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Abstract. Memory and disk encryption is a common measure to protect
sensitive information in memory from adversaries with physical access.
However, physical access also comes with the risk of physical attacks. As
these may pose a threat to memory confidentiality, this paper investigates
contemporary memory and disk encryption schemes and their implemen-
tations with respect to Differential Power Analysis (DPA) and Differen-
tial Fault Analysis (DFA). It shows that DPA and DFA recover the keys
of all the investigated schemes, including the tweakable block ciphers
XEX and XTS. This paper also verifies the feasibility of such attacks
in practice. Using the EM side channel, a DPA on the disk encryption
employed within the ext4 file system is shown to reveal the used master
key on a Zynq Z-7010 system on chip. The results suggest that mem-
ory and disk encryption secure against physical attackers is at least four
times more expensive.

Keywords: Memory encryption · Side-channel attack · Power analysis ·
DPA · Fault analysis · DFA · Ext4

1 Introduction

Many electronic computing devices nowadays contain and process sensitive data
in hostile environments. Among two particularly relevant examples, the first are
engineering companies whose production machines are shipped around the world.
These machines contain high-value intellectual property, e.g., control parame-
ters and source code, that their vendors wish to be protected from unautho-
rized access and proliferation. Similarly, malicious access and modification must
be prevented if usage statistics are used for billing. The second example are
employee smart phones or laptops containing corporate secrets. Unattended such
devices are a highly interesting target for industrial espionage and therefore need
protection mechanisms.

In both examples, adversaries interested in the sensitive data potentially have
physical access to the device. To prevent these attackers from simply reading con-
fidential information from main or external memory, e.g., hard disks and memory
cards, encryption of memory is well established. Several dedicated encryption
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modes for memory, such as Cipher-Block-Chaining with Encrypted Salt-Sector
IV (CBC-ESSIV) [10], Xor-Encrypt-Xor (XEX) [25], and XEX-based Tweaked
codebook mode with ciphertext Stealing (XTS) [1], were proposed to fulfill the
special requirements of memory encryption. These successfully prevent a variety
of attacks, ranging from simple dumps of memory cards or hard disks to bus
probing and cold boot attacks [14], and are thus implemented in an increasing
number of real-world applications, such as dm-crypt, Mac OS X, Android, and
ext4.

However, one important aspect contemporary memory encryption schemes
left unconsidered are physical attacks such as side-channel and fault attacks.
These allow the adversary to learn about secret key material used during encryp-
tion from various side channels, e.g., power, timing, and Electromagnetic Emana-
tion (EM), or from faulty computations due to intentionally induced faults, e.g.,
clock glitches. Given physical access of the adversary as the motivating threat
for memory encryption, physical attacks must not be neglected as these would
allow adversaries to learn the encryption key and thus to decrypt confidential
data in memory. The consideration of physical attacks is particularly important
for permanently running devices that are threatened by attackers without any
time constraints, e.g., a corporate customer may be interested in the data and
IP of an embedded control unit within a purchased production machine.

This paper therefore investigates contemporary memory encryption schemes
and their implementation within dm-crypt, Android 5.0, Mac OS X and ext4
in terms of physical attacks. As one main result, our detailed analysis shows
that Differential Power Analysis (DPA) and Differential Fault Analysis (DFA)
breaks all contemporary memory and disk encryption schemes used in practice.
Most prominently, it presents tricks to be applied to DPA and DFA in order
to obtain the keys from the tweakable ciphers XEX and XTS. Supporting the
analysis results, our second contribution exploits the EM side channel of a Zynq-
7010 system on chip in a practical attack on the recently introduced ext4 disk
encryption mechanism that completely discloses the confidential disk content.
We thus conclude that securing memories against physical adversaries by using
contemporary memory encryption requires protected implementations, e.g., [5,
16,22], that increase the cost of memory encryption at least by a factor of four.

This paper is organized as follows. Section 2 introduces memory encryption
and gives an overview on common state-of-the-art implementations. The memory
encryption schemes are analyzed with respect to both DPA and DFA in Sect. 3.
The practical feasibility of such attacks is evaluated in Sect. 4, and Sect. 5 con-
cludes the paper.

