
François-Xavier Standaert
Elisabeth Oswald (Eds.)

 123

LN
CS

 9
68

9

7th International Workshop, COSADE 2016
Graz, Austria, April 14–15, 2016
Revised Selected Papers

Constructive
Side-Channel Analysis
and Secure Design

Lecture Notes in Computer Science 9689

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

François-Xavier Standaert • Elisabeth Oswald (Eds.)

Constructive
Side-Channel Analysis
and Secure Design
7th International Workshop, COSADE 2016
Graz, Austria, April 14–15, 2016
Revised Selected Papers

123

Editors
François-Xavier Standaert
UCL Crypto Group
Louvain-la-Neuve
Belgium

Elisabeth Oswald
University of Bristol
Bristol
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-43282-3 ISBN 978-3-319-43283-0 (eBook)
DOI 10.1007/978-3-319-43283-0

Library of Congress Control Number: 2016945799

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 7th International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE) was held in Graz, Austria, during April 14–15, 2016. This now
well-established workshop brings together researchers from academia, industry, and
government who share a common interest in the design and secure implementation of
cryptographic primitives. COSADE 2016 received 32 submission; the review process
relied on the EasyChair system.

From the pool of submissions, 12 high-quality papers were selected carefully after
deliberations of the 30 Program Committee members who were supported by 24
additional reviewers. The composition of the Program Committee was representative
of the good mix between academic and industrial researchers as well as the geographic
spread of researchers across the globe. We would like to express our sincere gratitude
to both the Program Committee members and reviewers.

As it has become custom, the Program Committee members voted on the best paper
among the accepted papers. The resulting winner was “Exploiting the Physical Dis-
parity: Side-Channel Attacks on Memory Encryption” authored by Thomas Unter-
luggauer and Stefan Mangard. The program also featured three invited talks. Tom
Chothia elaborated on advanced statistical tests for detecting information leakage.
François Dupressoir spoke about formal and compositional proofs of probing security
for masked algorithms. Aurélien Francillon discussed what security problems can be
spotted with large-scale static analysis of systems. We would like to thank the invited
speakers for joining us in Graz.

Finally, we would like to thank the local organizers, in particular Stefan Mangard
(general chair) and Thomas Korak, for their support and for making this great event
possible. On behalf of the COSADE community we would also like to thank our
GOLD sponsors Infineon Technologies AG, NewAE Technology Inc., NXP Semi-
conductors, Riscure, and Secure-IC, as well as our SILVER sponsors Rambus Cryp-
tography Research and Oberthur Technologies, for their support.

And most importantly, we would like to thank the authors for their excellent
contributions.

May 2016 Elisabeth Oswald
François-Xavier Standaert

Organization

Program Committee

Josep Balasch KU Leuven, Belgium
Guido Bertoni STMicroelectronics, Italy
Shivam Bhasin Nanyang Technological University, Singapore
Christophe Clavier University of Limoges, France
Hermann Drexler Giesecke & Devrient, Germany
Cécile Dumas CEA LETI, France
Thomas Eisenbarth WPI, USA
Wieland Fischer Infineon Technologies, Germany
Benoît Gérard DGA Maîtrise de l’Information, France
Christophe Giraud Oberthur Technologies, France
Vincent Grosso UCL, Belgium
Johann Groszschädl University of Luxembourg, Luxembourg
Tim Güneysu University of Bremen, Germany
Sylvain Guilley Télécom ParisTech, France
Johann Heyszl Fraunhofer AISEC, Germany
Naofumi Homma Tohoku University, Japan
Michael Hutter CRI, USA
Ilya Kizhvatov Riscure, The Nederlands
Thanh-ha Le Morpho, France
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Marcel Medwed NXP Semiconductors, Austria
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep Mukhopadhyay Indian Institute of Technology Kharagpur, India
Elisabeth Oswald University of Bristol, UK
Emmanuel Prouff ANSSI, France
Francesco Regazzoni University of Lugano, Switzerland
Matthieu Rivain CryptoExperts, France
Kazuo Sakiyama The University of Electro-Communications Tokyo,

Japan
Francois-Xavier Standaert UCL Crypto Group, Belgium
Carolyn Whitnall University of Bristol, UK

Additional Reviewers

Abdullin, Nikita
Barbu, Guillaume
Bauer, Sven
Becker, Georg T.
Bocktaels, Yves
Breier, Jakub
Chabrier, Thomas
Chen, Cong
Dabosville, Guillaume
De Santis, Fabrizio
Dinu, Daniel
Goodwill, Gilbert
Greuet, Aurélien
Hayashi, Yuichi

He, Wei
Hoffmann, Lars
Irazoqui, Gorka
Jap, Dirmanto
Knezevic, Miroslav
Li, Yang
Lomne, Victor
Longo Galea, Jake
Martin, Daniel
Mather, Luke
Melzani, Filippo
Miura, Noriyuki
Oder, Tobias
Omic, Jasmina

Patranabis, Sikhar
Riou, Sebastien
Samarin, Peter
Sasdrich, Pascal
Schellenberg, Falk
Schneider, Tobias
Selmke, Bodo
Susella, Ruggero
Takahashi, Junko
Ueno, Rei
Vermoen, Dennis
Yli-Mayry, Ville

VIII Organization

Contents

Security and Physical Attacks

Exploiting the Physical Disparity: Side-Channel Attacks
on Memory Encryption . 3

Thomas Unterluggauer and Stefan Mangard

Co-location Detection on the Cloud. 19
Mehmet Sinan İnci, Berk Gulmezoglu, Thomas Eisenbarth,
and Berk Sunar

Simple Photonic Emission Attack with Reduced Data Complexity. 35
Elad Carmon, Jean-Pierre Seifert, and Avishai Wool

Side-Channel Analysis (Case Studies)

Power Analysis Attacks Against IEEE 802.15.4 Nodes 55
Colin O’Flynn and Zhizhang Chen

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption
of 5, 6, and 7 Series . 71

Amir Moradi and Tobias Schneider

Dismantling Real-World ECC with Horizontal and Vertical
Template Attacks . 88

Margaux Dugardin, Louiza Papachristodoulou, Zakaria Najm,
Lejla Batina, Jean-Luc Danger, and Sylvain Guilley

Fault Analysis

Algorithmic Countermeasures Against Fault Attacks and Power Analysis
for RSA-CRT . 111

Ágnes Kiss, Juliane Krämer, Pablo Rauzy, and Jean-Pierre Seifert

Improved Differential Fault Analysis on Camellia-128 130
Toru Akishita and Noboru Kunihiro

A Note on the Security of CHES 2014 Symmetric Infective
Countermeasure . 144

Alberto Battistello and Christophe Giraud

http://dx.doi.org/10.1007/978-3-319-43283-0_1
http://dx.doi.org/10.1007/978-3-319-43283-0_1
http://dx.doi.org/10.1007/978-3-319-43283-0_2
http://dx.doi.org/10.1007/978-3-319-43283-0_3
http://dx.doi.org/10.1007/978-3-319-43283-0_4
http://dx.doi.org/10.1007/978-3-319-43283-0_5
http://dx.doi.org/10.1007/978-3-319-43283-0_5
http://dx.doi.org/10.1007/978-3-319-43283-0_6
http://dx.doi.org/10.1007/978-3-319-43283-0_6
http://dx.doi.org/10.1007/978-3-319-43283-0_7
http://dx.doi.org/10.1007/978-3-319-43283-0_7
http://dx.doi.org/10.1007/978-3-319-43283-0_8
http://dx.doi.org/10.1007/978-3-319-43283-0_9
http://dx.doi.org/10.1007/978-3-319-43283-0_9

Side-Channel Analysis (Tools)

Simpler, Faster, and More Robust T-Test Based Leakage Detection. 163
A. Adam Ding, Cong Chen, and Thomas Eisenbarth

Design and Implementation of a Waveform-Matching Based
Triggering System. 184

Arthur Beckers, Josep Balasch, Benedikt Gierlichs,
and Ingrid Verbauwhede

Robust and One-Pass Parallel Computation of Correlation-Based Attacks
at Arbitrary Order . 199

Tobias Schneider, Amir Moradi, and Tim Güneysu

Author Index . 219

X Contents

http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-319-43283-0_11
http://dx.doi.org/10.1007/978-3-319-43283-0_11
http://dx.doi.org/10.1007/978-3-319-43283-0_12
http://dx.doi.org/10.1007/978-3-319-43283-0_12

Security and Physical Attacks

Exploiting the Physical Disparity: Side-Channel
Attacks on Memory Encryption

Thomas Unterluggauer(B) and Stefan Mangard

Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{thomas.unterluggauer,stefan.mangard}@iaik.tugraz.at

Abstract. Memory and disk encryption is a common measure to protect
sensitive information in memory from adversaries with physical access.
However, physical access also comes with the risk of physical attacks. As
these may pose a threat to memory confidentiality, this paper investigates
contemporary memory and disk encryption schemes and their implemen-
tations with respect to Differential Power Analysis (DPA) and Differen-
tial Fault Analysis (DFA). It shows that DPA and DFA recover the keys
of all the investigated schemes, including the tweakable block ciphers
XEX and XTS. This paper also verifies the feasibility of such attacks
in practice. Using the EM side channel, a DPA on the disk encryption
employed within the ext4 file system is shown to reveal the used master
key on a Zynq Z-7010 system on chip. The results suggest that mem-
ory and disk encryption secure against physical attackers is at least four
times more expensive.

Keywords: Memory encryption · Side-channel attack · Power analysis ·
DPA · Fault analysis · DFA · Ext4

1 Introduction

Many electronic computing devices nowadays contain and process sensitive data
in hostile environments. Among two particularly relevant examples, the first are
engineering companies whose production machines are shipped around the world.
These machines contain high-value intellectual property, e.g., control parame-
ters and source code, that their vendors wish to be protected from unautho-
rized access and proliferation. Similarly, malicious access and modification must
be prevented if usage statistics are used for billing. The second example are
employee smart phones or laptops containing corporate secrets. Unattended such
devices are a highly interesting target for industrial espionage and therefore need
protection mechanisms.

In both examples, adversaries interested in the sensitive data potentially have
physical access to the device. To prevent these attackers from simply reading con-
fidential information from main or external memory, e.g., hard disks and memory
cards, encryption of memory is well established. Several dedicated encryption

c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-43283-0 1

4 T. Unterluggauer and S. Mangard

modes for memory, such as Cipher-Block-Chaining with Encrypted Salt-Sector
IV (CBC-ESSIV) [10], Xor-Encrypt-Xor (XEX) [25], and XEX-based Tweaked
codebook mode with ciphertext Stealing (XTS) [1], were proposed to fulfill the
special requirements of memory encryption. These successfully prevent a variety
of attacks, ranging from simple dumps of memory cards or hard disks to bus
probing and cold boot attacks [14], and are thus implemented in an increasing
number of real-world applications, such as dm-crypt, Mac OS X, Android, and
ext4.

However, one important aspect contemporary memory encryption schemes
left unconsidered are physical attacks such as side-channel and fault attacks.
These allow the adversary to learn about secret key material used during encryp-
tion from various side channels, e.g., power, timing, and Electromagnetic Emana-
tion (EM), or from faulty computations due to intentionally induced faults, e.g.,
clock glitches. Given physical access of the adversary as the motivating threat
for memory encryption, physical attacks must not be neglected as these would
allow adversaries to learn the encryption key and thus to decrypt confidential
data in memory. The consideration of physical attacks is particularly important
for permanently running devices that are threatened by attackers without any
time constraints, e.g., a corporate customer may be interested in the data and
IP of an embedded control unit within a purchased production machine.

This paper therefore investigates contemporary memory encryption schemes
and their implementation within dm-crypt, Android 5.0, Mac OS X and ext4
in terms of physical attacks. As one main result, our detailed analysis shows
that Differential Power Analysis (DPA) and Differential Fault Analysis (DFA)
breaks all contemporary memory and disk encryption schemes used in practice.
Most prominently, it presents tricks to be applied to DPA and DFA in order
to obtain the keys from the tweakable ciphers XEX and XTS. Supporting the
analysis results, our second contribution exploits the EM side channel of a Zynq-
7010 system on chip in a practical attack on the recently introduced ext4 disk
encryption mechanism that completely discloses the confidential disk content.
We thus conclude that securing memories against physical adversaries by using
contemporary memory encryption requires protected implementations, e.g., [5,
16,22], that increase the cost of memory encryption at least by a factor of four.

This paper is organized as follows. Section 2 introduces memory encryption
and gives an overview on common state-of-the-art implementations. The memory
encryption schemes are analyzed with respect to both DPA and DFA in Sect. 3.
The practical feasibility of such attacks is evaluated in Sect. 4, and Sect. 5 con-
cludes the paper.

2 Memory Encryption

Memory encryption deals with the encryption of data contained in memory such
as RAM, memory cards and hard disks. However, in practice different variants
and notations are being used for memory encryption. This Section therefore
defines memory encryption and gives an overview on common memory encryp-
tion schemes and implementations.

Exploiting the Physical Disparity: Side-Channel Attacks 5

Fig. 1. Generic model of memory encryption.

2.1 Definition

The encryption of memory is usually performed using dedicated memory encryp-
tion schemes as these schemes have to fulfill several requirements: (1) ensure
random access to all memory blocks, (2) provide sufficiently fast bulk encryp-
tion, and (3) the only information an adversary can derive from the encrypted
memory is whether a memory block has changed or not.

Definition 1. A memory encryption scheme is an encryption scheme Enc :
K × A × {0, 1}n → {0, 1}n, which
– uses a key K from key space K, and
– splits the memory into s = � sizememory

n � n-bit memory blocks,
– identifies each of the memory blocks by their address in address space A, and
– provides address-dependent en-/decryption for each of these memory blocks.

Definition 1 considers the encryption of a flat memory space and requires
the encryption process to incorporate address information. The address infor-
mation allows memory encryption schemes to fulfill requirement (3) as for this
reason each memory block is encrypted differently. Otherwise, it would be eas-
ily recognizable if certain data is contained in different memory locations and
valid (but encrypted) data could simply be copied to different addresses (splic-
ing attack [9]). The requirements (1) and (2) are typically satisfied by splitting
the memory space into blocks using two different granularities: the memory is
divided into larger sectors (or pages) and each sector (or page) is divided into
encryption blocks. The encryption mode then ensures fast bulk encryption within
each sector and random access on sector level.

2.2 Memory Encryption in Practice

In practice, memory encryption is often named disk encryption referring to the
type of memory used. There are two variants of disk encryption: (1) block device
or full disk encryption, and (2) file-level disk encryption. While full disk encryp-
tion performs encryption directly on the raw memory space of a whole disk,
block device, or partition, i.e., beneath a file system, file-level disk encryption
performs encryption on file level on top of or within a file system. Both variants
use the same sort of memory encryption schemes, but apply them to different

6 T. Unterluggauer and S. Mangard

(a) XEX mode. (b) XTS mode.

Fig. 2. Tweakable ciphers for disk encryption.

portions of the memory. Throughout the paper, the term memory encryption
thus denotes any of these variants.

Another aspect of practical implementations of memory encryption is that
they usually employ a Key Derivation Function (KDF) to derive the Data
Encryption Key (DEK) to be used within the memory encryption scheme from,
e.g., a user password and public nonces. The combination of such a KDF and
a memory encryption scheme leads to the generic model of memory encryption
in Fig. 1. The following will use this model to first describe typical schemes for
both the KDF and the encryption part, and will then show how these are used
in several practical implementations.

Key Derivation Functions. To derive a key from a user password or a PIN,
typically a password hashing function such as PBKDF2 [18] or scrypt [23] is
used. This password-derived key is then mostly used as a Key Encryption Key
(KEK) to decrypt the actual master key MK of the memory using an ordinary
block cipher. Depending on the concrete setup, such master key MK is directly
used as the DEK for the memory encryption scheme or is used to further derive
or decrypt keys, e.g., DEKs for the encryption of single files in file-level disk
encryption.

Encryption Schemes. Common implementations exclusively deal with the
encryption of external memory, e.g., hard disks. These implementations, e.g.,
in dm-crypt, mainly utilize the modes XEX [25], XTS [1], and CBC with
ESSIV [10]. The tweakable block ciphers XEX and XTS are shown in Fig. 2.
Both encryption modes apply a tweak T to the cipher E that results from a
binary-field multiplication of the encrypted sector number with the memory
block address. While XEX uses only one key, XTS uses two different keys for
the two instances of the cipher. The CBC mode with Encrypted Salt-Sector
IV (ESSIV) is depicted in Fig. 3. ESSIV ensures a secret IV and thus prevents
watermarking attacks [27]. It computes the IV as the encryption of the sector
number with the hashed key (i.e., salt).

Exploiting the Physical Disparity: Side-Channel Attacks 7

Fig. 3. Disk encryption via CBC and ESSIV.

Differently, research on the design and construction of secure systems further
considered the encryption of the main memory. Primarily variants of the counter
mode encryption were proposed such as in Fig. 4 [26,29]. The pad is the encryp-
tion of a block-specific seed that comprises an Initial Vector (IV), the memory
block address, and a timestamp (or counter). It is mostly favored due to the
little latency it introduces on the path to the memory.

2.3 State-of-the-Art Implementations

The following presents common implementations within dm-crypt, Android,
Mac OS X, and ext4, and shows that the memory encryption schemes presented
before have high prevalence throughout all of these implementations.

dm-crypt. dm-crypt [2] is a disk encryption utility that provides transpar-
ent encryption of arbitrary block devices within Linux ≥ 2.6, i.e., block device
encryption. dm-crypt can be configured to use one of several available encryp-
tion modes, i.a., CBC-ESSIV and XTS (default), using different block ciphers,
e.g., AES-128 [8]. The utility requires the user to supply the block device DEK
when mounting the block device. For more convenient usage, however, Linux
Unified Key Setup (LUKS) [11] can be used. LUKS adds a meta-data header to
the block device that stores the encrypted DEK. The respective KEK is derived
from a user password using PBKDF2.

Mac OS X. Mac OS X from version 10.7 (Lion) onwards provides block device
encryption using the tool FileVault 2 [3,7]. Mac OS X encrypts block devices
using XTS and AES-128 with separate DEKs that are chosen randomly upon
setup of each encrypted block device. For key storage, Mac OS X uses a three-
tier hierarchy of DEKs, KEKs and Derived Key Encryption Keys (DKEK). The
DEK is encrypted using a randomly chosen KEK that is encrypted using at least
one DKEK. DKEKs can, e.g., be derived from a password or be the public key
of a corporate certificate. Both the DEK and the KEK are stored encrypted in
a meta-data block on the block device.

8 T. Unterluggauer and S. Mangard

Fig. 4. Counter mode memory encryption.

Android. Android is equipped with full disk encryption for devices such as
flash memory. In Android 5.0, encryption of block devices is based on dm-crypt
that is configured to use AES-128 and CBC-ESSIV [13]. Its DEK is sized 128
bits by default and stored encrypted on the block device. The respective KEK
is derived from a user password and a hardware-bound key using scrypt and a
signing procedure within a Trusted Execution Environment (TEE).

Ext4. Since Linux 4.1, the ext4 file system offers file-level disk encryp-
tion [20,21]. It allows to set up encryption for a specific folder that is assigned a
master key derived from a user passphrase and a salt using PBKDF2. While ext4
encrypts file content and names, meta data and file system structure is available
in plaintext. Each file uses an individual DEK that is derived from the master key
MK and a file nonce Nf using AES-128 in ECB mode, i.e., DEKf = ENf

(MK).
The respective nonce Nf is stored in the file’s meta-data section. The file DEK
is used to encrypt the file contents using XTS and AES-128.

3 Physical Attacks on Memory Encryption

Physical access as the motivation for memory encryption and the prevalence
of the memory encryption schemes from Sect. 2 necessitate their analysis with
respect to physical attacks such as side-channel and fault attacks. The following
analysis of memory encryption schemes w.r.t. physical attacks shows that both
DPA [19] and DFA [4] attacks are easily capable of breaking all the schemes
presented, i.e., they reveal the DEK that allows to decrypt all memory con-
tent. Most remarkably, it demonstrates how to obtain the AES-128 keys in the
tweakable block ciphers XEX and XTS with practical complexity.

3.1 Differential Power Analysis

DPA attacks and its variants, e.g., Correlation Power Analysis [6], are meth-
ods that allow recovery of an encryption key based on power measurements or
similar, e.g., EM. The typical procedure is to measure the power of n different
en-/decryptions for known plain- or ciphertext, to compute certain intermediate
values within the en-/decryption based on the n different plain-/ciphertexts and

Exploiting the Physical Disparity: Side-Channel Attacks 9

the possible keys, and to map the intermediate values to hypothetical power con-
sumptions according to a leakage model. Correlation of the power traces of the
n en-/decryptions with the respective hypothetical power consumptions reduces
the key space or determines the key uniquely. The following details DPA attack
scenarios on the schemes from Sect. 2.

XEX Mode. The tweak T makes sure that the block cipher behaves differently
for each memory address. In spite of this, DPA-style attacks are applicable with
little modifications. Therefore, the adversary focuses on one particular memory
block, i.e., fixed sector and fixed memory address. For this memory block, the
adversary observes ciphertexts and power traces of several encryption processes.
The captured power traces are then used twice to attack different rounds of the
block cipher shaded gray in Fig. 2a, as the following illustrates for AES-128:

1. From an attacker’s point of view, the last round key rk10 is blinded with the
tweak T . However, for a fixed sector and memory address, the tweak T is
constant. A DPA that targets the input of the last round’s SBox will thus
reveal the last round key xored with the tweak, i.e., rk10 ⊕ T .

2. Knowledge of rk10 ⊕ T is sufficient to target the input of the second-last
round’s SBox in a second DPA. It reveals the second-last round key rk9,
which can be used to compute the key K.

Two consecutive DPAs on the same set of traces allow to gain knowledge of
the key K. The DPAs disclose the information contained in all memory blocks
across all sectors, even though only one particular block in one specific sector is
actually attacked.

Note that besides standard DPA, also unknown plaintext template
attacks [15] are applicable to directly obtain rk10. However, such attacks require
a preceding profiling step to create suitable templates. Alternatively, if the adver-
sary additionally has knowledge of the accessed sector, e.g., from the observation
of memory addresses on the bus, the attack generally becomes easier. In this
case, the tweak computation that encrypts the sector number can be attacked
to immediately learn K from power traces of memory accesses to different sec-
tors. However, depending on the practical circumstances, either of those attacks
is more suitable, e.g., the adversary may want to avoid raising suspicion by not
probing the memory bus.

XTS Mode. Contrary to XEX, a successful DPA on XTS requires the knowl-
edge of the accessed sector number. It allows to first obtain K2 from the tweak
computation. Once K2 is known, the tweak T used for encrypting any memory
block can be computed which enables a straight-forward attack on the key K1

by monitoring the power consumption during arbitrary memory accesses.

Counter Mode. Known-plaintext scenarios allow for DPA attacks that recover
the key K in counter mode encryption. They facilitate the computation of the

10 T. Unterluggauer and S. Mangard

encryption pads from both known plain- and ciphertexts and thus DPA on the
last round of the cipher. Typically, plaintexts would be assumed to be unknown
since memory encryption is applied. However, known-plaintext scenarios will
certainly occur in memory encryption. One such case would be publicly known
(or observable) data that is sent to a device, e.g., via external interfaces, and
that is consecutively encrypted and stored in main memory, e.g., within an input
buffer.

If there are insufficiently many known plaintexts, a known input seed also
allows for a DPA - one that does not even require any ciphertext. Often, the
counters and addresses within the seed will be publicly accessible (or observable).
If the IV is public as well, the seed will be fully known and a DPA in the first
round of the cipher be possible. The IV will mostly be stored publicly on the
disk for disk encryption, but might be chosen randomly at startup and remain
inaccessible for encryption of the main memory. Still, the approach in [17], where
a DPA is performed on the counter mode of AES without knowledge of the
counter value, might be applicable.

CBC Mode with ESSIV. Independently of the initial vector derivation, DPA
attacks on the CBC mode are trivially possible through the observation of cipher-
texts and power traces of the respective encryption processes. The recovered key
K then allows to compute each sector’s IV (ESSIV) and hence to obtain any
plaintext.

3.2 Differential Fault Analysis

Differential Fault Analysis (DFA) [4] describes techniques that use algebraic
properties of ciphers to find out about the key from one correct and one or
several faulty cipher invocations with the same input. Various techniques to
inject faults into a device exist, e.g., power and clock glitches, laser shots, and
electromagnetic pulses. However, the following investigation does not consider
how the faults are injected, but elaborates on how faults are exploited in order
to obtain the key. It details DFA attack scenarios on the schemes from Sect. 2,
and most noteworthy, how to break the tweakable block ciphers XEX and XTS
with practical complexity 235 if AES-128 is used.

XEX Mode. The attack procedure of DFA to learn the key K is tightly linked
with the employed cipher. Exemplarily, we show how to use DFA to extract
the key from AES-128 in XEX mode. The DFA targets the block cipher that is
shaded gray in Fig. 2a and consists of two basic steps:

1. An arbitrary byte fault in round 8 is used to extract the xor of round key 10
and the tweak (rk10 ⊕ T).

2. A byte fault in round 7 and a modified representation of the AES round
function lead to round key 9 and thus the key K.

Exploiting the Physical Disparity: Side-Channel Attacks 11

Fig. 5. AES round function (left) and its alternative representation (right).

Learning rk 10 ⊕ T . From an attacker’s point of view, the last round key rk 10
is blinded with the tweak T . This requires the tweak T to be constant for DFA,
i.e., the attack operates on fixed sector and fixed memory block. By forcing
reencryption of the same plaintext in the desired block, the adversary gets the
chance to inject an arbitrary byte fault during round 8 of the encryption process
of the tweakable cipher. Application of a suitable DFA technique, e.g., [24,28],
to the pair of right and faulty ciphertext results in the value rk 10 ⊕ T .

Learning round key 9. The DFA to learn rk9 benefits from an alternative rep-
resentation of the AES round function. As shown in Fig. 5, it is obtained from
swapping MixColumns and AddRoundKey. The linearity of MixColumns allows
this transformation if the round key is modified accordingly, i.e.,

MixColumns(H) ⊕ rk9 = MixColumns(H ⊕ MixColumns−1(rk9))
= MixColumns(H ⊕ rk9,mc).

In the following, the alternative representation of the round function is used
for round 9. The attack starts by injecting a random byte fault during round 7.
As the MixColumns operation propagates the fault to the other state bytes, all
bytes are affected by the end of round 8. The observed pair of right and faulty
ciphertext C,C ′ and the value rk10 ⊕T are used to compute backward to obtain
the respective values L,L′ in round 9.

Interpreting L,L′ as a pair of right and faulty ciphertext, the remaining
cipher looks like a round-reduced version of the AES with one inner round miss-
ing. The last round consists of AddRoundKey, ShiftRows, and SubBytes and
uses the round key rk9,mc. The benefit of this approach is that now any DFA
technique that targets the last round key of the AES, e.g., [24,28], is suitable to

12 T. Unterluggauer and S. Mangard

obtain rk9,mc from the pair L,L′ and the fault differences at the end of round
8. Round key 9 is then easily computed as rk9 = MixColumns(rk9,mc).

If the technique in [28] is used to learn rk9,mc, the attack has the complexity
234 and thus is clearly possible on nowadays’ computers. According to [28], the
required faults can be injected by temporal overclocking only.

XTS Mode. Although XTS using AES-128 relies on two 128-bit keys, DFA
breaks this mode with total complexity 235. First, the DFA technique that was
just applied to XEX trivially recovers the key K1 with complexity 234. Second,
the following small trick uses faults in the tweak computation to also learn K2

with complexity 234. It determines the faulty tweak T ′ from the observed faulty
ciphertext C ′ and the correct tweak T .

The procedure to recover K2 requires the values of K1, P , and rk1,10⊕T to be
known, where rk1,10 denotes round key 10 derived from K1. These preconditions
usually apply if the previous DFA on XEX was utilized to learn K1. As a result,
the tweak T and the intermediate value U (cf. Fig. 2b) can be computed: U =
α−addr · T . A random fault that is injected in one byte of the state in round
9 of the AES affects four bytes of U . Although the respective faulty U ′ is not
directly observable, it can be brute-forced with complexity 232. This is done by
trying all values for the faulty bytes of U ′, computing the respective tweaks T ′,
encrypting the original plaintext P using T ′ and K1, and matching the result
against the faulty ciphertext C ′. Once U ′ is known, four bytes of rk2,10 (round
key 10 derived from K2) are revealed using the technique in [24]. Hereby, the
possible key space for rk2,10 is reduced by the possible differences that can be
observed at the output of MixColumns in round 9 that result from a single byte
fault during round 9. Similarly, three more faults in different bytes of the state
of round 9 recover the remaining 12 bytes of rk2,10 and thus K2.

Counter Mode. DFA on a block cipher operated in counter mode (cf. Fig. 4)
requires access to the output of the cipher, i.e., the pad. Since encryption pads
must not repeat, consecutive encryptions of plaintexts will not use the same
pad and encryption seed. As a result, DFA is limited to the decryption process.
If the same ciphertext is loaded from the same memory address several times
and the adversary can inject faults during the pad computations and observe
the respective plaintexts, the correct and faulty pads can be computed and the
master key K be learned via a suitable DFA technique. The required plaintexts
may be observed from communication of the device via external interfaces.

CBC Mode with ESSIV. Independently of the initial vector derivation, DFA
is trivially possible by restricting analysis to one specific memory block within
the CBC chain of one particular sector. Therefore, reencryption of the same
plaintext has to be triggered for the desired memory block, e.g., through placing
the same message in an input buffer by repeatedly sending the same message
to the device. Faults injected during reencryption are directly observable in the

Exploiting the Physical Disparity: Side-Channel Attacks 13

resulting ciphertext. This facilitates the application of a suitable DFA technique
in order to learn the master key K. Note that for this to work, all memory blocks
in the sector prior to the target block must not change during reencryption.

4 EM Attack on Ext4 Encryption

As our analysis points out, contemporary memory encryption schemes are clearly
vulnerable to physical attacks. However, it remains to show that such attacks are
indeed feasible on contemporary systems. This Section therefore demonstrates
a practical attack on the disk encryption scheme incorporated into the ext4
file system. The EM attack conducted on a Zynq Z-7010 system on chip (SoC)
reveals the used master key and thus all content by exploiting the leakage of the
first round of an AES execution.

4.1 Analysis of Ext4 Disk Encryption

Disk encryption within the ext4 file system works on file level and allows to
encrypt arbitrary directories using a specified master key MK. For each file in
such directory, the master key MK is used to derive an individual data encryp-
tion key DEKf to encrypt the respective file’s content and name. Key derivation
is done by encrypting MK with AES-128 in ECB mode using a public file nonce
Nf as the key. It starts whenever DEKf is needed and not already present in
main memory. The size of both MK and DEKf is 512 bits and chosen such as to
be able to encrypt files with AES-256 in XTS mode in future versions. However,
currently only AES-128 in XTS mode is supported and thus the last 256 bits
of DEKf and MK are not used. The file nonce Nf is stored in an extended
attribute of the file’s inode.

Clearly, given the master key MK and a public file nonce Nf , the respective
file key DEKf can be derived. However, the key derivation chosen in ext4 also
allows to compute the master key MK given any DEKf and the respective
nonce Nf . Therefore, an attacker who wants to learn MK using power analysis
can choose between two equivalent targets, namely (1) data encryption of file
content, and (2) the derivation of the file key DEKf . In terms of target (1), the
strategy from Sect. 3 can be straight-forwardly applied, but one may need files
that are sufficiently large to be able to learn K2 within XTS. With respect to
target (2), one needs to monitor accesses to many different files as such trigger
key derivations. To practically verify the feasibility of attacks on disk encryption,
we opted for target (2).

4.2 General Attack Flow

The attack we performed assumes an encrypted folder on an SD card using the
ext4 file system. It further assumes the attacker is able to trigger the creation of
new files within the encrypted folder via external interfaces, e.g., by uploading
data via a running web server or writing log files.

14 T. Unterluggauer and S. Mangard

Fig. 6. Distribution of t-test results on the chip surface.

To perform the attack, the attacker first dumps the (encrypted) content of
the SD card. They may not be able to read the actual content from such file
system dump, but can learn about the directory structure as meta data is not
encrypted. Second, the attacker triggers the creation of sufficiently many files on
the SD card, observes the EM side channel, and stores the respective EM traces.
Third, the attacker again dumps the content of the SD card. By comparing
its content with the initial dump from before the measurements, the attacker
can learn which files have been created. The meta data of the newly created
files allows to both learn the used nonces Nf and their creation date, which in
turn allows to map the newly created files on the SD card to the EM traces. In
the next step, the attacker creates the power model for the key derivation, i.e.,
DEKf = ENf

(MK). Finally, the power model is matched with the EM traces
to reveal the master key.

To investigate the encrypted directory in the file system, debugging and
forensic tools are highly suitable. We used the tool debugfs to find new files in
the file system and to learn their creation date and the respective nonces. Note
that the access times are also available within the file system, which allows for
the described attack also when monitoring arbitrary file accesses.

4.3 Experimental Setup and Results

The feasibility of the attack on ext4 encryption in Sect. 4.2 was verified using the
Digilent ZYBO board. The board hosts a Xilinx Zynq Z-7010 SoC, 512 MB of
DDR3 RAM, and several IO interfaces, i.a., an SD card slot. The Zynq Z-7010
SoC combines an Artix-7 FPGA and a state-of-the-art hard macro comprising
a 650-MHz dual-core ARM Cortex-A9 processor, IO modules, and memory con-
trollers. The measurement devices required to capture the EM traces involved
a LeCroy WavePro 725Zi oscilloscope, a Langer RF B 3-2 magnetic field probe,
and a Langer PA 303 pre-amplifier.

Exploiting the Physical Disparity: Side-Channel Attacks 15

Fig. 7. Single-byte correlation results for ext4 key derivation.

The general leakage behavior of the Zynq Z-7010 was examined by running
the AES T-table implementation included in the Linux 4.3 kernel in a bare-metal
application. Therefore, the EM probe was placed in different locations using a
stepper table to evaluate a fixed vs. random t-test. This revealed the spots of
high leakage as shown in Fig. 6 and allowed for successful DPA on the bare-metal
AES.

The setup for the complete disk encryption scenario was established by con-
figuring the Zynq SoC to use a 350-MHz memory clock and a 625-MHz CPU
clock and deploying Linux 4.3 to the ZYBO board. An ext4 file system was cre-
ated on an SD card and one directory encrypted such that it is only readable
by the system running on the ZYBO board. The attack procedure from Sect. 4.2
was executed by repeatedly creating new files via the UART interface. The oscil-
loscope was triggered to capture an EM trace at 5GS by setting a GPIO pin
just before creating a new file. The SD card content was then analyzed on a
PC using debugfs, the EM traces aligned, and a DPA performed on the SBox
output of the first AES round using the Hamming Weight power model.

The results of the DPA on a single byte of the master key are given in
Fig. 7. Using 15,000 EM traces, Fig. 7a clearly presents the correlation of the
power model of the correct key guess in the time domain. Moreover, in Fig. 7b
the correct key byte (black) is clearly distinguished from the remaining key
hypotheses with 5,000 measurements.

In this feasibility study, the Linux kernel was reconfigured to omit symmetric
multiprocessing, dynamic frequency scaling, and caches. Moreover, AES execu-
tions were highlighted in the captured EM traces through another hardware-
triggered signal to help finding AES executions. This however does not affect
the applicability of the attack. For example, [12] showed the practicality of
attacking a free-running OpenSSL implementation of AES with active caches
and frequency scaling on the TI Sitara platform that uses an ARM Cortex-A8.

16 T. Unterluggauer and S. Mangard

However, further improvement of both setup and trace processing would defi-
nitely be interesting future work.

5 Conclusion

Summarizing, this paper unveiled that contemporary mechanisms that aim to
ensure the confidentiality of memory content in the presence of adversaries with
physical access are clearly vulnerable to physical attacks. In particular, it showed
that all common implementations of memory and disk encryption schemes can
easily be broken using DPA and DFA. The attacks are powerful enough to even
break the tweakable cipher XTS that is most commonly used. Further, the fea-
sibility of such attacks on state-of-the-art computing systems was verified by
exploiting the EM side channel on the Zynq Z-7010 SoC. The attack revealed
the master key of the disk encryption scheme incorporated into the ext4 file
system and thus all encrypted content.

Our results suggest that if memory encryption is supposed to use current
schemes in the future, cipher implementations with appropriate countermea-
sures must be used. However, the secure cipher implementations proposed so
far were mainly designed for the use in embedded devices and might thus not
yield the desired throughput for memory encryption. For example, the 1st-order
threshold implementations in [5,22] require 246 and 266 clock cycles for one
AES execution, respectively. Additionally, these implementations add an area
overhead of a factor of four that must hence also be expected for secure mem-
ory encryption based on such protected implementations. It thus remains future
work to implement memory encryption that fulfills both the requirement for
sufficient throughput and security against side-channel adversaries.

Acknowledgments. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under grant number 845579 (MEMSEC).

References

1. IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices. IEEE Std 1619–2007, April 2008

2. Dm-crypt: Linux Kernel Device-Mapper Crypto Target (2015). http://www.saout.
de/misc/dm-crypt/

3. Apple Inc.: Apple Technical White Paper: Best Practices for Deploying FileVault
2 (2012)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

http://www.saout.de/misc/dm-crypt/
http://www.saout.de/misc/dm-crypt/

Exploiting the Physical Disparity: Side-Channel Attacks 17

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Choudary, O., Grobert, F., Metz, J.: Infiltrate the Vault: security analysis and
decryption of lion full disk encryption. Cryptology ePrint Archive, report 2012/374
(2012). http://eprint.iacr.org/

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. Elbaz, R., Champagne, D., Gebotys, C.H., Lee, R.B., Potlapally, N.R., Torres, L.:
Hardware mechanisms for memory authentication: a survey of existing techniques
and engines. Trans. Comput. Sci. 4, 1–22 (2009)

10. Fruhwirth, C.: New methods in hard disk encryption. Technical report (2005)
11. Fruhwirth, C.: LUKS On-Disk Format Specification (2011). https://gitlab.com/

cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
12. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: ElectroMagnetic

side-channel attacks on a complex System-on-Chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015)

13. Google Inc.: Android Full Disk Encryption (2015). https://source.android.com/
security/encryption/

14. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

15. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009)

16. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

17. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007)

18. Kaliski, B.: PKCS# 5: Password-based Cryptography Specification Version 2.0
(2000)

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

20. Linux Kernel Organization Inc.: Linux Kernel 4.3 Source Tree (2015). https://git.
kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3

21. Halcrow, M., Savagaonkar, U., Ts’o, T., Muslukhov, I.: Ext4 Encryption Design
Document. https://docs.google.com/document/d/1ft26lUQyuSpiu6VleP70
npaWdRfXFoNnB8JYnykNTg

22. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

23. Percival, C.: Stronger Key Derivation via Sequential Memory-Hard Functions. Self-
published, pp. 1–16 (2009)

24. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

http://eprint.iacr.org/
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/log/?id=refs/tags/v4.3
https://docs.google.com/document/d/1ft26lUQyuSpiu6VleP70_npaWdRfXFoNnB8JYnykNTg
https://docs.google.com/document/d/1ft26lUQyuSpiu6VleP70_npaWdRfXFoNnB8JYnykNTg

18 T. Unterluggauer and S. Mangard

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

26. Rogers, B., Chhabra, S., Prvulovic, M., Solihin, D.: Using address independent
seed encryption and Bonsai Merkle trees to make secure processors OS- and
performance-friendly. In: 40th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2007, pp. 183–196, December 2007

27. Saarinen, M.-J.O.: Encrypted watermarks and Linux laptop security. In: Lim, C.H.,
Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 27–38. Springer, Heidelberg
(2005)

28. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A diagonal fault attack on the
advanced encryption standard. Cryptology ePrint Archive, report 2009/581 (2009).
http://eprint.iacr.org/

29. Suh, G., Clarke, D., Gasend, B., van Dijk, M., Devadas, S.: Efficient mem-
ory integrity verification and encryption for secure processors. In: 36th Annual
IEEE/ACM International Symposium on Microarchitecture, Proceedings 2003,
MICRO-36, pp. 339–350, December 2003

http://eprint.iacr.org/

Co-location Detection on the Cloud

Mehmet Sinan İnci(B), Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
{msinci,bgulmezoglu,teisenbarth,sunar}@wpi.edu

Abstract. In this work we focus on the problem of co-location as a
first step of conducting Cross-VM attacks such as Prime and Probe or
Flush+Reload in commercial clouds. We demonstrate and compare three
co-location detection methods namely, cooperative Last-Level Cache
(LLC) covert channel, software profiling on the LLC and memory bus
locking. We conduct our experiments on three commercial clouds, Ama-
zon EC2, Google Compute Engine and Microsoft Azure. Finally, we show
that both cooperative and non-cooperative co-location to specific targets
on cloud is still possible on major cloud services.

Keywords: Co-location on the cloud · Software profiling · Cache covert
channel · Performance degradation attacks · Memory bus locking

1 Motivation

As the adoption of cloud computing continues to increase at a dizzying speed,
so has the interest in cloud-specific security issues. A new security issue due to
cloud computing is the potential impact of shared resources on security and pri-
vacy of information. An example is the use of caches to circumvent ASLR [11],
one of the most common techniques to prevent control-flow hijacking attacks.
Several other works target the exploitability of cryptography in co-located sys-
tems under increasingly generic assumptions. While early works such as [24] still
required attacker and victim to co-reside on the same core within a processor,
latest works [14,17] work across cores and managed even to drop the mem-
ory de-duplication requirement of Flush+Reload attacks [7,10,13,22]. Besides
extracting cryptographic keys, there are plenty of other security issues explored
in other related studies. Irazoqui et al. [16] study the potential of reviving the
partially fixed Lucky 13 attack [8] by exploiting co-location.

All of the above attacks rely on the attacker’s ability to co-locate with a
potential victim. While co-location is an immediate consequence of the benefits
of cloud computing (better utilization of resources, lower cost through shared
infrastructure etc.), whether exploitable co-location is possible or easy has so far
not been studied in detail. In his seminal work, Ristenpart et al. [18] studied the
general feasibility of co-location in Amazon EC2, the most popular public cloud
service provider (CSP) then and now, in detail. However, the cloud landscape
has changed significantly since then: The EC2 has grown exponentially and oper-
ates data centers around the globe. A myriad of competitors have popped up,
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-43283-0 2

20 M.S. İnci et al.

all competing for the rapidly growing customer base [9]. CSPs are also more
aware of the potential security vulnerabilities and have since worked on making
their systems leak less information across VM boundaries. Furthermore, in their
experiments, both co-located parties were colluding to achieve co-location. That
is, both parties were willingly involved in communicating with the other to detect
co-location. While being of high importance to show the feasibility in the first
place, trying to co-locate with a specific and most likely unwilling target can be
considerably harder. Since that initial work, until very recently only little work
has dealt with a more detailed study on the difficulty of co-location. Therefore,
we believe, the problem of co-location on cloud requires further in depth analysis
examining different detection methods under diverse scenarios and access levels
for the attacker.

1.1 Our Contribution

In this work we revisit the problem of co-location in public IaaS clouds. In
particular we:

– study the co-location problem under two threat models in the Amazon EC2
Cloud, Google Cloud Engine and Microsoft Azure.

– develop a novel LLC software profiling tool that can detect an application or
a library run by the non-cooperating co-located victim in the cloud, without
the use of the memory de-duplication or any other memory sharing methods.

– demonstrate three co-location methods and compare their success rates on
three popular public clouds.

2 Related Work

In the last few years several methods were proposed to detect co-location on
commercial clouds [6,12,18,23,25]. These works use methods such as deducing
co-location from instance and hypervisor IP address, hard disk drive performance
degradation, network latency and L1 cache covert channel. However, in response
to these works, most of the proposed techniques have been closed by public
cloud administrators. Later Zhang et al. [23] were able to determine whether
a particular user’s VM had someone else co-residing in the same physical core.
In particular, they utilized the well known Prime and Probe cache based side-
channel technique to guess this information. However, the technique was applied
in the upper level caches, thereby limiting its applicability to a physical core
rather than the entire CPU or the machine. Furthermore, the technique was not
tested in commercial clouds.

Shortly later, Bates et al. [6] demonstrated that a malicious VM can inject
a watermark in the network flow of a potential victim. In fact, this watermark
would then be able to broadcast co-residency information. Again, even though
the technique proved to be extremely fast (less than 10 s), it was never tested in
commercial clouds. Recently, Zhang et al. [25] demonstrated that Platform as a

Co-location Detection on the Cloud 21

Service (PaaS) clouds are also vulnerable to co-residency attacks. They used the
Flush+Reload cache side-channel technique together with a non-deterministic
finite automaton method to infer co-location with a particular server. The tech-
nique proved to be effective in commercial PaaS clouds like DotCloud or Open-
Shift, but would never work in IaaS clouds where the memory de-duplication is
not implemented, as in most of the commercial IaaS clouds.

Finally, İnci et al. [12] demonstrated that many of the previously utilized
techniques in [18] are no longer exploitable. Nevertheless, they prove to detect
co-location across cores in Amazon EC2 by monitoring the usage of the LLC
with the Prime and Probe technique. To enable the co-location test, the authors
make use of hugepages commonly available in commercial clouds. This fea-
ture provides a large memory space for the attacker to move and hit necessary
addresses to prime cache sets. Also in 2015, Varadarajan et al. [20] investigated
co-location detection in public clouds by triggering and detecting performance
degradations of a web server using the memory bus locking mechanism. Simulta-
neously Xu et al. [21] used the same memory bus locking mechanism to explore
co-location threat in Virtual Private Cloud (VPC) enabled cloud systems.

3 Threat Models

Here we briefly outline two attacks scenarios for cross-VM attacks on public
clouds. The main difference between the two scenarios is whether the target
is predetermined or not. As we shall see, this makes a significant difference in
terms of the requirements and cost of a successful attack. We provide concrete
examples for both scenarios.

Random Victim
In this scenario there are four steps:

1. Co-location: The attacker spins instances on the cloud until it is determined
that the instance is not alone; i.e. is co-located with another VM. Here the goal
is to maximize the probability and thereby reduce the cost of co-locating with
a viable target. Cheaper instances that use fewer CPU cores tend to share the
same hardware in greater numbers. Therefore these instances have a better
chance of co-location with other customers. Since we do not discriminate
between targets, this step is rather easy to achieve.

2. Vulnerable Software Identification: The attacker detects a software pack-
age in the co-resident VM vulnerable to cross-VM attacks by monitoring
corresponding LLC sets of libraries, e.g. an unpatched version of a crypto-
graphic library. Cache access/performance and more broadly fingerprinting
based techniques do exist in the literature to make successful attacks in the
cloud environment [15,19,25]. Here, instances with lower number of tenants
are less noisy therefore have higher success rate of library detection and the
actual attack.

3. Cross-VM Secret Extraction: Here the attacker runs one of the cross-
VM attacks [12,14] on the identified target. By exploiting cross-VM leakage

22 M.S. İnci et al.

the attacker would be able to recover a sensitive information ranging from
specialized pieces of information such as cryptographic keys, to higher level
information such as browsing patterns, shopping cart, system load or any
sensitive information of value. Noise plays a significant role in reliability of
the extraction technique. Since co-location (first step) is easy to achieve, it
is (almost) always advisable to opt for a less populated low noise instance to
improve the chance of a successful attack in the later steps.

4. Value Extraction: The result is some sensitive information that can be
turned into value with additional mild effort. For example, some information
is valuable in its own right and can be converted into money with little or no
effort, e.g., bitcoins, credit card information, credentials for online banking.
Some others require further effort such as TLS session encryption key (secret
key), e.g. for a Netflix streaming session. If the recovered secret is a private
key of a public key encryption scheme (e.g. RSA secret key used a TLS
handshake) the attacker needs the identity of the owner (website/company)
to have further use for the secret key. In this case he may check the private key
against public key repositories for noise correction and target identification.

Targeted Victim
This is the complementary scenario where we are given some identification infor-
mation about the target.

1. IP Extraction: The attacker wants to focus its cycles on a server or a group
servers that belong to an individual, cloud backed business, e.g. Dropbox or
Netflix, or group/entity, e.g. dissidents of a political party. Here we assume
that the attacker is capable of resolving the identification information to an
IP or group of IPs of the target. In practice, this can be achieved rather easily
by using public information and by using simple commonly available network
tools such as traceroute/tracepath, nmap etc.

2. Targeted Co-location: The attacker creates instances on the cloud until
one is co-located with the target instance on the same physical machine. The
identification information of the victim, e.g. IP address, is used for co-location
detection. For instance, using the IP the attacker can query the server creating
CPU load and then run co-location tests. While co-location detection will be
easier in this scenario due to the trigger; we will need many more trials to land
on the same physical machine as the victim1. Nevertheless, we can accelerate
targeted co-location by searching, for instance, only in the same region as the
victim instance using the publicly available AWS IP lists [1]. Further, we can
obtain finer grain information about the target’s location simply by running
traceroute or tracepath on the victim IP.

3. Vulnerable Software Identification: Since we know the identity of our
target, it is safe to assume that we have some rudimentary understanding of

1 Note that if the physical machine is already filled with the maximum number of
allowed instances, then co-location may not be possible at all. In this case a clever
albeit costly strategy would be to first mount a denial of service attack causing the
target instance to be replicated and then try co-locating with the replicas.

Co-location Detection on the Cloud 23

the victim’s setup including OS, communication and security protocols used
etc. Even if this is not the case, it would be possible to run a discovery stage to
survey the victim machine using its IP and by detecting process fingerprints
through cross-VM leakage.

4. Value Extraction: The attacker exploits cross-VM leakage to recover sen-
sitive information. Further processing may allow to enhance quality of the
recovered data using publicly available information. For instance, a noisy pri-
vate key can be processed with the aid of the public key contained in the
certificate belonging to the target to remove any imperfections.

4 Overview: Co-location Detection Methods

4.1 LLC Covert Channel

The LLC is shared across all cores in most modern CPUs and is semi-transparent
to all VMs running on the same machine. By semi-transparent, we mean that all
VMs can utilize the entire LLC but cannot read each other’s data. We exploit
this behavior to establish a covert channel between VMs in cloud. The covert
channel works by two VMs writing to a specific set-slice pair in the LLC and
detecting each other’s accesses. LLC set address can easily be deduced from the
virtual addresses available to VMs using hugepages as done in [12,14,17]. The
cache slice on the other hand, cannot be determined with certainty unless the
slice selection algorithm of the CPU is known. However, the covert channel can
still work by priming more sets and accessing lines that go to the targeted set,
regardless of its slice.

Prime and Probe: In the LLC, the number of lines required to fill a set is
equal to the LLC associativity. However, when multiple users access the same
set, one will notice that fewer than 20 lines are needed to observe evictions.
By running the following test concurrently on multiple instances, we can verify
co-location. The test works as follows:

– Calculate the set number by using the address bits that are not affected by
the virtual to physical address translation. Prime a memory block M0 in the
set.

– Access more memory blocks M1,M2, . . . ,Mn that go to the same set. Note
that since the slice selection algorithm for the specific CPU is necessary to
address a set/slice pair with certainty, the number of memory blocks n needs
to be larger than the set associativity times the number of slices.

– Access the memory block M0 and check for eviction from the LLC. If evicted,
we know that the required b memory blocks that fill the set are among the
accessed memory blocks M1,M2, . . . ,Mn.

– Starting from the last memory block accessed, remove one block and repeat
the above protocol. If M0 still has high access time, Mi does not reside in the
same slice. If b0 is now located in the cache, we know that bi resides in the
same cache slice as b0 and therefore go to the same set.

24 M.S. İnci et al.

– Once the b memory blocks that fill a slice are identified, we just access addi-
tional memory blocks and check whether one of the primed b memory blocks
has been evicted, indicating that they collide in the same slice.

The covert channel works by continuously accessing data that goes to a spe-
cific cache set and measuring the access time to determine if a newly accessed
data has evicted an older entry from the set. Due to this continuous cache line
creation, when the second party makes accesses to the monitored set, they are
detected. In general, if there is no noise present, the number of lines that can go
to a set without triggering an eviction is equal to the associativity of the cache,
assuming a first-in first-out (FIFO) cache replacement policy is employed.

When two VMs try to fill the same set, they have to access less number
of data blocks to fill the specified cache hence detecting the co-location. Using
the number of blocks necessary to fill a specific set with and without another
instance interfering, we calculate a co-location confidence ratio.

4.2 Software Profiling on LLC

The software profiling method works in a realistic setting with minimal assump-
tions. The method works in a non-cooperative scenario where the target does
not participate in a covert communication and continues its regular operation.
The method does not require memory de-duplication or any form of shared
libraries. It employs the Prime and Probe to monitor and profile a portion of
the LLC while a targeted software is running. As for the memory addressing,
we profile the targeted code address as a relative address to the page boundary.
Since the targeted library will be page aligned, target code’s relative address
(the page offset) will remain the same between runs. Using this information,
we can reduce our search space in the detection stage. Therefore, we need to
monitor only 320 different set-slice pairs such as X mod 64 = Y where X is
320 different set numbers (since we have 10 cores and 32 different set numbers
satisfying the equation) and Y is the first 6 bits (the first 6 bits of the LLC
set number is directly converted to physical address) of the set number for the
desired function.

For the RSA detection, the slice-selection algorithm of the CPU is required to
locate the targeted multiplication code in the LLC in a reasonable time. Without
the algorithm, it would take too much time to monitor potential cache sets. For
our experiments, we have used the algorithm that was reverse engineered by
İnci et al. in [12].

In summary, there are two stages to the software profiling on LLC;

– Profiling Stage: The first step of the profiling is to monitor the targeted
LLC sets while the profiled code, the software is not running. The purpose of
this stage is to measure the idle access time of 20 lines for each set to have a
threshold to detect whether there is a cache miss or not in the next stage.

– Detection Stage: We send RSA decryption requests to candidate IPs in order
to discover the IP address of the victim. After triggering the decryption we

Co-location Detection on the Cloud 25

begin to monitor the portion of LLC to detect accesses due to the decryption.
If we detect accesses in targeted set-slice pairs then we know that the correct
IP address is found. As a double check, in addition to the RSA detection, we
also detect AES encryption. In order to so we monitor another portion of the
LLC where the AES T-tables potentially reside. And if the victim is co-located
with the attacker, we can detect and monitor these T-table accesses.

4.3 Memory Bus Locking

The memory bus locking method exploits atomic instructions therefore we
explain these special instructions shortly in the following.

Atomic Operations: Atomic operations are defined as indivisible, uninter-
rupted operations that appear to the rest of the system as instant. When oper-
ating directly on memory or cache, an atomic operation prevents any other
processor or I/O device from reading or writing to the operated address. This
isolation ensures computational correctness and prevents data races. While all
instructions on single thread systems are automatically atomic, there is no guar-
antee of atomicity for regular instructions in multi-thread systems as used in
almost all modern systems. In these systems, an instruction can be interrupted
or postponed in favor of another task. The rescheduling, interruption and operat-
ing on the same data can cause pipeline and cache coherency hazards. Therefore
the atomic operations are especially useful on multi-thread systems and parallel
processing.

In older x86 systems, processor locks the memory bus completely until the
atomic operation finishes, whether the data resides in the cache or in the memory.
While ensuring atomicity, the process results in a significant performance hit. In
newer systems - prior to Intel Nehalem and AMD K8 - memory bus locking was
modified to reduce this penalty. In these systems, if the data resides in cache,
only the cache line that holds the data is locked. This lock results in a very
insignificant system overhead compared to the performance penalty of memory
bus locking. However, when the operated data surpasses cache line boundary
and resides in two cache lines, more than a single cache line has to be locked.
In order to do so, memory bus locking is again employed. After Intel Nehalem
and AMD K8, shared memory bus was replaced with multiple buses with non-
uniform memory access bridge between them. While getting rid of the memory
bottleneck for multiprocessor systems, this also invalidated the memory bus
locking. Now, when a multi-line atomic cache operation has to be performed,
all CPUs has to coordinate and flush their ongoing memory transactions. This
emulation of memory bus locking results in a significant performance hit.

In x86 architecture, there are many instructions that can be executed atom-
ically with a lock prefix are ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG,
DEC, FADDL, INC, NEG, NOT, OR, SBB, SUB, XADD, XOR. Also, XCHG
instruction executes atomically when operating on a memory location, regardless
of the LOCK use. In order to maximize the flushing penalty, we tested all atomic

26 M.S. İnci et al.

instructions available to the platforms and measured how long each instruction
takes to execute. Since the flushing is succeeded with the atomic operation itself,
longer the instruction executes, stronger the performance hit becomes. Therefore
we have used the XADDL instruction that resulted in the strongest penalty. In
short, we employ this mechanism to slow down a server process running in the
cloud and detect co-location without cooperation from the victim side.

Cache Line Profiling Stage: Our attack is CPU-agnostic and employs a
short, preliminary cache profiling stage. This stage eliminates the need for the
information like the cache line size and the cache access time. Our purpose here is
to obtain data addresses that span multiple cache lines hence triggers a bus lock.
First, we allocate a block of small, page-aligned memory using malloc. After the
allocation, we start performing atomic operations on this block in a loop of 256
since no modern cache line is expected to be larger than 256 bytes. In each loop,
we move our access pointer by one and record atomic operation execution times.
When we observe a time larger than the pre-calculated average, we record the
address. After all 256 addresses are tested, we obtain a list of addresses that span
across multiple cache lines. Later during the locking stage, we operate only on
these addresses rather than a continuous array, making the attack more efficient.

Dual Socket Problem: Memory bus locking works on systems with multiple
CPU sockets. Even further, our tests reveal that the bus locking penalty clearly
reveals whether the target and the attacker run in the same socket or not. As
seen in Fig. 1, the memory access time is clearly distinguishable between same
socket and different socket locks. On a dual socket system with two Intel Xeon
E5-2609 v2 CPUs with 2 cores each. Note that this information is significant to
the attacker since an architectural attack using the LLC requires the attacker
and the target to be running in the same socket.

