
Formalising Semantics for Expected Running
Time of Probabilistic Programs

Johannes Hölzl(B)

Fakultät für Informatik, TU München, Munich, Germany
hoelzl@in.tum.de

Abstract. We formalise two semantics observing the expected running
time of pGCL programs. The first semantics is a denotational seman-
tics providing a direct computation of the running time, similar to the
weakest pre-expectation transformer. The second semantics interprets a
pGCL program in terms of a Markov decision process (MDPs), i.e. it
provides an operational semantics. Finally we show the equivalence of
both running time semantics.

We want to use this work to implement a program logic in
Isabelle/HOL to verify the expected running time of pGCL programs.
We base it on recent work by Kaminski, Katoen, Matheja, and Olmedo.
We also formalise the expected running time for a simple symmetric
random walk discovering a flaw in the original proof.

1 Introduction

We want to implement expected running time analysis in Isabelle/HOL based
on Kaminski et al. [9]. They present semantics and proof rules to analyse the
expected running time of probabilistic guarded command language (pGCL) pro-
grams. pGCL is an interesting programming language as it admits probabilistic
and non-deterministic choice, as well as unbounded while loops [12].

Following [9], in Sect. 3 we formalise two running time semantics for pGCL
and show their equivalence: a denotational one expressed as expectation trans-
former of type (σ ⇒ ennreal) ⇒ (σ ⇒ ennreal), and a operational one defining
a Markov decision process (MDP). This proof follows the equivalence proof of
pGCL semantics on the expectation of program variables in [4] derived from the
pen-and-paper proof by Gretz et al. [3].

Based on these formalisations we analyse the simple symmetric random walk,
and show that the expected running time is infinite. We started with the proof
provided in [9], but we discovered a flaw in the proof of the lower ω-invariant
based on the denotational semantics. Now, our solution combines results from
the probability measure of the operational semantics and the fixed point solution
from the denotational semantics.

Both proofs are based on our formalisation of Markov chains and MDPs [4].
The formalisation in this paper is on BitBucket1.
1 https://bitbucket.org/johannes2011/avgrun.

c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 475–482, 2016.
DOI: 10.1007/978-3-319-43144-4 30

https://bitbucket.org/johannes2011/avgrun


476 J. Hölzl

2 Preliminaries

The formulas in this paper are oriented on Isabelle’s syntax: type annotations are
written t :: τ , type variables can be annotated with type classes t :: τ :: tc (i.e. t
has type τ which is in type class tc), and type constructors are written in post-fix
notation: e.g. α set. We write int for integers, ennreal for extended non-negative
real numbers: [0,∞], α stream for infinite streams of α, α pmf for probability
mass functions (i.e. discrete distributions) on α. The state space is usually the
type variable σ. On infinite streams sdrop n ω drops the first n elements from
the stream ω: sdrop 0 ω = ω and sdrop (n + 1) (s·ω) = sdrop n ω.

Least Fixed Points. A central tool to define semantics are least fixed
points on complete lattices: α ⇒ (β :: complete-lattice), bool, enat, and ennreal.
Least fixed points are defined as lfp f =

�{u | f u ≤ u}. For a monotone
function f , we get the equations lfp f = f (lfp f). Fixed point theory also
gives nice algebraic rules: the rolling rule “rolls” a composed fixed point:
g (lfp (λx. f (g x))) = lfp (λx. g (f x)) for monotone f and g, and the diagonal
rule for nested fixed points: lfp (λx. lfp (f x)) = lfp (λx. f x x), for f monotone in
both arguments.

