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    Chapter 3   
 Population Genetics of African Frugivorous 
Fruit Flies (Diptera, Tephritidae): Current 
Knowledge and Future Perspectives                     

     Massimiliano     Virgilio        and     Hélène     Delatte     

    Abstract     Population genetics studies provide valuable information about the pat-
terns of connectivity and range expansion of African frugivorous fruit fl ies. Human- 
mediated movements related to trade of commodities and transport are generally 
indicated as one of the primary mechanisms by which tephritid pests expand their 
contemporary and historical ranges. This results in complex colonisation dynamics, 
as suggested for the widely distributed pests  Bactrocera dorsalis s.s.  and  Zeugodacus 
cucurbitae , and for the cosmopolitan pest of African origin  Ceratitis capitata . 
Analysis of the population structure of African fruit fl ies can also reveal cryptic 
genetic structures and incipient speciation, as observed for the  Ceratitis  FAR com-
plex ( Ceratitis fasciventris ,  Ceratitis anonae ,  Ceratitis rosa ) and the mango fruit 
fl y,  Ceratitis cosyra . Here we provide a synthesis of the current knowledge about 
the population structure of the main frugivorous fruit fl ies that are pests in Africa.  

  Keywords     Microsatellite markers   •   Genotypic groups   •   Range expansion   •   Cryptic 
speciation   •   Inductive/deductive approaches  

1       Introduction 

 Population genetics deals with the ecological and evolutionary processes that affect 
the population structure of species. Inferences from population genetics studies rely 
on both inductive and deductive approaches (reviewed in Hamilton  2009 ). Inductive 
approaches are typically adopted in descriptive studies when measures of genetic 
variation (parameters) are collected from representative population samples and 
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used to infer the evolutionary processes that generated the observed population 
structure. Conversely, the deductive approach uses general population genetics 
models that describe evolutionary processes (e.g. bottlenecks and genetic drift, 
mutation, natural selection) to make predictions about spatial and temporal changes 
in the genetic patterns of the target species. 

 Allozyme markers were commonly used to describe the population structure of 
tephritid fl ies in early studies (e.g. McPheron et al.  1988 ; Feder et al.  1997 ; Abreu 
et al .   2005 ). Microsatellite markers (or single sequence repeats, SSR) were then 
widely adopted for the description of native and introduced African tephritids (see 
below). Microsatellite markers are co-dominant, polymorphic nuclear loci, that are 
distributed throughout the genome and generally neutral unless linked to loci under 
selection. They are short repeated sequences of nuclear DNA (one to six base pairs 
in length) with allelic states that simply correspond to the number of repeats present 
at each locus that can be scored after electrophoresis of PCR-amplifi ed DNA frag-
ments (Hamilton  2009 ). These characteristics make microsatellite markers good 
candidates for comparing different populations and their colonization dynamics 
(Tautz  1989 ; Hamilton  2009 ). The more recent population genomic approaches that 
rely on high-throughput sequencing techniques (i.e. Next Generation Sequencing, 
or NGS) now allow the population structure of species to be described in unprece-
dented detail (Davey and Blaxter  2010 ; Elshire et al.  2011 ; Narum et al.  2013 ); 
studies using NGS on tephritid fruit fl ies are becoming more and more common 
(Shen et al.  2011 ; Zheng et al.  2012 ; Nirmala et al.  2013 ; Geib et al.  2014 ). During 
the past three decades a number of studies have been published on the population 
genetics of African fruit fl ies. Below we synthesise current knowledge on the popu-
lation genetics of the main African fruit fl y species in the genera  Ceratitis  (i.e. the 
Mediterranean fruit fl y (medfl y),  Ceratitis capitata  (Wiedemann), the mango fruit 
fl y,  Ceratitis cosyra  (Walker), and the  Ceratitis  ‘FAR’ complex);  Bactrocera  (i.e. 
the oriental fruit fl y,  Bactrocera dorsalis  [Hendel]); and  Zeugodacus  (i.e. the melon 
fruit fl y,  Zeugodacus cucurbitae  Coquillett).  

