
Formalization of the Resolution Calculus
for First-Order Logic

Anders Schlichtkrull(B)

DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
andschl@dtu.dk

Abstract. A formalization in Isabelle/HOL of the resolution calculus
for first-order logic is presented. Its soundness and completeness are for-
mally proven using the substitution lemma, semantic trees, Herbrand’s
theorem, and the lifting lemma. In contrast to previous formalizations of
resolution, it considers first-order logic with full first-order terms, instead
of the propositional case.

Keywords: First-order logic · Resolution · Isabelle/HOL · Herbrand’s
theorem · Soundness · Completeness

1 Introduction

The resolution calculus plays an important role in automatic theorem proving
for first-order logic as many of the most efficient automatic theorem provers, e.g.
E [23], SPASS [25], and Vampire [18], are based on resolution and an extension
called superposition. Studying the resolution calculus is furthermore an integral
part of many university courses on logic in computer science. The resolution
calculus was introduced by Robinson in his groundbreaking paper which also
introduced most general unifiers (MGUs) [20].

The calculus reasons about first-order literals, i.e. atoms and their negations.
Since the literals are first-order, they may contain full first-order terms. Literals
are collected in clauses, i.e. disjunctions of literals. The calculus is refutationally
complete, which means that if a set of clauses is unsatisfiable, then the resolution
calculus can derive a contradiction (the empty clause) from it. One can also use
the calculus to prove any valid formula by first negating it, then transforming it
to an equisatisfiable set of clauses, and lastly refuting this set with the resolution
calculus. Resolution is a calculus for first-order logic, but it does not have any
machinery to handle equality or any other theories.

We mostly follow textbooks by Ben-Ari [1], Chang and Lee [8], and Leitsch
[15]. The idea of Chang and Lee’s completeness proof is to consider semantic
trees, which are binary trees that represent interpretations. Such a tree is cut
smaller and smaller, and for each cut, a derivation is done towards the empty
clause. The theorem that cuts the tree down to finite size is Herbrand’s theorem,
which we also formalize. We prove the completeness theorem for Herbrand uni-
verses only, but e.g. Chang and Lee’s Theorem 4.2 states that this is sufficient
to prove it complete for any universe. That theorem is, however, not formalized.
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 341–357, 2016.
DOI: 10.1007/978-3-319-43144-4 21



342 A. Schlichtkrull

The formalization is included in the IsaFoL project [3], which formalizes
several logical calculi in Isabelle/HOL. IsaFoL is part of a larger effort to formally
prove theorems about logics and logical calculi. This also includes formalizations
of ground resolution, which is propositional by nature. The formalization in
this paper stands out from these by formalizing resolution for first-order logic.
The theory needed to do this is very different from that of ground resolution
since first-order logic involves a richer syntax and semantics. To the best of my
knowledge, I present the first formalized completeness proof of the resolution
calculus for first-order logic.

Harrison formalizes Herbrand’s theorem in a model theoretic formulation
[10]. It says that if a purely existential formula is valid, then some disjunction
of instances of the body is propositionally valid. In automatic theorem proving,
the theorem is viewed in a different, equivalent way: A finite set of clauses is
unsatisfiable if some finite set of ground, i.e. variable free, instances of its clauses
is as well. This is what SAT solvers take advantage of when refuting first-order
formulas. Essentially, they enumerate ground instances and try to refute them.
We formalize a third equivalent view stating exactly what the completeness proof
needs: If a set of clauses is unsatisfiable, then it has a finite closed semantic tree.
This bridges first-order unsatisfiability with decisions made in a semantic tree.

Since this paper is a case study in formalizing mathematics, it is also worth-
while to consider which tools were helpful in this regard:

– The Isabelle/jEdit Prover IDE has many useful features to navigate proof
documents. This was advantageous when the theory grew larger.

– The structured proof language Isar was beneficial because it allows formal
proofs to be written as sequences of claims that follow from the previous
claims. This clearly mirrors mathematical paper proof, which is what we are
formalizing. Furthermore, it makes the proofs easy to read, and this is impor-
tant when a formalization is to help in the understanding of a theory.

– The proof methods of Isabelle such as auto, blast, and metis were effective in
discharging proof goals.

– The Sledgehammer tool finds proofs by picking important facts from the the-
ory and then employing top-of-the-line automatic theorem provers and satis-
fiability modulo solvers. It often helps proving claims that we know are true,
but where finding the necessary facts from the theory and libraries as well as
choosing and instructing a proof method would be tedious.

Understanding proofs of logical systems can be challenging since one must
keep separate which parts of the proofs are about the syntactic level, and which
are about the semantic level. It can be tempting to mix intuition about semantics
and syntax. Fortunately, a formalization makes the distinction very clear, and
hopefully this can aid in understanding the proofs.