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

2300

2400

2500

2600

2700

2800

Different socket lock
Same socket lock

Fig. 1. The memory access times during a bus lock triggered with the XADDL instruc-
tion. Red and blue lines respectively represent access times when the attacker resides
in the same socket (different core) and different sockets. (Color figure online)

Co-location Detection on the Cloud 27

5 Experimental Approach and Results

5.1 Co-location Results in Commercial Clouds

In all three aforementioned commercial clouds, we have launched 4 accounts with
20 instances per account, achieving co-location in each cloud. Also note that, we
only classify the instances running in the same CPU socket as co-located and
ignore the ones running on different sockets.

Amazon EC2: In Amazon EC2 we used m3.medium instance types that
have balanced CPU, memory and network performance. This instance type holds
1 vCPU, 3.75 GB of RAM and 4 GB of SSD storage. According to Amazon EC2
Instance Types web page [4], these instances use 10 core Intel Xeon E5-2670 v2
(Ivy Bridge) processors.

Out of 80 instances launched, we have obtained 7 co-located pairs and one
triplet verified by the tests. Moreover, we have tried to co-locate with instances
that have launched previously. Surprisingly, we have been able to co-locate with
instances that have launched 6 months prior.

Google Compute Engine: In GCE, we used n1-standard-1 type instances
running on 2.6 GHz Intel Xeon E5 (Sandy Bridge), 2.5 GHz Intel Xeon E5 v2
(Ivy Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) processors according to [5].
Out of 80 instances launched, we have obtained only 4 co-located pairs.

Microsoft Azure: In Azure, we used extra small A0 instance types with
1 virtual core, 750 MB RAM, maximum 500 IOPS and 20 GB disk storage that
is not specified as neither SSD nor HDD [2]. Out of 80 instances launched, we
have obtained only 4 instances that were co-located. However, this was partly due
to the highly heterogeneous CPU pool that Azure employs. Our first account had
instances with AMD Opteron CPUs while the second had Intel E5-2660 v1 and
the last two had Intel E5-2673 v3. Naturally, we could only achieve co-location
among instances that have the same CPU model. Out of 40 Intel E5-2673 v3
instances, we detected 4 co-located instances.

5.2 LLC Covert Channel

In the following, we present the results in GCE. The confidence ratio is highest
at 1 as seen in Fig. 2. There are 8 instances (meaning 4 pairs) that have higher
than 50 % confidence ratio among 80 and the co-located pairs are found by binary
search at the end. Hence, it is confirmed that they are indeed co-located with
each other.

28 M.S. İnci et al.

Instance Number
0 20 40 60 80

C
on

fid
en

ce
 R

at
io

0

0.5

1

Fig. 2. GCE LLC Test Confidence Ratio Comparison

5.3 LLC Software Profiling

We conducted the LLC Software Profiling experiments on the co-located Amazon
EC2 instances with 10 core E5-2670 v2 processors. As for the software target, in
order to demonstrate the versatility of the attack, we chose the RSA (Libgcrypt
version 1.6.2) that uses sliding window exponentiation and the AES (OpenSSL
version 1.0.1g, C implementation) that uses T-tables. Note that the detection
method is not limited to these targets since the attacker can run and profile any
software which uses shared library in his instance and perform the attack.

For the RSA detection, the slice-selection algorithm of the CPU is required
to locate the targeted multiplication code in the LLC within reasonable time.
In our experiments, we have used the algorithm that was reverse engineered by
İnci et al. in [12]. The first step of the profiling is to monitor the targeted LLC
sets while the profiled code, RSA is not running. After the regular operation of
sets are observed, the RSA request is sent to several IP addresses, starting from
attacker’s own subnet. As soon as the request is sent, the profiling starts and
traces are recorded by the Prime and Probe. If the RSA decryption is running
on the other VM, the pattern of multiplication can be observed as in Fig. 3.
In general, the multiplication is performed between 2000–8000 traces. In these
traces, we look for the delta of two profiles for each set-slice pair. In Fig. 4, the
difference between two profiles is illustrated for two co-located instances. Both
figures show that there are two set-slice pairs with significantly higher access
times (4–8 cycles) in average of 10 experiments. Hence, it can be concluded
that these two sets are used by RSA decryption and this candidate instance is
probably co-located with the attacker.

After we obtain IP addresses of several co-location candidates, we trigger
AES encryption by sending random ciphertexts and at the same time monitor
the LLC. For this part of the detection stage, since AES encryption is much
faster than RSA decryption we can only catch one access to monitored T-table
position. Hence, we send 100 AES encryption requests to each instance in the
IP list. If we observe 90 % cache miss for one of the set-slice pairs, it can be
concluded that the AES encryption is performed by the co-located instance, as
seen in Fig. 3(b).

Co-location Detection on the Cloud 29

Fig. 3. Red and blue lines represent idle and RSA decryption/AES encryption access
times respectively (Color figure online)

5.4 Memory Bus Locking

The performance degradation due to the memory bus locking is application
specific. Therefore we tested various applications as seen in Table 1 to see how
each one is affected. As expected, the applications with frequent memory accesses
are more affected by the locking. For example, the GnuPG which mostly uses the
ALU and does seldom memory accesses slowed down only by 29 %. An Apache
web server that frequently loads content from memory on the other hand has a
slowdown by the factor of 4.28.

In addition to specific software performance degradation, we also measured
the effect of multiple locks executed in parallel. To do so, we have used the openmp
parallel programming API [3] and ran the lock in multiple threads. Figure 5(d)
shows the memory access times when 0 to 8 locks run in parallel. As the figure
shows, the first lock does slowdown the memory accesses by 100 % while the sec-
ond and third locks do not further degrade the memory performance. However,
after fourth and fifth locks, we observe an even stronger degradations.

30 M.S. İnci et al.

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-2

0

2

4

6

8

(a) RSA Analysis for the first co-located instance

Set Number
0 50 100 150 200 250 300

D
iff

er
en

ce
 o

f C
lo

ck
 C

yc
le

s

-4

-2

0

2

4

6

8

(b) RSA Analysis for the second co-located instance

Fig. 4. The difference of clock cycles between base and RSA decryption profiling for
each set-slice pairs over 10 experiments

Table 1. Application slowdown on an Intel Xeon 2640 v3 due to memory bus locking
triggered on a single core.

Process Normalized execution time

Apache 4.28×
PHP 0.1×
GnuPG 0.29×
HTTPerf 0.29×
Memory access 5.38×
RAMSpeed int 5.01×
RAMSpeed fp 4.88×
Media stream 2.36×

5.5 Comparison of Detection Methods

As explained in Sect. 3, co-location can be exploited in both random and targeted
victim scenarios. Malicious Eve can directly look for attack vectors to steal
information from her neighbors or she can go after a specific target and spin up

Co-location Detection on the Cloud 31

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

600

800

1000

1200

1400

1600

1800
No lock
1 lock

(a) Amazon EC2

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

300

400

500

600

700

800

900

No lock
1 lock

(b) GCE

Sample
0 10 20 30 40 50 60 70 80 90 100

M
em

or
y

A
cc

es
s

T
im

e
(C

P
U

 c
yc

le
s)

0

200

400

600

800

1000

1200

1400

No lock
1 lock active
2 locks active
3 locks active
4 locks active

(c) Microsoft Azure

No locking 1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core

M
em

or
y

A
cc

es
s

T
im

e

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

4400

(d) Lab setup using Intel Xeon E5-2640 v3

Fig. 5. Memory access times with and without an active memory bus lock of (a)
Amazon EC2 m3.medium instance (b) GCE n1-standard1 instance (c) Microsoft Azure
A0 instance (d) Lab setup (Intel E5-2640 v3) (Color figure online)

32 M.S. İnci et al.

Table 2. Comparison of co-location detection methods.

Detection method Worst case Average Best case

Memory bus locking OPDa 0.1× 3.28× 6.1×
LLC covert channel 53% 73.5 % 93%

LLC software profiling 50% 70 % 90%
aOPD: Observed Performance Degradation

instances until she is co-located. However, if the detection method does not
provide reliable results, the attacker can discard the co-located instances or even
have false positives due to noise. Therefore a useful and efficient co-location
detection method is essential.

Table 2 shows that all three methods inspected in this study work with high
accuracy in a real commercial cloud setting. All methods work with minimalistic
requirements, no hypervisor access or specific hardware. In comparison, while
the memory bus locking has the least clear co-location signal in the worst case,
other two methods are more prone to the LLC noise. Also, as seen in Table 1 the
memory bus locking gives more reliable results with applications with frequent
memory accesses. So for the uncooperative co-location scenario, depending on
the workload of the target instance, one can use either the memory bus locking
or the software profiling to detect co-location with high accuracy.

6 Conclusion

In conclusion, we represent three co-location detection methods working in
three most popular commercial clouds (Amazon EC2, Google Compute Engine,
Microsoft Azure) and compare their efficiencies. In addition, for the first time
we have achieved targeted co-locations in Amazon EC2 Cloud by applying the
LLC software profiling for AES and RSA processes. For the memory bus locking
method, we have observed that frequent memory accesses lead to more signif-
icant degradation. As for the cache covert channel, we show that the method
works in a cooperative scenario with high accuracy. And finally we presented
the LLC software profiling technique that can be used for variety of purposes
including co-location detection without the help of memory de-duplication or
cooperation from the victim side.

Acknowledgments. This work is supported by the National Science Foundation,
under grants CNS-1318919 and CNS-1314770.

References

1. AWS IP Address Ranges. http://docs.aws.amazon.com/general/latest/gr/
aws-ip-ranges.html

2. Microsoft Azure Sizes for virtual machines. https://azure.microsoft.com/en-us/
documentation/articles/virtual-machines-size-specs/

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-size-specs/

Co-location Detection on the Cloud 33

3. The OpenMP API specification for parallel programming
4. Amazon EC2 Instances (2016). http://aws.amazon.com/ec2/instance-types/
5. Google Compute Engine Instance Types (2016). https://cloud.google.com/

compute/docs/machine-types
6. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: On detecting

co-resident cloud instances using network flow watermarking techniques. Int. J.
Inf. Secur. 13(2), 171–189 (2014). http://dx.doi.org/10.1007/s10207-013-0210-0

7. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

8. Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Security and Privacy, pp. 526–540 (2013)

9. Gaudin, S.: Public cloud market ready for ‘hypergrowth’ period. Comput-
erworld Article, April 2014. http://www.computerworld.com/article/2488572/
cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html

10. Gülmezoglu, B., İnci, M.S., Apecechea, G.I., Eisenbarth, T., Sunar, B.: A faster
and more realistic flush+reload attack on AES. In: COSADE, pp. 111–126 (2015)

11. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pp. 191–205 (2013). http://dx.doi.org/10.1109/SP.2013.23

12. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA key recovery in a public cloud. Technical report.
http://eprint.iacr.org/

13. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Fine grain Cross-VM attacks
on Xen and VMware. In: 2014 IEEE Fourth International Conference on Big Data
and Cloud Computing (BdCloud), pp. 737–744, December 2014

14. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing? And its application to AES. In: IEEE
S&P (2015)

15. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: crypto
library detection in cloud. In: Proceedings on Privacy Enhancing Technologies,
vol. 1, no. 1, pp. 25–40 (2015)

16. Irazoqui, G., İnci, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 Strikes Back. In: ASIA
CCS 2015, pp. 85–96 (2015)

17. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE S&P, pp. 605–622 (2015)

18. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: CCS 2009, pp.
199–212 (2009)

19. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Memory deduplication as a threat to the
guest OS. In: Proceedings of the Fourth European Workshop on System Security,
p. 1. ACM (2011)

20. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th USENIX Security Symposium,
USENIX Security 2015, Washington, D.C., pp. 913–928 (2015)

21. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security, pp. 929–944 (2015)

22. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security 2014, pp. 719–732 (2014)

23. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: IEEE S&P (2011)

http://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
http://dx.doi.org/10.1007/s10207-013-0210-0
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html
http://www.computerworld.com/article/2488572/cloud-computing/public-cloud-market-ready-for-hypergrowth-period.html
http://dx.doi.org/10.1109/SP.2013.23
http://eprint.iacr.org/

34 M.S. İnci et al.

24. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS 2012, pp. 305–316 (2012)

25. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: CCS, pp. 990–1003 (2014)

Simple Photonic Emission Attack
with Reduced Data Complexity

Elad Carmon1, Jean-Pierre Seifert2,3, and Avishai Wool4(B)

1 Tel-Aviv University, 69978 Tel-Aviv, Israel
eladca@gmail.com

2 Security in Telecommunications, Technische Universität Berlin, Berlin, Germany
Jean-Pierre.Seifert@telekom.de
3 FhG SIT, Darmstadt, Germany

4 Tel-Aviv University, 69978 Tel-Aviv, Israel
yash@eng.tau.ac.il

Abstract. This work proposes substantial algorithmic enhancements
to the SPEA of Schlösser et al. [15] by adding cryptographic post-
processing, and improved signal processing to the photonic measure-
ment phase. Our improved approach provides three crucial benefits:
(1) For some SBox/SRAM configurations the original SPEA method
is unable to identify a unique key, and terminates with up to 248 key
candidates; using our new solver we are able to find the correct key
regardless of the respective SBox/SRAM configuration. (2) Our methods
reduce the number of required (complex photonic) measurements by an
order of magnitude, thereby shortening the duration of the attack signifi-
cantly. (3) Due to the unavailability of the attack equipment of Schlösser
et al. [15] we additionally developed a novel Photonic Emission Simulator
which we matched against the real equipment of the original SPEA work.
With this simulator we were able to verify our enhanced SPEA by a full
AES recovery which uses only a small number of photonic measurements.

1 Introduction

1.1 Background

While the phenomena of photonic emission from switching transistors in silicon
is actually a very old one, cf. [5,12], the role of photons in cryptography as a
practical side channel source has just recently emerged as a novel research direc-
tion, cf. [3,9,10,15,16]. Thus, it is important to include photonic side channels
in future hardware evaluations of security ICs.

However, so far only the first steps within this direction have been successfully
achieved: The work of [3,9,10,15,16], showed that the required equipment to
carry out successful SPEA or DPEA against real world ICs is comparable in
price to that of normal Power Analysis equipment.

A. Wool—Supported in part by a grant from the Interdisciplinary Cyber-Research
Center at Tel Aviv University.

c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 35–51, 2016.
DOI: 10.1007/978-3-319-43283-0 3

36 E. Carmon et al.

This is where the current paper fits in and continues the current state of
the art in a better understanding of the Photonic Side Channel. It takes the
next step by precisely characterizing a very low number of selected plaintexts as
required for the respective photonic measurements and also relating the result-
ing measurements in terms of their SNR to the eventual workload of the final
cryptographic key reconstruction phase.

1.2 Related Work

Photonic emission in silicon is a known physical phenomena which has been
studied since the 1950s [12]. Specifically in the failure analysis community, hot-
carrier luminescence has primarily been used to characterize implementation
and manufacturing faults and defects [7,17]. Here, the technologies of choice to
perform backside analysis are PICA (Picosecond Imaging Circuit Analysis) [1]
and SSPDs (Superconducting Single Photon Detectors) [18]. Both technologies
are able to capture photonic emissions with high performance in their respective
field, but carry the downside of immense cost and complexity.

One of the first uses of photonic emissions in CMOS in a cryptographic
application was presented in 2008 [8]. However, the authors increased the volt-
age supply to 7 V operating voltage, which is above the chips maximum limit
for voltage. The authors utilize PICA to spatially recover information about
binary additions related to the AddRoundKey operation of AES running on a
0.8µm PIC16F84A microcontroller. As the authors state, such a PICA device
“is available in several laboratories, for example, in the French space agency
CNES”. Employing PICA in this manner led to enormous acquisition times.
This is especially true considering the size of the executed code. It took the
authors 12 h to recover a single potential key byte [8]. In 2011, an integrated
PICA system and laser stimulation techniques were used to attack a DES imple-
mentation on an FPGA [6]. The authors proved that the optical side channel
might be used for differential analysis. However, the analysis strongly relied on
a specific implementation of DES in which registers were always zeroed before
their use. The results required a differential analysis and a full key recovery was
also not presented. As the authors note, the use of equipment valued at more
than 2,000,000 Euros does not make such an analysis particularly relevant.

Nevertheless, recently, a real breakthrough was achieved by [15,16]. This work
presented a novel low-cost optoelectronic setup for time - and spatially resolved
analysis of photonic emissions. The authors also introduced a corresponding
methodology, named Simple Photonic Emission Analysis. They successfully per-
formed such analysis of an AES implementation and were able to recover AES-
128 keys by monitoring memory accesses. This work was also extended to AES-
192 and AES-256 [16]. The same research group also introduced Differential
Photonic Emission Analysis and presented a respective attack against AES-128
[10]. They successfully revealed the entire secret key with their DPEA. In 2015
Bertoni et al. [3] offered an improved Simple Photonic Emission Analysis, mon-
itoring a different section of the SRAM logic. However, they assumed a specific
SRAM structure which contains only single byte in every row. Their simulations

Simple Photonic Emission Attack with Reduced Data Complexity 37

do not model the physical environment but rather an ideal model in which the
value of every bit can be identified. They also described an attack of masked
AES, however the attack is unrealistic since it assumes monitoring the photonic
emission of a single experiment.

A side channel analysis using memory access patterns is reminiscent of the
field of cache attacks. For instance, the first “real world” cache-based chosen
plaintext attacks on AES were carried on OpenSSL implementations [2,13].

1.3 Contributions

In this work we enhance the original SPEA of Schlösser et al. [15] by adding
cryptographic post-processing and an improved signal processing to the mea-
surements phase. We call the resulting attack Enhanced SPEA, or E-SPEA for
short.

Our first contribution is to record the photonic side-channel leaks from the
first two AES rounds, covering 32 SBox activations. We show that these leak-
ages embed enough constraints to allow the identification of the complete key,
regardless of the placement of the SBox array in SRAM. This is in contrast to
the original SPEA, which terminates with up to 248 key candidates for certain
SRAM configurations. Furthermore, taking advantage of the slow diffusion prop-
erties in the first AES round, we are able to mount this attack very efficiently,
with a time complexity of 220. Our optimized cryptographic solver finds the
correct key within minutes on a standard PC.

Next, we devise a strategy for choosing optimal plaintexts, that causes the
photonic side-channel to produce constraints (specific SRAM accesses) which
enable our solver to work very quickly for all SRAM configurations. We collect
the necessary constraints with only 32 plaintexts, instead of the 256 plaintexts
required by Schlösser et al. [15].

Moreover, we developed a special signal-processing decoder that automat-
ically calibrates certain internal thresholds—relying on our chosen plaintext
strategy. The decoder works even when the SNR is low, adjusting its thresh-
olds differently to match the requirements of the cryptographic solver. To do
so, the decoder uses a different (auto-calibrated) threshold for each AES round.
Using the combination of our carefully crafted decoder and solver, we can trade
off the number of measurements against the solver’s running time: fewer mea-
surements (i.e., a lower SNR) cause a longer running time—but without missing
the correct key.

The combination of the above contributions provides two main benefits.

1. We are always able to quickly find the correct key, regardless of the SRAM
configuration.

2. Our methods reduce the number of required optical measurements dramati-
cally by an order of magnitude, and thus we are able to shorten the duration
of the attack significantly.

38 E. Carmon et al.

Also, in order to validate our attacks we built a Monte-Carlo simulator of the
underlying physics of the photonic emissions, with a noise model which incorpo-
rates

– internal noise within the detector,
– external noise from nearby transistors, and
– other effects.

We validated our simulator against the results as reported in Schlösser [14].
Our simulator can be used to explore alternative lab setups, taking into account
various critical parameters such as the lens area, height above the chip, supply
voltage, ambient temperature, and equipment sensitivity.

We also believe that our photonic emission simulator is of independent inter-
est and is of great value for the research community lacking (so far) the optical
equipment as described within Schlösser [14].

Organization. The organization of the present paper is as follows. Section 2
introduces the SPEA on AES. Section 3 describes our cryptographic solver.
Section 4 explains our choice of plaintexts. Section 5 describes the Auto-
calibrating decoder. Section 6 describes our performance evaluation, and we con-
clude in Sect. 7. The description of the photonic emission simulator can be found
in the full technical report [4].

2 The Photonic Side Channel in AES

2.1 The SRAM and Its Use in AES

SRAM is a common type of volatile memory found in many ICs. The SRAM is
built from memory cells arranged in rows and columns, and every memory cell
can be approached using a row/column access logic. In particular, the access logic
for each SRAM row includes a so called row-access transistor, which is activated
whenever the IC needs to access any cell in that SRAM row. Due to to this
functionality, i.e., enabling an entire row, the respective row-access transistor
is very strong. This means that the photonic emission of this transistor is by
magnitudes larger than the individual SRAM cells by itself. For a thorough
introduction into SRAM and its physical implementation details we refer the
reader to [19].

The number of bytes in an SRAM row depends on the underlying SRAM
architecture. In [15] the authors found that on an AT-Mega328P a single SRAM
row consists of 8 bytes, whereas an ATXMega128A1 stores 16 bytes in an entire
row. Figure 1(a) shows a photo of the SRAM, with a row width of 8 bytes.

A central component of the AES cipher is the SBox. This is an array of 256
bytes which is most often implemented as a lookup table. In each AES round
the algorithm performs 16 SBox lookups. In many ICs implementing AES in
software the entire SBox array is placed in SRAM.

In this paper we will denote the SRAM row width by ω. In general the SBox
starts at an offset within an SRAM row, 0 ≤ offset ≤ ω − 1, and occupies

Simple Photonic Emission Attack with Reduced Data Complexity 39

L = �256/ω� rows (see Fig. 1(b)). When ω = 8, depending on the offset, we have
L = 32 or L = 33. As we shall see, the value of the offset has an impact on the
SPEA.

Fig. 1. The SRAM memory in (a) captured with a CCD by the courtesy of [15]. The
row-access transistors appear to the left of the SRAM cells. In (b), a schematic of the
SRAM section containing the SBox in L rows, ω cells per row and starting at some
offset value.

2.2 Simple Photonic Emission Analysis (SPEA)

Monitoring the access patterns to the SRAM rows allows the SPEA as pre-
sented in [15]. Towards this goal, [15] first used a simple CCD camera approach
to initially map the respective IC’s layout, locating the SRAM memory, and
specifically, the memory rows containing the SBox array and the offset value,
cf. [11]. Hereafter, they placed a NIR (Near Infra Red) photon detector offering
time resolved measurements over the row access transistor of some SRAM row
containing SBox values. We call the SBox row on which the detector is placed
the detectable row, and denote its number by d (1 ≤ d ≤ L). The authors ran the
AES algorithm M times (by actually resetting the IC M times), encrypting the
same plaintext. Consider one of the 16 SBox activations of the first AES round
for plaintext byte pi and key byte ki. If the detector identifies an activation for
SBox(pi ⊕ ki), then there are ω options for pi ⊕ ki and since the plaintext is
known, they have ω options for ki.

Using all possible plaintext bytes {0, 1, . . . , 255} (M times each) they revealed
sets of ω potential candidates for every byte of the key, then they analyzed each
key byte separately, intersecting sets of candidates for every key byte reducing
the number of potential candidates. The success of the SPEA method depends
on two factors:

1. Using a large enough number of measurements M , providing a sufficient SNR.

40 E. Carmon et al.

2. The offset value. The SPEA works best when the offset is odd. In other cases
its performance is limited, and in particular when offset = 0 the number of
candidates for every key byte can’t be reduced below ω candidates for each
byte, resulting in ω16 key candidates.

3 The E-SPEA

Our attack depends on several ideas:

1. Use the lab setup of [15], with a NIR photon detector placed over the row
access transistor of some row d in the SBox, to record the photonic emissions
from the SBox activations in 2 full AES rounds and use the dependence
between rounds to identify the correct key.

2. Use a careful choice of plaintexts to quickly reduce the entropy.
3. A novel auto-thresholding method, based on the choice of plaintexts, lets us

avoid the need to calibrate and lets us handle noise.

During the AES encryption process, there are ten rounds, each accessing
SRAM memory to use the SBox array. In every round 16 bytes of the current
state matrix are replaced by 16 bytes copied from the SRAM memory using the
SBox as a lookup table.

Following [15] we place a detector over the location of the transistor control-
ling access to a row of SRAM containing ω cells of the SBox array. Thus each of
the 16 SBox accesses per AES round has a ≈ 1/L probability that the row on
which the detector is located (“the detectable row”) will be accessed, assuming a
random plaintext. Our attack requires knowing the offset value (recall Fig. 1(a))
and the row number (d) of the detectable row.

3.1 The Attack Structure

The attack activates the AES IC to encrypt plaintexts of the form {a, a, . . . , a}
(all plaintext bytes are the same) for different values of a. For each key byte kj ,
if the detectable row is accessed in the first AES round while looking up state
byte j in the SBox, we obtain a constraint on the possible value of kj , which
reduces the number of possibilities for its value from 256 to ω. In [15] the authors
iterated over all 256 plaintext options, guaranteeing that the detectable row is
accessed at least once for every key byte in the first AES round (in Sect. 4 we
show that we can achieve the same with much fewer plaintexts). Thus we obtain
at most ω16 AES key candidates based only on constraints from round 1 one of
which is the correct key. When ω = 8 we get ω16 = 248.

Now we can use the detected leakage from round 2 to identify the correct
key and discard the false ones. For a fixed plaintext and a given key candidate,
we can deterministically compute the 2nd round key and the state at the end of
round 1. We can then deduce the 16 SBox cells that are accessed in round 2 and
compare them to the access pattern measured by the detector. The probability

Simple Photonic Emission Attack with Reduced Data Complexity 41

of matching the detected pattern is ω16/2128. Therefore, for the ω16 candidates
from round 1, we can expect ≈ ω32/2128 candidates to fit the leakage from both
rounds. For ω = 8 we get ≈ 296/2128 � 1, so it is very likely that we will find
just the single correct key.

Note that the above process is a naive method used only to illustrate that
the leakage from the first two AES rounds is sufficient to uniquely identify the
correct key. However, we can do much better: We devised a specialized solver
that has a time complexity of 220 and space complexity of 223 bits, when ω = 8.

3.2 The Solver

Let a partial key be an array of 16 cells, each of which may contain either a
value 0...255 or ‘undefined’. The main algorithm maintains a set of partial key
candidates, and works in stages. Each stage corresponds to a particular state
byte, or a set of state bytes, in round 2: In the stage for state byte j the algorithm
first grows the set of candidates, by extending each candidate partial key so all
the key bytes that state byte j depends on are well defined. Then the algorithm
rejects all the (extended) candidates that are inconsistent with 2nd round leaks.
A stage can correspond to several state bytes if the extended candidate keys are
well defined for all the depended-upon key bytes of the stage. The pseudo-code
for a single stage has the following structure:

//stage for state byte j
input: set prevCandidates
Let enumBytes(j) be the set of additional key bytes that state byte j depends on and
are still ‘undefined’ in all partial keys in prevCandidates.
1: for all C in prevCandidates do
2: for all possible values V for key bytes in enumBytes(j) do
3: if Consistent (j, C||V) then
4: nextCandidates ← nextCandidates ∪ {C||V }
5: end if
6: end for
7: end for
8: prevCandidates ← nextCandidates
9: nextCandidates = ∅

We keep the results of the 2nd round row activations in a data structure
denoted by R2A: R2A{pt} is a vector of L bits such that (R2A {pt})j = 1 if
plaintext pt caused a detectable SBox access in round 2 on state byte j.

For a given partial key X and state byte 1 ≤ j ≤ 16 line 3 calls a function
to test whether X is consistent with the 2nd round leaks for state byte j:

1: Consistent (j,X)
2: for all plaintexts pt do
3: vjt ← RowLookupOf (j,X, pt)

4: if ((vjt == d and (R2A
{
pt
}
)j==0) or (vjt != d and (R2A

{
pt
}
)j==1)) then

5: return FALSE //partial key X is inconsistent
6: end if
7: end for
8: return TRUE //partial key X is consistent

42 E. Carmon et al.

The function RowLookupOf (j,X, pt) at line 3 returns the SBox row that
is looked up for state byte j with plaintext pt and partial key X. We ensure
that all the key bytes that state byte j depends on are well defined in X by a
careful ordering of the enumeration (see below), that also ensures the algorithm’s
ability to disqualify partial keys early. The time complexity of Consistent (j,X)
is clearly O(Np), where Np is the number of plaintexts.

Table 1. The algorithm going over bytes of the second round state matrix column
by column. For every stage of the solver the number of candidates increases due to
the newly enumerated key bytes—but the number of remaining candidates after the
stage is reduced due to the second round constraints. This analysis assumes one second
round activation for each of the state matrix byte j, and ω = 8, L = 32, thus each stage
cuts down the number of candidates by a factor of ∼ 25.

Stage Column State byte Bytes enumerated Candidates Running complexity Space (bits)

1 1 1 1, 6, 11, 14, 16 215 218 5 · 23 · 215

2 1 3 3 210 · 23 216 6 · 23 · 213

3 1 2 2, 15 28 · 26 217 8 · 23 · 214

4 1 4 4, 13 29 · 26 218 10 · 23 · 215

5 2 5, 6 5, 10 210 · 26 219 12 · 23 · 216

6 2 7 7 26 · 23 212 13 · 23 · 29

7 2 8 8 24 · 23 210 14 · 23 · 27

8 3 9, 10, 11 9 22 · 23 28 15 · 23 · 25

9 3 12 12 2−10 · 23 2−4 16 · 23

10 4 13, 14, 15, 16 - 2−27 2−24 16 · 23

3.3 Selecting the Enumeration Order

According to the appendix, state byte 1 depends on key bytes 1, 6, 11, 16 after the
round 1 MixColumns step, and byte 1 of round key 2 depends on key bytes 1, 14.
Thus immediately before the SBox lookup of round 2, state byte 1 depends on
5 key bytes: 1, 6, 11, 14, 16 (see Fig. 2a). So in the solver’s stage 1 we enumerate
over a set of ω5 candidates. Roughly speaking when a 2nd round row activation
is detected for state byte 1, the consistency check will reduce the set to about
ω5

L ≈ 210 candidates. In the same way we find that state byte 3 depends on key
bytes 1, 3, 6, 11, 16—4 of which we’ve already enumerated in stage 1 (see Fig. 2b).
So we only need to extend each candidate partial key by a single byte. Thus we
enumerate on byte 3 for the second stage. After this stage (assuming 2nd round
activation for the corresponding state byte) the number of candidates becomes
≈ (ω5

L) · ω · 1
L = ω6

L2 , which is 28 when ω = 8.
Continuing in a similar manner, we find that state byte 2 depends on 6 key

bytes: 1, 2, 6, 11, 15, 16 so we need to extend the partial keys by 2 bytes (2 and
15), ending the stage with ω8

L3 = 29, and so forth column by column. Table 1
illustrates the whole process. The figure shows that stage 5 dominates the time

Simple Photonic Emission Attack with Reduced Data Complexity 43

complexity (of 219) and space complexity (of 221) for a total time complexity of
≈ 220.

Note that the state bytes of the first column (state bytes 1–4) collectively
depend on 10 key bytes. A simpler algorithm would have enumerated over all 10
bytes together. However, such an approach would have had a time complexity
of ω10 = 230 (for ω = 8)—significantly worse than the time complexity of our
stages 1–4 combined.

Fig. 2. The key bytes affecting the round 2 SBox accesses: (a) for state byte 1, (b) for
state byte 3. Note that the key bytes on the diagonal (1, 6, 11, 16) determine the state
bytes of the 1st column at the end of round 1, and the key bytes on the left and right
columns determine the 2nd round key.

4 Choosing the Plaintexts

As stated in Sect. 3 when a row access is detected in round 1, the number of key
candidates for that byte is reduced to ω. The SBox values are located over L
sequential rows of the SRAM memory, so the probability to observe a row access
for randomly chosen plaintext is ≈ 1/L.

For the set of plaintexts pt = (at, . . . , at) we use, we want to have at least
one detectable row access in round 1 for every key byte. This can of course be
guaranteed by using all 256 plaintexts, as done by [15]. However we can achieve
the same result with much fewer plaintexts. For a given offset (recall Fig. 1(a)), a
plaintext byte at, and key byte kj , the AES SubBytes step generates an SRAM
row access to row l

l =
⌊

at ⊕ kj + offset
ω

⌋
+ 1 (1)

We capitalize on this by using a “ω-jump” strategy for plaintext ordering.
We choose the following plaintexts:

pt = {c + j · ω, . . . , c + j · ω} (2)

for c = {0, . . . , ω − 1}, and j = {0, . . . , L − 1} for offset= 0 or j =
{0, . . . , L − 2} for offset �= 0. Essentially for every value of c this strategy holds

44 E. Carmon et al.

Fig. 3. The entropy of the key as function of the number of plaintexts, using only first
round leakages for offset = 0 (a) and offset = 1 (b). The graphs show the sequential
plaintext selection used in [15], a uniformly- random selection strategy and our “ω-
jump” strategy. We can see that using only round-1 information, the entropy can’t be
reduced below 48 bit when offset = 0. We can see that using “ω-jump” the entropy
decreases fast and using only 32 plaintexts we have a 48bit entropy, which is the
“working point” of our solver, for all offsets.

the least-significant-bits fixed (e.g., the 3 LSBs for ω = 8) and goes over all
options for the MSBs.

By choosing some c and going over all options of j to multiply the row width
ω we force a row access to all of the SRAM rows {1, 2, 3, . . . , L} for offset = 0
regardless of the key value k. If offset �= 0, the “ω-jump” strategy causes a
detectable row access for all the rows {2, 3, . . . , L − 1} plus one more row access—
to the first or the last row depending on the chosen value of c. After going over
all the values of j we increment c and repeat. By setting the detectable row d
to be 2 ≤ d ≤ L − 1 and using a set of L (or L − 1) plaintexts of Eq. (2) we
are guaranteed to have one detectable row activation for every key byte during
the first AES round. Figure 3 shows the drop in key entropy as a function of the
number of plaintexts. Figure 3(b) shows that for offset = 1 the random strategy of
plaintexts selection reduces the entropy to 0 quicker than the “ω-jump” strategy,
but using the “ω-jump” strategy the entropy reaches the desired working point
of our solver (48 bit entropy) using only L carefully chosen plaintexts.

Note that unlike the first round, the second round row activations can’t be
controlled by the choice of plaintexts since the access pattern in round 2 also
depends on the key diffusion caused by round 1.

5 Decoding the Photonic Traces with Auto Threshold
Calibration

For each of the plaintexts pt we activate the IC (or, in our case, the simulator)
M times. For each activation we count the number of detected photons per time
step, while the detector is fixed at SRAM row d. We summarize the detection

Simple Photonic Emission Attack with Reduced Data Complexity 45

counts per time step, to obtain a “photonic trace” T (pt) for each plaintext, for
the time duration of the first 2 AES rounds. Following [14,15] we assume an
IC instruction cycle of 800 ns1, a photonic trace spans 25.6µs, represented by a
vector of 1280 samples, one per 20 ns. For plaintext pt we now need to decode
the trace to extract two arrays of 16 bits: R1A and R2A recording the results of
the 2 AES rounds’ SBox activations. A bit value of 1 indicates that the plaintext
caused a detectable SRAM access on the current SBox activation. A natural
decoding rule is to use a threshold: if the number of detected activations during
SBox access j in round 1 exceeds the threshold, we set (R1A {pt})j = 1, and 0
otherwise, and similarly for R2A.

A crucial task is calibrating the threshold so it can reliably distinguish
between true detections and noise. Calibrating a threshold is often a heuris-
tic trial-and-error process. However, since we choose the plaintexts in a specific
way, we can calibrate the threshold automatically to its optimal value.

5.1 Calibration at High SNR

For illustration purposes we start by considering what happens when the SNR
is high. Our method of choosing plaintexts guarantees a first round detectable
row activation for every state byte j for at least one plaintext. Therefore we
aggregate the Np photonic traces (one per plaintext) by taking the maximum
count per time step:

(maxT)i = max
t=1...Np

{
(T (pt))i

}
(3)

for the time duration of AES round 1.
This max-trace should exhibit 16 distinct peaks, at the time-steps corre-

sponding to the 16 SBox activations of AES round 1. If we sort maxT in descend-
ing order, we expect to see a clear drop between the 16th peak value, and the
17th (which is the highest peak caused by the noise). We can use this fact and
choose our threshold to be the midpoint between the two peaks:

Threshold =
peak16 + peak17

2
(4)

where peak16 and peak17 are the 16th and 17th largest samples of maxT .
Even though the threshold is calibrated on maxT for the first AES round, it

is valid for every individual trace T (pt), and for both AES rounds. Thus we can
use this threshold for all Np traces to set the bit arrays R1A {pt} and R2A {pt}.

However, we do not use this basic calibration. Instead, in the next section
we show a more delicate calibration with two thresholds, that converge to the
basic threshold when SNR is high.

1 Note that this clock frequency is a slow 1.25 MHz. The AT-Mega328p can operate
at faster clock frequencies, up to 20 MHz- we simulated the 1.25 MHz clock to allow
a comparison of the simulated results with the findings of [14,15].

46 E. Carmon et al.

Fig. 4. A trace and the low and high thresholds for M = 1,000,000 (low SNR). In circles,
peaks at expected time slots. In a box, a peak at an unexpected time slot. Thus, Thr1
is set just below the lowest circled value, and Thr2 is set just above the boxed value.

5.2 Calibration at Low SNR

When the number of measurements M for each plaintext is low, the SNR drops
and the threshold calibration method of Sect. 5.1 starts to introduce decoding
errors. We can define 2 error types:

1. False negative: a missed row activation (threshold was set too high).
2. False positive: an incorrect row activation (threshold was set too low).

We separate the discussion of the errors into two cases, for the first and second
rounds of the AES process.

Recall that our solver (Sect. 3.2) uses the first AES round activations to
reduce the number of candidates from 256 to ω for every key byte. When a false
positive occurs during the first AES round we will have more than ω options for
the key byte, since we will have ω options for each activation. This could make
the solver running time slower and cause the set of final key candidates to be
larger. However, when a false negative occurs during the first AES round, we are
left with 256 options for this key byte. Since the key bytes options are used to
enumerate over all key options, too many options can make the solver running
time unaffordable. Thus in AES round 1 we prefer to set the threshold low, and
suffer occasional false positives.

Second AES round activations set constraints that the solver uses to disqual-
ify key candidates obtained from first round leakages. A false negative during
the second round would cause fewer constraints and weaker disqualifications—so
the solver may end with more keys. However, a false positive would disqualify
true key values. Therefore in AES round 2 we prefer to set the threshold too
high, and suffer occasional false negatives.

Our solution is to use two thresholds: one for each AES round. The first
threshold (Thr1) is set low in order to avoid false negative errors of first round
activations. The second threshold (Thr2) is set higher in order to avoid second
round false positives. To calibrate the thresholds we again use the max-trace

Simple Photonic Emission Attack with Reduced Data Complexity 47

maxT . We utilize the fact that we know the time-steps in which the 16 S-Box
accesses occur. We use the following process to calibrate the two thresholds.

Fig. 5. The sorted maxT trace and the auto-calibrated thresholds (lines) for
(a) M = 1,500,000 and (b) M = 3,750,000 measurements. We can notice on (b) a gap
between the 16th and the 17th samples and the two thresholds converge.

1. Generate the max-trace maxT as in Sect. 5.1.
2. Thr1 is set to the maximal value for which (maxT)i ≥ Thr1 for all 16 time-

steps i at which there is a first round activation.
3. Thr2 is the minimal value for which (maxT)i < Thr2 for all time-steps i at

which there is no first-round activation (see Fig. 4).

If the SNR is high then peaks at the 16 true activations will be all higher
than the noise—so we will get Thr1 ≥ Thr2. In such a case we fall back to the
method of Sect. 5.1 and set both thresholds to be (Thr1 + Thr2)/2 (see Fig. 5).

We take key candidates based on first round activations using Thr1, and we
collect the constraints from the second round activations using Thr2.

6 Practical Results

We implemented the photonic emissions simulator in Matlab. The solver was
implemented in python. The experiments were run on a relatively old Intel Core
Duo T2450 2 GHz, 2 GB RAM PC running Windows Vista. We simulated the
ATmega328P IC with SRAM row width of ω = 8 and generated the plaintexts
according to the “ω-jump” strategy of Sect. 4.

In order to evaluate the performance of our attack we performed an extensive
set of experiments. All the experiments were done with ω = 8, and with either
L = 32 (for offset = 0) or L = 33 (for all other offsets). We used the “ω-jump”
strategy to generate L plaintexts for each offset.

48 E. Carmon et al.

Table 2. A comparison between the SPEA and our E-SPEA methods.

Method Final key candidates Plaintexts Measurements

per plaintext

Total measurements Time (hours)

SPEA

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for odd offset

248 for offset = 0

232 for offset = 4

216 for offset = 2, 6

256 5M 1280M 6.4

E-SPEA

⎧
⎪⎪⎨

⎪⎪⎩

1 for 75 %

∼ 8 for 24 %

248 for 1 %

32 1.5M 48M 0.5

For each plaintext we used 100 random keys, and for each key-plaintext com-
bination we generated between M = 1,000,000–5,000,000 traces from the photonic
emission simulator, with the detector at a random row 2 ≤ d ≤ L − 1. We used
the threshold setting of Sect. 5 to decode the traces, and used the solver to find
the key. For each run we set a timer on the solver: if the run time exceeded 5000 s
we stopped it and recorded a failure. Figure 6 shows the attack’s behavior for
various values of M. We can see that as long as M ≥ 1, 500, 000 the attack works
well, with the median key entropy at the end of the attack dropping below 3 bits,
and a single (correct) key was found in 75 % of the runs. When M ≥ 1, 500, 000
the attack takes under 10 min, on our slow PC. The results for other offsets were
similar (graphs omitted).

Table 2 shows a comparison of our Enhanced SPEA with the original SPEA,
and Fig. 7 shows the running time of solver. The Table shows that due to the
reduced number of required plaintexts, and reduced number of required mea-
surements M, our total attack time drops by an order of magnitude, from 6.4 h
down to 30 min- while succeeding in finding a single (correct) key in 75 % of the

Fig. 6. The entropy of the round-1 key candidates (dashed line) and the final key
candidates (solid line) as a function of the number of measurements M, for offset = 0
and using different random keys and a different detector row for every test. The upper
and lower bounds indicate the 5–95 percentiles and the dots mark the median values.

Simple Photonic Emission Attack with Reduced Data Complexity 49

cases- regardless of the offset. The E-SPEA method however had difficulty with
1 % of the cases, not getting below 248 key candidates: in those cases the number
of second round activations was very low and the solver reached a timeout of
5000 s without being able to reduce the number of key candidates.

7 Conclusions, Future Work and Countermeasures

In this paper we demonstrated that using cryptographic post-processing, careful
plaintext selection, and better signal processing, we are able to significantly
improve upon the SPEA of [15]. We are able to uniquely extract the correct key
regardless of the offset at which the SBox is placed in SRAM. We achieve this
while reducing the required number of photonic measurements by an order of
magnitude, which directly implies a similar drop in the attack’s time complexity.
Our cryptographic solver is extremely efficient, with a time complexity of 220,
and extracts the key within minutes on a rather old PC.

Following [15] we evaluated our attack assuming an SRAM row width of
ω = 8, as in the ATMega328P. However, we note that a row width of ω = 16
(as in the ATXMega128A1) would pose a harder challenge: we expect to find
≈ ω32/2128 = 1 key candidates that fit the leakage from the first two AES
rounds, as opposed to the ≈ 2−32 expected when ω = 8. I.e., in the intermediate
stages we will have many more key candidates, the run time will be longer, and
the attack will terminate with more possible keys, than when ω = 8. Conversely,
if ω = 32 then our attack should become equally efficient as when ω = 8: we can
set the detector on the column-access transistor. We leave evaluating alternative
SRAM configurations for future work.

Note also that our photonic emissions simulator allows us to test hypothetical
lab setups, since we can experiment with the lens area and height above the IC,

Fig. 7. Solver running time for different M values, for offset = 0 and using different
random keys and a different detector row for every test. The upper and lower bounds
indicate the 5–95 percentiles and the dots mark the median values.

50 E. Carmon et al.

the supply voltage, the temperature, and the detector sensitivity. It would be
interesting to use the simulator’s results to guide the design of better future
detectors.

The attack is susceptible to countermeasures such as delays and dummy
operations which can obfuscate the time a photonic emission may occur. Masking
also can make the attack more difficult. Memory protection countermeasures
such as memory encryption or scrambling have no effect on the emission pattern,
but they can make the preliminary stage of finding the SBox values inside the
SRAM memory more difficult.

Appendix

The AES Process Until the Second SubBytes Operation

References

1. Bascoul, G., Perdu, P., Benigni, A., Dudit, S., Celi, G., Lewis, D.: Time resolved
imaging: from logical states to events, a new and efficient pattern matching method
for VLSI analysis. Microelectron. Reliab. 51(9), 1640–1645 (2011)

2. Bernstein, D.J.: Cache-timing attacks on AES (2004). Preprint, http://cr.yp.to/
papers

3. Bertoni, Y.M., Grassi, L., Melzani, F.: Simulations of optical emissions for attack-
ing AES and masked AES. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.)
Security, Privacy, and Applied Cryptography Engineering (SPACE). LNCS, vol.
9354, pp. 172–189. Springer, Verlag (2015)

http://cr.yp.to/papers
http://cr.yp.to/papers

Simple Photonic Emission Attack with Reduced Data Complexity 51

4. Carmon, E., Seifert, J.-P., Wool, A.: Simple photonic emission attack with reduced
data complexity. Cryptology ePrint Archive, Report 2015/1206 (2015). http://
eprint.iacr.org/2015/1206

5. Chynoweth, A., McKay, K.: Photon emission from avalanche breakdown in silicon.
Phys. Rev. 102(2), 369 (1956)

6. Di-Battista, J., Courrege, J.C., Rouzeyre, B., Torres, L., Perdu, P.: When failure
analysis meets side-channel attacks. In: Mangard, S., Standaert, F.X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 188–202. Springer, Heidelberg (2010)

7. Egger, P., Grützner, M., Burmer, C., Dudkiewicz, F.: Application of time resolved
emission techniques within the failure analysis flow. Microelectron. Reliab. 47(9),
1545–1549 (2007)

8. Ferrigno, J., Hlavác, M.: When AES blinks: introducing optical side channel. Inf.
Secur. 2(3), 94–98 (2008)

9. Krämer, J., Kasper, M., Seifert, J.-P.: The role of photons in cryptanalysis. In: 19th
Asia and South Pacific, Design Automation Conference (ASP-DAC), pp. 780–787.
IEEE (2014)

10. Krämer, J., Nedospasov, D., Schlösser, A., Seifert, J.P.: Differential photonic emis-
sion analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 1–16.
Springer, Heidelberg (2013)

11. Nedospasov, D., Seifert, J.-P., Schlosser, A., Orlic, S.: Functional integrated circuit
analysis. In: IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), pp. 102–107. IEEE (2012)

12. Newman, R.: Visible light from a silicon pn junction. Phys. Rev. 100(2), 700–703
(1955)

13. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

14. Schlösser, A.: Hot electron Luminescence in silicon structures as photonic side
channel (in German). Ph.D. thesis, Faculty of Mathematics and Natural sciences,
Berlin Institute of Technology (2014)

15. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Photonic emis-
sion analysis of AES. In: Workshop on Cryptographic Hardware and Embedded
Systems (CHES) (2012)

16. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple photonic
emission analysis of AES. J. Cryptographic Eng. 3(1), 3–15 (2013)

17. Selmi, L., Mastrapasqua, M., Boulin, D.M., Bude, J.D., Pavesi, M., Sangiorgi, E.,
Pinto, M.R.: Verification of electron distributions in silicon by means of hot carrier
luminescence measurements. IEEE Trans. Electron Devices 45(4), 802–808 (1998)

18. Song, P., Stellari, F., Huott, B., Wagner, O., Srinivasan, U., Chan, Y., Rizzolo,
R., Nam, H., Eckhardt, J., McNamara, T., et al.: An advanced optical diagnostic
technique of IBM z990 eserver microprocessor. In: Proceedings IEEE International
Test Conference (ITC), p. 9. IEEE (2005)

19. Weste, N., Harris, D., Design, C.: A Circuits And Systems Perspective, 4/E.
Pearson Education, (2010)

http://eprint.iacr.org/2015/1206
http://eprint.iacr.org/2015/1206

Side-Channel Analysis (Case Studies)

Power Analysis Attacks Against
IEEE 802.15.4 Nodes

Colin O’Flynn(B) and Zhizhang Chen

Dalhousie University, Halifax, Canada
{coflynn,zchen}@dal.ca

Abstract. IEEE 802.15.4 is a wireless standard used by a variety of
higher-level protocols, including many used in the Internet of Things
(IoT). A number of system on a chip (SoC) devices that combine a radio
transceiver with a microcontroller are available for use in IEEE 802.15.4
networks. IEEE 802.15.4 supports the use of AES-CCM* for encryp-
tion and authentication of messages, and a SoC normally includes an
AES accelerator for this purpose. This work measures the leakage char-
acteristics of the AES accelerator on the Atmel ATMega128RFA1, and
then demonstrates how this allows recovery of the encryption key from
nodes running an IEEE 802.15.4 stack. While this work demonstrates
the attack on a specific SoC, the results are also applicable to similar
wireless nodes and to protocols built on top of IEEE 802.15.4.

Keywords: AES · Side-channel power analysis · DPA · IEEE 802.15.4

1 Introduction

IEEE 802.15.4 is a low-power wireless standard which targets Internet of Things
(IoT) or wireless sensor network (WSN) applications. Many protocols use IEEE
802.15.4 as a lower layer, including ZigBee (which encompasses many different
protocols such as ZigBee IP and ZigBee Pro), WirelessHART, MiWi, ISA100.11a,
6LoWPAN, Nest Weave, JenNet, IEEE 802.15.5, Thread, Atmel Lightweight
Mesh, and DigiMesh. As part of the IEEE 802.15.4 standard a security suite
based on AES is included, which allows encrypting and adding an authentication
code on the wireless messages.

Protocols using IEEE 802.15.4 as a lower layer often include security at lay-
ers above IEEE 802.15.4, but many of them also use the same AES primitive as
the lower layer (with a different key and possibly encryption mode). An attack
against the AES peripheral in an embedded device may be useful in attack-
ing both the lower and higher layers depending on network specifics. Even if
acquiring the 802.15.4-layer key is not directly useful, because for example each
link uses a different key, an attacker may practically benefit from the ability of
sending arbitrary messages which will be accepted as valid and passed to the
higher-layer protocol decoder logic. With this ability an attacker can exploit
security flaws in higher-layer protocol decoding logic, since the lower-layer mes-
sages will be successfully decrypted and presented to higher layers.
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 55–70, 2016.
DOI: 10.1007/978-3-319-43283-0 4

56 C. O’Flynn and Z. Chen

This paper presents an attack against a wireless node that uses the IEEE
802.15.4 protocol. We present the following important results from develop-
ing this attack: (1) an attack against the hardware AES engine in the Atmel
ATMega128RFA1, (2) an attack on AES-128 in CCM* mode as used in IEEE
802.15.4 [1], (3) a method of causing the AES engine in the target device to
perform the desired encryption, and (4) a shunt-based measurement method for
devices with internal voltage regulators. This attack is validated with a hardware
environment (shown in Fig. 1).

The attack demonstrated here uses side-channel power analysis [2], specifi-
cally a correlation-based attack [3]. We obtained the power measurements in this
work by physically capturing a node and inserting a shunt resistor. In general,
side-channel attacks can be performed with a noncontact electromagnetic (EM)
probe instead, which does not require modification to the device [4]. The EM
measurement typically achieves similar results to the resistive shunt [5,6].

It has previously been demonstrated that wireless nodes are vulnerable to
side-channel power analysis when running AES-ECB in software [7]. This type
of attack does not destroy the node under attack, and the node will continue to
function during the attack. This makes detection more difficult: although a node
is captured, it still appears on the network. Our work extends this by attacking
the actual AES-CCM* mode used in IEEE 802.15.4, attacking the hardware AES
accelerators typically used in wireless stack implementations, and demonstrating
how to force many encryption operations to occur for rapid collection of traces.

We begin by describing the attack on the ATMega128RFA1 AES hardware
peripheral in Sect. 2. Next, we look at specifics of the use of AES encryption on
the IEEE 802.15.4 wireless protocol in Sect. 3. This outlines the challenges of
applying the side-channel attack to the AES-CCM* mode of operation, which is
solved for the case of IEEE 802.15.4 in Sect. 4. Our application of this to a real
IEEE 802.15.4 node is discussed in Sect. 5, and our conclusions follow.

An extended version of this paper is available which contains additional
details and discussion of this attack1.

2 ATMega128RFA1 Attack

The Atmel ATMega128RFA1 is a low-power 8-bit microcontroller with an inte-
grated IEEE 802.15.4 radio, designed as a single-chip solution for Internet of
Things (IoT) or wireless sensor network (WSN) applications [8]. As part of the
IEEE 802.15.4 radio module a hardware AES-128 block is available, designed
to work with the AES security specification of IEEE 802.15.4. Other vendors
such as Freescale (MC13233), Silicon Laboratories (EM35x), STMicroelectronics
(STM32W108), and Texas Instruments (CC2530) provide similar chips integrat-
ing an IEEE 802.15.4 radio and microcontroller in a single device.

To perform a side-channel power analysis attack, we evaluate a method of
physically measuring power on the ATMega128RFA1 in Sect. 2.1. We then deter-
mine an appropriate power model in Sect. 2.2, and we present the results of the
1 The extended version is published at https://eprint.iacr.org/2015/529.

https://eprint.iacr.org/2015/529

Power Analysis Attacks Against IEEE 802.15.4 Nodes 57

Fig. 1. The ChipWhisperer capture hardware is used in this attack, along with details
of the measurement point.

CPA attack [3] in Sect. 2.3. We present additional considerations for attack-
ing intermediate rounds (i.e., beyond the first round) of the AES algorithm
in Sect. 2.4; these intermediate-round attacks are required for the AES-CCM*
attack.

2.1 Power Measurement

Power measurements can be performed by inserting a resistive shunt into the
power supply of the target device, and measuring the voltage drop across the
shunt. Because devices often have multiple power supplies (such as V CCcore,
V CCIO, V CCRF), the shunt must be inserted into the power supply powering
the cryptographic core. As with many similar IEEE 802.15.4 chips, the core
voltage of the ATMega128RFA1 is lower (1.8 V) than the io voltage (typically
2.8–3.3 V) [8].

To avoid requiring an external voltage regulator for the lower core voltage,
most of these devices also contain an integrated 1.8 V voltage regulator. Some
devices require an external connection from the regulator output pin to the
V CCcore pin. With this type of device we could perform the power measure-
ments by either (a) inserting a shunt resistor between the output and input, or
(b) using an external low-noise power supply with a shunt resistor (as in [7]). The
ATMega128RFA1 is not such a device – it internally connects the regulator to
the V CCcore pin, but does require a decoupling capacitor placed on the V CCcore

pin (which also serves as the output capacitor for the voltage regulator).
By inserting a shunt resistor into the path of the decoupling capacitor, we

can measure high-frequency current flowing into the V CCcore pin. Note that this
measurement will be fairly noisy, as we will also have noise from current flowing
out of the voltage regulator. The right side of Fig. 1 shows the implementation
of this arrangement. Externally powering this pin with a voltage slightly higher
than 1.8 V may disable the internal regulator, giving a lower-noise signal from
the shunt resistor. This is dependent on regulator design.

58 C. O’Flynn and Z. Chen

2.2 Related Hardware Attack

We based our work on Kizhvatov’s attack on the XMEGA device [9].
Kizhvatov determined that for a CPA attack on the XMEGA, the Hamming
distance between successive S-box input values leaked. These input values are
the XOR of the plaintext with the secret key that occurs during the first
AddRoundKey.

Our notation considers pi and ki to be a byte of the plaintext and encryption
key respectively, where 0 ≤ i ≤ 15. To determine an unknown byte ki, we first
assume we know a priori the value of pi, pi−1, and ki−1.

This allows us to perform a standard CPA attack, where the sensitive value
is given by the Hamming weight of (1). That is to say the leakage for unknown
encryption key byte i is: li = HW (bi). Provided k0 is known, this attack can
proceed as a standard CPA attack, with only 28 guesses required to determine
each byte.

bi = (pi−1 ⊕ ki−1) ⊕ (pi ⊕ ki) , 1 ≤ i ≤ 15 (1)

For the specific case of k0, the Hamming distance from the fixed value 0x00
is used as a leakage model2, as in (2). This allows the entire encryption key to
be attacked with a total of 16 × 28 guesses.

l0 = HW (b0) = HW (p0 ⊕ k0) (2)

2.3 Application to ATMega128RFA1

Our experimental platform was a Dresden Elektronik radio board, model num-
ber RCB128RFA1 V6.3.1. To sample the power measurements, we used an open-
source platform called the ChipWhisperer Capture Rev2 [10]. This capture hard-
ware synchronizes its sampling clock to the device clock, and we configured it
to sample at 64 MS/s (which is 4 times the ATMega128RFA1 clock frequency
of 16 MHz). The differential probe is connected across a shunt in the V CCcore

power pin as described previously. A filter with a passband of 3–14 MHz was
inserted between the output of the differential probe and the low-noise amplifier
input of the ChipWhisperer.

We implemented a test program in the ATMega128RFA1 that encrypts
data received over the serial port. This encryption can be done via either a
software AES-128 implementation or the hardware AES-128 peripheral in the
ATMega128RFA1. When using the hardware peripheral, the encryption takes
25µs to complete, or about 400 clock cycles.

We used a CPA attack, ranking the most likely byte as the one with the
highest correlation values [3]. We use a plot of the partial guessing entropy
(PGE) compared to number of traces in order to measure attack success [11].
The PGE indicates where the correct value of the encryption subkey byte falls
within a list ordered from most to least likely based on CPA attack results.

