 and T3 are 
secreted into the bloodstream at the basolateral membrane, at least in part by the 
monocarboxylate transporter MCT8 (Di Cosmo et al. 2010). Remarkably, MIT and 
DIT are sorted and then deiodinated by an intracellular iodotyrosine dehalogenase 
(DEHAL1), which permits to recycle the released iodide into the follicular lumen 
(Moreno et al. 2008; Kopp 2012).

7.2	 �How Does Iodide Enter the Follicular Lumen?

In electrophysiological studies performed more than two decades ago with inverted 
thyroid membrane vesicles, Golstein et al. suggested that iodide efflux is mediated 
by two distinct channels (Golstein et  al. 1992). The first one, referred to as the 
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iodide channel, exhibited a high permeability and specificity for iodide with an 
approximate Km of 70 μM. The second channel was found to be about fourfold 
more permeable to iodide than chloride with a Km of about 33 mM. The authors 
postulated that the iodide channel is restricted to the apical membrane and trans-
ports iodide from the cytosol into the colloid space, whereas the second one may 
mediate predominantly chloride transport under physiological conditions. So far, 
the molecular identity of these two conductances, which could be anion channels or 
transporters, has however not been identified. Currently, two candidates have been 
considered: pendrin and anoctamin (Silveira and Kopp 2015) (Table  7.1 and 
Fig. 7.1). Chloride channels such as the cystic fibrosis transmembrane conductance 
regulator (CFTR) and the voltage-gated chloride channel 5 (CLCN5) are also 
expressed in thyroid follicular cells (Li et al. 2010; van den Hove et al. 2006). While 
they have affinity for iodide, they are not thought to play a role in mediating iodide 
efflux under physiological conditions. SLC5A8, a homologue of NIS, which was 
initially called human apical iodide transporter (hAIT) (Rodriguez et al. 2002), is 
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Fig. 7.1  Cellular localization (top) and putative structure (bottom) of pendrin (PDS/SLC26A4) 
and anoctamin 1 (ANO1/TMEM16A). Pendrin contains a carboxyterminal STAS (sulfate trans-
porter and antisigma factor antagonist) domain that contains a protein kinase A phosphorylation 
site. The predicted calmodulin- and calcium-binding sites of ANO1 are indicated. The sodium-
iodide symporter (NIS) transports iodide into the follicular cells at the basolateral membrane 
against the electrochemical gradient. NIS is dependent on the sodium gradient generated by the 
Na+/K+-ATPase. At the apical membrane, pendrin is thought to function as a iodide/chloride 
exchanger, and anoctamin is a channel that may function in conjunction with other channels such 
as the transient receptor potential channel 2 (TRPC2)
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clearly not involved in apical iodide efflux as formally demonstrated in functional 
studies in oocytes and polarized MDCK cells (Paroder et al. 2006).

Thyroid-stimulating hormone (TSH) rapidly activates the efflux of iodide efflux 
at the apical membrane through the protein kinase A and C pathways (Weiss et al. 
1984; Nilsson et al. 1990, 1992; Iosco et al. 2014). These pathways may be differ-
entially regulated depending on the physiological status.

Table 7.1  Observations for and against a physiological role of pendrin and anoctamin as media-
tors of iodide efflux in thyroid follicular cells

Pendrin (SLC26A4) Anoctamin 1 (ANO1, TMEM16A)

Findings supporting a physiological role of 
pendrin

Findings supporting a physiological role of 
anoctamin

Patients with Pendred syndrome have a 
partial iodide organification defect

ANO1 is abundantly expressed at the apical 
membrane of thyroid follicular cells

Patients with Pendred syndrome can develop 
a goiter

ANO1 expression is regulated by TSH

Patients with Pendred syndrome can present 
with congenital or acquired hypothyroidism

ANO1 can be stimulated by calcium

Pendrin is a multifunctional anion exchanger 
abundantly expressed at the apical membrane 
of thyroid follicular cells

ANO1 mediates efflux of iodide in transfected 
cells

Pendrin mediates iodide transport in 
transfected non-polarized cells

Inhibition or siRNA knockdown of ANO1 
decreases iodide efflux from thyroid cells

Pendrin mediates vectorial iodide efflux in 
transfected polarized cells

ANO1 splice variants expressed in the thyroid 
have a higher affinity for iodide than chloride

Mutations of pendrin lose the ability to 
mediate iodide efflux

Studies in oocytes have demonstrated that 
ANO1 is a calcium-activated chloride channel 
with a preference for iodide over chloride