2 Overview

A literal l is either an atom or its negation. The sign of an atom is True, while
that of its negation is False. The complement pc of an atom p is ¬p, and the



Formalization of the Resolution Calculus for First-Order Logic 343

complement (¬p)c of its negation is p. The complement LC of a set of literals
L is {lc | l ∈ L}. The set of variables in a clause is varsls C . A clause with an
empty set of variables is called ground. A clause is a set of literals representing the
universal quantification of the disjunction of the literals in the clause. The empty
clause represents a contradiction since it is an empty disjunction. A substitution
σ is a function from variables to terms, and is applied to a clause C by applying
it to all variables in C. The result is written C ·ls σ and is called an instance of
C. We can likewise apply a substitution to a single literal: l ·l σ.

We will consider the following formulation of the resolution calculus:

C1 C2

((C1 − L1) ∪ (C2 − L2)) ·ls σ

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is a substitution and an MGU of L1 ∪ LC
2

The conclusion of the rule is called a resolvent of C1 and C2. L1 and L2

are called clashing sets of literals. Additionally, the calculus allows us to apply
variable renaming to clauses before we apply the resolution rule. Renaming vari-
ables in two clauses C1 and C2 such that varsls C1 ∩ varsls C2 = {} is called
standardizing apart. Notice that L1 and L2 are sets of literals. Some other reso-
lution calculi instead let L1 and L2 be single literals. These calculi then have an
additional rule called factoring, which allows unification of subsets of clauses.

The completeness proof we consider is very much inspired by that of Chang
and Lee [8], and the proof of the lifting lemma by that of Leitsch [15].

Semantic trees are defined from an enumeration of Herbrand, i.e. ground,
atoms. A semantic tree is essentially a binary decision tree in which the decision
of going left in a node on level i corresponds to mapping the ith atom of the
enumeration to True, and in which going right corresponds to mapping it to
False. See Fig. 1. Therefore, a finite path in a semantic tree can be seen as a
partial interpretation. This differs from the usual interpretations in first-order
logic in two ways. Firstly, it does not consist of a function denotation and a pred-
icate denotation, but instead assigns True and False to ground atoms directly.
Secondly, it is finite, which means that some ground literals are assigned neither
True nor False. A partial interpretation is said to falsify a ground clause if it, to
all literals in the clause, assigns the opposite of their signs. A branch is a path
from the root of a tree to one of its leaves. A closed branch is a branch whose
corresponding partial interpretation falsifies some ground instance of a clause in
the set of clauses. A closed semantic tree for a set of clauses is a minimal tree in
which all branches are closed.

Herbrand’s theorem is proven in the following formulation: If a set of clauses
is unsatisfiable, then there is a finite and closed semantic tree for that set. We
prove it in its contrapositive formulation and therefore assume that all finite
semantic trees of a set of clauses have an open (non-closed) branch. Obtaining
longer and longer branches of larger and larger finite semantic trees, we can,
using König’s lemma, obtain an infinite path all of whose prefixes are open
branches of finite semantic trees. Thus these branches satisfy, that is, do not
falsify, the set of clauses. We can then prove that this infinite path, when seen as



344 A. Schlichtkrull

Fig. 1. Semantic tree with partial interpretation [p �→ True, q �→ False]

an Herbrand interpretation, also satisfies the set of clauses, and this concludes
the proof. Converting the infinite path to a full interpretation can be seen as the
step that goes from syntax to semantics.

The lifting lemma lifts resolution derivation steps done on the ground level
up to the first-order world. The lemma considers two instances, C ′

1 and C ′
2, of

two first-order clauses, C1 and C2. It states that if C ′
1 and C ′

2 can be resolved
to a clause C ′ then also C1 and C2 can be resolved to a clause C. And not only
that, but it can even be done in such a way that C ′ is an instance of this C. See
Fig. 2. To prove the theorem we look at the clashing sets of literals L′

1 ⊆ C ′
1 and

L′
2 ⊆ C ′

2. We partition C ′
1 in L′

1 and the rest, R′
1 = C ′

1 − L′
1. Then we lift this

up to C1 by partitioning it in L1, the part that instantiates to L′
1, and the rest

R1 which instantiates to R′
1. We do the same for C2. Since L′

1 and L′C
2 can be

unified, so can L1 and LC
2 , and therefore they have an MGU. Thus C1 and C2

can be resolved to a resolvent C. With some bookkeeping of the substitutions
and unifiers, we can also show that C has the ground resolvent C ′ as an instance.

Lastly, completeness itself is proven. It states that the empty clause can
be derived from any unsatisfiable set of clauses. We start by obtaining a finite
closed semantic tree for the set of clauses. Then we cut off two sibling leaves. The
branches ending in these leaves falsify a ground clause each, and these clauses
can be resolved. We lift this up to the first-order world by the lifting lemma and
resolve the first-order clauses. Repeating this procedure, we obtain a derivation

Fig. 2. The lifting lemma. An arrow from C to C′ indicates that C′ is an instance of
C. The bars are derivations. Full bars or arrows are relations we know, and the stippled
ones are established by the lemma.



Formalization of the Resolution Calculus for First-Order Logic 345

which ends when we have cut the tree down to the root. Only the empty clause
can be falsified here, and so we have a derivation of the empty clause.