2 Memory Encryption

Memory encryption deals with the encryption of data contained in memory such
as RAM, memory cards and hard disks. However, in practice different variants
and notations are being used for memory encryption. This Section therefore
defines memory encryption and gives an overview on common memory encryp-
tion schemes and implementations.
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Fig. 1. Generic model of memory encryption.

2.1 Definition

The encryption of memory is usually performed using dedicated memory encryp-
tion schemes as these schemes have to fulfill several requirements: (1) ensure
random access to all memory blocks, (2) provide sufficiently fast bulk encryp-
tion, and (3) the only information an adversary can derive from the encrypted
memory is whether a memory block has changed or not.

Definition 1. A memory encryption scheme is an encryption scheme Enc :
K × A × {0, 1}n → {0, 1}n, which
– uses a key K from key space K, and
– splits the memory into s = � sizememory

n � n-bit memory blocks,
– identifies each of the memory blocks by their address in address space A, and
– provides address-dependent en-/decryption for each of these memory blocks.

Definition 1 considers the encryption of a flat memory space and requires
the encryption process to incorporate address information. The address infor-
mation allows memory encryption schemes to fulfill requirement (3) as for this
reason each memory block is encrypted differently. Otherwise, it would be eas-
ily recognizable if certain data is contained in different memory locations and
valid (but encrypted) data could simply be copied to different addresses (splic-
ing attack [9]). The requirements (1) and (2) are typically satisfied by splitting
the memory space into blocks using two different granularities: the memory is
divided into larger sectors (or pages) and each sector (or page) is divided into
encryption blocks. The encryption mode then ensures fast bulk encryption within
each sector and random access on sector level.

2.2 Memory Encryption in Practice

In practice, memory encryption is often named disk encryption referring to the
type of memory used. There are two variants of disk encryption: (1) block device
or full disk encryption, and (2) file-level disk encryption. While full disk encryp-
tion performs encryption directly on the raw memory space of a whole disk,
block device, or partition, i.e., beneath a file system, file-level disk encryption
performs encryption on file level on top of or within a file system. Both variants
use the same sort of memory encryption schemes, but apply them to different
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(a) XEX mode. (b) XTS mode.

Fig. 2. Tweakable ciphers for disk encryption.

portions of the memory. Throughout the paper, the term memory encryption
thus denotes any of these variants.

Another aspect of practical implementations of memory encryption is that
they usually employ a Key Derivation Function (KDF) to derive the Data
Encryption Key (DEK) to be used within the memory encryption scheme from,
e.g., a user password and public nonces. The combination of such a KDF and
a memory encryption scheme leads to the generic model of memory encryption
in Fig. 1. The following will use this model to first describe typical schemes for
both the KDF and the encryption part, and will then show how these are used
in several practical implementations.

Key Derivation Functions. To derive a key from a user password or a PIN,
typically a password hashing function such as PBKDF2 [18] or scrypt [23] is
used. This password-derived key is then mostly used as a Key Encryption Key
(KEK) to decrypt the actual master key MK of the memory using an ordinary
block cipher. Depending on the concrete setup, such master key MK is directly
used as the DEK for the memory encryption scheme or is used to further derive
or decrypt keys, e.g., DEKs for the encryption of single files in file-level disk
encryption.

Encryption Schemes. Common implementations exclusively deal with the
encryption of external memory, e.g., hard disks. These implementations, e.g.,
in dm-crypt, mainly utilize the modes XEX [25], XTS [1], and CBC with
ESSIV [10]. The tweakable block ciphers XEX and XTS are shown in Fig. 2.
Both encryption modes apply a tweak T to the cipher E that results from a
binary-field multiplication of the encrypted sector number with the memory
block address. While XEX uses only one key, XTS uses two different keys for
the two instances of the cipher. The CBC mode with Encrypted Salt-Sector
IV (ESSIV) is depicted in Fig. 3. ESSIV ensures a secret IV and thus prevents
watermarking attacks [27]. It computes the IV as the encryption of the sector
number with the hashed key (i.e., salt).
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Fig. 3. Disk encryption via CBC and ESSIV.

