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Abstract. In this paper we present CoqPIE(CoqPIE is available for
download at http://github.com/kendroe/CoqPIE), a new development
environment for Coq which delivers editing functionality centered around
common prover usage workflow not found in existing tools. The main
contributions of CoqPIE build from having an integrated parser for both
Coq source and for prover output. The primary novelty is not the parser
but how it is used: CoqPIE includes tools to carry out complex edit-
ing functions such as lemma extraction and replay. In proof replay for
example both new and old outputs of the proof script are parsed into
ASTs. These ASTs allow replay to do updates such as fixing hypothesis
references.

1 Introduction

In this paper we present CoqPIE, a new development environment for Coq which
delivers editing functionality centered around common prover usage workflow
that is not found in existing tools. The design of CoqPIE was driven by the
author’s frustrating with a few of the existing proof development workflows.
First, when a proof gets to be more than about 300 steps, the time it takes
for coqtop to process a single tactic slows; this makes browsing quite tedious.
Second, when developing a large proof with many lemmas, proving a lemma
often reveals an error in the lemma itself. This change then propagates and
requires the statements of other lemmas to be changed. Since many of these
lemmas have likely already been proven, they need to be replayed (likely with
proof script editing), a tedious process.

Improving the above and similar workflows is the primary goal of the design
of CoqPIE, which we now describe.

2 An Overview of CoqPIE

The diagram in Fig. 1 shows the CoqPIE UI with a sample proof derivation
open. There are three views shown. On the left is a tree view of the entire
project similar to the tree view found in modern IDEs. The top level of the
tree view shows the files in the project; opening a file node displays a list of all
the Coq declarations in that file. Opening a theorem declaration in turn shows
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the steps used to prove that theorem, with steps arranged in a tree based on
subgoal relationships.

The middle view displays the source file based on the selection made in the
tree view on the left. This view functions in a manner similar to the source
file view in CoqIDE or Proof General. As with those tools, shading is used to
indicate the portion of the file already processed by coqtop. Unlike Proof General
and CoqIDE, the CoqPIE process management system automatically recompiles
dependent source files.

Fig. 1. The main CoqPIE window

The window on the right is similar to the Coq state window in CoqIDE or
Proof General: it shows the current goal and hypotheses. However, instead of
showing the state at the current processing point of Coq, it shows the state just
after the selected definition or proof step from the tree view at the left. This
is possible because CoqPIE runs the entire project and saves all output from
coqtop before editing can commence. With this initial pass it is possible to very
quickly browse theorems and to see the state after each step. This full proof
tree state is also maintained during editing: as the user edits a source file and
reruns coqtop to verify the updates, the cached outputs are updated. Differences
from the state just before the most recent tactic was executed are highlighted
in yellow. One can also view differences between hypotheses and the goal or
differences between old and new versions of a state (useful for the replay assist
described later), via the combo box just above the window on the right which
allows selection of which differences to show.
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Since CoqPIE keeps intermediate proof state around it can be more intelligent
about whether definitions and lemmas are up-to-date: definitions with out-of-
date Coq output information are color coded so the user knows they need to be
replayed.

Parsing. Coq has an internal CoqAst data structure, but it is not easily acces-
sible with the current API. So, for the current implementation of CoqPIE, we
chose to create our own parser. This choice has a number of ramifications. First,
the Coq language is quite large and complex; we are only able to parse the
commonly-used subset. Second, Coq has a Notation construct that can add
new syntax to the language. We currently do not have the capability to handle
this construct. Longer-term we hope to see a CoqAst API exposed which we
will directly be able to use. If a definition or proof step cannot be parsed, then
CoqPIE inserts a bad declaration or bad step AST node in the proof tree. The
end point is determined by looking for a period.

Dependency management. CoqPIE maintains dependencies between definitions
and theorems. When a theorem or definition is changed, all dependent theo-
rems and definitions are highlighted in the project treeview. Creating an exact
algorithm for tracking dependencies is very difficult [6] due to the complexi-
ties of Coq’s higher-order semantics. Many other issues arise in doing depen-
dency analysis, see [22], including opaque vs transparent proof dependencies.
An opaque transparency is a dependency that can be identified by the proof
statement alone. Transparent dependencies occur when a tactic in the proof
script depends on another theorem. These can sometimes be hard to identify
as theorems may be chosen automatically by tactics such as auto. Our current
approach is to use an incomplete dependency tracking algorithm: CoqPIE bases
dependency relationships only on identifiers that explicitly appear in a proof or
definition.

