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Abstract. IEEE 802.15.4 is a wireless standard used by a variety of
higher-level protocols, including many used in the Internet of Things
(IoT). A number of system on a chip (SoC) devices that combine a radio
transceiver with a microcontroller are available for use in IEEE 802.15.4
networks. IEEE 802.15.4 supports the use of AES-CCM* for encryp-
tion and authentication of messages, and a SoC normally includes an
AES accelerator for this purpose. This work measures the leakage char-
acteristics of the AES accelerator on the Atmel ATMega128RFA1, and
then demonstrates how this allows recovery of the encryption key from
nodes running an IEEE 802.15.4 stack. While this work demonstrates
the attack on a specific SoC, the results are also applicable to similar
wireless nodes and to protocols built on top of IEEE 802.15.4.
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1 Introduction

IEEE 802.15.4 is a low-power wireless standard which targets Internet of Things
(IoT) or wireless sensor network (WSN) applications. Many protocols use IEEE
802.15.4 as a lower layer, including ZigBee (which encompasses many different
protocols such as ZigBee IP and ZigBee Pro), WirelessHART, MiWi, ISA100.11a,
6LoWPAN, Nest Weave, JenNet, IEEE 802.15.5, Thread, Atmel Lightweight
Mesh, and DigiMesh. As part of the IEEE 802.15.4 standard a security suite
based on AES is included, which allows encrypting and adding an authentication
code on the wireless messages.

Protocols using IEEE 802.15.4 as a lower layer often include security at lay-
ers above IEEE 802.15.4, but many of them also use the same AES primitive as
the lower layer (with a different key and possibly encryption mode). An attack
against the AES peripheral in an embedded device may be useful in attack-
ing both the lower and higher layers depending on network specifics. Even if
acquiring the 802.15.4-layer key is not directly useful, because for example each
link uses a different key, an attacker may practically benefit from the ability of
sending arbitrary messages which will be accepted as valid and passed to the
higher-layer protocol decoder logic. With this ability an attacker can exploit
security flaws in higher-layer protocol decoding logic, since the lower-layer mes-
sages will be successfully decrypted and presented to higher layers.
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This paper presents an attack against a wireless node that uses the IEEE
802.15.4 protocol. We present the following important results from develop-
ing this attack: (1) an attack against the hardware AES engine in the Atmel
ATMega128RFA1, (2) an attack on AES-128 in CCM* mode as used in IEEE
802.15.4 [1], (3) a method of causing the AES engine in the target device to
perform the desired encryption, and (4) a shunt-based measurement method for
devices with internal voltage regulators. This attack is validated with a hardware
environment (shown in Fig. 1).

The attack demonstrated here uses side-channel power analysis [2], specifi-
cally a correlation-based attack [3]. We obtained the power measurements in this
work by physically capturing a node and inserting a shunt resistor. In general,
side-channel attacks can be performed with a noncontact electromagnetic (EM)
probe instead, which does not require modification to the device [4]. The EM
measurement typically achieves similar results to the resistive shunt [5,6].

It has previously been demonstrated that wireless nodes are vulnerable to
side-channel power analysis when running AES-ECB in software [7]. This type
of attack does not destroy the node under attack, and the node will continue to
function during the attack. This makes detection more difficult: although a node
is captured, it still appears on the network. Our work extends this by attacking
the actual AES-CCM* mode used in IEEE 802.15.4, attacking the hardware AES
accelerators typically used in wireless stack implementations, and demonstrating
how to force many encryption operations to occur for rapid collection of traces.

We begin by describing the attack on the ATMega128RFA1 AES hardware
peripheral in Sect. 2. Next, we look at specifics of the use of AES encryption on
the IEEE 802.15.4 wireless protocol in Sect. 3. This outlines the challenges of
applying the side-channel attack to the AES-CCM* mode of operation, which is
solved for the case of IEEE 802.15.4 in Sect. 4. Our application of this to a real
IEEE 802.15.4 node is discussed in Sect. 5, and our conclusions follow.

An extended version of this paper is available which contains additional
details and discussion of this attack1.

