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Abstract. Over the years, fault injection has become one of the most
dangerous threats for embedded devices such as smartcards. It is thus
mandatory for any embedded system to implement efficient protections
against this hazard. Among the various countermeasures suggested so
far, the idea of infective computation seems fascinating, probably due
to its aggressive strategy. Originally conceived to protect asymmetric
cryptosystems, infective computation has been recently adapted to sym-
metric systems. This paper investigates the security of a new symmetric
infective countermeasure suggested at CHES 2014. By noticing that the
number of executed rounds is not protected, we develop four different
attacks that exploit the infection algorithm to disturb the round counter
and related variables. Our attacks allow one to efficiently recover the
secret key of the underlying cryptosystem by using any of the three most
popular fault models used in literature.
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1 Introduction

Over the last 20 years, the security of embedded devices has been challenged
by several specific attacks. In particular, Boneh et al. showed in 1996 that a
simple disturbance during the execution of an embedded algorithm may totally
break its security [5]. They illustrated this new method by explaining how to
break an CRT-RSA implementation by inducing only one error during the algo-
rithm execution. By using so-called fault attacks, many signature schemes and
symmetric cryptosystems have been broken only a few months after the original
Boneh et al. publication [1,4]. A whole new research field thus appeared aim-
ing at discovering new fault-based attacks and providing efficient countermea-
sures [11,13,15]. While researchers improved and discovered new fault attacks
on each and every cryptosystem, the countermeasures were difficult to find and
costly to implement. Among the ideas that emerged, the two most popular meth-
ods are the signature verification for asymmetric systems and the duplication
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method for symmetric ones. The first one simply consists in performing a sig-
nature verification on the result. If a fault occurred then the signature is not
consistent and the verification fails. The second method requires to execute the
algorithm twice and to compare both results. If an attacker disturbs one of the
two executions then the comparison detects the attack and no output is returned.
A third approach called infective was suggested in 2001 by Yen et al. [19]. Their
method consists in modifying and amplifying the injected error in such a way
that the attacker cannot retrieve any information from the corresponding faulty
output. Firstly applied to asymmetric cryptosystems [19] this method is tricky to
conceive and all infective countermeasures for asymmetric algorithms published
so far have been broken, see [3,8,17,18] for instance. The infective method has
been adapted only recently to the symmetric case. The first example of sym-
metric infection was proposed by Lomné et al. in 2012 to protect AES [12]. The
authors suggest to execute the AES twice and to compute the infection by multi-
plicatively masking the differential of the two AES outputs. A second symmetric
infection was suggested by Gierlichs et al. in [10] by using a random sequence of
cipher and redundant rounds together with dummy rounds. If the outputs of the
redundant and cipher rounds are different then the temporary result is infected.
Unfortunately both methods have been broken by Battistello and Giraud in [2].

At CHES 2014, Tupsamudre et al. improved in [16] the attack of
Battistello and Giraud and they also suggested an improved version of the infec-
tive countermeasure of Gierlichs et al. While this new proposal is secure against
the attacks found in [2,16], one wonders if they are sufficient to make a symmetric
implementation effectively secure, especially in the absence of a proof of security.
Such a study has been done by Patranabis et al. in [14] where they provide an
information theoretical analysis of the countermeasure suggested in [16]. They
found weaknesses and proposed ways to reduce the efficiency of such threats.

In this paper, we extend the analysis of [14] by studying the security of the
proposition of Tupsamudre et al. We firstly refine the attack presented in [14]
and we analyze precisely its efficiency. We also suggest three other different
attack paths that allow the attacker to modify the number of executed rounds
by disturbing the infective algorithm variables. In order to mount our attacks
we exploit three common fault models used in literature, from skip faults to
random error faults. This paper not only shows that a straightforward imple-
mentation of the CHES 2014 infective countermeasure is insecure but also shows
that implementers should pay particular attention to any aspect of a security
countermeasure when implementing it.