Lemma extraction. It is often useful to extract one of the goals of a theorem
as a lemma in order to break a large proof into more manageable pieces. Coq
can process two theorems of 100 steps each much faster than one theorem of
200 steps. CoqPIE provides a command that automates this extraction. The
extraction is done in the following steps:

1. The statement of the new theorem is constructed by taking the goal as
the consequent. Each hypothesis becomes an antecedent. If the hypothesis
appears to be a variable, then it is encoded as part of a forall construct.
Otherwise it is encoded as an antecedent of the form hyp ->.

2. The steps used to prove the goal are extracted and become the script for the
theorem. One can find the end of the sequence of steps used to prove the
current goal at the goal state of each subsequent step. The first step after the
current step for which the number of goals is one less than that of the current
goal is the last step that needs to be extracted with the theorem.

3. In front of the script from the previous step an intros statement is added to
introduce all of the generated antecedents.
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4. The steps to prove the goal are commented out in the main theorem.
5. An apply of the newly generated theorem plus an apply for each hypothesis

is generated in place of those steps that have been commented out.
6. Finally, if there are existential variables in the goal (such as ?508), the lemma

extraction tactic tries to figure out how to fill in this variable. The trick here
is to realize that this variable is likely filled in by the steps that prove this
goal in the parent theorem. The heuristic is to compare the subgoals after
these steps have executed in the main goal to the corresponding subgoals
from before they were executed.

This tactic is only a heuristic, and there are several cases in which it will fail.
For example, a Focus in the middle will break the algorithm for finding the end
of the steps for the lemma.

Replay assist. When the statement of a theorem changes, most of the old proof
script may still be correct, but at each step minor changes may need to be
made. One common example is that hypothesis names may have changed. For
example, apply H may need to become apply H0. To improve the workflow we
have implemented a replay assistant which automatically will replay proof and
apply heuristics to patch the proof back together. Replay assist saves both the
coqtop output from before the theorem changed and the output of the new
theorem up to the point where a patch may need to be made. One can then
compare the two texts and see that H has been renamed H0, and patch the proof
script accordingly.

The replay assistant provides a semi-automated assistant to help with the
task of proof patching. There is a “Replay” button that advances coqtop past
one proof step in a manner similar to “Right.” However, steps will be edited if
necessary. So, unfold noFind in H will be changed to unfold noFind in H0
if the hypothesis was renamed, and then coqtop will advance. There also is a
“Show previous output” button to show the old output that can be used to see
the old goal state. This is useful if hand editing is necessary. Goal information is
attached as annotations to the text of the proof steps. Hence if steps are inserted,
then the goals will automatically retain its connection to the original steps.

The current replay algorithm only makes updates to hypothesis labels, but we
are planning to extend the functionality in the near future. To update hypothesis
labels, CoqPIE finds the renaming by looking at both the old and new result
from the previous step and choosing the hypothesis from the new state that is
the closest match to the one from the old state. Matches are scored by doing a
top down comparison of the two AST trees and counting the number of nodes
that match.

Coq users will often explicitly name hypotheses that keep changing position
during proof development in order to make direct replay more reliable; while
this approach improves the odds of a successful replay, the CoqPIE replay tool
allows users to skip this step. In addition, we aim to extend CoqPIE replay to
support other changes including detecting when a new subgoal has been added,
commenting out a subgoal that has been removed, and reordering proof steps.
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Admittedly it will never be possible to patch back every single proof, but it
should be possible to eliminate many of the tedious steps users must take when
patching a proof.

3 Experience with Implementation

The current implementation has all of the functionality described in this paper.
The first author has been using the tool exclusively for proof editing in a multi-
file project containing around 10000 lines of Coq code. The tool has also been
used to read in a couple of other large derivations including a microprocessor
verification example [26]1 and the first few chapters of Software Foundations
[20]. We needed to make some very minor edits to get Software Foundations to
compile.

