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Abstract. Our language Cogent simplifies verification of systems soft-
ware using a certifying compiler, which produces a proof that the gen-
erated C code is a refinement of the original Cogent program. Despite
the fact that Cogent itself contains a number of refinement layers, the
semantic gap between even the lowest level of Cogent semantics and
the generated C code remains large.

In this paper we close this gap with an automated refinement frame-
work which validates the compiler’s code generation phase. This frame-
work makes use of existing C verification tools and introduces a new
technique to relate the type systems of Cogent and C.

1 Introduction

In previous work, we designed a new language called Cogent [9] for easing the
verification of certain classes of systems code such as file systems. Cogent is
a linearly-typed, pure, polymorphic, functional language with a certifying com-
piler. We used it in separate work to write two Linux filesystems, ext2 and
BilbyFs, and achieved performance comparable to their native C implementa-
tions [2].

From a Cogent program the Cogent compiler produces three artefacts: C
code, a shallow embedding of the Cogent program in Isabelle/HOL [8], and
an Isabelle/HOL proof relating the two. The compiler certificate is a series of
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Fig. 1. An overview of the verification chain and our refinement framework.

language-level proofs and per-program translation validation phases that are
combined into one top-level theorem in Isabelle/HOL. The most involved phase,
and the phase we discuss in this paper, is the translation validation phase relating
Cogent’s imperative semantics to the generated C.

We present a refinement framework that enables the full automation of this
phase of Cogent’s certifying compilation. This framework has several compo-
nents that relate Cogent values, states, types, and statements to their C coun-
terparts. We put significant proof engineering work into enabling the framework
to bridge the gap between the Cogent store and the C heap semantics. More-
over, we introduced the idea of partial type erasure to eliminate linearity infor-
mation from a Cogent type in order to relate it to the corresponding C type.
Furthermore, to relate Cogent and C statements, we developed a refinement
calculus which contains a set of compositional proof rules. Given a program,
our framework then customises the proof rules based on the values, types, and
states that are used in this program. Finally, our refinement tactic applies the
customised rules in a syntax-directed manner, certifying the refinement for this
phase.

The method scales to significant Cogent code size, as demonstrated in the
two Linux filesystems [2] mentioned above. A snapshot of our work is available
online [1].

2 Overview and Background

This section explains the contribution of this paper within the broader Cogent
project. The heart of the Cogent project is its certifying compiler. The cer-
tificate the compiler produces is a refinement theorem relating the generated
shallow embedding and the generated C code. To ensure the C code is run cor-
rectly on the binary level, it can be compiled by CompCert [7].1 It also falls into

1 Mind the potential logical gap between our C parser’s C semantics [13] and that of
CompCert.
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the subset of Sewell et al.’s gcc translation validator [12], which can be made to
compose directly with our compiler certificate.2

The shallow Isabelle/HOL embedding is convenient for manual reasoning;
however, the compiler additionally produces a deep embedding of each Cogent
program, for the sake of structuring the generated certificate theorem and proof.
There are two formal semantics for this deep embedding: (1) a functional value
semantics where programs evaluate to values and (2) an imperative update
semantics where programs manipulate references to mutable global state.

The left side of Fig. 1 summarises the generated program representations and
the breakdown of the compiler certificate. The program representations are (from
the bottom of Fig. 1): the C code, the semantics of the C code [13] expressed
in Simpl [11], which is a generic imperative language inside Isabelle/HOL, the
same expressed as a monadic program [4], an A-normal [10] deep embedding of
the Cogent program, and a shallow embedding. Several theorems rely on the
Cogent program being well-typed, which we prove automatically using type
inference information from the compiler.

The labelled arrows and the arrow from C to Simpl represent refinement
proofs and the arrow labels correspond to the numbers in the following descrip-
tion. The only arrow that is not verified is the one crossing from C code into
Isabelle/HOL at the bottom of Fig. 1 — this is the C parser [13], which is a
mature tool used in a number of large-scale verifications [5]. It could addition-
ally be checked by Sewell et al.’s gcc translation validation tool.