The rest of the paper is organized as follows. In Sect. 2 we recall the coun-
termeasure suggested in [16]. Section 3 presents four different attacks on this
countermeasure. In particular, we show that it is possible to recover the secret
key by using any of the three most popular fault models used in the literature.
Section 4 finally concludes this paper.
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2 Description of CHES 2014 Infective Countermeasure

The infective countermeasure suggested at CHES 2014 by Tupsamudre et al. [16]
is based on the work presented at LatinCrypt 2012 by Gierlichs et al. [10]. For
the sake of simplicity we recall in Algorithm 1 the CHES 2014 countermeasure
suggested in [16] applied to AES-128. For more information about AES, the
reader can refer to [9].

Algorithm 1. CHES 2014 Countermeasure applied on AES-128
Inputs : Plaintext P , round keys kj for j ∈ {1, . . . , 11}, pair (β, k0), security

level t ≥ 22
Output: Ciphertext C = AES-128(P ,K)

1 State R0 ← P ; Redundant state R1 ← P ; Dummy state R2 ← β
2 i ← 1, q ← 1
3 rstr ← {0, 1}t // #1(rstr) = 22, #0(rstr) = t − 22
4 while q ≤ t do
5 λ ← rstr[q] // λ = 0 implies a dummy round
6 κ ← (i ∧ λ) ⊕ 2(¬λ)
7 ζ ← λ · �i/2	 // ζ is actual round counter, // ζ = 0 is for

dummy round
8 Rκ ← RoundFunction(Rκ, kζ)
9 γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕ R1)

10 δ ← (¬λ) · BLFN(R2 ⊕ β)
11 R0 ← (¬(γ ∨ δ) · R0) ⊕ ((γ ∨ δ) · R2)
12 i ← i + λ
13 q ← q + 1

14 end
15 return (R0)

Algorithm 1 uses three states denoted R0, R1 and R2 for the cipher, the
redundant and the dummy rounds respectively. The execution order of these
rounds is given by a random bit string rstr generated at the beginning of the
algorithm. Each “0” on the string encodes a dummy round, while a “1” encodes
a redundant or cipher round. Each time a “1” occurs, an index i is incremented
and a redundant round (resp. a cipher round) is executed if i is odd (resp.
even). Algorithm 1 thus executes a loop over the rstr string bits and executes a
cipher, redundant or dummy round accordingly. One may note that Algorithm1
computes the redundant round before the cipher round all along the algorithm
and dummy rounds can happen randomly at any time.

Dummy rounds are executed over a dummy state R2 which is initialized to a
random 128-bit value β and by using the round key k0 which is computed such
that:

RoundFunction(β, k0) = β. (1)
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The number of dummy rounds is parameterized by a security level t chosen by
the developer. More precisely, this parameter represents the whole number of
cipher, redundant and dummy rounds performed during Algorithm1 execution.
For instance in the case of AES-128, t − 22 dummy rounds will be performed.

Regarding the infective part, a first infection is activated after each cipher
round if its state R0 is different from the redundant state R1 (Steps 9 and 11).
Moreover another infection occurs if R2 �= β after the execution of a dummy
round (Steps 10 and 11). These infections consist in replacing the cipher state
R0 with the random value R2, leaving no chance to the attacker to obtain infor-
mation on the secret key once the infection is applied. To do so, a Boolean
function BLFN is used which maps non-zero 128-bit values to 1 and outputs 0 for
a null input.

Compared to the original LatinCrypt 2012 proposal, the CHES 2014 infec-
tive countermeasure differs by the way of dealing with the sequence of cipher,
redundant and dummy rounds which is now done by using a random string rstr
and by the way the infection is performed which is now fully random.

Despite the security analysis of Algorithm 1 presented in [16], we show in the
next section that it may be insecure if implemented as such. Furthermore we
show that an attacker can recover the full secret key for each of the three most
popular fault models used in literature.

3 Attacks

In this section we firstly present the principle of our attacks which are based on
the fact that the variables dealing with the number of rounds to perform are not
protected. We then exploit this remark to suggest four different attacks that use
different fault models such as the instruction skip, the stuck-at and the random
error fault model.