There is an up-front cost of using CoqPIE: the full project needs to be run
and intermediate goals parsed and cached. The table in Fig. 2 shows times for
processing some projects from scratch. The times are taken from runs on a 2011
MacBook Pro with a 2.7 Ghz Intel i5 core and 8G of memory. Since this only
needs to re-run if the state of the tool becomes inconsistent, it should be an
infrequent event.

Project Compile CoqPIE Memory usage
time initialization (Python process+

time largest Coq process)

Model.v 0:03 0:46 35M+163M

DPLL 1:36 9:08 94M+581M

Microprocessor 3:14 4:19:29 12M+825M

Software Foundations 0:06 4:01 47M+187M

Fig. 2. Times and memory usage of CoqPIE on different test cases.

Initialization times for CoqPIE are a few times slower than what is needed
to compile the project. While for our current projects the initialization time is
tolerable, as shown in the table, for larger projects it will be problematic and we
will need to do background updating as is done in PIDE.

Future implementation plans. There are a number of areas where improvement
is needed before CoqPIE is ready for widespread adoption. We are looking into
integration with PIDEtop. The coqtop parser may be integrated directly into
CoqPIE if we can get some cooperation from the Coq development team. We plan
to add additional heuristics to replay as we work with more complex theorems.
We also anticipate adding other high level heuristics beyond replay.

1 A couple of type checking errors showed up in CoqPIE but not when compiling
outside of CoqPIE. We are still working to find the source of these errors.
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4 Related Work

In addition to CoqIDE and Proof General, there are several other Coq IDE
development efforts. PIDE/jedit [8,27,28] introduces asynchronous communica-
tion between the IDE and the theorem prover to improve the user experience.
The idea is that as text is being edited in a proof script, the theorem prover is
continuously running in the background verifying the new text and all dependen-
cies. Concurrency is used to speed up theorem proving tasks. The tool saves all
output and adds markups to the text in appropriate places. Our system currently
does not run the prover as a background task or do automatic updating.

CoqPIE provides a goal state window that highlights differences and allows
the showing/hiding of individual hypotheses, whereas PIDE/jedit simply stores
the text of the theorem prover’s output. We do parsing of the output both
for the above functionality and replay. CoqPIE also replaces proof scripts with
admit for proofs on which the user is not working. This gains much of the same
performance advantage as concurrency.

The IDE supplied with Coq 8.5 also introduces concurrency and dependency
analysis to speed up processing of files. We aim to add support for concurrency
in CoqPIE in the future.

Coqoon [15] is an effort to integrate Coq into Eclipse. It provides a tree view
to show all files and declarations in the Coq input, similar to our tree view.
Parsing is less developed than what exists in CoqPIE: Cocoon provides a simple
lexer for tokens and determines the dividing point between definitions by finding
periods. CoqPIE on the other hand provides full AST generation along with links
between the nodes and positions in the text. There is no concept of storing both
the old an new versions of goals in Coqoon and hence no framework for the
style of replay assist provided by CoqPIE. Since there are no ASTs, refactoring
operations such as lemma extraction are not possible in Coqoon. Finally, there
is no difference highlighting since that feature is also dependent on having a
full AST. Coqoon is built on top of PIDE and so it allows for asynchronous
recompilation of proofs. The PIDE protocol also allows Coqoon to have cached
output at each step. The CoqPIE initialization process is not needed; instead,
theorem proving is a background task and annotations are collected as they
become available.

There also are efforts to build Coq IDEs at MIT and UCSD [3,4]. Both are
web-based. However, these tools are primarily intended for teaching.

Proviola [25] is a tool that compiles Coq source code and captures the output
at each step. The tool then generates a Javascript-based web page that can
display the outputs as the user hovers over each tactic in a proof. Our tool in
addition to caching output also parses the output so it can be used by editing
macros. CoqPIE also provides algorithms for updating the cache when the source
code is edited and the Coq process is rerun.