2 This is not published in [9], but was described in private communication from the
author.

Power Analysis Attacks Against IEEE 802.15.4 Nodes 59

Thus when the PGE falls to zero the specific subkey byte is perfectly known,
and a PGE of 128 would be expected for a completely unsuccessful attack that
is equivalent to a random guess.

To evaluate our measurement toolchain, we performed this attack against
a software AES implementation on the ATMega128RFA1, which recovered the
complete key in under 60 traces.

We then recorded a total of 50 000 power traces, where the ATMega128RFA1
was performing AES-128 ECB encryptions using random input data during
the time each power trace was recorded. For each trace, 600 data points were
recorded at a sampling rate3 of 64 MS/s. Each trace therefore covered about the
first third of the AES encryption.

Our initial CPA attack was repeated five times over groups of 10 000 traces.
The resulting average partial guessing entropy for each byte is shown in Fig. 2.
The first byte (which uses the leakage assumption of (2)) has the worst perfor-
mance, as the guessing entropy does not reach zero with 10 000 traces.

Guessing of ki−1. This attack used the leakage (2) of the first byte i = 0 to
bootstrap the key recovery. Once we know this byte, we can use (1) to recover
successive bytes.

Practically, we may have a situation where i− 1 is not recoverable. Previous
work assumed either some additional correlation peak allowing us to determine
i−1, or the use of a brute-force search across all possibilities of the byte i−1 [9].
We can improve on this with a more efficient search algorithm, described next.

The leakage function (1) could be rewritten to show more clearly that the
leaked value depends not on the byte values, but on the XOR between the two
successive bytes, as in (3).

bi = (ki−1 ⊕ ki) ⊕ (pi−1 ⊕ pi) , 1 ≤ i ≤ 15 (3)

The side-channel attack can be performed with the unknown byte ki−1 set
to 0x00, and the remaining bytes are recovered by the CPA attack described
previously. These recovered bytes are not the correct value, but instead provide
the value that has to be XOR’d with the previous byte to generate the correct
byte.

The 256 candidate keys can then be generated with almost no computational
work, by iterating through each possibility for the unknown byte ki−1, and using
the XOR values recovered from the CPA attack to generate the remaining byte
values ki, ki+1, · · · , kI .

This assumes we are able to directly test those candidate keys to determine
which is the correct value. As is described in the next section, we can instead
use a CPA attack on the next-round key to determine the correct value of ki−1.

3 Note that this 64 MS/s sample rate is successful because the capture hardware sam-
ples synchronously with the device clock. If using a regular oscilloscope with an
asynchronous timebase we expect a much higher sample rate to be required, similar
to that reported in the XMEGA attack.

60 C. O’Flynn and Z. Chen

Fig. 2. The CPA attack on the hardware AES peripheral reduces the guessing entropy
to reasonable levels in under 5000 traces, and is makes key recovery trivial in 10 000
traces. (Color figure online)

2.4 Intermediate-Round Attacks

Whereas our work so far has been concerned with determining the first-round
encryption key, we will see in Sect. 4 that information on the round keys used
during intermediate rounds is also required.

We determined that for intermediate rounds the leakage assumption of (1)
and (2) still holds, where the unknown byte ki is a byte of the round key, and
the known plain-text byte pi is the output of the previous round. We can extend
our notation such that the leakage from round r becomes lri = HW (bri), where
each byte of the round key is kri , and the input data to that round is pri .

Examples of the PGE when attacking the start of the third round (r = 3)
are given in Fig. 3. The entropy change for all rounds tested (r = 1, 2, 3, 4) was
similar.

For details of the execution time of the hardware AES implementation, refer
to Table 1. This table shows the samples used for each byte in determining the
most likely encryption key for the first four rounds. For byte 0 (the first byte),
(2) is the sensitive operation. For later bytes (1) is the sensitive operation.

Note the sample rate is four times the device clock, and in Table 1 the sample
delta from start to end of the sensitive operations within each round is about
64 samples, or 16 device clock cycles. This suggests that a sensitive operation

Power Analysis Attacks Against IEEE 802.15.4 Nodes 61

Fig. 3. Attacking intermediate rounds in the AES peripheral is also successful using
the same leakage assumptions as the first-round attack. (Color figure online)

is occurring on each clock cycle. Each round takes approximately 32–34 cycles
based on the repeating nature of the leakages in intermediate rounds.

Determining ki−1 Using Intermediate Rounds. As described in Sect. 2.3,
we can perform the CPA attack on byte ki where ki−1 is unknown by determining
not the value of the byte, but the XOR of each successive byte with the previous
key. This means performing the attack first where ki−1 is assumed to be 0x00.

By then enumerating all 256 possibilities for ki−1, we can quickly generate
256 candidate keys to test. But if we are unable to test those keys, we need
another way of validating the most likely value of ki−1.

If we knew the initial (first-round) key, we could determine the input to the
second round, and thus perform a CPA attack on the second-round key. Instead
we have 256 candidates for the first round (r = 1), and want to determine which
of those keys is correct before proceeding.

To determine which of the keys is correct, we can perform a CPA attack on
the first byte of the second round, k20, repeating the CPA attack 256 times, once
for each candidate first-round key.

The correlation output of the CPA attack will be low for all guesses of k20
where k1 is wrong, and only for the correct guess of k20 and k1 will there be a
peak. This technique will be used in Sect. 4.1, where we cannot test candidate
keys as we are not recovering the complete key.

62 C. O’Flynn and Z. Chen

Table 1. A small range of points is selected from each trace, corresponding to the
location of the device performing (2) for i = 0, or (1) for i ≥ 1. The variable r
corresponds to the AES round being attacked, and i is the byte number.

i r = 1 r = 2 r = 3 r = 4 i r = 1 r = 2 r = 3 r = 4

0 66–70 198–204 336–342 474–478 8 98–102 233–237 370–374 506–508

1 70–75 205–210 340–345 478–481 9 101–106 237–241 373–377 510–513

2 73–78 208–215 345–348 482–489 10 106–111 240–247 378–383 514–519

3 79–83 213–216 350–355 486–490 11 110–114 245–250 382–385 518–521

4 81–88 218–221 355–368 490–494 12 114–119 248–254 385–390 522–524

5 85–90 220–225 358–361 494–498 13 118–123 253–258 390–394 525–529

6 89–95 225–233 362–365 498–501 14 121–126 258–265 394–398 530–534

7 93–98 230–235 366–370 502–505 15 126–129 262–268 398–402 534–538

3 IEEE 802.15.4 Security

IEEE 802.15.4 is a low-power wireless standard, sending short data packets of
up to 127 bytes at bit-rate of 250 kbit/s. The IEEE 802.15.4 standard uses AES-
128 as the basic building block for both encryption and authentication of mes-
sages. The standard defines a mode of operation called CCM*, which modifies
the regular CCM mode by allowing the use of encryption without authentica-
tion [1,12].

The underlying encryption uses AES-CTR mode, with an input format as
shown in Fig. 4. The first 14 bytes are the nonce, and the last two bytes are
the AES-CTR mode counter. Each received frame must use a new nonce, as the
counter only counts the number of 16-byte blocks within the frame.

To ensure nonce freshness, a field called FrameCounter is included with each
transmitted message and used as part of the nonce. The receiver verifies that
the value of FrameCounter is larger than any previously used value, avoiding
the reuse of a nonce.

On receiving a packet, the IEEE 802.15.4 layer first returns an acknowledg-
ment to the sender. If the packet has security enabled (it is encrypted or has an
authentication code appended) the node performs the following steps: (1) vali-
dates headers, (2) check the new received frame counter is numerically greater

Fig. 4. The following data is used as the input to AES-128 when a frame is decrypted
by an IEEE 802.15.4 stack. The FrameCounter can be controlled by the attacker.

Power Analysis Attacks Against IEEE 802.15.4 Nodes 63

than the last valid frame count, (3) looks up the secret key based on addressing,
(4) decrypts the payload and authentication code (if present), (5) validates the
authentication code (if present), and (6) stores the frame counter.

For our side-channel attack we only care that step 4 is performed; this means
our packet must successfully pass through steps 1–3. This requires that the
packet is properly addressed and has an acceptable security configuration, i.e.
using a valid key identifier and address. An example of such a packet is available
in the extended version of this paper.

4 Application to AES-CCM* Mode

For a standard CPA attack, we require the ability to cause a number of encryp-
tion operations to occur with known plaintext or ciphertext material. In addi-
tion, the data being encrypted must vary between operations, as otherwise each
trace will generate the same hypothetical intermediate values during the search
operation of the CPA attack.

From Sect. 3 and Fig. 4, we know that a number of the bytes are fixed
during the AES encryption operation. Practically all the bytes except for the
FrameCounter are considered fixed in this attack. The Flags and SecLevel bytes
will have constant (and known) values. Initially it would appear that the Source
Long Address and AES Counter fields may vary, but as we discuss next, this is
not the case.

The Source Long Address field comes from internal tables in the 802.15.4
stack, and is not simply copied from the incoming packet fields. The AES
Counter field changes during operation, as it increases for each 16-byte block
encrypted in AES-CCM* mode. But as the IEEE 802.15.4 packet is limited to
a total of 127 bytes, the AES Counter field could never exceed 0x0007. Thus,
between these 10 bytes, at most 3 bits vary during operation.

We instead rely on the ability of the attacker to control the FrameCounter
field to mount a successful attack on an IEEE 802.15.4 wireless node. For
our work we will assume an attack on the first encryption operation when a
packet is received, meaning the AESCounter field is also fixed. The sent value of
FrameCounter must simply be higher than a previously accepted value, which
can either be determined by passive listening, or the most significant bit(s) can
simply be set high to guarantee values which are likely to be accepted.

4.1 Previous AES-CTR Attacks

The AES-CCM* mode used by IEEE 802.15.4 is a combination of CBC-MAC
and CTR modes of operation. Our attack is on the AES-CTR portion of the
algorithm, with some modifications to reflect the use of a frame counter for the
nonce material.

Previous work on AES-CTR mode has focused on the assumption that we
can cause a number of encryptions to occur in sequence (i.e., with increasing
counter number), but with unknown but constant nonce material [13]. Our work

64 C. O’Flynn and Z. Chen

uses many of the constructs developed by Jaffe in [13], but with different assump-
tions of inputs on the AES block and a different leakage model. These differences
necessitate the development of new techniques to recover partial keying infor-
mation, as we cannot directly apply the previously published attack.

In our case, we have the ability to change 4 bytes of the input plaintext (bytes
9, 10, 11, and 12). The CPA attack only allows us to recover these four bytes
of the key, as the keying material associated with bytes 9–12 can be recovered
by a standard CPA attack using the leakage model identified in Sect. 2. The
remaining bytes cannot be recovered, as the input data is constant, and hence
our leakage target of the difference between S-Box inputs is also constant.

For the MixColumns() operation, we can represent the four input bytes
– one column of the state matrix – with s0, · · · , s3, and the resulting output
bytes with S0, · · · , S3. The MixColumns() operation uses multiplication over
the Galois field GF(28), where we represent this multiplication operation with
the symbol “◦”. The MixColumns() operation then becomes:

S0 = (2 ◦ s0) ⊕ (3 ◦ s1) ⊕ s2 ⊕ s3 (4)
S1 = s0 ⊕ (2 ◦ s1) ⊕ (3 ◦ s2) ⊕ s3 (5)
S2 = s0 ⊕ s1 ⊕ (2 ◦ s2) ⊕ (3 ◦ s3) (6)
S3 = (3 ◦ s0) ⊕ s1 ⊕ s2 ⊕ (2 ◦ s3) (7)

Using the method from [13], we use our partial knowledge of the current round
key to recover information about the next round key. Performing the attack with
partial knowledge is possible as if some of the input bytes to MixColumns() are
fixed but unknown, we set those fixed bytes to 0, and use the linear property of
MixColumns() to introduce a correction constant. Assuming the true output of
one MixColumns() is S0, we define the output that results by setting constant
bytes to 0 as S′

0 = S0 ⊕ E0, where E0 is an unknown correction constant.
Performing the CPA attack using the assumed output S′

0, we would recover
a version of this round key byte (we will refer to it as k′

0) XOR’d with the
unknown constant E0, that is k′

0 = k0 ⊕E0. The output of AddRoundKey() will
be equivalent to the case where we had the true key and true input, as:

AddRoundKey(k′
0, S

′
0) = k′

0 ⊕ S′
0 = (k0 ⊕ E0) ⊕ (S0 ⊕ E0) = k0 ⊕ S0 (8)

This is sufficient information to perform the attack on the next round of the
AES algorithm. Thus, if the entire modified version of a key can be recovered for
a given encryption round, we can recover the entire unmodified key by attacking
the next encryption round. This unmodified key can then be rolled backwards
using the AES key schedule.

Description of Attack. We describe the attack by working through a symbolic
example, using the following variables:

Power Analysis Attacks Against IEEE 802.15.4 Nodes 65

pri : “text” input to AddRoundKey() X : variable and known inputs

kri : “key”input to AddRoundKey() Y : variable and known intermediates

Er
i : a constant, see Sect. 4.1 Z : variable and known intermediates

nr
i : the modified round key, kr

i ⊕ Er
i c : constant values

sri : the output of SubBytes() ? : variable and unknown values

vri : the output of ShiftRows() N : known modified round-key values (nr
i)

mr
i : the output of MixColumns() K : known key or round-key values (kr

i)

X* : group of variables which has a small set of candidates for the correct value

Initially, we have the known input plaintext, where 12 of the bytes are con-
stant, and the 4 variable bytes are under attacker control (FrameCounter). From
this, we can perform a CPA attack to recover 4 bytes of the key. Note that in
practice the byte k19 cannot be recovered because k18 is unknown. Instead we use
the technique detailed in Sect. 2.4 to generate 256 candidate keys for k19, · · · , k112,
and test them at a later step. This means we can assume the following is the
state of our initial-round key:

k1 = [c c c c c c c c c K*K*K*K* c c c]

This can be used to calculate the output of the SubBytes() and ShiftRows()
functions, where the majority of bytes are constant (but unknown):

s1 = [c c c c c c c c c Y*Y*Y*Y* c c c]
v1 = [c c Y* c c Y* c c c c c c Y* c c Y*]

At this point we need to symbolically deal with the MixColumns(v1) out-
put, as we will be working with the modified output that has been XOR’d with
the constant E. As in [13], this is accomplished in practice by setting unknown
constants c to zero, and calculating the output of the MixColumns(v1) func-
tion. The unknown constants are all pushed into the variable E, which we never
need to determine the true value of. This means our output of round r = 1
becomes:

m1 = [Z*Z*Z*Z*Z*Z*Z*Z* c c c c Z*Z*Z*Z*]

Note that 4 bytes of this output are constant. We again set these constant
bytes to zero to simplify our further manipulation of them. This means our input
to the next round becomes:

p2 = [Z*Z*Z*Z*Z*Z*Z*Z* 0 0 0 0 Z*Z*Z*Z*]

We are not able to recover n2
8, · · · , n2

11 yet, as the inputs associated with
those key bytes are constant.

We first attempt to recover n2
0, which is performed for all 256 candidates for

k19, · · · , k112. As mentioned in Sect. 2.4, the highest correlation peak determines
both k19, · · · , k112 and n2

0. This means we no longer have a group of candidates
for the input, but a single value:

p2= [Z Z Z Z Z Z Z Z 0 0 0 0 Z Z Z Z]

We can then proceed with the CPA attack on the remaining bytes of n2. Bytes
n2
1, · · · , n2

6 can be recovered by application of the CPA attack from Sect. 2.3.

66 C. O’Flynn and Z. Chen

Recovery of n2
7 using the same process is not possible, as MixColumns(v1)

interacts with the leakage model. The inputs to this round p26 and p27, are gen-
erated by the previous-round MixColumns(v1) outputs m1

6 and m1
7.

When attacking n2
7, we apply (1) to (6) and (7). This means our leakage is:

HW
(
(n2

6 ⊕ (6)) ⊕ (n2
7 ⊕ (7))

)
(9)

The XOR cancels common terms in (6) and (7), and in this case that cancels
term s1. As s1 is the variable and known input to the MixColumns(v1), the
leakage appears constant and the attack fails. Instead, we can recover this value
using a CPA attack on the next round, which is described later.

Returning to our CPA attack on the modified round key, we are unable to
recover n2

8, · · · , n2
11 as the associated inputs are constant. As n2

11 is unknown,
we cannot directly recover n2

12, · · · , n2
15. Instead we again use the method of

Sect. 2.4 to generate 256 candidates for n2
12, · · · , n2

15.
At this point we assume the CPA attack has succeeded, meaning we have

recovered the following bytes of the modified round key, where the final 4 bytes
are partially known – we have 256 candidates for this group, as we know the
relationship between each byte, but simply don’t know the starting byte to define
the group:

n2 = [N N N N N N N c c c c c N*N*N*N*]

Remember, once we apply AddRoundKey(n2,p2), the constant E will be
removed – E is included in both the output of MixColumns(v1) and the modi-
fied key – meaning we can determine the true value of the input to SubBytes().

The outputs 8, · · · , 11 of MixColumns(v1) from the first round are constant,
so we also know the four unknown modified bytes n2

8, · · · , n2
11 can be ignored at

this point. The result of AddRoundKey(n2,p2) for these bytes will be another
constant.

The unknown byte n2
7 is associated with variable input data, meaning this

output will be unknown and variable, which cannot be ignored. At this point we
can represent the known outputs of SubBytes() and ShiftRows():

s2 = [Y Y Y Y Y Y Y ? c c c c Y* Y*Y*Y*]

v2 = [Y Y c Y* Y c Y* Y c Y* Y ? Y* Y Y c]

As before, we can set unknown constant values to zero to determine the
modified output m2 = MixColumns(v2). The unknown variable byte means
4 bytes of the MixColumns(v2) output are currently unknown. In addition,
we have 256 candidates for the remaining known values, since the four modified
bytes n2

12, · · · , n2
15 have been mixed into all output bytes by ShiftRows(p2) and

MixColumns(v2):

m2 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]

This becomes the input to the next round:

p3 = [Z*Z*Z*Z*Z*Z*Z*Z* ? ? ? ? Z*Z*Z*Z]

Power Analysis Attacks Against IEEE 802.15.4 Nodes 67

We again apply the CPA attack on n3
0 across all values for n3

0 and the 256
candidates for the previous modified round key (a total of 216 guesses), the peak
telling us the value of n3

0 and n2
12, · · · , n2

15. We now know which of the candidates
to select for further processing:

p3= [Z Z Z Z Z Z Z Z ? ? ? ? Z Z Z Z]

We can apply a CPA attack to discover the modified key values n3
1, · · · , n3

7.
The unknown plaintext byte ? represents a changing value. We cannot ignore it
as we can constant values in the MixColumns(v2), and thus cannot apply the
CPA attack on the remaining bytes.

Instead we enumerate all possibilities for n2
7, and apply a CPA attack against

n3
8, similarly to previously described attacks from Sect. 2.4. We verified experi-

mentally that the correlation value with the highest peak for n3
8 resulted only

when n2
7 was the correct value. This means we now have the entire modified

output of MixColumns(v2), and thus the complete modified input plaintext to
round 3:

p3 = [Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z]

With n2
7 and n3

8 now known, we can continue with the CPA attack against
n3
9, · · · , n3

15. At this point we have an entire modified key:

n3 = [N N N N N N N N N N N N N N N N]

We can again apply the modified key n3 to the modified output of the previ-
ous round m2 to recover the complete output of round r = 3, which will be the
actual input to round r = 4. This allows us to perform a CPA attack and recover
the true round key k4. This round key can then be rolled backwards using the
AES key schedule to determine the original encryption key.

We have now attacked an AES-CCM* implementation as specified in the
IEEE 802.15.4 standard. This attack requires only the control of the four bytes
of FrameCounter, which are sent as plaintext over the air.

The computational load of the attack is minimal: performing these steps on
an Intel i5-2540M laptop using a single thread program written in C++ takes
under ten minutes with 20 000 traces, using only the subset of points in each trace
from Table 1. Note when performing the hypothetical value calculation for inter-
mediate rounds, the calculation was accelerated using the Intel AES-NI instruc-
tion set for performing the SubBytes(), ShiftRows(), and MixColumns() oper-
ations, which form part of a single AES round executed by this instruction [14].

5 Attacking Wireless Nodes

In the previous sections, we demonstrated the vulnerability of an IEEE 802.15.4
SoC device to power analysis, and how the AES-CCM* mode used during recep-
tion of an encrypted IEEE 802.15.4 packet can be attacked when the underlying
hardware is vulnerable to power analysis. The last two aspects of this attack

68 C. O’Flynn and Z. Chen

are to (1) demonstrate how we can trigger that encryption operation, and (2)
determine where in the power signature the encryption occurred.

Details of the required packet format for reception are detailed in the
extended version of this paper. The packet must simply conform to IEEE
802.15.4 requirements and have valid addressing information. The attacker con-
trols the FrameCounter field as part of the attack.

In order for the side-channel attack to be successful, the attacker needs
to determine when the AES encryption is occurring. As a starting point, the
attacker can use information on when the frame should have been received by
the target node. Practically, this would be either the attacker’s transmitter node
toggling an io line when the packet goes over the air, or the attacker could use
another node that also receives the transmitted messages to toggle an io line.

To determine the reliability of such a trigger, we measured the time between
the frame being received and the actual start of AES encryption on the target
node. Over 100 transmitted frames the delay varied between 311 and 338µs.
The mean value of the delay was 325µs (5200 clock cycles), with a standard
deviation of 7µs (112 clock cycles). The jitter in the delay is assumed to be
from the software architecture, which uses an event queue process the frames.
Solutions for aligning or resynchronizing power traces before applying power
analysis is well known [15–18].

To test the ability of an attacker to realign captured power traces, we used
a simple normalized cross-correlation algorithm [19] to match a feature across
multiple power traces for realignment, performing a simple static alignment [20].

The selected feature was a window at 9.2–29.2µs after the start of the AES
encryption in one reference trace, meaning the matched feature extended slightly
beyond the actual AES encryption. We confirmed that a high correlation peak
was generated only for a single sample around the AES algorithm with many
sample power traces. A threshold of 0.965 on the correlation output (determined
empirically) was used; if a power trace had no correlation peak higher than this
level, the trace was dropped.

Future work on this IEEE 802.15.4 attack can include applying more
advanced preprocessing techniques (such as differential frequency analysis or
principal component analysis). But such preprocessing techniques are not
required to fundamentally prove that (a) the AES core is leaking, and (b) the
AES operation has some unique signature allowing realignment to succeed.

6 Conclusions

The IEEE 802.15.4 wireless standard is a popular lower layer for many protocols
being used in or marketed for the coming “Internet of Things” (see Sect. 1 for
an enumeration of some of these). Such protocols often use the same underlying
AES primitive as the IEEE 802.15.4 layer for security purposes.

This paper has demonstrated vulnerabilities in a real IEEE 802.15.4 wire-
less node. A successful attack against the AES peripheral present in the
ATMega128RFA1 device was demonstrated. This attack was demonstrated

Power Analysis Attacks Against IEEE 802.15.4 Nodes 69

against AES-ECB; as electronic code book (ECB) is not the operating mode of
AES used in the network, we extended a previous attack on AES-CTR mode [13]
to work against the AES-CCM* mode used in IEEE 802.15.4. This demonstrated
that it is possible to recover the encryption key of a wireless node using side-
channel power attacks and valid IEEE 802.15.4 messages sent to the node.

An extended version of this conference paper with additional details of the
attack is available at https://eprint.iacr.org/2015/529.

Acknowledgments. The authors would like to thank the anonymous reviewers at
COSADE 2016 for their insightful comments. Colin O’Flynn is funded by the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC) under the CGS
program.

References

1. IEEE: Standard 802.15.4-2006: Wireless Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs) (2006)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

5. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

6. O’Flynn, C., Chen, Z.: A case study of side-channel analysis using decoupling
capacitor power measurement with the OpenADC. In: Garcia-Alfaro, J., Cuppens,
F., Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743,
pp. 341–356. Springer, Heidelberg (2013)

7. de Meulenaer, G., Standaert, F.-X.: Stealthy compromise of wireless sensor nodes
with power analysis attacks. In: Chatzimisios, P., Verikoukis, C., Santamaŕıa, I.,
Laddomada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45, pp.
229–242. Springer, Heidelberg (2010)

8. Atmel Corporation: ATmega128RFA1 Datasheet (2014)
9. Kizhvatov, I.: Side channel analysis of AVR XMEGA crypto engine. In: Proceedings

of the 4th Workshop on Embedded Systems Security, WESS 2009, pp. 8:1–8:7.
ACM, New York (2009)

10. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Heidelberg (2014)

11. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

12. Whiting, D., Ferguson, N., Housley, R.: Counter with CBC-MAC (CCM). https://
tools.ietf.org/html/rfc3610

https://eprint.iacr.org/2015/529
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610

70 C. O’Flynn and Z. Chen

13. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007)

14. Gueron, S.: Intel Advanced Encryption Standard (AES) new instructions set.
Whitepaper Doc. No. 323641-001 (2012)

15. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

16. Gebotys, C.H., Ho, S., Tiu, C.C.: EM analysis of Rijndael and ECC on a wireless
Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

17. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558,
pp. 104–119. Springer, Heidelberg (2011)

18. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

19. Lewis, J.P.: Fast template matching. In: Canadian Conference on Vision Interface
– VI 1995, pp. 120–123 (1995)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007)

Improved Side-Channel Analysis
Attacks on Xilinx Bitstream Encryption

of 5, 6, and 7 Series

Amir Moradi(B) and Tobias Schneider

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany
{amir.moradi,tobias.schneider-a7a}@rub.de

Abstract. Since 2012, it is publicly known that the bitstream encryp-
tion feature of modern Xilinx FPGAs can be broken by side-channel
analysis. Presented at CT-RSA 2012, using graphics processing units
(GPUs) the authors demonstrated power analysis attacks mounted on
side-channel evaluation boards optimized for power measurements. In
this work, we extend such attacks by moving to the EM side channel to
examine their practical relevance in real-world scenarios. Furthermore, by
following a certain measurement procedure we reduce the search space
of each part of the attack from 232 to 28, which allows mounting the
attacks on ordinary workstations. Several Xilinx FPGAs from different
families – including the 7 series devices – are susceptible to the attacks
presented here.

1 Introduction

Side-Channel Analysis (SCA) attacks have become a serious threat to crypto-
graphic implementations. This indeed has been highlighted by publicly reporting
several successful attacks on commercial devices, e.g., [1,5,9,14,15,20]. One of
the well-known examples are the attacks on the bitstream encryption feature
of FPGA devices which also garnered the attention of (industry and academic)
FPGA communities.

The first SCA attack on the bitstream encryption of (out-dated and dis-
continued) Xilinx Virtex-II pro family has been presented in [11], where a full
168-bit key of the underlying triple-DES algorithm could be recovered by a
single power-up of the FPGA (≈70,000 traces) by searching in a space of 26

for each 6-bit part of the key. The second work [12] showed that a similar
attack on more recent Xilinx FPGA families (Virtex-4 and Virtex-5) is feasi-
ble. However, due to the underlying AES-256 algorithm and the implementation
architecture, the presented attack could only recover the key by searching in a
space of 232 for each 32-bit part of the key. To deal with such a complexity,
the authors made use of four graphics processing units (GPUs with a total of
4×448 thread processors) and mounted the attack on a single point of the 60,000
power traces collected from a single power-up of the FPGA. The full 256-bit key
could be recovered in 4.5 h by such a setup while the attack on the second round
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 71–87, 2016.
DOI: 10.1007/978-3-319-43283-0 5

72 A. Moradi and T. Schneider

(to recover the second 128-bit key) was not as efficient as that on the first round.
In all the aforementioned attacks, power traces of various SASEBO or SAKURA
boards have been collected. Since such boards are explicitly designed for power
analysis evaluation purposes, remounting the same attacks on real-work appli-
cations might be challenging, where PCB should be slightly modified to provide
a suitable measurement point.

As a side note, similar attacks on Altera FPGAs (Stratix-II and Stratix-II
families) have been later reported in [13,17]. Compared to that on Xilinx FPGAs,
the attacks required a reverse-engineering step (of the software development
tools) and a sophisticated measurement procedure to deal with the underlying
AES algorithm in counter mode.

Our Contribution. In this work we present an improved attack on bitstream
encryption of modern Xilinx FPGAs. Our achievements can be summarized as
follows:

– By further investigation of the design architecture of the AES decryption
module, we present a more suitable power model for the attacks, particularly
on the second cipher round.

– By means of a dedicated measurement setup, we reduce the search space from
232 for each part of the attack to 28. Therefore, the attacks can be performed
using ordinary desktop computers.

– We present the result of the attacks on Virtex-5, Spartan-6, Kintex-7, and
Artix-7 FPGAs as the samples of 5, 6, and 7 series.

– In contrast to all reported attacks on Xilinx bitstream encryption, we present
the results via electro magnetic (EM) side channel.

In short, we avoid the need of using GPUs, and demonstrate strong and
efficient attacks on bitstream encryption of 7 series FPGAs of Xilinx which are
currently in production.

2 Preliminaries

2.1 Xilinx Bitstream Encryption

Bitstream encryption, in general, has been introduced to prevent cloning and
counterfeiting the user designs. In order to protect proprietary algorithms, secret
materials, and obfuscated designs from reverse engineering, it is essential for
the user to employ bitstream encryption. Xilinx products are mainly SRAM-
based FPGAs, which implies reconfiguration (loading bitstream into the FPGA)
every time the FPGA powers up. Since the bitstream has to be stored outside
the FPGA (in a non-volatile memory), bitstream encryption is a must-to-have
feature for the FPGA vendors, whose products are based on volatile memory
(e.g., Xilinx).

The current available FPGA series of Xilinx make use of AES-256 in cipher
block chaining (CBC) mode to encrypt the bitstream. Suppose that the bitstream

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 73

is divided into n 128-bit blocks pi∈{1,...,n}. The encrypted bitstream, which is
formed by n 128-bit blocks ci, is generated by

ci = AESENC
k (pi ⊕ ci−1),

assuming c0 = IV . The secret key k and the initialization vector IV can be
arbitrary selected by the user. The Xilinx development tools generate a human-
readable ASCI file (with .nky extension) of the selected key and IV , which is
given to the programming device to store the key inside the FPGA. As a side
note, although IV is written into the .nky file, the programming device stores
only the key into the FPGA via the JTAG port. Older versions of the Xilinx
FPGAs make use of only volatile memory for the key storage which requires
an external battery during power shortage. The newer families are, in addition,
equipped with one-time programmable fuses.

Although there are not many public documents about the details of the
structure of the bitstream file, with moderate efforts (similar to that of [11,12])
the essential information can be revealed (e.g., bit and byte endianness and
the size of the header before the encrypted part starts). Such an investigation
recovered that IV (in plain) is available in the bitstream before the encrypted
part starts. Further, this IV must not be necessary the same as the one which
has been formerly written into the .nky file.

2.2 Configuration and Measurement

The encrypted bitstream can be sent to the FPGA via several different protocols
(serial, parallel, master, slave, and JTAG). Since the JTAG port is dedicated to
configuration (and it has to be used for key programming), such a port is usually
available in most of the real-world applications (e.g., set up boxes). In [12], a
customized micro-controller (MCU) has been used to configure the FPGA (via
JTAG) and provide a trigger signal for the oscilloscope. In [11,12], by monitoring
the voltage drop of a resistor in VDDint path, power consumption traces of the
FPGA have been collected. The decryption module inside the FPGA receives
128-bit ciphertext blocks ci∈{1,...,n} in a consecutive fashion, and derives the
plaintexts pi as

pi = AESDEC
k (ci) ⊕ ci−1,

with c0 = IV .
It has been reported in [12] that – in addition to the decryption engine –

other modules of the FPGA are active whose energy consumption (as noise) are
visible through the measured power traces. Hence, filtering the traces to reduce
the noise was essential. As shown in Fig. 1, the decryption of ci takes place
when the next block ci+1 is fed into the FPGA. Further, the decryption clock is
somehow synchronized with the JTAG clock.

2.3 Attack

Since AES-256 consists of 14 rounds, which fits to the 14 visible peaks in the
power trace, it has been assumed that the decryption module in the FPGA

74 A. Moradi and T. Schneider

realizes a round-based architecture of the AES-256, which performs one cipher
round at each single clock cycle [12]. Figure 2 shows the hypothetical design
architecture that has been considered in [12].

0 10 20 30 40 50Time [µs]
ciphertext ci ciphertext ci+1

Fig. 1. A sample power trace of Spartan-6 (with 20 MHz low-pass filter) during loading
an encrypted bitstream

Fig. 2. Hypothetical design architecture of the AES-256 decryption module of modern
Xilinx FPGAs (taken from [12])

Assuming such an architecture, the state register R stores R1 = c ⊕ k14 and
R2 = MC−1

(
SR−1

(
SB−1 (c ⊕ k14)

)⊕k13

)
at the first and second cipher rounds

respectively1. In general, at round 1 < i < 15 the content of the state register
is Ri = MC−1

(
SR−1

(
SB−1 (Ri−1)

) ⊕ k15−i

)
. Indeed, the above shown hypo-

thetical architecture has been verified by examining the correlation between the
measured power traces and the Hamming distance (HD) of the state register in
a known-key settings. As shown in Fig. 3, the power traces show a clear depen-
dency on HD(R1, R2). However, such a dependency is strongly mitigated (but
still available) in the next cipher round, i.e., on HD(R2, R3).

Let us denote R1 ⊕ R2 by ΔR1,R2 and its byte at position i ∈ {0, . . . , 15}
with Δ

(i)
R1,R2

. Following the AES notations, we represent the first column of the
state R by R(0,1,2,3). Hence, due to the linear property of the MixColumns and

1 MC: MixColumns, SR: ShiftRows, SB: SubBytes.

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 75

its inverse we can write

Δ
(0,1,2,3)
R1,R2

=R
(0,1,2,3)
1 ⊕ R

(0,1,2,3)
2

= c(0,1,2,3) ⊕ k
(0,1,2,3)
14 ⊕ M1C−1

(〈
S−1

(
c(0) ⊕ k

(0)
14

)
, S−1

(
c(13) ⊕ k

(13)
14

)
,

S−1
(
c(10) ⊕ k

(10)
14

)
, S−1

(
c(7) ⊕ k

(7)
14

)〉)
⊕ M1C−1

(
k
(0,1,2,3)
13

)
, (1)

where S−1 stands for the Sbox inverse, and M1C−1 for the inverse of the Mix-
Columns operation on a single column.

Fig. 3. Spartan-6, correlation between power traces and HD(R1, R2) and HD(R2, R3)

Since both k
(0,1,2,3)
14 and M1C−1

(
k
(0,1,2,3)
13

)
are fixed and independent of the

ciphertext c, correlation power analysis (CPA) [2] (respectively classical DPA [7])
attacks, that target bits of Δ

(0,1,2,3)
R1,R2

, can be performed by guessing four key bytes〈
k
(0)
14 , k

(13)
14 , k

(10)
14 , k

(7)
14

〉
. Such a 232-bit attack (on a single point of the power

traces) has been performed in [12] using GPUs. The same attack with the same
principle can be performed on the other columns of the ΔR1,R2 to recover full
128-bit round key k14.

Having k14, we can follow the same procedure for the second cipher round.
Let us denote MC−1

(
SR−1

(
SB−1 (c ⊕ k14)

))
by c′ and MC−1 (k13) by k′

13. As
an example, for the first column of ΔR2,R3 we can write

Δ
(0,1,2,3)
R2,R3

=R
(0,1,2,3)
2 ⊕ R

(0,1,2,3)
3

= c′(0,1,2,3) ⊕ k
′(0,1,2,3)
13 ⊕ M1C−1

(〈
S−1

(
c′(0) ⊕ k

′(0)
13

)
, S−1

(
c′(13) ⊕ k

′(13)
13

)
,

S−1
(
c′(10) ⊕ k

′(10)
13

)
, S−1

(
c′(7) ⊕ k

′(7)
13

)〉)
⊕ M1C−1

(
k
(0,1,2,3)
12

)
. (2)

The same attacks (as shown in [12]) can target the bits of Δ
(0,1,2,3)
R2,R3

and search

in a space of 232 to recover
〈
k

′(0)
13 , k

′(13)
13 , k

′(10)
13 , k

′(7)
13

〉
. The same procedure is

repeated for other columns of ΔR2,R3 , and after revealing k14 and k′
13 the 256-

bit main key can be derived.

76 A. Moradi and T. Schneider

(a) (b) (c)

Fig. 4. Different packaging technologies: (a) wire-bond, (b) flip-chip, (c) flip-chip with
lid-heat spreader

3 Our Analysis

3.1 Packaging

In contrast to all the reported SCA attacks mounted on bitstream encryption
of Xilinx devices, we concentrate on EM analysis. Figure 4 shows two different
packaging technologies flip-chip and wire-bond.In case of wire-bond, the metal
layers (of the FPGA chip) are at the top side, and the bonding wires are covered
by molding components (usually plastic, see Fig. 4(a)). Since the main EM radi-
ations are due to the current flowing through VDD path(s), the EM probes can
be placed at the top of the chip, if the top metal layers include the VDDint (see
Fig. 5(b)). For the flip-chip technology, sometimes the top of the chip is covered
by a lid-heat spreader (Fig. 4(c)), which must be removed for EM analysis. Com-
pared to the wire-bond case, the silicon side of the chip (usually a thick layer) is
accessible, which prevents reaching the layers carrying VDD. Hence, the EM sig-
nals are usually weak unless the thick silicon is thinned by means of sophisticated
polishing devices, that also allows using localized EM microprobes [6].

3.2 Measurements

For the EM measurements we used a digital oscilloscope at a sampling rate of
5 GS/s and bandwidth of 1.5GHz. We have employed only near-field probes of
LANGER EMV-Technik. Further, depending on the amplitude of the signal,
we made use of one or two high-bandwidth AC amplifiers ZFL-1000LN+ from
Mini-Circuits.

Depending on the packaging, type of the FPGA, and the visibility of the
signal, we used either RF-U5-2 or RF-R50-1 EM probes. In case of Virtex-5 and
Kintex-7 (both with flip-chip) as well as Artix-7 (wire-bond) we achieved the
best results with a RF-R50-1 probe, and for Spartan-6 (wire-bond) with a RF-
U5-2 probe (see Fig. 5). Except removing the lid-heat spreader of the Virtex-5
FPGA, we did not modify the packaging of the FPGAs.

For the sake of simplicity, we concentrate on the Spartan-6 case, and discuss
the other FPGAs at the end of this section. We also developed a MCU-based

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 77

device to configure the FPGAs through the JTAG port. Figure 6 shows a single
EM trace of the Spartan-6 FPGA (synchronized with that of Fig. 1). As a proof
of concept, and to verify the hypothetical design architecture, in a known-key
scenario we measured 100,000 traces and estimated the correlation considering
HD(Ri, Ri+1), 0 < i < 14. The results, which are shown in Figure 6, indicate
that the high correlation only exist at the first cipher round, which makes the
attacks challenging at the second round.

(a) Virtex-5 (b) Spartan-6 (c) Kintex-7 (d) Artix-7

Fig. 5. EM probes and different FPGAs, (a) XC5VLX50-1FFG324, (b) XC6SLX75-
2CSG484C, (c) XC7K160T-1FBGC, (d) XC7A35T-1CPG236C

We have tried many different hypotheses for the design architecture, and
finally the highest correlation has been observed considering the same architec-
ture as shown in Fig. 2 but with HD(R1, Ri+1), 0 < i < 14 model. Although no
design architecture can justify why the SCA leakage depends on the state regis-
ter at round i+1 and that of the first round, such a model leads to considerably
high correlations2 as shown in Fig. 6.

The previous attacks have been based on measuring one or multiple power-
ups of the FPGA [12]. This means that the ciphertexts have been previously
defined (stored in a non-volatile external memory). Instead, we aim at selecting
the ciphertexts by our choice. Sending chosen cipherexts to the FPGA, how-
ever, has a negative consequence on the interconnections of the FPGA. The
switch boxes and look-up tables are wrongly configured which leads to short cir-
cuits (high power consumption and high temperature) and may destruct certain
modules. Therefore, in order to avoid such consequences, after sending one (or
a couple of) chosen ciphertext(s), the configuration process should be restarted.
This can be easily done by sending certain commands through the JTAG port,
which are available in Xilinx public documents, e.g., [18]. Following such instruc-
tions, we adjusted our MCU-based programmer to perform a configuration reset
after each single measurement. In more details, after starting the configuration
process the MCU device sends the header (the unencrypted part of the bit-
stream), the chosen ciphertext, and a dummy 128-bit ciphertext block. When
the dummy ciphertext is sent, the corresponding EM/power trace is measured,

2 As a side note, we found this leakage model by coincidence, and it is valid for all
considered FPGAs and for both power and EM leakages.

78 A. Moradi and T. Schneider

Fig. 6. Spartan-6, EM analysis, (top) a sample trace, (middle) correlation between
EM traces and HD(Ri, Ri+1) and (bottom) HD(R1, Ri+1), 0 < i < 14

since – as stated in Sect. 2 and shown in Fig. 1 – the decryption of the first
ciphertext takes place when the second ciphertext block is sent.

3.3 Attacks

As explained in Sect. 2, the previous attack needs to search in a space of at least
232. Recalling Eq. (1), if ciphertext bytes c(13), c(10), and c(7) are constant we
can write

Δ
(0,1,2,3)
R1,R2

= c(0,1,2,3) ⊕ k
(0,1,2,3)
14 ⊕ M1C−1

(〈
S−1

(
c(0) ⊕ k

(0)
14

)
, S−1

(
c(13) ⊕ k

(13)
14

)
,

S−1
(
c(10) ⊕ k

(10)
14

)
, S−1

(
c(7) ⊕ k

(7)
14

)〉)
⊕ M1C−1

(
k
(0,1,2,3)
13

)

=
〈
{0e} • S−1

(
c(0) ⊕ k

(0)
14

)
⊕ c(0) ⊕ δ(0),

{09} • S−1
(
c(0) ⊕ k

(0)
14

)
⊕ c(1) ⊕ δ(1),

{0d} • S−1
(
c(0) ⊕ k

(0)
14

)
⊕ c(2) ⊕ δ(2),

{0b} • S−1
(
c(0) ⊕ k

(0)
14

)
⊕ c(3) ⊕ δ(3)

〉

=Δ
′(0,1,2,3)
R1,R2

⊕ δ(0,1,2,3), (3)

where constants {0e}, . . . , {0b} are with respect to the MixColumns Inverse
operation, and • the multiplication in GF(28). Further, δ(0), . . . , δ(3) represent
constants that depend on key k and ciphertext bytes 13, 10, and 7. If – in contrast
to [12] – we select the ciphertexts which are given to the decryption module, and
keep certain ciphertext bytes fixed (13, 10, and 7), we can perform CPA/DPA
attacks by searching in a shorter spaces – as explained below – to find k

(0)
14 .

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 79

Fig. 7. Spartan-6, EM analysis, CPA in 216, HD(Δ
(0)
R1,R2

) model, (a) using 100,000
traces, (b) over the number of traces

Search in a Space of 216. For example, based on Eq. (3) Δ
(0)
R1,R2

can be

predicted by guessing k
(0)
14 and δ(0), i.e., 16 bits. Therefore, HD(Δ(0)

R1,R2
) can be

used and a CPA can be performed accordingly. In this case, the disadvantage is
the way that the constant δ(0) contributes into the HD model. Since Δ

(0)
R1,R2

and
δ(0) are linearly proportional, the use of HD model faces the ghost peak issue [10].
The result of such a 216 attack with 100,000 traces as well as over the number
of traces are shown in Fig. 7. Similarly, other bytes Δ

(i∈{1,2,3})
R1,R2

can be predicted

to find k
(0)
14 by searching in a 216 space.

Search in a Space of 28. Similar to that of [12], the CPA/DPA attacks can be
mounted targeting the bits of Δ

′(0,1,2,3)
R1,R2

by guessing only 8-bit k
(0)
14 (see Eq. (3)).

Due to the 32-bit size of Δ
′(0,1,2,3)
R1,R2

, 32 different attacks with the same target k
(0)
14

can be performed. Since predicting one single-bit flip out of a 128-bit register
certainly leads to a low signal-to-noise ratio [10], it is favorable to combine the
results of these 32 different attacks.

Heuristics. For a guessed key byte k, let us denote the result of the i-th CPA
on sample point j by ρ

(i)
k,j . Following a similar approach to [3], we combine the

results of multiple CPAs with different models by summing them up. As the
constant is unknown we have to add the absolute values of the correlations as

ρk,j =
32∑

i=1

∣∣∣ρ(i)k,j

∣∣∣

to combine the results of all 32 attacks. Figure 8 shows the corresponding results.
It should be noted that – in contrast to their combination – none of the 32 single-
bit CPA attacks could clearly distinguish the correct key byte k

(0)
14 . Indeed, the

complexity of the attack in this setting is 32 × 28.

Joint Probability. Let us suppose that the result of each CPA is a set of prob-
abilities corresponding to the ranked key candidates. In other words, suppose
that the i-th CPA on sample point j returns p

(i)
k,j as the probability of the key

byte k being the correct one. Since the 32 CPAs are independent of each other,

80 A. Moradi and T. Schneider

6.00 6.01 6.02 6.03 6.04
0

0.2

0.4

0.6

Time [µs]

∑
∣ ∣ ∣ ρ

∣∣∣

1 25 50 75 1000

0.4

0.8

1.2

No. of Traces × 103

∑
∣ ∣ ∣ ρ

∣ ∣∣

Fig. 8. Spartan-6, EM analysis, bitwise CPAs in 28, targeting bits of Δ
′(0,1,2,3)
R1,R2

, com-
bined by absolute sum, (a) using 100,000 traces, (b) over the number of traces

we can combine the results as

pk,j =
32∏

i=1

p
(i)
k,j . (4)

At this step, the question raised is how to project the correlation values, i.e.,
the result of the CPA, to probabilities? Following the concept presented in [10]
and also employed in [4], we can apply Fisher’s z-transform and normalize the
result as

r
(i)
k,j =

1
2
√

N − 3
ln

(
1 + ρ

(i)
k,j

1 − ρ
(i)
k,j

)
,

where N is the number of traces used in the CPA. Now, r
(i)
k,j is a sample that

can be (approximately) interpreted according to the normal distribution N (0, 1).
Therefore, we can project it to probability by

p
(i)
k,j = 2

0∫

−
∣
∣
∣r

(i)
k,j

∣
∣
∣

PDFN (0,1)(t)dt = 1 − 2CDFN (0,1)

(
−

∣∣∣r(i)k,j

∣∣∣) ,

where PDFN (0,1) and CDFN (0,1) are respectively the probability density and
cumulative distribution functions of the standard normal distribution.

We have followed this procedure and calculated the joint probabilities based
on Eq. (4). The corresponding results, shown in Fig. 9, indicate that this scheme
is also able to combine the results of all 32 CPAs and finally reveal the key.
As a side note, the probabilities can also be combined following the Bayes’ the-
orem. However, since the Bayes’ theorem results in a set of probabilities with∑
∀k

p
(i)
k,j = 1, for the sample points where none of the key candidates shows a high

correlation, the probability of one key candidate (at that sample point) leads
to a significantly higher value compared to that of the other candidates. This
prevents us to find the most leaking sample points and distinguish the correct
key. Hence, the corresponding results are omitted.

Linear Regression. From another perspective, we can map this problem to
that which has been solved by means of linear regression (also known as

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 81

6.00 6.01 6.02 6.03 6.04
0

0.2

0.4

0.6

Time [µs]

∏
p

1 25 50 75 1000

0.2

0.4

0.6

No. of Traces × 103

∏
p

Fig. 9. Spartan-6, EM analysis, bitwise CPAs in 28, targeting bits of Δ
′(0,1,2,3)
R1,R2

, com-
bined by joint probability, (a) using 100,000 traces, (b) over the number of traces

stochastic attacks) [16]. In other words, we suppose that by guessing k
(0)
14 the bits

of Δ
′(0,1,2,3)
R1,R2

contribute each with a certain weight to the leakage with respect to
constants δ(0,1,2,3). In more details, it is assumed that the leakage l at sample
point j can be written as

lj = β0,j +
32∑

b=1

βb,jgb,

where gb represents the b-th bit of Δ
′(0,1,2,3)
R1,R2

.
In order to find the coefficients βb,j ∈ R – by following the procedure of [16]

– for each guessed key, we form a matrix M as

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 g11 g12 . . . g132
1 g21 g22 . . . g232
. . .
. . .
. . .
1 gN

1 gN
2 . . . gN

32

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where gi
b represents the b-th bit of the predicted Δ

′(0,1,2,3)
R1,R2

(based on the guessed

k
(0)
14) for the i-th measurement (trace). As shown in [8], by means of the least

square estimation, the vector of coefficients �βj = (β0,j , . . . , β32,j) is estimated as

�βj =
(
MTM

)
︸ ︷︷ ︸

A

−1
MT�lj︸ ︷︷ ︸

�αj

,

where MT stands for the transpose of the matrix M, and �lj for the vector of
leakages at sample point j (i.e., N measured traces at sample point j). A is a
matrix of 33×33 and independent of the sample points; hence, it can be derived
with processing only the associated ciphertexts. The vector �αj (formed by 33
elements) is also obtained for each sample point independently. Therefore, for
each guessed k

(0)
14 , all the measured traces are processed once to derive A and

�αj , ∀j. Consequently, �βj , ∀j are derived by A−1�αj . At the next step, instead

82 A. Moradi and T. Schneider

6.00 6.01 6.02 6.03 6.04
0

0.05

0.1

0.15

Time [µs]

C
or

re
la

tio
n

1 25 50 75 100
0

0.1

0.2

0.3

No. of Traces × 103

C
or

re
la

tio
n

Fig. 10. Spartan-6, EM analysis, CPA in 28, weighted bits of Δ
′(0,1,2,3)
R1,R2

, recovered by
linear regression, (a) using 100,000 traces, (b) over the number of traces

of the HD, the following model at sample point j for the i-th measurement is
considered to perform a CPA:3

l̂ij = β0,j +
32∑

b=1

βb,jg
i
b.

In other words, for each key hypothesis k
(0)
14 , the measured traces are processed

two times (first to derive the coefficients β and second to estimate the correla-
tions). Figure 10 shows the results of this attack predicating that it outperforms
all above shown attacks. Although it leads approximately to the same results as
the heuristic approach (Fig. 8), its complexity is lower.

Other Key Bytes. The above explained procedure can be repeated for other
key bytes. For example, by keeping the ciphertext bytes 0, 10, and 7 constant
during the measurements, we can write

Δ
(0,1,2,3)
R1,R2

=
〈
{0b} • S−1

(
c(13) ⊕ k

(13)
14

)
⊕ c(0) ⊕ δ(0),

{0e} • S−1
(
c(13) ⊕ k

(13)
14

)
⊕ c(1) ⊕ δ(1),

{09} • S−1
(
c(13) ⊕ k

(13)
14

)
⊕ c(2) ⊕ δ(2),

{0d} • S−1
(
c(13) ⊕ k

(13)
14

)
⊕ c(3) ⊕ δ(3)

〉
, (5)

which allows the recovery of k
(13)
14 .

It should be noted that the process of each column – in the first cipher round
– is independent of the other columns. Hence, while all ciphertext bytes except
0, 4, 8, and 12 (the first row) are kept constant, four key recovery attacks (each
by searching in a space of 28 to find the corresponding key bytes 0, 4, 8, and 12 of
k14) can independently be mounted. At the next step, a set of traces with fixed
ciphertext bytes except the second row is measured which allows the recovery of
3 We have also followed the suggestions of [8] to examine the squared error between

the measured leakages l and estimated leakages l̂, but our analyses showed better
distinguishability when correlation is estimated instead.

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 83

key bytes 1, 5, 9, and 13. In short, we need to measure four sets of measurements,
in each of which only the ciphertext bytes of one row are selected randomly, while
the other 12 ciphertext bytes are kept constant (at any arbitrary value). With
these four sets we are able to recover the full 128-bit last round key k14.

Next Round. As the target algorithm is AES-256, we need to extend the
attacks to the next decryption round. In contrast to that of [12], where ΔR2,R3

has been considered, based on our findings (presented in Sect. 3.2) we target
ΔR1,R3 , i.e., the difference between the state register at the first and the third
cipher rounds.

8.00 8.01 8.02 8.03 8.04
0

0.01

0.02

Time [µs]

C
or

re
la

tio
n

1 50 100 150 200
0

0.03

0.06

0.09

No. of Traces × 103

C
or

re
la

tio
n

Fig. 11. Kintex-7, EM analysis, CPA in 28 second round, weighted bits of Δ
′(0,1,2,3)
R1,R2

,
recovered by linear regression, (a) using 200,000 traces, (b) over the number of traces

Following the same principle as explained in Sect. 2.3 (particularly Eq. (2))
we can write

Δ
(0,1,2,3)
R1,R3

=R
(0,1,2,3)
1 ⊕ R

(0,1,2,3)
3

= c(0,1,2,3) ⊕ k
(0,1,2,3)
14 ⊕ M1C−1

(〈
S−1

(
c′(0) ⊕ k

′(0)
13

)
, S−1

(
c′(13) ⊕ k

′(13)
13

)
,

S−1
(
c′(10) ⊕ k

′(10)
13

)
, S−1

(
c′(7) ⊕ k

′(7)
13

)〉)
⊕ M1C−1

(
k
(0,1,2,3)
12

)
, (6)

where c′ = MC−1
(
SR−1

(
SB−1 (c ⊕ k14)

))
and k′

13 = MC−1 (k13). By keeping

c′(13), c′(10), and c′(7) constant, we can write

Δ
(0,1,2,3)
R1,R3

=
〈
{0e} • S−1

(
c′(0) ⊕ k

′(0)
13

)
⊕ c(0) ⊕ δ(0),

{09} • S−1
(
c′(0) ⊕ k

′(0)
13

)
⊕ c(1) ⊕ δ(1),

{0d} • S−1
(
c′(0) ⊕ k

′(0)
13

)
⊕ c(2) ⊕ δ(2),

{0b} • S−1
(
c′(0) ⊕ k

′(0)
13

)
⊕ c(3) ⊕ δ(3)

〉
= Δ

′(0,1,2,3)
R1,R3

⊕ δ(0,1,2,3).

(7)

Since the last round key k14 has been recovered, c′ bytes can be arbitrary selected
and the corresponding ciphertext c = SB

(
SR

(
MC (c′)

))⊕k14 can be derived to

84 A. Moradi and T. Schneider

be sent to the FPGA. Therefore, we followed the same procedure as explained
for the first decryption round, and collected four sets of measurements, in each
only one row of c′ is selected randomly and the other bytes kept constant. This
allows us to perform exactly the same attacks (each with complexity of 28) to
find k′

13 byte by byte to finally reveal the full 256-bit key. It is noteworthy that
– in contrast to that of [12] – the attacks on the second round are as efficient as
that on the first round since we are targeting Δ′

R1,R3
instead of Δ′

R2,R3
. As an

example, the results of the attack on k
′(0)
13 (on the Kintex-7 device) are shown

by Fig. 11.

3.4 Comparisons

Table 1 presents the results of the EM attacks on different FPGA families with
different packaging. In general it can be concluded that the attacks on the devices
with flip-chip technology is harder than the wire-bond ones. However, by shrink-
ing the technology (from 65 nm to 28 nm) the attacks become harder as in case of
the Artix-7 FPGA we required around 200,000 traces as one set of the measure-
ments (with a constant row) to reveal the secrets4, i.e., in total 2 × 4 × 200,000
(1.6 million) traces. Since the FPGA device is in hand and control of the adver-
sary, collecting more traces with chosen ciphertexts (if required) does not face
a serious challenge. For example, with our setup we could collect each 100,000
traces of the chosen chiphertexts in around 90 min, which means that all 1.6
million traces5 could be measured in less than a day.

Table 1. The attack performances

Family 5 6 7

FPGA Virtex-5 Spartan-6 Kintex-7 Artix-7

Package Flip-chip Wire-bond Flip-chip Wire-bond

Technology 65 nm 45 nm 28 nm 28 nm

Probe RF-R50-1 RF-U5-2 RF-R50-1 RF-R50-1

Required traces for each set (row) 40,000 2,000 120,000 200,000

For the analyses, as shown in the attack results (Figs. 10 and 11) we have
considered 200 sample points (either for the first or the second decryption round).
These 200 sample points have been selected around the corresponding clock cycle
based on the knowledge obtain from Fig. 6. We split each attack into two parts.
The first part, which derives the matrix A and vectors �αj=1,...,200, for all 28

4 We realized that other components on the PCB (BASYS 3 from www.digilentinc.
com) introduce noise into the EM measurements.

5 It is done in two parts since the second part can be started when k14 has already
been recovered.

www.digilentinc.com
www.digilentinc.com

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 85

key candidates takes 21 min using an 8-core machine @3 GHz on 100,000 traces.
The results are applied in the next corresponding key-recovery CPA on the
same 100,000 traces, which also takes 12 min on the same machine. In total,
for a full recovery (on both rounds) using in total 1.6 million traces we require
2×16×2× (21+12) min (around 1.5 days) using the aforementioned processing
unit. These numbers for sure can be decreased by more parallelization or by
reducing the number of considered sample points. It should be noted that since
the attacks on Spartan-6 require far less number of traces, the measurements and
analyses can be done in significantly shorter time, e.g., less than an hours for
the measurements and the evaluations when each set of measurements contains
only 2,000 traces.

3.5 Authentication

In Virtex-6 and 7 series devices, the bitstream encryption is integrated with an
on-chip bitstream keyed-Hash Message Authentication Code (HMAC). It aims at
authentication of the decrypted bitstream to prove that not even a single bit was
modified. Stated in [19] “Without knowledge of the AES and HMAC keys, the
bitstream cannot be loaded, modified, intercepted, or cloned. HMAC provides
assurance that the bitstream provided for the configuration of the FPGA was
the unmodified bitstream allowed to load”.