2      Ceratitis capitata  

  Ceratitis capitata , is one of the most economically important and widely distributed 
tephritid pests of African origin (White and Elson-Harris  1994 ). After considering 
morphological cladistics, host plant abundances and parasitoid distributions, De 
Meyer et al. ( 2002 ) proposed that Eastern and Southern Africa are the most likely 
geographic origin of this cosmopolitan pest. Historical records provided important 
clues to develop hypotheses about the worldwide range expansion of  C. capitata . 
For example,  C. capitata  was fi rst reported in Costa Rica (1955) and then Guatemala 
(1976) before reaching Mexico, possibly due to rapid movement through the so- 
called ‘coffee belt’ (Malacrida et al.  1998  and references therein). It has also been 
reported intermittently in Florida since 1929, in California since 1975, and in Texas 
since 1966 (Gasparich et al.  1997 ).  Ceratitis capitata  was introduced into Australia 
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from Europe in around 1897 (Malacrida et al.  1998 ) where it is currently confi ned 
to Western Australia with occasional detections in South Australia and the Northern 
Territory. Its distribution in Australia has remained unchanged for the last half cen-
tury and this is likely to be due to the geographical barriers that prevent free move-
ment of this species across Australia and /or to extensive Australian monitoring 
systems and quarantine restrictions (Dominiak and Daniels  2012 ). 

 The fi rst large-scale descriptions of the population structure of  C. capitata  were 
largely inferred using allozyme markers (e.g. Gasperi et al .   1991 ). An early recon-
struction of the worldwide range expansion of  C. capitata  was attempted when two 
African populations (from Kenya and La Réunion), two Mediterranean populations 
(from Procida and Sardinia), and one Central American population (from Guatemala) 
were genotyped at 27 allozyme loci (Malacrida et al .   1992 ). Combining these results 
with historical records, Malacrida et al. ( 1992 ) was able to separate  C. capitata  
populations in to three groups: ancestral (from sub-Saharan Africa), ancient 
(Mediterranean) and new (American) and suggested that the colonisation of Central 
America started from a recent African introduction. Furthermore, they were also 
able to describe temporal variability in the genotypic patterns of one of the 
Mediterranean samples, which they attributed to seasonal population fl uctuations 
(see also Gasperi et al.  2002 ). A more extensive study (Malacrida et al .   1998 ) used 
26 allozyme markers to compare 17 populations from six regions: Africa, 
Mediterranean, ‘extra-Mediterranean islands’ (e.g. Gran Canaria and Madeira), 
Latin America, Pacifi c and Australia. Levels of genetic variability (as estimated 
from the number of alleles per locus, percentage of polymorphic loci and mean 
heterozygosity) suggested that  C. capitata  originated in East Africa (where the 
highest genetic diversity was observed), and expanded its range to the African–
Mediterranean region fi rst (as suggested by a gradual pattern of decreasing genetic 
variability) and, most recently, to the Latin American–Pacifi c region. Gene fl ow 
estimates, determined from the average frequency of private alleles and the number 
of migrants, also suggested a route of colonization from South East Africa to north-
west Africa and from there to Spain, followed by a West-east Mediterranean range 
expansion. Additionally, Malacrida et al. ( 1998 ) hypothesised that the Latin 
American and Pacifi c populations originated from a few, recent and geographically 
separated colonization events followed by population expansions. In this context, 
both ancient and recent colonization events involving  C. capitata  were largely 
attributed to human-mediated transportation and to the history of human trading 
activities (Malacrida et al.  1998 ). 