To use least fixed points in measure theory, countable approximations are nec-
essary. This is possible if the function f is sup-continuous: f (

⊔
i C i) =

⊔
i f (C i)

for all chains C. Then f is monotone and lfp f =
⊔

i f
i ⊥. For our proofs we also

need an induction and a transfer rule2:

mono f ∀x ≤ lfp f. P x −→ P (f x) ∀S. (∀x ∈ S. P x) −→ P (
⊔

S)

P (lfp f)

sup-continuous f, g, and α α ⊥ ≤ lfp g α ◦ f = g ◦ α

α(lfp f) = lfp g

Markov Chains (MCs) and Markov Decision Processes (MDPs). An overview of
Isabelle’s MC and MDP theory is found in [4,5]. A MC is defined by a transi-
tion function K :: α ⇒ α pmf, inducing an expectation: EK

s [f ] is the expectation
of f over all traces in K starting in s. A MDP is defined by a transition function
K :: α ⇒ α pmf set, inducing the maximal expectation: ÊK

s [f ] is the supremum of
all expectation of f over all traces in K starting in s. Both expectations EK

s [f ] and
Ê
K
s [f ] have values in ennreal, which is a complete lattice. Both are sup-continuous

on measurable functions (called monotone convergent in measure theory),
which allows us to apply the transfer rule when f is defined as a least fixed point.
Also both expectations support an iteration rule, i.e. we can compute them by
first taking a step in K and then continue in the resulting state t:

E
K
s [f ] =

∫

t

E
K
t [λω. f(t · ω)]dKs and Ê

K
s [f ] =

⊔

D∈Ks

∫

t

Ê
K
t [λω. f(t · ω)]dD.

2 In our formalisation, the transfer rule is stronger: expectation requires measurability,
hence we restrict the elements to which we apply α by some predicate P .



Formalising Semantics for Expected Running Time 477

Fig. 1. pGCL syntax

Fig. 2. Expectation transformer semantics for pGCL running times

Where t · ω is the stream constructor and
∫

fdD is the integral over the pmf D.

3 Probabilistic Guarded Command Language (pGCL)

The probabilistic guarded command language (pGCL) is a simple programming
language allowing probabilistic assignment, non-deterministic choice and arbi-
trary While-loops. A thorough description of it using the weakest pre-expectation
transformer (wp) semantics is found in McIver and Morgan [12]. Gretz et al. [3]
shows the equivalence of wp with a operational semantics based on MDPs. Hurd
et al. [8] and Cock [2] provide a shallow embedding of pGCL in HOL4 and
Isabelle/HOL. We follow the definition in Kaminski et al. [9].

In Fig. 1 we define a datatype representing pGCL programs over an arbi-
trary program state of type σ. Empty has not running time. Halt immediately
aborts the program. Seq is for sequential composition. Par is for non-deterministic
choice, i.e. both commands are executed and then one of the results is cho-
sen. Assign, If, and While have the expected behaviour, and all three commands
require one time step. A probabilistic choice is possible with Assign u, where u
is a probabilistic state transformer (σ ⇒ σ pmf). The expected running time of
Assign u weights each possible running time with the outcome of u. The assign-
ment is deterministic is u is a Dirac distribution, i.e. assigning probability 1 to
exactly one value. We need the datatype to have a deep embedding of pGCL
programs, which is necessary for the construction of the MDP.

Expected Running Time. The denotational semantics for the running time is
given as an expectation transformer, which is similar to the denotational seman-



478 J. Hölzl

Fig. 3. MDP semantics for pGCL running times

tics for the expectation of program variables as weakest pre-expectation trans-
formers. Again we follow the definition in Kaminski et al. [9]. In Fig. 2 we define
the expectation transformer ert taking a pGCL command c and an expecta-
tion f , where f assigns an expected running time to each terminal state of c.
This gives a simple recursive definition of the Seq case, for the expected run-
ning time of a pGCL program we will set f = 0. We proved some validating
theorems about expectation transformer ert, i.e. continuity and monotonicity of
ert c, closed under constant addition for Halt-free programs, sub-additivitiy, etc.

MDP Semantics. For the operational small-step semantics we introduce a MDP
constructed per pGCL program, and compute the expected number of steps until
the program terminates. In Fig. 3 we define the MDP by its transition function
K and the per-state cost function cost f c s x. The per-state cost cost f c s x
computes the running time cost associated with the program c at state s. Here
the program is seen as a list of statements, hence we walk along a list of Seq
and only look at its left-most leaf. If the program is Empty the MDP is stopped
and we return f s containing further running time cost we want to associated
to a finished state s (in most cases this will be 0, but it is essential in the
induction case of Theorem 1). When the execution continues we also add x,
c.f. the definition of coststream.