3 Clausal First-Order Logic

We briefly explain the formalization of first-order clausal logic. A first-order term
is either a variable consisting of a variable symbol (a string) or it is a function
application consisting of a function symbol (a string) and a list of subterms:

datatype fterm = Var var -sym | Fun fun-sym (fterm list)

A literal is either positive or negative, and it contains a predicate symbol (a
string) and a list of terms. The datatype is parametrized with the type of terms
′t since it will both represent first-order literals (fterm literal) and Herbrand
literals. A clause is a set of literals.

datatype ′t literal = Pos pred -sym (′t list) | Neg pred -sym (′t list)

type-synonym ′t clause = ′t literal set

We formalize the ground fterm literals using a predicate groundl which holds
for l if it contains no variables. Likewise, we formalize ground fterm clauses using
a predicate groundls.

A substitution is a function from variable symbols into terms:

type-synonym substitution = var -sym ⇒ fterm

This is very different from Chang and Lee where they are represented by finite
sets [8]. The advantage of functions is that they make it much easier to apply
and compose substitutions. If C ′ is an instance of C we write instance-ofls. The
composition of two substitutions, σ1 and σ2, is also defined, and written σ1 · σ2.
We also define unifiers and most-general unifiers of literals (and similarly of
terms):

definition unifierls σ L ←→ (∃l ′. ∀l ∈ L. l ·l σ = l ′)

definition mguls σ L ←→ unifierls σ L ∧ (∀u. unifierls u L −→ ∃i . u = σ·i)

One important theorem is that if a finite set of literals has a unifier, then it
also has an MGU. This theorem is formalized in the IsaFoR project [24] by means
of a unification algorithm, and we obtain it by proving the literals, unifiers, and
MGUs of IsaFoR equivalent to ours.

lemma unification:
assumes finite L
assumes unifierls σ L
shows ∃θ. mguls θ L



346 A. Schlichtkrull

We also formalize a semantics of terms and literals. A variable denotation,
var -denot , maps variable symbols to values of the domain. The domain is rep-
resented by the type variable ′u:

type-synonym ′u var -denot = var -sym ⇒ ′u

Interpretations consist of denotations of functions and predicates. A function
denotation maps function symbols and lists of values to values:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u

Likewise, a predicate denotation maps predicate symbols and lists of values
to the two boolean values:

type-synonym ′u pred -denot = pred -sym ⇒ ′u list ⇒ bool .

Similar to other formalizations of first-order logic, the predicate and function
symbols do not have fixed arities. The semantics of a term is then defined by
the recursive function evalt.

fun evalt :: ′u var -denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x ) = E x
|evalt E F (Fun f ts) = F f (map (evalt E F ) ts)

Here, map (evalt E F ) [e1 , . . . , en ] = [evalt E F e1 , . . . , evalt E F en ], and
from now on we abbreviate map (evalt E F ) ts as evalts E F ts.

If an expression evaluates to True in an interpretation, we say that it is
satisfied by the interpretation. If it evaluates to False, we say that it is falsified.
The semantics of literals is a function evall that evaluates literals.

fun evall :: ′u var -denot ⇒ ′u fun-denot ⇒ ′u pred -denot
⇒ fterm literal ⇒ bool where

evall E F G (Pos p ts) ←→ G p (evalts E F ts)
|evall E F G (Neg p ts) ←→ ¬G p (evalts E F ts)

We extend the semantics to clauses.

definition evalc :: ′u fun-denot ⇒ ′u pred -denot
⇒ fterm clause ⇒ bool where

evalc F G C ←→ (∀E . ∃l ∈ C . evall E F G l)

A set of clauses Cs is satisfied, written evalcs F G Cs, if all its clauses are
satisfied.

4 The Resolution Calculus

We first formalize resolvents, i.e. the conclusion of the resolution rule.

definition resolution C1 C2 L1 L2 σ = ((C1 − L1) ∪ (C2 − L2)) ·ls σ



Formalization of the Resolution Calculus for First-Order Logic 347

In Sect. 2 we saw that the resolution rule had three side-conditions. We addi-
tionally restrict the rule to require that L1 and L2 are non-empty. When these
side-conditions are fulfilled, the rule is applicable.

definition applicable C1 C2 L1 L2 σ ←→
C1 �= {} ∧ C2 �= {} ∧ L1 �= {} ∧ L2 �= {}

∧ varsls C1 ∩ varsls C2 = {}
∧ L1 ⊆ C1 ∧ L2 ⊆ C2

∧ mguls σ (L1 ∪ LC
2 )

A step in the resolution calculus either inserts a resolvent of two clauses in a
set of clauses, or it inserts a variable renaming of one of the clauses. Two clauses
are variable renamings of each other if they can be instantiated to each other.
Alternatively we could say that we apply a substitution which is a bijection
between the variables in the clause and another set of variables.

definition var -renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var -renaming-of C1 C2 ←→ instance-ofls C1 C2 ∧ instance-ofls C2 C1