3.1 Principle of Our Attacks

Due to the improvements of Algorithm 1 compared with the original LatinCrypt
2012 countermeasure, it is impossible for the attacker to obtain any informa-
tion on the secret key once the infection has occurred. In order to thwart this
countermeasure, we thus investigate the possibility to disturb the number of
executed rounds since the corresponding variable is not protected in integrity.
Indeed, if the attacker succeeds in disturbing the number of rounds she may be
able to retrieve the secret key from the corresponding faulty ciphertext [6,7].
In the remainder of this section, we show how such an attack works if the last
round of an AES-128 has been skipped.

If the attacker knows a correct and a faulty ciphertext obtained by skipping
the last AES round then it is equivalent to know the input S10 and the output
S11 of the last round. Due to the lack of MixColumns transformation during
the last AES round, the last round key k11 can be recovered byte per byte by
XORing the corresponding bytes of S10 and S11:

k11
i = S11

i ⊕ SBox(S10
SR−1(i)), ∀i ∈ {1, . . . , 16}, (2)
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where SR corresponds to the byte index permutation induced by the transfor-
mation ShiftRows. In such a case, the attacker can recover the full AES-128 key
from only one pair of correct and faulty ciphertexts.

One may note that this attack works similarly if the attacker knows the input
and the output of the first round. For further details on the first round attack
the reader can refer to [6].

In the following, we describe different ways of disturbing Algorithm1 by using
several fault models such that it does not perform the AES with the correct
number of rounds whereas no infection is performed. In our description we make
use of AES-128 as a reference, however our attacks can apply straightforwardly
to other key sizes.

3.2 Attack 1 by Using Instruction Skip Fault Model

The first attack that we present is an extension of the one presented in [14]
which exploits the instruction skip fault model. The attack essentially works
because whenever the variable i is odd and λ = 1 then a redundant round is
executed and this kind of round does not involve any infection. In the following
we assume that the attacker can skip an instruction of its choice by means of a
fault injection.

Description. If the attacker skips Step 12 of Algorithm1 after the last redundant
round then the increment of i is not performed. Therefore i stays odd so the last
cipher round is replaced by another redundant round. As no infection is involved
for redundant rounds, the algorithm returns the output of the penultimate round.
The attacker can thus take advantage of such an output to recover the secret
key as explained in Sect. 3.1.

Efficiency. As explained in AppendixA, the probability of skipping the last
cipher round and thus to recover the AES key after disturbing r different AES
executions by skipping Step 12 during the q-th loop is given by:

Pr = 1 −
(

1 −
(
q−1
20

)(
t−q
1

)
(

t
22

)
)r

. (3)

where t is the total number of rounds performed during Algorithm1, i.e. the
number of while loops.

Some numerical values of (3) are given in Table 1 for t equal to 30, 40 and
50, q = t − 3, · · · , t − 1 and r = 1, · · · , 4. One can notice that if the fault is
injected when q equals t then the attack does not work because all the rounds
have already been executed.

By analyzing Table 1, one can deduce the best strategy for the attacker. For
example if t = 30 then the attacker should target the 29-th loop in order to
obtain the best chances of retrieving the key with the minimal number of fault
injections.

Experiments. The attack described in this section has been simulated for t = 30
and for each q between 25 and 29. The experiment has been repeated 3 000 times
for each configuration. The results of our tests are depicted in Fig. 1.
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Table 1. Probability of obtaining at least one useful faulty ciphertext by skipping Step
12 during the q-th loop of Algorithm 1.

t q Number r of faults

1 2 3 4

30 27 11.80 % 22.21 % 31.39 % 39.49 %

28 30.34 % 51.48 % 66.20 % 76.46 %

29 53.10 % 78.01 % 89.69 % 95.16 %

40 37 19.34 % 34.93 % 47.52 % 57.66 %

38 28.06 % 48.24 % 62.76 % 73.21 %

39 29.62 % 50.46 % 65.13 % 75.46 %

50 47 18.96 % 34.32 % 46.77 % 56.86 %

48 22.00 % 39.16 % 52.54 % 62.98 %

49 18.86 % 34.16 % 46.57 % 56.65 %

Fig. 1. Experimental probability of obtaining a useful faulty ciphertext by skipping
Step 12 during the q-th loop of Algorithm 1 for t = 30.