We briefly describe each intermediate theorem, starting with Simpl at the
bottom. For well-typed Cogent programs, we automatically prove the following
four theorems, which together form the compiler certificate:
1© The C parser’s Simpl code corresponds to a monadic representation of the C
code.
2© The monadic code terminates and is a refinement of the update semantics
of the Cogent deep embedding. To relate Cogent’s linear type system to the
monadic one, we introduce the reusable idea of partial type erasure.
3© If a Cogent deep embedding evaluates in the update semantics, it evaluates
to the same result in the value semantics.
4© If the Cogent deep embedding evaluates in the value semantics then the
Cogent shallow embedding evaluates to a corresponding shallow Isabelle/HOL
value.

In order to prove high-level functional correctness, an additional step is nec-
essary:

Arrow 5© indicates verification of user-supplied abstract data types (ADTs)
implemented in C and manual high-level proofs on top of the shallow embedding.
We demonstrated that this step is enabled by the previous steps for two real-
world filesystems [2].

Step 3© is a consequence of linear types. It is a general property about the lan-
guage and has been proven manually once and for all [9]. Steps 1©, 2©, and 4©,

2 Cogent’s occasionally larger stack frames lead to memcpy() calls that, while concep-
tually straightforward, the translation validator does not yet cover.
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as well as their respective proofs, are generated by our compiler for every pro-
gram. The proof for step 1© is generated by an adjusted version of the AutoCor-
res tool [4]. For steps 2© and 4© we define compositional refinement calculi which
enable the automation of the proofs. The most involved refinement proof is the
one for step 2© which we present in this paper. It took about three person years
to develop tools for automating this proof. The calculus for step 4© is similar but
much simpler, as at this stage one does not reason about the state. In comparison,
its development only took a few person weeks.

The right side of Fig. 1 expands on the refinement framework used for prov-
ing step 2©. The bottom layer represents the underlying theory we developed
for defining primitive value and type relations which we use to create a refine-
ment calculus between Cogent deeply embedded expressions and correspond-
ing monadic statements. The middle layer represents the proof tools that auto-
mate the refinement proof on a per-program basis. These proof tools rely on the
underlying theories about the language in general, and on compiler generated
theories specific to the program. In particular, we have a tool for generating
non-primitive data relations, one for specialising complex rules in the calculus
to support automation, and finally a proof automation tactic which composes
the proof rules to provide a fully-automatic refinement proof.

2.1 COGENT

Cogent is a restricted, polymorphic, higher-order, and purely functional lan-
guage with linear types. The linear types ensure that resources such as memory
are disposed of correctly without run-time support like garbage collection. Cru-
cially for us, they also allow Cogent to be compiled into efficient C, including
destructive updates to values rather than the repeated copying common in purely
functional styles.

Variables of linear type must be used exactly once. This means each active
mutable heap object has exactly one active pointer in scope at any point in
the program. Hence, the difference between a destructive update and a pure
copy-update is unobservable.

The Cogent compiler generates C code, a shallow embedding, and a collec-
tion of “hints” used by the proof tactic to certify the compilation. Importantly,
the performance of the generated C is comparable to carefully handwritten C.

Cogent’s certifying compilation makes the verification of filesystems more
cost-effective, fully automating a significant part of the low-level proofs. We
demonstrate this on two real-world Cogent filesystems, with a minimal TCB [2].

This paper focuses on the lower-level generated refinement proofs, which con-
nect Cogent’s update semantics to C. Figure 2 introduces a relevant fragment
of Cogent. Many features of the full language are omitted here and described in
detail elsewhere [9], including polymorphism, sum types, and the foreign function
interface. The following gives a brief summary.

Much of the syntax presented in our fragment is standard for a functional
language, such as handling control flow (if) and local bindings (let). The main
point of difference is Cogent’s record system: Some care is needed to reconcile
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Fig. 2. Definitions for Cogent fragment

record types and linear types. If a record contains at least one linear field, the
whole record is of linear type. Otherwise, the linear field could be shared by
sharing the record.

Accessing records becomes more complex as well. For instance, assume that
Object is a type synonym for a record type containing an integer and two (linear)
buffers, where Object = {size :: U32,b1 :: Buf,b2 :: Buf} u. Let us say we want to
extract the field b1 from an Object. If we extract just a single Buf, we have
implicitly discarded the other buffer b2. However, we cannot return the entire
Object along with Buf, as this would introduce aliasing. Our solution is to
return along with Buf an Object where the field b1 cannot be extracted again,
and reflect this in the field’s type, written as b1 :: Buf. This field extractor, whose
general form is take x {f = y} = e1 in e2, operates as follows: given a record e1,
it binds the field f of e1 to the variable y, and the new record to the variable x
in e2. If that field is linear, it will then be marked as unavailable, or taken, in
the type of the new record x.