Differently, research on the design and construction of secure systems further
considered the encryption of the main memory. Primarily variants of the counter
mode encryption were proposed such as in Fig. 4 [26,29]. The pad is the encryp-
tion of a block-specific seed that comprises an Initial Vector (IV), the memory
block address, and a timestamp (or counter). It is mostly favored due to the
little latency it introduces on the path to the memory.

2.3 State-of-the-Art Implementations

The following presents common implementations within dm-crypt, Android,
Mac OS X, and ext4, and shows that the memory encryption schemes presented
before have high prevalence throughout all of these implementations.

dm-crypt. dm-crypt [2] is a disk encryption utility that provides transpar-
ent encryption of arbitrary block devices within Linux ≥ 2.6, i.e., block device
encryption. dm-crypt can be configured to use one of several available encryp-
tion modes, i.a., CBC-ESSIV and XTS (default), using different block ciphers,
e.g., AES-128 [8]. The utility requires the user to supply the block device DEK
when mounting the block device. For more convenient usage, however, Linux
Unified Key Setup (LUKS) [11] can be used. LUKS adds a meta-data header to
the block device that stores the encrypted DEK. The respective KEK is derived
from a user password using PBKDF2.

Mac OS X. Mac OS X from version 10.7 (Lion) onwards provides block device
encryption using the tool FileVault 2 [3,7]. Mac OS X encrypts block devices
using XTS and AES-128 with separate DEKs that are chosen randomly upon
setup of each encrypted block device. For key storage, Mac OS X uses a three-
tier hierarchy of DEKs, KEKs and Derived Key Encryption Keys (DKEK). The
DEK is encrypted using a randomly chosen KEK that is encrypted using at least
one DKEK. DKEKs can, e.g., be derived from a password or be the public key
of a corporate certificate. Both the DEK and the KEK are stored encrypted in
a meta-data block on the block device.
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Fig. 4. Counter mode memory encryption.

Android. Android is equipped with full disk encryption for devices such as
flash memory. In Android 5.0, encryption of block devices is based on dm-crypt
that is configured to use AES-128 and CBC-ESSIV [13]. Its DEK is sized 128
bits by default and stored encrypted on the block device. The respective KEK
is derived from a user password and a hardware-bound key using scrypt and a
signing procedure within a Trusted Execution Environment (TEE).

Ext4. Since Linux 4.1, the ext4 file system offers file-level disk encryp-
tion [20,21]. It allows to set up encryption for a specific folder that is assigned a
master key derived from a user passphrase and a salt using PBKDF2. While ext4
encrypts file content and names, meta data and file system structure is available
in plaintext. Each file uses an individual DEK that is derived from the master key
MK and a file nonce Nf using AES-128 in ECB mode, i.e., DEKf = ENf

(MK).
The respective nonce Nf is stored in the file’s meta-data section. The file DEK
is used to encrypt the file contents using XTS and AES-128.

3 Physical Attacks on Memory Encryption

Physical access as the motivation for memory encryption and the prevalence
of the memory encryption schemes from Sect. 2 necessitate their analysis with
respect to physical attacks such as side-channel and fault attacks. The following
analysis of memory encryption schemes w.r.t. physical attacks shows that both
DPA [19] and DFA [4] attacks are easily capable of breaking all the schemes
presented, i.e., they reveal the DEK that allows to decrypt all memory con-
tent. Most remarkably, it demonstrates how to obtain the AES-128 keys in the
tweakable block ciphers XEX and XTS with practical complexity.

3.1 Differential Power Analysis

DPA attacks and its variants, e.g., Correlation Power Analysis [6], are meth-
ods that allow recovery of an encryption key based on power measurements or
similar, e.g., EM. The typical procedure is to measure the power of n different
en-/decryptions for known plain- or ciphertext, to compute certain intermediate
values within the en-/decryption based on the n different plain-/ciphertexts and
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the possible keys, and to map the intermediate values to hypothetical power con-
sumptions according to a leakage model. Correlation of the power traces of the
n en-/decryptions with the respective hypothetical power consumptions reduces
the key space or determines the key uniquely. The following details DPA attack
scenarios on the schemes from Sect. 2.

