
Co-location Detection on the Cloud

Mehmet Sinan İnci(B), Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
{msinci,bgulmezoglu,teisenbarth,sunar}@wpi.edu

Abstract. In this work we focus on the problem of co-location as a
first step of conducting Cross-VM attacks such as Prime and Probe or
Flush+Reload in commercial clouds. We demonstrate and compare three
co-location detection methods namely, cooperative Last-Level Cache
(LLC) covert channel, software profiling on the LLC and memory bus
locking. We conduct our experiments on three commercial clouds, Ama-
zon EC2, Google Compute Engine and Microsoft Azure. Finally, we show
that both cooperative and non-cooperative co-location to specific targets
on cloud is still possible on major cloud services.

Keywords: Co-location on the cloud · Software profiling · Cache covert
channel · Performance degradation attacks · Memory bus locking

1 Motivation

As the adoption of cloud computing continues to increase at a dizzying speed,
so has the interest in cloud-specific security issues. A new security issue due to
cloud computing is the potential impact of shared resources on security and pri-
vacy of information. An example is the use of caches to circumvent ASLR [11],
one of the most common techniques to prevent control-flow hijacking attacks.
Several other works target the exploitability of cryptography in co-located sys-
tems under increasingly generic assumptions. While early works such as [24] still
required attacker and victim to co-reside on the same core within a processor,
latest works [14,17] work across cores and managed even to drop the mem-
ory de-duplication requirement of Flush+Reload attacks [7,10,13,22]. Besides
extracting cryptographic keys, there are plenty of other security issues explored
in other related studies. Irazoqui et al. [16] study the potential of reviving the
partially fixed Lucky 13 attack [8] by exploiting co-location.

All of the above attacks rely on the attacker’s ability to co-locate with a
potential victim. While co-location is an immediate consequence of the benefits
of cloud computing (better utilization of resources, lower cost through shared
infrastructure etc.), whether exploitable co-location is possible or easy has so far
not been studied in detail. In his seminal work, Ristenpart et al. [18] studied the
general feasibility of co-location in Amazon EC2, the most popular public cloud
service provider (CSP) then and now, in detail. However, the cloud landscape
has changed significantly since then: The EC2 has grown exponentially and oper-
ates data centers around the globe. A myriad of competitors have popped up,
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-43283-0 2

20 M.S. İnci et al.

all competing for the rapidly growing customer base [9]. CSPs are also more
aware of the potential security vulnerabilities and have since worked on making
their systems leak less information across VM boundaries. Furthermore, in their
experiments, both co-located parties were colluding to achieve co-location. That
is, both parties were willingly involved in communicating with the other to detect
co-location. While being of high importance to show the feasibility in the first
place, trying to co-locate with a specific and most likely unwilling target can be
considerably harder. Since that initial work, until very recently only little work
has dealt with a more detailed study on the difficulty of co-location. Therefore,
we believe, the problem of co-location on cloud requires further in depth analysis
examining different detection methods under diverse scenarios and access levels
for the attacker.

1.1 Our Contribution

In this work we revisit the problem of co-location in public IaaS clouds. In
particular we:

– study the co-location problem under two threat models in the Amazon EC2
Cloud, Google Cloud Engine and Microsoft Azure.

– develop a novel LLC software profiling tool that can detect an application or
a library run by the non-cooperating co-located victim in the cloud, without
the use of the memory de-duplication or any other memory sharing methods.

– demonstrate three co-location methods and compare their success rates on
three popular public clouds.

2 Related Work

In the last few years several methods were proposed to detect co-location on
commercial clouds [6,12,18,23,25]. These works use methods such as deducing
co-location from instance and hypervisor IP address, hard disk drive performance
degradation, network latency and L1 cache covert channel. However, in response
to these works, most of the proposed techniques have been closed by public
cloud administrators. Later Zhang et al. [23] were able to determine whether
a particular user’s VM had someone else co-residing in the same physical core.
In particular, they utilized the well known Prime and Probe cache based side-
channel technique to guess this information. However, the technique was applied
in the upper level caches, thereby limiting its applicability to a physical core
rather than the entire CPU or the machine. Furthermore, the technique was not
tested in commercial clouds.