As it is also mentioned in Xilinx public documents, unlike the AES-256 key,
there is no storage place for the HMAC key on the FPGA. The HMAC key
is instead included in the bitstream. Our investigations revealed that the first
encrypted blocks (of the encrypted bitstream) carry the HMAC key. However,
since the authentication (examining the correctness of the HMAC) is performed
when all bitstream blocks are transferred and decrypted (i.e., at the end of
the configuration process), it does not harm the chosen ciphertext measurement
scenario explained above. Further, after recovering the AES-256 key, the first two
blocks of an original bitstream can be decrypted to derive the 256-bit HMAC
key. In short, the integrated authentication scheme of all 7 series devices does
not have any effect on the efficiency of our presented attack.

4 Conclusions

This work extended the known SCA attacks on the bitstream encryption fea-
ture of Xilinx. By means of a sophisticated measurement scenario, i.e., chosen
ciphertext, we could reduce the search space from 232 to 28 for each step of
the attack. This allows the attacks to be mounted by ordinary processing units,
e.g., workstation PCs. We have also shown that in case of real-world attacks,
the EM analysis using common ordinary EM probes are also possible, where –
in contrast to all previous attacks on similar devices based on power consump-
tion – modification of the PCB (where the FPGA is embedded) is not required.
Although we have not presented the result of the attacks on Virtex-4 devices, all

86 A. Moradi and T. Schneider

FPGA families from 4, 5, 6, and 7 (where the same AES-256 decryption module
is integrated) are vulnerable to the attacks presented here.

We should refer to the design and architecture of more recent Xilinx fami-
lies UltraSCALE and UltraSCALE+, where several security features, e.g., DPA
countermeasures, have been integrated. Therefore, the attacks presented in this
work are not expected to be portable to the new series devices. However, to
the best of our knowledge, all 7 series devices (which are still in production)
follow the same architecture and design with respect to bitstream encryption,
that predicates on their susceptibility to our attacks.

Acknowledgment. The authors would like to acknowledge Alexander Jakimowic and
Oliver Mischke for their help with development of the setup. The research in this work
was supported in part by the DFG Research Training Group GRK 1817/1.

References

1. Balasch, J., Gierlichs, B., Verdult, R., Batina, L., Verbauwhede, I.: Power analysis
of Atmel CryptoMemory – recovering keys from secure EEPROMs. In: Dunkelman,
O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 19–34. Springer, Heidelberg (2012)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Doget, J., Prouff, E., Rivain, M., Standaert, F.: Univariate side channel attacks
and leakage modeling. J. Crypt. Eng. 1(2), 123–144 (2011)

4. Durvaux, F., Standaert, F.: From Improved Leakage Detection to the Detec-
tion of Points of Interests in Leakage Traces. IACR Cryptology ePrint Archive,
Report/536 (2015)

5. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of the
KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 203–220. Springer, Heidelberg (2008)

6. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

7. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

8. Lemke-Rust, K.: Models and algorithms for physical cryptanalysis. Ph.D. thesis,
Ruhr University Bochum, January 2007

9. Liu, J., Yu, Y., Standaert, F.-X., Guo, Z., Gu, D., Sun, W., Ge, Y., Xie, X.:
Small tweaks do not help: differential power analysis of MILENAGE implemen-
tations in 3G/4G USIM cards. In: Pernul, G., Y A Ryan, P., Weippl, E. (eds.)
ESORICS. LNCS, vol. 9326, pp. 468–480. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24174-6 24

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

11. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from Xilinx
Virtex-II FPGAs. In: Computer and Communications Security, CCS, pp. 111–124.
ACM (2011)

http://dx.doi.org/10.1007/978-3-319-24174-6_24
http://dx.doi.org/10.1007/978-3-319-24174-6_24

Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption 87

12. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the
importance of countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 1–18. Springer, Heidelberg (2012)

13. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-channel attacks on the
bitstream encryption mechanism of AlteraStratix II: facilitating black-box analysis
using software reverse-engineering. In: FPGA, pp. 91–100. ACM (2013)

14. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

15. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S., Attacks, P.: Or how to rapidly
clone some GSM cards. In: IEEE Symposium on Security and Privacy, pp. 31–41.
IEEE Computer Society (2002)

16. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

17. Swierczynski, P., Moradi, A., Oswald, D., Paar, C.: Physical security evaluation of
the bitstream encryption mechanism of Altera Stratix II and Stratix III FPGAs.
TRETS 7(4), 34:1–34:23 (2015)

18. Xilinx (Kyle Wilkinson): 7 Series FPGAs Configuration User Guide (2015). http://
www.xilinx.com/support/documentation/user guides/ug470 7Series Config.pdf

19. Xilinx (Kyle Wilkinson): Using Encryption to Secure a 7 Series FPGA
Bitstream (2015). http://www.xilinx.com/support/documentation/application
notes/xapp1239-fpga-bitstream-encryption.pdf

20. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the need of physical secu-
rity for small embedded devices: a case study with COMP128-1 implementations
in SIM cards. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 230–238.
Springer, Heidelberg (2013)

http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf

Dismantling Real-World ECC with Horizontal
and Vertical Template Attacks

Margaux Dugardin1,2(B), Louiza Papachristodoulou3, Zakaria Najm1,
Lejla Batina3, Jean-Luc Danger1, and Sylvain Guilley1

1 COMELEC, TELECOM ParisTech, 46 rue Barrault, 75014 Paris, France
{margaux.dugardin,zakaria.najm,jean-luc.danger,

sylvain.guilley}@telecom-paristech.fr
2 Thales Communications & Security, CESTI,
3 avenue de l’Europe, 31000 Toulouse, France

3 Digital Security Group, Radboud University Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

louiza@cryptologio.org, lejla@cs.ru.nl

Abstract. Recent side-channel attacks on elliptic curve algorithms have
shown that the security of these cryptosystems is a matter of serious
concern. The development of techniques in the area of Template Attacks
makes it feasible to extract a 256-bit secret key with only 257 traces.
This paper enhances the applicability of this attack by exploiting both
the horizontal leakage of the carry propagation during the finite field
multiplication, and the vertical leakage of the input data. As a further
contribution, our method provides detection and auto-correction of pos-
sible errors that may occur during the key recovery. These enhance-
ments come at the cost of extra traces, while still providing a practical
attack. Finally, we show that the elliptic curve algorithms developed for
PolarSSL, and consequently mbedTLS, running on an ARM STM32F4
platform is completely vulnerable, when used without any modifications
or countermeasures.

Keywords: Side-channel analysis · Horizontal leakage · Vertical
leakage · Scalar multiplication · Brainpool curves · NIST curves ·
mbedTLS

1 Introduction

Implementing security protocols for embedded devices is a constant challenge
for the cryptographic community, due to the development of new and powerful

This work was supported in part by the Technology Foundation (STW) through
project 12624-SIDES, 13499-TyPhoon (VIDI project) the ICT COST action IC1204
TRUDEVICE and the COST action IC1306 Cryptography for Secure Digital Inter-
action, Date: 2016-03-04.

c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 88–108, 2016.
DOI: 10.1007/978-3-319-43283-0 6

Dismantling Real-World ECC 89

side-channel attack techniques. By measuring the power consumption or the
electromagnetic emanation of a device during the execution of a cryptographic
algorithm, it is possible to derive secret data from a single or multiple traces.

Within the area of side-channel attacks there exist different methods of analy-
sis; either by using a single trace (Simple Analysis) or a large number of traces
(Differential and Correlation Analysis) from the target device [7,23]. Template
Attacks belong to yet another kind of attacks and are considered to be the most
powerful method from the information-theoretic point of view, since they take
advantage of most information available in a side-channel observation [9]. The
attacker is assumed to have one or limited number of side-channel measure-
ments from the target device, i.e. power, EM traces or timing, but he has access
to a similar device, on which he can simulate the computations of the target
(template building phase). Rechberger and Oswald presented the first practi-
cal template attack on RC4 running on an 8-bit micro-controller in [29]. Most
notably, the work of De Mulder et al. [27] showed the first practical attack using
electromagnetic emanation of Elliptic Curve Cryptosystems (ECC) on an FPGA
implementation.

The main idea of the attack presented in this paper is a collision attack
exploiting the doubling operation during an ECC computation. Collision attacks
exploit the leakage between two portions of the same or different traces, when the
same intermediate values are reused. In [4,10,11,15], these attacks are presented
as theoretical horizontal attacks using collisions. Our work is a practical hori-
zontal attack. The idea of attacking the doubling operation in the elliptic curve
setting was originally proposed by Fouque and Valette in [14]. Their “Doubling
Attack” is based on the fact that similar intermediate values may be manipulated
when working with points P and 2P. However, in most cases, the intermediate
values during ECC scalar multiplications are different than the input point. The
most efficient result in practical template attacks on ECC is the Online Tem-
plate Attack (OTA), presented in [3], which requires one full target trace and one
template trace per key-bit. With 256 templates, Batina et al. retrieve a 256-bit
key on the twisted Edwards curve used for the Ed25519 signature scheme [16].

Our Contribution. In this work, we present a generic attack to scalar mul-
tiplication algorithms. Our attack affects the open-source libraries mbedTLS
(formerly PolarSSL) and OpenSSL, designed initially for servers and PCs, but
easy to adapt to embedded environments, like smart-phones. We demonstrate
an attack on PolarSSL v1.3.7 with Brainpool brainpoolP256r1 and NIST P-256
curves running on an ARM Cortex-M4 micro-controller on a STM32F4 plat-
form [25]. The vulnerabilities in the modules of the implementation that make
our attack possible, are not fixed in newer versions of PolarSSL (recently bought
by ARM and renamed to mbedTLS [24]). Therefore, our attack can be applied
in the same way as demonstrated in this paper to the most recent version of
mbedTLS v.2-2-0.

90 M. Dugardin et al.

For the demonstration of our attack, we extend the idea of Online Template
Attacks (OTA) by Batina et al. presented in [3]; the authors used one full target
trace and one template trace per key-bit to determine the scalar bit-by-bit.
However, this method requires an identification phase, in order to compute the
threshold between matching and non-matching templates. In our case, there
are two different leakage models, a horizontal and a vertical one. Therefore, a
threshold as described in [3] cannot be established. We propose a more generic
method to distinguish the matching templates.

The horizontal leakage in mbedTLS is a consequence of the software imple-
mentation during multiplication of large numbers (256-bit field elements). In
most cases, the multiplication of large numbers leaks due to the potential prop-
agation of carry. This carry occurs during the register addition between two
words (defined by the length of register). We observed that in OpenSSL (a
widely used open-source library) the different propagation of carry leaks in the
same way as in mbedTLS, making this library vulnerable not only to our attack,
but also to more trivial timing attacks. The timing side-channel leakage due to
different propagation of carry can be eliminated by using a dummy operation,
such as addition by zero. However, in side-analysis an addition by zero can be
detected using vertical leakage. Therefore, this method may create a constant
time implementation, but it is still not really efficient to avoid the problem of
the propagation of carry. Performing the multiplication in the right-to-left (or
from the least significant word to the most significant word) is considered to be a
more natural way of multiplication and at the same time more resistant against
side-channel attacks.

The vertical leakage that we exploited comes from the Hamming weight of
the value stored in the register or the Hamming distance between two values
stored in the same register. Despite the fact that the levels of noise (from the
USB power supply and the general purpose input/output slots) on the STM32F4
platform are high, the vertical leakage can still be exploited to retrieve the scalar
bits.

In the original OTA, the authors did not consider the success rate of the
attack and the fact that OTA can fail in recovering the scalar, if one key-bit
guess is wrong. If a wrong key-bit assumption cannot be detected, then the error
will propagate and the scalar cannot be recovered. Therefore, the advantage of
our adaptive template attack over the original OTA is the fact that it detects and
corrects errors. Making one assumption for each key-bit and deciding according
to the established threshold if this bit is the correct one, does not always give the
correct result. In some instances of our attack, the templates obtained for a “0”
key-bit assumption was very similar to the template made for the assumption
that the key-bit is “1”. To increase the success rate of our attack and to determine
wrong assumptions, we decided to obtain two template traces for each key-bit.
The choice to use both assumptions to create template traces allows to detect
and correct any possible error to get back the whole scalar. An efficient way to
thwart our attack is to use the countermeasure of randomizing the input point.
This is implemented in mbedTLS, but disabled or deterministic by default in

Dismantling Real-World ECC 91

the software, because it requires the use of a random generator function from
the devices under attack.

Organization of the Paper. This paper is organized as follows: We describe
the elliptic curves and the scalar multiplication algorithms used for our attack
in Sect. 2. Section 3 gives an overview of the OTA methodology with vertical and
horizontal leakage. Section 4 presents our practical adaptive template attack on
Brainpool and NIST curves on a STM32F4 micro-controller and the error cor-
rection technique used to improve OTA. Section 5 proposes a discussion about
the efficiency of certain countermeasures against our attack. Finally, Sect. 6 sum-
marizes our results and concludes the paper.

2 Mathematic Background

2.1 Preliminaries on Elliptic Curves

In 1985, Miller [26] and Koblitz [22] introduced the use of elliptic curves for
asymmetric cryptography. The main advantage of using Elliptic Curve Cryptog-
raphy (ECC) over RSA is the memory and the length of the computations; two
important factors for embedded devices. The curves defined over a 256-bit field
provide security level of 128-bits, which is equivalent to a 3072-bit RSA key [6].

An elliptic curve E over Fp can be defined in terms of solutions to the reduced
Weierstrass equation y2 = x3 + ax + b over Fp. The pairs (x, y) that verify the
previous equation represent the affine coordinate of a point over the curve E . For
our experiments, we used the Brainpool curve brainpoolP256r1 recommended
by BSI [8] (noted brainpoolP256r1) and the NIST curve P-256 recommended by
the NIST standard [28]. These curves are defined over a 256-bit field and have
security level of 128 bits (see [17] for more details).

2.2 Scalar Multiplication Algorithm

The scalar multiplication is the main operation in cryptographic protocols using
ECC, such as ECDSA signatures [1] or the Diffie-Hellman key-exchange protocol
(ECDH) [2]. This is an expensive operation that a designer wants to optimize,
yet at the same time a sensitive operation, because it manipulates the secret
key. Many scalar multiplication algorithms are used for efficiency and/or resis-
tance against side-channel attacks. In this paper, we perform an attack against
the binary left-to-right double-and-add-always algorithm (see in [13,19]), which
is considered to be resistant against simple power analysis (SPA). Our attack
applies to other regular algorithms as well, similarly to the original OTA [3].

The double-and-add-always algorithm takes as input a point P = (xP , yP)
in affine coordinates and the scalar k. For our experiments the scalar is 256-bit
long. For every iteration the computation block performs a doubling operation
and an addition with P.

92 M. Dugardin et al.

2.3 Scalar Multiplication Module of mbedTLS

MbedTLS is an open-source cryptographic library [24] recently acquired by
ARM. MbedTLS contains C and assembly code to speed up the computations
over the finite field. The source code is nicely decomposed into modular blocks
and it can be used in embedded devices. For ECC operations, it uses the mod-
ule ecp. To be more efficient the main functions used are doubling in Jacobian
coordinates (DBL) and mixed addition [12] between a point in Jacobian and
a point in affine coordinates (ADD). The cost of these operations is explained
and detailed by Bernstein, Lange et al. in [5]. MbedTLS is intended to be used
in embedded systems which include a hardware multiplier, like smart-phones.
Scalar multiplication in mbedTLS consists of two steps: multiplication, then
modular reduction.

3 Attack Description

3.1 The Main Idea of Online Template Attacks

Online Template Attacks (OTA) constitute an adaptive template attack tech-
nique. The main difference with the classical template attacks as described
in [9,29] is the absence of the building phase. The attack on the double-and-
always-add left-to-right algorithm consists of:

1. The attacker first obtains a target trace with input point P from the target
device.

2. The most significant bit is: kMSB = 1.
3. To find the bit kMSB−i knowing the previous bits mi = kMSB . . . kMSB−i−1:

(a) Template building phase: he obtains two template traces with the input
points [2mi]P and [2mi + 1]P.

(b) Template matching phase: he compares the correlations between the tar-
get and each pair of template traces.

(c) Key bit estimation: the correct key-bit guess is most likely to be given by
highest correlation.

The adversary, depending on the implementation and algorithm used, tries
to find interesting parts of the trace, where information can leak. In ECC imple-
mentations, the interesting parts are inside the scalar multiplication routine and
more precisely the doubling and adding operations. For more details on OTA,
see the Appendix A or [3] for another scalar multiplication algorithms. The main
difference between our attack and the attack described by Batina et al. [3] is that
we use two template traces [2mi]P and [2mi + 1]P to retrieve one key-bit e.g.
2P and 3P for the first bit. By using more template traces, we can detect and
correct an error to increase the success rate of the attack.

Dismantling Real-World ECC 93

3.2 Horizontal Leakage Due to Propagation of Carry

Horizontal leakage usually occurs when there are conditional statements in the
algorithm. This is the case for PolarSSL v1.3.7, mbedTLS v2.2.0 and OpenSSL
v1.0.2 and earlier versions. For mounting our attack, we focus in the doubling
operation inside the scalar multiplication. This is the interesting operation that
we trigger and create our templates from. In case the whole doubling operation is
used to construct templates, it is not possible to achieve high similarity between
our templates and the target, mainly due to the noise and the non-constant time
implementation. As explained later in Sect. 4.3, we cannot use the intermediate
values (in Jacobian coordinates) as input point (in affine) for the templates.
However, by focusing on the operations in the first doubling of the double-and-
add-always algorithm to construct the template traces, we achieve more accurate
results. For the template pattern, we need only the pattern of the first finite-field
multiplication in the doubling. In our implementation (Algorithm 13 in [30]), the
first operations during the doubling of point P = (X,Y,Z) are the following1:

D1 ← X × X mod p

D2 ← Y × Y mod p

...

(1)

In PolarSSL v1.3.7 and mbedTLS v2.2.0 a multiplication between two ele-
ments in the finite field is computed as described in Algorithm 1. The result of
the multiplication is stored in a 512-bit element, called “multiplication-before-
reduction”; then the result is reduced modulo p (the characteristic of the finite
field). For the curves defined in Sect. 2, one element in the finite field is 256-bit
long. The micro-controller is Cortex-M4 with 32-bit registers for data opera-
tions (see Sect. 4.1 for more details). Therefore, one field element corresponds to
8 words of 32-bits.

Let A and B be two 256-bit elements in the finite field. Then, A (resp.
B) can be written as 8 words Ai for all i ∈ {0, 1, . . . , 7} (resp. Bi) of 32-bits.
A0 is the least significant word (LSW) of A and A7 is the most significant
word (MSW) of A. Let X be the result of the multiplication A × B before
reduction; X can be represented by 16 words of 32-bits (X15X14 . . . X0). The
Algorithm 1 shows how multiplication is performed in mbedTLS. The result
A × Bi is stored in eight 32-bit words and there is a potential carry C, which
needs to be stored separately (see step 3). This potential overflow creates a
significant pattern that can be distinguished from its high amplitude when C =
1; this pattern is the propagation of carry as depicted in Fig. 1. The leakage
due to the propagation of carry depends on the MSW of the input data A7.
For brainpoolP256r1, max{A7|A ∈ Fp} = 0xA9FB57DA and the probability of

1 The beginning of the doubling operation is the implementation in PolarSSL v1.3.7.
The sequence of the finite field operations in the doubling operation in the mbedTLS
v2.2.0 changes to: D1 ← X × X, D2 ← 3 × X, but this does not affect the efficiency
of our attack.

94 M. Dugardin et al.

Algorithm 1. Multiplication in mbedTLS
Require: A and B7..B0 two elements of 256-bits long.
Ensure: X = A × B
1: X ← 0
2: for i from 7 down to 0 do
3: (C, Xi+7, Xi+6, . . . , Xi) ← (Xi+7, . . . , Xi) + A × Bi

4: j ← i + 8
5: repeat
6: (C, Xj) ← Xj + C
7: j ← j + 1
8: until C �= 0
9: end for

10: return X

Fig. 1. Propagation of carry during multiplication in the field

having a propagation of carry is close to p = 0.17. For P-256, max{A7|A ∈
Fp} equals 232 − 1, so this probability is close to p = 0.25. The full proof of
this computation of probability is described in AppendixB. As shown in Fig. 1,
we can have 7 propagations during the multiplication, but we cannot detect
the last propagation. So, the probability to have two templates with the same
propagation of carry, denoted by P(C), is:

P(C) =
6∑

i=0

(
6
i

)
p2i(1 − p)2(6−i) (2)

where p is the probability to have an internal propagation of carry. The proba-
bility to have horizontal leakage is 0.86 using p = 0.17 for brainpoolP256r1. For
P-256, the probability to have horizontal leakage is 0.95 using p = 0.25.

However, it is more interesting from the OTA point of view to find out when
a difference in the propagation of carry occurs between the target and template
traces. This is the only part of mbedTLS that is non-constant time and we take
advantage of this timing difference, every time it occurs. In this case, there is

Dismantling Real-World ECC 95

Fig. 2. Squaring of two random data with different propagation of carry

an obvious horizontal leakage between the target and the template traces, as
depicted in Fig. 2.

3.3 Vertical Leakage Due to Signal Amplitude

In constant time executions of our implementation, there is no difference in the
propagation of carry and the template traces are synchronized with the target
trace. In those cases, we observe only a vertical leakage due to the amplitude of
the signal and the same method as described in [3] can be used. To observe this
leakage, we use the pattern matching technique using the Pearson correlation as
a distinguisher.

4 Detailed Phases of the Attack in Practice

4.1 Acquisition Setup

The target device is an STM32F4 micro-controller, which contains an ARM
Cortex-M4 processor running at its maximum frequency (168 MHz). We
imported the assembly code originally included in PolarSSL v1.3.7 to ARM
Cortex-M4 and implemented the double-and-add-always procedure as described
in [13,19]. For the acquisition, we used a 54855 Infiniium Agilent oscilloscope and
a Langer EMV-TECHNIK RF-U5-2 near field probe. The sampling frequency
is 1 GSa/s with 50 MHz hardware input low-pass filter enabled. Matlab 2014b is
used for the analysis, and Inspector SCA tool [18] for depicting the traces in this
paper. The position of the probe was determined to maximize the signal related
to the activity of the 32 × 32 hardware multiplier2.

For the curves defined in Sect. 2, one element in the finite field is 256-bit long.
Thus, each operation over the field consists of manipulating eight processor words
(8 × 32 bits). In our implementation, a multiplication-before-reduction consists
of eight multiplications between a 256-bit element by each 32-bit words of the
second element. It leads to eight easily identifiable patterns of eight blocks on
EM traces. The length between two blocks can be different depending on the
propagation of carry, as explained in Sect. 3.2.
2 This is a simple identification phase, where we scan the device and find where the

crypto processor is. Then we just move the probe around this position, in order to
get a signal as clear as possible.

96 M. Dugardin et al.

4.2 Pre-processing Phase

The pre-processing phase starts with choosing an input point P and obtaining
the target trace from our target device; this is depicted in Fig. 3. In this trace,
we need to spot the multiplication patterns, which are eight blocks of 256 × 32
multiplications depicted in Fig. 4. We note here that this does not constitute a
building phase in the usual template setting, it is just an identification phase.
From the implementation and the device, we know that a 256-bit element is
processed into 32-bit multipliers. Therefore, we expect to see eight patterns for
each multiplication. The multiplication procedure is described in Sect. 3.2.

When we have a clear pattern for the multiplication, we cross correlate this
pattern with our target trace and we obtain the cross-correlation pattern with
one peak at the position of every multiplication. Figure 5 shows the cross corre-
lation of the target trace with the multiplication pattern. By counting the peaks
in the cross-correlation trace, we can find the part of the computation that we
are interested in. For brainpoolP256r1, as explained in [5], the doubling consists
of 10 multiplications (except for the first doubling, where there are only 7 mul-
tiplications3), and the mixed addition consists of 11 multiplications. For P-256,
there is a particular parameter equal to (−3 mod p), so the multiplication by
a in the doubling can be optimized. The doubling consists of 9 multiplications
and the mixed addition of 11 multiplications4.

Fig. 3. EM acquisition for scalar multiplication on P-256 with k = 0xA5A5

Fig. 4. Pattern of multiplication-before-reduction

3 Because in the beginning Z = 1 and we computed aZ4 with 3 multiplications.
4 The fact that doubling is performed faster for P-256, allows us to recover 7 bits of

the scalar at once.

Dismantling Real-World ECC 97

Fig. 5. Cross correlation between the pattern of the multiplication and the target trace

In this way, we can “cut” the target trace in sections according to the loop of
the scalar multiplication operation (as in Fig. 6). The first iteration of the double-
and-add always algorithm is completed after 18 peaks of cross-correlation. For
the next iterations, we take into account that each doubling consists of 9 or 10
multiplications and each addition of 11. For the first bit, the interesting section on
the target is the 19th multiplication. For the second bit, the interesting section is
the 39th multiplication for P-256 or the 40th multiplication for brainpoolP256r1.
For the third bit, the interesting section on the target is the 59th multiplication
for P-256 or the 61th multiplication for brainpoolP256r1, and so on for all the
other bits of the scalar.

Fig. 6. The first seven iterations of the scalar multiplication algorithm on the curve

As the last step of this phase, we calculate multiples of the point P using our
PolarSSL v1.3.7 implementation. We explain this in detail in the next section.

4.3 Template Acquisition

In PolarSSL v1.3.7 (and generally mbedTLS) every input point is represented in
affine coordinates and then converted to Jacobian coordinates. The intermediate
values are represented in Jacobian coordinates. The input points to the device
are given in affine coordinates. To create templates, we need to find an input
point in affine corresponding to an intermediate value in Jacobian coordinates.

The target trace is obtained with input point P = (xP , yP) given in affine
coordinates. In order to compute the intermediate values of the points [2mi]P =

98 M. Dugardin et al.

Fig. 7. Pattern of the
19th multiplication in
trace with input P

Fig. 8. Pattern of the
1st multiplication in trace
with input Q0

Fig. 9. Pattern of the 1st

multiplication in trace with
input Q1

(X[2mi]P , Y[2mi]P , Z[2mi]P) and [2mi + 1]P = (X[2mi+1]P , Y[2mi+1]P , Z[2mi+1]P)
with PolarSSL v1.3.7, we use the formulas defined in [5]. Note that this does not
correspond to the point [2mi]P and [2mi + 1]P in affine coordinates, because
Z[2mi]P , Z[2mi+1]P �= 1. Therefore, we cannot compare directly the templates
with input point [2mi]P (resp. [2mi + 1]P), since they are not in affine form.

We create our templates with a specific input point Qi such that the first
field multiplication D1 in 2P or 3P is the same with the one attacked on the
target trace. The squaring of the X-coordinate of the intermediate value is not
affected by the change of coordinates system.

The way to construct the input point for templates is more sophisticated. Let
us assume that we have the input point Q0 = (xQ0 , yQ0) in affine coordinates
associated to the point value [2mi]P and Q1 = (xQ1 , yQ1) corresponding to
[2mi + 1]P. We need to analyse the squaring of the X-coordinate in Jacobian
coordinates. The input point Q0 = (xQ0 , yQ0) should be a solution in Fp ×Fp of
the following system: {

xQ0 = X[2mi]P
y2

Q0
= x3

Q0
+ axQ0 + b

(3)

with a, b the parameters of the curve as defined in [8,28].
The number X used as input in the squaring is random, so X3 + aX + b is

also random. If x3
Q0

+ axQ0 + b is not a square in the finite field, we can change
one bit in X as proposed in [3] we get another point on the curve that satisfies
Eq. (3).

We locate the first multiplication in the template trace corresponding to the
squaring of the X-coordinate of the input point Q0 or Q1, depicted in Figs. 8
and 9 respectively. With these two patterns and the target trace (Fig. 7), we can
perform template matching.

4.4 Template Matching

In this section, we present how to perform template matching by making the
right hypothesis on a scalar-bit. This procedure is described for the cases of

Dismantling Real-World ECC 99

horizontal and vertical leakage. The probability of having a horizontal leakage
corresponds to the probability of having different propagation of carry between
the two templates.

Horizontal Leakage. When the traces are not synchronized (86 % of cases in
brainpoolP256r1 curve, and 95 % in P-256), cross correlation between the multi-
plication pattern and the target trace is performed before template matching, in
order to choose the correct part of the target trace. Then we align the template
and target traces and decide what the correct key-bit guess is.

Horizontal leakage is observed when there is different propagation of carry
between two multiplications 256× 32 in the field. In Fig. 10 we see the misalign-
ment of the traces due to propagation of carry.

Fig. 10. Misalignment of two template traces due to propagation of carry

Vertical Leakage. When the implementation is executed in constant time and
the template traces are synchronized with the target trace, the same method as
described in [3] can be used (14 % of cases in brainpoolP256r1 and 5 % in P-256).
The propagation of carry is the same between the two templates and the target
as depicted in Fig. 11; therefore, we can only observe a vertical leakage in our
traces. In our experiments, we use the Pearson correlation coefficient ρ(X,Y) as
described in AppendixA.3 and we get a correlation of 0, 81 for the multiplication
obtained from the target trace and the template trace of Q0. The same value
drops to 0, 78 for the correlation of the target trace with the template trace of
Q1.

4.5 Success Rate for One Key-Bit

In this part, the method used to calculate and increase the success rate of our
attack is described. As explained in Sect. 3.2, the probability to have a different
propagation of carry between two templates is 95% for P-256 and 86% for
brainpoolP256r1. The horizontal attack scenario is easy, since if two templates
have different propagation of carry, then the success rate of finding this bit is
100 %.

100 M. Dugardin et al.

Fig. 11. Two templates with the same propagation of carry

For the vertical attack scenario, the success rate depends on the input data.
Therefore, we examine only the input data, for which the propagation of carry
is the same in two template traces. By using random points on each curve for
the target trace, we can compute the success rate in the following way:

1. Acquire 30 target traces.
2. For each target traces and different key bit value:

(a) Acquire 100 template traces for each assumption when the propagation
of carry is the same.

(b) Compute the Pearson correlation between the target and a template trace
for each assumption.

(c) With ki we denote the correct guess for the corresponding key-bit of k. If
ki gives the highest Pearson correlation, then the counter corresponding
to the success of the attack increases. If ¬ki has higher correlation, then
the counter corresponding to the failure of the attack increases.

The success rate per key-bit in vertical leakage is 76.23% for P-256 and 69% for
brainpoolP256r1. The total success rate to find one key-bit, independent of the
leakage model, is 1×0.95+0.76×0.05 = 98.8% for P-256, and 1×0.86+0.69×
0.14 = 95.66% for brainpoolP256r1.

Averaging template traces can increase the vertical information leakage.
When the scalar is randomized, we cannot perform the attack with more than
one target traces. However, we can still acquire more than one template traces.
By using only one target trace with an average of a few template traces, the
success rate increases as shown the Table 1 on the brainpoolP256r1 curve. For
instance, by using 100 template traces the success rate for brainpoolP256r1 curve
is 1 × 0.86 + 0.99 × 0.14 = 99.86%.

Table 1. Different success rates according to the number of average template traces
on brainpoolP256r1 curve.

Number of average traces 1 10 50 100

Success rate 69 % 80.70 % 91.60 % 99.80 %

Dismantling Real-World ECC 101

4.6 Error-Correcting Bit from the Template Traces

The novelty of our method is the possibility of detection and correction of errors.
As we described in the previous section, the success rate to retrieve one bit using
OTA is close to 99%, which means that there is a 1% probability of having an
unsuccessful attack due to a wrong key-guess. For a 256-bit scalar, if an error
occurs in the beginning and it is not detected, the success rate for the original
OTA is 7.6% (0.99255 � 0.076), since this error will propagate and affect all the
bits after the wrong guess. Therefore, it is very important to detect and correct
errors before making new templates. An error can be made when both template
traces have the same propagation of carry. In order to be sure for a key-bit value,
the value of this current bit and the following one can be computed. For instance,
if the two templates for 2P and 3P have the same propagation of carry, then we
create templates for 4P, 5P, 6P and 7P. The following four cases can occur:

1. One template has the same propagation with the target: Then, we can deter-
mine correctly both key-bits. For instance, if the template trace of 7P gives
the same propagation of carry as the target trace, then the only possible bit
values are “1” for the second key-bit and “1” for the third one.

2. Two templates have the same propagation with the target: We need to com-
pute the next 4 templates (4i, 4i + 1, 4i + 2, 4i + 3, where ki is the i-th bit of
the exponent), and recover the next bit using these 4 template traces.

3. Three templates have the same propagation with the target: We compute 6
templates, and recover the next bit using those 6 template traces.

4. Four templates have the same propagation with the target: We compute 8
templates, and recover the next bit using those 8 template traces.

The probability to have one template trace with the same propagation of
carry with the target trace on brainpoolP256r1 is 70 %, two template traces is
14 %, 3 template traces is 3.9 %, 4 template traces is 1.2 %, 5 template traces is
0.4 %, 6 template traces is 0.1 %. The probability for more template traces with
the same propagation of carry is very low. For P-256, the probability to have
one template trace with the same propagation of carry with the target trace
is, 90 %, two template traces is 5.9 %, 3 template traces is 0.7 %, 4 template
traces is 0.1 %, 5 template traces is 0.01 %. For both curves, this probability
reduces significantly for more template traces. As a conclusion, the number of
template traces cannot increase exponentially. At the end of the attack, in order
to retrieve the 256-bit scalar, there can be an uncertainty for the last 2 or 3 bits.
By exhaustive key search or by comparing the corresponding templates with the
template of Q = [k]P, the last 22 or 23 scalar key-bits can be found.

5 Countermeasures

At this point, it is clear that both OTA and our adaptive template attack are
very efficient methods to attack scalar multiplication during the execution of
ECC protocols. These methods can be easily adapted to other scalar multipli-
cation algorithms as described in [19,30]. For the binary algorithm Montgomery

102 M. Dugardin et al.

Ladder [21], we can create templates for the doubling operation and find the
correct key-bit. For the non-binary algorithm using windows, we can obtain tem-
plates for all hypotheses and make the same attack with more template traces.
Since the most commonly used scalar multiplication algorithms are vulnerable to
our attack, it is interesting to see which countermeasures can be applied against
it. We hereby give of the classical countermeasures against side-channel attacks
and their efficiency against our attack:

– Randomization of the scalar.
The result of randomizing the scalar will be getting traces with [k′]P instead
of [k]P , with k′ defined below. The important property that thwarts random-
ization of the scalar, is the fact that we need only one target trace, this the
same randomized k′ is manipulated throughout the attack. For the template
traces, we always need the first part of the trace, which corresponds to the
beginning of the scalar multiplication algorithm running with input point a
multiple m of P. This part of the trace is not affected by the randomization
of the scalar. The different ways of scalar randomization are:

1. [k]P = [k − r]P + [r]P, two scalar multiplications are computed Q =
[k − r]P and R = [r]P;

2. [k]P = [k × r−1]([r]P), two scalar multiplications are computed Q = [r]P
and R = [k × r−1]Q;

3. [k]P = [k mod r]P + [�k
r �]([r]P), three scalar multiplications are com-

puted Q = [k mod r]P, R = [r]P and S = [�k
r �]R.

4. [k]P = [k′]P − [rq]P, where q is the order of the curve and k′ = k + rq is
the randomized scalar. Thus, [rq]P = O the neutral element on E .

For all these randomization techniques, our attack can be applied; the target
trace requires one acquisition on the second or third scalar multiplication. This
acquisition is possible using an oscilloscope with big memory depth. For the
template traces, we make assumptions for each part of the scalar multiplica-
tion. We retrieve a random scalar part for each scalar multiplication part. In
order to retrieve the scalar, we compute the addition (randomization 1.), the
multiplication (randomization 2.) or both addition and multiplication of the
scalar (randomization 3.). For the fourth case, we can recover the randomized
scalar k′. Therefore, scalar randomization is not efficient against our type of
attack.

– Randomization of the point.
The Jacobian representation of the point can be easily randomized simi-
lar to projective coordinates. For Jacobian coordinates, the randomization
consists in selecting a random r in the finite field Fp, and computing:
(X,Y,Z) �→ (r2 × X, r3 × Y, r × Z). In most cases, the input point is in
affine coordinates, so the randomization of the point is reduced to compute:
(x, y) �→ (r2 × x, r3 × y, r). The supplementary cost of this countermeasure
is 5 finite field multiplications. For comparison, the cost of one scalar mul-
tiplication using 256-bit scalar with a regular algorithm such as double-and-
add-always is 5100 multiplications. Applying randomization of the input point
does not allow to predict intermediate values of the calculation and prevents

Dismantling Real-World ECC 103

the construction in a deterministic way for the template traces. This counter-
measure is implemented in mbedTLS, and it should be used when the device
under attack has a random generator.

– Random isomorphic elliptic curve.
The idea to protect scalar multiplication by transforming a curve through
various random morphisms was initially proposed by Joye and Tymen in [20].
Assume that φ is a random isomorphism from EK → E ′

K , which maps P ∈
EK → P ′ ∈ E ′

K . Multiplying P ′ with k will give Q′ = [k]P ′ ∈ E ′
K . With the

inverse map φ−1 we can get back to Q = [k]P. For applying our attack, we
need to know the internal representation of the point, so if P ′ is on a different
curve that the adversary does not know, he cannot create input points in this
representation.

6 Conclusions

In this paper we presented a practical extension of OTA on Brainpool brain-
pool256r1 and NIST P-256 curves implemented on an ARM Cortex M4 micro-
controller. A modified version of OTA is applied with the Pearson correlation
coefficient as distinguisher for the correct hypothesis on the key-bit.

Error detection and correction of a wrong key-bit guess is possible for our
adaptive template attack, and increases the success rate of the attack from 7.6%
to 99.8% for a 256-bit scalar. We achieve these results by averaging 100 template
traces and using two template traces to recover each key-bit.

Horizontal leakage due to conditional statements was not expected to be
seen in recent cryptographic implementations, but unfortunately they are still
used. An implementation without conditional statements would not prevent our
attack, but it would reduce its success rate to that of OTA.

Most of the countermeasures applicable to the original OTA attack should
also work against our attack. Randomizing the input point, by randomizing its
coordinates, for every execution of the attacked algorithm is the most efficient
countermeasure against OTA, though incurring with some cost for the perfor-
mance of the implementation. Point randomization is also efficient against our
attack, since we need to know the input point and its intermediate values. Actu-
ally, the adversary needs to be able to choose input points for templates. The
countermeasure of point blinding must be activated, in order to use mbedTLS
in ARM embedded devices. Adoption of this countermeasure is not straight-
forward, because it requires the use of a random generator in the device under
attack.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their useful comments that improved the quality of the paper. Moreover, the first
author would like to thank Jean-Christophe Courrège and Carine Therond for useful
comments on an earlier version of this work.

104 M. Dugardin et al.

A Description for Online Template Attack

A.1 Attack Model for OTA

Online Template Attacks (OTA), introduced in [3], is an adaptive template
attack technique, which can be used to recover the secret scalar in a scalar
multiplication algorithm. The main assumption in the OTA attacker model is
in his ability to choose an input point to the scalar multiplication algorithm, in
order to generate template traces. As it is demonstrated in the original paper,
OTA works with one target trace from the device under attack and one template
trace per key-bit obtained from the attacker’s device that runs the same imple-
mentation. Performing OTA in practice requires the following assumptions to
be made regarding the attacker:

– The attacker knows the input P of the target device.
– He knows the implementation of the scalar multiplication algorithm and he is

able to compute the intermediate values.
– He can choose the input points on a device similar to the target device.

Furthermore, we work with the following assumptions related to the device:

– The scalar can be randomized.
– The intermediate values are deterministic.

The OTA is then performed as follows:

1. The attacker first obtains a target trace with input point P from the target
device.

2. He obtains template traces with input points [m]P,m ∈ Z for multiples of
the point P, e.g. 2P or 3P.

3. He compares the correlations between the target and each pair of template
traces. The correct guess is most likely to be the highest correlation.

The OTA technique is originally described for binary algorithms, but it can be
easily adapted to the windows method by creating one template for a hypothesis
made for each window.

The attacker model for OTA is more suitable for the Diffie-Hellman key-
exchange protocol, because the input point can be selected. Nevertheless, this
attack can be applied against the ECDSA algorithm, if the input point of the
target device is known.

A.2 Constructing Template Traces for OTA

At this point, it is important to explain precisely how the interesting points to
generate the template traces are chosen. With the term interesting points we
mean the multiples of the point P that are expected to be the outputs of every
iteration of the scalar multiplication algorithm, i.e. 2P and 3P for the first bit
of the scalar. This is demonstrated with a graphical example depicted in Fig. 12.

Dismantling Real-World ECC 105

Fig. 12. How to find the second MSB KMSB−1 in the target trace with the template
trace of 2P

Fig. 13. How to find the third MSB KMSB−2 in the target trace with the template
trace of 4P

Let us assume that the initial input point to the double-and-add-always algo-
rithm is P and the most significant bit (KMSB) of our secret scalar is 1. Then,
the output of the second iteration (operations for KMSB−1) is either 2P or 3P.
For example, if KMSB−1 = 0, then the output of the second iteration is 2P and
consequently the template trace for 2P gives higher correlation to the target
trace than the template for 3P. We compute the correlations between the tem-
plate traces 2P, 3P, and the target trace, in order to find the most likely key-bit.
The highest correlation value is considered to be the right key guess.

We continue the same procedure of calculating the two possible outcomes for
bit KMSB−2, which are the template traces for 4P or 5P, and then finding the
highest correlation between the templates and the target trace. Figure 13 shows
how the templates for the third bit KMSB−2 can be generated. In general, for
each iteration of the scalar multiplication algorithm, we compare the second iter-
ation of the scalar multiplication execution (corresponding to the first doubling
operation whose consumption is detected with EM) in the template trace with
the (i + 1)th execution of the target trace.

A.3 Template Matching Phase

Template matching is performed at suitable parts of the traces, where key-bit
related assignments take place. Our pattern matching technique, in order to
distinguish the right hypothesis on the attacked bit of the scalar, is based on
the Pearson correlation coefficient ρ(X,Y) between the target trace and the

106 M. Dugardin et al.

template traces.

ρ(X,Y) =
∑

i(Xi − X̄)(Yi − Ȳ)√∑
i(Xi − X̄)2

√∑
i(Yi − Ȳ)2

=
〈X − X̄, Y − Ȳ 〉

||X − X̄|| ||Y − Ȳ || (4)

We chose this metric, since it is both scale and offset-shift invariant.

B Probability of the Propagation of Carry

Computing the probability of having an inner carry is the same as computing
the probability of (X × Y + R × 232) ≥ 264 with X a random value between
[0,max{A7|A ∈ Fp}], with Y a random value between [0,max{Bi|B ∈ Fp, i ∈
{0, · · · , 7}}] and with R a random value between [0,max{Xi|X ∈ F(p−1)2 , i ∈
{7, · · · , 15}}]. For all curves, max{Bi|B ∈ Fp, i ∈ {0, · · · , 7}} and max{Xi|X ∈
F(p−1)2 , i ∈ {7, · · · , 14}} equal 232 − 1. The value max{A7|A ∈ Fp} depends
on the MSW of the characteristic of the finite field. The probability can be
computed as follows:

P(X × Y + R × 232) ≥ 264) =
1
4

max{A7|A ∈ Fp}2
264

(5)

We hereby give a the complete computation of the probability of an inner-
carry propagation (Eq. 5)

P(XY + 2
32

R ≥ 2
64

)

=

A7−1
∑

x=0

232−1∑

y=0

232−1∑

r=0
P(XY + 2

32
R ≥ 2

64 | X = x, Y = y,R = r)P(X = x)P(Y = y)P(R = r)

=

A7−1
∑

x=0

232−1∑

y=0

232−1∑

r=0
P(xy + 2

32
r ≥ 2

64
)

1

A7

1

232

1

232

=
1

A7

1
(
232
)2

A7−1
∑

x=0

232−1∑

y=0

232−1∑

r=0
1
xy+232r≥264 ,where 1 is the indicator, i.e.,1z =

{
0 if z is false,

1 otherwise

which can be approximated by:

1

A7

1

(232)2

∫ A7−1

x=0

∫ 232−1

y=0

∫ 232−1

r=0

δxy+232r≥264drdydx

� 1

A7

1

(232)2

∫ A7

x=0

∫ 232

y=0

∫ 232

r=0

δxy+232r≥264drdydx

=
232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=0

δxy+r≥1drdydx

with x ← x/232, y ← y/232, r ← r/232 and a7 = A7/232.
It holds, δxy+r≥1 = δr≥1−xy. Besides, 1 − xy ∈ [1 − a7, 1] ⊂ [0, 1]. Indeed,

0 ≤ x ≤ a7, 0 ≤ y ≤ 1 =⇒ 0 ≤ xy ≤ a7, hence 1 − a7 ≤ 1 − xy ≤ 1.

Dismantling Real-World ECC 107

Therefore,

232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=0

δxy+r≥1drdydx =
232

A7

∫ a7

x=0

∫ 1

y=0

∫ 1

r=1−xy

drdydx

=
232

A7

∫ a7

x=0

∫ 1

y=0

xydydx =
232

A7

∫ a7

x=0

xdx ×
∫ 1

y=0

ydy

=
232

A7

[
x2

2

]a7

0

×
[
y2

2

]1

0

=
232

A7

a2
7

2
× 1

2
=

232

A7

1
4
a2
7 =

1
4

A7

232
.

For A7 = 232−1, this yields ≈0.25. For A7 = 0xA9FB57DA, this yields ≈0.166.

References

1. ANSI-X9.62. Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA) (1998)

2. ANSI-X9.63. Public Key Cryptography for The Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography (1998)

3. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tunstall,
M.: Online template attacks. In: Proceedings of Progress in Cryptology -
INDOCRYpPT –15th International Conference on Cryptology in India, New Delhi,
India, 14–17 December, pp. 21–36 (2014)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack
on elliptic curves. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 553–570. Springer, Heidelberg (2014)

5. Bernstein, D.J., Lange, T.: Explicit formulas database. http://www.hyperelliptic.
org/EFD/

6. Cryptographic Key Implementation BlueKrypt
7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

8. BSI: RFC(5639)-Elliptic Curve Cryptography (ECC) Brainpool Standard Curves
and Curve Generation. Technical report, Bundesamt für Sicherheit in der Informa-
tionstechnik (BSI) (2010)

9. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: 4th International Workshop
on Cryptographic Hardware and Embedded Systems - CHES, Redwood Shores,
CA, USA, August 13–15, Revised Papers, pp. 13–28 (2002)

10. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

12. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

13. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/

108 M. Dugardin et al.

14. Fouque, P.A., Valette, F.: The Doubling Attack – Why Upwards Is Better than
Downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol.
2779, pp. 269–280. Springer, Heidelberg (2003)

15. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.: Collision-based power
analysis of modular exponentiation using chosen-message pairs. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 15–29. Springer, Heidelberg
(2008)

16. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013)

17. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography,
vol. 317. Cambridge University Press, Cambridge (1999)

18. Riscure Inspector
19. Joye, M.: Elliptic curve cryptosystems and side channel analysis. ST J. Syst. Res.

4, 17–21 (2003)
20. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve

cryptography. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 377–390. Springer, Heidelberg (2001)

21. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

22. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
24. ARM mbed. Polarssl version 1.3.7. https://tls.mbed.org/
25. ST Microelectronics: RM0090 Reference Manual. DocID018909 Rev 8 (2014)
26. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)

CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
27. De Mulder, E., Buysschaert, P., Berna Örs, S., Delmotte, P., Preneel, B.,

Vandenbosch, G., Verbauwhede, I.: Electromagnetic analysis attack on an FPGA
Implementation of an elliptic curve cryptosystem. In: IEEE International Confer-
ence on Computer as a Tool, Belgrade, Serbia & Montenegro, November 2005,
pp. 1879–1882 (2005). doi:10.1109/EURCON.2005.1630348, http://www.sps.ele.
tue.nl/members/m.j.bastiaans/spc/demulder.pdf

28. NIST: FIPS publication 186–4 - Digital Signature standard (DSS). Technical
report, National Institute of Standards and Technology (NIST), July 2013

29. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

30. Rivain, M.: Fast and regular algorithms for scalar multiplication over elliptic curves.
IACR Cryptology ePrint Archive, 2011:338 (2011)

https://tls.mbed.org/
http://dx.doi.org/10.1109/EURCON.2005.1630348
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf
http://www.sps.ele.tue.nl/members/m.j.bastiaans/spc/demulder.pdf

Fault Analysis

Algorithmic Countermeasures Against Fault
Attacks and Power Analysis for RSA-CRT

Ágnes Kiss1(B), Juliane Krämer1,2, Pablo Rauzy3, and Jean-Pierre Seifert2

1 TU Darmstadt, Darmstadt, Germany
agnes.kiss@crisp-da.de, jkraemer@cdc.informatik.tu-darmstadt.de

2 TU Berlin, Berlin, Germany
{juliane,jpseifert}@sec.t-labs.tu-berlin.de

3 Inria, CITI Lab, Villeurbanne, France
pablo.rauzy@inria.fr

Abstract. In this work, we analyze all existing RSA-CRT countermea-
sures against the Bellcore attack that use binary self-secure exponen-
tiation algorithms. We test their security against a powerful adversary
by simulating fault injections in a fault model that includes random,
zeroing, and skipping faults at all possible fault locations. We find that
most of the countermeasures are vulnerable and do not provide suffi-
cient security against all attacks in this fault model. After investigating
how additional measures can be included to counter all possible fault
injections, we present three countermeasures which prevent both power
analysis and many kinds of fault attacks.

Keywords: Bellcore attack · RSA-CRT · Modular exponentiation ·
Power analysis

1 Introduction

In a fault attack, an adversary is able to induce errors into the computation of a
cryptographic algorithm and thereby to gain information about the secret key or
other secret information used in the algorithm. The first fault attack [4] targets
an RSA implementation using the Chinese remainder theorem, RSA-CRT, and
is known as the Bellcore attack. The Bellcore attack aroused great interest and
led to many publications about fault attacks on RSA-CRT, e.g., [1,6,9,11,22].
Countermeasures to prevent the Bellcore attack can be categorized into two
families: the first one relies on a modification of the RSA modulus and the second
one uses self-secure exponentiation. The countermeasures in the first family were
recently analyzed [21], and a formal proof of their (in)security was provided.

We complement the work of [21] by comprehensively analyzing the counter-
measures in the second family, i.e., those based on self-secure exponentiation.
These countermeasures use specific algorithms that include redundancy within
the exponentiations. The first such method is based on the Montgomery lad-
der [9]. This was adapted to the right-to-left version of the square-and-multiply-
always algorithm [5,6] and to double exponentiation [18,22]. We test the security
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 111–129, 2016.
DOI: 10.1007/978-3-319-43283-0 7

112 Á. Kiss et al.

of these methods using an automated testing framework. We use the same fault
model as in [21], but extend it to meet the particularities of self-secure expo-
nentiation algorithms. We reveal that the countermeasures have certain vulner-
abilities in this extended fault model. Based on these findings, we improve the
countermeasures and present three self-secure exponentiation methods that are
secure against fault injections, safe-error attacks, and power analyses. We note
that non-algorithmic level countermeasures are not in the scope of this paper.

Our Contribution: In this paper, we test the security of the self-secure
exponentiation countermeasures against the Bellcore attack by simulating
random, zeroing, and skipping faults at all possible fault locations (Sect. 4).
Thereafter, we propose secure countermeasures, step-by-step achieving pro-
tection against all fault injections and resistance to power analysis and safe-error
attacks. We present one countermeasure for each of the exponentiation algo-
rithms used as self-secure exponentiation: the Montgomery ladder, the square-
and-multiply-always algorithm, and the double exponentiation method. Despite
the natural overhead caused by the included measures against all the considered
attack types, our algorithms remain highly efficient (Sect. 5).

2 Background

In this section, we give the necessary background information for our work.

2.1 The Bellcore Attack on RSA-CRT

We use the standard notation for RSA [23]: M denotes the message, N = pq the
public modulus with secret primes p and q, ϕ(N) = (p − 1)(q − 1). The public
exponent e with gcd(e, ϕ(N)) = 1 is chosen along with the secret exponent d,
where e·d ≡ 1 mod ϕ(N). The signature is calculated S = Md mod N , and Se ≡
(Md)e ≡ M mod N. The calculation can be speeded up by a factor of four using
the RSA-CRT implementation [20]. Two smaller exponentiations Sp = Mdp mod
p and Sq = Mdq mod q are performed with exponents dp = d mod (p − 1),
dq = d mod (q − 1), and recombined with the method S = CRT(Sp, Sq) =
((Sp − Sq)iq mod p)q + Sq, where iq = q−1 mod p. The public key of RSA-CRT
is (e,N) and the private key includes p, q, dp, dq and iq.

A fault attack is a physical attack where the attacker is able to induce faults
into the execution of the algorithm. The first attack on RSA-CRT was proposed
by Bellcore researchers [4]. The fault is induced into the calculation of strictly
one of the intermediate signatures, resulting in Ŝp (or Ŝq). If Ŝp (or Ŝq) is used
during recombination, a faulty signature Ŝ is returned. With high probability q
(or p) can be deduced as gcd(S − Ŝ, N) [4] or as gcd(Ŝe − M mod N,N) [11].

During the discussion of fault attacks, the precise description of the fault
model is essential: it includes the assumptions on the adversary’s abilities. The
Bellcore attack targeting an unprotected implementation uses one fault injection
and loose assumptions in the fault model, i.e., a very weak attacker. The attacker
is only assumed to alter an intermediate signature, which can be achieved by

Algorithmic Countermeasures Against Fault Attack 113

an arbitrary modification of any variable throughout the exponentiation, i.e.,
affecting any bit or any byte results in a successful attack.

2.2 Safe-Error Attacks

Classical fault attacks exploit the corrupted result or the difference between a
correct and faulty results. However, it was noted in [26] that secret information
may leak depending on if a fault has effect on the result of the computation or
not. The techniques that exploit such behavior are called safe-error (SE) attacks.

Computational safe-error attacks (C-SE) [27] target dummy operations. If
the result remains error-free although a fault was induced, it affects a dummy
operation and thus, information about the secret key can be revealed.

Memory safe-error attacks (M-SE) [26] assume a more powerful attacker.
Knowing how the internal variables are processed in the memory throughout
a certain step of the algorithm, one may be able to derive the secret key [26].
Memory safe-error attacks are prevented by randomizing the targeted variables.

2.3 Power Analysis Methods

Simple power analysis (SPA) studies the power consumption of a single execution
of the algorithm. If the execution depends on the value of the secret key, the
adversary is able to obtain information by analyzing the power trace.

Differential power analysis (DPA) is a natural extension of SPA [16]. When
performing a DPA, an attacker collects several power trace measurements of
the executions of the same algorithm and uses statistical methods to reveal the
secret key. Prevention generally requires randomization of variables.

2.4 Algorithms for Regular Exponentiation

Classical modular exponentiation algorithms are vulnerable to SPA, since the
power consumption of the different operations can be differentiated [17]. To
prevent SPA, regularity of the modular exponentiation algorithms is required. It
means that the same operations are performed independently from the value of
the exponent. Below, we recapitulate the two most widely used binary methods.

Algorithm 1. SPA-resistant modular exponentiation methods
(1a) Square-and-multiply-always [7]

input: M �= 0, d = (dn−1, . . . , d0)2, x
output: Md mod x

1: R0 := 1, R1 := 1, R2 := M

2: for i = 0 to n − 1 do
3: Rdi

:= Rdi
· R2 mod x

4: R2 := R2
2 mod x

5: end for

6: return R0

(1b) Montgomery ladder [13]

input: M �= 0, d = (dn−1, . . . , d0)2, x
output: Md mod x

1: R0 := 1, R1 := M

2: for i = n − 1 to 0 do
3: Rdi

:= Rdi
· Rdi mod x

4: Rdi := R2
di

mod x
5: end for

6: return R0

114 Á. Kiss et al.

Square-and-Multiply-Always: The right-to-left exponentiation algorithm
was modified in [7] to the square-and-multiply-always method, shown in Algo-
rithm 1a. By introducing dummy operations in register R1 (line 3), one squaring
and one multiplication is performed at each iteration.

Montgomery Ladder: The powering ladder, shown in Algorithm 1b, was
proposed in [19] and its correctness discussed in [13]. The algorithm is regular
without including dummy operations and is resistant to safe-error attacks [13].

3 Countermeasures Against the Bellcore Attack

To counter the Bellcore attack, straightforward countermeasures aim to verify the
integrity of the computation before returning the result, e.g., by repeating the
computation and comparing the results. Due to the inefficiency of such measures,
several improved countermeasures appeared starting from 1999.

3.1 Two Families of Countermeasures

The advanced countermeasures were divided into two families according to the
difference in their nature [21]: Shamir’s family and Giraud’s family. We refer to
the latter as self-secure exponentiation countermeasures.

Shamir’s family consists of the countermeasures that prevent the Bellcore
attack by multiplicatively extending the modulus x with a random number s.
They rely on the fact that an invariant, inherited from the calculations modulo
the extended modulus, i.e., modulo x·s, must hold modulo s. Shamir’s algorithm
from [24] motivated researchers to develop such countermeasures, e.g., [1,12,21].

The idea of self-secure exponentiation countermeasures was proposed
in [9]. If the exponentiation algorithm returns more than one power of a given
input and keeps a coherence between its registers throughout the exponentiation,
an invariant can be formulated that must hold at the end of the algorithm.
However, it is claimed to be lost if a fault injection takes place.

3.2 Self-secure Exponentiation Countermeasures

In this section, we recapitulate the existing self-secure exponentiation counter-
measures. The algorithms are provided in Appendix A in Algorithms 5–10.