 Despite the important role that allozyme studies played in the fi rst large scale 
descriptions of the population structure of  C. capitata , they could only provide 
indicative, rather than categorical, information about the chronology of range 
expansion (Gasparich et al.  1997 ). It was hoped that new alternative methods and 
approaches would achieve this and they included: the analysis of intron size poly-
morphisms (Gomulski et al.  1998 ); restriction site variation (Haymer et al.  1992 ; 
Sheppard et al.  1992 ; McPheron et al.  1994 ; Gasparich et al.  1995 ; Gasparich et al. 
 1997 ); Random Amplifi ed Polymorphic DNA (Haymer et al .   1997 ); and Sanger 
sequencing (Davies et al.  1999 ). These approaches did support the African origin of 
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 C. capitata  but did not allow any better resolution of its expansion history beyond 
Africa. 

 Subsequently microsatellite markers were developed for  C. capitata  (Bonizzoni 
et al.  2000 ; Stratikopoulos et al.  2008 ) and, due to their high levels of polymor-
phism, provided much better resolution compared to earlier molecular techniques; 
they were used successfully to investigate the population structure of  C. capitata  
(Karsten et al.  2013 ) and the origin of  C. capitata  infestations in North America 
(Bonizzoni et al.  2001 ) and Australia (Bonizzoni et al.  2004 ). Microsatellites sug-
gested that fl ies captured in California originated from independent introduction 
events, including introductions from Central America (Bonizzoni et al.  2001 ), but 
also that incomplete eradication might have resulted in endemic Californian popula-
tions. The origin of periodic  C. capitata  infestations in California is highly contro-
versial and there remains disagreement as to whether the fl ies captured over the 
years represent independent introductions from external sources, or resident popu-
lations with sizes fl uctuating from non-detectable to detectable levels (Carey  1991 ; 
Papadopoulos et al.  2013 ; Carey et al.  2014 ; Gutierrez et al.  2014 ). Conversely, 
colonization of Australia was more convincingly attributed to secondary coloniza-
tion from the Mediterranean basin, and the Perth area was indicated as the source 
for secondary invasion into both Western and South Australia (Bonizzoni et al. 
 2004 ). The possible invasion routes of  C. capitata  were reviewed and summarised 
by Malacrida et al. ( 2007 ) who further stressed the importance of human-mediated 
transportation in the worldwide range expansion of  C. capitata . Human-mediated 
movements related to trade of commodities and transport by air, sea and land are 
generally accepted as the primary mechanism by which  C. capitata , and other eco-
nomically important tephritid species, have spread (White and Elson-Harris  1994 ; 
see also Karsten et al.  2015  and references therein). 

 To date, only one study has adopted a deductive approach to investigating the 
range expansion dynamics of  C. capitata  (Karsten et al.  2015 ). This approach 
proved useful, particularly since recent improvements to model-based analyses 
became available, such as Approximate Bayesian Computation (ABC; Estoup and 
Guillemaud  2010 ). ABC modeling allows the complex evolutionary scenarios that 
are expected in range expansions of cosmopolitan pests to be taken into consider-
ation, and inferences to be made on parameters such as: date of founding of differ-
ent populations (in numbers of generations); current effective population size (as 
numbers of diploid individuals); number of founders in the introduced populations; 
and duration of the initial bottleneck. Results of the Karsten et al. ( 2015 ) study sug-
gested that the most likely route of  C. capitata  from Africa closely matched the 
patterns indicated from historical records, though with much earlier introductions. 
An initial colonization of Europe, a secondary colonization of Australia from 
Europe, an introduction from Greece to Central America and, eventually, a back 
introduction into South Africa from Europe were also implied. This reconstruction 
did, however, differ from those previously proposed (Malacrida et al.  2007 ) as it 
supported secondary colonisation of Central America from admixed European pop-
ulations (hence, not from Africa) and secondary reintroduction in Africa from 
Europe.  
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3      Ceratitis cosyra  

