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Abstract. This work proposes substantial algorithmic enhancements
to the SPEA of Schlösser et al. [15] by adding cryptographic post-
processing, and improved signal processing to the photonic measure-
ment phase. Our improved approach provides three crucial benefits:
(1) For some SBox/SRAM configurations the original SPEA method
is unable to identify a unique key, and terminates with up to 248 key
candidates; using our new solver we are able to find the correct key
regardless of the respective SBox/SRAM configuration. (2) Our methods
reduce the number of required (complex photonic) measurements by an
order of magnitude, thereby shortening the duration of the attack signifi-
cantly. (3) Due to the unavailability of the attack equipment of Schlösser
et al. [15] we additionally developed a novel Photonic Emission Simulator
which we matched against the real equipment of the original SPEA work.
With this simulator we were able to verify our enhanced SPEA by a full
AES recovery which uses only a small number of photonic measurements.

1 Introduction

1.1 Background

While the phenomena of photonic emission from switching transistors in silicon
is actually a very old one, cf. [5,12], the role of photons in cryptography as a
practical side channel source has just recently emerged as a novel research direc-
tion, cf. [3,9,10,15,16]. Thus, it is important to include photonic side channels
in future hardware evaluations of security ICs.

However, so far only the first steps within this direction have been successfully
achieved: The work of [3,9,10,15,16], showed that the required equipment to
carry out successful SPEA or DPEA against real world ICs is comparable in
price to that of normal Power Analysis equipment.
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This is where the current paper fits in and continues the current state of
the art in a better understanding of the Photonic Side Channel. It takes the
next step by precisely characterizing a very low number of selected plaintexts as
required for the respective photonic measurements and also relating the result-
ing measurements in terms of their SNR to the eventual workload of the final
cryptographic key reconstruction phase.

1.2 Related Work

Photonic emission in silicon is a known physical phenomena which has been
studied since the 1950s [12]. Specifically in the failure analysis community, hot-
carrier luminescence has primarily been used to characterize implementation
and manufacturing faults and defects [7,17]. Here, the technologies of choice to
perform backside analysis are PICA (Picosecond Imaging Circuit Analysis) [1]
and SSPDs (Superconducting Single Photon Detectors) [18]. Both technologies
are able to capture photonic emissions with high performance in their respective
field, but carry the downside of immense cost and complexity.

One of the first uses of photonic emissions in CMOS in a cryptographic
application was presented in 2008 [8]. However, the authors increased the volt-
age supply to 7 V operating voltage, which is above the chips maximum limit
for voltage. The authors utilize PICA to spatially recover information about
binary additions related to the AddRoundKey operation of AES running on a
0.8µm PIC16F84A microcontroller. As the authors state, such a PICA device
“is available in several laboratories, for example, in the French space agency
CNES”. Employing PICA in this manner led to enormous acquisition times.
This is especially true considering the size of the executed code. It took the
authors 12 h to recover a single potential key byte [8]. In 2011, an integrated
PICA system and laser stimulation techniques were used to attack a DES imple-
mentation on an FPGA [6]. The authors proved that the optical side channel
might be used for differential analysis. However, the analysis strongly relied on
a specific implementation of DES in which registers were always zeroed before
their use. The results required a differential analysis and a full key recovery was
also not presented. As the authors note, the use of equipment valued at more
than 2,000,000 Euros does not make such an analysis particularly relevant.

Nevertheless, recently, a real breakthrough was achieved by [15,16]. This work
presented a novel low-cost optoelectronic setup for time - and spatially resolved
analysis of photonic emissions. The authors also introduced a corresponding
methodology, named Simple Photonic Emission Analysis. They successfully per-
formed such analysis of an AES implementation and were able to recover AES-
128 keys by monitoring memory accesses. This work was also extended to AES-
192 and AES-256 [16]. The same research group also introduced Differential
Photonic Emission Analysis and presented a respective attack against AES-128
[10]. They successfully revealed the entire secret key with their DPEA. In 2015
Bertoni et al. [3] offered an improved Simple Photonic Emission Analysis, mon-
itoring a different section of the SRAM logic. However, they assumed a specific
SRAM structure which contains only single byte in every row. Their simulations
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do not model the physical environment but rather an ideal model in which the
value of every bit can be identified. They also described an attack of masked
AES, however the attack is unrealistic since it assumes monitoring the photonic
emission of a single experiment.