The rule for variable renaming allows us to standardize clauses apart.

inductive resolution-step
:: fterm clause set ⇒ fterm clause set ⇒ bool where

resolution-rule:
C1 ∈ Cs =⇒ C2 ∈ Cs =⇒ applicable C1 C2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})
| standardize-apart:

C ∈ Cs =⇒ var -renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

Derivation steps are extended to derivations by taking the reflexive transitive
closure of resolution-step, which is given by rtranclp.

definition resolution-deriv = rtranclp resolution-step

We will prove the resolution rule sound by combining several simpler rules.
The first we need looks as follows:

C

C ·ls σ

It is not entirely trivial to prove, but the needed insight is that given a
function denotation and a variable denotation, any substitution can be converted
to a variable denotation by evaluating the terms of its domain. We do this using
function composition ◦:

definition evalsub E F σ = evalt E F ◦ σ

We can then prove the substitution lemma:

lemma substitution: evall E F G (l ·l σ) ←→ evall (evalsub E F σ) F G l



348 A. Schlichtkrull

Next, we prove a special version of the resolution rule sound. The rule is
special since it is only allowed to remove two literals instead of two sets of
literals:

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})

l1 ∈ C1

l2 ∈ C2

l1 = lc2

Lastly, we prove that from a clause follows any superset of the clause:

C1

C1 ∪ C2

The proofs of all four rules are made as short structured Isar-proofs.
These four sound rules are combined to give the resolution rule, which must

consequently be sound. We are of course allowed to use the assumptions of the
resolution rule, so we know that when σ is applied to L1 and L2, they turn
in to a complementary pair of literals, which we denote l1 ·ls σ and l2 ·ls σ. This
justifies the book keeping inference below. It also means that we can apply the
special resolution rule. The bottommost rule application uses the superset rule.

C1

C1 ·ls σ

C2

C2 ·ls σ

(C1 ·ls σ − {l1 ·ls σ}) ∪ (C2 ·ls σ − {l2 ·ls σ})
special resolution

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)
book keeping

((C1 − L1) ∪ (C2 − L2)) ·ls σ

All this reasoning is made as a structured Isar-proofs.

lemma resolution-sound :
assumes evalc F G C1 ∧ evalc F G C2

assumes applicable C1 C2 L1 L2 σ
shows evalc F G (resolution C1 C2 L1 L2 σ)

5 Herbrand Interpretations

Herbrand interpretations are a special kind of interpretations, which are charac-
terized by two properties. The first is that their universe is the set of Herbrand
terms. Since we chose that the universe should be a type, we need to represent
the universe of Herbrand terms by a type. We do it by introducing a new type
hterm which is similar to fterm, but does not have a constructor for variables.

datatype hterm = HFun fun-sym (hterm list)

This is the same datatype as in Berghofer’s formalization of natural
deduction [2]. Had we chosen to represent the universes by sets like Ridge and
Margetson [19], then we could have represented the Herbrand universe by the set
of ground fterms. Unfortunately, we would then need wellformedness predicates



Formalization of the Resolution Calculus for First-Order Logic 349

for variable and function denotations. We introduce functions fterm-of -hterm
and hterm-of -fterm, converting between hterms and ground fterms.

The second characteristic property is that the function denotation of an
Herbrand interpretation is HFun, and thus, evaluating a ground term under such
an interpretation corresponds to replacing all applications of Fun with HFun,
that is, the ground term is interpreted as itself.

As we saw in Sect. 2, we need an enumeration of Herbrand atoms, such that
we can construct our semantic trees. So we define the type of atoms:

type-synonym ′t atom = pred -sym ∗ ′t list

Isabelle/HOL provides the proof method countable-datatype that can auto-
matically prove that a given datatype, in our case hterm, is countable. Since also
the predicate symbols are countable, then so must hterm atom be. Furthermore,
it is easy to prove that there are infinitely many hterm atoms. Using these facts
and Hilbert’s choice operator, we specify a bijection hatom-from-nat between
the natural numbers and the hterm atoms. We call its inverse nat-from-hatom.
Additionally, we write functions, nat-from-fatom and fatom-from-nat , enumer-
ating the ground fterm atoms in the same order. We also introduce a function
get-atom which returns the atom corresponding to a literal.

5.1 Semantic Trees

We need to formalize semantic trees. In paper-proofs the trees are often labeled
with the atoms which we add to or remove from our partial interpretations. In
this formalization the trees are unlabeled, because for a given level we can always
calculate the corresponding atom.

datatype tree = Leaf | Branching tree tree

Our formalization contains a quite substantial, approximately 700 lines, the-
ory on these unlabeled binary trees, paths within them, and their branches. The
details are not particularly interesting, but a theory of binary trees is necessary
because we, in contrast to paper proofs, cannot rely on intuition about trees.