XEX Mode. The tweak T makes sure that the block cipher behaves differently
for each memory address. In spite of this, DPA-style attacks are applicable with
little modifications. Therefore, the adversary focuses on one particular memory
block, i.e., fixed sector and fixed memory address. For this memory block, the
adversary observes ciphertexts and power traces of several encryption processes.
The captured power traces are then used twice to attack different rounds of the
block cipher shaded gray in Fig. 2a, as the following illustrates for AES-128:

1. From an attacker’s point of view, the last round key rk10 is blinded with the
tweak T . However, for a fixed sector and memory address, the tweak T is
constant. A DPA that targets the input of the last round’s SBox will thus
reveal the last round key xored with the tweak, i.e., rk10 ⊕ T .

2. Knowledge of rk10 ⊕ T is sufficient to target the input of the second-last
round’s SBox in a second DPA. It reveals the second-last round key rk9,
which can be used to compute the key K.

Two consecutive DPAs on the same set of traces allow to gain knowledge of
the key K. The DPAs disclose the information contained in all memory blocks
across all sectors, even though only one particular block in one specific sector is
actually attacked.

Note that besides standard DPA, also unknown plaintext template
attacks [15] are applicable to directly obtain rk10. However, such attacks require
a preceding profiling step to create suitable templates. Alternatively, if the adver-
sary additionally has knowledge of the accessed sector, e.g., from the observation
of memory addresses on the bus, the attack generally becomes easier. In this
case, the tweak computation that encrypts the sector number can be attacked
to immediately learn K from power traces of memory accesses to different sec-
tors. However, depending on the practical circumstances, either of those attacks
is more suitable, e.g., the adversary may want to avoid raising suspicion by not
probing the memory bus.

XTS Mode. Contrary to XEX, a successful DPA on XTS requires the knowl-
edge of the accessed sector number. It allows to first obtain K2 from the tweak
computation. Once K2 is known, the tweak T used for encrypting any memory
block can be computed which enables a straight-forward attack on the key K1

by monitoring the power consumption during arbitrary memory accesses.

Counter Mode. Known-plaintext scenarios allow for DPA attacks that recover
the key K in counter mode encryption. They facilitate the computation of the
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encryption pads from both known plain- and ciphertexts and thus DPA on the
last round of the cipher. Typically, plaintexts would be assumed to be unknown
since memory encryption is applied. However, known-plaintext scenarios will
certainly occur in memory encryption. One such case would be publicly known
(or observable) data that is sent to a device, e.g., via external interfaces, and
that is consecutively encrypted and stored in main memory, e.g., within an input
buffer.

If there are insufficiently many known plaintexts, a known input seed also
allows for a DPA - one that does not even require any ciphertext. Often, the
counters and addresses within the seed will be publicly accessible (or observable).
If the IV is public as well, the seed will be fully known and a DPA in the first
round of the cipher be possible. The IV will mostly be stored publicly on the
disk for disk encryption, but might be chosen randomly at startup and remain
inaccessible for encryption of the main memory. Still, the approach in [17], where
a DPA is performed on the counter mode of AES without knowledge of the
counter value, might be applicable.

CBC Mode with ESSIV. Independently of the initial vector derivation, DPA
attacks on the CBC mode are trivially possible through the observation of cipher-
texts and power traces of the respective encryption processes. The recovered key
K then allows to compute each sector’s IV (ESSIV) and hence to obtain any
plaintext.

3.2 Differential Fault Analysis

Differential Fault Analysis (DFA) [4] describes techniques that use algebraic
properties of ciphers to find out about the key from one correct and one or
several faulty cipher invocations with the same input. Various techniques to
inject faults into a device exist, e.g., power and clock glitches, laser shots, and
electromagnetic pulses. However, the following investigation does not consider
how the faults are injected, but elaborates on how faults are exploited in order
to obtain the key. It details DFA attack scenarios on the schemes from Sect. 2,
and most noteworthy, how to break the tweakable block ciphers XEX and XTS
with practical complexity 235 if AES-128 is used.