A side channel analysis using memory access patterns is reminiscent of the
field of cache attacks. For instance, the first “real world” cache-based chosen
plaintext attacks on AES were carried on OpenSSL implementations [2,13].

1.3 Contributions

In this work we enhance the original SPEA of Schlösser et al. [15] by adding
cryptographic post-processing and an improved signal processing to the mea-
surements phase. We call the resulting attack Enhanced SPEA, or E-SPEA for
short.

Our first contribution is to record the photonic side-channel leaks from the
first two AES rounds, covering 32 SBox activations. We show that these leak-
ages embed enough constraints to allow the identification of the complete key,
regardless of the placement of the SBox array in SRAM. This is in contrast to
the original SPEA, which terminates with up to 248 key candidates for certain
SRAM configurations. Furthermore, taking advantage of the slow diffusion prop-
erties in the first AES round, we are able to mount this attack very efficiently,
with a time complexity of 220. Our optimized cryptographic solver finds the
correct key within minutes on a standard PC.

Next, we devise a strategy for choosing optimal plaintexts, that causes the
photonic side-channel to produce constraints (specific SRAM accesses) which
enable our solver to work very quickly for all SRAM configurations. We collect
the necessary constraints with only 32 plaintexts, instead of the 256 plaintexts
required by Schlösser et al. [15].

Moreover, we developed a special signal-processing decoder that automat-
ically calibrates certain internal thresholds—relying on our chosen plaintext
strategy. The decoder works even when the SNR is low, adjusting its thresh-
olds differently to match the requirements of the cryptographic solver. To do
so, the decoder uses a different (auto-calibrated) threshold for each AES round.
Using the combination of our carefully crafted decoder and solver, we can trade
off the number of measurements against the solver’s running time: fewer mea-
surements (i.e., a lower SNR) cause a longer running time—but without missing
the correct key.

The combination of the above contributions provides two main benefits.

1. We are always able to quickly find the correct key, regardless of the SRAM
configuration.

2. Our methods reduce the number of required optical measurements dramati-
cally by an order of magnitude, and thus we are able to shorten the duration
of the attack significantly.
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Also, in order to validate our attacks we built a Monte-Carlo simulator of the
underlying physics of the photonic emissions, with a noise model which incorpo-
rates

– internal noise within the detector,
– external noise from nearby transistors, and
– other effects.

We validated our simulator against the results as reported in Schlösser [14].
Our simulator can be used to explore alternative lab setups, taking into account
various critical parameters such as the lens area, height above the chip, supply
voltage, ambient temperature, and equipment sensitivity.

We also believe that our photonic emission simulator is of independent inter-
est and is of great value for the research community lacking (so far) the optical
equipment as described within Schlösser [14].

Organization. The organization of the present paper is as follows. Section 2
introduces the SPEA on AES. Section 3 describes our cryptographic solver.
Section 4 explains our choice of plaintexts. Section 5 describes the Auto-
calibrating decoder. Section 6 describes our performance evaluation, and we con-
clude in Sect. 7. The description of the photonic emission simulator can be found
in the full technical report [4].

2 The Photonic Side Channel in AES

2.1 The SRAM and Its Use in AES

SRAM is a common type of volatile memory found in many ICs. The SRAM is
built from memory cells arranged in rows and columns, and every memory cell
can be approached using a row/column access logic. In particular, the access logic
for each SRAM row includes a so called row-access transistor, which is activated
whenever the IC needs to access any cell in that SRAM row. Due to to this
functionality, i.e., enabling an entire row, the respective row-access transistor
is very strong. This means that the photonic emission of this transistor is by
magnitudes larger than the individual SRAM cells by itself. For a thorough
introduction into SRAM and its physical implementation details we refer the
reader to [19].