Pendrin has a higher affinity for iodide than 
for chloride

TSH mediates rapid translocation of pendrin 
to the apical membrane and increases iodide 
efflux

Membrane abundance and half-life increased 
under conditions of iodide excess

Findings possibly questioning a primary 
physiological role of pendrin

Findings possibly questioning a primary 
physiological role of ANO1

TSH does not regulate PDS/SLC26A4 gene 
expression

ANO1 may function in conjunction with other 
channels such as the transient receptor 
potential channel 2 (TRPC2)

Slc26a4 −/− mice do not display a thyroidal 
phenotype
This could, however, simply reflect a species 
difference

In transfected HEK293 cells expressing 
pendrin, the iodide efflux is higher compared 
to cells expressing ANO1 (Fig. 7.2)

Pendrin has a distinct role as an exchanger of 
chloride and bicarbonate in other tissues such 
as the kidneys and inner ear

siRNA small interfering ribonucleic acid, HEK293 human embryonic kidney cell line 293
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7.3	 �Pendrin

The classic phenotype of the autosomal recessive Pendred syndrome (OMIM 
#274600) consists of sensorineural deafness associated with inner ear malforma-
tions, especially enlarged vestibular aqueduct (EVA), goiter, and a partial iodide 
organification defect (PIOD) (Pendred 1896; Morgans and Trotter 1958; Bizhanova 
and Kopp 2010). Pendred syndrome is caused by biallelic (homozygous and com-
pound heterozygous) mutations in the PDS/SLC26A4 gene (Everett et  al. 1997). 
Functionally, pendrin belongs to the SLC26 family of multifunctional anion trans-
porters (Alper and Sharma 2013), and it was found to have affinity for iodide (Scott 
et al. 1999).

Because of the human phenotype with a partial iodide organification defect 
(PIOD), goiter, and in a subset of subjects congenital or acquired hypothyroidism 
(Gonzalez Trevino et al. 2001; Ladsous et al. 2014), the expression of pendrin at the 
apical membrane of thyroid follicular cells (Royaux et al. 2000) (Fig. 7.1), and its 
affinity for iodide (Scott et al. 1999), it is a plausible candidate for mediating iodide 
efflux at the apical membrane.

Initial studies in Xenopus oocytes demonstrated that pendrin is able to mediate 
uptake of anions such as chloride and iodide in a sodium-independent manner 
(Scott et al. 1999). In transfected unpolarized mammalian cells, pendrin was then 
shown to mediate iodide release (Yoshida et al. 2002). Next, studies performed in 
polarized cells expressing NIS at the basolateral membrane and pendrin at the 
apical membrane in a bicameral system demonstrated that pendrin can mediate 
vectorial iodide efflux at the apical membrane (Gillam et al. 2004). Importantly, 
more recent studies performed in oocytes have shown that pendrin functions as a 
coupled, electroneutral iodide/chloride, iodide/bicarbonate, or chloride/bicarbon-
ate exchanger with a 1:1 stoichiometry, and that it has a preferential affinity for 
iodide, even in the presence of high chloride concentrations (Shcheynikov et al. 
2008). Moreover, it has been shown that pendrin is expressed at the apical mem-
brane of parotid gland ducts where it can mediate luminal iodide secretion 
(Shcheynikov et al. 2008).

Some of the more than hundred naturally occurring mutations have been tested 
functionally, mainly after transfection into heterologous mammalian cells. Disease-
causing mutations result in a complete or partial loss in iodide efflux (Gillam et al. 
2004; Taylor et al. 2002; Pera et al. 2008; Dossena et al. 2009, 2011), and many 
mutated proteins are retained in intracellular compartments such as the endoplasmic 
reticulum secondary to misfolding (Rotman-Pikielny et al. 2002). The human phe-
notype, which is characterized by goiter development under conditions of scarce 
iodide intake (Gonzalez Trevino et al. 2001), as well as the PIOD, is suggestive for 
a physiological role of pendrin in mediating or participating in iodide efflux in 
humans. In contrast, however, Slc26a4 −/− mice do not develop a goiter or abnor-
mal thyroid hormone levels, even under conditions of iodine deficiency (Calebiro 
et al. 2011; Iwata et al. 2011). Although this has been used as an argument against a 
physiological role of pendrin in mediating iodide efflux in thyrocytes (Twyffels 
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et al. 2011), it is currently unclear whether this simply reflects a species difference 
(Bizhanova and Kopp 2011).