By comparing Fig. 1 and the row t = 30 of Table 1, one can notice that the
experiments perfectly match with the theoretical results.

3.3 Attack 2 by Using Stuck-At 0 Fault Model

In this section we use the stuck-at 0 fault model where we assume that the
attacker can set to zero a variable of her choice. As for the attack presented
in Sect. 3.2, the goal of the attacker is to skip the execution of the last cipher
round.

Description. To avoid the execution of the last cipher round by using a
stuck-at 0 fault model without activating an infection, the attacker can set to
zero the variable λ right after Step 5 during the loop involving the last “1” of



150 A. Battistello and C. Giraud

rstr, i.e. during the loop dealing with the last cipher round. The computation
of the last cipher round is thus skipped since λ = 0 implies a dummy round.
The attacker thus retrieves an exploitable faulty ciphertext that can be used
to retrieve the secret key as described in Sect. 3.1. As no consistency check is
performed on λ, rstr nor on the number of cipher rounds executed, Algorithm1
does not detect the fault.

Efficiency. We detail in AppendixB the reasoning to compute the probability of
obtaining at least one useful faulty ciphertext after disturbing r different AES
executions by setting λ to 0 after Step 5 of the q-th loop. Such a probability is
given by:

Pr = 1 −
(

1 −
(
q−1
21

)
(

t
22

)
)r

. (4)

Some numerical values of (4) are given in Table 2 for t equal to 30, 40 and
50, q = t − 2, · · · , t and r = 1, · · · , 4.

Table 2. Probability of obtaining at least one useful faulty ciphertext by sticking λ at
0 during the q-th loop of Algorithm 1

t q Number r of faults

1 2 3 4

30 28 5.06 % 9.86 % 14.42 % 18.75 %

29 20.23 % 36.37 % 49.24 % 59.51 %

30 73.33 % 92.89 % 98.10 % 99.49 %

40 38 11.36 % 21.42 % 30.35 % 38.26 %

39 25.38 % 44.33 % 58.46 % 69.00 %

40 55.00 % 79.75 % 90.89 % 95.90 %

50 48 14.14 % 26.29 % 36.71 % 45.66 %

49 25.14 % 43.96 % 58.05 % 68.60 %

50 44.00 % 68.64 % 82.44 % 90.17 %

By comparing Table 2 with Table 1, one may note that the attack presented
in this section is more efficient than the one presented in Sect. 3.2, especially
when the attacker targets the last loop execution.

Experiments. We simulated the attack for t = 30 and for q from 27 to 30. For
each value of q we performed 3 000 tests with random rstr. The results of such
experiments are depicted in Fig. 2.

3.4 Attack 3 by Using Random Error Fault Model

We show in this section how the attacker can use the random error fault model
to obtain a useful faulty ciphertext. In this fault model, we assume that the
attacker can change the value of a chosen internal variable into a random value.
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Fig. 2. Experimental probability of obtaining a useful faulty ciphertext by sticking λ
at 0 during the q-th loop of Algorithm 1 for t = 30.

Description. Due to its central role in the infection and scheduling, string rstr is
very sensitive. However, the authors of [16] do not suggest any mean of ensuring
its integrity. We thus investigated this path and we noticed that an attacker
can disturb the generation of rstr at Step 3 of Algorithm1 such that it does
not contain 22 “1” anymore. If the fault disturbs the string rstr such that it
contains only 21 (resp. 20) “1” then Algorithm1 does not execute the last cipher
round (resp. the last redundant and cipher rounds). In both cases no infection is
performed allowing the attacker to exploit the corresponding faulty ciphertext
to recover the secret key as explained in Sect. 3.1.