The number of bytes in an SRAM row depends on the underlying SRAM
architecture. In [15] the authors found that on an AT-Mega328P a single SRAM
row consists of 8 bytes, whereas an ATXMega128A1 stores 16 bytes in an entire
row. Figure 1(a) shows a photo of the SRAM, with a row width of 8 bytes.

A central component of the AES cipher is the SBox. This is an array of 256
bytes which is most often implemented as a lookup table. In each AES round
the algorithm performs 16 SBox lookups. In many ICs implementing AES in
software the entire SBox array is placed in SRAM.

In this paper we will denote the SRAM row width by ω. In general the SBox
starts at an offset within an SRAM row, 0 ≤ offset ≤ ω − 1, and occupies
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L = �256/ω� rows (see Fig. 1(b)). When ω = 8, depending on the offset, we have
L = 32 or L = 33. As we shall see, the value of the offset has an impact on the
SPEA.

Fig. 1. The SRAM memory in (a) captured with a CCD by the courtesy of [15]. The
row-access transistors appear to the left of the SRAM cells. In (b), a schematic of the
SRAM section containing the SBox in L rows, ω cells per row and starting at some
offset value.

2.2 Simple Photonic Emission Analysis (SPEA)

Monitoring the access patterns to the SRAM rows allows the SPEA as pre-
sented in [15]. Towards this goal, [15] first used a simple CCD camera approach
to initially map the respective IC’s layout, locating the SRAM memory, and
specifically, the memory rows containing the SBox array and the offset value,
cf. [11]. Hereafter, they placed a NIR (Near Infra Red) photon detector offering
time resolved measurements over the row access transistor of some SRAM row
containing SBox values. We call the SBox row on which the detector is placed
the detectable row, and denote its number by d (1 ≤ d ≤ L). The authors ran the
AES algorithm M times (by actually resetting the IC M times), encrypting the
same plaintext. Consider one of the 16 SBox activations of the first AES round
for plaintext byte pi and key byte ki. If the detector identifies an activation for
SBox(pi ⊕ ki), then there are ω options for pi ⊕ ki and since the plaintext is
known, they have ω options for ki.

Using all possible plaintext bytes {0, 1, . . . , 255} (M times each) they revealed
sets of ω potential candidates for every byte of the key, then they analyzed each
key byte separately, intersecting sets of candidates for every key byte reducing
the number of potential candidates. The success of the SPEA method depends
on two factors:

1. Using a large enough number of measurements M , providing a sufficient SNR.
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2. The offset value. The SPEA works best when the offset is odd. In other cases
its performance is limited, and in particular when offset = 0 the number of
candidates for every key byte can’t be reduced below ω candidates for each
byte, resulting in ω16 key candidates.

3 The E-SPEA

Our attack depends on several ideas:

1. Use the lab setup of [15], with a NIR photon detector placed over the row
access transistor of some row d in the SBox, to record the photonic emissions
from the SBox activations in 2 full AES rounds and use the dependence
between rounds to identify the correct key.

2. Use a careful choice of plaintexts to quickly reduce the entropy.
3. A novel auto-thresholding method, based on the choice of plaintexts, lets us

avoid the need to calibrate and lets us handle noise.

During the AES encryption process, there are ten rounds, each accessing
SRAM memory to use the SBox array. In every round 16 bytes of the current
state matrix are replaced by 16 bytes copied from the SRAM memory using the
SBox as a lookup table.

Following [15] we place a detector over the location of the transistor control-
ling access to a row of SRAM containing ω cells of the SBox array. Thus each of
the 16 SBox accesses per AES round has a ≈ 1/L probability that the row on
which the detector is located (“the detectable row”) will be accessed, assuming a
random plaintext. Our attack requires knowing the offset value (recall Fig. 1(a))
and the row number (d) of the detectable row.

3.1 The Attack Structure

The attack activates the AES IC to encrypt plaintexts of the form {a, a, . . . , a}
(all plaintext bytes are the same) for different values of a. For each key byte kj ,
if the detectable row is accessed in the first AES round while looking up state
byte j in the SBox, we obtain a constraint on the possible value of kj , which
reduces the number of possibilities for its value from 256 to ω. In [15] the authors
iterated over all 256 plaintext options, guaranteeing that the detectable row is
accessed at least once for every key byte in the first AES round (in Sect. 4 we
show that we can achieve the same with much fewer plaintexts). Thus we obtain
at most ω16 AES key candidates based only on constraints from round 1 one of
which is the correct key. When ω = 8 we get ω16 = 248.