Conversely, we also introduce a put operation, which, given a record with
a taken field, allows a new value to be supplied in its place. The expression
put e1.f := e2 returns the record in e1 where the field f has been replaced with
the result of e2. Unless the type of the field f allows it to be discarded, it must
already be taken, to avoid accidentally destroying our only reference to a linear
resource.
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Fig. 3. Example function in Cogent. flip updates a record on the heap in place.

We distinguish boxed records stored on the heap from unboxed records that
are passed by value. Unboxed records can be created using a simple struct lit-
eral {fi = ei}. Boxed records are created by invoking an externally-defined C
allocator function. For these allocation functions, it is often convenient to allo-
cate a record with all fields already taken, to indicate that they are uninitialised.
That is, a function for allocating Object-like records might return values of type:
{size :: U32,b1 :: Buf,b2 :: Buf} w.

Also included in a record type is the storage mode of the type. A record
is stored on the heap when its associated mode m is not unboxed. For boxed
records, the storage mode distinguishes between those that are writable vs. read-
only.

Example 1. Figure 3 defines a simple function in Cogent which, given a mutable
record x, first takes the field f and, depending on its value, destructively updates
the field with a new value, returning the updated record.

The details of Cogent’s type system, semantics, and this proof are presented
in [9], we only repeat the top-level concepts here.

The dynamic big step update semantics maps a triple of environment U ,
expression e, and mutable store μ to a result value u and a new mutable envi-
ronment μ′, written U � e | μ ⇓u u | μ′. The rules [9] for variables and let are
straightforward. Functions are top-level functions in Cogent, and a function
name simply evaluates to the lambda-expression it represents. The take and
put rules evaluate as described above.

The static semantics include the standard typing judgement Γ � e : τ . Unlike
conventional type systems, linear type systems are substructural, which means
that the context Γ cannot be treated merely as a set of assumptions that always
grows as one descends into the syntax tree. Instead, assumptions may also be
removed from the context. This complication requires us to occasionally gener-
alise the corres rules presented in Sect. 3.4 with multiple typing assumptions
with different contexts.

To state type preservation for Cogent, we define the corresponding typing
judgement for dynamic values, written u | μ : τ and a generalisation of it to envi-
ronments and contexts, written U | μ : Γ . With this, we can prove the following
(see also [9]).

Theorem 1 (type preservation). For a program e, if Γ � e : τ and U | μ : Γ
and U � e | μ ⇓u u | μ′, then u | μ′ : τ
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Fig. 4. Partial type erasure of dynamic typing relation for update semantics

For a Cogent value to be well-typed, all accessible pointers in this value,
e.g. a record, must be valid. This is important for proving safety, but becomes
cumbersome when showing refinement to C as there exist values in the C code,
such as those for taken fields, which may include temporarily invalid pointers. We
therefore include additional information in each Cogent value, called its repre-
sentation, which provides enough type information to determine the correspond-
ing C type, without requiring recursive descent into the heap. In other words,
the representation shown in Fig. 4 contains only the type information which is
pertinent to C, with the linearity information erased. We call this technique
partial type erasure. The value typing relation ensures that the representation
information agrees with the value’s type.

2.2 AutoCorres and C Monads in Isabelle/HOL

We use the C-to-Simpl [13] parser to provide a formal semantics for the generated
C code. In principle, we could work from the C parser’s output directly; however,
this would mean dealing with the details of its low-level memory model. Instead,
we opt to work with a typed heap model, provided by AutoCorres [4]. Specifically,
the state of the AutoCorres monadic representation contains a set of typed heaps,
each of type τ ptr ⇒ τ , one for each type τ used on the heap in the C input
program.

As AutoCorres was designed for human-guided verification, it uses many
context-sensitive rules to simplify the generated code. As we aim to verify code
automatically, we switch off most of these simplification stages in order to obtain
predictable output.