The first countermeasure was proposed by Giraud [9]. It exploits the fact
that while using the Montgomery ladder, the temporary registers R0 and R1

are of the form (Mk−1 mod x, Mk mod x) for some integer k after each iter-
ation of Algorithm 1b. After two exponentiations that result in the pairs
(S′

p = Mdp−1 mod p, Sp = Mdp mod p) and (S′
q = Mdq−1 mod q, Sq =

Mdq mod q), and two recombinations S′ = CRT(S′
p, S

′
q) = Md−1 mod pq and

S = CRT(Sp, Sq) = Sd mod pq, the invariant M · S′ ≡ S mod pq holds. Giraud
claims that in case of a fault attack within the exponentiation, the coherence
is lost for Sp, S

′
p (or Sq, S

′
q) and thus for S and S′. Despite its advantages, the

Montgomery ladder exponentiation remains vulnerable to DPA [16] (DPAexp).

Algorithmic Countermeasures Against Fault Attack 115

Fumaroli and Vigilant blinded the base element with a small random num-
ber r [8], using one more register R2 in the exponentiation. Besides being
more memory-costly, this method was proven to be insecure against fault
attacks [14], due to the lack of coherence between R2 and the other registers.
Moreover, it remains vulnerable to the DPA attack on the CRT recombination
from [25] (DPACRT).

The square-and-multiply-always algorithm (Algorithm 1a), uses dummy oper-
ations to prevent SPA. Boscher et al. in 2007 proposed a self-secure exponenti-
ation countermeasure based on this algorithm [6]. In the end of the execution, R0

holds the value Md mod x, R1 holds M2n−d−1 mod x, while R2 only depends
on the binary length n of the exponent, and equals to M2n

mod x. Thus, the
coherence M · R0 · R1 ≡ R2 mod x is kept throughout the algorithm. Boscher
et al. in 2009 [5], modified the method in order to achieve resistance against
DPA on the exponentiation without significant overhead. 2w-ary versions of the
algorithm were proposed [2,10].

Rivain proposed a solution that uses double exponentiation [22]. Such a
method receives the base M , two exponents d1, d2, the modulus x, and outputs
both Md1 mod x and Md2 mod x. It makes use of a double addition chain for the
pair (d1, d2), by means of which the two modular exponentiations are performed
at once, using altogether 1.65n operations on average We assume this chain to
be precomputed. Le et al. presented a double exponentiation algorithm, that
does not rely on precomputation [18]. The binary exponentiation works as two
parallel executions of the right-to-left exponentiation and uses register R0 for
calculations with d1 and register R1 for calculations with d2. M2n

mod x is
computed only once and is stored in R2.

Table 1 summarizes the different properties of the self-secure exponentiation
countermeasures. We consider the security and efficiency of the methods, since

Table 1. Self-secure exponentiation countermeasures. CRT, check, inv., reg., mult., and
sq. denote the number of CRT recombinations, checking procedures, inversions, addi-
tional large registers, multiplications, and squaring operations respectively, in terms
of the bit-length n of the exponent. PA and SE denote the resistance against power
analysis and safe-error attacks. � means that there are included countermeasures, ×
refers to the lack of them.

Countermeasure Efficiency criteria Physical attacks

Author(s) Ref. CRT Check Inv. Reg. Mult. Sq. PA SE

Ref. Alg. Total Per exp. SPA
exp

DPA
CRT
DPA C M

Giraud [9] 5 2 4 0 3 n n � × � � �
Fumaroli,Vigilant [8] 6 2 4 2(p,q) 4 n + 3 2n � � × � �
Boscher et al. ’07 [6] 7 3 5 0 4 n n � × × � ×
Boscher et al. ’09 [5] 7 3 5 1(pq) 4 n + 2 n � � × � �
Rivain [22] 8 1 2 0 2 1.65n × × × � ×
Rivain (SCA) [22] 9 1 2 0 3 1.65n 0 � � × � �
Le et al. [18] 10 1 2 0 3 0.67n n × × × � ×

116 Á. Kiss et al.

measures against physical attacks imply overhead. When discussing efficiency, we
describe the following relevant properties to achieve low time and memory con-
sumption: number of registers containing large values that are used additionally
to the input registers (M,d, x) during the exponentiation, number of multiplica-
tions, squaring operations and inversions using large registers. We summarize if
they include protection against physical attacks such as power analysis on the
exponentiation and the CRT recombination and safe-error attacks.

4 Security of Self-secure Exponentiation Methods

The security of self-secure exponentiation countermeasures relies mainly on the
exponentiation algorithms. Each method has an invariant that holds throughout
its execution, which is claimed to be lost in case a fault is injected. Accordingly,
the modular exponentiation methods have to be tested against fault attacks. In
this section, we recapitulate the fault model that we adopt, briefly describe our
methodology and discuss our results.

4.1 Simulating Fault Injections Against Self-secure Exponentiation
Countermeasures

The designers of the countermeasures provide either formal and informal expla-
nations for their security assumptions and their fault models differ from each
other. To the best of our knowledge, we are the first to simulate all possible
fault injections in a common fault model.

Fault Model: We adopt the generic fault model of [21]. Therefore, we sim-
ulate three types of fault injections: random and zeroing faults in case of which
the affected variable is changed to a random value and null, respectively, and
skipping faults which cause instruction skips, i.e., jumps over some lines of the
pseudocode. We take the following fault types into consideration: faults on local
variables, on input parameters, and on conditional tests. An adversary is able
to target any variable, but cannot specify the bits his fault affects. When induc-
ing a random fault, he does not know its concrete value. Since refined methods
appear for performing instruction skips in practice (e.g. [3]), we consider it as
a possible threat when discussing physical attacks. The injection of skipping
faults was observed as practical in [21], but was covered by means of random
and zeroing faults. This does not hold for self-secure exponentiation. When con-
sidering skipping faults, we count the number of lines that have to be skipped
in the pseudocode. In the Montgomery ladder shown in Algorithm 1b, the pair
(R0, R1) is of the form (Mk−1 mod x,Mk mod x) at each iteration, which coher-
ence is assumed to be lost in case of a fault injection. However, an adversary
might skip two consecutive lines (3 and 4) at any iteration of the loop. The
invariant holds for the corrupted R̂0 and R̂1 and thus, the fault is not detected.

Our Framework: In case of self-secure exponentiation countermeasures, the
underlying exponentiation algorithm has to be tested and checked that the invari-
ant is lost if a fault is injected. When simulating the attacks, we needed features

Algorithmic Countermeasures Against Fault Attack 117

Table 2. Results of our fault injection tests on the exponentiation algorithms, assuming
that the checking procedures are protected We note that we rely on the original fault
models of the countermeasures from column Ref., recapitulated in Appendix A. �
denotes that our tests did not reveal any vulnerability against the fault type, M and
d1, d2 denote the vulnerability of the message and the exponents in the exponentiation
algorithm, respectively. When considering skipping faults, we indicate which lines are
skipped together to achieve a successful attack. The register numbering Ri, i ∈ {0, 1, 2}
and the lines are according to the algorithms in column Alg.

Countermeasure Fault injection attacks

Author(s) Ref. Alg. Random Zeroing Skipping

Fault number 1 1 2 1 2

Giraud [9] 5 � M,R0, R1 � (4–5)

Fumaroli, Vigilant [8] 6 R2 M,R0, R1, R2 (7) (5–6) or 2· (7)

Boscher et al. 2007 [6] 7 � � � � (6–7)

Boscher et al. 2009 [5] 7 � � � � (6–7)

Rivain [22] 8 M � � � �
Rivain (SCA) [22] 9 M � � � �
Le et al. [18] 10 M � d1, d2 � �

that the tool used for the analysis of Shamir’s family lacked [21]: redefinition
of variables and support for loops. Therefore, we created our own framework
in Java. A manual step of our method was identifying the possible fault injec-
tion locations within the exponentiation algorithms. After this manual step, the
simulation of multiple fault injections in all possible combination of fault loca-
tions was fully automated, for all the three fault types. A simulation results in a
successful Bellcore attack if a corrupted signature is returned. For more details
on our simulation framework, the reader is referred to the full version [15].

4.2 Simulation Results

The results of our fault injection simulations are shown in Table 2. While per-
forming the tests with multiple faults, we considered protected checking pro-
cedures, since skipping or zeroing any of the checks would enable a successful
Bellcore attack. When considering faults on the checking procedures, a method
can be protected against n fault injections by repeating each check n times.

Random Faults: If a countermeasure is protected against one random fault
injection, it cannot be broken with more than one random faults either. This is
due to the fact that a random fault cannot induce a verification skip [21]. Our
results confirm that in case of the algorithms that use the Montgomery ladder
or the square-and-multiply-always algorithm, the intermediate secret exponent
and the loop counter have to be protected against random faults. [6,8,9] use the
checksum of the exponent to verify its integrity and thwart the attack. It was
revealed in [14], that the introduction of register R2 in Fumaroli and Vigilant’s

118 Á. Kiss et al.

countermeasure [8] made it vulnerable to any random fault on R2 at any iteration
of the algorithm. This is due to the fact that R2 is calculated independently of
the other two registers, which are multiplied with its final value. In case of
the countermeasures using double exponentiation, a possible random fault is the
corruption of the intermediate message M, resulting in M̂ . Rivain identified
this vulnerability and suggested to compute a cyclic redundancy code [22].

Zeroing Faults: Without a specific checking procedure against zeroing
faults, the exponentiation algorithms (Sect. 2.4) are vulnerable. According to [9],
it is unlikely to be able to zero a large buffer in practice. However, as [6,21], we
take zeroing faults into consideration but note that their injection is very dif-
ficult to achieve in practice. In case of the methods that use the Montgomery
ladder and the square-and-multiply-always exponentiation, if the message M in
the beginning of the algorithms is zeroed, zeroes are returned. The same holds
for any of the registers R0,R1 in the method using the Montgomery ladder
and for R2 in Fumaroli and Vigilant’s and Boscher et al.’s methods. Then, the
checking procedure holds even though the recombination is computed with only
one of the intermediate signatures. Giraud considered this vulnerability impos-
sible, while Boscher et al. included checks against it. The two countermeasures
that use double exponentiation are not vulnerable to a single zeroing fault. In
the case of Rivain’s method [22], the exponent is given by the addition chain,
which we assume to be protected. For the algorithm by Le et al. [18], two zeroing
faults on the exponents d1,d2 are necessary to conduct a Bellcore attack. If
any other values are zeroed, the coherence check does not hold and the fault is
detected.

Skipping Faults: Our simulations show that only the method by Fumaroli
and Vigilant [8] is vulnerable to the instruction skip of one line, the calcula-
tion of register R2, which has a similar effect as the random fault on R2. When
two lines are skipped together, both regular, SPA-resistant algorithms, i.e., the
Montgomery ladder and the square-and-multiply-always methods are vulnerable.
By skipping two consecutive lines within the loop, they preserve the coher-
ence between the variables even though the results are corrupted. Even if the
loop counter i is protected, skipping faults result in successful Bellcore attacks.

5 PA-SE-FA-Resistant Self-secure Exponentiation
Countermeasures

We propose a secure countermeasure for each of the exponentiation algorithms
that are used for constructing self-secure exponentiation methods We claim that
our proposed countermeasures are secure against power analysis (PA), safe-error
(SE) attacks, and fault attacks (FA) and remain highly efficient. For the verifica-
tion of the resistance against fault injection attacks, we applied our framework
from Sect. 4.1 on the proposed algorithms. We discuss the implied overhead by
the introduced protection against physical attacks. FAj

i denotes fault attacks of
type j (r, z, s denote random, zeroing and skipping faults, resp.), against vari-
able(s) i.

Algorithmic Countermeasures Against Fault Attack 119

Algorithm 2. PA-SE-FA method with the Montgomery ladder
(2a) MonExp(M, d, x, r, rinv, s)

input:M,d =(dn−1, . . . ,d0)2,
x, r, rinv, s
output: (r2

n · Md mod sx,
r2

n · Md+1 mod sx,
r2

n

inv mod sx)

1: x := s · x � FAs
(6−7), FAr, z

d,i

2: R0 := r
3: R1 := r · M mod x
4: R2 := rinv mod x

5: for i from n − 1 to 0 do
6: Rdi

:= Rdi
· Rdi mod x

7: Rdi := R2
di

mod x
8: R2 := R2

2 mod x
9: end for

10: return (R0, R1, R2)

(2b) RSA-CRT

input: M �= 0, p, q, dp, dq, iq,
D = p ⊕ q ⊕ dp ⊕ dq ⊕ iq

output: Md mod pq or error

1: Pick k-bit random prime s,
such that ps � M, qs � M � FAs

(6−7), FAr, z
d,i

2: Pick random integer r ∈ Z∗
pqs � FAr

R2 , FAs
(8)

3: rinv := r−1 mod pqs � FAr
R2 , FAs

(8)

4: (Sp,S′
p,Rp) :=MonExp(M mod sp,dp,p,r,rinv,s)

5: (Sq,S
′
q,Rq) :=MonExp(M mod sq,dq,q,r,rinv,s)

6: if Sp · Sq = 0 then � FAz
M,R0,R1,R2

7: return error
8: end if

9: S := CRTblinded(Sp, Sq) � DPACRT

10: S′ := CRTblinded(S
′
p, S′

q) � DPACRT

11: R := CRTblinded(Rp, Rq) � FAr
R2 , FAs

(8)

12: S := R · S mod pq � FAr
R2 , FAs

(8)

13: if M · S �≡ R · S′ mod pq then
14: return error
15: end if

16: Sps = (Sp mod s)dq mod (s−1) mod s
17: Sqs = (Sq mod s)dp mod (s−1) mod s

18: if Sps �= Sqs then
19: return error � FAs

(6−7), FAr, z
d,i

20: end if

21: if p ⊕ q ⊕ dp ⊕ dq ⊕ iq �= D then
22: return error � FAr, z

p,q,iq,dp,dq

23: end if

24: return S

5.1 Countermeasure Using the Montgomery Ladder

Fumaroli and Vigilant’s countermeasure [8] (Algorithm 6) which aimed to
improve Giraud’s method [9] (Algorithm 5) was proven to be vulnerable to
random fault attacks [14]. Algorithm 2 presents our secure method with the
Montgomery ladder .

To prevent fault attacks on register R2 (FAr
R2

, FAs
(8)), we return the

blinded registers R0 and R1 and perform the multiplication with the inverse
contained in R2. This multiplication happens modulo pq, after the blinded CRT
recombinations of all the three registers in lines 9–11 in Algorithm 2b.

To achieve prevention against skipping faults (FAs
(6-7)), we include a check

for verifying the integrity of the exponentiations. Since the coherence in the
regular exponentiation algorithms is not lost when skipping faults are injected,
we create a hybrid countermeasure with a technique used in Shamir’s family

120 Á. Kiss et al.

by Aumüller et al. [1]. We conclude the necessity of the modulus extension to
prevent skipping faults and multiply the modulus with a k-bit random prime s.
Sp and Sq are calculated modulo p · s and q · s, respectively, and the signature
is recombined to S = Md mod pq using the blinded recombination from [9]:

S = CRTblinded(Sp, Sq) = (((Sp − Sq) mod sp) · iq mod sp) · q + Sq mod pq. (1)

To verify that no instruction was skipped, two small exponentiations modulo the
k-bit number s with the k-bit exponents are performed as in lines 16 and 17. If a
skipping fault occurs and the value of Sp or Sq is corrupted, the check in line 18
does not hold with probability 2−k. Besides protecting against skipping faults,
this measure detects faults on the exponent and loop counter i (FAr,z

d,i) of
the exponentiation algorithm, without an additional large register. If the small
exponentiations are calculated using the Montgomery ladder (Algorithm 1b),
then besides the k-bit message, exponent, and modulus, two k-bit registers, k
multiplications and squarings are used. However, a checksum as an input has
to be included to detect the corruption of p, q, iq, dp or dq in Algorithm 2b in
line 21.

We note that the blinded CRT recombination recapitulated in Eq. 1 also
prevents the DPA attack on the CRT recombination (DPACRT) from [25].

To avoid zeroing faults (FAz
M,R0,R1,R2

), we check that none of the values
returned by the exponentiation is zero. We perform this before the CRT recom-
binations in Algorithm 2b, by verifying Sp · Sq �= 0 in line 6. In order to make
sure that this check does not violate the correctness of the algorithm when the
message is a multiple of ps or qs, we choose s such that ps � M and qs � M .

Algorithm 2 presents the algorithm that is based on the Montgomery ladder
and is protected against power analysis (PA), safe-error (SE), and fault attacks
(FA). For eliminating the revealed vulnerabilities against fault injection attacks,
we included an additional CRT recombination, transformed two small inversions
to one of doubled size, included one large input register D, two times k multi-
plications and k squaring operations on k-bit registers, where k is the security
parameter that defines the probability of undetected skipping faults as 2−k. We
note that since modular inversion and prime generation imply significant costs,
lines (1–3) can be precomputed (without the assumption ps � M, qs � M) and
s, r and rinv can be provided as inputs to Algorithm 2b.

5.2 Countermeasure Using the Square-and-Multiply-Always Exp.

Boscher et al. described a square-and-multiply always algorithm that is
resistant to SPA, DPA, and SE [5] (Algorithm 7). The algorithm includes a
technique against the exponent modification, and the check R2 �= 0 in the end
of the exponentiation to detect zeroing faults (FAz

M,R2
) [6]. Instead of this

check in both exponentiations, we suggest to verify Sp · Sq �= 0 in Algorithm 3b
as in Algorithm 2b.

Algorithmic Countermeasures Against Fault Attack 121

Algorithm 3. PA-SE-FA method with the square-and-multiply-always exp.
(3a) SqExp(M, d, x, r, rinv, s)

input:M ,d =(dn−1, . . . ,d0)2,
x, r, rinv, s
output: (r · Md mod sx,
rinv · M2n−d−1 mod sx,
M2n mod sx)

1: x := s · x � FAs
(6−7), FAr,z

d,i

2: R0 := r
3: R1 := rinv
4: R2 := M

5: for i from 0 to n − 1 do
6: Rdi

:= Rdi
· R2 mod x

7: R2 := R2
2 mod x

8: end for

9: return (R0, R1, R2)

(3b) RSA-CRT

input: M �= 0, p, q, dp, dq, iq,
D = p ⊕ q ⊕ dp ⊕ dq ⊕ iq

output: Md mod pq or error

1: Pick k-bit random prime s
such that ps � M, qs � M � FAs

(6−7), FAr,z
d,i

2: Pick random integer r ∈ Z∗
pqs � FAr

R2 , FAs
(8)

3: rinv := r−1 mod pqs

4: (Sp,S′
p,Tp) :=SqExp(M mod sp, dp,p, r,rinv, s)

5: (Sq,S
′
q,Tq) :=SqExp(M mod sq, dq,q, r,rinv, s)

6: if Sp · Sq = 0 then � FAz
M,R2

7: return error
8: end if

9: S := CRTblinded(Sp, Sq)
10: S′ := CRTblinded(S

′
p, S′

q)
11: T := CRTblinded(Tp, Tq)

12: if M · S · S′ �≡ T mod pq then
13: return error
14: end if

15: Sps =(rinvSp mod s)dq mod (s−1) mod s
16: Sqs =(rinvSq mod s)dp mod (s−1) mod s

17: if Sps �= Sqs then
18: return error � FAs

(6−7), FAr,z
d,i

19: end if

20: if p ⊕ q ⊕ dp ⊕ dq ⊕ iq �= D then
21: return error � FAr, z

p,q,iq,dp,dq

22: end if

23: return rinv · S mod pq

Against skipping faults (FAs
6−7)) we suggest the same measure as in Algo-

rithm 2: blinding the modulus and performing two small exponentiations in the
RSA-CRT algorithm. For retrieving the signature, the CRT recombination in
Eq. 1 is used. Though not mentioned in [5], the random value r in Algorithm 3b
should not be too small to avoid the following SPA during the computation of
Algorithm 3a: if an adversary is allowed to input the message M = 1, the value
of register R2 remains 1 for the whole computation. Therefore, the multiplica-
tion in line 6 would only depend on the bits of the secret exponent d, multiplied
either with a small number (r) or with a large number (rinv). This could result
in differences in the power consumption trace and therefore we chose r to be an
at least (n+k)-bit integer, where n is the bitlength of p and of q, since it is used
for operations of that size in Algorithm 3a.

122 Á. Kiss et al.

Algorithm 4. PA-SE-FA method with double exponentiation
(4a) DoubleExp(M, d1, d2, x, s)

input: M �= 0,
d1 = (d1,n−1, . . . , d1,0)2,
d2 = (d2,n−1, . . . , d2,0)2, x, s

output: (Md1 mod xs,
Md2 mod xs)

1: x := s · x � DPACRT

2: R(0,1) := 1 � SPA
3: R(1,1) := 1 � SPA
4: R(0,2) := 1 � SPA
5: R(1,2) := 1 � SPA
6: R2 := M

7: for i = 0 to n − 1 do � SPA
8: R(d1,i,1) := R(d1,i,1) · R2 mod x

9: R(d2,i,2) := R(d2,i,2) · R2 mod x

10: R2 := R2
2 mod x

11: end for

12: if R(0,1)R(1,1) �≡ R(0,2)R(1,2) mod x
then � C SE

13: return error
14: end if

15: return (R(0,1), R(0,2))

(4b) RSA-CRT

input: M, p, q, dp, dq, iq
output: Md mod pq or error

1: Pick small r1, r2 ∈ Z r2 ≥ r1 + 2
2: Pick k-bit random prime s
3: (Sp, cp) := � DPA, M-SE, FAr

M , FAz
(d1,d2)

DoubleExp(M mod p, dp+r1(p − 1),
r2(p − 1) − dp−1, p, s)

4: (Sq, cq) := � DPA, M-SE, FAr
M , FAz

(d1,d2)

DoubleExp(M mod q, dq+r1(q − 1),
r2(q − 1) − dq−1, q, s)

5: S := CRTblinded(Sp, Sq) � DPACRT

6: if M · S · cp �≡ 1 mod p then
7: return error � FAr

M , FAz
(d1,d2)

8: end if

9: if M · S · cq �≡ 1 mod q then
10: return error � FAr

M , FAz
(d1,d2)

11: end if

12: return S mod pq

Our PA-SE-FA-resistant algorithm with the square-and-multiply-always
exponentiation is depicted in Algorithm 3. To eliminate the identified vulner-
abilities, we included one large input register D along with two times k multi-
plications and k squaring operations on k-bit registers, in a similar manner as
in Algorithm 2.

5.3 Countermeasure Using Double Exponentiation

Rivain proposed the first countermeasure that uses double exponentiation [22]
(Algorithm 8). He included modifications by means of which it becomes SPA-
DPA-SE-resistant, still requiring the precomputation of the addition chain (Algo-
rithm 9). Our aim is to consider measures in the insecure but more efficient algo-
rithm by Le et al. [18] (Algorithm 10), which does not include precomputation
but ignores protection against PA and SE.

Firstly, we transform the algorithm to become resistant to SPA. We use two
additional registers with dummy operations in order to achieve regularity. Thus,
the algorithm requires the use of altogether 5 registers: R(0,1) and R(1,1) belong-
ing to exponent d1, R(0,2) and R(1,2) belonging to exponent d2, and R2 used as
before. Since for every bit of the exponents the same operations have to per-
formed, this results in altogether 2n multiplications and n squaring operations.

Algorithmic Countermeasures Against Fault Attack 123

Introducing regularity includes dummy operations. Registers R(1,1) and R(1,2)

are unused and thus all the multiplications that assign values to them are
dummy operations. To avoid computational safe-error attacks (C-SE) on
these operations, in the end of the exponentiation we include the check whether
R(0,1) · R(1,1) ≡ R(0,2) · R(1,2) mod x. Since both the products corresponding to
the two exponents are M2n−1 mod x, this holds if the values are not corrupted.
With this, we verify the correctness of the dummy values.

To achieve resistance against differential power analysis on the exponen-
tiation (DPAexp) and memory safe-error attacks (M-SE), we include the
exponent blinding method of Rivain in the RSA-CRT algorithm [22]. Against
DPA on the CRT recombination (DPACRT), we apply the blinded CRT recom-
bination method with extended modulus from [9]. For the description of r1 and r2

and the correctness of the blinding method, the reader is referred to [9,22].
To detect any randomizing fault on the message M (FAr

M), we include
its value in the coherence checks as it was seen in case of the countermeasures
from [5,6,8,9]. We decrease the value of the exponents used for the calculation
of cp and cq by one, and multiply the results with M , during the verification in
lines 7 and 10 of Algorithm 4b. For instance, if Sp and cp are calculated by means
of a corrupted M̂ , the verification M ·M̂dp+r1ϕ(p) ·M̂r2ϕ(p)−dp−1 ≡ 1 mod p does
not hold with high probability. With this, the zeroing faults on exponents d1

and d2 (FAz
(d1,d2)) are also thwarted, the algorithm returns (1, 1) in case of two

null exponents, and the modified check does not hold anymore.
Our PA-SE-FA-resistant countermeasure using double exponentiation is

depicted in Algorithm 4. Though the modified countermeasure is less memory-
efficient than Le et al.’s algorithm, we note its advantage against physical attacks.

Table 3. Comparison of our PA-SE-FA self-secure exponentiation countermeasures
with previous methods. The notation is consistent with that of Tables 1 and 2, k denot-
ing the included k operations (squaring and multiplication). We highlight with bold
checkmarks (�) those vulnerabilities that we eliminated in our secure countermeasures
and we bold the additional resources needed to be used in order to achieve security
against all the considered attacks.

Method Efficiency criteria Fault injection attacks Other

Ref Alg CRT Check Inv Reg k Reg Mult. Sq. Ran Zeroing Skipping PA SE

Total Per exp. 1 2 1 2

[8] 6 2 4 2(p,q) 0 0 4 n + 3 2n R2 M, R∀ (7) (5–6),2(7) � �
2 3 4 1(pqs) 1 4k 3 n + 2 2n � � � � � � �

[5,6] 7 3 5 1(pq) 0 0 4 n + 2 n � � � � (6–7) � �
3 3 4 1(pqs) 1 4k 3 n + 1 n � � � � � � �

[22] 9 1 2 0 0 0 3 1.65n 0 M � � � � � �
[18] 10 1 2 0 0 0 3 1.65n M � d1, d2 � � × ×

4 1 4 0 0 0 5 2n + 3 n � � � � � � �

124 Á. Kiss et al.

6 Conclusion

In this paper, we analyzed the existing self-secure exponentiation countermea-
sures against the Bellcore attack on RSA-CRT. Using our framework, we simu-
lated all possible fault injections considering random and zeroing faults as well
as instruction skips on the lines of pseudocode. We found that all the coun-
termeasures using regular exponentiation algorithms lacked protection against
some kind of faults or power analyses.

We presented three countermeasures, one for each exponentiation algorithm
used for designing self-secure exponentiation countermeasures (cf. Table 3). All
the three methods are based on regular algorithms to prevent simple power analy-
sis (SPA), include randomization to be resistant to differential power analysis
(DPA) and memory safe-error (M-SE) attacks, and eliminate dummy operations
which could be exploited by computational safe-error (C-SE) attacks. Measures
are included against all considered fault injection attacks (FA) as well. We ver-
ified that we eliminated the previous vulnerabilities of the methods without
introducing new ones by applying our simulation framework on the pseudocode
of the improved algorithms. To prevent skipping faults, we included additional
checks into two of our methods, inspired by a countermeasure in Shamir’s family,
resulting in hybrid methods. We included prevention against fault attacks on the
previously vulnerable register in the countermeasure that uses the Montgomery
ladder. Our proposed solution that uses double exponentiation includes protec-
tion against power analyses and safe-error attacks in the algorithm where it was
not considered.

We note that the vulnerability of the message corruption and of the DPA on
the CRT recombination in Rivain’s SPA-resistant method can be eliminated in
a similar algorithmic manner as in Sect. 5.3, gaining another, the most efficient
secure software countermeasure when precomputation is allowed. When precom-
putation is not allowed, our proposed solution using the square-and-multiply-
always algorithm is the most efficient algorithmic countermeasure.

Acknowledgments. This work has been co-funded by the DFG as part of projects P1
and S5 within the CRC 1119 CROSSING and by the European Union’s 7th Framework
Program (FP7/2007-2013) under grant agreement no. 609611 (PRACTICE).

Algorithmic Countermeasures Against Fault Attack 125

A Self-secure Exponentiation Countermeasures

Algorithm 5. Giraud’s countermeasure [9]
PA attack model: SPA, chosen message SPA from [28].
Fault model: Random faults on variables and input parameters. Zeroing at-
tacks, disruption of checking are regarded as impossible in practice. For the
integrity check of d, i, we assume that an additional register is used in Table 1.
(5a) Modular exp.: GirExp(M, d, x, r)

input: M, d = (dn−1, . . . ,d0)2 odd, x, r
output: (Md−1 mod r · x, Md mod r · x)

1: xr := r · x
2: R0 := M , R1 := R2

0 mod xr

3: for i from n − 2 to 1 do
4: Rdi

:= Rdi
· Rdi mod xr

5: Rdi := R2
di

mod xr

6: end for

7: R1 := R1 · R0 mod xr

8: R0 := R2
0 mod xr

9: if i or d disturbed then
10: return error
11: end if

12: return (R0, R1)

(5b) Giraud’s RSA-CRT

input: M, p, q, dp, dq, iq
output: Md mod pq or error

1: Pick k-bit random prime r
2: (S′

p,Sp) :=GirExp(M mod p,dp,p,r)
3: (S′

q,Sq) :=GirExp(M mod q,dq,q,r)

4: S := CRTblinded(Sp, Sq)
5: S′ := CRTblinded(S

′
p, S′

q)
6: S′ := M · S′ mod (p · q)

7: if S′ �= S then return error
8: end if

9: if p, q or iq disturbed then
10: return error
11: end if

12: return S

Algorithm 6. Fumaroli and Vigilant’s countermeasure [8]
Attack model: SPA, DPA, against which blinding is included.
Fault model: That of Giraud’s [9].
(6a) Modular exp.: FumVigExp(M, d, x)

input: M �= 0, d = (dn−1, . . . , d0)2, x
output: (Md mod x, Md+1 mod x)

1: Pick k-bit random prime r
2: R0 := r, R1 := rM mod x
3: R2 := r−1 mod x, D := 0

4: for i from n − 1 to 0 do
5: Rdi

:= Rdi
· Rdi mod x

6: Rdi := R2
di

mod x
7: R2 := R2

2 mod x
8: D := D + di,
9: D := D · 2

10: end for
11: D := D/2
12: R2 := R2 ⊕ D ⊕ d

13: return (R2 ·R0 mod x, R2 ·R1 mod x)

(6b) Fumaroli and Vigilant’s RSA-CRT

input: M �= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: (Sp,S′
p) :=FumVigExp(M mod p,dp,p)

2: (Sq,S
′
q) :=FumVigExp(M mod q,dq,q)

3: S := CRT(Sp, Sq)
4: S′ := CRT(S′

p, S′
q)

5: if S · M mod p · q �≡ S′ then
6: return error
7: end if

8: if p, q or iq disturbed then
9: return error

10: end if

11: return S

126 Á. Kiss et al.

Algorithm 7. Boscher et al.’s countermeasure 2007 [6], modifications 2009 [5]
Attack model: Regularity against SPA, blinding against DPA.
Fault model: One fault per execution [6], on local variables, input parameters.
(7a) Modular exp: BosExp(M,d,x,r,rinv)

input: M,d = (dn−1, . . . ,d0)2,x,r,rinv
output: (r · Md mod x,
rinv · M2n−d−1 mod x, M2n mod x)

1: R0 := 1 · r
2: R1 := 1 · rinv
3: R2 := M
4: D := 0

5: for i from 0 to n − 1 do
6: Rdi

:= Rdi
· R2 mod x

7: R2 := R2
2 mod x

8: D := D + 2n · di

9: D := D/2
10: end for

11: if (D �= d) or (R2 = 0) then
12: return error
13: end if
14: return (R0, R1, R2)

(7b) Boscher et al.’s RSA-CRT

input: M �= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: Pick a k-bit random integer r
2: rinv := r−1 mod pq

3: (Sp, S′
p, Tp) :=

BosExp(M mod p, dp, p, r, rinv)
4: (Sq, S

′
q, Tq) :=

BosExp(M mod q, dq, q, r, rinv)

5: S := CRT(Sp, Sq)
6: S′ := CRT(S′

p, S′
q)

7: T := CRT(Tp, Tq)

8: if M · S · S′ �≡ T mod pq then
9: return error

10: end if

11: return rinv·S mod pq

Algorithm 8. Rivain’s countermeasure [22]
The addition chain is precomputed with ChainCompute(d1, d2) from [22] and
stored in memory or is computed on-the-fly.
(8a) Double exp.: RivExp(M,ω(d1,d2),x)

input: M , ω(d1,d2) n-bits chain, d1 ≤
d2, x

output: (Md1 mod x, Md2 mod x)

1: R0 := 1, R1 := M , γ := 1, i := 1

2: for i = 1 to n do
3: if (ωi = 0) then
4: Rγ := R2

γ mod x
5: i := i + 1
6: if (ωi = 1) then
7: Rγ := Rγ · M mod x
8: end if
9: else

10: Rγ⊕1 := Rγ⊕1 · Rγ mod x
11: γ := γ ⊕ 1
12: end if
13: end for

14: return (Rγ⊕1, Rγ)

(8b) Rivain’s RSA-CRT

input: M, p, q, dp, dq, iq
output: Md mod pq or error

1: ωp := ChainCompute(dp, 2(p−1)−dp)

2: (Sp, cp) := RivExp(M mod p, ωp, p)

3: ωq := ChainCompute(dq, 2(q−1)−dq)

4: (Sq, cq) := RivExp(M mod q, ωq, q)

5: S := CRT(Sp, Sq)

6: if S · cp �≡ 1 mod p then
7: return error
8: end if

9: if S · cq �≡ 1 mod q then
10: return error
11: end if

12: return S

Algorithmic Countermeasures Against Fault Attack 127

Algorithm 9. Rivain’s PA-resistant countermeasure [22]
Attack model: Regular SecRivExp and ChainCom against SPA, blinding
against DPA. This blinding method can only be used if the double addition
chain is computed on-the-fly.
Fault model: M is assumed to be protected, transient faults, i.e., faults whose
effect lasts for one computation, are considered.
(9a) Double exp:
SecRivExp(M,ω(d1,d2),x)

input: M �= 0, ω(d1, d2) n-bits,
d1 ≤ d2, x
output: (Md1 mod x, Md2 mod x)

1: R(0,0) := 1, R(0,1) := M,
2: R(1,0) := M
3: γ := 1, μ := 1, i := 0

4: while i < n do
5: t := ωi ∧ μ
6: v := ωi+1 ∧ μ
7: R(0,γ⊕t) :=

R(0,γ⊕t) · R((μ⊕1),γ∧μ) mod x
8: μ := t ∨ (v ⊕ 1)
9: γ := γ ⊕ t

10: i := i + μ + μ ∧ (t ⊕ 1)
11: end while

12: return (Rγ⊕1, Rγ)

(9b) RSA-CRT

input: M, p, q, dp, dq, iq
output: Md mod pq or error

1: Pick small r1, r2 ∈ Z r2 ≥ r1 + 2
2: ωp :=

ChainCom(dp+r1(p − 1),r2(p − 1) − dp)

3: (Sp, cp) := SecRivExp(M mod p, ωp, p)

4: ωq :=
ChainCom(dq+r1(q − 1),r2(q − 1) − dq)

5: (Sq, cq) := SecRivExp(M mod q, ωq, q)

6: S := CRT(Sp, Sq)

7: if S · cp �≡ 1 mod p then
8: return error
9: end if

10: if S · cq �≡ 1 mod q then
11: return error
12: end if

13: return S mod pq

Algorithm 10. Le et al.’s binary countermeasure [18]
Attack model: No side-channel attacks are discussed in [18].
Fault model: Same as that of Rivain [22].
(10a) Double exp.: LeExp(M, d1, d2, x)

input: M �= 0, d1 = (d1,n−1, . . . , d1,0)2
d2 = (d2,n−1, . . . , d2,0)2, x

output: (Md1 mod x, Md2 mod x)

1: R0 := 1, R1 := 1, R2 := M

2: for i = 0 to n − 1 do
3: if d1,i = 1 then
4: R0 := R0 · R2 mod x
5: end if
6: if d2,i = 1 then
7: R1 := R1 · R2 mod x
8: end if
9: R2 := R2

2 mod x
10: end for

11: return (R0, R1)

(10b) Rivain’s RSA-CRT

input: M �= 0, p, q, dp, dq, iq
output: Md mod pq or error

1: (Sp, cp) := LeExp(M mod p,
dp, 2(p − 1) − dp, p)

2: (Sq, cq) := LeExp(M mod q,
dq, 2(q − 1) − dq, q)

3: S := CRT(Sp, Sq)

4: if S · cp �≡ 1 mod p then
5: return error
6: end if

7: if S · cq �≡ 1 mod q then
8: return error
9: end if

10: return S

128 Á. Kiss et al.

References

1. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.: Fault attacks on RSA
with CRT: concrete results and practical countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

2. Baek, Y.: Regular 2w-ary right-to-left exponentiation algorithm with very efficient
DPA and FA countermeasures. Int. J. Inf. Sec. 9(5), 363–370 (2010)

3. Blömer, J., Gomes Da Silva, R., Gunther, P., Kramer, J., Seifert, J.P.: A practical
second-order fault attack against a real-world pairing implementation. In: Fault
Diagnosis and Tolerance in Cryptography (FDTC 2014), pp. 123–136. IEEE (2014)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

5. Boscher, A., Handschuh, H., Trichina, E.: Blinded fault resistant exponentiation-
revisited. In: Fault Diagnosis and Tolerance in Cryptography (FDTC 2009), pp.
3–9.IEEE (2009)

6. Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault
attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007)

7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

8. Fumaroli, G., Vigilant, D.: Blinded fault resistant exponentiation. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp.
62–70. Springer, Heidelberg (2006)

9. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Trans. Comput. 55(9), 1116–1120 (2006)

10. Joye, M., Karroumi, M.: Memory-efficient fault countermeasures. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 84–101. Springer, Heidelberg (2011)

11. Joye, M., Lenstra, A.K., Quisquater, J.: Chinese remaindering based cryptosystems
in the presence of faults. J. Cryptol. 12(4), 241–245 (1999)

12. Joye, M., Paillier, P., Yen, S.M.: Secure evaluation of modular functions. In: 2001
International Workshop on Cryptology and Network Security (2001)

13. Joye, M., Yen, S.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003)

14. Kim, C.H., Quisquater, J.: How can we overcome both side channel analysis and
fault attacks on RSA-CRT? In: Fault Diagnosis and Tolerance in Cryptography
(FDTC 2007), pp. 21–29. IEEE (2007)

15. Kiss, A., Krämer, J., Rauzy, P., Seifert, J.P.: Algorithmic countermeasures against
fault attacks and power analysis for RSA-CRT. Cryptology ePrint Archive, Report
2016/238 (2016). http://eprint.iacr.org/2016/238

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

17. Krämer, J., Nedospasov, D., Seifert, J.-P.: Weaknesses in current RSA signature
schemes. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 155–168. Springer,
Heidelberg (2012)

18. Le, D.-P., Rivain, M., Tan, C.H.: On double exponentiation for securing RSA
against fault analysis. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
152–168. Springer, Heidelberg (2014)

http://eprint.iacr.org/2016/238

Algorithmic Countermeasures Against Fault Attack 129

19. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

20. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

21. Rauzy, P., Guilley, S.: Countermeasures against high-order fault-injection attacks
on CRT-RSA. In: Fault Diagnosis and Tolerance in Cryptography (FDTC 2014),
pp. 68–82. IEEE (2014)

22. Rivain, M.: Securing RSA against fault analysis by double addition chain expo-
nentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480.
Springer, Heidelberg (2009)

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

24. Shamir, A.: Method and apparatus for protecting public key schemes from timing
and fault attacks, US Patent 5,991,415 (1999)

25. Witteman, M.: A DPA attack on RSA in CRT mode (2009)
26. Yen, S., Joye, M.: Checking before output may not be enough against fault-based

cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)
27. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A countermeasure against one physical

cryptanalysis may benefit another attack. In: Kim, K. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 414–427. Springer, Heidelberg (2002)

28. Yen, S.-M., Lien, W.-C., Moon, S.-J., Ha, J.C.: Power analysis by exploiting chosen
message and internal collisions – vulnerability of checking mechanism for RSA-
decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 183–195. Springer, Heidelberg (2005)

Improved Differential Fault Analysis
on Camellia-128

Toru Akishita(B) and Noboru Kunihiro

The University of Tokyo, Tokyo, Japan
Toru.Akishita@jp.sony.com, kunihiro@k.u-tokyo.ac.jp

Abstract. In this paper we propose improved Differential Fault Analy-
sis (DFA) on the block cipher Camellia with a 128-bit key. Existing
DFAs on Camellia-128 require several faults induced at multiple rounds,
at least two of which must be induced at or after the 16-th round. On the
other hand, by utilizing longer fault propagation paths than the exist-
ing DFAs, the proposed attacks require random byte faults to targeted
byte positions induced only at the 14-th round. The simulation results
confirm the feasibility of the proposed attacks. Our attacks indicate that
the last 5 rounds of Camellia-128, two more rounds compared with the
existing DFAs, must be protected against DFAs.

Keywords: Differential fault analysis · DFA · Camellia · Fault propa-
gation path

1 Introduction

The idea of fault analysis was first proposed by Boneh et al. [5]. They showed that
the secret key of RSA-CRT implementations can be easily detected by a pair of
a correct and a faulty plaintext for an identical ciphertext. Shortly after, Biham
and Shamir [4] proposed Differential Fault Analysis (DFA) against symmetric
key cryptography which combines the concept of differential analysis and fault
analysis. They showed that the entire key of DES can be retrieved by between 50
and 200 faulty ciphertexts. Since then various DFA attacks have been proposed
to block ciphers such as AES [8], Camellia [3], and CLEFIA [13].

Various DFAs on block ciphers have been proposed aiming at mainly the fol-
lowing two directions: minimizing the number of faults and making the location
of fault injections earlier round of each cipher. With respect to the former direc-
tion, the best DFAs has been proposed using a single fault for AES [1,16] and
two faults for CLEFIA [14]. Regarding the latter direction, there is a trade-off
between protection and efficiency. Designers are motivated to limit the number
of rounds to protect in order to save computational cost. Therefore, it is impor-
tant to investigate how many rounds of each cipher we need to protect against
DFA. Several DFAs exploiting faults at an early round have been proposed for
AES [9,11,12] and CLEFIA [2,15]. This paper presents the first improvement in
the latter direction on Camellia.
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 130–143, 2016.
DOI: 10.1007/978-3-319-43283-0 8

Improved Differential Fault Analysis on Camellia-128 131

Camellia is a 128-bit block cipher jointly developed by Mitsubishi Electric
Corporation and NTT in 2000 [3]. Camellia was selected as a recommended cryp-
tographic primitive by the EU NESSIE project [10] and was included in Japanese
“e-Government Recommended Ciphers List” selected by Japan CRYPTREC [7].
Also, it is one of the three 128-bit block ciphers in ISO/IEC 18033-3. For
Camellia, several DFAs have been proposed. We summarize the results of the
proposed attacks on Camellia with a 128-bit key in Table 1. In [17], Zhao et al.
proposed the DFA which repeatedly induces random byte faults from the 17-th
round to the 14-th round. Using 16 pairs of correct and faulty ciphertexts the
attack retrieves the 128-bit secret key. The attack is improved independently by
Chen et al. [6] and Zhao et al. [18]. Both attacks require random byte faults
at the 16-th round and the 14-th round, while the number of faults is different;
Chen’s attack requires 6 faulty ciphertexts and Zhao’s attack requires 4 faulty
ciphertexts. To the best of our knowledge, all the existing DFAs on Camellia
with a 128-bit key require several faults induced at multiple rounds, at least
two of which must be induced at or after the 16-th round. Therefore, the last 3
rounds require to be protected against existing DFAs.

Table 1. Comparison of DFAs against Camellia-128

Reference Fault location # of faults Complexity

[17] 14/15/16/17-th round 16 -

[6] 14/16-th round 6 -

[18] 14/16-th round 4 222.2

Ours 14-th round 8 29.20

7 216.14

6 223.12

5 230.10

4 237.08

In this paper, we propose improved DFAs on Camellia with a 128-bit key,
inspired by DFAs on CLEFIA proposed by Todo and Sasaki [15]. We utilize
longer fault propagation paths than the existing DFAs. Table 1 shows comparison
of the existing DFAs and our DFAs. Our DFAs can exploit random byte faults
induced only at the 14-th round, which is two round earlier than that of existing
DFAs. On the other hand, we mount our attack under an additional condition
of fault model, where an attacker can induce random byte faults to the targeted
byte position. The complexity of our attacks depends on the number of faults;
our DFA with 8 faults require the complexity of 29.20, while our DFA with 4
faults require the complexity of 237.08. We performed a simulation on a PC to
estimate the calculation time of our DFA with 8 faults. The average time for
retrieving the key of 10,000 samples is 0.945 ms.

132 T. Akishita and N. Kunihiro

Fig. 1. Encryption structure of Camellia-128

The rest of the paper is organized as follows. Sect. 2 gives brief description
of Camellia and previous DFAs on Camellia. We show the proposed attack with
8 faults in Sect. 3 and its simulation results in Sect. 4. We reduce the number of
faults down to 4 in Sect. 5. Finally, we conclude in Sect. 6.

2 Preliminaries

2.1 Block Cipher Camellia

Camellia [3] is a 128-bit block cipher with its key length 128, 192, and 256
bits. In the paper, we consider 128-bit key Camellia, denoted as Camellia-128,
though similar techniques are applicable to Camellia with 192-bit and 256-bit
keys. Camellia-128 uses an 18-round Feistel structure with key whitenings and
logical functions called the FL-function and FL−1-function inserted every 6
rounds. Fig. 1 shows encryption structure of Camellia-128. Let P,C ∈ {0, 1}128
be a plaintext and a ciphertext, and we divide P and C into P = PL|PR and
C = CL|CR, where PL, PR, CL, CR ∈ {0, 1}64. Let Li−1, Ri−1 ∈ {0, 1}64 be the
left half and the right half of the i-th round input data, and ki ∈ {0, 1}64 be
the subkey at i-th round. Let kwt ∈ {0, 1}64 for t = 1, . . . , 4 be the subkey for
Prewhitening or Postwhitening, and klv ∈ {0, 1}64 for v = 1, . . . , 4 be the subkey
for FL/FL−1-function.

The F-function F consists of subkey addition, 8 non-linear 8-bit S-boxes
and a diffusion matrix. The construction of F is shown in Fig. 1. Four kind of
S-boxes S1, S2, S3 and S4, where S1, S2, S3, S4 : {0, 1}8 → {0, 1}8, are employed.

Improved Differential Fault Analysis on Camellia-128 133

subkey value

F (Round 15) k15 (KA ≪94)L
F (Round 16) k16 (KA ≪94)R
F (Round 17) k17 (KL ≪111)L
F (Round 18) k18 (KL ≪111)R
Postwhitening kw3 (KA ≪111)L

kw4 (KA ≪111)R

Fig. 2. Key scheduling of Camellia-128

The diffusion matrix M is a binary matrix and updates eight 8-bit values
(x1, x2, x3, x4, x5, x6, x7, x8) as follows:

t(x1, x2, x3, x4, x5, x6, x7, x8) ← M · t(x1, x2, x3, x4, x5, x6, x7, x8),

where the operation between matrices and vectors performed over GF(2).
All the subkeys are generated by the key scheduling algorithm. The key

scheduling algorithm of Camellia-128 generates an 128-bit variable KA from
KL that is equal to the 128-bit secret key K as shown in Fig. 2, where Σi for
i = 1, . . . , 4 are constant values. We also list the value of subkeys for the last 4
rounds and postwhitening in Fig. 2. For Camellia-128, attackers can derive the
128-bit secret key K from k′

15, k
′
16, k

′
17, k

′
18, where k′

15, k
′
16, k

′
17 and k′

18 denote
k15 ⊕ kw4, k16 ⊕ kw3, k17 ⊕ kw4 and k18 ⊕ kw3, respectively.

2.2 Previous DFAs on Camellia-128

In this section we briefly explain the existing two DFAs on Camellia-128. Both
DFAs employed a method that narrows down the candidates for 8 bits of an
unknown subkey by solving the equation for an S-box as follows.

Let us consider the basic one-byte S-box model, where one-byte input x
are XOR-ed to one-byte key k, and then the result are input to S-box S[] and
output S[x ⊕ k]. When we know a pair of inputs xa and xb, and know output
differential δ, we can obtain a set of unknown key candidates by solving the
following equation:

S[xa ⊕ k] ⊕ S[xb ⊕ k] ⊕ δ = 0.

The size of key candidate spaces depends on xa, xb, and δ, and the structure of
the S-box. In the case of the S-boxes S1, S2, S3 and S4 of Camellia, the same as
S1 of CLEFIA [14], expected value of the size of keys candidate spaces is 21.02.

134 T. Akishita and N. Kunihiro

In [17], attackers induce random byte faults at L16. Since a byte fault enables
to deduce key candidates for 5 or 6 bytes of k′

18, the authors argue that 4 random
faults are enough to recover k′

18 with a high probability. In the same way attack-
ers can recover k′

17, k
′
16 and k′

15 by inducing 4 random byte faults at L15, L14

and L13 accordingly, and finally they get the secret key K with 16 faults.
The improved attack proposed in [18] successfully reduce the number of faults

by extending fault depth. Attackers induce a random byte fault at L15 to recover
8 bytes of k′

18, 5 or 6 bytes of k′
17 and 1 byte of k′

16. The authors argue that 2
faults are enough to recover k′

18 and k′
17 with high probability. In the same way

attackers can recover k′
16 and k′

15 by inducing 2 random byte faults at L13, and
finally they get the secret key K with 4 faults. The complexity of the attack is
estimated to be 222.2.

3 Proposed DFA on Camellia-128

In this section, we propose a new DFA on Camellia-128 by utilizing 5-round
fault propagation paths. Here we show our original attack inducing 8 random
byte faults at R13, The attack consists of 6 steps. Note that Z[i] denotes the i-th
byte of 8-byte Z.

Fig. 3. Fault propagation path in the last 5 rounds

Improved Differential Fault Analysis on Camellia-128 135

Step 1: Inducing Faults at R13. In our DFA, attackers induce 8 random
byte faults as follows. Attackers first get a correct ciphertext C corresponding
to a plaintext. Next attackers induce random byte fault to the 1-st byte of
R13 in the encryption of the same plaintext and secret key, and get a faulty
ciphertext C(1) = C

(1)
L |C(1)

R . The fault at the 1-st byte of R13 is propagated in
the last 5 rounds as shown in Fig. 3(a). We move post-whitening keys wk3 and
wk4 to the positions of round keys ki by an equivalent transformation, where
k′
14, k

′
15, k

′
16, k

′
17 and k′

18 denote k14 ⊕ kw3, k15 ⊕ kw4, k16 ⊕ kw3, k17 ⊕ kw4 and
k18 ⊕ kw3, respectively. Xi and Yi denote the values of Li and Ri respectively
after the equivalent transformation.

Fig. 4. 5-round paths for the 1-st byte fault of R13

Similarly, attackers induce random byte faults to the i-th byte of R13, and
get faulty ciphertexts C(i) = C

(i)
L |C(i)

R for i = 2, . . . , 8. Fig. 3(b) show the fault
propagation paths when inducing it at the 5-th byte of R13.

Let SBj ∈ {0, 1}64 be the output of S-box layer at the j-th round. X
(i)
j , Y

(i)
j

and SB
(i)
j denote Xj , Yj and SBj , respectively, when inducing faults at the i-th

byte of R13.
Step 2: Narrowing Down Candidates of k ′

18. In this step, attackers narrow
down candidates of k′

18 to 24.08 from 264. Firstly we show how to reduce the key
candidates of k′

18 by using the correct ciphertext C and the faulty ciphertexts
C(1). By utilizing the 5-round paths as shown in Fig. 4, we have the following

136 T. Akishita and N. Kunihiro

differential equation:

ΔY
(1)
13 ⊕ M(ΔSB

(1)
16) ⊕ M(ΔSB

(1)
18) = ΔC

(1)
R ,

where ΔY
(1)
13 = Y

(1)
13 ⊕ Y13, ΔSB

(1)
16 = SB

(1)
16 ⊕ SB16, ΔSB

(1)
18 = SB

(1)
18 ⊕ SB18,

and ΔC
(1)
R = C

(1)
R ⊕ CR. Since each byte of ΔY

(1)
13 is equal to 0 except the 1-st

byte and the 4-th, 6-th and 7-th byte of ΔSB
(1)
16 are equal to 0, it satisfies that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔSB
(1)
16 [1] ⊕ ΔSB

(1)
18 [1]

ΔSB
(1)
16 [2] ⊕ ΔSB

(1)
18 [2]

ΔSB
(1)
16 [3] ⊕ ΔSB

(1)
18 [3]

ΔSB
(1)
18 [4]

ΔSB
(1)
16 [5] ⊕ ΔSB

(1)
18 [5]

ΔSB
(1)
18 [6]

ΔSB
(1)
18 [7]

ΔSB
(1)
16 [8] ⊕ ΔSB

(1)
18 [8]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= M−1ΔC
(1)
R ⊕ M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔY
(1)
13

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we have the following two equations:

ΔSB
(1)
18 [6] = (M−1ΔC

(1)
R)[6],

ΔSB
(1)
18 [7] = (M−1ΔC

(1)
R)[7].

Attackers can narrow down candidates of the corresponding key k′
18[6] to 21.02

from 28 because they know a pair of inputs CL[6] and C
(1)
L [6], and output dif-

ferential ΔSB
(1)
18 [6] as described in Sect. 2.2. Attackers can also reduce the key

space of k′
18[7] to 21.02.

Similarly attackers can narrow down candidates of k′
18[7] and k′

18[8] by using
the correct ciphertext C and the faulty ciphertext C(2). We summarize the rela-
tionship between fault positions of R13 and their corresponding keys k′

18[l] whose
key space is reduced to 21.02 in Table 2.

Since the candidates of k′
18[5], k′

18[6], k′
18[7] and k′

18[8] are narrowed down
twice respectively shown in Table 2, these keys are uniquely determined with a
high probability. Therefore, we can reduce key space of k′

18 to (21.02)4 = 24.08

from 264 in this step.
Step 3: Recovering k ′

18 and k ′
17. In this step, attackers uniquely determine

k′
18 and k′

17. Firstly we show how to reduce the key candidates of k′
18 and k′

17 by
using the correct ciphertext C and the faulty ciphertexts C(1). Attackers compute

Improved Differential Fault Analysis on Camellia-128 137

Table 2. Fault position of R13 and deduced keys at step 2

Fault position of R13 Keys

1-st byte k′
18[6], k′

18[7]

2-nd byte k′
18[7], k′

18[8]

3-rd byte k′
18[5], k′

18[8]

4-th byte k′
18[5], k′

18[6]

5-th byte k′
18[1]

6-th byte k′
18[2]

7-th byte k′
18[3]

8-th byte k′
18[4]

Fig. 5. 3-round paths for the 1-st byte fault of R13

24.08 set of {Y17, Y
(1)
17 } for 24.08 candidates of k′

18. By utilizing the 3-round paths
as shown in Fig. 5, we have the following differential equation:

M(ΔSB
(1)
15) ⊕ M(ΔSB

(1)
17) = ΔX

(1)
17 ,

where ΔX
(1)
17 is identical to ΔC

(1)
L . Since each byte of ΔSB

(1)
15 is equal to 0

except the 1-st byte, we have the following seven equations:

ΔSB
(1)
17 [l] = (M−1ΔC

(1)
L)[l],

138 T. Akishita and N. Kunihiro

for l = 2, . . . , 8. For each set of {Y17, Y
(1)
17 }, attacker confirm that there exists

candidates of the corresponding key k′
17[l] for a pair of inputs Y17[l] and Y

(1)
17 [l],

and output differential ΔSB
(1)
17 [l], where 2 ≤ l ≤ 8. For an incorrect candidate

of (Y17, Y
(1)
17), the probability that all k′

17[l] exist for l = 2, . . . , 8 is (2−1.02)7 =
2−7.14. Thus the probability that all incorrect key candidates of k′

18 are elimi-
nated, namely, k′

18 is uniquely determined is equal to (1−2−7.14)(2
4.08−1) = 0.893.

Attackers can also narrow down candidates of k′
17[l] for l = 2, . . . , 8 to 21.02

from 28.