Efficiency. The probability to obtain at least one useful faulty ciphertext after
disturbing r different AES executions by randomly modifying the least significant
byte of rstr during Step 3 is given by:

Pr = 1 −
⎛
⎝1 −

⎛
⎝

8∑
i=1

( t−8
22−i

)(8
i

)
( t
22

)
i∑

j=1

(i
j

)(8−i
j−1

)

255
+

8∑
i=2

( t−8
22−i

)(8
i

)
( t
22

)
i∑

j=2

(i
j

)(8−i
j−2

)

255

⎞
⎠
⎞
⎠

r

. (5)

For more details about the computation of this probability, the reader can
refer to AppendixC.

Table 3 gives the probability to obtain a useful faulty ciphertext for t equal
to 30, 40 and 50.

Experiments. Figure 3 shows the results obtained by simulating the attack
described above. The simulations have been performed by generating a ran-
dom string rstr and disturbing it with an 8-bit random error. The test has been
performed 3 000 times for each t equal to 30, 40 and 50.

3.5 Attack 4 by Using Random Error Fault Model

This section describes a second attack that can be mounted by using the random
error fault model.
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Table 3. Probability of obtaining at least one useful faulty ciphertext by disturbing
Step 3 of Algorithm 1.

t Number r of faults

1 2 3 4

30 41.63 % 65.93 % 80.11 % 88.39 %

40 34.72 % 57.39 % 72.18 % 81.84 %

50 24.60 % 43.15 % 57.13 % 67.67 %

Description. The idea of the attack is to disturb the increment of index q at
Step 13 of Algorithm1 during the execution of the first cipher round. We noticed
that if the disturbance produces an error e such that q⊕e > t then the evaluation
at Step 4 is false and the algorithm returns. If the algorithm computes only one
cipher round then the attacker can use such an output to retrieve the first round
key, cf. [6]. It is important to notice that in order to retrieve a useful output,
the attacker needs to disturb the execution during the first cipher round and not
after a redundant or dummy round.

Efficiency. As detailed in AppendixD, the probability to obtain at least one
useful faulty ciphertext after disturbing r different AES executions by injecting
a random error during Step 13 of the q-th loop is given by:

Pr = 1 −
(

1 − 28 − t

28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(

t
22

)
)r

. (6)

We give in Table 4 the probability that the attacker retrieves a useful faulty
ciphertext for t equal to 30, 40 and 50 and for q from 2 to 4.

The attacker can use Table 4 to choose the best strategy for her attack. For
example for t = 30, one obtains the best chances to retrieve a useful faulty cipher-

Fig. 3. Experimental probability of obtaining a useful faulty ciphertext by disturbing
Step 3 of Algorithm 1.
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Table 4. Probability of obtaining a useful faulty ciphertext by injecting a random
error fault on Step 13 of Algorithm 1.

t q Number of faults

1 2 3 4

30 2 46.88 % 71.78 % 85.01 % 92.04 %

3 73.67 % 93.07 % 98.17 % 99.52 %

4 60.52 % 84.42 % 93.85 % 97.57 %

40 2 24.99 % 43.73 % 57.79 % 68.34 %

3 48.66 % 73.64 % 86.47 % 93.05 %

4 58.22 % 82.55 % 92.71 % 96.95 %

50 2 15.17 % 28.05 % 38.96 % 48.23 %

3 32.88 % 54.95 % 69.76 % 79.70 %

4 45.58 % 70.38 % 83.88 % 91.23 %

text by attacking the third loop. Furthermore when comparing the efficiency of
our four attacks, the attack presented in this section is the most efficient one.

Experiments. We mounted several simulations where we disturbed the Step 13
of the q-th loop with a random byte error e. We mounted the experiments for
t = 30 and for q from 2 to 6. For each different q we repeated the experiment
3 000 times. The results of such experiments are shown in Fig. 4.