XEX Mode. The attack procedure of DFA to learn the key K is tightly linked
with the employed cipher. Exemplarily, we show how to use DFA to extract
the key from AES-128 in XEX mode. The DFA targets the block cipher that is
shaded gray in Fig. 2a and consists of two basic steps:

1. An arbitrary byte fault in round 8 is used to extract the xor of round key 10
and the tweak (rk10 ⊕ T ).

2. A byte fault in round 7 and a modified representation of the AES round
function lead to round key 9 and thus the key K.
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Fig. 5. AES round function (left) and its alternative representation (right).

Learning rk 10 ⊕ T . From an attacker’s point of view, the last round key rk 10
is blinded with the tweak T . This requires the tweak T to be constant for DFA,
i.e., the attack operates on fixed sector and fixed memory block. By forcing
reencryption of the same plaintext in the desired block, the adversary gets the
chance to inject an arbitrary byte fault during round 8 of the encryption process
of the tweakable cipher. Application of a suitable DFA technique, e.g., [24,28],
to the pair of right and faulty ciphertext results in the value rk 10 ⊕ T .

Learning round key 9. The DFA to learn rk9 benefits from an alternative rep-
resentation of the AES round function. As shown in Fig. 5, it is obtained from
swapping MixColumns and AddRoundKey. The linearity of MixColumns allows
this transformation if the round key is modified accordingly, i.e.,

MixColumns(H) ⊕ rk9 = MixColumns(H ⊕ MixColumns−1(rk9))
= MixColumns(H ⊕ rk9,mc).

In the following, the alternative representation of the round function is used
for round 9. The attack starts by injecting a random byte fault during round 7.
As the MixColumns operation propagates the fault to the other state bytes, all
bytes are affected by the end of round 8. The observed pair of right and faulty
ciphertext C,C ′ and the value rk10 ⊕T are used to compute backward to obtain
the respective values L,L′ in round 9.

Interpreting L,L′ as a pair of right and faulty ciphertext, the remaining
cipher looks like a round-reduced version of the AES with one inner round miss-
ing. The last round consists of AddRoundKey, ShiftRows, and SubBytes and
uses the round key rk9,mc. The benefit of this approach is that now any DFA
technique that targets the last round key of the AES, e.g., [24,28], is suitable to
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obtain rk9,mc from the pair L,L′ and the fault differences at the end of round
8. Round key 9 is then easily computed as rk9 = MixColumns(rk9,mc).

If the technique in [28] is used to learn rk9,mc, the attack has the complexity
234 and thus is clearly possible on nowadays’ computers. According to [28], the
required faults can be injected by temporal overclocking only.

XTS Mode. Although XTS using AES-128 relies on two 128-bit keys, DFA
breaks this mode with total complexity 235. First, the DFA technique that was
just applied to XEX trivially recovers the key K1 with complexity 234. Second,
the following small trick uses faults in the tweak computation to also learn K2

with complexity 234. It determines the faulty tweak T ′ from the observed faulty
ciphertext C ′ and the correct tweak T .

The procedure to recover K2 requires the values of K1, P , and rk1,10⊕T to be
known, where rk1,10 denotes round key 10 derived from K1. These preconditions
usually apply if the previous DFA on XEX was utilized to learn K1. As a result,
the tweak T and the intermediate value U (cf. Fig. 2b) can be computed: U =
α−addr · T . A random fault that is injected in one byte of the state in round
9 of the AES affects four bytes of U . Although the respective faulty U ′ is not
directly observable, it can be brute-forced with complexity 232. This is done by
trying all values for the faulty bytes of U ′, computing the respective tweaks T ′,
encrypting the original plaintext P using T ′ and K1, and matching the result
against the faulty ciphertext C ′. Once U ′ is known, four bytes of rk2,10 (round
key 10 derived from K2) are revealed using the technique in [24]. Hereby, the
possible key space for rk2,10 is reduced by the possible differences that can be
observed at the output of MixColumns in round 9 that result from a single byte
fault during round 9. Similarly, three more faults in different bytes of the state
of round 9 recover the remaining 12 bytes of rk2,10 and thus K2.