Shortly later, Bates et al. [6] demonstrated that a malicious VM can inject
a watermark in the network flow of a potential victim. In fact, this watermark
would then be able to broadcast co-residency information. Again, even though
the technique proved to be extremely fast (less than 10 s), it was never tested in
commercial clouds. Recently, Zhang et al. [25] demonstrated that Platform as a

Co-location Detection on the Cloud 21

Service (PaaS) clouds are also vulnerable to co-residency attacks. They used the
Flush+Reload cache side-channel technique together with a non-deterministic
finite automaton method to infer co-location with a particular server. The tech-
nique proved to be effective in commercial PaaS clouds like DotCloud or Open-
Shift, but would never work in IaaS clouds where the memory de-duplication is
not implemented, as in most of the commercial IaaS clouds.

Finally, İnci et al. [12] demonstrated that many of the previously utilized
techniques in [18] are no longer exploitable. Nevertheless, they prove to detect
co-location across cores in Amazon EC2 by monitoring the usage of the LLC
with the Prime and Probe technique. To enable the co-location test, the authors
make use of hugepages commonly available in commercial clouds. This fea-
ture provides a large memory space for the attacker to move and hit necessary
addresses to prime cache sets. Also in 2015, Varadarajan et al. [20] investigated
co-location detection in public clouds by triggering and detecting performance
degradations of a web server using the memory bus locking mechanism. Simulta-
neously Xu et al. [21] used the same memory bus locking mechanism to explore
co-location threat in Virtual Private Cloud (VPC) enabled cloud systems.

3 Threat Models

Here we briefly outline two attacks scenarios for cross-VM attacks on public
clouds. The main difference between the two scenarios is whether the target
is predetermined or not. As we shall see, this makes a significant difference in
terms of the requirements and cost of a successful attack. We provide concrete
examples for both scenarios.

Random Victim
In this scenario there are four steps:

1. Co-location: The attacker spins instances on the cloud until it is determined
that the instance is not alone; i.e. is co-located with another VM. Here the goal
is to maximize the probability and thereby reduce the cost of co-locating with
a viable target. Cheaper instances that use fewer CPU cores tend to share the
same hardware in greater numbers. Therefore these instances have a better
chance of co-location with other customers. Since we do not discriminate
between targets, this step is rather easy to achieve.

2. Vulnerable Software Identification: The attacker detects a software pack-
age in the co-resident VM vulnerable to cross-VM attacks by monitoring
corresponding LLC sets of libraries, e.g. an unpatched version of a crypto-
graphic library. Cache access/performance and more broadly fingerprinting
based techniques do exist in the literature to make successful attacks in the
cloud environment [15,19,25]. Here, instances with lower number of tenants
are less noisy therefore have higher success rate of library detection and the
actual attack.

3. Cross-VM Secret Extraction: Here the attacker runs one of the cross-
VM attacks [12,14] on the identified target. By exploiting cross-VM leakage

22 M.S. İnci et al.

the attacker would be able to recover a sensitive information ranging from
specialized pieces of information such as cryptographic keys, to higher level
information such as browsing patterns, shopping cart, system load or any
sensitive information of value. Noise plays a significant role in reliability of
the extraction technique. Since co-location (first step) is easy to achieve, it
is (almost) always advisable to opt for a less populated low noise instance to
improve the chance of a successful attack in the later steps.

4. Value Extraction: The result is some sensitive information that can be
turned into value with additional mild effort. For example, some information
is valuable in its own right and can be converted into money with little or no
effort, e.g., bitcoins, credit card information, credentials for online banking.
Some others require further effort such as TLS session encryption key (secret
key), e.g. for a Netflix streaming session. If the recovered secret is a private
key of a public key encryption scheme (e.g. RSA secret key used a TLS
handshake) the attacker needs the identity of the owner (website/company)
to have further use for the secret key. In this case he may check the private key
against public key repositories for noise correction and target identification.