Iodide efflux at the apical membrane is rapidly accelerated by TSH (Nilsson 
et al. 1990, 1992; Weiss et al. 1984). Stimulation of the protein kinase A pathway in 
rat thyroid cells results in a rapid increase in membrane insertion of pendrin and an 
increased iodide efflux (Bizhanova et al. 2011; Pesce et al. 2012). Stimulation with 
forskolin increases the membrane insertion of pendrin in PCCL3 rat thyroid cells, 
presumably through activation of a protein kinase A site in the intracellular car-
boxyterminus (Bizhanova et al. 2011). Deletion or targeted mutation of the protein 
kinase A site residing in the intracellular carboxyterminal tail containing the so-
called STAS (sulfate transporter and antisigma factor antagonist) domain results in 
decreased basal function and membrane insertion of pendrin (Bizhanova et  al. 
2011). In addition, the protein kinase A site mutation (T717A) is partially func-
tional, but it has a mitigated response to forskolin (Bizhanova et al. 2011). Trafficking 
of murine pendrin to the apical membrane is also activated by cAMP in microper-
fused mouse cortical collecting duct (CCD) and in polarized renal opossum kidney 
proximal tubule (OKP) cells via phosphorylation of S49 in the aminoterminal intra-
cellular domain (Azroyan et al. 2012). In contrast to the rapid translocation medi-
ated by the protein kinase A pathway, stimulation of the protein kinase C pathway 
in rat thyroid cells appears to result in a delayed translocation of pendrin to the 
plasma membrane (Muscella et al. 2008). Interestingly, rat thyroid cells incubated 
with supraphysiological amounts of iodide show an increased abundance of pendrin 
at the plasma membrane, the half-life of pendrin increases, and the efflux of iodide 
is enhanced (Calil-Silveira et al. 2016). These findings suggest that pendrin could 
have a role in mediating iodide efflux under conditions of iodide excess.

Under conditions of normal or abundant iodide intake, goiter development is 
unusual (Sato et al. 2001), but goitrous congenital and overt hypothyroidism devel-
oping later in life can be present in patients with Pendred syndrome (Gonzalez 
Trevino et al. 2001; Ladsous et al. 2014). In a study from Northern France, a region 
which has a normal to marginal iodide intake, Ladsous et al. characterized the thy-
roid phenotype in patients with Pendred syndrome and non-syndromic EVA 
(Ladsous et al. 2014). Fifteen out of the 19 patients with Pendred syndrome (79 %) 
presented with a goiter. Fifteen (79 %) subjects had hypothyroidism: 6/15 had con-
genital hypothyroidism, 5/15 had overt hypothyroidism, and 4/15 had subclinical 
hypothyroidism. Ten out of 16 (63 %) of these patients showed abnormal iodide 
organification as determined by a perchlorate test, a test that is unfortunately poorly 
standardized and subject to exogenous (e.g., iodine intake) and endogenous (e.g., 
autoimmune thyroid disease) modulators. The study by Ladsous et al. clearly dem-
onstrates that there is a relatively wide spectrum in the thyroid phenotype among 
patients with Pendred syndrome, suggesting that it is influenced by genetic and 
environmental modifiers, including nutritional iodine intake (Ladsous et al. 2014). 
Intriguingly, biallelic mutations in the SLC26A4 gene have also been identified in 
two patients with thyroid hypoplasia and congenital hypothyroidism from two unre-
lated families (Kühnen et al. 2014). The mutations found in these subjects have been 
previously identified in patients with the classical form of Pendred syndrome or 
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familial EVA (Kühnen et al. 2014; Kopp 2014). The reasons why these two patients 
developed thyroid hypoplasia, rather than a goitrous phenotype, are unclear. It has 
been speculated that either the retained misfolded proteins or an increased produc-
tion of free radicals in response to sustained stimulation by TSH could have a toxic 
effect leading to cell death, or that the hypoplastic phenotype requires the presence 
of additional modifying (genetic) factors (Kopp 2014; Kühnen et al. 2014).