Table 3. Fault position of R13 and deduced keys at Step 3

Fault position of R13 Keys

1-st byte k′
17[2], k′

17[3], k′
17[4], k′

17[5], k′
17[6], k′

17[7], k′
17[8]

2-nd byte k′
17[1], k′

17[3], k′
17[4], k′

17[5], k′
17[6], k′

17[7], k′
17[8]

3-rd byte k′
17[1], k′

17[2], k′
17[4], k′

17[5], k′
17[6], k′

17[7], k′
17[8]

4-th byte k′
17[1], k′

17[2], k′
17[3], k′

17[5], k′
17[6], k′

17[7], k′
17[8]

5-th byte k′
17[1], k′

17[2], k′
17[3], k′

17[4], k′
17[6], k′

17[7], k′
17[8]

6-th byte k′
17[1], k′

17[2], k′
17[3], k′

17[4], k′
17[5], k′

17[7], k′
17[8]

7-th byte k′
17[1], k′

17[2], k′
17[3], k′

17[4], k′
17[5], k′

17[6], k′
17[8]

8-th byte k′
17[1], k′

17[2], k′
17[3], k′

17[4], k′
17[5], k′

17[6], k′
17[7]

Similarly attackers can narrow down candidates of k′
18 and k′

17 by using the
correct ciphertext C and the faulty ciphertext C(2). For each set of {Y17, Y

(2)
17 }

corresponding to the reminding candidates of k′
18, they confirm that there

exists candidates of the corresponding key k′
17[l] for a pair of inputs Y17 and

Y
(2)
17 , and output differential ΔSB

(2)
17 [l] = (M−1ΔC

(2)
L)[l], where l = 1 or

3 ≤ l ≤ 8. Attackers can uniquely determines k′
18 with high probability,

(1 − (2−7.14)2)(2
4.08−1) = 0.9992, and also narrow down candidates of k′

17[l] for
l = 1 and l = 3, . . . , 8. Attackers utilizes the faulty ciphertext C(i) for i = 3, . . . , 8
until uniquely determining k′

17. We summarize the relationship between fault
positions of R13 and their corresponding keys k′

17[l] whose key space is reduced
to 21.02 in Table 3.
Step 4: Recovering k ′

16. In this step, attackers can uniquely determine k′
16.

Firstly attackers compute {X16, Y16} and {X
(1)
16 , Y

(1)
16 } using k′

18 and k′
17. We

have following differential equation:

ΔY
(1)
13 ⊕ M(ΔSB

(1)
16) = ΔX

(1)
16 ,

Improved Differential Fault Analysis on Camellia-128 139

Since the 4-th, 6-th and 7-th byte of ΔSB
(1)
16 are equal to 0, we have the following

six equations:

ΔSB
(1)
16 [1] = (M−1ΔX

(1)
16)[1],

ΔSB
(1)
16 [2] = (M−1ΔX

(1)
16)[2] ⊕ ΔY

(1)
13 ,

ΔSB
(1)
16 [3] = (M−1ΔX

(1)
16)[3] ⊕ ΔY

(1)
13 ,

0 = (M−1ΔX
(1)
16)[4] ⊕ ΔY

(1)
13 ,

ΔSB
(1)
16 [5] = (M−1ΔX

(1)
16)[5] ⊕ ΔY

(1)
13 ,

ΔSB
(1)
16 [8] = (M−1ΔX

(1)
16)[8] ⊕ ΔY

(1)
13 .

Thus attackers can narrow down candidates of k′
16[l] for l = 1, 2, 3, 5, 8 to 21.02

from 28. Attackers utilizes the faulty ciphertext C(i) for i = 2, . . . , 8 until
uniquely determining k′

16. We summarize the relationship between fault posi-
tions of R13 and their corresponding keys k′

16[l] whose key space is reduced to
21.02 in Table 4.

Table 4. Fault position of R13 and deduced keys at Step 4

Fault position of R13 Keys

1-st byte k′
16[1], k′

16[2], k′
16[3], k′

16[5], k′
16[8]

2-nd byte k′
16[2], k′

16[3], k′
16[4], k′

16[5], k′
16[6]

3-rd byte k′
16[1], k′

16[3], k′
16[4], k′

16[6], k′
16[7]

4-th byte k′
16[1], k′

16[2], k′
16[4], k′

16[7], k′
16[8]

5-th byte k′
16[2], k′

16[3], k′
16[4], k′

16[6], k′
16[7], k′

16[8]

6-th byte k′
16[1], k′

16[3], k′
16[4], k′

16[5], k′
16[7], k′

16[8]

7-th byte k′
16[1], k′

16[2], k′
16[4], k′

16[5], k′
16[6], k′

16[8]

8-th byte k′
16[1], k′

16[2], k′
16[3], k′

16[5], k′
16[6], k′

16[7]

Step 5: Narrowing Down Candidates of k ′
15. In this step, attackers narrow

down candidates of k′
15 to 28.16 from 264. Firstly attacker computes Y15 and Y

(1)
15 .

We have following differential equation:

M(ΔSB
(1)
15) = ΔX

(1)
15 ,

where ΔX
(1)
15 is identical to ΔY

(1)
16 . Since each byte of ΔSB

(1)
15 is equal to 0

except the 1-st byte, we have the following equation:

ΔSB
(1)
15 [1] = (M−1ΔY

(1)
16)[1].

Thus attackers can narrow down candidates of k′
15[1] to 21.02 from 28. Similarly

attackers can narrow down candidates k′
15[i] to 21.02 from 28 by utilizing the

140 T. Akishita and N. Kunihiro

faulty ciphertexts C(i) respectively for i = 2, . . . , 8. We can reduce key space of
k′
15 to (21.02)8 = 28.16 from 264 in this step.

Step 6: Recovering the Secret Key K. From step 1 to step 5, attackers
recover k′

18, k′
17 and k′

16, and get 28.16 candidates of k′
15. We have 28.16×2 = 29.16

candidates of {KA,KL} because the key scheduling of Camellia-128 satisfy the
following equation:

k′
15|k′

16 = (k15 ⊕ kw4)|(k16 ⊕ kw3) = (KA ≪94) ⊕ (KA ≪47),
k′
17|k′

18 = (k17 ⊕ kw4)|(k18 ⊕ kw3) = (KL ≪111) ⊕ (KA ≪47).

For each set of {KA,KL}, attackers generate an 128-bit variable K ′
A from KL

as shown in Fig. 2 and check whether K ′
A is equal to KA. If K ′

A is equal to KA,
the corresponding KL is the secret key K.

Complexity Analysis. The complexity of step 3 and step 6 is 24.08 and 29.16,
respectively. The complexity of the other steps is negligible. Thus the complexity
of the proposed attack is about 29.20.

4 Simulation Results

In order to verify the feasibility of the proposed attack, we implemented the
simulation of our attack in C code and executed on a single core in an Intel
Core i5-3210M 2.5 GHz notebook machine. In the simulation, we used random
128-bit keys and plaintexts, and then induced 8 random byte faults at R13 dur-
ing encryption. The histogram of calculation time of 10,000 samples is shown in
Fig. 6. We successfully retrieved the 128-bit secret key in all of the 10,000 sam-
ples. The average time and the longest one is 0.945 ms and 116 ms, respectively.
The total calculation time for retrieving the key is less than 1.0 ms for 81.6 %
and less than 4.0 ms for 99.9 %.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Fig. 6. Histogram of the calculation time of 10,000 samples

Improved Differential Fault Analysis on Camellia-128 141

5 Reducing the Number of Faults

In this section, we try to reduce the number of faults for our original DFA
proposed in Sect. 3.

Let us consider that we omit a fault injection at the 1-st byte of R13. In step 2,
key space of k′

18 is (21.02)6 = 26.12 because attackers cannot uniquely determine
k′
18[6] and k′

18[7]. In step 3, attackers can uniquely determine k′
18 and k′

17, and
its complexity is 26.12. In step 5, attackers cannot narrow down candidates of
k′
15[1] from 28, and then key space of k′

15 is 28×(21.02)7 = 215.14. The complexity
of step 6 is 215.14 × 2 = 216.14. Thus, the complexity of the attack with 7 faults
is about 216.14.

Let us consider that we induce a random byte fault at the 1-st, 3-rd, 5-th and
6-th byte of R13. In step 2, attackers can narrow down candidates of k′

18[1], k′
18[2],

k′
18[5], k′

18[6], k′
18[7] and k′

18[8] to 21.02, but cannot narrow candidates of k′
18[3]

and k′
18[4] from 28. Key space of k′

18 is (21.02)6×(28)2 = 222.12. In step 3, attack-
ers can uniquely determine k′

18 with the probability of (1− (2−7.14)4)(2
22.12−1) =

0.9885. Thus, attacker can uniquely determine k′
18 and k′

17 with a high prob-
ability, and its complexity is 222.12. In step 5, attackers cannot narrow down
candidates of k′

15[2], k′
15[4], k′

15[7] and k′
15[8] from 28, and then key space of k′

15

is (28)4 × (21.02)4 = 236.08. The complexity of step 6 is 236.08 × 2 = 237.08. Thus,
the complexity of the attack with 4 faults is about 237.08.

We summarize our optimized DFAs with the number of faults being from 4
to 8 and their complexity in Table 5.

Table 5. Our optimized DFAs and complexity

of faults Fault position of R13 Complexity

Step 3 Step 6 Total

8 1-st, 2-nd, 3-rd, 4-th 24.08 29.16 29.20

5-th, 6-th, 7-th, 8-th

7 three of {1-st, 2-nd, 3-rd, 4-th} 26.12 216.14 216.14

5-th, 6-th, 7-th, 8-th

6 {1-st, 3-rd} or {2-rd, 4-th} 28.16 223.12 223.12

5-th, 6-th, 7-th, 8-th

5 {1-st, 3-rd} or {2-rd, 4-th} 215.14 230.10 230.10

three of {5-th, 6-th, 7-th, 8-th}
4 {1-st, 3-rd} or {2-rd, 4-th} 222.12 237.08 237.08

two of {5-th, 6-th, 7-th, 8-th}

6 Conclusion

In the paper we propose improved DFAs on Camellia-128. Our attacks can
exploit random byte faults induced only at the 14-th round, which is two round

142 T. Akishita and N. Kunihiro

earlier than that of existing DFAs. The complexity of our attacks depends on the
number of faults; our DFA with 8 faults require the complexity of 29.20, while
our DFA with 4 faults require the complexity of 237.08. Our simulation results
confirm the feasibility of the proposed attack with 8 faults. We argue that the
last 5 rounds, not the last 3 rounds, of Camellia must be protected against DFAs.

Acknowledgment. We would like to thank the anonymous reviewers for their helpful
comments. This research was partially supported by CREST, JST and JSPS KAK-
ENHI Grant Number 25280001.

References

1. Ali, S.S., Mukhopadhyay, D.: A differential fault analysis on aes key schedule using
single fault. In: FDTC, pp. 35–42. IEEE (2011)

2. Ali, S.S., Mukhopadhyay, D.: Improved differential fault analysis of CLEFIA. In:
The 10th Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC,
pp. 60–70. IEEE (2013)

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, p. 39.
Springer, Heidelberg (2001)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

6. Chen, H., Zhou, Y., Wu, W., Wang, N.: Fault propagation pattern based DFA
on feistel ciphers, with application to Camellia. In: The 10th IEEE International
Conference on Computer and Information Technology - CIT, pp. 1050–1057. IEEE
Computer Society (2010)

7. Japan CRYPTREC (Cryptography Research and Evaluation Committees). http://
www.cryptrec.go.jp/english/index.html

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography, 1st edn. Springer, Heidelberg
(2002)

9. Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-middle and impossible differ-
ential fault analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 274–291. Springer, Heidelberg (2011)

10. The NESSIE project (New European Schemes for Signatures, Integrity and Encryp-
tion). https://www.cosic.esat.kuleuven.be/nessie/

11. Phan, R.C.-W., Yen, S.-M.: Amplifying side-channel attacks with techniques from
block cipher cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D.
(eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)

12. Sasaki, Y., Li, Y., Sakamoto, H., Sakiyama, K.: Coupon collector’s problem for
fault analysis against AES — high tolerance for noisy fault injections. In: Sadeghi,
A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 213–220. Springer, Heidelberg (2013)

http://www.cryptrec.go.jp/english/index.html
http://www.cryptrec.go.jp/english/index.html
https://www.cosic.esat.kuleuven.be/nessie/

Improved Differential Fault Analysis on Camellia-128 143

13. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

14. Takahashi, J., Fukunaga, T.: Improved differential fault analysis on CLEFIA. In:
The 5th Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC,
pp. 25–34. IEEE (2008)

15. Todo, Y., Sasaki, Y.: New property of diffusion switching mechanism on CLEFIA
and its application to DFA. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013.
LNCS, vol. 8231, pp. 99–114. Springer, Heidelberg (2013)

16. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011)

17. Zhao, V., Wang, T.: An Improved Differential Fault Attacks on Camellia. Cryp-
tology ePrint Archive/585 (2009)

18. Zhao, X., Wang, T., Guo, S.: Further improved deep differential fault analysis on
Camellia. In: The 2nd International Conference on Instrumentation, Measurement,
Computer, Communication and Control - IMCCC, pp. 878–882, IEEE Computer
Society (2012)

A Note on the Security of CHES 2014
Symmetric Infective Countermeasure

Alberto Battistello1,2(B) and Christophe Giraud1

1 Cryptography and Security Group, Oberthur Technologies,
4, allée du Doyen Georges Brus, 33600 Pessac, France

{a.battistello,c.giraud}@oberthur.com
2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,

Université Paris-Saclay, 78035 Versailles, France

Abstract. Over the years, fault injection has become one of the most
dangerous threats for embedded devices such as smartcards. It is thus
mandatory for any embedded system to implement efficient protections
against this hazard. Among the various countermeasures suggested so
far, the idea of infective computation seems fascinating, probably due
to its aggressive strategy. Originally conceived to protect asymmetric
cryptosystems, infective computation has been recently adapted to sym-
metric systems. This paper investigates the security of a new symmetric
infective countermeasure suggested at CHES 2014. By noticing that the
number of executed rounds is not protected, we develop four different
attacks that exploit the infection algorithm to disturb the round counter
and related variables. Our attacks allow one to efficiently recover the
secret key of the underlying cryptosystem by using any of the three most
popular fault models used in literature.

Keywords: Fault attack · Infective countermeasure · AES

1 Introduction

Over the last 20 years, the security of embedded devices has been challenged
by several specific attacks. In particular, Boneh et al. showed in 1996 that a
simple disturbance during the execution of an embedded algorithm may totally
break its security [5]. They illustrated this new method by explaining how to
break an CRT-RSA implementation by inducing only one error during the algo-
rithm execution. By using so-called fault attacks, many signature schemes and
symmetric cryptosystems have been broken only a few months after the original
Boneh et al. publication [1,4]. A whole new research field thus appeared aim-
ing at discovering new fault-based attacks and providing efficient countermea-
sures [11,13,15]. While researchers improved and discovered new fault attacks
on each and every cryptosystem, the countermeasures were difficult to find and
costly to implement. Among the ideas that emerged, the two most popular meth-
ods are the signature verification for asymmetric systems and the duplication

c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 144–159, 2016.
DOI: 10.1007/978-3-319-43283-0 9

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 145

method for symmetric ones. The first one simply consists in performing a sig-
nature verification on the result. If a fault occurred then the signature is not
consistent and the verification fails. The second method requires to execute the
algorithm twice and to compare both results. If an attacker disturbs one of the
two executions then the comparison detects the attack and no output is returned.
A third approach called infective was suggested in 2001 by Yen et al. [19]. Their
method consists in modifying and amplifying the injected error in such a way
that the attacker cannot retrieve any information from the corresponding faulty
output. Firstly applied to asymmetric cryptosystems [19] this method is tricky to
conceive and all infective countermeasures for asymmetric algorithms published
so far have been broken, see [3,8,17,18] for instance. The infective method has
been adapted only recently to the symmetric case. The first example of sym-
metric infection was proposed by Lomné et al. in 2012 to protect AES [12]. The
authors suggest to execute the AES twice and to compute the infection by multi-
plicatively masking the differential of the two AES outputs. A second symmetric
infection was suggested by Gierlichs et al. in [10] by using a random sequence of
cipher and redundant rounds together with dummy rounds. If the outputs of the
redundant and cipher rounds are different then the temporary result is infected.
Unfortunately both methods have been broken by Battistello and Giraud in [2].

At CHES 2014, Tupsamudre et al. improved in [16] the attack of
Battistello and Giraud and they also suggested an improved version of the infec-
tive countermeasure of Gierlichs et al. While this new proposal is secure against
the attacks found in [2,16], one wonders if they are sufficient to make a symmetric
implementation effectively secure, especially in the absence of a proof of security.
Such a study has been done by Patranabis et al. in [14] where they provide an
information theoretical analysis of the countermeasure suggested in [16]. They
found weaknesses and proposed ways to reduce the efficiency of such threats.

In this paper, we extend the analysis of [14] by studying the security of the
proposition of Tupsamudre et al. We firstly refine the attack presented in [14]
and we analyze precisely its efficiency. We also suggest three other different
attack paths that allow the attacker to modify the number of executed rounds
by disturbing the infective algorithm variables. In order to mount our attacks
we exploit three common fault models used in literature, from skip faults to
random error faults. This paper not only shows that a straightforward imple-
mentation of the CHES 2014 infective countermeasure is insecure but also shows
that implementers should pay particular attention to any aspect of a security
countermeasure when implementing it.

The rest of the paper is organized as follows. In Sect. 2 we recall the coun-
termeasure suggested in [16]. Section 3 presents four different attacks on this
countermeasure. In particular, we show that it is possible to recover the secret
key by using any of the three most popular fault models used in the literature.
Section 4 finally concludes this paper.

146 A. Battistello and C. Giraud

2 Description of CHES 2014 Infective Countermeasure

The infective countermeasure suggested at CHES 2014 by Tupsamudre et al. [16]
is based on the work presented at LatinCrypt 2012 by Gierlichs et al. [10]. For
the sake of simplicity we recall in Algorithm 1 the CHES 2014 countermeasure
suggested in [16] applied to AES-128. For more information about AES, the
reader can refer to [9].

Algorithm 1. CHES 2014 Countermeasure applied on AES-128
Inputs : Plaintext P , round keys kj for j ∈ {1, . . . , 11}, pair (β, k0), security

level t ≥ 22
Output: Ciphertext C = AES-128(P ,K)

1 State R0 ← P ; Redundant state R1 ← P ; Dummy state R2 ← β
2 i ← 1, q ← 1
3 rstr ← {0, 1}t // #1(rstr) = 22, #0(rstr) = t − 22
4 while q ≤ t do
5 λ ← rstr[q] // λ = 0 implies a dummy round
6 κ ← (i ∧ λ) ⊕ 2(¬λ)
7 ζ ← λ · �i/2	 // ζ is actual round counter, // ζ = 0 is for

dummy round
8 Rκ ← RoundFunction(Rκ, kζ)
9 γ ← λ(¬(i ∧ 1)) · BLFN(R0 ⊕ R1)

10 δ ← (¬λ) · BLFN(R2 ⊕ β)
11 R0 ← (¬(γ ∨ δ) · R0) ⊕ ((γ ∨ δ) · R2)
12 i ← i + λ
13 q ← q + 1

14 end
15 return (R0)

Algorithm 1 uses three states denoted R0, R1 and R2 for the cipher, the
redundant and the dummy rounds respectively. The execution order of these
rounds is given by a random bit string rstr generated at the beginning of the
algorithm. Each “0” on the string encodes a dummy round, while a “1” encodes
a redundant or cipher round. Each time a “1” occurs, an index i is incremented
and a redundant round (resp. a cipher round) is executed if i is odd (resp.
even). Algorithm 1 thus executes a loop over the rstr string bits and executes a
cipher, redundant or dummy round accordingly. One may note that Algorithm1
computes the redundant round before the cipher round all along the algorithm
and dummy rounds can happen randomly at any time.

Dummy rounds are executed over a dummy state R2 which is initialized to a
random 128-bit value β and by using the round key k0 which is computed such
that:

RoundFunction(β, k0) = β. (1)

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 147

The number of dummy rounds is parameterized by a security level t chosen by
the developer. More precisely, this parameter represents the whole number of
cipher, redundant and dummy rounds performed during Algorithm1 execution.
For instance in the case of AES-128, t − 22 dummy rounds will be performed.

Regarding the infective part, a first infection is activated after each cipher
round if its state R0 is different from the redundant state R1 (Steps 9 and 11).
Moreover another infection occurs if R2 �= β after the execution of a dummy
round (Steps 10 and 11). These infections consist in replacing the cipher state
R0 with the random value R2, leaving no chance to the attacker to obtain infor-
mation on the secret key once the infection is applied. To do so, a Boolean
function BLFN is used which maps non-zero 128-bit values to 1 and outputs 0 for
a null input.

Compared to the original LatinCrypt 2012 proposal, the CHES 2014 infec-
tive countermeasure differs by the way of dealing with the sequence of cipher,
redundant and dummy rounds which is now done by using a random string rstr
and by the way the infection is performed which is now fully random.

Despite the security analysis of Algorithm 1 presented in [16], we show in the
next section that it may be insecure if implemented as such. Furthermore we
show that an attacker can recover the full secret key for each of the three most
popular fault models used in literature.

3 Attacks

In this section we firstly present the principle of our attacks which are based on
the fact that the variables dealing with the number of rounds to perform are not
protected. We then exploit this remark to suggest four different attacks that use
different fault models such as the instruction skip, the stuck-at and the random
error fault model.

3.1 Principle of Our Attacks

Due to the improvements of Algorithm 1 compared with the original LatinCrypt
2012 countermeasure, it is impossible for the attacker to obtain any informa-
tion on the secret key once the infection has occurred. In order to thwart this
countermeasure, we thus investigate the possibility to disturb the number of
executed rounds since the corresponding variable is not protected in integrity.
Indeed, if the attacker succeeds in disturbing the number of rounds she may be
able to retrieve the secret key from the corresponding faulty ciphertext [6,7].
In the remainder of this section, we show how such an attack works if the last
round of an AES-128 has been skipped.

If the attacker knows a correct and a faulty ciphertext obtained by skipping
the last AES round then it is equivalent to know the input S10 and the output
S11 of the last round. Due to the lack of MixColumns transformation during
the last AES round, the last round key k11 can be recovered byte per byte by
XORing the corresponding bytes of S10 and S11:

k11
i = S11

i ⊕ SBox(S10
SR−1(i)), ∀i ∈ {1, . . . , 16}, (2)

148 A. Battistello and C. Giraud

where SR corresponds to the byte index permutation induced by the transfor-
mation ShiftRows. In such a case, the attacker can recover the full AES-128 key
from only one pair of correct and faulty ciphertexts.

One may note that this attack works similarly if the attacker knows the input
and the output of the first round. For further details on the first round attack
the reader can refer to [6].

In the following, we describe different ways of disturbing Algorithm1 by using
several fault models such that it does not perform the AES with the correct
number of rounds whereas no infection is performed. In our description we make
use of AES-128 as a reference, however our attacks can apply straightforwardly
to other key sizes.

3.2 Attack 1 by Using Instruction Skip Fault Model

The first attack that we present is an extension of the one presented in [14]
which exploits the instruction skip fault model. The attack essentially works
because whenever the variable i is odd and λ = 1 then a redundant round is
executed and this kind of round does not involve any infection. In the following
we assume that the attacker can skip an instruction of its choice by means of a
fault injection.

Description. If the attacker skips Step 12 of Algorithm1 after the last redundant
round then the increment of i is not performed. Therefore i stays odd so the last
cipher round is replaced by another redundant round. As no infection is involved
for redundant rounds, the algorithm returns the output of the penultimate round.
The attacker can thus take advantage of such an output to recover the secret
key as explained in Sect. 3.1.

Efficiency. As explained in AppendixA, the probability of skipping the last
cipher round and thus to recover the AES key after disturbing r different AES
executions by skipping Step 12 during the q-th loop is given by:

Pr = 1 −
(

1 −
(
q−1
20

)(
t−q
1

)
(

t
22

)
)r

. (3)

where t is the total number of rounds performed during Algorithm1, i.e. the
number of while loops.

Some numerical values of (3) are given in Table 1 for t equal to 30, 40 and
50, q = t − 3, · · · , t − 1 and r = 1, · · · , 4. One can notice that if the fault is
injected when q equals t then the attack does not work because all the rounds
have already been executed.

By analyzing Table 1, one can deduce the best strategy for the attacker. For
example if t = 30 then the attacker should target the 29-th loop in order to
obtain the best chances of retrieving the key with the minimal number of fault
injections.

Experiments. The attack described in this section has been simulated for t = 30
and for each q between 25 and 29. The experiment has been repeated 3 000 times
for each configuration. The results of our tests are depicted in Fig. 1.

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 149

Table 1. Probability of obtaining at least one useful faulty ciphertext by skipping Step
12 during the q-th loop of Algorithm 1.

t q Number r of faults

1 2 3 4

30 27 11.80 % 22.21 % 31.39 % 39.49 %

28 30.34 % 51.48 % 66.20 % 76.46 %

29 53.10 % 78.01 % 89.69 % 95.16 %

40 37 19.34 % 34.93 % 47.52 % 57.66 %

38 28.06 % 48.24 % 62.76 % 73.21 %

39 29.62 % 50.46 % 65.13 % 75.46 %

50 47 18.96 % 34.32 % 46.77 % 56.86 %

48 22.00 % 39.16 % 52.54 % 62.98 %

49 18.86 % 34.16 % 46.57 % 56.65 %

Fig. 1. Experimental probability of obtaining a useful faulty ciphertext by skipping
Step 12 during the q-th loop of Algorithm 1 for t = 30.

By comparing Fig. 1 and the row t = 30 of Table 1, one can notice that the
experiments perfectly match with the theoretical results.

3.3 Attack 2 by Using Stuck-At 0 Fault Model

In this section we use the stuck-at 0 fault model where we assume that the
attacker can set to zero a variable of her choice. As for the attack presented
in Sect. 3.2, the goal of the attacker is to skip the execution of the last cipher
round.

Description. To avoid the execution of the last cipher round by using a
stuck-at 0 fault model without activating an infection, the attacker can set to
zero the variable λ right after Step 5 during the loop involving the last “1” of

150 A. Battistello and C. Giraud

rstr, i.e. during the loop dealing with the last cipher round. The computation
of the last cipher round is thus skipped since λ = 0 implies a dummy round.
The attacker thus retrieves an exploitable faulty ciphertext that can be used
to retrieve the secret key as described in Sect. 3.1. As no consistency check is
performed on λ, rstr nor on the number of cipher rounds executed, Algorithm1
does not detect the fault.

Efficiency. We detail in AppendixB the reasoning to compute the probability of
obtaining at least one useful faulty ciphertext after disturbing r different AES
executions by setting λ to 0 after Step 5 of the q-th loop. Such a probability is
given by:

Pr = 1 −
(

1 −
(
q−1
21

)
(

t
22

)
)r

. (4)

Some numerical values of (4) are given in Table 2 for t equal to 30, 40 and
50, q = t − 2, · · · , t and r = 1, · · · , 4.

Table 2. Probability of obtaining at least one useful faulty ciphertext by sticking λ at
0 during the q-th loop of Algorithm 1

t q Number r of faults

1 2 3 4

30 28 5.06 % 9.86 % 14.42 % 18.75 %

29 20.23 % 36.37 % 49.24 % 59.51 %

30 73.33 % 92.89 % 98.10 % 99.49 %

40 38 11.36 % 21.42 % 30.35 % 38.26 %

39 25.38 % 44.33 % 58.46 % 69.00 %

40 55.00 % 79.75 % 90.89 % 95.90 %

50 48 14.14 % 26.29 % 36.71 % 45.66 %

49 25.14 % 43.96 % 58.05 % 68.60 %

50 44.00 % 68.64 % 82.44 % 90.17 %

By comparing Table 2 with Table 1, one may note that the attack presented
in this section is more efficient than the one presented in Sect. 3.2, especially
when the attacker targets the last loop execution.

Experiments. We simulated the attack for t = 30 and for q from 27 to 30. For
each value of q we performed 3 000 tests with random rstr. The results of such
experiments are depicted in Fig. 2.

3.4 Attack 3 by Using Random Error Fault Model

We show in this section how the attacker can use the random error fault model
to obtain a useful faulty ciphertext. In this fault model, we assume that the
attacker can change the value of a chosen internal variable into a random value.

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 151

Fig. 2. Experimental probability of obtaining a useful faulty ciphertext by sticking λ
at 0 during the q-th loop of Algorithm 1 for t = 30.

Description. Due to its central role in the infection and scheduling, string rstr is
very sensitive. However, the authors of [16] do not suggest any mean of ensuring
its integrity. We thus investigated this path and we noticed that an attacker
can disturb the generation of rstr at Step 3 of Algorithm1 such that it does
not contain 22 “1” anymore. If the fault disturbs the string rstr such that it
contains only 21 (resp. 20) “1” then Algorithm1 does not execute the last cipher
round (resp. the last redundant and cipher rounds). In both cases no infection is
performed allowing the attacker to exploit the corresponding faulty ciphertext
to recover the secret key as explained in Sect. 3.1.

Efficiency. The probability to obtain at least one useful faulty ciphertext after
disturbing r different AES executions by randomly modifying the least significant
byte of rstr during Step 3 is given by:

Pr = 1 −
⎛

⎝1 −
⎛

⎝
8∑

i=1

(t−8
22−i

)(8
i

)

(t
22

)

i∑

j=1

(i
j

)(8−i
j−1

)

255
+

8∑

i=2

(t−8
22−i

)(8
i

)

(t
22

)

i∑

j=2

(i
j

)(8−i
j−2

)

255

⎞

⎠

⎞

⎠

r

. (5)

For more details about the computation of this probability, the reader can
refer to AppendixC.

Table 3 gives the probability to obtain a useful faulty ciphertext for t equal
to 30, 40 and 50.

Experiments. Figure 3 shows the results obtained by simulating the attack
described above. The simulations have been performed by generating a ran-
dom string rstr and disturbing it with an 8-bit random error. The test has been
performed 3 000 times for each t equal to 30, 40 and 50.

3.5 Attack 4 by Using Random Error Fault Model

This section describes a second attack that can be mounted by using the random
error fault model.

152 A. Battistello and C. Giraud

Table 3. Probability of obtaining at least one useful faulty ciphertext by disturbing
Step 3 of Algorithm 1.

t Number r of faults

1 2 3 4

30 41.63 % 65.93 % 80.11 % 88.39 %

40 34.72 % 57.39 % 72.18 % 81.84 %

50 24.60 % 43.15 % 57.13 % 67.67 %

Description. The idea of the attack is to disturb the increment of index q at
Step 13 of Algorithm1 during the execution of the first cipher round. We noticed
that if the disturbance produces an error e such that q⊕e > t then the evaluation
at Step 4 is false and the algorithm returns. If the algorithm computes only one
cipher round then the attacker can use such an output to retrieve the first round
key, cf. [6]. It is important to notice that in order to retrieve a useful output,
the attacker needs to disturb the execution during the first cipher round and not
after a redundant or dummy round.

Efficiency. As detailed in AppendixD, the probability to obtain at least one
useful faulty ciphertext after disturbing r different AES executions by injecting
a random error during Step 13 of the q-th loop is given by:

Pr = 1 −
(

1 − 28 − t

28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(

t
22

)
)r

. (6)

We give in Table 4 the probability that the attacker retrieves a useful faulty
ciphertext for t equal to 30, 40 and 50 and for q from 2 to 4.

The attacker can use Table 4 to choose the best strategy for her attack. For
example for t = 30, one obtains the best chances to retrieve a useful faulty cipher-

Fig. 3. Experimental probability of obtaining a useful faulty ciphertext by disturbing
Step 3 of Algorithm 1.

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 153

Table 4. Probability of obtaining a useful faulty ciphertext by injecting a random
error fault on Step 13 of Algorithm 1.

t q Number of faults

1 2 3 4

30 2 46.88 % 71.78 % 85.01 % 92.04 %

3 73.67 % 93.07 % 98.17 % 99.52 %

4 60.52 % 84.42 % 93.85 % 97.57 %

40 2 24.99 % 43.73 % 57.79 % 68.34 %

3 48.66 % 73.64 % 86.47 % 93.05 %

4 58.22 % 82.55 % 92.71 % 96.95 %

50 2 15.17 % 28.05 % 38.96 % 48.23 %

3 32.88 % 54.95 % 69.76 % 79.70 %

4 45.58 % 70.38 % 83.88 % 91.23 %

text by attacking the third loop. Furthermore when comparing the efficiency of
our four attacks, the attack presented in this section is the most efficient one.

Experiments. We mounted several simulations where we disturbed the Step 13
of the q-th loop with a random byte error e. We mounted the experiments for
t = 30 and for q from 2 to 6. For each different q we repeated the experiment
3 000 times. The results of such experiments are shown in Fig. 4.

Fig. 4. Experimental probability of obtaining a useful faulty ciphertext by a injecting
random error fault on Step 13 of Algorithm 1 for t = 30.

The simulations shows that this attack has a remarkable success rate. For
example for t = 30, an attacker that reiterates the fault injection only twice
during the third loop has a probability of retrieving a useful faulty ciphertext
greater than 90%.

154 A. Battistello and C. Giraud

4 Conclusion

In this article we showed that the infective countermeasure of CHES 2014 is
not as secure as expected. While the countermeasure gives no information to
the attacker once the infection is applied, we discovered that it does not protect
the number of cipher rounds effectively executed. Despite the fact that attacks
on the round counter are well known, our work describes attack paths that are
difficult to spot and involve disturbances on the infective variables intentionally
added to thwart fault attacks. The aim of this paper is thus to warn the reader of
possible security weaknesses that may reside in straightforward implementations
of the countermeasure.

We applied the three most popular fault models and found four different
attack paths that allow an attacker to recover the secret key of the underlying
cryptosystem. For each attack we studied the success probability and performed
simulations that validated our theoretical results.

An obvious countermeasure consists in ensuring the integrity of i, q, λ and
rstr for instance. In their work Patranabis et al. [14] suggest a possible coun-
termeasure based on this remark to thwart the instruction skip fault model.
However, their analysis does not take into account other fault models that are
exploited in this work. We thus suggest that a possible idea for future improve-
ments may be to fill this gap.

With this work we also remark that the lack of formal security proofs in this
field is clearly an issue. We hope that new ideas may pave the way to formally
prove the security of cryptosystems against fault-based cryptanalysis.

A Probability of Success of Attack 1

The success of Attack 1 depends on the chances for the attacker to fault the
increment of i in the loop corresponding to the last redundant round execution.
Let us denote by e1 the event of faulting the last redundant round during the
q-th loop. The probability P(e1) is thus the probability of having a bit-string
rstr that contains 20 “1” on the first q − 1 positions, one bit set on the q-th
position and a last sub-string with only one bit set on the last t−q positions. The
corresponding number of such sub-strings being equal to

(
q−1
20

)
,

(
1
1

)
and

(
t−q
1

)
respectively, this leads us to

(
q−1
20

)(
t−q
1

)
exploitable rstr strings.

By dividing this value by the number of possible rstr strings, we obtain the
probability P(e1):

P(e1) =

(
q−1
20

)(
t−q
1

)
(

t
22

) . (7)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 155

B Probability of Success of Attack 2

Let us evaluate the probability that the event e2 of obtaining a useful faulty
ciphertext by setting to zero the variable λ at Step 5 of Algorithm1 happens.
The probability P(e2) corresponds to the probability of obtaining a string rstr
that has 21 bits set on the first q−1 positions, a “1” on the q-th position and only
“0”’s on the last t − q positions. As we have done in AppendixA, we compute
this probability as the number of such strings divided by the total number of
possible rstr strings. As there is only one possibility that the last t− (q −1) bits
of rstr are exactly “1 0 · · · 0”, we thus obtain:

P(e2) =

(
q−1
21

)
(

t
22

) , (8)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.

C Probability of Success of Attack 3

Let us denote by e3 the event that a random byte error disturbs the string rstr
such that it contains only 21 or 20 “1”. To evaluate the probability P(e3) that
the event e3 occurs, let us assume for the sake of simplicity that the attacker
disturbs the least significant byte B of rstr which corresponds to a random byte
fault model. By firstly evaluating the case 21, we observe that the probability
that a bit-string has exactly 21 bits set on the first t − 8 positions and the
remaining “1” in one of the last 8 positions is:

P(HW (B) = 1) =

(
t−8
21

)(
8
1

)
(

t
22

) , (9)

where we denote by HW (B) the Hamming weight of the byte B. Equation (9)
corresponds to the probability that the last byte of rstr has an Hamming weight
equal to 1. By summing the corresponding probabilities for all the Hamming
weights between 1 and 8 we obtain the probability that the last byte of rstr has
an Hamming weight greater than zero:

P(HW (B) > 0) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

) . (10)

Now, let us compute the probability of injecting a random error on a byte of
Hamming weight i such that the byte contains only i−1 “1” after the disturbance.
We thus count for each possible value of B how many 8-bit values e exist such
that HW (B ⊕ e) = HW (B) − 1. This corresponds to the number of possible

156 A. Battistello and C. Giraud

errors setting to “0” j bits “1” while setting to “1” j − 1 bits “0”. Afterwards
we divide the result by the number of possible values for the error e:

P(HW (B ⊕ e) = HW (B) − 1|B)

=
∑HW (B)

j=1 (HW (B)
j)(8−HW (B)

j−1)
255 .

(11)

This corresponds to the probability that HW (B ⊕e) = HW (B)−1 by injecting
a random error e on a random 8-bit value B.

By combining the two probabilities above, we obtain the probability that
rstr contains 21 “1” after a random error injection on the last byte of rstr:

P(HW (B ⊕ e) = 21) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

)
i∑

j=1

(
i
j

)(
8−i
j−1

)
255

. (12)

For the case where rstr contains only 20 “1”, we use the same reasoning and
we obtain:

P(HW (B ⊕ e) = 20) =
8∑

i=2

(
t−8
22−i

)(
8
i

)
(

t
22

)
i∑

j=2

(
i
j

)(
8−i
j−2

)
255

. (13)

Thus the total probability of disturbing the generation of one byte of rstr such
that it contains a total of 21 or 20 “1” is:

P(e3) =
8∑

i=1

(
t−8
22−i

)(
8
i

)
(

t
22

)
i∑

j=1

(
i
j

)(
8−i
j−1

)
255

+
8∑

i=2

(
t−8
22−i

)(
8
i

)
(

t
22

)
i∑

j=2

(
i
j

)(
8−i
j−2

)
255

. (14)

As described in AppendixE, we then compute by using Eq. (20) the probabil-
ity to obtain at least one useful faulty ciphertext by repeating the fault injection
r times.

D Probability of Success of Attack 4

In the following we denote by e4 the event that the error e is injected after a
cipher round and is such that q ⊕ e > t. In order to evaluate the probability
P(e4) we need to compute:

– the probability that the error e leads to q ⊕ e > t,
– the probability that the attacker disturbs the algorithm after a cipher round

and not after a redundant or dummy round.

For the first probability, without loss of generality, we assume that q is coded
over one byte which should be the case in practice. We thus obtain that the
probability of injecting an 8-bit error e such that q ⊕ e > t depends only on t
and is given by:

P(q ⊕ e > t) =
28 − t

28
. (15)

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 157

In order to evaluate the second probability we remark that it is equivalent to the
probability that the string rstr contains two or three “1” in the first q positions.
We recall that rstr is a string with 22 “1” at most. Thus the number of possible
strings rstr with only two “1” in the first q positions is:

(
q

2

)(
t − q

20

)
. (16)

Summing Eq. (16) to the number of possible strings rstr with only three “1” in
the first q positions we obtain the number of favorable cases for the attacker:

(
q

2

)(
t − q

20

)
+

(
q

3

)(
t − q

22 − 3

)
. (17)

By dividing by the total number of possible rstr strings we thus obtain the
probability that the algorithm has executed only one cipher round after q rounds:

P(HW (rstr[1, . . . , q]) ∈ [2, 3]) =

(
q
2

)(
t−q
20

)
+

(
q
3

)(
t−q
19

)
(

t
22

) , (18)

where rstr[1, . . . , q] denotes the sub-string of rstr between the first and the q-th
position. By combining the two probabilities we obtain:

P(e4) =
28 − t

28

3∑
i=2

(
q
i

)(
t−q
22−i

)
(

t
22

) , (19)

which corresponds to the probability that the algorithm returns an exploitable
faulty ciphertext by injecting a random error after q rounds.

As described in Appendix E, we then compute by using Eq. 20 the probability
to obtain at least one useful faulty ciphertext by repeating the fault injection r
times.

E Attack Repetition Probability

For each attack, we denote by P(ei) the probability that event ei occurs. By
assuming that P(ei) is independent for each execution we can compute the
probability of getting at least one useful faulty ciphertext by repeating the fault
injection r times as:

Pr = 1 − (1 − P(ei))r. (20)

References

1. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.-H.: Breaking
public key cryptosystems and tamper resistance devices in the presence of transient
fault. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols
1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

158 A. Battistello and C. Giraud

2. Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In:
Fischer, W., Schmidt, J.-M. (eds.) FDTC, pp. 101–107. IEEE (2013)

3. Berzati, A., Canovas, C., Goubin, L.: (In)security against fault injection attacks for
CRT-RSA implementations. In: Breveglieri, L., Gueron, S., Koren, I., Naccache,
D., Seifert, J.-P. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC,
pp. 101–107. IEEE Computer Society (2008)

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

6. Choukri, H., Tunstall, M.: Round reduction using faults. In: Breveglieri, L., Koren,
I. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography - FDTC
(2005)

7. Dutertre, J.-M., Mirbaha, A.-P., Naccache, D., Ribotta, A.-L., Tria, A., Vaschalde,
T.: Fault round modification analysis of the advanced encryption standard. In:
IEEE International Symposium on Hardware-Oriented Security and Trust - HOST,
pp. 28–39. IEEE (2012)

8. Feix, B., Venelli, A.: Defeating with fault injection a combined attack resistant
exponentiation. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 32–45.
Springer, Heidelberg (2013)

9. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards
and Technology, November 2001

10. Gierlichs, B., Schmidt, J.M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012)

11. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

12. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack
countermeasures - application to AES. In: Bertoni, G., Gierlichs, B. (eds.) Fault
Diagnosis and Tolerance in Cryptography - FDTC, pp. 85–94. IEEE Computer
Society (2012)

13. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption
standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

14. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault Tolerant Infective
Countermeasure for AES. Cryptology ePrint Archive, Report 2015/493 (2015).
http://eprint.iacr.org/

15. Piret, G., Quisquater, J.J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

16. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant with
randomization. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 93–111. Springer, Heidelberg (2014)

17. Wagner, D.: Cryptanalysis of a provable secure CRT-RSA algorithm. In: Pfitz-
mann, B., Liu, P. (eds.) ACM Conference on Computer and Communications
Security - CCS 2004, pp. 82–91. ACM Press (2004)

http://eprint.iacr.org/

A Note on the Security of CHES 2014 Symmetric Infective Countermeasure 159

18. Yen, S.M., Kim, D., Moon, S.J.: Cryptanalysis of two protocols for RSA with CRT
based on fault infection. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 53–61. Springer, Heidelberg (2006)

19. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue number
system immune against hardware fault cryptanalysis. In: Kim, K. (ed.) ICISC
2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)

Side-Channel Analysis (Tools)

Simpler, Faster, and More Robust T-Test
Based Leakage Detection

A. Adam Ding1, Cong Chen2(B), and Thomas Eisenbarth2

1 Northeastern University, Boston, MA, USA
a.ding@neu.edu

2 Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth}@wpi.edu

Abstract. The TVLA procedure using the t-test has become a popu-
lar leakage detection method. To protect against environmental fluctua-
tion in laboratory measurements, we propose a paired t-test to improve
the standard procedure. We take advantage of statistical matched-pairs
design to remove the environmental noise effect in leakage detection.
Higher order leakage detection is further improved with a moving average
method. We compare the proposed test with standard t-test on synthetic
data and physical measurements. Our results show that the proposed
tests are robust to environmental noise.

1 Motivation

More than 15 years after the proposal of DPA, standardized side channel leakage
detection is still a topic of controversial discussion. While Common Criteria (CC)
testing is an established process for highly security critical applications such as
banking smart cards and passport ICs, the process is slow and costly. While
appropriate for high-security applications, CC is too expensive and too slow
to keep up with the innovation cycle of a myriad of new networked embedded
products that are currently being deployed as the Internet of Things. As a result,
an increasing part of the world we live in will be monitored and controlled by
embedded computing platforms that, without the right requirements in place,
will be vulnerable to even the most basic physical attacks such as straightforward
DPA.

A one-size-fits-most leakage detection test that is usable by non-experts and
can reliably distinguish reasonably-well protected cryptographic implementa-
tions from insecure ones could remedy this problem. Such a test would allow
industry to self-test their solutions and hopefully result in a much broader
deployment of appropriately protected embedded consumer devices. The TVLA
test was proposed as such a leakage detection test in [6,10]. The TVLA test
checks if an application behaves differently under two differing inputs, e.g. one
fixed input vs. one random input. As the original DPA, it uses averaging over
a large set of observations to detect even most nimble differences in behavior,
which can potentially be exploited by an attacker.

c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 163–183, 2016.
DOI: 10.1007/978-3-319-43283-0 10

164 A.A. Ding et al.

Due to its simplicity, it is applicable to a fairly wide range of cryptographic
implementations. In fact, academics have started to adopt this test to provide
evidence of existing leakages or their absence [1,3–5,13,15,16,20]. With increased
popularity, scrutiny of the TVLA test has also increased. Mather et al. [14]
studied the statistical power and computation complexity of the t-test versus
mutual information (MI) test, and found that t-test does better in the majority
of cases. Schneider and Moradi [19] for example showed how the t-test higher
order moments can be computed in a single pass. They also discussed the tests
sensitivity to the measurement setup and proposed a randomized measurement
order. Durveaux and Standaert [8] evaluate the convenience of the TVLA test for
detecting relevant points in a leakage trace. They also uncover the implications
of good and bad choices of the fixed case for the fixed-vs-random version of the
TVLA test and discuss the potential of a fixed-vs-fixed scenario.

However, there are other issues besides the choice of the fixed input and
the measurement setup that can negatively impact the outcome for the t-test
based leakage detection. Environmental effects can influence the t-test in a neg-
ative way, i.e., will decrease its sensitivity. In the worst case, this means that
a leaky device may pass the test only because the environmental noise was
strong enough. This is a problem for the proposed objective of the TVLA test,
i.e. self-certification by non-professionals who are not required to have a broad
background in side channel analysis.

Our Contribution. In this work, we propose the adoption of the paired t-test
for leakage detection, especially in cases where long measurement campaigns
are performed to identify nimble leakages. We discuss several practical issues of
the classic t-test used in leakage detection and show that many of them can be
avoided when using the paired t-test. To reap the benefits of the locality of the
individual differences of the paired t-test in the higher order case, we further
propose to replace the centered moments with a local approximation. These
approximated central moments are computed over a small and local moving
window, making the entire process a single-pass analysis. In summary, we show
that

– the paired t-test is more robust to environmental noise such as temperature
changes and drifts often observed in longer measurement campaigns, resulting
in a faster and more reliable leakage detection.

– using moving averages instead of a central average results in much better
performance for higher order and multivariate leakage detection if common
measurement noise between the two classes of traces is present, while intro-
ducing a vanishingly small inaccuracy if no such common noise appears. The
improvement of the moving averages applies both to the paired and unpaired
t-tests.

In summary, we advocate the adoption of the paired t-test based on moving
averages as a replacement of Welch’ t-test for detecting leakages, as results are
at least on par with the prevailing methodology while showing much better
results in the presence of a common noise source.

Simpler, Faster, and More Robust T-Test Based Leakage Detection 165

2 Background

In the framework of [10], the potential leakage for a device under test (DUT) can
be detected by comparing two sets of measurements LA and LB on the DUT. A
popular test for the comparison is Welch’s t-test, which aims to detect the mean
differences between the two sets of measurements. The null hypothesis is that
the two samples come from the same population so that their population means
μA and μB are the same. Let L̄A and L̄B denote their sample means, s2A and s2B
denote their sample variance, nA and nB denote the number of measurements
in each set. Then the t-test statistic and its degree of freedom are given by

tu =
L̄A − L̄B√

s2A
nA

+ s2B
nB

, v =
(s2A
nA

+ s2B
nB

)2

(
s2
A

nA
)2

nA−1 +
(
s2
B

nB
)2

nB−1

. (1)

The p-value of the t-test is calculated as the probability, under a t-distribution
with v degree of freedom, that the random variable exceeds observed statistic
|tu|. This is readily done in Matlab as 2 ∗ (1 − tcdf(·, v)) and in R as 2 ∗ (1 −
qt(·, df = v)). The null hypothesis of no leakage is rejected when the p-value is
smaller than a threshold, or equivalently when the t-test statistic |tu| exceeds a
corresponding threshold. The rejection criterion of |tu| > 4.5 is often used [10,19].
Since Pr(|tdf=v>1000| > 4.5) < 0.00001, this threshold leads to a confidence
level > 0.99999.

For leakage detection, a specific t-test use two sets LA and LB corresponding
to different values of an intermediate variable: V = vA and V = vB. To avoid the
dependence on the intermediate value and the power model, non-specific t-test
often uses the fixed versus random setup. That is, the first set LA is collected
with a fixed plaintext xA, while the second set LB is collected with random
plaintexts xB drawn from the uniform distribution. Then if there is leakage
through an (unspecified) intermediate variable V , then

LA = V (k, xA) + rA LB = V (k, xB) + rB , (2)

where k is the secret key, rA and rB are random measurement noises with zero
means and variance σ2

A and σ2
B respectively. The non-specific t-test can detect

the leakage, with large numbers of measurements nA and nB , when the fixed
intermediate state V (k, xA) differs from the expected value of the random inter-
mediate state ExB

[V (k, xB)] where the expectation is taken over the uniform
random plaintexts xB .

The power model is very general for t-test framework of [10]. The interme-
diate variable can be of various sizes, including one bit or one byte intermediate
state. Particularly, the tester does not need to know the underlying power model
for the unspecified t-test. The power model in most of the paper is kept abstract
and general. The theory does not depend on any specific power model. We only
specify the exact power model in simulation studies that generated the data.

166 A.A. Ding et al.

0 2000 4000 6000 8000 10000
1050

1100

1150

1200

1250

1300

1350

1400

P
ow

er
 C

on
su

m
pt

io
n

Fixed average (Window size=100)

Fig. 1. Power consumption moving averages at a key-sensitive leakage point on the
DPAv2 template traces

3 Methodology

This section introduces paired t-test and shows its superiority in a leakage model
with environmental noise. The paired t-test retains its advantage of being a
straightforward one-pass algorithm by making use of moving or local averages.
By relying on the difference of matched pairs, the method is inherently numeri-
cally stable while retaining computational efficiency and parallelizability of the
original t-test.

3.1 Paired T-Test

Welch’s t-test works well when the measurement noises rA and rB are indepen-
dent between the two sets of measurements. However, two sets of measurements
can also share common variation sources during a measurement campaign. For
example, power consumption and variance may change due to common envi-
ronmental factors such as room temperature. While these environmental factors
usually change slowly, such noise variation is more pronounced over a longer time
period. With hard to detect leakages, often hundreds of thousands to millions of
measurement traces are required for detection. These measurements usually take
many hours and the environmental fluctuation is of concern in such situations.
For example, for the DPA V2 contest, there are one million template traces col-
lected over 3 days and 19 h, which show a clear temporal pattern [11]. Figure 1
(a subgraph of 2 in [11]) shows the average power consumption at 2373-th time
point on the traces of DPAv2, using mean values over 100 non-overlapping sub-
sequent traces.

Testing labs usually try to control the environmental factors to reduce such
temporal variation. However, such effort can be expensive and there is no guar-
antee that all noise induced by environmental factors can be removed. Instead,
we can deal with these environmental noise through statistical design. Partic-
ularly, we can adopt the matched-pairs design (Sect. 15.3 in [12]), where the
measurements are taken in pairs with one each from the groups A and B. Then
a paired t-test can be applied on such measurements, replacing the unpaired
t-test (1). With n such pairs of measurements, we have n difference measure-
ments D = LA − LB . The paired difference cancels the noise variation from the

Simpler, Faster, and More Robust T-Test Based Leakage Detection 167

common source, making it easier to detect nonzero population difference. The
null hypothesis of μA = μB is equivalent to that the mean difference μD = 0,
which is tested by a paired t-test. Let D̄ and s2D denote the sample mean and
sample variances of the paired differences D1, ..., Dn. The paired t-test statistic
is

tp =
D̄√
s2D
n

, (3)

with the degree of freedom n − 1. The null hypothesis of non-leakage is rejected
when |tp| exceeds the threshold of 4.5.

To quantify the difference between the two versions of t-test, we can compare
the paired t-test (3) and the unpaired t-test (1) here with nA = nB = n.

First, without common variation sources under model (2), V ar(D) =
V ar(LA) + V ar(LB) = σ̃2

A + σ̃2
B. Here σ̃2

A = σ2
A + V ar[V (k, xA)] and σ̃2

B =
σ2
B + V ar[V (k, xB)]. Notice that D̄ = L̄A − L̄B , so for large n, the paired t-test

and unpaired t-test are equivalent with tu ≈ tp ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B)/n.
The paired t-test works even if the two group variances are unequal σ̃2

A �= σ̃2
B.

The two versions of the t-test perform almost the same in this case.
However, the paired t-test detects leakage faster if there are common noise

variation sources. To see this, we explicitly model the common environmental
factor induced variation not covered by model (2).

LA = V (k, xA) + rA + rE LB = V (k, xB) + rB + rE , (4)

where rE is the noise caused by common environmental factors, with mean zero
and variance σE . The rA and rB here denote the random measurement noises
excluding common variations so that rA and rB are independent, with zero means
and variance σ2

A and σ2
B respectively. Again we denote σ̃2

A = σ2
A+V ar[V (k, xA)]

and σ̃2
B = σ2

B + V ar[V (k, xB)]. Then tu ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B + 2σ2
E)/n

while tp ≈ (L̄A − L̄B)/
√

(σ̃2
A + σ̃2

B)/n. The paired t-test statistic |tp| has a big-
ger value than the unpaired t-test |tu|, thus identifies the leakage more efficiently.
The difference increases when the environmental noise σE increases. Hence, the
paired t-test performs as well or better than the unpaired test. However, the
matched-pairs design of the paired t-test cancels common noise found in both
pairs, making the test more robust to suboptimal measurement setups and envi-
ronmental noise.

3.2 Higher Order and Multivariate Leakage Detection

The t-test can also be applied to detect higher order leakage and multivariate
leakage [10,19]. For d-th order leakage at a single time point, the t-test compares
sample means of (LA − L̄A)d and (LB − L̄B)d. Under the matched-pairs design,
the paired t-test would simply work on the difference

D = [(LA − L̄A)d − (LB − L̄B)d] (5)

168 A.A. Ding et al.

to yield the test statistic (3): tp = D̄/
√

s2D/n. Multivariate leakage combines
leakage observation at multiple time points. A d-variate leakage combines leakage
L(1), ..., L(d) at the d time points t1, ..., td respectively. The combination is done
through the centered product CP (L(1), ..., L(d)) = (L(1) − L̄(1))(L(2) − L̄(2))
· · · (L(d) − L̄(d)). The standard d-variate leakage detection t-test compares the
sample means of CP (L(1)

A , ..., L
(d)
A) and CP (L(1)

B , ..., L
(d)
B) with statistic (1). The

paired t-test (3) uses the difference D = [CP (L(1)
A , ..., L

(d)
A)−CP (L(1)

B , ..., L
(d)
B)].

However, these tests (including the paired t-test) do not eliminate environ-
mental noise effects on the higher order and multivariate leakage detection. The
centering terms (the subtracted L̄) in the combination function also need adjust-
ment due to environmental noises, which are not random noise but follow some
temporal patterns. To see this, we use the bivariate leakage model for first-order
masked device as an example.

The leakage measurements at the two time points t1 and t2 leak two inter-
mediate values V (1)(k, x,m) and V (2)(k, x,m) where k, x and m are the secret
key, plaintext and mask respectively. For uniformly distributed m, V (1)(k, x,m)
and V (2)(k, x,m) both follow a distribution not affected by k and x, there-
fore no first order leakage exits. Without loss of generality, we assume that
Em[V (1)(k, x,m)] = Em[V (2)(k, x,m)] = 0, and the second order leakage comes
from the product combination V (1)V (2). [18] derived the strongest leakage com-
bination function under a second order leakage model without the environmental
noises:

L(1) = c(1) + V (1)(k, x,m) + r(1), L(2) = c(2) + V (2)(k, x,m) + r(2), (6)

where r(1) and r(2) are zero-mean random pure measurement noises with variance
σ2
1 and σ2

2 respectively. Under model (6), [18] showed that centered product
leakage (L(1) − c(1))(L(2) − c(2)) is the strongest. Since c1 and c2 are unknown
in practice, they are estimated by L̄(1) = c̄(1) + V̄ (1) + r̄(1) and L̄(2) = c̄(2) +
V̄ (2) + r̄(2). With large number of traces, L̄(1) ≈ c̄(1) and L̄(2) ≈ c̄(2) by the law of
large number. Hence (L(1) − L̄(1))(L(2) − L̄(2)) approximate the optimal leakage
(L(1) − c(1))(L(2) − c(2)) well. However, considering environment induced noises,
this is no longer the strongest leakage combination function. Let us assume that

L(1) = c(1) + V (1)(k, x,m) + r(1) + r
(1)
E , L(2) = c(2) + V (2)(k, x,m) + r(2) + r

(2)
E , (7)

where r
(1)
E and r

(2)
E are environment induced noises which has mean zero but

follow some temporal pattern rather than being random noise. The optimal
leakage then becomes (L(1) − c(1) − r

(1)
E)(L(2) − c(2) − r

(2)
E) instead. Therefore,

we propose that the centering means L̄(1) and L̄(2) are calculated as moving
averages from traces with a window of size nw around the trace to be centered,
rather than the average over all traces. The temporal patterns for r

(1)
E and r

(2)
E ,

such as in Fig. 1, are usually slow changing. Hence, for a moderate window size,
say nw = 100, the moving averages L̄(1) ≈ c(1) + r

(1)
E and L̄(2) ≈ c(2) + r

(2)
E .

When there are no environment induced noises r
(1)
E and r

(2)
E , using bigger

window size nw can improve the precision. However, comparing to centering

Simpler, Faster, and More Robust T-Test Based Leakage Detection 169

on averages of all traces, we can prove that centering the moving averages only
loses O(1/nw) proportion of statistical efficiency under model (6). More precisely,
denote the theoretical optimal leakage detection statistic as

Δ = (L(1)
A − c(1))(L(2)

A − c(2)) − (L(1)
B − c(1))(L(2)

B − c(2)). (8)

And denote the leakage detection statistic using moving average of a window
size nw as

D = (L(1)
A − L̄

(1)
A)(L(2)

A − L̄
(2)
A) − (L(1)

B − L̄
(1)
B)(L(2)

B − L̄
(2)
B). (9)

Then for large sample size n, the t-test statistic (3) is approximately tp(D) ≈
E(D)/

√
V ar(D)/n, and the optimal leakage detection t-test statistic is approx-

imately tp(Δ) ≈ E(Δ)/
√

V ar(Δ)/n. A quantitative comparison of these two
statistic is given in the next Theorem.