2 ATMega128RFA1 Attack

The Atmel ATMega128RFA1 is a low-power 8-bit microcontroller with an inte-
grated IEEE 802.15.4 radio, designed as a single-chip solution for Internet of
Things (IoT) or wireless sensor network (WSN) applications [8]. As part of the
IEEE 802.15.4 radio module a hardware AES-128 block is available, designed
to work with the AES security specification of IEEE 802.15.4. Other vendors
such as Freescale (MC13233), Silicon Laboratories (EM35x), STMicroelectronics
(STM32W108), and Texas Instruments (CC2530) provide similar chips integrat-
ing an IEEE 802.15.4 radio and microcontroller in a single device.

To perform a side-channel power analysis attack, we evaluate a method of
physically measuring power on the ATMega128RFA1 in Sect. 2.1. We then deter-
mine an appropriate power model in Sect. 2.2, and we present the results of the
1 The extended version is published at https://eprint.iacr.org/2015/529.

https://eprint.iacr.org/2015/529
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Fig. 1. The ChipWhisperer capture hardware is used in this attack, along with details
of the measurement point.

CPA attack [3] in Sect. 2.3. We present additional considerations for attack-
ing intermediate rounds (i.e., beyond the first round) of the AES algorithm
in Sect. 2.4; these intermediate-round attacks are required for the AES-CCM*
attack.

2.1 Power Measurement

Power measurements can be performed by inserting a resistive shunt into the
power supply of the target device, and measuring the voltage drop across the
shunt. Because devices often have multiple power supplies (such as V CCcore,
V CCIO, V CCRF ), the shunt must be inserted into the power supply powering
the cryptographic core. As with many similar IEEE 802.15.4 chips, the core
voltage of the ATMega128RFA1 is lower (1.8 V) than the io voltage (typically
2.8–3.3 V) [8].

To avoid requiring an external voltage regulator for the lower core voltage,
most of these devices also contain an integrated 1.8 V voltage regulator. Some
devices require an external connection from the regulator output pin to the
V CCcore pin. With this type of device we could perform the power measure-
ments by either (a) inserting a shunt resistor between the output and input, or
(b) using an external low-noise power supply with a shunt resistor (as in [7]). The
ATMega128RFA1 is not such a device – it internally connects the regulator to
the V CCcore pin, but does require a decoupling capacitor placed on the V CCcore

pin (which also serves as the output capacitor for the voltage regulator).
By inserting a shunt resistor into the path of the decoupling capacitor, we

can measure high-frequency current flowing into the V CCcore pin. Note that this
measurement will be fairly noisy, as we will also have noise from current flowing
out of the voltage regulator. The right side of Fig. 1 shows the implementation
of this arrangement. Externally powering this pin with a voltage slightly higher
than 1.8 V may disable the internal regulator, giving a lower-noise signal from
the shunt resistor. This is dependent on regulator design.
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2.2 Related Hardware Attack

We based our work on Kizhvatov’s attack on the XMEGA device [9].
Kizhvatov determined that for a CPA attack on the XMEGA, the Hamming
distance between successive S-box input values leaked. These input values are
the XOR of the plaintext with the secret key that occurs during the first
AddRoundKey.

Our notation considers pi and ki to be a byte of the plaintext and encryption
key respectively, where 0 ≤ i ≤ 15. To determine an unknown byte ki, we first
assume we know a priori the value of pi, pi−1, and ki−1.

This allows us to perform a standard CPA attack, where the sensitive value
is given by the Hamming weight of (1). That is to say the leakage for unknown
encryption key byte i is: li = HW (bi). Provided k0 is known, this attack can
proceed as a standard CPA attack, with only 28 guesses required to determine
each byte.

bi = (pi−1 ⊕ ki−1) ⊕ (pi ⊕ ki) , 1 ≤ i ≤ 15 (1)

For the specific case of k0, the Hamming distance from the fixed value 0x00
is used as a leakage model2, as in (2). This allows the entire encryption key to
be attacked with a total of 16 × 28 guesses.

l0 = HW (b0) = HW (p0 ⊕ k0) (2)

2.3 Application to ATMega128RFA1

Our experimental platform was a Dresden Elektronik radio board, model num-
ber RCB128RFA1 V6.3.1. To sample the power measurements, we used an open-
source platform called the ChipWhisperer Capture Rev2 [10]. This capture hard-
ware synchronizes its sampling clock to the device clock, and we configured it
to sample at 64 MS/s (which is 4 times the ATMega128RFA1 clock frequency
of 16 MHz). The differential probe is connected across a shunt in the V CCcore

power pin as described previously. A filter with a passband of 3–14 MHz was
inserted between the output of the differential probe and the low-noise amplifier
input of the ChipWhisperer.