 The mango fruit fl y,  C. cosyra , is possibly the most important pest of mango 
throughout sub-Saharan Africa (Lux et al.  2003a ; Vayssières et al.  2009 ). Out of the 
mango season,  C. cosyra  shifts to alternative host plants including wild fruits such 
as marula,  Sclerocarya birrea  (A. Rich.) Hochst. (Copeland et al.  2006 ) and sour-
sop,  Annona muricata  L. (Mwatawala et al.  2009 ). Barr et al. ( 2006 ) were the fi rst 
to suggest that  C. cosyra  was comprised of highly divergent mitochondrial haplo-
types; DNA barcodes from two specimens sampled along the coast of southern 
Kenya (Shimba Hills) were clearly separated from the main haplotype group, thus 
suggesting cryptic speciation (Barr et al.  2006 ). In order to further investigate this 
hypothesis, a set of microsatellite markers was developed (Delatte et al.  2014 ) and 
used to describe the population structure of  C. cosyra  across its distribution (Virgilio 
et al.  2015a ). Analysis of 348 specimens from 13 African populations showed that 
 C. cosyra  was indeed represented by two separate genotypic groups (Fig.  3.1 ); one 
included the vast majority of specimens sampled in Burundi and Tanzania as well as 
a number of outliers from other African countries, while the other included all other 
specimens sampled. The two genotypic groups were also found, in sympatry, in 
populations from Kenya, Senegal, Sudan and Tanzania (Virgilio et al.  2015a ). 
Sequential Bayesian assignment of microsatellite genotypes (as described by 
Coulon et al.  2008 ) also revealed that, within the second genotypic group, speci-
mens could be further subdivided between a West African cluster (including indi-
viduals from Burkina Faso, Ivory Coast, Mali and Nigeria) and an East / South 
African cluster (including specimens from Ethiopia, Tanzania, Malawi, Mozambique 
and South Africa) (Virgilio et al.  2015a ). This more subtle genetic differentiation 
was less clear-cut as, for example, specimens from Sudan were genetically closer to 
the West African samples, and populations from Kenya and Senegal included indi-
viduals from both clusters.

4        The ‘FAR’ Complex 

 The so call  Ceratitis  ‘FAR’ complex is a group of African frugivorous fl ies includ-
ing the Natal fruit fl y,  C. rosa,  and the morphologically similar but less economi-
cally important pests,  Ceratitis fasciventris  (Bezzi) and  Ceratitis anonae  Graham. 
The three species all show clear sexual dimorphism, with the males having distinct 
leg ornamentation patterns, while in females these are almost indistinguishable (De 
Meyer  2001 ). All members of the ‘FAR’ complex are highly polyphagous with par-
tially overlapping ranges of host plants and geographic distributions (Copeland 
et al.  2006 ). Two of these species,  C. rosa  and  C. fasciventris , have weak reproduc-
tive barriers as, when crossed under laboratory conditions, they can produce fertile 
offspring (Erbout et al.  2008 ). Phylogenetic analyses of morphological characters 
(De Meyer  2005 ) and of mitochondrial and nuclear gene fragments could not fully 
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resolve these three species as distinct monophyletic entities (Virgilio et al.  2008 ; 
Barr and Wiegmann  2009 ). Despite this, genetic differentiation has been reported 
between samples of  C. fasciventris  from West and East Africa (Virgilio et al.  2008 ) 
and between samples of  C. rosa  from Kenya and South Africa (Douglas and Haymer 
 2001 ). An earlier study using microsatellites also revealed differences between pop-
ulations of  C. rosa  from the African mainland and populations of  C. rosa  from the 
Indian Ocean islands, as well as between populations of  C. fasciventris  from Kenya 
and populations of  C. fasciventris  from Uganda (Baliraine et al.  2004 ). 