Now we can use the detected leakage from round 2 to identify the correct
key and discard the false ones. For a fixed plaintext and a given key candidate,
we can deterministically compute the 2nd round key and the state at the end of
round 1. We can then deduce the 16 SBox cells that are accessed in round 2 and
compare them to the access pattern measured by the detector. The probability
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of matching the detected pattern is ω16/2128. Therefore, for the ω16 candidates
from round 1, we can expect ≈ ω32/2128 candidates to fit the leakage from both
rounds. For ω = 8 we get ≈ 296/2128 � 1, so it is very likely that we will find
just the single correct key.

Note that the above process is a naive method used only to illustrate that
the leakage from the first two AES rounds is sufficient to uniquely identify the
correct key. However, we can do much better: We devised a specialized solver
that has a time complexity of 220 and space complexity of 223 bits, when ω = 8.

3.2 The Solver

Let a partial key be an array of 16 cells, each of which may contain either a
value 0...255 or ‘undefined’. The main algorithm maintains a set of partial key
candidates, and works in stages. Each stage corresponds to a particular state
byte, or a set of state bytes, in round 2: In the stage for state byte j the algorithm
first grows the set of candidates, by extending each candidate partial key so all
the key bytes that state byte j depends on are well defined. Then the algorithm
rejects all the (extended) candidates that are inconsistent with 2nd round leaks.
A stage can correspond to several state bytes if the extended candidate keys are
well defined for all the depended-upon key bytes of the stage. The pseudo-code
for a single stage has the following structure:

//stage for state byte j
input: set prevCandidates
Let enumBytes(j) be the set of additional key bytes that state byte j depends on and
are still ‘undefined’ in all partial keys in prevCandidates.
1: for all C in prevCandidates do
2: for all possible values V for key bytes in enumBytes(j) do
3: if Consistent (j, C||V ) then
4: nextCandidates ← nextCandidates ∪ {C||V }
5: end if
6: end for
7: end for
8: prevCandidates ← nextCandidates
9: nextCandidates = ∅

We keep the results of the 2nd round row activations in a data structure
denoted by R2A: R2A{pt} is a vector of L bits such that (R2A {pt})j = 1 if
plaintext pt caused a detectable SBox access in round 2 on state byte j.

For a given partial key X and state byte 1 ≤ j ≤ 16 line 3 calls a function
to test whether X is consistent with the 2nd round leaks for state byte j:

1: Consistent (j,X)
2: for all plaintexts pt do
3: vjt ← RowLookupOf (j,X, pt)

4: if ((vjt == d and (R2A
{
pt
}
)j==0) or (vjt != d and (R2A

{
pt
}
)j==1)) then

5: return FALSE //partial key X is inconsistent
6: end if
7: end for
8: return TRUE //partial key X is consistent
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The function RowLookupOf (j,X, pt) at line 3 returns the SBox row that
is looked up for state byte j with plaintext pt and partial key X. We ensure
that all the key bytes that state byte j depends on are well defined in X by a
careful ordering of the enumeration (see below), that also ensures the algorithm’s
ability to disqualify partial keys early. The time complexity of Consistent (j,X)
is clearly O(Np), where Np is the number of plaintexts.

Table 1. The algorithm going over bytes of the second round state matrix column
by column. For every stage of the solver the number of candidates increases due to
the newly enumerated key bytes—but the number of remaining candidates after the
stage is reduced due to the second round constraints. This analysis assumes one second
round activation for each of the state matrix byte j, and ω = 8, L = 32, thus each stage
cuts down the number of candidates by a factor of ∼ 25.