Targeted Victim
This is the complementary scenario where we are given some identification infor-
mation about the target.

1. IP Extraction: The attacker wants to focus its cycles on a server or a group
servers that belong to an individual, cloud backed business, e.g. Dropbox or
Netflix, or group/entity, e.g. dissidents of a political party. Here we assume
that the attacker is capable of resolving the identification information to an
IP or group of IPs of the target. In practice, this can be achieved rather easily
by using public information and by using simple commonly available network
tools such as traceroute/tracepath, nmap etc.

2. Targeted Co-location: The attacker creates instances on the cloud until
one is co-located with the target instance on the same physical machine. The
identification information of the victim, e.g. IP address, is used for co-location
detection. For instance, using the IP the attacker can query the server creating
CPU load and then run co-location tests. While co-location detection will be
easier in this scenario due to the trigger; we will need many more trials to land
on the same physical machine as the victim1. Nevertheless, we can accelerate
targeted co-location by searching, for instance, only in the same region as the
victim instance using the publicly available AWS IP lists [1]. Further, we can
obtain finer grain information about the target’s location simply by running
traceroute or tracepath on the victim IP.

3. Vulnerable Software Identification: Since we know the identity of our
target, it is safe to assume that we have some rudimentary understanding of

1 Note that if the physical machine is already filled with the maximum number of
allowed instances, then co-location may not be possible at all. In this case a clever
albeit costly strategy would be to first mount a denial of service attack causing the
target instance to be replicated and then try co-locating with the replicas.

Co-location Detection on the Cloud 23

the victim’s setup including OS, communication and security protocols used
etc. Even if this is not the case, it would be possible to run a discovery stage to
survey the victim machine using its IP and by detecting process fingerprints
through cross-VM leakage.

4. Value Extraction: The attacker exploits cross-VM leakage to recover sen-
sitive information. Further processing may allow to enhance quality of the
recovered data using publicly available information. For instance, a noisy pri-
vate key can be processed with the aid of the public key contained in the
certificate belonging to the target to remove any imperfections.

4 Overview: Co-location Detection Methods

4.1 LLC Covert Channel

The LLC is shared across all cores in most modern CPUs and is semi-transparent
to all VMs running on the same machine. By semi-transparent, we mean that all
VMs can utilize the entire LLC but cannot read each other’s data. We exploit
this behavior to establish a covert channel between VMs in cloud. The covert
channel works by two VMs writing to a specific set-slice pair in the LLC and
detecting each other’s accesses. LLC set address can easily be deduced from the
virtual addresses available to VMs using hugepages as done in [12,14,17]. The
cache slice on the other hand, cannot be determined with certainty unless the
slice selection algorithm of the CPU is known. However, the covert channel can
still work by priming more sets and accessing lines that go to the targeted set,
regardless of its slice.

Prime and Probe: In the LLC, the number of lines required to fill a set is
equal to the LLC associativity. However, when multiple users access the same
set, one will notice that fewer than 20 lines are needed to observe evictions.
By running the following test concurrently on multiple instances, we can verify
co-location. The test works as follows:

– Calculate the set number by using the address bits that are not affected by
the virtual to physical address translation. Prime a memory block M0 in the
set.

– Access more memory blocks M1,M2, . . . ,Mn that go to the same set. Note
that since the slice selection algorithm for the specific CPU is necessary to
address a set/slice pair with certainty, the number of memory blocks n needs
to be larger than the set associativity times the number of slices.

– Access the memory block M0 and check for eviction from the LLC. If evicted,
we know that the required b memory blocks that fill the set are among the
accessed memory blocks M1,M2, . . . ,Mn.