 In order to fi nally resolve the molecular taxonomy and population structure of the 
‘FAR’ complex, a set of 16 microsatellite markers was developed (Delatte et al.  2013 ) 
and used to genotype 27 African populations of the three morphospecies (Virgilio 
et al.  2013 ). This revealed the presence of fi ve genotypic clusters: two contained  C. 
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rosa  specimens (R1, R2; allopatric and sympatric populations), two contained  C. fas-
civentris  specimens (F1, F2; allopatric and parapatric populations) and one contained 
 C. anonae  specimens (A). Surprisingly, intra- and interspecifi c genetic diversity was 
not hierarchically structured; differences in diversity between clusters from the same 
morphospecies (e.g. between F1 and F2, or between R1 and R2) was greater or com-
parable with differences between clusters from different morphospecies (e.g. between 
F1 and A, or between R2 and A). The two  C. fasciventris  genotypic clusters roughly 
corresponded to West and East African samples, respectively, with the exception of a 
single population from Tanzania that was more closely related to the West African 
samples than the East African samples. Relationships amongst the ‘FAR’ morphospe-
cies and the genotypic clusters were further investigated using an integrative taxo-
nomic approach that included spatial ecology, wing morphometrics, larval morphology, 
analysis of cuticular hydrocarbons, developmental physiology and pre- and postzy-
gotic mating compatibility. The results of these studies (reviewed in De Meyer et al. 
 2015a ) indicated that the  Ceratitis  ‘FAR’ complex includes between three and fi ve 
different taxonomic entities. Males from the two  C. rosa  clusters were morphologi-
cally different and were provisionally acknowledged as either ‘R1’ or ‘R2’ (De Meyer 
et al.  2015a ) but also, in relation to their different distributional/altitudinal ranges 
(Mwatawala et al.  2015 ), as ‘lowland’ or ‘hot’  C. rosa , and ‘highland’ or ‘cold’  C. 
rosa . The integrative approach implemented on the  Ceratitis  FAR complex provided 
suffi cient evidence to consider R1 and R2 as two different biological species, with the 
type material of  C. rosa  belonging to the R1 type and the R2 type considered as a 
new species,  Ceratitis quilicii  (De Meyer et al.  submitted ).  

5      Zeugodacus cucurbitae  

  Zeugodacus cucurbitae  (Coquillett) stat. rev. (formerly classifi ed as  Bactrocera  
( Zeugodacus )  cucurbitae  (Coquillett)) was originally described from material col-
lected in Honolulu, Hawaii, USA (Coquillett  1899 ). Its systematic position was 
recently revised due to reconstruction of its phylogenetic history. The former subge-
nus  Zeugodacus  is now considered as a separate genus that is independent from 
both  Bactrocera  and  Dacus , and more closely related to the genus  Dacus  than to the 
genus  Bactrocera  (Krosch et al.  2012 ; Virgilio et al.  2015b ; De Meyer et al.  2015b ). 

 The genus  Zeugodacus  includes approximately 115 species (Norrbom et al. 
 1999 ; Drew and Romig  2013 ) of which the majority are restricted to the Oriental 
and Australian regions with a few species in the eastern Palearctic regions of China 
and Japan. The exception is  Z. cucurbitae  which is considered as an invasive pest in 
Africa and the islands of the Indian Ocean. Jacquard et al. ( 2013 ) analysed two 
mitochondrial gene fragments (COI-ND6 genes, 1297 bp) from 100 specimens of  Z. 
cucurbitae  sampled from across its distribution (Asia, Hawaii, African mainland 
and islands of the Indian Ocean). They found remarkably limited intraspecifi c 
 variability amongst specimens with only 22 haplotypes, 21 polymorphic sites and 
an average p-distance of 0.003 %. Despite this, a Minimum Spanning Network 
revealed the occurrence of two clearly distinct haplotype groups corresponding to 
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specimens from (a) Asia and Hawaii, and (b) the African mainland and La Réunion. 
A fi ner resolution of the geographic structuring of  Z. cucurbitae  was obtained using 
microsatellite genotyping of 25 populations sampled from across its entire distribu-
tion range (Virgilio et al.  2010 ) .  This macrogeographic study of its population 
genetics revealed the existence of fi ve population groups corresponding to popula-
tions from (i) the African continent, (ii) Reunion Island, (iii) Central Asia, (iv) East-
Asia and (v) Hawaii. The proportions of inter-regional Bayesian assignments and 
the high values for genetic diversity in populations from Pakistan, India and 
Bangladesh suggested that  Z. cucurbitae  originated in Central Asia and expanded its 
range in one direction to East Asia and Hawaii and in the other direction to Africa 
and the islands of the Indian Ocean. However, there were a number of outliers with 
high levels of admixing (Q > 0.70) amongst populations from different regions 
which suggested there were more complex patterns of inter-regional gene fl ow 
ongoing, possibly as a result of human-mediated transport (Virgilio et al.  2010 ). 