Stage Column State byte Bytes enumerated Candidates Running complexity Space (bits)

1 1 1 1, 6, 11, 14, 16 215 218 5 · 23 · 215

2 1 3 3 210 · 23 216 6 · 23 · 213

3 1 2 2, 15 28 · 26 217 8 · 23 · 214

4 1 4 4, 13 29 · 26 218 10 · 23 · 215

5 2 5, 6 5, 10 210 · 26 219 12 · 23 · 216

6 2 7 7 26 · 23 212 13 · 23 · 29

7 2 8 8 24 · 23 210 14 · 23 · 27

8 3 9, 10, 11 9 22 · 23 28 15 · 23 · 25

9 3 12 12 2−10 · 23 2−4 16 · 23

10 4 13, 14, 15, 16 - 2−27 2−24 16 · 23

3.3 Selecting the Enumeration Order

According to the appendix, state byte 1 depends on key bytes 1, 6, 11, 16 after the
round 1 MixColumns step, and byte 1 of round key 2 depends on key bytes 1, 14.
Thus immediately before the SBox lookup of round 2, state byte 1 depends on
5 key bytes: 1, 6, 11, 14, 16 (see Fig. 2a). So in the solver’s stage 1 we enumerate
over a set of ω5 candidates. Roughly speaking when a 2nd round row activation
is detected for state byte 1, the consistency check will reduce the set to about
ω5

L ≈ 210 candidates. In the same way we find that state byte 3 depends on key
bytes 1, 3, 6, 11, 16—4 of which we’ve already enumerated in stage 1 (see Fig. 2b).
So we only need to extend each candidate partial key by a single byte. Thus we
enumerate on byte 3 for the second stage. After this stage (assuming 2nd round
activation for the corresponding state byte) the number of candidates becomes
≈ (ω5

L ) · ω · 1
L = ω6

L2 , which is 28 when ω = 8.
Continuing in a similar manner, we find that state byte 2 depends on 6 key

bytes: 1, 2, 6, 11, 15, 16 so we need to extend the partial keys by 2 bytes (2 and
15), ending the stage with ω8

L3 = 29, and so forth column by column. Table 1
illustrates the whole process. The figure shows that stage 5 dominates the time
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complexity (of 219) and space complexity (of 221) for a total time complexity of
≈ 220.

Note that the state bytes of the first column (state bytes 1–4) collectively
depend on 10 key bytes. A simpler algorithm would have enumerated over all 10
bytes together. However, such an approach would have had a time complexity
of ω10 = 230 (for ω = 8)—significantly worse than the time complexity of our
stages 1–4 combined.

Fig. 2. The key bytes affecting the round 2 SBox accesses: (a) for state byte 1, (b) for
state byte 3. Note that the key bytes on the diagonal (1, 6, 11, 16) determine the state
bytes of the 1st column at the end of round 1, and the key bytes on the left and right
columns determine the 2nd round key.

4 Choosing the Plaintexts

As stated in Sect. 3 when a row access is detected in round 1, the number of key
candidates for that byte is reduced to ω. The SBox values are located over L
sequential rows of the SRAM memory, so the probability to observe a row access
for randomly chosen plaintext is ≈ 1/L.

For the set of plaintexts pt = (at, . . . , at) we use, we want to have at least
one detectable row access in round 1 for every key byte. This can of course be
guaranteed by using all 256 plaintexts, as done by [15]. However we can achieve
the same result with much fewer plaintexts. For a given offset (recall Fig. 1(a)), a
plaintext byte at, and key byte kj , the AES SubBytes step generates an SRAM
row access to row l

l =
⌊

at ⊕ kj + offset
ω

⌋
+ 1 (1)

We capitalize on this by using a “ω-jump” strategy for plaintext ordering.
We choose the following plaintexts:

pt = {c + j · ω, . . . , c + j · ω} (2)

for c = {0, . . . , ω − 1}, and j = {0, . . . , L − 1} for offset= 0 or j =
{0, . . . , L − 2} for offset �= 0. Essentially for every value of c this strategy holds
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Fig. 3. The entropy of the key as function of the number of plaintexts, using only first
round leakages for offset = 0 (a) and offset = 1 (b). The graphs show the sequential
plaintext selection used in [15], a uniformly- random selection strategy and our “ω-
jump” strategy. We can see that using only round-1 information, the entropy can’t be
reduced below 48 bit when offset = 0. We can see that using “ω-jump” the entropy
decreases fast and using only 32 plaintexts we have a 48bit entropy, which is the
“working point” of our solver, for all offsets.

the least-significant-bits fixed (e.g., the 3 LSBs for ω = 8) and goes over all
options for the MSBs.