We implemented a test program in the ATMega128RFA1 that encrypts
data received over the serial port. This encryption can be done via either a
software AES-128 implementation or the hardware AES-128 peripheral in the
ATMega128RFA1. When using the hardware peripheral, the encryption takes
25µs to complete, or about 400 clock cycles.

We used a CPA attack, ranking the most likely byte as the one with the
highest correlation values [3]. We use a plot of the partial guessing entropy
(PGE) compared to number of traces in order to measure attack success [11].
The PGE indicates where the correct value of the encryption subkey byte falls
within a list ordered from most to least likely based on CPA attack results.

2 This is not published in [9], but was described in private communication from the
author.
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Thus when the PGE falls to zero the specific subkey byte is perfectly known,
and a PGE of 128 would be expected for a completely unsuccessful attack that
is equivalent to a random guess.

To evaluate our measurement toolchain, we performed this attack against
a software AES implementation on the ATMega128RFA1, which recovered the
complete key in under 60 traces.

We then recorded a total of 50 000 power traces, where the ATMega128RFA1
was performing AES-128 ECB encryptions using random input data during
the time each power trace was recorded. For each trace, 600 data points were
recorded at a sampling rate3 of 64 MS/s. Each trace therefore covered about the
first third of the AES encryption.

Our initial CPA attack was repeated five times over groups of 10 000 traces.
The resulting average partial guessing entropy for each byte is shown in Fig. 2.
The first byte (which uses the leakage assumption of (2)) has the worst perfor-
mance, as the guessing entropy does not reach zero with 10 000 traces.

Guessing of ki−1. This attack used the leakage (2) of the first byte i = 0 to
bootstrap the key recovery. Once we know this byte, we can use (1) to recover
successive bytes.

Practically, we may have a situation where i− 1 is not recoverable. Previous
work assumed either some additional correlation peak allowing us to determine
i−1, or the use of a brute-force search across all possibilities of the byte i−1 [9].
We can improve on this with a more efficient search algorithm, described next.

The leakage function (1) could be rewritten to show more clearly that the
leaked value depends not on the byte values, but on the XOR between the two
successive bytes, as in (3).

bi = (ki−1 ⊕ ki) ⊕ (pi−1 ⊕ pi) , 1 ≤ i ≤ 15 (3)

The side-channel attack can be performed with the unknown byte ki−1 set
to 0x00, and the remaining bytes are recovered by the CPA attack described
previously. These recovered bytes are not the correct value, but instead provide
the value that has to be XOR’d with the previous byte to generate the correct
byte.

The 256 candidate keys can then be generated with almost no computational
work, by iterating through each possibility for the unknown byte ki−1, and using
the XOR values recovered from the CPA attack to generate the remaining byte
values ki, ki+1, · · · , kI .

This assumes we are able to directly test those candidate keys to determine
which is the correct value. As is described in the next section, we can instead
use a CPA attack on the next-round key to determine the correct value of ki−1.

3 Note that this 64 MS/s sample rate is successful because the capture hardware sam-
ples synchronously with the device clock. If using a regular oscilloscope with an
asynchronous timebase we expect a much higher sample rate to be required, similar
to that reported in the XMEGA attack.
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Fig. 2. The CPA attack on the hardware AES peripheral reduces the guessing entropy
to reasonable levels in under 5000 traces, and is makes key recovery trivial in 10 000
traces. (Color figure online)

2.4 Intermediate-Round Attacks

Whereas our work so far has been concerned with determining the first-round
encryption key, we will see in Sect. 4 that information on the round keys used
during intermediate rounds is also required.