  Zeugodacus cucurbitae  has also been reported from a series of unrelated host plant 
families in addition to the main host range represented by  Cucurbitaceae  (see De 
Meyer et al.  2015b  and references therein) and geographic differences in host prefer-
ences have also been reported between East and West African populations (Vayssières 
et al.  2007 ; Mwatawala et al.  2010 ; Jacquard et al.  2013 ). Despite these observations 
cucurbit hosts are generally preferred and are attacked with higher infestation rates 
and incidences compared to non-cucurbit hosts. Host records also suggest that feeding 
preferences differ between populations of  Z. cucurbitae  from the native distribution 
and populations from the adventive distribution, possibly resulting in locally adapted 
populations or host races. The fi ne-scale analysis made on data from 2258 specimens 
collected from 11 locations in La Réunion elucidated relationships between the 
genetic structure of  Z. cucurbitae  and environmental factors such as altitude (range 
0–400 m, 400–600 m and 600–1200 m), host plant (cultivated and wild cucurbits) and 
season (subtropical winter and summer) (Jacquard et al.  2013 ). The presence of three 
main genetic clusters (with limited inter-cluster genetic structuring) were revealed 
that could be differentiated from African and Asian populations (although they were 
of possible African origin) and were distinctly distributed on the eastern and western 
parts of the island. Abundances of specimens from the three clusters were correlated 
with the average amount of rainfall while no signifi cant differences were detected in 
their distribution on wild or cultivated host plants, across altitudinal ranges or across 
different seasons (Jacquard et al.  2013 ). Other studies, done in Asia, the South-East 
Pacifi c and Hawaii (Clark and Boontop, unpublished data), and in Tanzania (De 
Meyer et al.  2015b ), also showed a lack of consistent genetic differentiation across 
samples of  Z. cucurbitae  with different feeding preferences. 

 The results of Jacquard et al. ( 2013 ) suggested a common ancestry for the African 
 Z. cucurbitae  but left a number of questions about the potential colonization pathway 
open. Two alternative hypotheses for this colonization had been proposed  previously 
by Virgilio et al. ( 2010 ) who suggested either a relatively recent invasion of the African 
continent, roughly corresponding to the fi rst historical records for this species in 
Africa ( viz . 1936 in East Africa and 1999 in West Africa), or an older range expansion 
possibly dating back to the fi rst documented trade contact between Africa and Asia 
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(100 AD, Gilbert  2004 ). In order to determine whether either of these hypotheses was 
correct, Delatte et al. (unpublished data) evaluated a large number of populations (17) 
from East, West and Central Africa using a larger set of markers than the previous 
study of Virgilio et al. ( 2010 ). This allowed better resolution of the population struc-
ture of  Z. cucurbitae  in Africa and, using STRUCTURE analysis as described by 
Pritchard et al. ( 2000 ), showed that the populations from Uganda had diverged from 
Tanzanian populations and that populations from Burundi and Kenya had traces of 
admixture with West African samples. The ABC analysis in the DIYABC software 
(Cornuet et al.  2010 ,  2014 ) also suggested that  Z. cucurbitae  had expanded its range 
in to East and West Africa. Recent studies of the routes of worldwide introductions of 
alien organisms suggest that many widespread invasions may not have originated 
from the native range, but from a particularly successful invasive population; these 
invasive populations could serve as the source of colonists for remote new territories 
and has subsequently been termed the ‘invasive bridgehead effect’ (Lombaert et al. 
 2010 ). In the case of  Z. cucurbitae , Central Asia was the most likely native source 
population, and East Africa the source population that adapted and was the start point 
of the invasive bridgehead effect for all the colonization events that subsequently 
occurred in Africa. The parameter estimates from DIYABC suggested that these 
events occurred soon before the fi rst historical records of  Z. cucurbitae  in the African 
continent and allow us to exclude alternative hypotheses considering older introduc-
tions of  Z. cucurbitae  in to Africa or multiple invasion events (Virgilio et al.  2010 ).  