Counter Mode. DFA on a block cipher operated in counter mode (cf. Fig. 4)
requires access to the output of the cipher, i.e., the pad. Since encryption pads
must not repeat, consecutive encryptions of plaintexts will not use the same
pad and encryption seed. As a result, DFA is limited to the decryption process.
If the same ciphertext is loaded from the same memory address several times
and the adversary can inject faults during the pad computations and observe
the respective plaintexts, the correct and faulty pads can be computed and the
master key K be learned via a suitable DFA technique. The required plaintexts
may be observed from communication of the device via external interfaces.

CBC Mode with ESSIV. Independently of the initial vector derivation, DFA
is trivially possible by restricting analysis to one specific memory block within
the CBC chain of one particular sector. Therefore, reencryption of the same
plaintext has to be triggered for the desired memory block, e.g., through placing
the same message in an input buffer by repeatedly sending the same message
to the device. Faults injected during reencryption are directly observable in the
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resulting ciphertext. This facilitates the application of a suitable DFA technique
in order to learn the master key K. Note that for this to work, all memory blocks
in the sector prior to the target block must not change during reencryption.

4 EM Attack on Ext4 Encryption

As our analysis points out, contemporary memory encryption schemes are clearly
vulnerable to physical attacks. However, it remains to show that such attacks are
indeed feasible on contemporary systems. This Section therefore demonstrates
a practical attack on the disk encryption scheme incorporated into the ext4
file system. The EM attack conducted on a Zynq Z-7010 system on chip (SoC)
reveals the used master key and thus all content by exploiting the leakage of the
first round of an AES execution.

4.1 Analysis of Ext4 Disk Encryption

Disk encryption within the ext4 file system works on file level and allows to
encrypt arbitrary directories using a specified master key MK. For each file in
such directory, the master key MK is used to derive an individual data encryp-
tion key DEKf to encrypt the respective file’s content and name. Key derivation
is done by encrypting MK with AES-128 in ECB mode using a public file nonce
Nf as the key. It starts whenever DEKf is needed and not already present in
main memory. The size of both MK and DEKf is 512 bits and chosen such as to
be able to encrypt files with AES-256 in XTS mode in future versions. However,
currently only AES-128 in XTS mode is supported and thus the last 256 bits
of DEKf and MK are not used. The file nonce Nf is stored in an extended
attribute of the file’s inode.

Clearly, given the master key MK and a public file nonce Nf , the respective
file key DEKf can be derived. However, the key derivation chosen in ext4 also
allows to compute the master key MK given any DEKf and the respective
nonce Nf . Therefore, an attacker who wants to learn MK using power analysis
can choose between two equivalent targets, namely (1) data encryption of file
content, and (2) the derivation of the file key DEKf . In terms of target (1), the
strategy from Sect. 3 can be straight-forwardly applied, but one may need files
that are sufficiently large to be able to learn K2 within XTS. With respect to
target (2), one needs to monitor accesses to many different files as such trigger
key derivations. To practically verify the feasibility of attacks on disk encryption,
we opted for target (2).

4.2 General Attack Flow

The attack we performed assumes an encrypted folder on an SD card using the
ext4 file system. It further assumes the attacker is able to trigger the creation of
new files within the encrypted folder via external interfaces, e.g., by uploading
data via a running web server or writing log files.
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Fig. 6. Distribution of t-test results on the chip surface.

To perform the attack, the attacker first dumps the (encrypted) content of
the SD card. They may not be able to read the actual content from such file
system dump, but can learn about the directory structure as meta data is not
encrypted. Second, the attacker triggers the creation of sufficiently many files on
the SD card, observes the EM side channel, and stores the respective EM traces.
Third, the attacker again dumps the content of the SD card. By comparing
its content with the initial dump from before the measurements, the attacker
can learn which files have been created. The meta data of the newly created
files allows to both learn the used nonces Nf and their creation date, which in
turn allows to map the newly created files on the SD card to the EM traces. In
the next step, the attacker creates the power model for the key derivation, i.e.,
DEKf = ENf

(MK). Finally, the power model is matched with the EM traces
to reveal the master key.