– Starting from the last memory block accessed, remove one block and repeat
the above protocol. If M0 still has high access time, Mi does not reside in the
same slice. If b0 is now located in the cache, we know that bi resides in the
same cache slice as b0 and therefore go to the same set.

24 M.S. İnci et al.

– Once the b memory blocks that fill a slice are identified, we just access addi-
tional memory blocks and check whether one of the primed b memory blocks
has been evicted, indicating that they collide in the same slice.

The covert channel works by continuously accessing data that goes to a spe-
cific cache set and measuring the access time to determine if a newly accessed
data has evicted an older entry from the set. Due to this continuous cache line
creation, when the second party makes accesses to the monitored set, they are
detected. In general, if there is no noise present, the number of lines that can go
to a set without triggering an eviction is equal to the associativity of the cache,
assuming a first-in first-out (FIFO) cache replacement policy is employed.

When two VMs try to fill the same set, they have to access less number
of data blocks to fill the specified cache hence detecting the co-location. Using
the number of blocks necessary to fill a specific set with and without another
instance interfering, we calculate a co-location confidence ratio.

4.2 Software Profiling on LLC

The software profiling method works in a realistic setting with minimal assump-
tions. The method works in a non-cooperative scenario where the target does
not participate in a covert communication and continues its regular operation.
The method does not require memory de-duplication or any form of shared
libraries. It employs the Prime and Probe to monitor and profile a portion of
the LLC while a targeted software is running. As for the memory addressing,
we profile the targeted code address as a relative address to the page boundary.
Since the targeted library will be page aligned, target code’s relative address
(the page offset) will remain the same between runs. Using this information,
we can reduce our search space in the detection stage. Therefore, we need to
monitor only 320 different set-slice pairs such as X mod 64 = Y where X is
320 different set numbers (since we have 10 cores and 32 different set numbers
satisfying the equation) and Y is the first 6 bits (the first 6 bits of the LLC
set number is directly converted to physical address) of the set number for the
desired function.

For the RSA detection, the slice-selection algorithm of the CPU is required to
locate the targeted multiplication code in the LLC in a reasonable time. Without
the algorithm, it would take too much time to monitor potential cache sets. For
our experiments, we have used the algorithm that was reverse engineered by
İnci et al. in [12].

In summary, there are two stages to the software profiling on LLC;

– Profiling Stage: The first step of the profiling is to monitor the targeted
LLC sets while the profiled code, the software is not running. The purpose of
this stage is to measure the idle access time of 20 lines for each set to have a
threshold to detect whether there is a cache miss or not in the next stage.

– Detection Stage: We send RSA decryption requests to candidate IPs in order
to discover the IP address of the victim. After triggering the decryption we

Co-location Detection on the Cloud 25

begin to monitor the portion of LLC to detect accesses due to the decryption.
If we detect accesses in targeted set-slice pairs then we know that the correct
IP address is found. As a double check, in addition to the RSA detection, we
also detect AES encryption. In order to so we monitor another portion of the
LLC where the AES T-tables potentially reside. And if the victim is co-located
with the attacker, we can detect and monitor these T-table accesses.

4.3 Memory Bus Locking

The memory bus locking method exploits atomic instructions therefore we
explain these special instructions shortly in the following.

Atomic Operations: Atomic operations are defined as indivisible, uninter-
rupted operations that appear to the rest of the system as instant. When oper-
ating directly on memory or cache, an atomic operation prevents any other
processor or I/O device from reading or writing to the operated address. This
isolation ensures computational correctness and prevents data races. While all
instructions on single thread systems are automatically atomic, there is no guar-
antee of atomicity for regular instructions in multi-thread systems as used in
almost all modern systems. In these systems, an instruction can be interrupted
or postponed in favor of another task. The rescheduling, interruption and operat-
ing on the same data can cause pipeline and cache coherency hazards. Therefore
the atomic operations are especially useful on multi-thread systems and parallel
processing.