Theorem 1. Under the second-order leakage model (6),

E(D)√
V ar(D)/n

√
V ar(Δ)/n

E(Δ)
= 1 − η

nw
+ O(

1
n2
w

), (10)

where the factor η is given by

η =
1

V ar(Δ)
[V ar(V (1)

A)V ar(V (2)
A) + V ar(V (1)

B)V ar(V (2)
B) + E2(V (1)

A V
(2)
A)

+ E2(V (1)
B V

(2)
B) − V ar(V (1)

A V
(2)
A) − V ar(V (1)

B V
(2)
B)].

The proof of Theorem 1 is provided in Appendix A.
The factor η is usually small. When the noise variances σ2

1 and σ2
2 are big

(so that the leakage is hard to detect), this factor η = O[1/(σ2
1σ

2
2)] ≈ 0. For

practical situations, often η < 1. Hence using, say, nw = 100 make the leakage
detection statistic robust to environmental noises r

(1)
E and r

(2)
E , at the price

of a very small statistical efficiency loss when no environmental noises exist.
Therefore, we recommend this paired moving-average based t-test (MA-t-test)
over the existing tests.

We can also estimate the optimal window size nw with some rough ideas of
environmental noise fluctuation. The potential harm in using too wide a window
is to introduce bias in the estimated centering quantities. Let the environmental
noise be described as rE(t) for the t = 1, 2, ..., T traces, and

∑T
t=1 rE(t) = 0.

Then the environmental noise induced bias in the moving average is bounded as
b ≤ a0n

2
w/2 where a0 is the maximum of the derivative |r′

E(t)|. Let Δ∗
b denote

the test statistic in Eq. (8) where the centering quantities c(1) and c(2) are each
biased by the amount b. Then, (see Appendix B), E(Δ∗

b) = E(Δ) and

V ar(Δ∗
b)

V ar(Δ)
= 1 +

b2η∗

V ar(Δ)
+ o(n4

w) ≤ 1 +
a2
0n

4
wη∗

4V ar(Δ)
+ o(n4

w), (11)

170 A.A. Ding et al.

bounds the harm of using a too big nw value, where η∗ is

V ar(L(1)
A)+V ar(L(2)

A)+V ar(L(1)
B)+V ar(L(2)

B)+2E(V (1)
A V

(2)
A)+2E(V (1)

B V
(2)
B).

Matching the Eqs. (10) and (11), we can estimate the optimal window size from
n5
w ≈

4[V ar(V
(1)
A)V ar(V

(2)
A) + V ar(V

(1)
B)V ar(V

(2)
B) + E2(V

(1)
A V

(2)
A) + E2(V

(1)
B V

(2)
B)]

a2
0[V ar(L

(1)
A) + V ar(L

(2)
A) + V ar(L

(1)
B) + V ar(L

(2)
B) + 2E(V

(1)
A V

(2)
A) + 2E(V

(1)
B V

(2)
B)]

.

As an example, we estimate this window size using parameters for data sets
reported in literature. For simplicity, we assume that both leakage time points
follow a similar power model, V

(i)
A = ε[HWi − E(HW)], i = 1, 2, with HWi as

hamming weights related to masks and plaintexts as in the model of [7,18]. Hence
E(V (1)

A V
(2)
A) = 0 can be dropped, and V ar(V (1)

A) = ε2V ar(HW) = 2ε2 for the
one-byte hamming weight. With the signal-noise-ratio ε/σ around 0.1 as in [7,9],
the noise variance dominates so that V ar(L(1)

A) ≈ σ2. Since the two groups A and
B follows the same power model, the optimal window size formula is simplified to
{4[2(2ε2)2]/[a2

04σ2]}1/5 = [8(ε/σ)4σ2/a2
0]

1/5 = [8(0.1)4σ2/a2
0]

1/5. For the 2373-
th time point on the traces on the DPA V2 contest data shown in Fig. 1, the
environmental fluctuation is approximately four periods of sinusoidal curve over
one million time points with magnitude ≈100. So taking the maximum derivative
of this curve, a0 ≈ 1/400. Fitting the power model at this time point gets
σ ≈ 300. Hence the optimal window size here is [40028(0.1)43002]1/5 ≈ 30 traces.
This optimal window size does vary with the magnitude of the environmental
fluctuation and the leakage signal-noise-ratio which are not known to a tester as
a prior. But this example can serve as a rough benchmark, and a window size of
a few dozens may be used in practice.

3.3 Computational Efficiency

The paired t-test also has computational advantages over Welch’s t-test. As
pointed out in [19], computational stability can become an issue when using raw
moments for large measurement campaigns. The paired t-test computes mean
D̄ and variance s2D of local differences D. In case there is no detectable leakage,
LA and LB have the same mean. Hence, the differences D are mean-free1. Even

computing D̄ =
1
ni

∑
di is thus numerically stable. The sample variance s2D can

be computed as s2D = D2 − (D̄)2, where only the first term D2 is not mean-
free. We used the incremental equation from [17, Eq. (1.3)] to avoid numerical
problems. Moreover, by applying the incremental equation for D̄ as well, we were
able to exploit straightforward parallelism when computing D̄ and variance s2D.

1 If D is not mean-free, a strong leakage exists. Hence, a small number of observations
suffices for leakage detection, making numerical problems irrelevant.

Simpler, Faster, and More Robust T-Test Based Leakage Detection 171

Table 1. Computation accuracy between our incremental method and two-pass
algorithm

1st order 2nd order 3rd order 4th order 5th order

Our method 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

Two pass 50.0097 2.4679e+3 4.5981e+5 7.3616e+7 1.7974e+10

The situation essentially remains the same for higher order or multivariate
analysis: The differences D are still mean-free in the no-leakage case. Through
the use of local averages, the three-pass approach is not necessary, since mov-
ing averages are used instead of global averages (cf. Eq. (9)). Computing moving
averages is a local operation, as only nearby traces are considered. When process-
ing traces in large blocks of e.g. 10k traces, all data needed for local averages is
within the same file and can easily be accessed when needed, making the algo-
rithm essentially one-pass. Similarly as in [19], we also give the experimental
results using our method on 100 million simulated traces with ∼N (100, 25).
Specifically, we compute the second parameters s2D using the difference leakages:
D = LA −LB for first order test while D = [(LA − L̄A,nw

)d − (LB − L̄B,nw
)d] for

d -th order tests with moving average of window size nw = 100. Table 1 shows
our method matches the two-pass algorithm which computes the mean first and
then the variance of the preprocessed traces. Note that D is not normalized using
the central moment CM2 and thus the second parameter is significantly larger
than that in [19]. In the experiments, the same numerical stability is achieved
without an extra pass, by focusing on the difference leakages.

4 Experimental Verification

To show the advantages of the new approach, the performances of the paired
t-test (3) and the unpaired t-test (1) on synthetic data are compared.

First, we generate data for first order leakage according to model (4), where
the environmental noise rE follows a sinusoidal pattern similar to Fig. 1. The
sinusoidal period is set as 200, 000 traces, and the sinusoidal magnitude is set
as the pure measurement noise standard deviation σA = σB = 50. Hamming
weight (HW) leakage is assumed in model (4). The first group A uses a fixed
plaintext input corresponds to HW = 5, while the second group B uses random
plaintexts. The paired t-test (3) and the unpaired t-test (1) are applied to the
first n = 30000, 60000, ..., 300000 pairs of traces. The experiment is repeated
1000 times, and the proportions of leakage detection (rejection by each t-test)
are plotted in Fig. 2.

Without any environmental noise rE , the paired and unpaired t-tests perform
the same. Their success rate curves overlap each other. With the sinusoidal noise
rE , the unpaired t-test uses many more traces to detect the leakage, while the
paired t-test does not suffer from such performance degradation.

172 A.A. Ding et al.

Fig. 2. T-test comparison for 1O leakage with and without a sinusoidal drift rE . (Color
figure online)

Notice that the environmental noise rE often changes slowly as in Fig. 1.
Hence, its effect is small for easy to detect leakage, when only a few hundreds or a
few thousands of traces are needed. However, for hard to detect leakage, the effect
has to be considered. We set a high noise level σA = σB = 50 to simulate a DUT
with hard to detect first-order leakage. This allows the observable improvement
by paired t-test over the unpaired t-test.

Second, we also generate data from the 2nd-order leakage model (7). The
noise levels at the two leakage points, for both groups A and B, are set as
σ1 = σ2 = 10 which are close to the levels in the physical implementation
reported by [7]. We use the same sinusoidal environmental noise rE as before.
The first group A uses a fixed plaintext input corresponds to HW = 1, while
the second group B uses random plaintexts. The proportions of leakage detection

Fig. 3. T-test comparison for 2O leakage with a sinusoidal drift rE . (Color figure online)

Simpler, Faster, and More Robust T-Test Based Leakage Detection 173

are plotted in Fig. 3. Again, we observe a serious degradation of t-test power to
detect the leakage, when the environmental noise rE is present. The paired t-test
detects the leakage more often than the unpaired t-test in Fig. 3. However, the
paired t-test also degrades comparing to the case without environmental noise
rE . That is due to the incorrect centering quantity for the 2O test as discussed
in Sect. 3.2. Using the proposed method of centering at the moving average with
window size 100, the paired MA-t-test has a performance close to the case where
all environmental noise rE is removed.

5 Practical Application

To show the advantage of the paired t-test in real measurement campaigns, we
compare the performances of the unpaired and paired t-tests when analyzing an
unprotected and an protected hardware implementation. The analysis focuses on
the non-specific fixed vs. random t-test. We apply both tests to detect the first
order leakage in the power traces acquired from an unprotected implementation
of the NSA lightweight cipher Simon [2]. More specifically, a round-based imple-
mentation of Simon128/128 was used, which encrypts a 128-bit plaintext block
with a 128-bit key in 68 rounds of operation. The second target is a masked
engine of the same cipher. It is protected using three-share Threshold Imple-
mentation (TI) scheme, which is a round based variant of the TI Simon engine
proposed in [20].

Both implementations are ported onto the SASEBO-GII board for power
trace collection. The board is clocked at 3 MHz and a Tektronix oscilloscope
samples the power consumption at 100 MS/s. Since Simon128/128 has 68 rounds,
one power trace has about 68 × 1

3MHz × 100 MS/s ≈ 2300 time samples to cover
the whole encryption and hence in the following experiments 2500 samples are
taken in each measurement. The measurement setup is a modern setup that
features a DC block and an amplifier. Note that the DC block will already take
care of slow DC drifts that can affect the sensitivity of the unpaired t-test, as
shown in Sect. 4. However, the DC block does not affect variations of the peak-
to-peak height within traces, which are much more relevant for DPA. As the
following experiments show, the paired t-test still shows improvement in such
advanced setups.

5.1 Solving the Test-Order Bias

In [19], a random selection between fixed and random is proposed to avoid effects
caused by states that occur in a fixed order, which we refer to as test order. For
the paired (MA-)t-test, it is preferable to have a matching number of observations
for both sets. We propose a fixed input sequence which is a repetition of ABBA
such that all the AB or BA pairs are constructed using neighboring inputs. For
example in a sequence ABBAABBA....ABBAABBA, one alternately obtains
AB and BA pairs with least variation. This ensures that all observations come in
pairs and that the pairs are temporally close, so they share their environmental

174 A.A. Ding et al.

effects to a maximal possible degree. Moreover—even though the sequence is
fixed and highly regular, the predecessor and successor for each measurement are
perfectly balanced, corresponding to a 50 % probability of being either from the
A or B set. This simpler setup removes the biases observed in [19] as efficiently
as the random selection method. Experimental data of this section has been
obtained using this scheme.

Note that the paired t-test can easily be applied in a random selection test
order as well: After the trace collection, one can simply iteratively pair the
leakages associated with the oldest fixed input and the oldest random input
and then remove them from the sequence until no pairs can be constructed.
An efficient way to do this is to separate all leakage traces into two subsets:
LA = {lA,1, ...lA,nA

} and LB = {lB,1, ...lB,nB
} where lA,i and lB,i are the traces

associated with i-th fixed input and i-th random input respectively in a chrono-
logical order and thus can be straightforwardly paired. Note that the cardinality
of both sets are not always the same and hence only n = min(nA, nB) AB pairs
can be found. This approach is of less interest because time delay between fixed
data and random data in a pair varies depending on the randomness of the input
sequence.

5.2 First Order Analysis of an Unprotected Cipher

We first apply both paired and unpaired t-test to the unprotected engine which
has strong first order leakage that can be exploited by DPA with only hundreds
of traces. Usually the trace collection can be done quickly enough to avoid effects
of environmental fluctuation in the measurements. However, to show the benefits
of the paired t-test in this scenario, a hot air blower is used to heat up the crypto
FPGA in SASEBO-GII board while the encryptions are executed. We designed
two conditions to take the power measurements.

1. Normal Lab Environment, where measurements are performed in rapid
succession, making the measurement campaign finish within seconds.

2. Strong Environmental Fluctuation, where a hot air blower was slowly
moved towards and then away from the target FPGA to heat up and let it
cool down again;

In each condition, 1000 measurements are taken alternately for the fixed
plaintext and random plaintexts and later equally separated into two groups. In
each group, the measurements are sorted in chronological order such that the j-th
measurements of both groups are actually taken consecutively and share common
variation. As explained in Sect. 5.1, the two measurements are a matched-pair
and there are now 500 such pairs. Then both t-tests are applied to the first
n = 5, 6, 7, ..., 500 pairs of measurements. For each n, the t-test returns a t-
statistic vector of 2500 elements corresponding to 2500 time samples in the
power traces because it is a univariate t-test. Our interest is the time sample
that has the maximum t-statistic and thus the following results only focus on
this specific time sample.

Simpler, Faster, and More Robust T-Test Based Leakage Detection 175

0 50 100 150 200 250 300
2

4

6

8

10

12

14

16

18

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired T−test

Paired T−test

(a) No Environment Fluctuation

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired T−test
Paired T−test

(b) Environment Fluctuation

Fig. 4. T-test comparison for 1O leakage on unprotected Simon for a single measure-
ment campaign of up to 300 pairs of traces. The paired t-test performs as well or better
in both scenarios. However, the paired t-test is more robust to environmental noise.
(Color figure online)

Figure 4 shows the t-statistics at the strongest leakage point as n increases.
In Fig. 4(a) where there is no environmental fluctuation, both unpaired and
paired t-test have the same performance as the t-statistic curves almost overlap.
However, in Fig. 4(b) where the varying temperature changed the power traces
greatly, the paired t-test (blue solid line) shows robustness and requires less
traces to exceed the threshold of 4.5 while the performance of the unpaired
t-test is greatly reduced in the sense that more traces are needed to go beyond
the threshold. Figure 5 shows the detection probability of the t-tests in the same
scenario. First, 1000 repetitions of the above experiment are performed and the
number of experiments that result in a t-statistic above 4.5 is counted. Detection
probability equals this number divided by 1000. Figure 5(a) shows the detection

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

Number of Traces

D
et

ec
tio

n
P

ro
ba

bi
lit

iy

Paired t−test

Unpaired t−test

(a) No Environment Fluctuation

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Number of Traces

D
et

ec
tio

n
P

ro
ba

bi
lit

iy

Paired t−test
Unpaired t−test

(b) Environment Fluctuation

Fig. 5. T-test detection probability for 10 leakage. Again, the paired t-test performs
at least as well as the unpaired, while being much more robust in the presence of
environmental noise.

176 A.A. Ding et al.

probability of two tests under normal lab condition. With more than 30 pairs,
both tests can detect the first order leakage with the same probability. With
more than 60 pairs the detection probability rises to 1 for both tests which
shows the efficiency of both tests on the normal traces. Figure 5(b) shows that
paired t-test (solid line) is still robust in spite of varying environmental factors.
With less than 100 pairs, the detection probability of paired t-test is already 1
while unpaired t-test requires much more traces to achieve the same probability.

In summary, the paired t-test is more robust and efficient in detecting first
order leakage when the power traces are collected in a quickly changing environ-
ment.

5.3 Second Order Analysis on a First-Order Resistant Design

In order to validate the effectiveness of the paired t-test in a longer measure-
ment campaign, where environmental fluctuations are very likely to occur, a
first-order-leakage-resistant Simon engine protected by a three-share Threshold
Implementation scheme is used as the target. Five million power traces are col-
lected in a room without windows and without expected fluctuations in temper-
ature over a period 5 h. As before, one measurement campaign is performed in
a stable lab environment where the environmental conditions are kept as stable
as possible. In the other scenario, we again used the hot air blower in intervals
of several minutes to simulate stronger environmental noise. This is because the
environmental noise might not be strong during the 5-h collection period. How-
ever, in scenarios where hundreds of millions of measurements are needed and
taken over a period of several days, then environmental fluctuation can be found,
as in Fig. 1.

0 1M 2M 3M 4M 5M
−1

0

1

2

3

4

5

6

7

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired MA−T−test
Paired MA−T−test
Unpaired T−test
Paired T−test

(a) No Environment Fluctuation

0 1M 2M 3M 4M 5M
−1

0

1

2

3

4

5

6

7

Number of Traces

M
ax

im
um

 t
va

lu
e

Unpaired MA−T−test
Paired MA−T−test
Unpaired T−test
Paired T−test

(b) Environment Fluctuation

Fig. 6. T-test detection probability for 20 leakage (Color figure online)

As before, the 5 million traces are equally divided into two groups for fixed
and random plaintext respectively. The first order t-test does not indicate any
leakage (|t| < 3), as expected. Figure 6 shows the t-statistics of the second order

Simpler, Faster, and More Robust T-Test Based Leakage Detection 177

t-tests as the number of traces increases in both the stable lab environment
and the simulated lab environment noise scenario. In the first experiment in a
stable environment, depicted in Fig. 6(a), we compare both tests using global
average and moving average. The curve of four tests almost overlap and they
perform about the same with about three million traces needed to achieve a
t-statistic above 4.5. This shows that paired t-test works as well as unpaired one
for constant collection environment. Also, the moving average based tests per-
form very similar to the global average based tests, with a minor improvement in
the relevant many-traces case. Figure 6(b) depicts the results for the experiment
with strong environmental fluctuations. The paired MA-t-test performs best and
goes beyond 4.5 faster than the unpaired one. The other two tests using global
average are still below the threshold with 5 million traces. The paired t-test
still clearly outperforms the unpaired t-test. In sum, the paired t-test based on
moving average is the most robust to fluctuation and significantly improves the
performance of higher order analysis.

6 Conclusion

Welch’s t-test has recently received a lot of attention as standard side channel
security evaluation tool. In this work we showed that noise resulting from envi-
ronmental fluctuations can negatively impact the performance of Welch’s t-test.
The resulting increased number of observations to detect a leakage are incon-
venient and can, in the worst case, result in false conclusions about a device’s
resistance. We proposed a paired t-test to improve the standard methodology
for leakage detection. The resulting matched-pairs design removes the environ-
mental noise effect in leakage detection. Furthermore, we showed that moving
averages increase the robustness against environmental noise for higher order
or multivariate analysis, while not showing any negative impact in the absence
of noise. The improvement is shown through mathematical analysis, simulation,
and on practical power measurements: both paired and unpaired t-test with and
without the moving averages approach are compared for first order and sec-
ond order analysis. Our results show that the proposed (moving average based)
paired t-test performed as well or better in all analyzed scenarios. The new
method does not increase computational complexity and is numerically more
stable than Welch’s t-test. Since our method is more robust to environmental
noise and can detect leakage faster than unpaired test in the presence of noise,
we propose the replacement of Welch’s t-test with the moving average based
paired t-test as a standard leakage detection tool.

Acknowledgments. This work is supported by the National Science Foundation
under grant CNS-1314655, CNS-1314770 and CNS-1261399.

178 A.A. Ding et al.

Appendix

A Proof of Theorem 1

We are comparing the leakage detection statistic (9)

D = (L(1)
A − L̄

(1)
A)(L(2)

A − L̄
(2)
A) − (L(1)

B − L̄
(1)
B)(L(2)

B − L̄
(2)
B),

with the theoretical optimal leakage detection statistic Δ in Eq. (8).
Without loss of generality, let c(1) = c(2) = 0 in model (6), since these

constants are cancelled in each of the differences (L(j)
A − L̄

(j)
A) and (L(j)

B − L̄
(j)
B)

for j = 1, 2. Then (8) is simplified as Δ = L
(1)
A L

(2)
A − L

(1)
B L

(2)
B . Hence

E(Δ) = E(L(1)
A L

(2)
A) − E(L(1)

B L
(2)
B)

V ar(Δ) = V ar(L(1)
A L

(2)
A) + V ar(L(1)

B L
(2)
B). (12)

We first reexpress (L(1)
A − L̄

(1)
A) as the difference between two independent

terms. We denote L̃
(1)
A = 1

nw−1

∑nw−1
i=1 L

(1)
A,i as the average of nw − 1 traces

excluding the original trace, where L
(1)
A,i (i = 1, ..., nw − 1) are independent

random variables coming from the same distribution as L
(1)
A . Since L̄

(1)
A is the

average over nw nearby traces including the original trace, L̄
(1)
A = 1

nw
[L(1)

A +∑nw−1
i=1 L

(1)
A,i] = nw−1

nw
(L(1)

A − L̃
(1)
A), with L̃

(1)
A independent of L

(1)
A . E(L̃(1)

A) =

E(L(1)
A) and V ar(L̃(1)

A) = 1
nw−1V ar(L(1)

A). Similarly, L̃
(2)
A , L̃

(1)
B and L̃

(2)
B denotes

the average of corresponding quantities over the nw − 1 traces excluding the
original trace. The we can rewrite the leakage detection statistic in (9) as

D = (
nw − 1

nw
)2[(L(1)

A − L̃
(1)
A)(L(2)

A − L̃
(2)
A) − (L(1)

B − L̃
(1)
B)(L(2)

B − L̃
(2)
B)]. (13)

Therefore as nw → ∞, D → Δ.
Next, we show that E(D) and V ar(D) differ from their limits E(Δ) and

V ar(Δ) by a factor of O(1/nw) only. Let D∗ = nw

nw−1D. Then we have

E(D∗) = E(Δ), (14)

V ar(D∗) − V ar(Δ)

=
2

nw
[V ar(V (1)

A)V ar(V (2)
A) + V ar(V (1)

B)V ar(V (2)
B) + E2(V (1)

A V
(2)
A)

+ E2(V (1)
B V

(2)
B) − V ar(V (1)

A V
(2)
A) − V ar(V (1)

B V
(2)
B)] + O(

1
n2
w

). (15)

The proofs of these two equations are provided in the next two subsections.
Combining Eqs. (12), (14) and (15), we arrived at Eq. (10) and Theorem 1

is proved.

Simpler, Faster, and More Robust T-Test Based Leakage Detection 179

A.1 Proof of Eq. (14) on Mean of D∗

We now calculate the first term in E(D).

E(L̃(1)
A L̃

(2)
A) = (

1
nw − 1

)2
nw−1∑
i=1

nw−1∑
j=1

E(L(1)
A,iL

(2)
A,j).

For i �= j, L
(1)
A,i is independence of L

(2)
A,j so that E(L(1)

A,iL
(2)
A,j) =

E(L(1)
A,i)E(L(2)

A,j) = (0)(0) = 0 and drops from the summation. Hence

E(L̃(1)
A L̃

(2)
A) = (

1
nw − 1

)2
nw−1∑
i=1

E(L(1)
A,iL

(2)
A,i) =

1
nw − 1

E(L(1)
A L

(2)
A). (16)

Also, since L̃
(1)
A is independent of L

(2)
A , E(L̃(1)

A L
(2)
A) = E(L̃(1)

A)E(L(2)
A) = 0.

Similarly E(L(1)
A L̃

(2)
A) = 0. Therefore,

E[(L(1)
A − L̃

(1)
A)(L(2)

A − L̃
(2)
A)] = E(L(1)

A L
(2)
A) − 0 − 0 + E(L̃(1)

A L̃
(2)
A)

= E(L(1)
A L

(2)
A) +

1
nw − 1

E(L(1)
A L

(2)
A)

=
nw

nw − 1
E(L(1)

A L
(2)
A).

Similarly, E[(L(1)
B − L̃

(1)
B)(L(2)

B − L̃
(2)
B)] = nw

nw−1E(L(1)
B L

(2)
B). Combine these two

expressions with Eq. (13) and D∗ = nw

nw−1D, we get Eq. (14)

E(D∗) = (
nw − 1

nw
)

nw

nw − 1
E[L(1)

A L
(2)
A − L

(1)
B L

(2)
B] = E(Δ).

A.2 Proof of Eq. (15) on Variance of D∗

V ar(D∗) = (
nw − 1

nw
)2{V ar[(L

(1)
A −L̃

(1)
A)(L

(2)
A −L̃

(2)
A)]+V ar[(L

(1)
B −L̃

(1)
B)(L

(2)
B −L̃

(2)
B)]}.
(17)

For the first term, the variance of the sum L
(1)
A L

(2)
A −L̃

(1)
A L

(2)
A −L

(1)
A L̃

(2)
A +L

(1)
A L

(2)
A

is the covariance of the sum with itself. For the four terms in L
(1)
A L

(2)
A −L̃

(1)
A L

(2)
A −

L
(1)
A L̃

(2)
A +L

(1)
A L

(2)
A , the covariance for most pairs of different terms are zero. For

example,

Cov(L(1)
A L

(2)
A , L̃

(1)
A L

(2)
A) = E(L(1)

A L
(2)
A L̃

(1)
A L

(2)
A) − E(L(1)

A L
(2)
A)E(L̃(1)

A L
(2)
A)

= E(L(1)
A L

(2)
A L

(2)
A)0 − E(L(1)

A L
(2)
A)E(L(2)

A)0 = 0.

180 A.A. Ding et al.

and Cov(L(1)
A L

(2)
A , L̃

(1)
A L̃

(2)
A) = 0 due to the independence between L

(1)
A L

(2)
A and

L̃
(1)
A L̃

(2)
A . The only non-zero cross-term covariance is

Cov(L̃(1)
A L

(2)
A , L

(1)
A L̃

(2)
A) = E(L̃(1)

A L
(2)
A L

(1)
A L̃

(2)
A) − 0 = E(L(1)

A L
(2)
A)E(L̃(1)

A L̃
(2)
A)

=
1

nw − 1
E2(L(1)

A L
(2)
A),

with the last step coming from Eq. (16). Therefore,

V ar[(L(1)
A − L̃

(1)
A)(L(2)

A − L̃
(2)
A)]

=V ar(L(1)
A L

(2)
A) + V ar(L̃(1)

A L
(2)
A) + V ar(L(1)

A L̃
(2)
A) + V ar(L̃(1)

A L̃
(2)
A)

+
2

nw − 1
E2(L(1)

A L
(2)
A)

By independence, V ar(L̃(1)
A L

(2)
A) = V ar(L̃(1)

A)V ar(L(2)
A) = 1

nw−1V ar(L(1)
A)

V ar(L(2)
A), and V ar(L(1)

A L̃
(2)
A) = 1

nw−1V ar(L(1)
A)V ar(L(2)

A).

For V ar(L̃(1)
A L̃

(2)
A), note that

L̃
(1)
A L̃

(2)
A = (

1
nw − 1

)2
nw−1∑
i=1

nw−1∑
j=1

L
(1)
A,iL

(2)
A,j .

The covariance between any two different terms in the sum is zero. Hence

V ar(L̃(1)
A L̃

(2)
A) = (

1
nw − 1

)4[
∑
i

V ar(L(1)
A,iL

(2)
A,i) +

∑
i�=j

V ar(L(1)
A,iL

(2)
A,j)]

=
1

(nw − 1)3
V ar(L(1)

A L
(2)
A) +

nw − 2
(nw − 1)3

V ar(L(1)
A)V ar(L(2)

A).

Combine together, we have

V ar[(L(1)
A − L̃

(1)
A)(L(2)

A − L̃
(2)
A)]

= V ar(L(1)
A L

(2)
A) +

2
nw − 1

V ar(L(1)
A)V ar(L(2)

A) +
2

nw − 1
E2(L(1)

A L
(2)
A)

+
nw − 2

(nw − 1)3
V ar(L(1)

A)V ar(L(2)
A) +

1
(nw − 1)3

V ar(L(1)
A L

(2)
A)

= V ar(L(1)
A L

(2)
A) +

2
nw

V ar(L(1)
A)V ar(L(2)

A) +
2

nw
E2(L(1)

A L
(2)
A) + O(

1
n2
w

)

Hence the first term in V ar(D∗) becomes

(
nw − 1

nw
)2V ar[(L

(1)
A − L̃

(1)
A)(L

(2)
A − L̃

(2)
A)]

=(
nw − 1

nw
)2V ar(L

(1)
A L

(2)
A) +

2

nw
V ar(L

(1)
A)V ar(L

(2)
A) +

2

nw
E2(L

(1)
A L

(2)
A) + O(

1

n2
w

)

=V ar(L
(1)
A L

(2)
A) +

2

nw
[V ar(L

(1)
A)V ar(L

(2)
A) + E2(L

(1)
A L

(2)
A) − V ar(L

(1)
A L

(2)
A)] + O(

1

n2
w

).

(18)

Simpler, Faster, and More Robust T-Test Based Leakage Detection 181

For further simplification, let σ2
1 and σ2

2 denote the variances of noises r(1) and
r(2) in the second-order leakage model (6). Then V ar(L(1)

A) = σ2
1 + V ar(V (1)),

V ar(L(2)
A) = σ2

2 + V ar(V (2)), E(L(1)
A L

(2)
A) = E(V (1)V (2)),

E[(L(1)
A L

(2)
A)2] = E[(V (1)

A + r
(1)
A)2(V (2)

A + r
(2)
A)2]

=E[(V (1)
A)2(V (2)

A)2 + (r(1)A)2(V (2)
A)2 + (V (1)

A)2(r(2)A)2 + (r(1)A)2(r(2)A)2] + 0

=E[(V (1)
A)2(V (2)

A)2] + σ2
1V ar(V (2)

A) + σ2
2V ar(V (1)

A) + σ2
1σ

2
2 .

Hence

V ar[L(1)
A L

(2)
A] = V ar(V (1)

A V
(2)
A) + σ2

1V ar(V (2)
A) + σ2

2V ar(V (1)
A) + σ2

1σ
2
2 .

Combine the above five expressions,

V ar(L(1)
A)V ar(L(2)

A) + E2(L(1)
A L

(2)
A) − V ar(L(1)

A L
(2)
A)

=V ar(V (1))V ar(V (2)) + E(V (1)V (2)) − V ar(V (1)
A V

(2)
A)

Combine this with (17) and (18) we have Eq. (15),

V ar(D∗) − [V ar(L(1)
A L

(2)
A) + V ar(L(1)

B L
(2)
B)]

=
2

nw
[V ar(V (1)

A)V ar(V (2)
A) + E2(V (1)

A V
(2)
A) − V ar(V (1)

A V
(2)
A)

+ V ar(V (1)
B)V ar(V (2)

B) + E2(V (1)
B V

(2)
B) − V ar(V (1)

B V
(2)
B)] + O(

1
n2
w

).

B Derivation of Eq. (11)

As in the previous section, we let c(1) = c(2) = 0 without loss of generality, so
that E(L(1)

A) = E(L(2)
A) = 0. Then

E[(L
(1)
A − b)(L

(2)
A − b)] = E(L

(1)
A L

(2)
A) − bE(L

(1)
A) − bE(L

(2)
A) + b2 = E(L

(1)
A L

(2)
A) + b2

= E(L
(1)
A L

(2)
A) + b2.

Hence

E(Δ∗
b) = E[(L(1)

A − b)(L(2)
A − b)] − E[(L(1)

B − b)(L(2)
B − b)]

= E(L(1)
A L

(2)
A) + b2 − E(L(1)

B L
(2)
B) − b2

= E(L(1)
A L

(2)
A) − E(L(1)

B L
(2)
B) = E(Δ). (19)

182 A.A. Ding et al.

Next,

V ar[(L
(1)
A − b)(L

(2)
A − b)]

=E[(L
(1)
A − b)2(L

(2)
A − b)2]− [E(L

(1)
A L

(2)
A) + b2]2

=E[((L
(1)
A)2 − 2bL

(1)
A + b2)((L

(2)
A)2 − 2bL

2)
A + b2)]− E[(L

(1)
A L

(2)
A)2]− 2bE(L

(1)
A L

(2)
A)−b4

=V ar(L
(1)
A L

(2)
A)− 2bE[L

(1)
A L

(2)
A (L

(1)
A + L

(2)
A)] + b2E[(L

(1)
A)2 + (L

(2)
A)2 + 2L

(1)
A L

(2)
A)]

=V ar(L
(1)
A L

(2)
A) + b2[V ar(L

(1)
A) + V ar(L

(2)
A) + 2E(L

(1)
A L

(2)
A)] +O(b).

Hence we get the variance

V ar(Δ∗
b) =V ar(Δ) + b2[V ar(L(1)

A) + V ar(L(2)
A) + 2E(L(1)

A L
(2)
A)

+ V ar(L(1)
B) + V ar(L(2)

B) + 2E(L(1)
B L

(2)
B)] + O(b). (20)

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi,
A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-16763-3 5

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The Simon and Speck families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. 2013, 404 (2013)

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

5. Chen, C., Eisenbarth, T., von Maurich, I., Steinwandt, R.: Masking large keys in
hardware: a masked implementation of McEliece. In: Dunkelman, O., et al. (eds.)
SAC 2015. LNCS, vol. 9566, pp. 293–309. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31301-6 18

6. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

7. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher
order DPA on masked devices. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 147–169. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-44709-3 9

8. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

9. Fei, Y., Ding, A.A., Lao, J., Zhang, L.: A statistics-based success rate
model for DPA and CPA. J. Crypt. Eng. 5(4), 227–243 (2015). doi:10.1007/
s13389-015-0107-0

http://dx.doi.org/10.1007/978-3-319-16763-3_5
http://dx.doi.org/10.1007/978-3-319-31301-6_18
http://dx.doi.org/10.1007/978-3-319-31301-6_18
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://dx.doi.org/10.1007/978-3-662-44709-3_9
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/s13389-015-0107-0
http://dx.doi.org/10.1007/s13389-015-0107-0

Simpler, Faster, and More Robust T-Test Based Leakage Detection 183

10. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop, Septem-
ber 2011. http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

11. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-27954-6 23

12. Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied Linear Statistical
Models. McGraw-Hill/Irwin, New York (2005)

13. Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-level masking under a path-
based leakage metric. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 580–597. Springer, Heidelberg (2014)

14. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? an a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-42033-7 25

15. Moradi, A., Hinterwälder, G.: Side-channel security analysis of ultra-low-
power FRAM-based MCUs. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2015. LNCS, vol. 9064, pp. 239–254. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-21476-4 16

16. Nascimento, E., Lopez, J., Dahab, R.: Efficient and secure elliptic curve
cryptography for 8-bit AVR microcontrollers. In: Chakraborty, R.S.,
et al. (eds.) SPACE 2015. LNCS, vol. 9354. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-24126-5 17

17. Pébay, P.: Formulas for robust, one-pass parallel computation of covariances
and arbitrary-order statistical moments. Sandia report SAND2008-6212, Sandia
National Laboratories (2008)

18. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

19. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015). http://dblp.uni-trier.de/db/conf/ches/ches2015.html
SchneiderM15

20. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent Simon: threshold implementation
under 100 slices. In: 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 1–6, May 2015

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://dx.doi.org/10.1007/978-3-642-27954-6_23
http://dx.doi.org/10.1007/978-3-642-42033-7_25
http://dx.doi.org/10.1007/978-3-319-21476-4_16
http://dx.doi.org/10.1007/978-3-319-24126-5_17
http://dblp.uni-trier.de/db/conf/ches/ches2015.htmlSchneiderM15
http://dblp.uni-trier.de/db/conf/ches/ches2015.htmlSchneiderM15

Design and Implementation
of a Waveform-Matching
Based Triggering System

Arthur Beckers(B), Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede

Department of Electrical Engineering-ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee, Leuven, Belgium

{arthur.beckers,josep.balasch,
benedikt.gierlichs,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Implementation attacks such as side channel attacks and
fault attacks require triggering mechanisms to activate the acquisition
device or fault injection equipment. Most academic works work with
a very simple and reliable trigger mechanism where the device under
test itself provides a dedicated signal. This however is not possible in
real attack scenarios. Here the alternative is to use IO signals or coarse
features of the side channel signal (co-processor switches on, power con-
sumption goes up) for triggering. However, fault injection in particular
requires very accurate timing. Our work deals with the many scenarios
where such simple triggering mechanisms are not available or not effec-
tive. We present our design, architecture and FPGA implementation of
a waveform-matching based triggering system. Our configurable trigger
box is able to sample and match an arbitrary waveform with a latency
of 128 ns. We provide results of our experimental evaluation on devices
and side channel signals of different nature, and discuss the influence of
several parameters.

Keywords: Triggering · Waveform matching · Fault injection

1 Introduction

Implementation attacks are well-known techniques that can pose a serious threat
to the security of embedded devices. Side channel attacks rely on the analy-
sis of physical observations of the device during cryptographic executions, for
instance, running time [15], power consumption [16] or electromagnetic ema-
nations [14,17]. Fault attacks [9] on the other hand rely on injecting faults
during cryptographic computations. Examples are clock glitches [7,8], voltage
spikes [19], electromagnetic pulses [13,18] or optical attacks [5,20].

To perform implementation attacks an adversary requires some sort of trig-
gering mechanism capable of activating the side channel acquisition device or
the equipment for fault injection. Depending on the concrete attack scenario,
precise timing may be essential. The prevalent approach in academic works is to
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 184–198, 2016.
DOI: 10.1007/978-3-319-43283-0 11

Design and Implementation of a Waveform-Matching 185

generate a trigger signal from within the device under test. This allows to concen-
trate on the evaluation of a certain attack or countermeasure, while abstracting
from practical issues. This approach is however not possible in realistic scenarios.
Here, one would typically use the built-in triggering functionalities of an oscillo-
scope to detect simple features such as logic events in the IO line, well-defined
shapes in the side channel signals (sudden amplitude changes, gaps of certain
width, etc.), or a combination thereof. If the selected event does not occur just
before or after the targeted operation, hold-off timers can be employed to shift
the trigger closer to the time of interest.

While this approach may achieve high accuracy and reproducibility in certain
settings, it suffers from two main limitations. First, the range of trigger options
is limited to the capabilities of the oscilloscope, e.g. mostly edge, pulse and
logic triggering. This may not be sufficient to trigger on devices where existing
signals lack coarse features. And second, the insertion of hold-off timers implic-
itly assumes deterministic program executions. Devices with non-deterministic
behaviour (due to preemptive multitasking, caches, branch predictors, etc.) or
implementations with built-in countermeasures (random delays [10,11], clock
jitter, etc.) can easily make triggering a practical bottleneck.

A more suitable alternative consists in using a pattern-based triggering mech-
anism which can detect arbitrary waveforms in the side channel signals. The
method runs in two stages. First, one selects a suitable reference or pattern
from a window of interest in the side channel signal. And second, one employs a
waveform-matching algorithm to detect such pattern on an incoming side chan-
nel signal. In the following we denote these stages as capture mode and match-
ing mode. It is important that the analog-to-digital conversion process in both
modes is the same. The selection of the underlying waveform-matching algo-
rithm depends on the use case requirements. Fast response time is particularly
desirable for fault injection attacks. Flexibility allows the method to adapt to
different setups. Additionally, robustness is required to compensate for the noise
that is inherently present in the signals.

To the best of our knowledge the only publicly documented solution
for pattern-based triggering is icWaves [4], developed and commercialized by
Riscure. This solution implements a waveform-matching algorithm based on the
sum of absolute differences. It can detect pattern(s) up to 1 × 512 samples or
2× 256 samples long and has a response time of around 500 ns. The usage of this
device for laser fault injection attacks has been documented by van Woudenberg
et al. in [21].

Our Contribution. In this work we put forward a waveform-matching based trig-
gering system for use in the context of implementation attacks. Our solution
is specifically designed for low latency, i.e. to minimize the response time once
the pattern occurs in the side channel, and it is based on an interval match-
ing algorithm. We provide a detailed description of our design and architecture
choices, as well as the implementation of a functional trigger box on an FPGA
development board. Our solution supports detection of arbitrary waveforms,
and incorporates multiple options to ensure flexibility and ease of adaptation
to different scenarios. We illustrate these aspects by performing an empirical

186 A. Beckers et al.

evaluation on two different cryptographic devices (dedicated Java Card smart
card, high-speed general purpose ARM processor) with side channel signals of
different nature (power measurements using shunt resistor, contactless power
measurements using EM probe). Finally, we discuss the influence of several para-
meters on the triggering behaviour.

2 Waveform Matching

The essence of waveform matching is to compare a fixed reference (or pattern)
signal g of length N samples with a continuous incoming signal h. There exist
many different algorithms for pattern matching in the literature, but the vast
majority work according to the same basic principle. The algorithm calculates
a measure of correspondence between g and (a part of) h and represents it by
a single score T (k), where k represents a time shift from the starting execution
point. The comparison of T (k) with a pre-defined threshold determines whether
the signals are considered a match. In our case, we work with discrete-time
signals resulting from an analog-to-digital conversion. Therefore the threshold
selection needs to account for the effect of quantization noise as well as noise
caused by system and environmental variations.

In the following we review different options for waveform matching and dis-
cuss their suitability to our use case. We concentrate on algorithms that allow
for low-latency matching and can be efficiently implemented in hardware. All
considered algorithms perform a sample-wise comparison of the reference with
the incoming signal, i.e. the score at a certain time shift k can be computed as:

T (k) =
N∑

m=1

scorem, where scorem = f
(
g(m), h(m + k)

)
.

Cross-Correlation. This statistical function is perhaps the most natural algo-
rithm to measure the similarity of two series. It uses the product of two samples
to compute a measure of their resemblance as:

scorem = g(m)h(m + k). (1)

Sign Comparison (see Fig. 1a). This method transforms the reference signal g
into a binary sequence g′ by assigning g′(m) = 1 if g(m) > µ, and g′(m) = 0
otherwise. Here µ is the mean value of g. The incoming signal h is transformed
into h′ in the same manner. The sample score is calculated using g′ and h′ as:

scorem =

{
1 if g′(m) == h′(m + k)
0 otherwise .

(2)

Sum of Absolute Differences (SAD) (see Fig. 1b). This algorithm performs a
sample-wise subtraction between reference and incoming signals, taking as a
score the absolute value of the difference as:

Design and Implementation of a Waveform-Matching 187

scorem =
∣∣g(m) − h(m + k)

∣∣ . (3)

Interval Matching (see Fig. 1c). This algorithm defines an interval with a chosen
offset above and below the reference. The score is calculated by checking whether
the sample of the incoming signal lies within a valid interval as:

scorem =

{
1 if g(m) + offset ≥ h(m + k) ≥ g(m) − offset

0 otherwise .
(4)

Algorithm Selection. Our primary selection criteria for the pattern matching
algorithm is low latency, but we also consider aspects such as flexibility, imple-
mentability and suitability to our application. Despite its robustness, we discard
cross-correlation due to its use of multiplications. Note that the maximum pat-
tern length is determined by the availability of multipliers on the implementation
platform, which can be quite low. Additionally, the final score T (k) can grow
significantly with N , posing additional demands in hardware due to need of large
adders. The remaining three algorithms do not suffer from these issues, as their
sample-based comparison relies on simple operations yielding low scores.

Fig. 1. Visualization of different algorithms for waveform matching.

We have ran several experiments in order to determine the suitability of all
algorithms in the context of side channel signals, i.e. by testing their success rate

188 A. Beckers et al.

in matching arbitrary patterns from real (noisy) measurements collected with an
oscilloscope. Our experiments showed that the sign comparison algorithm has an
unreliable triggering behaviour. Therefore we opt to discard it. SAD and interval
matching algorithm perform rather well, and they both have the potential for low
latency and good implementability. Flexibility is thus the criteria that determines
our choice. In particular, the fact that the interval matching algorithm enjoys
an extra degree of configurability via the offset. An additional benefit of interval
matching is a better resistance to outliers. Note that for SAD, a large difference
on a single sample may have a significant impact on the T (k), potentially leading
to a false negative. We therefore select interval matching as core algorithm for
our design.

3 Architecture

In this section we describe the hardware architecture of our triggering system
based on the interval matching algorithm. The top level view is shown in Fig. 2.
The main components are a control unit, an analog-to-digital converter (ADC),
and two modules responsible for the different modes of operation (capture and
matching) sharing a memory block. The control unit provides a communication
IO interface to enable external access for configuration. The incoming signal
is first sampled by the ADC and then forwarded to the capture and matching
modules. During capture mode, samples provided by the ADC are stored in
memory when indicated by the capture signal. The amount of samples that
can be stored is implementation-dependent, i.e. it is uniquely determined by
the memory length. The captured measurement can be read through the IO
interface. During matching mode, a pattern is first written to memory through
the IO interface. The parameters of the algorithm (offset, threshold) are also
externally set. The matching module contains an instantiation of the interval
matching algorithm. If a match between the sampled incoming signal and the
programmed reference is found, the trigger signal is activated.

Fig. 2. Top level architecture view.

Due to its basic structure, the architecture of the capture module is not
described in detail. Instead, we focus on the more critical matching module

Design and Implementation of a Waveform-Matching 189

Fig. 3. Architecture of the matching module.

which determines the latency of the system. Its architecture, depicted in Fig. 3,
is essentially a shifting integration structure formed by a parallel cluster of com-
parator blocks and a register adder chain that shifts its content towards the
threshold comparison. Each comparator block checks whether an incoming sam-
ple lies in the interval specified by the reference and the offset for g(m), i.e. it
performs the test described in Eq. 4. The interval comparison is done in parallel
for all samples in the pattern and thus we require N comparator blocks. The
binary output of the comparator is fed to the register adder chain, which keeps
track of the aggregated results from the previous comparisons. That way when a
certain sample h(m+k) is at reg0, the result from comparing i previous samples
is already stored at regi. This architecture enables a quick response time when a
similar pattern appears in the side channel trace. The outcome of comparatorN
is added to regN−1, which contains the aggregated result of the previous N − 1
samples. The resulting T (k) is directly compared with the threshold to determine
whether a trigger needs to be generated, i.e. in case of a match. This full step
can be implemented in one clock cycle, and it is the critical path in the module.
The latency of our architecture is 4 clock cycles, since it includes buffers in the
IO pins and an extra register for the flexible hold-off time before triggering.

A more detailed view of the architecture of a comparator block and the
following register adder chain is illustrated in Fig. 4. An input sample stored in
reg0 is compared against the upper and lower values of the interval for a sample
g(m). The pair (upper limitm, lower limitm) is calculated in advance and stored
in the corresponding registers ULm and LLm, i.e. ULm contains g(m)+ offset
and LLm contains g(m)− offset. The binary output of the interval comparisons
is fed to an AND gate whose output determines whether the value in regm−1

needs to be incremented before storing it in regm. The reset register allows to
adjust the length of the reference signal, adding yet another flexibility feature
to our design.

190 A. Beckers et al.

Fig. 4. Architecture of comparator block and register adder chain.

Note that the architecture given in Fig. 4 is slightly different for the first
and last comparator blocks. In particular, the output of the AND gate in
comparator1 can be directly stored in reg1. For the last comparator block, the
output of the multiplexer goes to the threshold comparator.

4 Implementation

In this section we describe the realization of a trigger box based on the design
and architecture of our waveform-matching based triggering system. We provide
a brief description of the main components and interfaces and list the charac-
teristics achieved after synthesis and place-and-route on an FPGA.

We have described our architecture in VHDL and implemented it on an
Altera Cyclone IV GX FPGA Development Kit [2]. This low-end FPGA is
equipped with 150k logic elements and 6.5 Mbits of embedded memory. Our
hardware description deliberately avoids the use of any manufacturer-specific
IP block, and thus can be easily ported to other commercial FPGAs. We have
used Quartus II Web Edition Software for synthesis, place-and-route and pro-
gramming. The Cyclone IV development board is not equipped with an ADC,
required to sample the incoming side channel signal. Therefore we use an external
Terasic AD/DA Data Conversion card [3]. This card provides two 14-bit ADC
with a maximal sampling rate of 150 MS/s. It interfaces with the Cyclone IV
development board via a standard HSMC interconnect header. A DC block is
placed in front of the ADC to remove the DC component from the incoming
signal.

We have enabled an RS-232 serial interface for IO communication and devised
a rich instruction set to allow for external configuration. The commands allow
at any time to select between capture or matching mode, read captured sig-
nals, program references, set the parameters of the interval matching (offset and
threshold), vary the internal sample rate, and assign hold-off times for captur-
ing signals and/or trigger generation, among others. Both capture and trigger
signals are implemented as GPIO pins. For the latter we could alternatively use
one of the digital-to-analog converters (DAC) of the Terasic AD/DA card.

Design and Implementation of a Waveform-Matching 191

Synthesis Results. The figures of our trigger box depend directly on the resources
of the FPGA. We run the synthesis and place-and-route processes optimizing
for speed. With this we obtain a design that can run at 171.17 MHz and allows
for a pattern length of 1 500 samples. We clock the trigger box at 125 MHz
using the built-in global oscillator, therefore obtaining a latency of 32 ns for our
architecture. Taking into account the 96 ns delay caused by the ADC, the total
latency of our trigger box is 128 ns. Note that by using Altera’s specific IP blocks
for PLLs we could generate a faster clock and thus slightly decrease our latency.
The resource occupation is 133k logic elements (around 88 %) and 86k flip-flops.
Most resources are occupied by the 14-bit comparators. The memory depth for
trace capture is only limited by the memory resources of the FPGA, which is
rather large. For the purposes of testing we fix it to 60 000 samples.

Note that several tradeoffs are possible. In particular, we can increase the
maximum reference length by lowering the sample resolution. Dropping the least
significant bits of the ADC output from 14 to 12 bits decreases the demand of
the comparators. This allows to increase the reference length to 1 875 samples at
the cost of some precision. Further reductions are also possible. The impact of
tradeoffs on the performance of the trigger box can only be empirically evaluated,
as it will naturally depend on the properties of the target device and the side
channel signal.

For the sake of completeness, we list in Table 1 some features of our trigger
box and the icWaves solution from Riscure. The latter figures are retrieved from
the product data sheet [4]. Note that features related to signal conditioning are
omitted from the listing in the table, as they will be discussed in Sect. 5. Other
common features such as hold-off times are similarly unlisted.

Table 1. Main features of our trigger box designs and icWaves.

Our design icWaves

Algorithm Interval matching SAD

Latency 128 ns 500 ns

Sample rate 125 Msamples/s 200Msamples/s

Resolution 14-bit 12-bit 8-bit 8-bit

Sample length 1 500 1 875 2 625 (1× 512) or (2× 256)

Memory depth 60k 60k 120k 8 000k

5 Evaluation

In this section we evaluate the performance of our trigger box by means of prac-
tical experiments. Our tests involve two different devices and two different types
of side channel signals. We discuss the role of the interval matching parame-
ters on the triggering behaviour and highlight the importance of analog signal
conditioning.

192 A. Beckers et al.

5.1 Experimental Setup

Figure 5 depicts the main components of our experimental setup as well as their
interconnections. The side channel signal of the cryptographic device is con-
nected to an oscilloscope and to the trigger box. We use the version with 14-bit
resolution in all experiments. Note that the signal is modified by means of analog
circuitry before being fed to the ADC of the trigger box. This is required to map
the signal amplitude to the input range of the ADC, i.e. to minimize quantiza-
tion errors. Additional circuitry can be used to highlight interesting features of
the signal, as will be discussed in the next section. We use a computer to operate
the trigger box through the serial interface.

Fig. 5. Experimental setup.

Capture Mode. The computer begins by configuring the trigger box to enter
capture mode. It then sends a command to the cryptographic device in order
to start a cryptographic computation. The oscilloscope, which monitors the side
channel signal of the cryptographic device, is responsible to indicate to the trigger
box when to start recording. The incoming signal is then stored in internal
memory (60 000 samples) and sent to the PC.

Note that in our setup the oscilloscope is responsible for activating the trigger
box during capture mode. Hence it is required to (at least once) be able to
configure the oscilloscope to trigger near the window of interest. This step can
be done with the usual techniques, e.g. by detecting simple features on the IO
line or on the side channel signal. The activation signal is provided by the AUX
out port of the oscilloscope. An optional hold-off time can be specified either in
the oscilloscope or in the trigger box. We stress that this step only needs to be
executed once. During our experiments, we have always been able to carry it out
without major difficulties, even if the trigger programmed in the scope has an
unstable behaviour.

Matching Mode. The first step in matching mode consists in selecting a pattern
from the pre-recorded trace. Any software visualization tool can be used for this,
e.g. Matlab. The pattern is sent to the trigger box along with the parameters of
the interval matching algorithm (offset and threshold). Once the trigger box is

Design and Implementation of a Waveform-Matching 193

configured, the computer sends a command to the cryptographic device to start
the cryptographic operations. If a match is found the trigger box generates a
pulse on the trigger signal, optionally with a certain hold-off time. In our exper-
imental setup this signal is connected to an analog channel of the oscilloscope.
This allows us to easily verify whether the trigger box has found a matching
pattern and, if so, whether it is the correct one. We note that in a real attack
scenario the output trigger signal will be directly connected to an acquisition
device to start measurement collection, or alternatively to some equipment for
fault injection.

5.2 Experiments with a Java Card Smart Card

Our first evaluation of the trigger box is performed on a Java card that contains
an applet to compute RSA signatures. The details of the implementation are
unknown to us. We access the side channel power consumption of the Java
card by measuring the voltage drop over a shunt resistor placed in the ground
line. An exemplary trace collected with an oscilloscope at 80 MS/s is shown in
Fig. 6 (top). The two long similar patterns indicate that the implementation uses
RSA-CRT. Zooming into either of the CRT-branches reveals repetitive patterns
corresponding to the inner modular operations, i.e. square and multiply. This is
illustrated in Fig. 6 (bottom).

Fig. 6. Power measurements of the RSA signature applet in the Java card. Full execu-
tion (top), zoom into first CRT-branch (bottom).

Single Matching. We begin our experiments by bringing our setup to cap-
ture mode and configure it to record a trace close to the beginning of the first
CRT-branch. The aim is to find a unique pattern that appears only once per
cryptographic execution. We set the sampling rate of the trigger box at 125 MS/s.
An exemplary recorded trace of 60 000 samples is shown in Fig. 7 (left). Note
that the shape of the trace in Fig. 7 differs from the one in Fig. 6. This is due to
the ADC in the trigger box being different from the ADC in the oscilloscope.

The next steps are to select a pattern and to set the parameters of the interval
matching algorithm. The behaviour of the trigger box will naturally depend on

194 A. Beckers et al.

Fig. 7. Trace recorded by the trigger box during capture mode, pattern selected for
matching mode in grey (left), zoom into the pattern (right).

a good combination of these variables. Our goal is to obtain a single correct
trigger per execution while avoiding (or at least minimizing) false negative and
particularly false positives.

It is important to stress that there is no generic rule on how parameters
need to be set. However, some general observations can be made. First and most
important, it is critical that the pattern we want to trigger on is as unique as
possible. Since the length of the reference is limited, a way to incorporate more
unique features is by varying the sample rate. This variation should however
not result in an undersampling of the signal. Second, using the maximal pattern
length is in general beneficial for detection. However, once the unique features
are incorporated in the pattern it may not make a difference in terms of success
rate. We have empirically observed the existence of a convergence point in which
the percentage of correct matches stops varying even when the reference length
is increased. Third, there is a natural relation between signal noise and offset.
Noisy side channel signals will inevitably demand higher offsets to account for the
variability in the observations. This comes however at a risk, as arbitrarily high
offsets will cause wrong patterns to be considered a match. Finally, the threshold
can be used as a tuning parameter once all other values are constant. In fact
for a given pattern and offset there will be a threshold value that maximizes the
percentage of correct matches.

Let us illustrate this behaviour with an example. Assume we select as pattern
the grey area in Fig. 7 (left) which is also depicted in Fig. 7 (right). We set the
pattern length to the maximum (1 500 samples) and test different offset values.
These are rather conservative, as the noise level in our side channel signal is
quite low. Figure 8 shows an area plot that visualizes the responses of the trigger
box for each offset value in function of the threshold. The vertical axes shows
the outcome (in percentage) computed by running multiple experiments. Each
color (grey, black, white) indicates a possible outcome of the experiments (false
positive, correct match, false negative).

The plots clearly show that for a given offset the desired triggering behaviour
can be tuned by varying the threshold. In most cases one wants to avoid false
positives. Therefore, it is preferable to select a threshold that is slightly higher
than the one that maximizes the percentage of correct matches, i.e. to move away
from the grey area in the plot. We also observe that higher offsets demand higher
thresholds in order to avoid false positives. In contrast, the maximal percentage
of correct matches only varies slightly with the offset.

Design and Implementation of a Waveform-Matching 195

Fig. 8. Percentage of outcomes for varying thresholds: grey (false positive), black (cor-
rect match), white (false negative). Values of offset are 150 (left), 300 (middle), 450
(right).

Our best results when triggering at the beginning of the first CRT-branch
are obtained when selecting the combination offset of 450 and threshold of 900,
which yields a percentage of correct matches of 90 %, with 10 % false negatives
and no false positives.

Multiple Matching. Our follow-up experiment consists in checking whether
it is possible to trigger on each execution of a modular operation in the CRT-
branches. For this we need to select the repetitive pattern in Fig. 6 (bottom),
which perfectly characterizes the occurrence of squarings and multiplications. We
lower the sampling rate of the trigger box to 62.5 MS/s in order to fit the pattern
in less than the maximum 1 500 samples supported by our implementation. The
recorded pattern is shown in Fig. 9 (left).

Fig. 9. Repetitive pattern in CRT-branches. Normal (left), with envelope detection
(right).

Although the pattern appears to contain characteristic features, it turns out to
be completely unsuitable for the purposes of triggering. In fact, all our experiments
yield a negligible percentage of correct matches for any combination of offset and
threshold. Most observed outcomes are false negatives or false positives. The rea-
son behind these results is the repetitiveness of the features in the reference, which
is caused by the relatively high frequency of the side channel signal. This causes a
non unique pattern with many matches in the incoming signal.