We determined that for intermediate rounds the leakage assumption of (1)
and (2) still holds, where the unknown byte ki is a byte of the round key, and
the known plain-text byte pi is the output of the previous round. We can extend
our notation such that the leakage from round r becomes lri = HW (bri ), where
each byte of the round key is kri , and the input data to that round is pri .

Examples of the PGE when attacking the start of the third round (r = 3)
are given in Fig. 3. The entropy change for all rounds tested (r = 1, 2, 3, 4) was
similar.

For details of the execution time of the hardware AES implementation, refer
to Table 1. This table shows the samples used for each byte in determining the
most likely encryption key for the first four rounds. For byte 0 (the first byte),
(2) is the sensitive operation. For later bytes (1) is the sensitive operation.

Note the sample rate is four times the device clock, and in Table 1 the sample
delta from start to end of the sensitive operations within each round is about
64 samples, or 16 device clock cycles. This suggests that a sensitive operation
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Fig. 3. Attacking intermediate rounds in the AES peripheral is also successful using
the same leakage assumptions as the first-round attack. (Color figure online)

is occurring on each clock cycle. Each round takes approximately 32–34 cycles
based on the repeating nature of the leakages in intermediate rounds.

Determining ki−1 Using Intermediate Rounds. As described in Sect. 2.3,
we can perform the CPA attack on byte ki where ki−1 is unknown by determining
not the value of the byte, but the XOR of each successive byte with the previous
key. This means performing the attack first where ki−1 is assumed to be 0x00.

By then enumerating all 256 possibilities for ki−1, we can quickly generate
256 candidate keys to test. But if we are unable to test those keys, we need
another way of validating the most likely value of ki−1.

If we knew the initial (first-round) key, we could determine the input to the
second round, and thus perform a CPA attack on the second-round key. Instead
we have 256 candidates for the first round (r = 1), and want to determine which
of those keys is correct before proceeding.

To determine which of the keys is correct, we can perform a CPA attack on
the first byte of the second round, k20, repeating the CPA attack 256 times, once
for each candidate first-round key.

The correlation output of the CPA attack will be low for all guesses of k20
where k1 is wrong, and only for the correct guess of k20 and k1 will there be a
peak. This technique will be used in Sect. 4.1, where we cannot test candidate
keys as we are not recovering the complete key.
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Table 1. A small range of points is selected from each trace, corresponding to the
location of the device performing (2) for i = 0, or (1) for i ≥ 1. The variable r
corresponds to the AES round being attacked, and i is the byte number.

i r = 1 r = 2 r = 3 r = 4 i r = 1 r = 2 r = 3 r = 4

0 66–70 198–204 336–342 474–478 8 98–102 233–237 370–374 506–508

1 70–75 205–210 340–345 478–481 9 101–106 237–241 373–377 510–513

2 73–78 208–215 345–348 482–489 10 106–111 240–247 378–383 514–519

3 79–83 213–216 350–355 486–490 11 110–114 245–250 382–385 518–521

4 81–88 218–221 355–368 490–494 12 114–119 248–254 385–390 522–524

5 85–90 220–225 358–361 494–498 13 118–123 253–258 390–394 525–529

6 89–95 225–233 362–365 498–501 14 121–126 258–265 394–398 530–534

7 93–98 230–235 366–370 502–505 15 126–129 262–268 398–402 534–538

3 IEEE 802.15.4 Security

IEEE 802.15.4 is a low-power wireless standard, sending short data packets of
up to 127 bytes at bit-rate of 250 kbit/s. The IEEE 802.15.4 standard uses AES-
128 as the basic building block for both encryption and authentication of mes-
sages. The standard defines a mode of operation called CCM*, which modifies
the regular CCM mode by allowing the use of encryption without authentica-
tion [1,12].

The underlying encryption uses AES-CTR mode, with an input format as
shown in Fig. 4. The first 14 bytes are the nonce, and the last two bytes are
the AES-CTR mode counter. Each received frame must use a new nonce, as the
counter only counts the number of 16-byte blocks within the frame.

To ensure nonce freshness, a field called FrameCounter is included with each
transmitted message and used as part of the nonce. The receiver verifies that
the value of FrameCounter is larger than any previously used value, avoiding
the reuse of a nonce.