In older x86 systems, processor locks the memory bus completely until the
atomic operation finishes, whether the data resides in the cache or in the memory.
While ensuring atomicity, the process results in a significant performance hit. In
newer systems - prior to Intel Nehalem and AMD K8 - memory bus locking was
modified to reduce this penalty. In these systems, if the data resides in cache,
only the cache line that holds the data is locked. This lock results in a very
insignificant system overhead compared to the performance penalty of memory
bus locking. However, when the operated data surpasses cache line boundary
and resides in two cache lines, more than a single cache line has to be locked.
In order to do so, memory bus locking is again employed. After Intel Nehalem
and AMD K8, shared memory bus was replaced with multiple buses with non-
uniform memory access bridge between them. While getting rid of the memory
bottleneck for multiprocessor systems, this also invalidated the memory bus
locking. Now, when a multi-line atomic cache operation has to be performed,
all CPUs has to coordinate and flush their ongoing memory transactions. This
emulation of memory bus locking results in a significant performance hit.

In x86 architecture, there are many instructions that can be executed atom-
ically with a lock prefix are ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG,
DEC, FADDL, INC, NEG, NOT, OR, SBB, SUB, XADD, XOR. Also, XCHG
instruction executes atomically when operating on a memory location, regardless
of the LOCK use. In order to maximize the flushing penalty, we tested all atomic

26 M.S. İnci et al.

instructions available to the platforms and measured how long each instruction
takes to execute. Since the flushing is succeeded with the atomic operation itself,
longer the instruction executes, stronger the performance hit becomes. Therefore
we have used the XADDL instruction that resulted in the strongest penalty. In
short, we employ this mechanism to slow down a server process running in the
cloud and detect co-location without cooperation from the victim side.

Cache Line Profiling Stage: Our attack is CPU-agnostic and employs a
short, preliminary cache profiling stage. This stage eliminates the need for the
information like the cache line size and the cache access time. Our purpose here is
to obtain data addresses that span multiple cache lines hence triggers a bus lock.
First, we allocate a block of small, page-aligned memory using malloc. After the
allocation, we start performing atomic operations on this block in a loop of 256
since no modern cache line is expected to be larger than 256 bytes. In each loop,
we move our access pointer by one and record atomic operation execution times.
When we observe a time larger than the pre-calculated average, we record the
address. After all 256 addresses are tested, we obtain a list of addresses that span
across multiple cache lines. Later during the locking stage, we operate only on
these addresses rather than a continuous array, making the attack more efficient.

Dual Socket Problem: Memory bus locking works on systems with multiple
CPU sockets. Even further, our tests reveal that the bus locking penalty clearly
reveals whether the target and the attacker run in the same socket or not. As
seen in Fig. 1, the memory access time is clearly distinguishable between same
socket and different socket locks. On a dual socket system with two Intel Xeon
E5-2609 v2 CPUs with 2 cores each. Note that this information is significant to
the attacker since an architectural attack using the LLC requires the attacker
and the target to be running in the same socket.

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

2300

2400

2500

2600

2700

2800

Different socket lock
Same socket lock

Fig. 1. The memory access times during a bus lock triggered with the XADDL instruc-
tion. Red and blue lines respectively represent access times when the attacker resides
in the same socket (different core) and different sockets. (Color figure online)

Co-location Detection on the Cloud 27

5 Experimental Approach and Results

5.1 Co-location Results in Commercial Clouds

In all three aforementioned commercial clouds, we have launched 4 accounts with
20 instances per account, achieving co-location in each cloud. Also note that, we
only classify the instances running in the same CPU socket as co-located and
ignore the ones running on different sockets.

Amazon EC2: In Amazon EC2 we used m3.medium instance types that
have balanced CPU, memory and network performance. This instance type holds
1 vCPU, 3.75 GB of RAM and 4 GB of SSD storage. According to Amazon EC2
Instance Types web page [4], these instances use 10 core Intel Xeon E5-2670 v2
(Ivy Bridge) processors.