AutoCorres generates shallow embeddings of code in the nondeterministic
state monad of Cock et al. [3]. In this monad, computation is represented by
functions of type state ⇒ (α × state) set × bool . Here state is the global state of
the monadic program, including global variables, while α is the return-type of the
computation. A computation takes as input the global state and returns a set,
results, of pairs with new state and result value. Additionally the computation
returns a boolean, failed , indicating whether there potentially was undefined
behaviour.

As C does not guarantee that all pointer locations are valid, AutoCorres emits
is-valid guards before each memory access. When proving refinement between
Cogent and monadic code, we need to discharge those guards using a state
invariant (Sect. 3.2).

Figure 5 shows an example AutoCorres specification, using the following key-
words:
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do . . . ; . . . od sequence of statements
condition cond e1 e2 run e1 if cond is true, otherwise run e2
return v monadic return
gets f access part of monadic state given by f
modify h update part of monadic state given by h
guard G program fails if monadic state does not satisfy G

3 Refinement Framework

Recall that for a well-typed Cogent program, the compiler emits C code, a
deep embedding of the program’s semantics, and a proof that the C code cor-
rectly refines this embedding. We choose C as a compilation target because most
existing systems code is written in C, and thanks to tools like CompCert and
gcc translation validation, our C subset has formalised semantics and an existing
formal verification infrastructure.

The right side of Fig. 1 provides an overview of the generation of our refine-
ment proof. To phrase the refinement statement, we first define how deeply-
embedded Cogent values relate to values in the monadic embedding (Sect. 3.2).

The C code generation is straightforward and this step itself does not per-
form global optimisations or transformations. Such transformations, for instance
A-normalisation, are performed in earlier compiler phases. A-normalisation in
particular is performed to simplify code generation, but it also simplifies our C
refinement. Since it is performed early (and verified early on top of the shal-
low embedding [9]), it is sufficient for us to only consider Cogent expressions
in A-normal form here, where nested subexpressions are replaced with explicit

Fig. 5. Intermediate representations of Cogent function from Fig. 3. Left: A-
normalised source code, embedded into Isabelle/HOL. Right: AutoCorres monadic
semantics for generated C code.



A Framework for the Automatic Formal Verification of Refinement 331

variable bindings. With this, the refinement calculus contains a set of composi-
tional corres proof rules, typically one for each A-normal Cogent construct,
which are applied automatically in a syntax-directed manner (Sect. 3.4).

The corres proof rules depend on preconditions about the expected state of
the program, such as preconditions about the type and validity of pointers in
the heap. We propagate the conditions similarly to the proof calculus of Cock
et al. [3]. Our refinement theorem does not need an explicit assumption of well-
typedness for the whole Cogent program — The proof tactic will simply fail
for programs that are ill-typed.

Since our corres proof rules are specialised to Cogent and to the operation
of the compiler, we can predict the form of their preconditions and design proof
rules to combine them. This forms the basis for automation.

3.1 Refinement Statement

We define refinement generically between a monadic computation pm and a
Cogent expression e, evaluated under the update semantics. We denote the
refinement predicate corres. The state relation R changes for each Cogent
program, so we parametrise corres by an arbitrary state relation R. It is addi-
tionally parametrised by the typing context Γ and the environment U , as well as
by the initial update semantics store μ and monadic shallow embedding state σ.

Definition 1 (correspondence)

corres R e pm U Γ μ σ
def=

U | μ : Γ −→ (μ, σ) ∈ R −→
(¬ failed (pm σ) ∧
(∀vm σ′. (vm, σ′) ∈ results (pm σ) −→

(∃μ′ u. U � e | μ ⇓u u | μ′ ∧ (μ′, σ′) ∈ R ∧ val-rel u vm)))

Definition 1 states for well-typed stores μ that if the state relation R holds
initially, then the monadic computation pm cannot fail and, moreover, for all
executions of pm there must exist a corresponding execution under the update
semantics of the expression e such that the final states are related by a state
relation R and a value relation val -rel holds between the results of e and pm.3

We present the state and value relations in Sect. 3.2.
AutoCorres proves that if the monadic code never fails, then the C code

is type- and memory-safe, and is free of undefined behaviour [4]. We prove
non-failure as a side-condition of the refinement statement, essentially using
Cogent’s type system to guarantee C memory safety during execution. The
corres predicate can compose with itself sequentially: it both assumes and shows
the relation R, and the additional typing assumptions are preserved thanks to
type preservation (Theorem 1).
3 Although corres technically permits the monadic code to return no results, the code

that we generate will additionally always return results �= ∅ as long as it has not
failed .
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3.2 Data Relations

For each program, based on a library for primitive types, we generate a set of
relations between the values, types and heaps of the Cogent and monadic code.
We denote these as val -rel , type-rel and R respectively.