On receiving a packet, the IEEE 802.15.4 layer first returns an acknowledg-
ment to the sender. If the packet has security enabled (it is encrypted or has an
authentication code appended) the node performs the following steps: (1) vali-
dates headers, (2) check the new received frame counter is numerically greater

Fig. 4. The following data is used as the input to AES-128 when a frame is decrypted
by an IEEE 802.15.4 stack. The FrameCounter can be controlled by the attacker.
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than the last valid frame count, (3) looks up the secret key based on addressing,
(4) decrypts the payload and authentication code (if present), (5) validates the
authentication code (if present), and (6) stores the frame counter.

For our side-channel attack we only care that step 4 is performed; this means
our packet must successfully pass through steps 1–3. This requires that the
packet is properly addressed and has an acceptable security configuration, i.e.
using a valid key identifier and address. An example of such a packet is available
in the extended version of this paper.

4 Application to AES-CCM* Mode

For a standard CPA attack, we require the ability to cause a number of encryp-
tion operations to occur with known plaintext or ciphertext material. In addi-
tion, the data being encrypted must vary between operations, as otherwise each
trace will generate the same hypothetical intermediate values during the search
operation of the CPA attack.

From Sect. 3 and Fig. 4, we know that a number of the bytes are fixed
during the AES encryption operation. Practically all the bytes except for the
FrameCounter are considered fixed in this attack. The Flags and SecLevel bytes
will have constant (and known) values. Initially it would appear that the Source
Long Address and AES Counter fields may vary, but as we discuss next, this is
not the case.

The Source Long Address field comes from internal tables in the 802.15.4
stack, and is not simply copied from the incoming packet fields. The AES
Counter field changes during operation, as it increases for each 16-byte block
encrypted in AES-CCM* mode. But as the IEEE 802.15.4 packet is limited to
a total of 127 bytes, the AES Counter field could never exceed 0x0007. Thus,
between these 10 bytes, at most 3 bits vary during operation.

We instead rely on the ability of the attacker to control the FrameCounter
field to mount a successful attack on an IEEE 802.15.4 wireless node. For
our work we will assume an attack on the first encryption operation when a
packet is received, meaning the AESCounter field is also fixed. The sent value of
FrameCounter must simply be higher than a previously accepted value, which
can either be determined by passive listening, or the most significant bit(s) can
simply be set high to guarantee values which are likely to be accepted.

4.1 Previous AES-CTR Attacks

The AES-CCM* mode used by IEEE 802.15.4 is a combination of CBC-MAC
and CTR modes of operation. Our attack is on the AES-CTR portion of the
algorithm, with some modifications to reflect the use of a frame counter for the
nonce material.

Previous work on AES-CTR mode has focused on the assumption that we
can cause a number of encryptions to occur in sequence (i.e., with increasing
counter number), but with unknown but constant nonce material [13]. Our work
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uses many of the constructs developed by Jaffe in [13], but with different assump-
tions of inputs on the AES block and a different leakage model. These differences
necessitate the development of new techniques to recover partial keying infor-
mation, as we cannot directly apply the previously published attack.

In our case, we have the ability to change 4 bytes of the input plaintext (bytes
9, 10, 11, and 12). The CPA attack only allows us to recover these four bytes
of the key, as the keying material associated with bytes 9–12 can be recovered
by a standard CPA attack using the leakage model identified in Sect. 2. The
remaining bytes cannot be recovered, as the input data is constant, and hence
our leakage target of the difference between S-Box inputs is also constant.