6      Bactrocera dorsalis s.s.  

 In Africa,  B. dorsalis s.s , has been reported infesting 72 plant species spread across 
28 families (Goergen et al.  2011 ) and, in mango orchards, causes yield losses of up 
to 80 % (Ekesi et al.  2006 ). Due to its major impact on horticultural products,  B. 
dorsalis s.s.  is one of the most devastating fruit fl y pests in Africa (De Meyer et al. 
 2010 ).  Bactrocera dorsalis s.s.  is part of the notorious  B. dorsalis  complex that 
includes almost 100 species (Drew and Hancock  1994 ; Drew and Romig  2013 ), is 
of Asian origin (Clarke et al.  2005 ) and diffi cult to identify using morphological or 
molecular techniques (Khamis et al.  2012 ; Leblanc et al.  in press ). Recently, the 
taxonomy of three important pests within this complex ( Bactrocera papayae  (Drew 
and Hancock),  Bactrocera philippinensis  (Drew and Hancock) and  Bactrocera 
invadens  (Drew, Tsuruta and White)) was revised and they were synonymized as  B. 
dorsalis s.s.  (Schutze et al.  2015 ).  Bactrocera invadens  was initially described as a 
novel species native to Asia and introduced into East Africa (Drew et al.  2005 ). In 
fact,  B. dorsalis s.s.  was recorded for the fi rst time on the African mainland in 2003 
(Lux et al.  2003b ) where it had already become a pest species of major concern to 
fruit growers (see De Meyer et al.  2010  and references therein). The African expan-
sion of  B. dorsalis s.s.  was extremely rapid. After the fi rst record in Kenya, it was 
subsequently recorded in Tanzania and Nigeria, then it rapidly spread to the west 
and to the south and it is now distributed throughout sub-Saharan Africa (Table  3.1 ). 
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   Table 3.1    Range expansion of  B. dorsalis s.s.  in Africa   