The transition function K induces now a set of trace spaces, one for each
possible resolution of the non-deterministic choices introduced by Par. We write
Ê
K
(c,s)[f ] for the maximal expectation of f :: (σ pgcl × σ) stream ⇒ ennreal when

the MDP starts in (c, s). We define the cost of a trace as the sum of cost over



Formalising Semantics for Expected Running Time 479

all states in the trace:

coststream f ((c, s)·ω)
lfp
= cost f c s (coststream f ω)

Finally the maximal expectation of coststream computes ert:

Theorem 1. Ê
K
(c,s)[coststream f ] = ert c f s

Proof (Induction on c). The interesting cases are Seq and While. For Seq we prove
the equation Ê

K
(Seq a b,s)[coststream f ] = Ê

K
(a,s)[coststream (λs. ÊK

(b,s)[coststream f ])],
by fixed point induction in both directions. For While we prove

Ê
K
(While g c,s)[coststream f ] = lfp (λF s. 1+ if g s then Ê

K
(c,s)[coststream f ] else f s) s

by equating it to a completely unrolled version using fixed point induction and
then massaging it in the right form using the rolling and diagonal rules. 
�

4 Simple Symmetric Random Walk

As an application for the expected running time analysis Kaminski et al. [9]
chose the simple random walk. As difference to [9] we do not use ω-invariants to
prove the infinite running time, but the correspondence of the program with a
Markov chain (there is no non-deterministic choice).

The simple symmetric random walk (srw) is a Markov chain on Z, in each
step i it goes uniformly to i + 1 or i − 1 (i.e. in both cases with probability
1/2). Surprisingly, but well known (and formalised by Hurd [7]), it reaches each
point with probability 1. Equally surprising, the expected time for the srw to
go from i to i + 1 is infinite! Kaminski et al. [9] prove this by providing a lower
ω-invariant. Unfortunately, this proof has a flaw: in Appendix B.1 of [10] (the
extended version of [9]), the equation 1+�x > 0�·2+�1 < x ≤ n+1�·∞+�0 < x ≤
n−1�·∞ = 1+�x > 0�·2+�0 < x ≤ n+1�·∞ does not hold for n = 0 and x = 1.
The author knows from private communication with Kaminski et al. that it still
is possible to use a lower ω-invariant. Unfortunately, the necessary invariant gets
much more complicated.

After discovering the flaw in the proof, we tried a more traditional proof.
The usual approach in random walk theory uses the generating function of the
first hitting time. Unfortunately, this would require quite some formalizations
in combinatorics, e.g. Stirling numbers and more theorems about generating
functions than available in [4]. Finally, we choose an approach similar to [7],
i.e. we set up a linear equation system and prove that the only solution is infinity.

Now, srw :: int ⇒ int pmf is the transition function for the simple symmet-
ric random walk. The expected time to reach j when started in i is written
H i j

def= E
srw
i [f j], where f j (k · ω)

lfp
= if j = k then 0 else 1 + f j ω is the first

hitting time. Now we need to prove the following rules: (I) H j i = H j k + H k i
if i ≤ j ≤ k, (II) H (i + t) (j + t) = H i j, (III) H i j = H j i and (VI)
H i j = (if i = j then 0 else 1 + (H i (j + 1) + H i (j − 1))/2). From these rules
we can derive H i j = ∞ for i �= j.



480 J. Hölzl

Rule (VI) is derived the expectation transformer semantics. But it is not
clear to us how to prove rule (I) by only applying fixed point transformations or
induction. Instead we prove (I) in a measure theoretic way:

H j k + H k i = E
srw
j [f j + H k i]

=
∑

n

(n + H k i) · Pr
j

(f k = n) (1)

=
∑

n

E
srw
j [λω. (n + f i (sdrop n ω)) · �f k ω = n�]

=
∑

n

E
srw
j [f i] = H j i (2)

Equation 1 requires that f k is finite with probability 1, we do a case distinction:
if it is not finite a.e. the result follows from H j i ≥ H j k = ∞. Equation 2 is now
simply proved by induction on n. The proofs for Eqs. 1 and 2 essentially operate
on each trace ω in our probability space, making them inherently dependent on
the trace space.