Out of 80 instances launched, we have obtained 7 co-located pairs and one
triplet verified by the tests. Moreover, we have tried to co-locate with instances
that have launched previously. Surprisingly, we have been able to co-locate with
instances that have launched 6 months prior.

Google Compute Engine: In GCE, we used n1-standard-1 type instances
running on 2.6 GHz Intel Xeon E5 (Sandy Bridge), 2.5 GHz Intel Xeon E5 v2
(Ivy Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) processors according to [5].
Out of 80 instances launched, we have obtained only 4 co-located pairs.

Microsoft Azure: In Azure, we used extra small A0 instance types with
1 virtual core, 750 MB RAM, maximum 500 IOPS and 20 GB disk storage that
is not specified as neither SSD nor HDD [2]. Out of 80 instances launched, we
have obtained only 4 instances that were co-located. However, this was partly due
to the highly heterogeneous CPU pool that Azure employs. Our first account had
instances with AMD Opteron CPUs while the second had Intel E5-2660 v1 and
the last two had Intel E5-2673 v3. Naturally, we could only achieve co-location
among instances that have the same CPU model. Out of 40 Intel E5-2673 v3
instances, we detected 4 co-located instances.

5.2 LLC Covert Channel

In the following, we present the results in GCE. The confidence ratio is highest
at 1 as seen in Fig. 2. There are 8 instances (meaning 4 pairs) that have higher
than 50 % confidence ratio among 80 and the co-located pairs are found by binary
search at the end. Hence, it is confirmed that they are indeed co-located with
each other.

28 M.S. İnci et al.

Instance Number
0 20 40 60 80

C
on

fid
en

ce
 R

at
io

0

0.5

1

Fig. 2. GCE LLC Test Confidence Ratio Comparison

5.3 LLC Software Profiling

We conducted the LLC Software Profiling experiments on the co-located Amazon
EC2 instances with 10 core E5-2670 v2 processors. As for the software target, in
order to demonstrate the versatility of the attack, we chose the RSA (Libgcrypt
version 1.6.2) that uses sliding window exponentiation and the AES (OpenSSL
version 1.0.1g, C implementation) that uses T-tables. Note that the detection
method is not limited to these targets since the attacker can run and profile any
software which uses shared library in his instance and perform the attack.

For the RSA detection, the slice-selection algorithm of the CPU is required
to locate the targeted multiplication code in the LLC within reasonable time.
In our experiments, we have used the algorithm that was reverse engineered by
İnci et al. in [12]. The first step of the profiling is to monitor the targeted LLC
sets while the profiled code, RSA is not running. After the regular operation of
sets are observed, the RSA request is sent to several IP addresses, starting from
attacker’s own subnet. As soon as the request is sent, the profiling starts and
traces are recorded by the Prime and Probe. If the RSA decryption is running
on the other VM, the pattern of multiplication can be observed as in Fig. 3.
In general, the multiplication is performed between 2000–8000 traces. In these
traces, we look for the delta of two profiles for each set-slice pair. In Fig. 4, the
difference between two profiles is illustrated for two co-located instances. Both
figures show that there are two set-slice pairs with significantly higher access
times (4–8 cycles) in average of 10 experiments. Hence, it can be concluded
that these two sets are used by RSA decryption and this candidate instance is
probably co-located with the attacker.

After we obtain IP addresses of several co-location candidates, we trigger
AES encryption by sending random ciphertexts and at the same time monitor
the LLC. For this part of the detection stage, since AES encryption is much
faster than RSA decryption we can only catch one access to monitored T-table
position. Hence, we send 100 AES encryption requests to each instance in the
IP list. If we observe 90 % cache miss for one of the set-slice pairs, it can be
concluded that the AES encryption is performed by the co-located instance, as
seen in Fig. 3(b).