To investigate the encrypted directory in the file system, debugging and
forensic tools are highly suitable. We used the tool debugfs to find new files in
the file system and to learn their creation date and the respective nonces. Note
that the access times are also available within the file system, which allows for
the described attack also when monitoring arbitrary file accesses.

4.3 Experimental Setup and Results

The feasibility of the attack on ext4 encryption in Sect. 4.2 was verified using the
Digilent ZYBO board. The board hosts a Xilinx Zynq Z-7010 SoC, 512 MB of
DDR3 RAM, and several IO interfaces, i.a., an SD card slot. The Zynq Z-7010
SoC combines an Artix-7 FPGA and a state-of-the-art hard macro comprising
a 650-MHz dual-core ARM Cortex-A9 processor, IO modules, and memory con-
trollers. The measurement devices required to capture the EM traces involved
a LeCroy WavePro 725Zi oscilloscope, a Langer RF B 3-2 magnetic field probe,
and a Langer PA 303 pre-amplifier.
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Fig. 7. Single-byte correlation results for ext4 key derivation.

The general leakage behavior of the Zynq Z-7010 was examined by running
the AES T-table implementation included in the Linux 4.3 kernel in a bare-metal
application. Therefore, the EM probe was placed in different locations using a
stepper table to evaluate a fixed vs. random t-test. This revealed the spots of
high leakage as shown in Fig. 6 and allowed for successful DPA on the bare-metal
AES.

The setup for the complete disk encryption scenario was established by con-
figuring the Zynq SoC to use a 350-MHz memory clock and a 625-MHz CPU
clock and deploying Linux 4.3 to the ZYBO board. An ext4 file system was cre-
ated on an SD card and one directory encrypted such that it is only readable
by the system running on the ZYBO board. The attack procedure from Sect. 4.2
was executed by repeatedly creating new files via the UART interface. The oscil-
loscope was triggered to capture an EM trace at 5GS by setting a GPIO pin
just before creating a new file. The SD card content was then analyzed on a
PC using debugfs, the EM traces aligned, and a DPA performed on the SBox
output of the first AES round using the Hamming Weight power model.

The results of the DPA on a single byte of the master key are given in
Fig. 7. Using 15,000 EM traces, Fig. 7a clearly presents the correlation of the
power model of the correct key guess in the time domain. Moreover, in Fig. 7b
the correct key byte (black) is clearly distinguished from the remaining key
hypotheses with 5,000 measurements.

In this feasibility study, the Linux kernel was reconfigured to omit symmetric
multiprocessing, dynamic frequency scaling, and caches. Moreover, AES execu-
tions were highlighted in the captured EM traces through another hardware-
triggered signal to help finding AES executions. This however does not affect
the applicability of the attack. For example, [12] showed the practicality of
attacking a free-running OpenSSL implementation of AES with active caches
and frequency scaling on the TI Sitara platform that uses an ARM Cortex-A8.
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However, further improvement of both setup and trace processing would defi-
nitely be interesting future work.

5 Conclusion

Summarizing, this paper unveiled that contemporary mechanisms that aim to
ensure the confidentiality of memory content in the presence of adversaries with
physical access are clearly vulnerable to physical attacks. In particular, it showed
that all common implementations of memory and disk encryption schemes can
easily be broken using DPA and DFA. The attacks are powerful enough to even
break the tweakable cipher XTS that is most commonly used. Further, the fea-
sibility of such attacks on state-of-the-art computing systems was verified by
exploiting the EM side channel on the Zynq Z-7010 SoC. The attack revealed
the master key of the disk encryption scheme incorporated into the ext4 file
system and thus all encrypted content.

Our results suggest that if memory encryption is supposed to use current
schemes in the future, cipher implementations with appropriate countermea-
sures must be used. However, the secure cipher implementations proposed so
far were mainly designed for the use in embedded devices and might thus not
yield the desired throughput for memory encryption. For example, the 1st-order
threshold implementations in [5,22] require 246 and 266 clock cycles for one
AES execution, respectively. Additionally, these implementations add an area
overhead of a factor of four that must hence also be expected for secure mem-
ory encryption based on such protected implementations. It thus remains future
work to implement memory encryption that fulfills both the requirement for
sufficient throughput and security against side-channel adversaries.
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