Theorem 2 (The running time of srw is infinite). H i j = ∞ if i �= j.

5 Coupon Collector

Another example we formalised is the coupon collector example from [9]. The
idea is to compute the expected time until we collect N different coupons from a
uniform, independent and infinite source of coupons. The left side of Fig. 4 shows
our concrete implementation CCN , the right side is its refinement (there is no
array cp necessary). By fixed point transformations we show that the (refined)
inner loop’s running time has a Geometric distribution, and hence the expected
running time for CCN is: ert CCN 0 s = 2 + 4N + 2N

∑N
i=1

1
i for N > 0.

6 Related Work

The first formalisation of probabilistic programs was by Hurd [7] in hol98, for-
malising a trace space for a stream of probabilistic bits. Hurd et al. [8] is dif-
ferent approach, formalising the weakest pre-expectation transformer semantics

Fig. 4. The Coupon Collector in pGCL and its refinement



Formalising Semantics for Expected Running Time 481

of pGCL in HOL4. Both formalisations are not related. Audebaud and Paulin-
Mohring [1] use a shallow embedding of a probability monad in Coq.
Cock [2] provides a VCG for pGCL in Isabelle/HOL. Hölzl and Nipkow [5,6]
formalises MCs and analyses the expected running time of the ZeroConf protocol.
On the basis of [5] formalises MDPs and shows the equivalence of the weakest
pre-expectation transformer (based on the pen-and-paper proof in [3]).

Unlike Theorem 1, these formalisations either define denotational seman-
tics [1,2,8], or operational semantics [5–7], none of them relate both semantics.

7 Conclusion and Future Work

While formalising the random walk example in [9] we found an essential flaw
in the proof in [10]. Our solution seams to indicate, that for the verification
of expected running times an ω-invariant approach is not enough. While the
expectation transformer gives us a nice verification condition generator (e.g. [2]),
the trace space might be required to get additional information i.e. fairness and
termination. The equivalence between the expectation transformer semantics
and the MDP semantics provides the required bridge between both worlds. Also
we might require a probabilistic, relational Hoare logic (maybe based on [11]) to
automate tasks like Fig. 4.

References

1. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Prog. 74(8), 568–589 (2009)

2. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. In: SSV 2012.
EPTCS, vol. 102, pp. 167–178 (2012)

3. Gretz, F., Katoen, J., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

4. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. Submit-
ted to JAR in December 2015. http://in.tum.de/∼hoelzl/mdptheory

5. Hölzl, J.: Construction and Stochastic Applications of Measure Spaces in Higher-
Order Logic. Ph.D. thesis, Technische Universität München (2013)

6. Hölzl, J., Nipkow, T.: Interactive verification of Markov chains: two distributed
protocol case studies. In: QFM 2012. EPTCS, vol. 103 (2012)

7. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis (2002)
8. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in

HOL. Theoret. Comput. Sci. 346(1), 96–112 (2005)
9. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition

reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49498-1 15

10. Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected run-times of probabilistic programs. CoRR abs/1601.01001v1
(Extended version) (2016)

http://in.tum.de/~hoelzl/mdptheory
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15


482 J. Hölzl

11. Lochbihler, A.: Probabilistic functions and cryptographic oracles in higher order
logic. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 503–531. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49498-1 20

12. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2004)

http://dx.doi.org/10.1007/978-3-662-49498-1_20

	Formalising Semantics for Expected Running Time of Probabilistic Programs
	1 Introduction
	2 Preliminaries
	3 Probabilistic Guarded Command Language (pGCL)
	4 Simple Symmetric Random Walk
	5 Coupon Collector
	6 Related Work
	7 Conclusion and Future Work
	References