Co-location Detection on the Cloud 29

Fig. 3. Red and blue lines represent idle and RSA decryption/AES encryption access
times respectively (Color figure online)

5.4 Memory Bus Locking

The performance degradation due to the memory bus locking is application
specific. Therefore we tested various applications as seen in Table 1 to see how
each one is affected. As expected, the applications with frequent memory accesses
are more affected by the locking. For example, the GnuPG which mostly uses the
ALU and does seldom memory accesses slowed down only by 29 %. An Apache
web server that frequently loads content from memory on the other hand has a
slowdown by the factor of 4.28.

In addition to specific software performance degradation, we also measured
the effect of multiple locks executed in parallel. To do so, we have used the openmp
parallel programming API [3] and ran the lock in multiple threads. Figure 5(d)
shows the memory access times when 0 to 8 locks run in parallel. As the figure
shows, the first lock does slowdown the memory accesses by 100 % while the sec-
ond and third locks do not further degrade the memory performance. However,
after fourth and fifth locks, we observe an even stronger degradations.

30 M.S. İnci et al.

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-2

0

2

4

6

8

(a) RSA Analysis for the first co-located instance

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-4

-2

0

2

4

6

8

(b) RSA Analysis for the second co-located instance

Fig. 4. The difference of clock cycles between base and RSA decryption profiling for
each set-slice pairs over 10 experiments

Table 1. Application slowdown on an Intel Xeon 2640 v3 due to memory bus locking
triggered on a single core.

Process Normalized execution time

Apache 4.28×
PHP 0.1×
GnuPG 0.29×
HTTPerf 0.29×
Memory access 5.38×
RAMSpeed int 5.01×
RAMSpeed fp 4.88×
Media stream 2.36×

5.5 Comparison of Detection Methods

As explained in Sect. 3, co-location can be exploited in both random and targeted
victim scenarios. Malicious Eve can directly look for attack vectors to steal
information from her neighbors or she can go after a specific target and spin up

Co-location Detection on the Cloud 31

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

600

800

1000

1200

1400

1600

1800
No lock
1 lock

(a) Amazon EC2

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

300

400

500

600

700

800

900

No lock
1 lock

(b) GCE

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

0

200

400

600

800

1000

1200

1400

No lock
1 lock active
2 locks active
3 locks active
4 locks active

(c) Microsoft Azure

No locking 1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core

M
em

or
y

A
cc

es
s

T
im

e

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

(d) Lab setup using Intel Xeon E5-2640 v3

Fig. 5. Memory access times with and without an active memory bus lock of (a)
Amazon EC2 m3.medium instance (b) GCE n1-standard1 instance (c) Microsoft Azure
A0 instance (d) Lab setup (Intel E5-2640 v3) (Color figure online)

32 M.S. İnci et al.

Table 2. Comparison of co-location detection methods.

Detection method Worst case Average Best case

Memory bus locking OPDa 0.1× 3.28× 6.1×
LLC covert channel 53% 73.5 % 93%

LLC software profiling 50% 70 % 90%
aOPD: Observed Performance Degradation

instances until she is co-located. However, if the detection method does not
provide reliable results, the attacker can discard the co-located instances or even
have false positives due to noise. Therefore a useful and efficient co-location
detection method is essential.

Table 2 shows that all three methods inspected in this study work with high
accuracy in a real commercial cloud setting. All methods work with minimalistic
requirements, no hypervisor access or specific hardware. In comparison, while
the memory bus locking has the least clear co-location signal in the worst case,
other two methods are more prone to the LLC noise. Also, as seen in Table 1 the
memory bus locking gives more reliable results with applications with frequent
memory accesses. So for the uncooperative co-location scenario, depending on
the workload of the target instance, one can use either the memory bus locking
or the software profiling to detect co-location with high accuracy.