In our formalization, bool lists represent both paths in trees and partial inter-
pretations, denoted by the type partial -pred -denot . E.g., if we consider the path
[True,True,False], then it is the path from the root of a semantic tree that goes
first left, then left again, and lastly right. On the other hand, it is also the partial
interpretation which considers hatom-from-nat 0 to be True, hatom-from-nat 1
to be True and hatom-from-nat 2 to be False. Our formalization illustrates the
correspondence between partial interpretations and paths clearly by identifying
their types.

Infinite trees and paths can not be represented by datatypes. We, thus, model
possibly infinite trees as sets of paths with a wellformedness property:

abbreviation wf -tree :: dir list set ⇒ bool where
wf -tree T ≡ (∀ds d . (ds @ d) ∈ T −→ ds ∈ T )



350 A. Schlichtkrull

Similarly, we model infinite paths as functions from natural numbers into
finite paths. Applying the function to number i gives us the prefix of length i.
We call such functions infinite paths, and their characteristic property is:

abbreviation wf -infpath :: (nat ⇒ ′a list) ⇒ bool where
wf -infpath f ≡ (f 0 = []) ∧ (∀n. ∃a. f (Suc n) = (f n) @ [a])

We must make formal, what it means for a partial interpretation to falsify
an expression. A partial interpretation G falsifies, written falsifiesl G l , a ground
literal l, if the opposite of its sign occurs on index nat-from-fatom (get-atom l)
of the interpretation.

definition falsifiesl :: partial -pred -denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→ groundl l

∧ (let i = nat-from-fatom (get-atom l) in
i < length G ∧ G ! i = (¬sign l))

A ground clause C is falsified, written falsifiesg G C , if all its literals are
falsified. A first-order clause C is falsified, written falsifiesc G C , if it has a
falsified ground instance. A partial interpretation satisfies an expression if it
does not falsify it. Lastly, a semantic tree T is closed, written closed -tree T Cs,
for a set of clauses Cs if it is a minimal tree that falsifies all the clauses in Cs.

5.2 Herbrand’s Theorem

The formalization of Herbrand’s theorem is mostly straightforward and is done
as an Isar-proof that follows the sketch from Sect. 2. The challenging part is to
take an infinite path, all of whose prefixes satisfy a set of clauses Cs and then
prove that its conversion to an interpretation also satisfies Cs. Chang and Lee [8]
do not elaborate much on this, but it takes up a large part of the formalization
and illustrates the interplay of syntax and semantics.

First we must define how to convert the infinite path to an Herbrand inter-
pretation. We know that the function denotation must be HFun, so we just need
to convert the infinite path to a predicate denotation. We do it as follows:

abbreviation extend
:: (nat ⇒ partial -pred -denot) ⇒ hterm pred -denot where

extend f P ts ≡
let n = nat-from-hatom (P , ts) in
f (Suc n) ! n

We use currying, so P and ts can be thought of as the predicate symbol and
list of values which we wish to evaluate in our semantics. We do it by collecting
them to an Herbrand atom, and finding its index. Then we look up a prefix
of our infinite path that is long enough to have decided whether the atom is
considered True or False.



Formalization of the Resolution Calculus for First-Order Logic 351

We now prove that if the prefixes collected in the infinite path f satisfy a set
of clauses Cs then so does its extension to a full predicate denotation extend f .

Since we want to prove that the clauses in Cs are satisfied, we fix one C and
prove that it has the same property.

lemma extend -infpath:
assumes wf -infpath (f ::nat ⇒ partial -pred -denot)
assumes ∀n. ¬falsifiesc (f n) C
assumes finite C
shows evalc HFun (extend f ) C

We will consider four ways in which clauses can be satisfied:

1. A first-order clause can be satisfied by a partial interpretation.
2. A ground clause can be satisfied by a partial interpretation.
3. A ground clause can be satisfied by an interpretation.
4. A first-order clause can be satisfied by an interpretation.

The extend -infpath lemma relates 1 and 4, and does so by using lemmas that
relate 1 to 2 to 3 to 4. The four ways seem similar, but they are in fact very dif-
ferent. That a ground clause is satisfied is very different from a first-order clause
being satisfied since we do not need to worry about any ground instances or
variables. Likewise, a ground clause being satisfied by a partial interpretation is
clearly different from being satisfied by an interpretation since the two types are
vastly different: a partial interpretation is a bool list while an interpretation con-
sists of a fun-sym ⇒ hterm list ⇒ hterm and a pred -sym ⇒ hterm list ⇒ bool .

We relate 1 and 2: If a first-order clause is satisfied by all prefixes of an
infinite path, then so is any, in particular ground, instance. This follows from
the definition of being satisfied by a partial interpretation.

We relate 2 and 3: If a ground clause is satisfied by all prefixes of an infinite
path f , then it is also satisfied by extend f . This follows almost directly from
the definition of extend .