By choosing some c and going over all options of j to multiply the row width
ω we force a row access to all of the SRAM rows {1, 2, 3, . . . , L} for offset = 0
regardless of the key value k. If offset �= 0, the “ω-jump” strategy causes a
detectable row access for all the rows {2, 3, . . . , L − 1} plus one more row access—
to the first or the last row depending on the chosen value of c. After going over
all the values of j we increment c and repeat. By setting the detectable row d
to be 2 ≤ d ≤ L − 1 and using a set of L (or L − 1) plaintexts of Eq. (2) we
are guaranteed to have one detectable row activation for every key byte during
the first AES round. Figure 3 shows the drop in key entropy as a function of the
number of plaintexts. Figure 3(b) shows that for offset = 1 the random strategy of
plaintexts selection reduces the entropy to 0 quicker than the “ω-jump” strategy,
but using the “ω-jump” strategy the entropy reaches the desired working point
of our solver (48 bit entropy) using only L carefully chosen plaintexts.

Note that unlike the first round, the second round row activations can’t be
controlled by the choice of plaintexts since the access pattern in round 2 also
depends on the key diffusion caused by round 1.

5 Decoding the Photonic Traces with Auto Threshold
Calibration

For each of the plaintexts pt we activate the IC (or, in our case, the simulator)
M times. For each activation we count the number of detected photons per time
step, while the detector is fixed at SRAM row d. We summarize the detection
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counts per time step, to obtain a “photonic trace” T (pt) for each plaintext, for
the time duration of the first 2 AES rounds. Following [14,15] we assume an
IC instruction cycle of 800 ns1, a photonic trace spans 25.6µs, represented by a
vector of 1280 samples, one per 20 ns. For plaintext pt we now need to decode
the trace to extract two arrays of 16 bits: R1A and R2A recording the results of
the 2 AES rounds’ SBox activations. A bit value of 1 indicates that the plaintext
caused a detectable SRAM access on the current SBox activation. A natural
decoding rule is to use a threshold: if the number of detected activations during
SBox access j in round 1 exceeds the threshold, we set (R1A {pt})j = 1, and 0
otherwise, and similarly for R2A.

A crucial task is calibrating the threshold so it can reliably distinguish
between true detections and noise. Calibrating a threshold is often a heuris-
tic trial-and-error process. However, since we choose the plaintexts in a specific
way, we can calibrate the threshold automatically to its optimal value.

5.1 Calibration at High SNR

For illustration purposes we start by considering what happens when the SNR
is high. Our method of choosing plaintexts guarantees a first round detectable
row activation for every state byte j for at least one plaintext. Therefore we
aggregate the Np photonic traces (one per plaintext) by taking the maximum
count per time step:

(maxT )i = max
t=1...Np

{
(T (pt))i

}
(3)

for the time duration of AES round 1.
This max-trace should exhibit 16 distinct peaks, at the time-steps corre-

sponding to the 16 SBox activations of AES round 1. If we sort maxT in descend-
ing order, we expect to see a clear drop between the 16th peak value, and the
17th (which is the highest peak caused by the noise). We can use this fact and
choose our threshold to be the midpoint between the two peaks:

Threshold =
peak16 + peak17

2
(4)

where peak16 and peak17 are the 16th and 17th largest samples of maxT .
Even though the threshold is calibrated on maxT for the first AES round, it

is valid for every individual trace T (pt), and for both AES rounds. Thus we can
use this threshold for all Np traces to set the bit arrays R1A {pt} and R2A {pt}.

However, we do not use this basic calibration. Instead, in the next section
we show a more delicate calibration with two thresholds, that converge to the
basic threshold when SNR is high.