For the MixColumns() operation, we can represent the four input bytes
– one column of the state matrix – with s0, · · · , s3, and the resulting output
bytes with S0, · · · , S3. The MixColumns() operation uses multiplication over
the Galois field GF(28), where we represent this multiplication operation with
the symbol “◦”. The MixColumns() operation then becomes:

S0 = (2 ◦ s0) ⊕ (3 ◦ s1) ⊕ s2 ⊕ s3 (4)
S1 = s0 ⊕ (2 ◦ s1) ⊕ (3 ◦ s2) ⊕ s3 (5)
S2 = s0 ⊕ s1 ⊕ (2 ◦ s2) ⊕ (3 ◦ s3) (6)
S3 = (3 ◦ s0) ⊕ s1 ⊕ s2 ⊕ (2 ◦ s3) (7)

Using the method from [13], we use our partial knowledge of the current round
key to recover information about the next round key. Performing the attack with
partial knowledge is possible as if some of the input bytes to MixColumns() are
fixed but unknown, we set those fixed bytes to 0, and use the linear property of
MixColumns() to introduce a correction constant. Assuming the true output of
one MixColumns() is S0, we define the output that results by setting constant
bytes to 0 as S′

0 = S0 ⊕ E0, where E0 is an unknown correction constant.
Performing the CPA attack using the assumed output S′

0, we would recover
a version of this round key byte (we will refer to it as k′

0) XOR’d with the
unknown constant E0, that is k′

0 = k0 ⊕E0. The output of AddRoundKey() will
be equivalent to the case where we had the true key and true input, as:

AddRoundKey(k′
0, S

′
0) = k′

0 ⊕ S′
0 = (k0 ⊕ E0) ⊕ (S0 ⊕ E0) = k0 ⊕ S0 (8)

This is sufficient information to perform the attack on the next round of the
AES algorithm. Thus, if the entire modified version of a key can be recovered for
a given encryption round, we can recover the entire unmodified key by attacking
the next encryption round. This unmodified key can then be rolled backwards
using the AES key schedule.

Description of Attack. We describe the attack by working through a symbolic
example, using the following variables:
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pri : “text” input to AddRoundKey() X : variable and known inputs

kri : “key”input to AddRoundKey() Y : variable and known intermediates

Er
i : a constant, see Sect. 4.1 Z : variable and known intermediates

nr
i : the modified round key, kr

i ⊕ Er
i c : constant values

sri : the output of SubBytes() ? : variable and unknown values

vri : the output of ShiftRows() N : known modified round-key values (nr
i )

mr
i : the output of MixColumns() K : known key or round-key values (kr

i )

X* : group of variables which has a small set of candidates for the correct value

Initially, we have the known input plaintext, where 12 of the bytes are con-
stant, and the 4 variable bytes are under attacker control (FrameCounter). From
this, we can perform a CPA attack to recover 4 bytes of the key. Note that in
practice the byte k19 cannot be recovered because k18 is unknown. Instead we use
the technique detailed in Sect. 2.4 to generate 256 candidate keys for k19, · · · , k112,
and test them at a later step. This means we can assume the following is the
state of our initial-round key:

k1 = [c c c c c c c c c K*K*K*K* c c c]

This can be used to calculate the output of the SubBytes() and ShiftRows()
functions, where the majority of bytes are constant (but unknown):

s1 = [c c c c c c c c c Y*Y*Y*Y* c c c ]
v1 = [c c Y* c c Y* c c c c c c Y* c c Y*]

At this point we need to symbolically deal with the MixColumns(v1) out-
put, as we will be working with the modified output that has been XOR’d with
the constant E. As in [13], this is accomplished in practice by setting unknown
constants c to zero, and calculating the output of the MixColumns(v1) func-
tion. The unknown constants are all pushed into the variable E, which we never
need to determine the true value of. This means our output of round r = 1
becomes:

m1 = [Z*Z*Z*Z*Z*Z*Z*Z* c c c c Z*Z*Z*Z*]

Note that 4 bytes of this output are constant. We again set these constant
bytes to zero to simplify our further manipulation of them. This means our input
to the next round becomes:

p2 = [Z*Z*Z*Z*Z*Z*Z*Z* 0 0 0 0 Z*Z*Z*Z*]

We are not able to recover n2
8, · · · , n2

11 yet, as the inputs associated with
those key bytes are constant.