We relate 3 and 4: Ideally we would prove that if a ground clause is satisfied
by an Herbrand interpretation, then so is a first-order clause of which it is an
instance. That is, however, too general. Fortunately, we notice a similarity that
ties first-order clauses and ground clauses together by considering a variable
denotation in the Herbrand universe, i.e. of type var -sym ⇒ hterm. We can
create a function that converts its domain to fterms, and thus get a substitution.

fun sub-of -denot :: hterm var -denot ⇒ substitution
sub-of -denot E = fterm-of -hterm ◦ E

Now we have the machinery to state the needed lemma: If the ground clause
C ·ls sub-of -denot E is satisfied by an Herbrand interpretation under E, then so
is the first-order clause C. The reason is simply that if we look at a variable in
C, then it is replaced by a ground term in sub-of -denot E . This term evaluates
to the same as the Herbrand term that it is interpreted as in E.

The final step is to chain 1, 2, 3, and 4 together to relate 1 and 4.



352 A. Schlichtkrull

1. Assume that C is satisfied by all prefixes of f .
2. Then the ground instance C ·ls sub-of -denot E is satisfied by all f ’s prefixes.
3. Then the ground instance C ·ls sub-of -denot E is satisfied by extend f under

E in particular.
4. Then C is satisfied by extend f under E.

With this, we can formalize Herbrand’s theorem:

theorem herbrand :
assumes ∀G . ¬evalcs HFun G Cs
assumes finite Cs ∧ (∀C ∈ Cs. finite C )
shows ∃T . closed -tree T Cs

6 Completeness

The completeness proof combines Herbrand’s theorem, the lifting lemma, and
reasoning about semantic trees and derivations. We will take a look at the most
challenging parts of the formalization of the proof.

6.1 Lifting Lemma

Our formalization of the resolution rule removes literals from clauses before it
applies the MGU. This is similar to several presentations from the literature
[15,20]. Another approach, which our formalization used in an earlier version, is
to apply the MGU before the literals are removed:

C1 C2

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is an MGU of L1 ∪ LC
2

This is exactly the rule used by Ben-Ari [1]. Chang and Lee use a similar
approach [8]. However, we were not able to formalize their proofs of the lifting
lemma because they had some flaws. The flaws are described in my MSc thesis
[21]. The most critical flaw is that the proofs seem to use that B ⊆ A =⇒
(A − B) ·ls σ = A ·ls σ − B ·ls σ, which does not hold in general. Leitsch [14,
Proposition 4.1] noticed flaws in Chang and Lee’s proof already, and presented
a counter-example to it.

With our current approach, however, the lifting lemma is straightforward to
formalize as an Isar-proof using the proof by Leitsch [15]. The lemma uses the
unification lemma from Sect. 3 to obtain MGUs.

lemma lifting :
assumes finite C ∧ finite D
assumes varsls C ∩ varsls D = {}
assumes instance-ofls C ′ C ∧ instance-ofls D ′ D
assumes applicable C ′ D ′ L′ M ′ σ
shows ∃L M τ. applicable C D L M τ ∧

instance-ofls (resolution C ′ D ′ L′ M ′ σ) (resolution C D L M τ)



Formalization of the Resolution Calculus for First-Order Logic 353

6.2 The Formal Completeness Proof

Like Herbrand’s theorem, we formalize completeness as an Isar-proof following
Chang and Lee [8]. This time, however, the proof is much longer than its infor-
mal counterpart. The paper proof is about 30 lines while the formal proof is
approximately 150 lines. There are several reasons for this:

– We explicitly have to standardize our clauses apart.
– We need to reason very precisely about the numbers of the ground atoms.
– We need to cut the tree twice.

• First to remove two leaves.
• Next to minimize it.

– In both cases we must prove that all branches are closed.
– We must tie our derivation-steps together.

Our completeness proof consists of two steps. First we apply Herbrand’s
theorem to obtain a finite tree. Next we take a finite tree and cut it smaller
while making a derivation. Then we repeat the process on that tree. To prove
that this works, we formalize the process using induction on the size of the tree.
Our formalization uses the induction rule measure induct rule instantiated with
the size of a tree. This gives us the following induction principle.

(
∧
x . (

∧
y . treesize y < treesize x =⇒?P y) =⇒?P x ) =⇒?P ?a

Here, the induction hypothesis holds for any tree of a smaller size, and we
need this since we will cut off several nodes in each step.

6.3 Standardizing Apart

In each step we need to make sure that the clauses we resolve are standardized
apart. We create functions to do this.

abbreviation std1 C ≡ C ·ls (λx . Var (′′1 ′′ @ x ))

abbreviation std2 C ≡ C ·ls (λx . Var (′′2 ′′ @ x ))

They take clauses C1 and C2 and create the clauses std1 C1 and std2 C2

which have added respectively 1 and 2 to the beginning of all variables. The
most important property is that the clauses actually have distinct variables after
we apply it. We need this such that we can apply the resolution rule, and so we
can use the lifting lemma.

lemma std -apart-apart : varsls (std1 C1) ∩ varsls (std2 C2) = {}”

We also need to prove that it actually renames the variables. This was a
prerequisite for the standardize apart rule of the calculus.

lemma std1-renames: var -renaming-of C1 (std1 C1)

In the completeness proof C1 is falsified by B1, but not by B. The same holds
for std1 C1 since it is falsified by the same partial interpretations as C1.

lemma std1-falsifies: falsifiesc G C1 ←→ falsifiesc G (std1 C1)



354 A. Schlichtkrull

6.4 Branches and Ground Clauses

In each step, the completeness proof removes two sibling leaves and resolves the
clauses, C1 and C2, that were falsified by the branches, B1 = B @ [True] and
B2 = B @ [False], ending in the leaves. The resolvent is falsified by B. This is
first proven on the ground level and then lifted to the first-order level using the
lifting lemma. Thus, on the ground level we must prove two properties.