 Country 
 Year of 
arrival  Reference 

 Kenya  2003  Lux et al. ( 2003a ) 
 Tanzania  2003  Mwatawala et al. ( 2004 ) 
 Nigeria  2003  Umeh et al. ( 2008 ) 
 Uganda  2004  Drew et al. ( 2005 ) 
 Benin  2004  Drew et al .  ( 2005 ); Vayssières et al. ( 2005 ) 
 Ghana  2005  Drew et al. ( 2005 ) 
 Comoros Archipelago  2005  De Meyer et al .  ( 2012 ) 
 Cameroon  2005  Ndzana Abanda et al. ( 2008 ) 
 Guinea  2006  Ekesi et al. ( 2006 ) 
 Senegal  2006  Ekesi et al. ( 2006 ) 
 Sudan  2006  Ekesi et al. ( 2006 ) 
 Togo  2006  Ekesi et al. ( 2006 ) 
 Ivory Coast  2007  Goergen et al. ( 2011 ) 
 Ethiopia  2007  EPPO/CABI ( 2014 ) 
 Mayotte  2007  De Meyer et al. ( 2012 ) 
 Burkina Faso  2007  Goergen et al. ( 2011 ) 
 Mali  2007  Goergen et al. ( 2011 ) 
 Namibia  2007  APHIS ( 2009 ) 
 Mozambique  2008  Correia et al. ( 2008 ) 
 Chad  2008  Goergen et al. ( 2011 ) 
 Angola  2008  Goergen et al. ( 2011 ) 
 Congo  2008  Goergen et al .  ( 2011 ) 
 Democratic Republic of Congo  2008  Goergen et al. ( 2011 ) 
 Equatorial Guinea  2008  Goergen et al. ( 2011 ) 
 Gabon  2008  Goergen et al. ( 2011 ) 
 Gambia  2008  EPPO/CABI ( 2014 ) 
 Guinea-Bissau  2008  Goergen et al. ( 2011 ) 
 Liberia  2008  EPPO/CABI ( 2014 ) 
 Mauritania  2008  Goergen et al. ( 2011 ) 
 Niger  2008  Goergen et al. ( 2011 ) 
 Sierra Leone  2008  Goergen et al. ( 2011 ) 
 Central African Republic  2008  Goergen et al. ( 2011 ) 
 Zambia  2009  EPPO/CABI ( 2014 ) 
 Burundi  2009  Liu et al. ( 2011 ) 
 Madagascar  2010  Raoelijaona et al. ( 2012 ) 
 Zimbabwe  2010  Cassidy ( 2010 ) 
 Botswana  2011  EPPO/CABI ( 2014 ) 
 South Africa  2007, 2013  Manrakhan et al .  ( 2015 ) 
 Swaziland  2014  EPPO/CABI ( 2014 ) 
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 Bactrocera dorsalis s.s.  has also reached the islands of the Indian Ocean, beginning 
with the Comoros archipelago in 2006 and Madagascar in 2010. Other invasive 
populations of  B. dorsalis s.s . have been reported in Hawaii, French Polynesia, 
Japan, Nauru, Guam and the Northern Mariana Islands (Stephens et al.  2007 ).

   After developing a set of 11 polymorphic microsatellite markers, Khamis et al. 
( 2008 ) published the only study currently available on the African population struc-
ture of  B. dorsalis s.s  (Khamis et al.  2009 ) .  This study, based on a microsatellite 
analysis of 13 African populations (from nine countries) and including a population 
outgroup from Sri Lanka, showed the presence of three main population groups co- 
occurring across the African distribution of  B. dorsalis s.s..  One of the three groups 
included a single population from Nigeria that also shared (limited) co-ancestry 
with the Asian outgroup. Khamis et al. ( 2009 ) hypothesized that the Nigerian popu-
lation of  B. dorsalis s.s.  could have arisen either from an independent introduction 
from an unsampled source and/or could represent the outcome of a bottleneck. As a 
whole these genetic data suggest that the African range expansion of  B. dorsalis s.s.  
(resulting from one or more introduction events) was followed by rapid population 
expansion (Fig.  3.2 ).

   Other studies have investigated the genetic structure of  B. dorsalis s.s.  in Asia 
(Liu et al.  2007 ; Shi et al.  2010 ; Wan et al.  2011 ), and revealed high levels of genetic 
diversity between and within samples which supported a South-east Asian origin for 
 B. dorsalis s.s.  Microsatellite markers also showed relatively high levels of genetic 
diversity within populations from South-East Asia and high gene fl ow between 

  Fig. 3.2    Population structure of  B. dorsalis s.s.  in Africa as inferred from individual Bayesian 
assignment of multilocus microsatellite genotypes (Modifi ed from Khamis et al .   2009 )       
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population groups but were unable to resolve straightforward geographic patterns 
(Aketarawong et al.  2007 ,  2014 ). Similar results were observed for populations 
from the Thai/Malay peninsula which were a predominantly panmictic population 
(Krosch et al.  2013 ). In adventive Hawaiian populations mitochondrial (Barr et al. 
 2014 ) and nuclear markers (Aketarawong et al.  2007 ) also only detected limited 
genetic structuring, supporting a recent introduction in to Hawaii followed by 
genetic differentiation in an environment of isolation.     
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