In order to overcome this issue, some extra analog circuitry is required to con-
dition the signal before the ADC and highlight its low-frequency features. We
opt to incorporate an ADL5511 envelope detector board with some added capac-
itors that effectively reduces the bandwidth of the incoming signal to 2 MHz. The

196 A. Beckers et al.

envelope detector consists of a rectification stage followed by a low-pass filter-
ing. Using this circuitry we can effectively reduce the bandwidth of the signal
independently of its high frequencies, and therefore capture useful features.

We have repeated our experiments by using an envelope detector in combi-
nation with an extra 30 dB amplifier (Langer PA 303) to minimize quantization
noise. The newly selected pattern, shown in Fig. 9 (right), corresponds to the
envelope detected signal of a modular operation. By using this configuration
with an offset of 50 and a threshold of 810, we are able to increase our success
rate to nearly 100 % without any false positive, i.e. our box is able to trigger
on almost every occurrence of a modular operation in a single RSA-CRT oper-
ation. In fact, the only false negatives correspond to the first operation in each
CRT-branch, which have a shape different than the rest.

5.3 Experiments with an ARM Processor

For our second evaluation of the trigger box we switch to a more challenging
platform featuring non-deterministic program execution. We use a BeagleBone
Black [1] equipped with a Sitara ARM Cortex-A8 32-bit RISC processor. The
non-deterministic behaviour of the processor stems from its dynamic branch
predictors, L1 and L2 cache memories and out-of-order execution engine. Addi-
tionally, the processor runs a preemptive multitasking Linux operating system
with e.g. scheduling, context switches and interrupts. The core runs at a clock
frequency of 1 GHz.

In order to monitor the power consumption, we place an electromagnetic
pen probe on one of the decoupling capacitors as previously described in [6].
Due to the low output voltage range of the pen probe and the high operating
frequency of the processor, we require some extra analog signal conditioning. We
insert a 30 dB amplifier (Langer PA 303) between the pen probe and the input
of the envelope detector, followed by another 30 dB amplifier used to minimize
the quantization noise in the ADC.

Our test application is a software implementation of the Advanced Encryp-
tion Standard (AES) [12] that performs bulk encryption. Finding a consistent
and reliable trigger on the side channel signal is an arduous task when using only
an oscilloscope, i.e. sudden amplitude changes occur frequently due to other run-
ning processes causing multiple false positives. However, we only need one correct
trigger in order to store a measurement during capture mode.

A trace recorded by our trigger box is shown in Fig. 10 (left). Thanks to
the envelope detector, the batched executions of the AES are identifiable in the
trace (30 encryptions in this particular case). We select a pattern corresponding
to a single execution, depicted in Fig. 10 (right), and program it into the trigger
box. The length of this reference signal is 960 samples, and it is obtained with a
sampling rate of 25 MS/s. The lower sampling rate is an additional benefit from
using an envelope detector, as it allows to sample the now low-frequency signal
without loosing its features.

By setting the offset to 130 and choosing a threshold of 630, we achieve 99.2 %
of correct matches, i.e. we trigger on almost all AES executions, without any false

Design and Implementation of a Waveform-Matching 197

Fig. 10. Trace recorded by the trigger box during capture mode, pattern selected for
matching mode in grey (left), zoom into the pattern (right).

positive. The remaining 0.8 % of false negatives correspond to the first encryption
and any other execution occurring after an interrupt. This is an artifact of the
instruction cache of the processor, which is filled with code after every context
switch. The cache filling leads to a different shape in the side channel signal,
which the trigger box correctly identifies as no match.

It is worth mentioning that our success rate is kept even when we increase
the number of batched encryptions to e.g. 50 000. The same outcome is achieved
when we increase the CPU load to 100 % by enabling heavy computational tasks
in parallel such as RSA key generation in OpenSSL.

6 Conclusions

Triggering is critical to enable implementation attacks in real scenarios. The
lack of accurate and reliable trigger points may fully prevent to mount an attack
on a certain implementation, even if unprotected. This is particularly true for
modern high-end devices with non-deterministic behaviour due to complex CPU
architecture and operating system. In this work we have documented the design,
architecture, implementation and evaluation of a waveform-matching based trig-
gering system tailored to the context of embedded security. With this, we put
forward a tool that can be of use to the research community.

Acknowledgements. We would like to thank Victor Förster for initial contributions
to the system’s design and architecture. This work was supported in part by the
Research Council KU Leuven: C16/15/058. In addition, this work was supported by the
Flemish Government, FWO G.0550.12N, by the Hercules Foundation AKUL/11/19,
and through the Horizon 2020 research and innovation programme under grant agree-
ment 644052 HECTOR. Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for
Scientific Research - Flanders (FWO).

References

1. BeagleBone Black Starting Guide. Beagleboard.org. http://beagleboard.org/
getting-started. Accessed Dec 2015

2. Cyclone IV GX FPGA Development Kit. Altera. https://www.altera.com/
products/boards and kits/dev-kits/altera/kit-cyclone-iv-gx.html. Accessed Dec
2015

http://beagleboard.org/getting-started
http://beagleboard.org/getting-started
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-iv-gx.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-iv-gx.html

198 A. Beckers et al.

3. Highspeed AD/DA Card. Terasic. http://www.terasic.com.tw/cgi-bin/page/
archive.pl?No=278. Accessed Dec 2015

4. icWaves Datasheet. Riscure. https://www.riscure.com/security-tools/hardware/
icwaves. Accessed Dec 2015

5. Agoyan, M., Dutertre, J., Mirbaha, A., Naccache, D., Ribotta, A., Tria, A.: How
to flip a bit? In: IOLTS, pp. 235–239. IEEE Computer Society (2010)

6. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293,
pp. 599–619. Springer, Heidelberg (2015)

7. Balasch, J., Gierlichs, B., Verbauwhede, I.: An In-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: Breveglieri, L., Guilley, S.,
Koren, I., Naccache, D., Takahashi, J. (eds.) FDTC, pp. 105–114. IEEE Computer
Society (2011)

8. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

10. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, p. 252. Springer, Heidelberg (2000)

11. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 156–170. Springer, Heidelberg (2009)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

13. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic transient faults
injection on a hardware and a software implementations of AES. In: Bertoni, G.,
Gierlichs, B. (eds.) FDTC, pp. 7–15. IEEE Computer Society (2012)

14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251.
Springer, Heidelberg (2001)

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

16. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

17. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001)

18. Quisquater, J.-J., Samyde, D.: Eddy current for magnetic analysis with active
sensor. In: Esmart 2002, pp. 185–194 (2002)

19. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: Breveg-
lieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J. (eds.) FDTC, pp. 53–58.
IEEE Computer Society (2008)

20. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

21. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: Breveglieri, L., Guilley, S., Koren, I., Nac-
cache, D., Takahashi, J. (eds.) FDTC, pp. 91–99. IEEE Computer Society (2011)

http://www.terasic.com.tw/cgi-bin/page/archive.pl?No=278
http://www.terasic.com.tw/cgi-bin/page/archive.pl?No=278
https://www.riscure.com/security-tools/hardware/icwaves
https://www.riscure.com/security-tools/hardware/icwaves

Robust and One-Pass Parallel Computation
of Correlation-Based Attacks at Arbitrary Order

Tobias Schneider1(B), Amir Moradi1, and Tim Güneysu2

1 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany
{tobias.schneider-a7a,amir.moradi}@rub.de

2 University of Bremen and DFKI, Bremen, Germany
tim.gueneysu@uni-bremen.de

Abstract. The protection of cryptographic implementations against
higher-order attacks has risen to an important topic in the side-channel
community after the advent of enhanced measurement equipment that
enables the capture of millions of power traces in reasonably short time.
However, the preprocessing of multi-million traces for such an attack is
still challenging, in particular when in the case of (multivariate) higher-
order attacks all traces need to be parsed at least two times. Even worse,
partitioning the captured traces into smaller groups to parallelize com-
putations is hardly possible with current techniques.

In this work we introduce procedures that allow iterative computa-
tion of correlation in a side-channel analysis attack at any arbitrary
order in both univariate and multivariate settings. The advantages of
our proposed solutions are manifold: (i) they provide stable results, i.e.,
by increasing the number of used traces high accuracy of the estimations
is still maintained, (ii) each trace needs to be processed only once and
at any time the result of the attack can be obtained (without requiring
to reparse the whole trace pool when adding more traces), (iii) the com-
putations can be efficiently parallelized, e.g., by splitting the trace pool
into smaller subsets and processing each by a single thread on a multi-
threading or cloud-computing platform, and (iv) the computations can
be run in parallel to the measurement phase. In short, our constructions
allow efficiently performing higher-order side-channel analysis attacks
(e.g., on hundreds of million traces) which is of crucial importance when
practical evaluation of the masking schemes need to be performed.

1 Introduction

Side-channel analysis (SCA) poses a major threat for security-sensitive applica-
tions. This becomes particularly critical when the cryptographic device – par-
ticularly in pervasive applications – is delivered to the end user, where it is
operated in a hostile environment (cf. [17,22]). For such a case the integration
of appropriate countermeasures against SCA attacks has become essential in the
design of the device. In this context, masking as a countermeasure obtained the
most attraction from both academia and industry due to its sound theoretical
c© Springer International Publishing Switzerland 2016
F.-X. Standaert and E. Oswald (Eds.): COSADE 2016, LNCS 9689, pp. 199–217, 2016.
DOI: 10.1007/978-3-319-43283-0 12

200 T. Schneider et al.

basis as well as its practical efficiency to mitigate the attacks. Masking counter-
measures are based on the principle of secret sharing for which many different
forms including Boolean, arithmetic, multiplicative, polynomial base, etc. have
been proposed [5,6,19].

Since the efficiency of a masking schemes strongly depends on its implementa-
tion, a practical evaluation of the final product (or a prototype) is inevitable. For
this situation, techniques such as the test vector leakage assessment [9] (known as
t-test) have been developed to practically examine the vulnerability of a crypto-
graphic design. However, such an evaluation scheme can only report the existence
of a leakage in a product, but it does not provide any indication whether this
leakage is indeed exploitable by an attack. In reply to the question if a leakage
is in fact exploitable for key recovery, one needs to mount different SCA attacks
and examine their success. Depending on the definition and settings of the mask-
ing scheme, it can provide security against SCA attacks up to a certain order
d. Consequently, all tests and attacks need to take all particular orders ranging
from 1 up to d + 1 into account.

The most common SCA attack, Correlation Power Analysis (CPA) [4], is
based on a hypothetical leakage model and the estimation of correlation (com-
monly by Pearson’s correlation coefficient) between the hypothetical leakages
and the SCA traces. In its simplest setting, the attack runs independently at
each sample point of the SCA traces. This univariate first-order CPA can be
extended to higher orders d > 1 by introducing a preprocessing stage for the
traces at each sample point. This preprocessing involves the computation of
mean-free values which are then squared (for a univariate d = 2nd-order CPA),
cubed (for a univariate d = 3rd-order CPA), or any corresponding power for
larger d. Prior to the attack d different sample points of each trace are combined
into a centered product for the multivariate case at order d > 1. In other words,
first mean-free representations are calculated of which d sample points of each
trace are multiplied. It is noteworthy that finding such d points of interest is
another challenging task which has been well studied in [8,18].

By increasing the order of the underlying masking scheme the corresponding
higher-order CPA becomes more susceptible to noise. Indeed the number of
required traces to mount a successful attack increases exponentially in d with
respect to the noise standard deviation. Therefore, a higher-order attack typically
requires several (hundreds of) millions of traces to be successful [1,13]. The
conventional strategy for preprocessing (known as “three-pass”) parses all traces
three times to (i) obtain the means, (ii) combine the desired points by their
mean-free product, and (iii) estimate the correlation1. This procedure has many
shortcomings as by adding more traces to the trace pool, the entire last two
steps need to be repeated. Hence, it is not easily possible to parallelize the
computations by splitting the trace pool into smaller sets. We should emphasize
that, in case of univariate attacks, the parallelization can be trivially done by
splitting each trace into smaller subtraces with a lower number of sample points.

1 In some particular cases, e.g., univariate, the last two steps can be combined.

Robust and One-Pass Parallel Computation of Correlation 201

Alternatively as shown in [3] for first-order and second-order CPA, the for-
mulas for preprocessing and the estimation of the correlation can be combined
by following the displacement law. This procedure (so-called “Raw-Moment”)
solves all the shortcomings of the three-pass approach. In fact:

– When increasing the trace pool, the estimated raw moments are easily
updated by only processing the given new traces.

– The attack can be started before the measurement phase is completed. This
helps to further increase the performance of the attacks.

– The result of the attack can be obtained without introducing any overhead to
the process of the further traces at any time during the measurement phase.

– The trace pool can be easily split into smaller sets and each set can be
processed independently by different threads. Due to the nature of the raw
moments, the result of different threads (at any time) can be easily combined
to derive the result of the attack.

Note, however, that this procedure was only presented for first-order and
bivariate second-order CPA using 10,000,000 traces and may suffer from numer-
ical instabilities as the raw moments become pretty large values by increasing
the number of traces. Hence, it can lead to serious accuracy loss due to the
limited fraction significand of floating point formats (e.g., IEEE 754). This issue
becomes extremely problematic for higher-order (d > 2) attacks.

The instability in formulas that are based on raw moments has been previ-
ously studied to come up for appropriate solutions. For example, in [15] robust
iterative formulas for centralized and standardized moments at any arbitrary
order as well as for correlation are given that avoid such instabilities by increas-
ing the number of samples. Furthermore, iterative formulas for the t-test at any
arbitrary order are given in [20].

Our Contribution: In this work, we present an approach based on centralized and
standardized moments to cover univariate as well as multivariate CPA attacks
at any arbitrary order. Our solution benefits from all the aforementioned advan-
tages of the raw-moment approach while it maintains the accuracy (as for the
three-pass approach) regardless of the order of the attack and the number of
traces. This work not only covers CPA attacks but also Moments-Correlating
DPA [14] where moments are correlated to the (preprocessed) traces with the
goal of avoiding the necessity of a hypothetical leakage model (that is unavoid-
able in CPA attacks).

Prior to the description of our solution we define two terms iterative and
incremental which are frequently used in the rest of the paper. Suppose that
after finishing all the required processes on the trace pool Q, a new trace y is
added to the trace pool Q′ = Q ∪ {y}. We provide incremental formulas that
allow updating the previously computed terms by only processing the new trace
y. In addition to that, we suppose that the trace pool Q is divided into two
groups as Q = Q1 ∪ Q2, and each group is independently processed using the
given incremental formulas. We provide (two-pair) iterative formulas that enable

202 T. Schneider et al.

the combination of results computed over each group Q1 and Q2 to derive the
result of the full trace pool Q.

2 Notations

We use capital letters for random variables, and lower-case letters for their real-
izations. Vectors are denoted with bold notations, functions with sans serif fonts,
and sets with calligraphic ones.

Suppose that in a side-channel attack, with respect to n queries with associ-
ated data (e.g., plaintext or ciphertext) d i∈{1,...,n}, n side-channel measurements
(so-called traces) are collected. Let us denote each trace by t i∈{1,...,n} containing
m sample points {t

(1)
i , . . . , t

(m)
i }.

Following the divide-and-conquer principle, one objective of a side-channel
attack is to recover a part k of the secret key k , which contributed to the process-
ing of the entire associated data d i∈{1,...,n}. Prior to the attack an intermediate
value V is selected, which given the associated data and a key guess k is pre-
dictable, i.e., vi = F (d i, k). In a CPA attack a hypothetical leakage model L̃(.) is
applied on the chosen intermediate value which should be (sufficiently) linearly
proportional to the actual leakage of the target device, i.e., L(.). As a common
and straightforward example, the Hamming weight of an Sbox output during the
first round of an encryption function is employed when attacking an exemplary
micro-processor based implementation, i.e., li = L̃(vi) = HW (S (di ⊕ k)), where
di denotes a necessary part of d i to predict vi.

Let us denote the dth-order raw statistical moment of a random variable X by
Md = E(Xd), with μ = M1 the mean and E(.) the expectation operator. We also
denote the dth-order (d > 1) central moment by CMd = E

(
(X − μ)d

)
, with

s2 = CM2 the variance. Finally, the dth-order (d > 2) standardized moment is

denoted by SMd = E

((
X−µ

s

)d
)

, with SM3 the skewness and SM4 the kurtosis.

3 Univariate CPA

For a univariate CPA attack the correlation between the traces T and the
hypothetical leakage values L is estimated. Due to the univariate nature of
the attack, such a process is performed at each sample point (1, . . . , m) inde-
pendently. Therefore, below – for simplicity – we omit the upper index of the
sample points and denote a sample point of the ith trace by ti.

The estimation of the correlation with Pearson correlation coefficient (as the
normalized covariance) is defined as

ρ =
cov(T,L)

st sl
=

E
(
(T − μt) (L − μl)

)
st sl

, (1)

where μt (resp. μl) denotes the estimated mean of the traces (resp. of the hypo-
thetical leakages). st (resp. sl) also stands for standard deviation.

Robust and One-Pass Parallel Computation of Correlation 203

In the discrete domain we can write

ρ =

1
n

n∑
i=1

(ti − μt)(li − μl)√
1
n

n∑
i=1

(ti − μt)
2 1

n

n∑
i=1

(li − μl)
2

(2)

Based on the way followed in [3] one can write

ρ =

1

n

n∑
i=1

ti li − μt μl

√(
1

n

n∑
i=1

ti2 − μt
2

)(
1

n

n∑
i=1

li
2 − μl

2

) =
M1,T ·L − M1,T M1,L√(

M2,T − M1,T 2
) (

M2,L − M1,L2
) ,

(3)

which are based on dth-order raw moments, i.e., Md,X = 1
n

n∑
i=1

xi
d. However, as

stated in [20], such constructions can lead to numerically unstable situations [10].
During the computation of the raw moments the intermediate values tend to
become very large which can lead to a loss in accuracy. Further, M2 and M1

2

can be large values, and the result of M2 − M1
2 can also lead to a significant

accuracy loss due to the limited fraction significand of floating point formats
(e.g., IEEE 754).

Iterative. We can alternatively write

ρ =

1
n

n∑
i=1

(ti − μt)(li − μl)√
1
n

n∑
i=1

(ti − μt)
2 1

n

n∑
i=1

(li − μl)
2

=

1
n

ACS1√
1
n

CS2,T
1
n

CS2,L

, (4)

with CSd,X =
n∑

i=1

(xi − μx)d as the definition of dth-order centralized sum given

in [20]. Further, we define ACS1 as the first-order adjusted centralized sum.
Suppose that M1,Q1 (resp. M1,Q2) denotes the first raw moment (sample

mean) of the given set Q1 (resp. Q2) with cardinality n1 = |Q1| and n2 = |Q2|.
M1,Q as the first raw moment of Q = Q1 ∪ Q2 can be written as [15]

M1,Q =
n1 M1,Q1 + n2 M1,Q2

n
, (5)

with n = n1 + n2 as the cardinality of Q.
In the same way, such a formula can be written for the centralized sum CSd,Q

at any arbitrary order d > 1 as [15]

204 T. Schneider et al.

CSd,Q = CSd,Q1 + CSd,Q2 +

d−2∑
p=1

(
d

p

)[(−n2

n

)p
CSd−p,Q1 +

(n1

n

)p
CSd−p,Q2

]
Δp

+
(n1 n2

n
Δ
)d[(1

n2

)d−1

−
(−1

n1

)d−1
]
,

(6)

with Δ = M1,Q2 − M1,Q1 . It is noteworthy that the calculation of CSd,Q addi-
tionally requires CSp,Q1 and CSp,Q2 for 1 < p ≤ d.

The remaining part is the first-order adjusted centralized sum ACS1. Suppose
that Q1 and Q2 denote sets of doubles (t, l) with first-order adjusted centralized
sum ACS1,Q1 and ACS1,Q2 respectively. The first-order adjusted centralized
sum of Q = Q1 ∪ Q2 can be written as

ACS1,Q = ACS1,Q1 + ACS1,Q2 +
n1 n2

n
Δt Δl, (7)

with Δt = μt,Q2 −μt,Q1 and Δl = μl,Q2 −μl,Q1 . For simplicity, we denote M1,T1

by μt,Q1 and M1,L1 by μl,Q1 . The sets T1 and L1 are formed respectively from
the first and second elements of the doubles in Q1 (the same holds for Q2, μt,Q2 ,
and μl,Q2).

Incremental, n2 = 1. We now optimize the computations of each set. It is
indeed enough to suppose that Q2 consists of only one element y. Hence the
update formula for the first raw moment can be written as

M1,Q = M1,Q1 +
Δ

n
,

with Δ = y − M1,Q1 . Note that Q1 and M1,Q1 are initialized with ∅ and respec-
tively zero. Similarly, we can write the same for the dth-order centralized sum

CSd,Q = CSd,Q1 +

d−2∑
p=1

(
d

p

)
CSd−p,Q1

(−Δ

n

)p

+

(
n − 1

n
Δ

)d
[
1 −
(−1

n − 1

)d−1
]

,

(8)
where Δ = y − M1,Q1 . For the first-order adjusted centralized sum we can also
write

ACS1,Q = ACS1,Q1 +
n − 1

n
Δt Δl, (9)

with Δt = tn − μt,Q1 and Δl = ln − μl,Q1 , where Q2 =
{
(tn, ln)

}
.

Based on these formulas the correlation can be computed efficiently in one
pass. Furthermore, since the intermediate results of the central sums are mean-
free, they do not become significantly large which helps preventing the numerical
instabilities.

Robust and One-Pass Parallel Computation of Correlation 205

3.1 Univariate Higher-Order CPA

Higher-order attacks require that the sample traces are preprocessed. For the
second-order univariate CPA the preprocessing consists of making each sample
point mean-free squared:

t′i = (ti − μt)
2
.

For higher orders d > 2 the traces are usually additionally standardized as
t′i
std

,

where st denotes the standard deviation. Therefore, the Pearson correlation can
be written as

ρ =

1

n

n∑
i=1

(t′
i

std
− μt′

std

)
(li − μl)

√
1

n

n∑
i=1

(t′
i

std
− μt′

std

)2 1

n

n∑
i=1

(li − μl)
2

=

1

n

n∑
i=1

(
t′
i(li − μl)

)
√

1

n

n∑
i=1

(t′
i − μt′)2

1

n

n∑
i=1

(li − μl)
2

(10)

The straightforward way is to first preprocess the entire trace set ti∈{1,...,n}.
Hence the measurement phase has to be completed before the preprocessing can
be started. Another drawback is the reduced efficiency as each of the preprocess-
ing and the estimation of the correlation steps needs at least one pass over the
whole trace set.

In [3], the authors propose iterative formulas for first- and second-order CPA.
Their approach is based on raw moments which can lead to numerical instability
if the values get too large [20]. Alternatively, we propose an iterative method
which is based on the centralized moments. These values are mean-free which
leads to smaller values and better accuracy for a large number of measurements.
This approach can be run in parallel to the measurements (and can be also
split into smaller threads) as the result is incrementally updated for each new
measurement. Therefore, it needs only one pass over the whole trace set. In the
following, we present all necessary iterative formulas to perform a univariate
CPA at any arbitrary order with sufficient accuracy. We divide the expressions
by the numerator and denominator of Eq. (10).

3.2 Numerator

Note that even though the numerator looks similar to a raw-moment approach,
it operates with centralized (mean-free) values. Therefore, numerical instabilities
are avoided. The numerator for the d-th order correlation can be written as

1
n

n∑
i=1

(
t′i(li − μl)

)
=

1
n

n∑
i=1

(ti − μt)
d (li − μl) =

1
n

ACSd, (11)

with ACSd which we refer to as the dth-order adjusted centralized sum.
We start with a generic formula which merges the adjusted centralized sum

of two sets Q ∪ Q2 = Q with |Q1| = n1, |Q2| = n2 and |Q| = n. The goal is to
compute ACSd,Q given only the adjusted and centralized sums of Q1 and Q2.

206 T. Schneider et al.

Theorem 1. Let Q1 and Q2 be given sets of doubles (t, l). Suppose also T1 and
L1 as the sets of respectively the first and second elements of the doubles in Q1

(the same for T2 and L2). The dth-order adjusted centralized sum ACSd,Q of the
extended set Q = Q1 ∪ Q2 with Δt = μt,Q2 − μt,Q1 and Δl = μl,Q2 − μl,Q1 can
be written as

ACSd,Q = ACSd,Q1 + ACSd,Q2 +
Δl

n

(
n1 CSd,Q2 − n2 CSd,Q1

)

+
d−1∑
p=1

(
d

p

) (
Δt

n

)p [
(−n2)

p
ACSd−p,Q1 + (n1)

p
ACSd−p,Q2

+
Δl

n

(
(−n2)

p+1
CSd−p,Q1 + (n1)

p+1
CSd−p,Q2

)]

+

(
n1 (−n2)d+1 + n2 (n1)d+1

)
nd+1

(Δt)
d

Δl (12)

The proof of Theorem1 is omitted due to length restrictions.

Incremental, n2 = 1. For the iterative formulas when Q2 =
{
(tn, ln)

}
Eq. (12)

can be simplified to

ACSd,Q =ACSd,Q1 + CSd,Q1

(
−Δl

n

)

+
d−1∑
p=1

(
d

p

)(
−Δt

n

)p [
ACSd−p,Q1 + CSd−p,Q1

(
−Δl

n

)]

+
(−1)d+1 (n − 1) + (n − 1)d+1

nd+1
(Δt)

d
Δl, (13)

with Δt = tn − μt,Q1 and Δl = ln − μl,Q1 .

3.3 Denominator

The denominator of Eq. (10) requires the computation of two centralized sums.

For the second centralized sum
n∑

i=1

(li − μl)
2 we already gave pair-wise iterative

as well as incremental formulas for CS2,Q in Eqs. (6) and (8).

The first centralized sum
n∑

i=1

(t′i − μt′)2 relates to the preprocessed traces.

For this, efficient formulas to compute the variance of the preprocessed traces
are given in [20]. In order to estimate the variance (second centralized moment
CM2,T ′) of T ′ =

{
t′i∈{1,...,n}

}
as the set of preprocessed traces at any arbitrary

order d > 1 we can write [20]

1
n

n∑
i=1

(t′i − μt′)2 = CM2,T ′ = CM2d,T − (CMd,T)2 =
CS2d,T

n
−

(
CSd,T

n

)2

,

Robust and One-Pass Parallel Computation of Correlation 207

where T denotes the traces without preprocessing. Therefore, given the iterative
and incremental formulas for CSd,Q in Eqs. (6) and (8) we can efficiently as well
as in parallel estimate both centralized sums of the denominator of Eq. (10).
Further, having the formulas given in Sect. 3.2 the correlation of a univariate
CPA at any arbitrary order d can be easily derived.

4 Multivariate CPA

In the following we give iterative formula for multivariate higher-order CPA
with the optimum combination function, i.e., centered product [16,21]. Given
d sample point indices J = {j1, ..., jd} as the points to be combined and a
set of sample vectors Q = {V i∈{1,...,n}} with V i =

(
t
(j)
i | j ∈ J

)
, the centered

product of the ith trace is defined as

ci =
∏
j∈J

(
t
(j)
i − μ

(j)
Q

)
, (14)

where μ
(j)
Q denotes the mean at sample point j over set Q.

The authors of [3] proposed an iterative formula for the Pearson correlation
coefficient in the bivariate case, i.e., d = 2. However, during the computation

they calculate the sum
n∑

i=1

(
t
(j1)
i t

(j2)
i

)2

for the two point indices j1 and j2 (cf. s11

of Table 5 in [3]). Their method is basically equivalent to using the raw moments
to derive higher-order statistical moments. Given a high number of traces this
value can grow very large, and can cause numerical instability.

We instead provide iterative formulas based on mean-free values. In our app-
roach, the formula for the multivariate Pearson correlation coefficient is first
simplified using Eq. (10) to

ρ =

1
n

n∑
i=1

(
ci − μc

)(
li − μl

)
√

1
n

n∑
i=1

(
ci − μc

)2 1
n

n∑
i=1

(
li − μl

)2
=

1
n

n∑
i=1

(
ci

(
li − μl

))
√

1
n

n∑
i=1

(
ci − μc

)2 1
n

n∑
i=1

(
li − μl

)2
.

(15)

4.1 Numerator

The way of computing the numerator of Eq. (15)

1
n

n∑
i=1

(
ci

(
li − μl

))
=

1
n

n∑
i=1

(∏
j∈J

(
t
(j)
i − μ

(j)
Q

) (
li − μl

))
(16)

is similar to the iterative computation of the first parameter for the multivariate
t-test as presented in [20]. We indeed can write Eq. (16) as

1
n

n∑
i=1

(
ci

(
li − μl

))
=

1
n

n∑
i=1

∏
j∈J ′

(
t
(j)
i − μ

(j)
Q

)
, (17)

208 T. Schneider et al.

with J ′ = J ∪{j∗}, t
(j∗)
i = li and μ

(j∗)
Q = μl. With this, we define the term sum

of centered products as

SCPd+1,Q,J ′ =
∑

V i∈Q

∏
j∈J ′

(
t
(j)
i − μ

(j)
Q

)
. (18)

In addition, we define the b-th order power set of J ′ as

Pb = {S | S ∈ P(J ′), |S| = b}, (19)

where P(J ′) refers to the power set of the indices of the points of interest J ′. The
given formulas in [20] are for the incremental case when set Q2 has a cardinality
of 1. Hence, the sum of the centered products SCPd+1,Q,J ′ of the extended set

Q = Q1 ∪
{

(t(j1)n , ..., t
(jd)
n , t

(j∗)
n)

}
with t

(j∗)
n = ln and |Q| = n can be computed

as [20]

SCPd+1,Q,J ′ = SCPd+1,Q1,J ′ +

⎛
⎝ d∑

b=2

∑
S∈Pb

SCPb,Q1,S
∏

j∈J ′\S

(
Δ(j)

−n

)⎞
⎠

+

⎛
⎝ (−1)d+1(n − 1) + (n − 1)d+1

nd+1

∏
j∈J ′

Δ(j)

⎞
⎠ ,

(20)

where Δ(j∈J ′) = t
(j)
n − μ

(j)
Q1

. Below we present a generalization of this method
to arbitrary sized Q2.

Generalization of [20]

Theorem 2. Let J ′ be a given set of indices (of d + 1 points of interest)
and two sets of sample vectors Q1 = {Vi∈{1,...,n1}}, Q2 = {Vi∈{1,...,n2}} with

Vi =
(
t
(j)
i | j ∈ J ′

)
. The sum of the centered products SCPd+1,Q,J ′ of the

extended set Q = Q1 ∪ Q2 with Δ(j∈J ′) = μ
(j)
Q2

− μ
(j)
Q1

and |Q| = n can be
computed as:

SCPd+1,Q,J ′ = SCPd+1,Q1,J ′ + SCPd+1,Q2,J ′

+
d∑

b=2

∑
S∈Pb

(
(−n2)

d+1−b SCPb,Q1,S + nd+1−b
1 SCPb,Q2,S

) ∏
j∈J ′\S

Δ(j)

n

+
(−n2)

d+1 n1 + nd+1
1 n2

nd+1

∏
j∈J ′

Δ(j). (21)

The proof of Theorem 2 is omitted due to length restrictions.

Robust and One-Pass Parallel Computation of Correlation 209

4.2 Denominator

Similar to the expressions given in Sect. 3.3 the denominator of Eq. (15) consists

of two centralized sums. The second one
n∑

i=1

(li − μl)
2 is the same as that of the

univariate CPA and Eqs. (6) and (8) are still valid.

For the first centralized sum
n∑

i=1

(
ci−μc

)2

we recall the formulas given in [20]

which deal with the estimation of the variance of the preprocessed traces in a
multivariate setting. It means that we can write

n∑
i=1

(
ci − μc

)2

=
∑
V∈Q

⎛
⎝∏

j∈J

(
t(j) − μ

(j)
Q

)
− SCPd,Q,J

n

⎞
⎠

2

= SCP2d,Q,J ′′ − (SCPd,Q,J)2

n
, (22)

with multiset J ′′ = {j1, ..., jd, j1, ..., jd}. It is noteworthy that in contrast to the
computation of the numerator, where the set J ′ with d + 1 indices is used, here
for the denominator the set J and its extension J ′′ with respectively d and 2d
indices are applied.

5 Moments-Correlating DPA

Moments-Correlating DPA (MC-DPA) [14] as a successor of Correlation-
Enhanced Power Analysis Collision Attack [12] solves its shortcomings and is
based on correlating the moments to the traces [7,8,11]. It relaxes the necessity
of a hypothetical leakage model which is essential in the case of a CPA.

The most general form of MC-DPA is Moments-Correlating Profiling DPA
(MCP-DPA). In such a scenario, the traces used to build the model t (M)

i∈{1,...,n(M)}
(and trivially their number n(M)) are not necessarily the same as the traces used
in the attack t i∈{1,...,n}. An MC-DPA in a multivariate settings uses two sets
of sample point indices JM and Jt related to the sample points of the model
and the attack respectively. Such sample points are taken based on the time
instances when a certain function (e.g., an Sbox) operates on an intermedi-
ate value v

(M)

i∈{1,...,n(M)} to form the model and on another intermediate value

v
(t)
i∈{1,...,n} to perform the attack. In a simple scenario, such intermediate values

can be different Sbox inputs. Optionally a leakage function can be considered as
L̃(.) over the targeted intermediate values. Note that in the most general form
such a leakage function can be the identity mapping, i.e., L̃(v) = v. Following
the original MC-DPA scheme [14], v

(M)
i = d

(M)
i ⊕ k(M) and v

(t)
i = d

(t)
i ⊕ k(t)

with d(M) and d(t) e.g., plaintext portions (bytes) respectively of the model and
the attack. Hence, due to the linear relations such a setting turns into a linear
collision attack [2] with L̃(v(M)

i) = d
(M)
i and L̃(v(t)

i) = d
(t)
i ⊕Δk, which is referred

210 T. Schneider et al.

to as Moments-Correlating Collision DPA (MCC-DPA), where the traces for the
model and the attack are the same and n(M) = n. However, in the following
expressions we consider the profiling one which can be easily simplified to the
collision one.

Let us denote L as a set of all possible outputs of the leakage function with
cardinality of nL is defined as

L = {l(1), . . . , l(nL)} = {l | ∃v, L̃(v) = l}. (23)

Correspondingly we define nL subsets I(M)

l(a∈{1,...,nL})

I(M)

l(a) = {i ∈ {1, . . . , n(M)} |L̃(v(M)
i) = l(a)} (24)

as the trace indices with particular leakage value l(a) on the model’s intermediate
values v

(M)
i with cardinality of n

(M)

l(a) . The same subsets are also defined with

respect to the attack’s intermediate values v
(t)
i as

I(t)

l(a) = {i ∈ {1, . . . , n} |L̃(v(t)
i) = l(a)}, (25)

with |I(t)

l(a) | = n
(t)

l(a) .
Depending on the type of the attack (univariate vs. multivariate) the sam-

ple points at JM are first combined using a combining function, e.g., centered
product, split into the subsets depending the leakage model L̃(.) and then used
to estimate the statistical moments of a given order d. Depending on the order
of the attack, prior preprocessing is also necessary. We denote these moments as
the model by

∀l(a) ∈ L, Ml(a)

preprocessing,
(centralized/standardized)

dth-order moment←−−−−−−−−−−−−−−−− {t (M)
i , i ∈ I(M)

l(a) ,JM}. (26)

On the other hand, the traces at the sample points Jt need also to be pre-
processed according to the variate of the attack (univariate vs. multivariate) as
well as the given order d.

The correlation between the moments Ml(a∈{1,...,nL}) and the preprocessed
traces t′i∈{1,...,n} is defined as

ρ =

1
n

n∑
i=1

(t′i − μt′)(Mli − μM)
√

1
n

n∑
i=1

(t′i − μt′)2
1
n

n∑
i=1

(Mli − μM)2
, (27)

where Mli∈{1,...,n} = Ml(a) , l(a) = L̃(v(t)
i) ∈ L.

Robust and One-Pass Parallel Computation of Correlation 211

5.1 Numerator

To compute the numerator of Eq. (27) it is first simplified to

1
n

n∑
i=1

(t′i − μt′)(Mli − μM) =
nL∑
a=1

(Ml(a) − μM)
1
n

∑
i∈I(t)

l(a)

t′i. (28)

The preprocessing of the MC-DPA requires the sum of Eq. (28) SUMI(t)

l(a)
=∑

i∈I(t)

l(a)

t′i to be processed independently. Otherwise, it is not trivially possible to

provide iterative formulas as the mean and variance of subgroup of the traces
∈ I(t)

l(a) change. Since nL is limited, we store a sum for each value of set L
and merge them only at the end when the value of the estimated correlation is
desired. In the multivariate higher-order d > 1 scenario, we store nL sums of
the traces as

SUMI(t)

l(a)
=

∑
i∈I(t)

l(a)

t′i =
∑

i∈I(t)

l(a)

∏
j∈Jt

(
t
(j)
i − μ

(j)

I(t)

l(a)

)
= SCP

d,I(t)

l(a) ,Jt
, (29)

and in case of the univariate higher-order d > 2 as

SUMI(t)

l(a)
=

∑
i∈I(t)

l(a)

t′i =
1(

sI(t)

l(a)

)d
∑

i∈I(t)

l(a)

(
ti − μI(t)

l(i)

)d

=
1(

sI(t)

l(i)

)dCS
d,I(t)

l(i)
.

(30)
Note that for d = 2 the denominator of Eq. (30) is omitted. For a univariate
first-order attack the means are used to derive the latter term of Eq. (28) as

1
n

SUMI(t)

l(a)
=

1
n

∑
i∈I(t)

l(a)

ti =
n
(t)

l(a)

n
μI(t)

l(a)
. (31)

We should here emphasize that – in contrast to the methods of the prior
sections – in case of MC-DPA when a new trace is added to the set of traces
following the incremental formulas only the sum and the moments which corre-
spond to the leakage value l(a) related to the new trace are updated.

In order to calculate the whole numerator it is necessary to store the moments
Ml(a) ,∀l(a) ∈ L. This procedure is similar to before, and for the multivariate
higher-order case it can be done by computing

Ml(a) =
1

n
(M)

l(a)

∑
i∈I(M)

l(a)

∏
j∈JM

(
t
(j)
i − μ

(j)

I(M)

l(a)

)
=

SCP
d,I(M)

l(a) ,JM

n
(M)

l(a)

. (32)

For the univariate case Eq. (32) changes analog Eq. (30). In a univariate first-
order attack there is no preprocessing, and Ml(a) simply represents the mean
μI(M)

l(a)
.

212 T. Schneider et al.

The mean μM in Eq. (27) is

μM =
1
n

nL∑
a=1

n
(t)

l(a) Ml(a) , (33)

and as an example in case of a multivariate higher-order attack can be written
as

μM =
1
n

nL∑
a=1

SCP
d,I(t)

l(i)
,JM

. (34)

Since the iterative formulas (for both pair-wise and incremental cases) to com-
pute SCPd,... and CSd,... as well as other necessary moments are given in previous
sections, the numerator of Eq. (27) can be easily derived.

5.2 Denominator

The first part of the denominator can be written as

1
n

n∑
i=1

(t′i − μt′)2 =
1
n

n∑
i=1

t′i
2 − (μt′)2 =

1
n

nL∑
a=1

⎛
⎜⎝ ∑

i∈I(t)

l(a)

t′i
2

⎞
⎟⎠ − (μt′)2 . (35)

Therefore, we additionally need to compute the sums of the squared preprocessed
traces SUM2

I(t)

l(a)

=
∑

i∈I(t)

l(a)

t′i
2. For a multivariate higher-order case, this can be

written as SCP
2d,I(t)

l(a) ,{Jt,Jt} similar to Eq. (29) or similar to Eqs. (30) and (31)

for the univariate cases. Further, the sums SUMI(t)

l(a)
computed by Eqs. (29) and

(30), or Eq. (31) can be used to derive μt′ following the same principle of Eq. (33).
The second part of the denominator of Eq. (27) can be obtained from the

values that are already used to compute the numerator:

1
n

n∑
i=1

(Mli − μM)2 =
1
n

nL∑
a=1

n
(t)

l(a)(Ml(a) − μM)2. (36)

Since nL is limited, the above expression can be computed at the end when all
traces are processed to estimate the correlation.

In the aforementioned approach the sums SUMI(t)

l(a)
are grouped based on the

output of the leakage function, i.e., l(a), which is also key dependent. Hence, the
traces have to be regrouped for each key candidate as well as for each selected
leakage function L̃(.).

6 Evaluation

We evaluate the accuracy (convergence) of our presented approaches, and
compare it to the corresponding results of the raw-moment and three-pass

Robust and One-Pass Parallel Computation of Correlation 213

0 25 50 75 100

−1

0

1

|E
rro

r|
%

 ×
 1

0−9

No. of Traces × 106

(a) 1st-order

0 25 50 75 100
0

7

|E
rro

r|
%

 ×
 1

0−4

No. of Traces × 106

(b) 2nd-order

0 25 50 75 100
0

24

|E
rro

r|
%

 ×
 1

0−2

No. of Traces × 106

(c) 3rd-order

0 25 50 75 100
0

33

|E
rro

r|
%

 ×
 1

0

No. of Traces × 106

(d) 4th-order

0 25 50 75 100
0

90

|E
rro

r|
%

No. of Traces × 106

(e) 5th-order

Fig. 1. Difference between the result of correlation estimations (raw-moment versus
three-pass)

approaches. To this end, we generate 100 million simulated leakages by ∼N (100+
HW(x), 3), where x is drawn uniformly from {0, 1}4. Hence, the correlation
between the leakages and HW(x) is estimated. Following the concept of higher-
order attacks, the leakages are also preprocessed (up to fifth order) to allow an
emulation of a higher-order univariate CPA. Note that the performance results
are still valid in the multivariate case given additional leakage points with a
similar leakage structure and the normalized product as combination function.
This can be easily seen as both type of attacks require the estimation of central-
ized values up to a power of 2d (with an additional standardization for univari-
ate higher-order attacks). The results based on our incremental approaches are
exactly the same to the three-pass ones, i.e., with absolute 0 difference. As [3]
only includes the formulas for first-order and second-order bivariate CPA, we
further had to derive the necessary formulas for the univariate correlation up to
the fifth order. The formulas can be found in AppendixA.

With these formulas we computed the correlation up to the fifth order on an
Intel Xeon X5670 using a single thread, and examined the differences with respect
to the results of the three-pass approach. Figure 1 presents the corresponding
results. As expected, in the first-order setting the results are exactly the same, but
the differences start to be obvious at higher orders particularly for higher number
of traces. It is noteworthy that in the cases where no difference is shown for the
fifth-order correlation, one of the variances of the denominator in the raw-moment
approach turned to a negative value which indicates the instability of such for-
mulas. With respect to the execution time of each approach, although it depends
on the optimization level of the underlying computer code, we report 43 s, 17.8 s,
and 11.6 s for three-pass, our incremental, and raw-moment approach respectively
to estimate all five correlations at the same time on 100 million leakage points.

214 T. Schneider et al.

Obviously, the raw-moment approach is faster than the others due to its lower
amount of computations compared to our incremental one.

Acknowledgment. The research in this work was supported in part by the DFG
Research Training Group GRK 1817/1.

A Correlation from the Raw Moments

As [3] only includes the formulas for first-order and second-order bivariate CPA,
we first transform the bivariate formulas to the univariate second-order case and
extend the approach to higher orders. Recall that the correlation for the bivariate
second-order attack is computed in [3] as

ρ =
nλ1 − λ2s3√

nλ3 − λ2
2
√

ns9 − s32
, (37)

where n denotes the number of traces and λ{1,2,3} are derived from the sums
s{1,...,13}.

For the univariate second-order correlation, some of these sums are equiva-
lent. Therefore, in this special case it is possible to reduce the number of sums
required to be computed. For that, we first denote the d-th order sums as

S
(t)
d =

n∑
i=1

tdi , S
(l)
d =

n∑
i=1

ldi , S
(t,l)
d =

n∑
i=1

tdi l (38)

with s3 = S
(l)
1 and s9 = S

(l)
2 . The remaining parameters are then derived as

λ1 = S
(t,l)
2 − 2

S
(t)
1 S

(t,l)
1

n
+

S
(t)
1 S

(t)
1 S

(l)
1

n2
, λ2 = S

(t)
2 − S

(t)
1 S

(t)
1

n
, (39)

λ3 = S
(t)
4 − 4

S
(t)
1 S

(t)
3

n
+ 6

S
(t)
1 S

(t)
1 S

(t)
2

n2
− 3

S
(t)
1 S

(t)
1 S

(t)
1 S

(t)
1

n3
. (40)

For the higher-order correlation the basic structure of Eq. (37) stays the same,
and only the formulas for λ{1,2,3} change. We provided all necessary formulas in
the following subsections.

Robust and One-Pass Parallel Computation of Correlation 215

A.1 Third Order

λ1 = S
(t,l)
3 − 3

S
(t)
1 S

(t,l)
2

n
+ 3

(
S
(t)
1

)2

S
(t,l)
1

n2
−

(
S
(t)
1

)3

S
(l)
1

n3
, (41)

λ2 = S
(t)
3 − 3

S
(t)
1 S

(t)
2

n
+ 2

(
S
(t)
1

)3

n2
, (42)

λ3 = S
(t)
6 − 6

S
(t)
1 S

(t)
5

n
+ 15

(
S
(t)
1

)2

S
(t)
4

n2
− 20

(
S
(t)
1

)3

S
(t)
3

n3

+ 15

(
S
(t)
1

)4

S
(t)
2

n4
− 5

(
S
(t)
1

)6

n5
(43)

A.2 Fourth Order

λ1 =S
(t,l)
4 − 4

S
(t)
1 S

(t,l)
3

n
+ 6

(
S
(t)
1

)2

S
(t,l)
2

n2
− 4

(
S
(t)
1

)3

S
(t,l)
1

n3
+

(
S
(t)
1

)4

S
(l)
1

n4
,

(44)

λ2 =S
(t)
4 − 4

S
(t)
1 S

(t)
3

n
+ 6

(
S
(t)
1

)2

S
(t)
2

n2
− 3

(
S
(t)
1

)4

n3
, (45)

λ3 =S
(t)
8 − 8

S
(t)
1 S

(t)
7

n
+ 28

(
S
(t)
1

)2

S
(t)
6

n2
− 56

(
S
(t)
1

)3

S
(t)
5

n3

+ 70

(
S
(t)
1

)4

S
(t)
4

n4
− 56

(
S
(t)
1

)5

S
(t)
3

n5
+ 28

(
S
(t)
1

)6

S
(t)
2

n6
− 7

(
S
(t)
1

)8

n7
(46)

216 T. Schneider et al.

A.3 Fifth Order

λ1 =S
(t,l)
5 − 5

S
(t)
1 S

(t,l)
4

n
+ 10

(
S
(t)
1

)2

S
(t,l)
3

n2
− 10

(
S
(t)
1

)3

S
(t,l)
2

n3

+ 5

(
S
(t)
1

)4

S
(t,l)
1

n4
−

(
S
(t)
1

)5

S
(l)
1

n5
, (47)

λ2 =S
(t)
5 − 5

S
(t)
1 S

(t)
4

n
+ 10

(
S
(t)
1

)2

S
(t)
3

n2
− 10

(
S
(t)
1

)3

S
(t)
2

n3
+ 4

(
S
(t)
1

)5

n4
, (48)

λ3 =S
(t)
10 − 10

S
(t)
1 S

(t)
9

n
+ 45

(
S
(t)
1

)2

S
(t)
8

n2
− 120

(
S
(t)
1

)3

S
(t)
7

n3
+ 210

(
S
(t)
1

)4

S
(t)
6

n4

− 252

(
S
(t)
1

)5

S
(t)
5

n5
+ 210

(
S
(t)
1

)6

S
(t)
4

n6
− 120

(
S
(t)
1

)7

S
(t)
3

n7
+ 45

(
S
(t)
1

)8

S
(t)
2

n8

− 9

(
S
(t)
1

)10

n9
(49)

References

1. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

2. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

3. Bottinelli, P., Bos, J.W.: Computational Aspects of Correlation Power Analysis.
Cryptology ePrint Archive, Report 2015/260 (2015). http://eprint.iacr.org/

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, p. 398. Springer, Heidelberg (1999)

6. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

7. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015)

8. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.:
Efficient selection of time samples for higher-order DPA with projection pursuits.
In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2015. LNCS, vol. 9064, pp.
34–50. Springer, Heidelberg (2015)

http://eprint.iacr.org/

Robust and One-Pass Parallel Computation of Correlation 217

9. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

10. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM,
Philadelphia (2002)

11. Moradi, A., Immler, V.: Early propagation and imbalanced routing, how to dimin-
ish in FPGAs. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 598–615. Springer, Heidelberg (2014)

12. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

13. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

14. Moradi, A., Standaert, F.: Moments-Correlating DPA. Cryptology ePrint Archive,
Report 2014/409 (2014). http://eprint.iacr.org/

15. Pébay, P.: Formulas for Robust, One-Pass Parallel Computation of Covariances and
Arbitrary-Order Statistical Moments. Sandia Report SAND-6212, Sandia National
Laboratories (2008)

16. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

17. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S., Attacks, P.: Or How to rapidly
clone some GSM cards. In: IEEE Symposium on Security and Privacy, pp. 31–41.
IEEE Computer Society (2002)

18. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate
DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 155–174. Springer, Heidelberg (2012)

19. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

20. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015)

21. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

22. Zhou, Y., Yu, Y., Standaert, F.-X., Quisquater, J.-J.: On the need of physical secu-
rity for small embedded devices: a case study with COMP128-1 implementations
in SIM cards. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 230–238.
Springer, Heidelberg (2013)

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://eprint.iacr.org/

Author Index

Akishita, Toru 130

Balasch, Josep 184
Batina, Lejla 88
Battistello, Alberto 144
Beckers, Arthur 184

Carmon, Elad 35
Chen, Cong 163
Chen, Zhizhang 55

Danger, Jean-Luc 88
Ding, A. Adam 163
Dugardin, Margaux 88

Eisenbarth, Thomas 19, 163

Gierlichs, Benedikt 184
Giraud, Christophe 144
Guilley, Sylvain 88
Gulmezoglu, Berk 19
Güneysu, Tim 199

İnci, Mehmet Sinan 19

Kiss, Ágnes 111
Krämer, Juliane 111
Kunihiro, Noboru 130

Mangard, Stefan 3
Moradi, Amir 71, 199

Najm, Zakaria 88

O’Flynn, Colin 55

Papachristodoulou, Louiza 88

Rauzy, Pablo 111

Schneider, Tobias 71, 199
Seifert, Jean-Pierre 35, 111
Sunar, Berk 19

Unterluggauer, Thomas 3

Verbauwhede, Ingrid 184

Wool, Avishai 35

	Preface
	Organization
	Contents
	Security and Physical Attacks
	Exploiting the Physical Disparity: Side-Channel Attacks on Memory Encryption
	1 Introduction
	2 Memory Encryption
	2.1 Definition
	2.2 Memory Encryption in Practice
	2.3 State-of-the-Art Implementations

	3 Physical Attacks on Memory Encryption
	3.1 Differential Power Analysis
	3.2 Differential Fault Analysis

	4 EM Attack on Ext4 Encryption
	4.1 Analysis of Ext4 Disk Encryption
	4.2 General Attack Flow
	4.3 Experimental Setup and Results

	5 Conclusion
	References

	Co-location Detection on the Cloud
	1 Motivation
	1.1 Our Contribution

	2 Related Work
	3 Threat Models
	4 Overview: Co-location Detection Methods
	4.1 LLC Covert Channel
	4.2 Software Profiling on LLC
	4.3 Memory Bus Locking

	5 Experimental Approach and Results
	5.1 Co-location Results in Commercial Clouds
	5.2 LLC Covert Channel
	5.3 LLC Software Profiling
	5.4 Memory Bus Locking
	5.5 Comparison of Detection Methods

	6 Conclusion
	References

	Simple Photonic Emission Attack with Reduced Data Complexity
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contributions

	2 The Photonic Side Channel in AES
	2.1 The SRAM and Its Use in AES
	2.2 Simple Photonic Emission Analysis (SPEA)

	3 The E-SPEA
	3.1 The Attack Structure
	3.2 The Solver
	3.3 Selecting the Enumeration Order

	4 Choosing the Plaintexts
	5 Decoding the Photonic Traces with Auto Threshold Calibration
	5.1 Calibration at High SNR
	5.2 Calibration at Low SNR

	6 Practical Results
	7 Conclusions, Future Work and Countermeasures
	References

	Side-Channel Analysis (Case Studies)
	Power Analysis Attacks Against IEEE 802.15.4 Nodes
	1 Introduction
	2 ATMega128RFA1 Attack
	2.1 Power Measurement
	2.2 Related Hardware Attack
	2.3 Application to ATMega128RFA1
	2.4 Intermediate-Round Attacks

	3 IEEE 802.15.4 Security
	4 Application to AES-CCM* Mode
	4.1 Previous AES-CTR Attacks

	5 Attacking Wireless Nodes
	6 Conclusions
	References

	Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series
	1 Introduction
	2 Preliminaries
	2.1 Xilinx Bitstream Encryption
	2.2 Configuration and Measurement
	2.3 Attack

	3 Our Analysis
	3.1 Packaging
	3.2 Measurements
	3.3 Attacks
	3.4 Comparisons
	3.5 Authentication

	4 Conclusions
	References

	Dismantling Real-World ECC with Horizontal and Vertical Template Attacks
	1 Introduction
	2 Mathematic Background
	2.1 Preliminaries on Elliptic Curves
	2.2 Scalar Multiplication Algorithm
	2.3 Scalar Multiplication Module of mbedTLS

	3 Attack Description
	3.1 The Main Idea of Online Template Attacks
	3.2 Horizontal Leakage Due to Propagation of Carry
	3.3 Vertical Leakage Due to Signal Amplitude

	4 Detailed Phases of the Attack in Practice
	4.1 Acquisition Setup
	4.2 Pre-processing Phase
	4.3 Template Acquisition
	4.4 Template Matching
	4.5 Success Rate for One Key-Bit
	4.6 Error-Correcting Bit from the Template Traces

	5 Countermeasures
	6 Conclusions
	A Description for Online Template Attack
	A.1 Attack Model for OTA
	A.2 Constructing Template Traces for OTA
	A.3 Template Matching Phase

	B Probability of the Propagation of Carry
	References

	Fault Analysis
	Algorithmic Countermeasures Against Fault Attacks and Power Analysis for RSA-CRT
	1 Introduction
	2 Background
	2.1 The Bellcore Attack on RSA-CRT
	2.2 Safe-Error Attacks
	2.3 Power Analysis Methods
	2.4 Algorithms for Regular Exponentiation

	3 Countermeasures Against the Bellcore Attack
	3.1 Two Families of Countermeasures
	3.2 Self-secure Exponentiation Countermeasures

	4 Security of Self-secure Exponentiation Methods
	4.1 Simulating Fault Injections Against Self-secure Exponentiation Countermeasures
	4.2 Simulation Results

	5 PA-SE-FA-Resistant Self-secure Exponentiation Countermeasures
	5.1 Countermeasure Using the Montgomery Ladder
	5.2 Countermeasure Using the Square-and-Multiply-Always Exp.
	5.3 Countermeasure Using Double Exponentiation

	6 Conclusion
	A Self-secure Exponentiation Countermeasures
	References

	Improved Differential Fault Analysis on Camellia-128
	1 Introduction
	2 Preliminaries
	2.1 Block Cipher Camellia
	2.2 Previous DFAs on Camellia-128

	3 Proposed DFA on Camellia-128
	4 Simulation Results
	5 Reducing the Number of Faults
	6 Conclusion
	References

	A Note on the Security of CHES 2014 Symmetric Infective Countermeasure
	1 Introduction
	2 Description of CHES 2014 Infective Countermeasure
	3 Attacks
	3.1 Principle of Our Attacks
	3.2 Attack 1 by Using Instruction Skip Fault Model
	3.3 Attack 2 by Using Stuck-At 0 Fault Model
	3.4 Attack 3 by Using Random Error Fault Model
	3.5 Attack 4 by Using Random Error Fault Model

	4 Conclusion
	A Probability of Success of Attack 1
	B Probability of Success of Attack 2
	C Probability of Success of Attack 3
	D Probability of Success of Attack 4
	E Attack Repetition Probability
	References

	Side-Channel Analysis (Tools)
	Simpler, Faster, and More Robust T-Test Based Leakage Detection
	1 Motivation
	2 Background
	3 Methodology
	3.1 Paired T-Test
	3.2 Higher Order and Multivariate Leakage Detection
	3.3 Computational Efficiency

	4 Experimental Verification
	5 Practical Application
	5.1 Solving the Test-Order Bias
	5.2 First Order Analysis of an Unprotected Cipher
	5.3 Second Order Analysis on a First-Order Resistant Design

	6 Conclusion
	A Proof of Theorem 1
	A.1 Proof of Eq. (14) on Mean of D*
	A.2 Proof of Eq. (15) on Variance of D*

	B Derivation of Eq. (11)
	References

	Design and Implementation of a Waveform-Matching Based Triggering System
	1 Introduction
	2 Waveform Matching
	3 Architecture
	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experiments with a Java Card Smart Card
	5.3 Experiments with an ARM Processor

	6 Conclusions
	References

	Robust and One-Pass Parallel Computation of Correlation-Based Attacks at Arbitrary Order
	1 Introduction
	2 Notations
	3 Univariate CPA
	3.1 Univariate Higher-Order CPA
	3.2 Numerator
	3.3 Denominator

	4 Multivariate CPA
	4.1 Numerator
	4.2 Denominator

	5 Moments-Correlating DPA
	5.1 Numerator
	5.2 Denominator

	6 Evaluation
	A Correlation from the Raw Moments
	A.1 Third Order
	A.2 Fourth Order
	A.3 Fifth Order

	References

	Author Index