1. The two ground clauses C ′
1 and C ′

2 falsified by B1 and B2 can be resolved.
2. Their ground resolvent C ′ is falsified by B.

We prove 1 first. We do it by proving that C ′
1 contains the negative literal

of number length B and that C ′
2 contains its complement. Here, the case for

C ′
1 is presented. C ′

1 is falsified by B1, but not B, since the closed semantic tree
is minimal. Thus, it must be the decision of going left that was necessary to
falsify C ′

1. Going left falsified the negative literal l with number length B in the
enumeration, and hence it must be in C ′

1.
We prove 2 next. To prove it we must show that the ground resolvent C ′ =

(C ′
1 − {l}) ∪ (C ′

2 − {lc}) is falsified by B. We do it by proving that the literals
in both C ′

1 − {l} and C ′
2 − {lc} are falsified. The case for C ′

1 − {l} is presented
here. The overall idea is that l is falsified by B1, but not by B. The decision of
going left falsified l, and then all of C ′

1 was falsified. Therefore, the other literals
must have been falsified before we made the decision, in other words, they must
have been falsified already by B.

To formalize this we must prove that all the literals in C ′
1 − {l} are indeed

falsified by B. We do it by a lemma showing that any other literal lo ∈ C ′
1

than l is falsified by B. Its proof first shows that lo has another number than
l has, i.e. other than length B . It seems obvious since lo �= l , but we also need
to ensure that lo �= lc. We do this by proving another lemma which says that
a clause only can be falsified by a partial interpretation if it does not contain
two complementary literals. Then we show that lo has a number smaller than
length B @ [True], since lo is falsified by B @ [True]. This concludes the proof.
We abstracts from True to d such that the lemma also works for B @ [False].

lemma other -falsified :
assumes groundls C ′

1 ∧ falsifiesg (B @ [d ]) C ′
1

assumes l ∈ C ′
1 ∧ nat-from-fatom (get-atom l) = length B

assumes lo ∈ C ′
1 ∧ lo �= l

shows falsifiesl B lo

6.5 The Derivation

At the end of the proof we must tie the derivations together:
C1

std1 C1

C2

std2 C2

resolution C1 C2 L1 L2 σ

...
{}



Formalization of the Resolution Calculus for First-Order Logic 355

The dots represent the derivation we obtain from the induction hypothesis. It
is done using the definitions of resolution-step and resolution-deriv . The com-
pleteness lemma is formalized as follows:

theorem completeness:
assumes finite Cs ∧ (∀C ∈ Cs. finite C )
assumes

∀(F :: hterm fun-denot) (G :: hterm pred -denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

7 Related Work

The literature contains several formalizations of first-order logic. Harrison proves
model theoretic results about first-order logic, including the compactness theo-
rem, the Löwenheim-Skolem theorem, and Herbrand’s theorem [10]. There are
also formalizations of the completeness of several logical calculi for first-order
logic. Margetson and Ridge [16] prove, in Isabelle/HOL, a sequent calculus sound
and complete, and they formalize a verified prover based on the calculus [19].
Braselmann and Koepke prove, in Mizar, a sequent calculus sound and complete
[6,7]. Schlöder and Koepke prove it complete even for uncountable languages
[22]. Berghofer proves, in Isabelle/HOL, a natural deduction calculus sound and
complete [2]. Illik formalizes constructive versions of completeness proofs for
classical logic and full intuitionistic predicate logic [12]. Blanchette, Popescu,
and Traytel formalize, in Isabelle/HOL, an abstract completeness proof that
is independent of any specific proof system and syntax for first-order logic [5].
Other important formalizations of logic are Paulson’s formalization of Gödel’s
incompleteness theorems [17], and Harrison’s soundness proof of HOL Light [11]
which is extended upon by Kumar, Arthan, Myreen and Owens [13].

There are also formalizations of sound and complete propositional resolution
calculi. Blanchette and Traytel formalize, in Isabelle/HOL, propositional resolu-
tion [4]. Fleury formalizes, in Isabelle/HOL, many ground calculi including SAT
solvers and propositional resolution [9].

8 Conclusion

This paper describes a formalization of the resolution calculus for first-order
logic as well as its soundness and completeness. This includes formalizations
of the substitution lemma, Herbrand’s theorem, and the lifting lemma. As far
as I know, this is the first formalized soundness and completeness proof of the
resolution calculus for first-order logic.