6 Conclusion

In conclusion, we represent three co-location detection methods working in
three most popular commercial clouds (Amazon EC2, Google Compute Engine,
Microsoft Azure) and compare their efficiencies. In addition, for the first time
we have achieved targeted co-locations in Amazon EC2 Cloud by applying the
LLC software profiling for AES and RSA processes. For the memory bus locking
method, we have observed that frequent memory accesses lead to more signif-
icant degradation. As for the cache covert channel, we show that the method
works in a cooperative scenario with high accuracy. And finally we presented
the LLC software profiling technique that can be used for variety of purposes
including co-location detection without the help of memory de-duplication or
cooperation from the victim side.

Acknowledgments. This work is supported by the National Science Foundation,
under grants CNS-1318919 and CNS-1314770.

References

1. AWS IP Address Ranges. http://docs.aws.amazon.com/general/latest/gr/
aws-ip-ranges.html

2. Microsoft Azure Sizes for virtual machines. https://azure.microsoft.com/en-us/
documentation/articles/virtual-machines-size-specs/

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/

Co-location Detection on the Cloud 33

3. The OpenMP API specification for parallel programming
4. Amazon EC2 Instances (2016). http://aws.amazon.com/ec2/instance-types/
5. Google Compute Engine Instance Types (2016). https://cloud.google.com/

compute/docs/machine-types
6. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: On detecting

co-resident cloud instances using network flow watermarking techniques. Int. J.
Inf. Secur. 13(2), 171–189 (2014). http://dx.doi.org/10.1007/s10207-013-0210-0

7. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

8. Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Security and Privacy, pp. 526–540 (2013)

9. Gaudin, S.: Public cloud market ready for ‘hypergrowth’ period. Comput-
erworld Article, April 2014. http://www.computerworld.com/article/2488572/
cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html

10. Gülmezoglu, B., İnci, M.S., Apecechea, G.I., Eisenbarth, T., Sunar, B.: A faster
and more realistic flush+reload attack on AES. In: COSADE, pp. 111–126 (2015)

11. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pp. 191–205 (2013). http://dx.doi.org/10.1109/SP.2013.23

12. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA key recovery in a public cloud. Technical report.
http://eprint.iacr.org/

13. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Fine grain Cross-VM attacks
on Xen and VMware. In: 2014 IEEE Fourth International Conference on Big Data
and Cloud Computing (BdCloud), pp. 737–744, December 2014

14. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing? And its application to AES. In: IEEE
S&P (2015)

15. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: crypto
library detection in cloud. In: Proceedings on Privacy Enhancing Technologies,
vol. 1, no. 1, pp. 25–40 (2015)

16. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 Strikes Back. In: ASIA
CCS 2015, pp. 85–96 (2015)

17. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE S&P, pp. 605–622 (2015)

18. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS 2009, pp.
199–212 (2009)

19. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to the
guest OS. In: Proceedings of the Fourth European Workshop on System Security,
p. 1. ACM (2011)

20. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th USENIX Security Symposium,
USENIX Security 2015, Washington, D.C., pp. 913–928 (2015)

21. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security, pp. 929–944 (2015)

22. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security 2014, pp. 719–732 (2014)

23. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: IEEE S&P (2011)

http://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
http://dx.doi.org/10.1007/s10207-013-0210-0
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html
http://dx.doi.org/10.1109/SP.2013.23
http://eprint.iacr.org/

34 M.S. İnci et al.

24. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS 2012, pp. 305–316 (2012)

25. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: CCS, pp. 990–1003 (2014)

	Co-location Detection on the Cloud
	1 Motivation
	1.1 Our Contribution

	2 Related Work
	3 Threat Models
	4 Overview: Co-location Detection Methods
	4.1 LLC Covert Channel
	4.2 Software Profiling on LLC
	4.3 Memory Bus Locking

	5 Experimental Approach and Results
	5.1 Co-location Results in Commercial Clouds
	5.2 LLC Covert Channel
	5.3 LLC Software Profiling
	5.4 Memory Bus Locking
	5.5 Comparison of Detection Methods

	6 Conclusion
	References