Pcoq [10] is an earlier UI for Coq. It features a window showing the proof
script, another window showing the Coq output and a third window showing a
list of potential theorems that can be applied at the current step. The first two
windows are similar to what exists in Proof General and Coq IDE. The third
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window is unique to Pcoq and would be a useful feature to add to CoqPIE.
CtCoq [9,12] builds on Pcoq. It provides the same basic windows as Pcoq, and
also parses Coq syntax. It is integrated directly with the CoqAst data structure.
Unlike CoqPIE, this AST parsing is used to create a tree-oriented editing para-
digm. UI-based point/click/drag and drop commands are used for constructing
proofs in place of entering commands. In comparison, our system uses the ASTs
to implement many heuristic operations such as replay assist and lemma extrac-
tion.

Company Coq [21] is an extension to Proof General that adds many useful
features, including shortcut text entry, completion, and reference to Coq doc-
umentation. These features would also be useful to add to CoqPIE but they
are not our primary focus. Company Coq also includes a lemma extraction fea-
ture. However, its implementation does not use an actual AST and hence is less
developed.

Proof script transformations have been discussed in [18]. The method involves
creating a few correctness preserving transformations. Since the transformations
must be formally verified it limits the scope of what tasks can be performed.
The refactoring operations in CoqPIE are heuristic in nature so correctness all
falls back on Coq.

5 Conclusion

We have presented CoqPIE, a novel Coq editing framework. A key feature of
CoqPIE is use of an integrated parser that links AST nodes to source text, which
then allows us to create several different forms of intelligent editing functional-
ity, including proof refactoring, showing differences between terms to help guide
proof development, and maintaining dependencies so that out-of-date informa-
tion is clearly highlighted. The current implementation develops a few refactoring
tools, but we have only scratched the surface of what refactoring tools can be
built over the CoqPIE foundation.

Acknowledgements. The authors would like to thank Gregory Malecha, Valentin
Robert and Jesper Bengston for their feedback.
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12. Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Hagiya, M., Mitchell, J.C.
(eds.) TACS 1994. LNCS, vol. 789, pp. 141–160. Springer, Heidelberg (1994)

13. Boite, O.: Proof reuse with extended inductive types. In: Slind, K., Bunker, A.,
Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 50–65. Springer,
Heidelberg (2004)

14. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective inter-
active proofs for higher-order imperative programs. In: 14th ICFP (2009)

15. Faithfull, A., Bengtson, J., Tassi, E., Tankink, C.: Coqoon: an IDE for inter-
active proof development in Coq. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 316–331. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 18

16. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the
Coq system. Research Report RR-6455, Inria Saclay Ile de France (2014)

17. Hasker, R.: The replay of program derivations. Ph.D. thesis, University of Illinois
at Urbana-Champaign (1995)

18. Whiteside, I., Aspinall, D., Dixon, L., Grov, G.: Towards formal proof script refac-
toring. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011
and Calculemus 2011. LNCS, vol. 6824, pp. 260–275. Springer, Heidelberg (2011)

19. Malecha, G., Chlipala, A., Braibant, T.: Compositional computational reflection.
In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 374–389. Springer,
Heidelberg (2014)

20. Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hritcu, C., Sjoberg,
V., Yorgey, B.: Software foundations. https://www.cis.upenn.edu/∼bcpierce/sf/
current/index.html

21. Pit-Claudel, C., Courtieu, P.: Company-Coq: taking proof general one step closer
to a real IDE. In: Coq PL (2016)

22. Pons, O., Bertot, Y., Rideau, L.: Notions of dependency in proof assistants. In:
UITP (1998)

23. Tankink, C.: PIDE for asynchronous interation with Coq. http://arxiv.org/pdf/
1410.8221.pdf

24. Tankink, C.: Proof in context - web editing with rich modeless contextual feedback.
In: 10th International Workshop on User Interfaces for Theorem Provers, pp. 42–56
(2012)

25. Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: a tool for proof
re-animation. In: 9th International Conference on Mathematical Knowledge Man-
agement (2010)

26. Vijayaraghavan, M., Chlipala, A., Arvind, Dave, N.: Modular deductive verification
of multiprocessor hardware designs. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
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