The paper emphasizes how the formalization illustrates details glanced over
in the paper proofs, which are necessary in a formalization. For instance it shows
the jump from satisfiability by an infinite path in a semantic tree to satisfiability
by an interpretation. It likewise illustrates how and when to standardize clauses



356 A. Schlichtkrull

apart in the completeness proof, and the lemmas necessary to allow this. Fur-
thermore, the formalization combines theory from different sources. The proofs
of Herbrand’s theorem and completeness are based mainly on those by Chang
and Lee [8], while the proof of the lifting lemma is based on that by Leitsch [15].
The existence proof of MGUs for unifiable clauses comes from IsaFoR [24].

Proof assistants take advantage of automatic theorem provers by using them
to dispense of subgoals. This formalization could be a step towards mutual ben-
efit between the two. Perhaps formalizations in proof assistants can help auto-
matic theorem provers by contributing a highly rigorous understanding of their
meta-theory.

Acknowledgement. Jørgen Villadsen, Jasmin Blanchette, and Dmitriy Traytel
supervised me in making the formalization. Jørgen and Jasmin provided valuable feed-
back on the paper.

References

1. Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer (2012)
2. Berghofer, S.: First-order logic according to Fitting. Archive of Formal Proofs,

Formal proof development. http://isa-afp.org/entries/FOL-Fitting.shtml
3. Blanchette, J.C., Fleury, M., Schlichtkrull, A., Traytel, D.: IsaFoL: Isabelle For-

malization of Logic. https://bitbucket.org/jasmin blanchette/isafol
4. Blanchette, J.C., Traytel, D.: Formalization of Bachmair and Ganzinger’s “Res-

olution Theorem Proving”. https://bitbucket.org/jasmin blanchette/isafol/src/
master/Bachmair Ganzinger/

5. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness – A
coinductive pearl. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 46–60. Springer, Heidelberg (2014)

6. Braselmann, P., Koepke, P.: Gödel completeness theorem. Formalized Math. 13(1),
49–53 (2005)

7. Braselmann, P., Koepke, P.: A sequent calculus for first-order logic. Formalized
Math. 13(1), 33–39 (2005)

8. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving, 1st
edn. Academic Press Inc., Orlando (1973)

9. Fleury, M.: Formalisation of ground inference systems in a proof assistant. Mas-
ter’s thesis, École normale supérieure Rennes (2015). http://www.mpi-inf.mpg.de/
fileadmin/inf/rg1/Documents/fleury master thesis.pdf

10. Harrison, J.V.: Formalizing basic first order model theory. In: Grundy, J., Newey,
M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)

11. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg
(2006)

12. Illik, D.: Constructive completeness proofs and delimited control. Ph.D. thesis,
École Polytechnique (2010)

13. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic – Semantics, soundness, and a verified implementation. J. Autom. Reason
56(3), 221–259 (2016)

14. Leitsch, A.: On different concepts of resolution. Math. Logic Q. 35(1), 71–77 (1989)

http://isa-afp.org/entries/FOL-Fitting.shtml
https://bitbucket.org/jasmin_blanchette/isafol
https://bitbucket.org/jasmin_blanchette/isafol/src/master/Bachmair_Ganzinger/
https://bitbucket.org/jasmin_blanchette/isafol/src/master/Bachmair_Ganzinger/
http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf
http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_master_thesis.pdf


Formalization of the Resolution Calculus for First-Order Logic 357

15. Leitsch, A.: The Resolution Calculus. Springer, Texts in theoretical computer sci-
ence (1997)

16. Margetson, J., Ridge, T.: Completeness theorem. Archive of Formal Proofs, Formal
proof development. http://isa-afp.org/entries/Completeness.shtml

17. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nom-
inal Isabelle. J. Autom. Reason. 55(1), 1–37 (2015)

18. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)

19. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

20. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

21. Schlichtkrull, A.: Formalization of resolution calculus in Isabelle. Master’s thesis,
Technical University of Denmark (2015). https://people.compute.dtu.dk/andschl/
Thesis.pdf

22. Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable lan-
guages. Formalized Math. 20(3), 199–203 (2012)

23. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

24. Sternagel, C., Thiemann, R.: An Isabelle/HOL formalization of rewriting for cer-
tified termination analysis. http://cl-informatik.uibk.ac.at/software/ceta/

25. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009)

http://isa-afp.org/entries/Completeness.shtml
https://people.compute.dtu.dk/andschl/Thesis.pdf
https://people.compute.dtu.dk/andschl/Thesis.pdf
http://cl-informatik.uibk.ac.at/software/ceta/

	Formalization of the Resolution Calculus for First-Order Logic
	1 Introduction
	2 Overview
	3 Clausal First-Order Logic
	4 The Resolution Calculus
	5 Herbrand Interpretations
	5.1 Semantic Trees
	5.2 Herbrand's Theorem

	6 Completeness
	6.1 Lifting Lemma
	6.2 The Formal Completeness Proof
	6.3 Standardizing Apart
	6.4 Branches and Ground Clauses
	6.5 The Derivation

	7 Related Work
	8 Conclusion
	References