We first attempt to recover n2
0, which is performed for all 256 candidates for

k19, · · · , k112. As mentioned in Sect. 2.4, the highest correlation peak determines
both k19, · · · , k112 and n2

0. This means we no longer have a group of candidates
for the input, but a single value:

p2= [Z Z Z Z Z Z Z Z 0 0 0 0 Z Z Z Z]

We can then proceed with the CPA attack on the remaining bytes of n2. Bytes
n2
1, · · · , n2

6 can be recovered by application of the CPA attack from Sect. 2.3.
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Recovery of n2
7 using the same process is not possible, as MixColumns(v1)

interacts with the leakage model. The inputs to this round p26 and p27, are gen-
erated by the previous-round MixColumns(v1) outputs m1

6 and m1
7.

When attacking n2
7, we apply (1) to (6) and (7). This means our leakage is:

HW
(
(n2

6 ⊕ (6)) ⊕ (n2
7 ⊕ (7))

)
(9)

The XOR cancels common terms in (6) and (7), and in this case that cancels
term s1. As s1 is the variable and known input to the MixColumns(v1), the
leakage appears constant and the attack fails. Instead, we can recover this value
using a CPA attack on the next round, which is described later.

Returning to our CPA attack on the modified round key, we are unable to
recover n2

8, · · · , n2
11 as the associated inputs are constant. As n2

11 is unknown,
we cannot directly recover n2

12, · · · , n2
15. Instead we again use the method of

Sect. 2.4 to generate 256 candidates for n2
12, · · · , n2

15.
At this point we assume the CPA attack has succeeded, meaning we have

recovered the following bytes of the modified round key, where the final 4 bytes
are partially known – we have 256 candidates for this group, as we know the
relationship between each byte, but simply don’t know the starting byte to define
the group:

n2 = [N N N N N N N c c c c c N*N*N*N*]

Remember, once we apply AddRoundKey(n2,p2), the constant E will be
removed – E is included in both the output of MixColumns(v1) and the modi-
fied key – meaning we can determine the true value of the input to SubBytes().

The outputs 8, · · · , 11 of MixColumns(v1) from the first round are constant,
so we also know the four unknown modified bytes n2

8, · · · , n2
11 can be ignored at

this point. The result of AddRoundKey(n2,p2) for these bytes will be another
constant.

The unknown byte n2
7 is associated with variable input data, meaning this

output will be unknown and variable, which cannot be ignored. At this point we
can represent the known outputs of SubBytes() and ShiftRows():

s2 = [Y Y Y Y Y Y Y ? c c c c Y* Y*Y*Y*]

v2 = [Y Y c Y* Y c Y* Y c Y* Y ? Y* Y Y c]

As before, we can set unknown constant values to zero to determine the
modified output m2 = MixColumns(v2). The unknown variable byte means
4 bytes of the MixColumns(v2) output are currently unknown. In addition,
we have 256 candidates for the remaining known values, since the four modified
bytes n2

12, · · · , n2
15 have been mixed into all output bytes by ShiftRows(p2) and

MixColumns(v2):

m2 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]

This becomes the input to the next round:

p3 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]



Power Analysis Attacks Against IEEE 802.15.4 Nodes 67

We again apply the CPA attack on n3
0 across all values for n3

0 and the 256
candidates for the previous modified round key (a total of 216 guesses), the peak
telling us the value of n3

0 and n2
12, · · · , n2

15. We now know which of the candidates
to select for further processing:

p3= [Z Z Z Z Z Z Z Z ? ? ? ? Z Z Z Z]

We can apply a CPA attack to discover the modified key values n3
1, · · · , n3

7.
The unknown plaintext byte ? represents a changing value. We cannot ignore it
as we can constant values in the MixColumns(v2), and thus cannot apply the
CPA attack on the remaining bytes.

Instead we enumerate all possibilities for n2
7, and apply a CPA attack against

n3
8, similarly to previously described attacks from Sect. 2.4. We verified experi-

mentally that the correlation value with the highest peak for n3
8 resulted only

when n2
7 was the correct value. This means we now have the entire modified

output of MixColumns(v2), and thus the complete modified input plaintext to
round 3:

p3 = [Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z]

With n2
7 and n3

8 now known, we can continue with the CPA attack against
n3
9, · · · , n3

15. At this point we have an entire modified key:

n3 = [N N N N N N N N N N N N N N N N]

We can again apply the modified key n3 to the modified output of the previ-
ous round m2 to recover the complete output of round r = 3, which will be the
actual input to round r = 4. This allows us to perform a CPA attack and recover
the true round key k4. This round key can then be rolled backwards using the
AES key schedule to determine the original encryption key.