1 Note that this clock frequency is a slow 1.25 MHz. The AT-Mega328p can operate
at faster clock frequencies, up to 20 MHz- we simulated the 1.25 MHz clock to allow
a comparison of the simulated results with the findings of [14,15].
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Fig. 4. A trace and the low and high thresholds for M = 1,000,000 (low SNR). In circles,
peaks at expected time slots. In a box, a peak at an unexpected time slot. Thus, Thr1
is set just below the lowest circled value, and Thr2 is set just above the boxed value.

5.2 Calibration at Low SNR

When the number of measurements M for each plaintext is low, the SNR drops
and the threshold calibration method of Sect. 5.1 starts to introduce decoding
errors. We can define 2 error types:

1. False negative: a missed row activation (threshold was set too high).
2. False positive: an incorrect row activation (threshold was set too low).

We separate the discussion of the errors into two cases, for the first and second
rounds of the AES process.

Recall that our solver (Sect. 3.2) uses the first AES round activations to
reduce the number of candidates from 256 to ω for every key byte. When a false
positive occurs during the first AES round we will have more than ω options for
the key byte, since we will have ω options for each activation. This could make
the solver running time slower and cause the set of final key candidates to be
larger. However, when a false negative occurs during the first AES round, we are
left with 256 options for this key byte. Since the key bytes options are used to
enumerate over all key options, too many options can make the solver running
time unaffordable. Thus in AES round 1 we prefer to set the threshold low, and
suffer occasional false positives.

Second AES round activations set constraints that the solver uses to disqual-
ify key candidates obtained from first round leakages. A false negative during
the second round would cause fewer constraints and weaker disqualifications—so
the solver may end with more keys. However, a false positive would disqualify
true key values. Therefore in AES round 2 we prefer to set the threshold too
high, and suffer occasional false negatives.

Our solution is to use two thresholds: one for each AES round. The first
threshold (Thr1) is set low in order to avoid false negative errors of first round
activations. The second threshold (Thr2) is set higher in order to avoid second
round false positives. To calibrate the thresholds we again use the max-trace
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maxT . We utilize the fact that we know the time-steps in which the 16 S-Box
accesses occur. We use the following process to calibrate the two thresholds.

Fig. 5. The sorted maxT trace and the auto-calibrated thresholds (lines) for
(a) M = 1,500,000 and (b) M = 3,750,000 measurements. We can notice on (b) a gap
between the 16th and the 17th samples and the two thresholds converge.

1. Generate the max-trace maxT as in Sect. 5.1.
2. Thr1 is set to the maximal value for which (maxT )i ≥ Thr1 for all 16 time-

steps i at which there is a first round activation.
3. Thr2 is the minimal value for which (maxT )i < Thr2 for all time-steps i at

which there is no first-round activation (see Fig. 4).

If the SNR is high then peaks at the 16 true activations will be all higher
than the noise—so we will get Thr1 ≥ Thr2. In such a case we fall back to the
method of Sect. 5.1 and set both thresholds to be (Thr1 + Thr2)/2 (see Fig. 5).

We take key candidates based on first round activations using Thr1, and we
collect the constraints from the second round activations using Thr2.

6 Practical Results

We implemented the photonic emissions simulator in Matlab. The solver was
implemented in python. The experiments were run on a relatively old Intel Core
Duo T2450 2 GHz, 2 GB RAM PC running Windows Vista. We simulated the
ATmega328P IC with SRAM row width of ω = 8 and generated the plaintexts
according to the “ω-jump” strategy of Sect. 4.

In order to evaluate the performance of our attack we performed an extensive
set of experiments. All the experiments were done with ω = 8, and with either
L = 32 (for offset = 0) or L = 33 (for all other offsets). We used the “ω-jump”
strategy to generate L plaintexts for each offset.
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Table 2. A comparison between the SPEA and our E-SPEA methods.