Fig. 4. Experimental probability of obtaining a useful faulty ciphertext by a injecting
random error fault on Step 13 of Algorithm 1 for t = 30.

The simulations shows that this attack has a remarkable success rate. For
example for t = 30, an attacker that reiterates the fault injection only twice
during the third loop has a probability of retrieving a useful faulty ciphertext
greater than 90%.
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4 Conclusion

In this article we showed that the infective countermeasure of CHES 2014 is
not as secure as expected. While the countermeasure gives no information to
the attacker once the infection is applied, we discovered that it does not protect
the number of cipher rounds effectively executed. Despite the fact that attacks
on the round counter are well known, our work describes attack paths that are
difficult to spot and involve disturbances on the infective variables intentionally
added to thwart fault attacks. The aim of this paper is thus to warn the reader of
possible security weaknesses that may reside in straightforward implementations
of the countermeasure.

We applied the three most popular fault models and found four different
attack paths that allow an attacker to recover the secret key of the underlying
cryptosystem. For each attack we studied the success probability and performed
simulations that validated our theoretical results.

An obvious countermeasure consists in ensuring the integrity of i, q, λ and
rstr for instance. In their work Patranabis et al. [14] suggest a possible coun-
termeasure based on this remark to thwart the instruction skip fault model.
However, their analysis does not take into account other fault models that are
exploited in this work. We thus suggest that a possible idea for future improve-
ments may be to fill this gap.

With this work we also remark that the lack of formal security proofs in this
field is clearly an issue. We hope that new ideas may pave the way to formally
prove the security of cryptosystems against fault-based cryptanalysis.

A Probability of Success of Attack 1

The success of Attack 1 depends on the chances for the attacker to fault the
increment of i in the loop corresponding to the last redundant round execution.
Let us denote by e1 the event of faulting the last redundant round during the
q-th loop. The probability P(e1) is thus the probability of having a bit-string
rstr that contains 20 “1” on the first q − 1 positions, one bit set on the q-th
position and a last sub-string with only one bit set on the last t−q positions. The
corresponding number of such sub-strings being equal to

(
q−1
20

)
,

(
1
1

)
and

(
t−q
1

)
respectively, this leads us to

(
q−1
20

)(
t−q
1

)
exploitable rstr strings.

By dividing this value by the number of possible rstr strings, we obtain the
probability P(e1):

P(e1) =

(
q−1
20

)(
t−q
1

)
(

t
22

) . (7)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.
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B Probability of Success of Attack 2

Let us evaluate the probability that the event e2 of obtaining a useful faulty
ciphertext by setting to zero the variable λ at Step 5 of Algorithm1 happens.
The probability P(e2) corresponds to the probability of obtaining a string rstr
that has 21 bits set on the first q−1 positions, a “1” on the q-th position and only
“0”’s on the last t − q positions. As we have done in AppendixA, we compute
this probability as the number of such strings divided by the total number of
possible rstr strings. As there is only one possibility that the last t− (q −1) bits
of rstr are exactly “1 0 · · · 0”, we thus obtain:

P(e2) =

(
q−1
21

)
(

t
22

) , (8)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.

C Probability of Success of Attack 3

Let us denote by e3 the event that a random byte error disturbs the string rstr
such that it contains only 21 or 20 “1”. To evaluate the probability P(e3) that
the event e3 occurs, let us assume for the sake of simplicity that the attacker
disturbs the least significant byte B of rstr which corresponds to a random byte
fault model. By firstly evaluating the case 21, we observe that the probability
that a bit-string has exactly 21 bits set on the first t − 8 positions and the
remaining “1” in one of the last 8 positions is:

P(HW (B) = 1) =

(
t−8
21

)(
8
1

)
(

t
22

) , (9)

where we denote by HW (B) the Hamming weight of the byte B. Equation (9)
corresponds to the probability that the last byte of rstr has an Hamming weight
equal to 1. By summing the corresponding probabilities for all the Hamming
weights between 1 and 8 we obtain the probability that the last byte of rstr has
an Hamming weight greater than zero:

P(HW (B) > 0) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

) . (10)

Now, let us compute the probability of injecting a random error on a byte of
Hamming weight i such that the byte contains only i−1 “1” after the disturbance.
We thus count for each possible value of B how many 8-bit values e exist such
that HW (B ⊕ e) = HW (B) − 1. This corresponds to the number of possible
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errors setting to “0” j bits “1” while setting to “1” j − 1 bits “0”. Afterwards
we divide the result by the number of possible values for the error e:

P(HW (B ⊕ e) = HW (B) − 1|B)

=
∑HW (B)

j=1 (HW (B)
j )(8−HW (B)

j−1 )
255 .

(11)

This corresponds to the probability that HW (B ⊕e) = HW (B)−1 by injecting
a random error e on a random 8-bit value B.

By combining the two probabilities above, we obtain the probability that
rstr contains 21 “1” after a random error injection on the last byte of rstr:

P(HW (B ⊕ e) = 21) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

) i∑
j=1

(
i
j

)(
8−i
j−1

)
255

. (12)

For the case where rstr contains only 20 “1”, we use the same reasoning and
we obtain:

P(HW (B ⊕ e) = 20) =
8∑

i=2

(
t−8
22−i

)(
8
i

)
(

t
22

) i∑
j=2

(
i
j

)(
8−i
j−2

)
255

. (13)

Thus the total probability of disturbing the generation of one byte of rstr such
that it contains a total of 21 or 20 “1” is:

P(e3) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

) i∑
j=1

(
i
j

)(
8−i
j−1

)
255

+
8∑

i=2

(
t−8
22−i

)(
8
i

)
(

t
22

) i∑
j=2

(
i
j

)(
8−i
j−2

)
255

. (14)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.

D Probability of Success of Attack 4

In the following we denote by e4 the event that the error e is injected after a
cipher round and is such that q ⊕ e > t. In order to evaluate the probability
P(e4) we need to compute:

– the probability that the error e leads to q ⊕ e > t,
– the probability that the attacker disturbs the algorithm after a cipher round

and not after a redundant or dummy round.

For the first probability, without loss of generality, we assume that q is coded
over one byte which should be the case in practice. We thus obtain that the
probability of injecting an 8-bit error e such that q ⊕ e > t depends only on t
and is given by:

P(q ⊕ e > t) =
28 − t

28
. (15)
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In order to evaluate the second probability we remark that it is equivalent to the
probability that the string rstr contains two or three “1” in the first q positions.
We recall that rstr is a string with 22 “1” at most. Thus the number of possible
strings rstr with only two “1” in the first q positions is:(

q

2

)(
t − q

20

)
. (16)

Summing Eq. (16) to the number of possible strings rstr with only three “1” in
the first q positions we obtain the number of favorable cases for the attacker:(

q

2

)(
t − q

20

)
+

(
q

3

)(
t − q

22 − 3

)
. (17)

By dividing by the total number of possible rstr strings we thus obtain the
probability that the algorithm has executed only one cipher round after q rounds:

P(HW (rstr[1, . . . , q]) ∈ [2, 3]) =

(
q
2

)(
t−q
20

)
+

(
q
3

)(
t−q
19

)
(

t
22

) , (18)

where rstr[1, . . . , q] denotes the sub-string of rstr between the first and the q-th
position. By combining the two probabilities we obtain:

P(e4) =
28 − t

28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(

t
22

) , (19)

which corresponds to the probability that the algorithm returns an exploitable
faulty ciphertext by injecting a random error after q rounds.

As described in Appendix E, we then compute by using Eq. 20 the probability
to obtain at least one useful faulty ciphertext by repeating the fault injection r
times.

E Attack Repetition Probability

For each attack, we denote by P(ei) the probability that event ei occurs. By
assuming that P(ei) is independent for each execution we can compute the
probability of getting at least one useful faulty ciphertext by repeating the fault
injection r times as:

Pr = 1 − (1 − P(ei))r. (20)
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