We have now attacked an AES-CCM* implementation as specified in the
IEEE 802.15.4 standard. This attack requires only the control of the four bytes
of FrameCounter, which are sent as plaintext over the air.

The computational load of the attack is minimal: performing these steps on
an Intel i5-2540M laptop using a single thread program written in C++ takes
under ten minutes with 20 000 traces, using only the subset of points in each trace
from Table 1. Note when performing the hypothetical value calculation for inter-
mediate rounds, the calculation was accelerated using the Intel AES-NI instruc-
tion set for performing the SubBytes(), ShiftRows(), and MixColumns() oper-
ations, which form part of a single AES round executed by this instruction [14].

5 Attacking Wireless Nodes

In the previous sections, we demonstrated the vulnerability of an IEEE 802.15.4
SoC device to power analysis, and how the AES-CCM* mode used during recep-
tion of an encrypted IEEE 802.15.4 packet can be attacked when the underlying
hardware is vulnerable to power analysis. The last two aspects of this attack
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are to (1) demonstrate how we can trigger that encryption operation, and (2)
determine where in the power signature the encryption occurred.

Details of the required packet format for reception are detailed in the
extended version of this paper. The packet must simply conform to IEEE
802.15.4 requirements and have valid addressing information. The attacker con-
trols the FrameCounter field as part of the attack.

In order for the side-channel attack to be successful, the attacker needs
to determine when the AES encryption is occurring. As a starting point, the
attacker can use information on when the frame should have been received by
the target node. Practically, this would be either the attacker’s transmitter node
toggling an io line when the packet goes over the air, or the attacker could use
another node that also receives the transmitted messages to toggle an io line.

To determine the reliability of such a trigger, we measured the time between
the frame being received and the actual start of AES encryption on the target
node. Over 100 transmitted frames the delay varied between 311 and 338µs.
The mean value of the delay was 325µs (5200 clock cycles), with a standard
deviation of 7µs (112 clock cycles). The jitter in the delay is assumed to be
from the software architecture, which uses an event queue process the frames.
Solutions for aligning or resynchronizing power traces before applying power
analysis is well known [15–18].

To test the ability of an attacker to realign captured power traces, we used
a simple normalized cross-correlation algorithm [19] to match a feature across
multiple power traces for realignment, performing a simple static alignment [20].

The selected feature was a window at 9.2–29.2µs after the start of the AES
encryption in one reference trace, meaning the matched feature extended slightly
beyond the actual AES encryption. We confirmed that a high correlation peak
was generated only for a single sample around the AES algorithm with many
sample power traces. A threshold of 0.965 on the correlation output (determined
empirically) was used; if a power trace had no correlation peak higher than this
level, the trace was dropped.

Future work on this IEEE 802.15.4 attack can include applying more
advanced preprocessing techniques (such as differential frequency analysis or
principal component analysis). But such preprocessing techniques are not
required to fundamentally prove that (a) the AES core is leaking, and (b) the
AES operation has some unique signature allowing realignment to succeed.

6 Conclusions

The IEEE 802.15.4 wireless standard is a popular lower layer for many protocols
being used in or marketed for the coming “Internet of Things” (see Sect. 1 for
an enumeration of some of these). Such protocols often use the same underlying
AES primitive as the IEEE 802.15.4 layer for security purposes.

This paper has demonstrated vulnerabilities in a real IEEE 802.15.4 wire-
less node. A successful attack against the AES peripheral present in the
ATMega128RFA1 device was demonstrated. This attack was demonstrated
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against AES-ECB; as electronic code book (ECB) is not the operating mode of
AES used in the network, we extended a previous attack on AES-CTR mode [13]
to work against the AES-CCM* mode used in IEEE 802.15.4. This demonstrated
that it is possible to recover the encryption key of a wireless node using side-
channel power attacks and valid IEEE 802.15.4 messages sent to the node.

An extended version of this conference paper with additional details of the
attack is available at https://eprint.iacr.org/2015/529.
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