Method Final key candidates Plaintexts Measurements

per plaintext

Total measurements Time (hours)

SPEA

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for odd offset

248 for offset = 0

232 for offset = 4

216 for offset = 2, 6

256 5M 1280M 6.4

E-SPEA

⎧
⎪⎪⎨

⎪⎪⎩

1 for 75 %

∼ 8 for 24 %

248 for 1 %

32 1.5M 48M 0.5

For each plaintext we used 100 random keys, and for each key-plaintext com-
bination we generated between M = 1,000,000–5,000,000 traces from the photonic
emission simulator, with the detector at a random row 2 ≤ d ≤ L − 1. We used
the threshold setting of Sect. 5 to decode the traces, and used the solver to find
the key. For each run we set a timer on the solver: if the run time exceeded 5000 s
we stopped it and recorded a failure. Figure 6 shows the attack’s behavior for
various values of M. We can see that as long as M ≥ 1, 500, 000 the attack works
well, with the median key entropy at the end of the attack dropping below 3 bits,
and a single (correct) key was found in 75 % of the runs. When M ≥ 1, 500, 000
the attack takes under 10 min, on our slow PC. The results for other offsets were
similar (graphs omitted).

Table 2 shows a comparison of our Enhanced SPEA with the original SPEA,
and Fig. 7 shows the running time of solver. The Table shows that due to the
reduced number of required plaintexts, and reduced number of required mea-
surements M, our total attack time drops by an order of magnitude, from 6.4 h
down to 30 min- while succeeding in finding a single (correct) key in 75 % of the

Fig. 6. The entropy of the round-1 key candidates (dashed line) and the final key
candidates (solid line) as a function of the number of measurements M, for offset = 0
and using different random keys and a different detector row for every test. The upper
and lower bounds indicate the 5–95 percentiles and the dots mark the median values.
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cases- regardless of the offset. The E-SPEA method however had difficulty with
1 % of the cases, not getting below 248 key candidates: in those cases the number
of second round activations was very low and the solver reached a timeout of
5000 s without being able to reduce the number of key candidates.

7 Conclusions, Future Work and Countermeasures

In this paper we demonstrated that using cryptographic post-processing, careful
plaintext selection, and better signal processing, we are able to significantly
improve upon the SPEA of [15]. We are able to uniquely extract the correct key
regardless of the offset at which the SBox is placed in SRAM. We achieve this
while reducing the required number of photonic measurements by an order of
magnitude, which directly implies a similar drop in the attack’s time complexity.
Our cryptographic solver is extremely efficient, with a time complexity of 220,
and extracts the key within minutes on a rather old PC.

Following [15] we evaluated our attack assuming an SRAM row width of
ω = 8, as in the ATMega328P. However, we note that a row width of ω = 16
(as in the ATXMega128A1) would pose a harder challenge: we expect to find
≈ ω32/2128 = 1 key candidates that fit the leakage from the first two AES
rounds, as opposed to the ≈ 2−32 expected when ω = 8. I.e., in the intermediate
stages we will have many more key candidates, the run time will be longer, and
the attack will terminate with more possible keys, than when ω = 8. Conversely,
if ω = 32 then our attack should become equally efficient as when ω = 8: we can
set the detector on the column-access transistor. We leave evaluating alternative
SRAM configurations for future work.

Note also that our photonic emissions simulator allows us to test hypothetical
lab setups, since we can experiment with the lens area and height above the IC,

Fig. 7. Solver running time for different M values, for offset = 0 and using different
random keys and a different detector row for every test. The upper and lower bounds
indicate the 5–95 percentiles and the dots mark the median values.
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the supply voltage, the temperature, and the detector sensitivity. It would be
interesting to use the simulator’s results to guide the design of better future
detectors.

The attack is susceptible to countermeasures such as delays and dummy
operations which can obfuscate the time a photonic emission may occur. Masking
also can make the attack more difficult. Memory protection countermeasures
such as memory encryption or scrambling have no effect on the emission pattern,
but they can make the preliminary stage of finding the SBox values inside the
SRAM memory more difficult.

Appendix

The AES Process Until the Second SubBytes Operation
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7. Egger, P., Grützner, M., Burmer, C., Dudkiewicz, F.: Application of time resolved
emission techniques within the failure analysis flow. Microelectron. Reliab. 47(9),
1545–1549 (2007)

8. Ferrigno, J., Hlavác, M.: When AES blinks: introducing optical side channel. Inf.
Secur. 2(3), 94–98 (2008)
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