7.4	 �Anoctamin

Three recent studies have suggested that anoctamin 1 (ANO1), also referred to as 
TMEM16A, could be involved in apical iodide efflux in thyroid cells (Viitanen 
et al. 2013; Iosco et al. 2014; Twyffels et al. 2014). ANO1 is a calcium-activated 
anion channel, which is expressed in numerous tissues, including thyroid follicu-
lar cells (Pedemonte and Galietta 2014; Ferrera et al. 2010). ANO1 is part of a 
family of ten paralogs (ANO1-10; TMEM16A-K) sharing a common transmem-
brane topology, but a wide spectrum of in part putative functional roles as ion 
channels, regulatory subunits of other channels or phospholipid scramblases, pro-
teins responsible for the translocation of phospholipids between the two monolay-
ers of the cell membrane lipid bilayer (Pedemonte and Galietta 2014; Picollo et al. 
2015). The ANO1 gene generates several splice variants, and most of them have a 
higher affinity for iodide than chloride (Ferrera et al. 2010). Human and rat thy-
roid cells predominantly express the so-called abc and the ac isoforms (Ferrera 
et  al. 2009; Iosco et  al. 2014), whereas the rat thyroid cell lines PCCL3 and 
FRTL-5 predominantly express the ac isoform, which is more sensitive to calcium 
(Ferrera et  al. 2009, 2010). A functional study by Viitanen et  al. performed in 
native FRTL-5 rat thyroid cells suggested that ANO1, in conjunction with the 
transient receptor potential channel 2 (TRPC2), mediates iodide release (Viitanen 
et al. 2013). Iosco et al. then demonstrated that the ANO1 protein is localized at 
the apical membrane of human thyrocytes (Fig. 7.1), and that its expression is 
more abundant in active cells (Iosco et al. 2014). Functional studies determining 
the intracellular iodide content revealed that iodide release can be stimulated by 
adenosine triphosphate (ATP) in a calcium-dependent manner from FRTL-5 cells, 
whereas treatment with inhibitors or siRNA knockdown decreased the iodide 
efflux. Similarly, iodide efflux was also increased in transfected mammalian cells 
expressing both NIS and ANO1, and iodide release could be further stimulated by 
calcium (Iosco et  al. 2014). Twyffels et  al. demonstrated that Ano1 mRNA is 
stimulated by TSH and that the protein expression, which is relatively discrete 
under basal conditions, increases after stimulation by TSH (Twyffels et al. 2014). 
In unpolarized human embryonic kidney (HEK293) cells transfected with ANO1, 
the efflux of iodide is increased compared to untransfected cells. However, in 
HEK293 cells expressing pendrin, the iodide efflux is higher compared to ANO1 
transfected cells, suggesting that pendrin is more efficient in mediating iodide 
efflux, at least in this model system (Fig. 7.2). Treatment with the calcium iono-
phore ionomycin was found to acutely stimulate the ANO1-mediated iodide 
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release (Twyffels et al. 2014). The mechanism by which calcium activates ANO1 
seems to involve calmodulin as well as direct calcium binding to ANO1 
(Pedemonte and Galietta 2014). Rat thyroid cell lines and human primary thyroid 
cells treated either with an ANO1 inhibitor (T16Ainh-A01) or siRNA show a 
decrease in iodide release (Twyffels et al. 2014). Studies in oocytes have demon-
strated that ANO1 is a calcium-activated chloride channel with a preference for 
iodide over chloride (Schroeder et al. 2008; Yang et al. 2008) indirectly suggest-
ing that it could be involved in mediating iodide efflux. ANO1 is able to mediate 
iodide efflux from FRTL-5 cells after ATP stimulation in the absence of chloride, 
which suggests that it functions independently of pendrin, which functions as an 
anion exchanger. In aggregate, these results indicate that ANO1, which has a pref-
erential affinity for iodide over chloride (Schroeder et al. 2008; Yang et al. 2008), 
is able to mediate iodide release from thyroid cells.

7.5	 �Future Directions

In conclusion, the current body of data suggests that the multianion exchanger pen-
drin (PDS/SLC26A4) and the calcium-dependent channel anoctamin 1 (ANO1/
TMEM16A) can mediate apical iodide efflux in thyroid cells and several model 
systems. It is conceivable that they are part of a redundant system. The exact physi-
ological role of pendrin and ANO1 awaits further characterization, and it may be 
variable between basal conditions and conditions of thyroid dysfunction as illus-
trated by the regulation of ANO1 expression by TSH, and the differential regulation 
of pendrin trafficking by the protein kinase A and C pathways. As suggested by the 

Fig. 7.2  Release of radioiodide from 125I-preloaded PCCl3 cells (○) or HEK 293 T cells trans-
fected to express Na+/I− symporter (NIS) in combination with GFP (●) or ANO1 (▲) or pendrin 
(■). The data are representative of more than five independent experiments (From Ref. Twyffels 
et al. (2014). With permission). Note that the release of iodide is more efficient in these pendrin-
transfected cells compared to ANO1-transfected cells
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absence of a thyroid phenotype in Slc26a4 −/− knockout mice, which differs with 
the human phenotype that can include goiter and congenital or acquired hypothy-
roidism, there may be relevant differences in the expression pattern and physiologi-
cal roles of pendrin and ANO1 between species.
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