We must give these relations separate definitions for each Cogent type,
because each C struct type is embedded as a distinct Isabelle/HOL record. We
use Isabelle’s ad-hoc overloading mechanism for this.

Recall that AutoCorres generates different typed heaps for each C type. The
type relation type-rel is used by the state relation R to select the corresponding
typed heap for each Cogent type. It is defined using the repr function (Fig. 4)
which performs partial type erasure, unifying Cogent types that differ only in
linear annotations in order to relate them to the same C type.

Given val -rel and type-rel for a particular Cogent program, the state rela-
tion R defines the correspondence between the store μ over which the Cogent
update semantics operates, and the state σ of the monadic shallow embedding.
This relation is made into an invariant in corres (Sect. 3.1); it allows us to show
that all C pointer accesses satisfy is-valid , whenever there are corresponding
objects in the Cogent store μ.

Definition 2 (state relation). (μ, σ) ∈ R if and only if for all pointers p in
the domain of μ, there exists a value v in the appropriate heap of σ (as defined
by type-rel) at location p, such that val-rel (μ p) v holds.

Generating Data Relations. We generate R, val -rel and type-rel after
obtaining the monadic program and its typed heaps from AutoCorres. Our
Cogent compiler outputs a list of (Cogent,C) type pairs, which is used by an
Isabelle/ML procedure to generate the needed relations.

Example 2. The program in Fig. 5 uses the types U8, Bool and {f :: U8}, which
correspond to the C types word8, bool and rec1, respectively. For val -rel and
type-rel , the U8–word8 relation can be defined a priori, but bool and rec1 are
generated with the monadic program and their data relations are generated
dynamically:

(pre-defined) val -rel (a :: U8) (aC :: word8) def= (a = aC)
val -rel (a :: Bool) (aC ::bool) def= (a = (bool aC �= 0))

val -rel (a :: {f :: U8}) (aC :: rec1)
def= val -rel (a.f) (aC .f)

Note that the val -rel definition for {f :: U8} depends on the definition for its field
of type U8. The Cogent compiler always outputs the type list in dependency
order, so this does not pose a problem.

The state relation R cannot be overloaded in the same way as val -rel and
type-rel , because it relates the heaps for every type simultaneously. We introduce
an intermediate state relation, heap-rel , which relates a particular typed heap
with a portion of the Cogent store. Like the other relations, this intermediate
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relation can make use of type-based overloading. Following Definition 2, we define
heap-rel for each type τ that appears on the heap as follows:

heap-rel στ μ
def= ∀p. μ(p) �→ v ∧ type-rel (vrepr(v)) τ −→

is-valid στ p ∧ val -rel v στ [p]

where vrepr gives the partially-erased type for a value, similar to repr. The state
relation over all typed heaps στk is R σ μ

def= (heap-rel στ1 μ ∧ heap-rel στ2 μ ∧ . . . ).

3.3 Refinement Theorem

We state the overall top-level C refinement theorem below. In addition to the
assumptions listed here, it also assumes that corres holds for all the foreign
functions used in the program.

Theorem 2. Let f be a Cogent function, with type τ and body e. Let pm be
the monadic embedding of its generated C code. Let u and vm be arguments of
appropriate type for f and pm respectively. Then:

∀μ σ. val-rel u vm −→ corres R e (pm vm) (x �→ u) (x : τ) μ σ

Example 3. In Fig. 5, f = flip, pm = flipC , and τ = τ ′ = {f :: U8}.

3.4 Refinement Proof

This section describes the main components of the refinement proof automation,
as shown in Fig. 1: the proof calculus used to relate Cogent and C programs, the
generation of well-typedness theorems for Cogent, and the automated tactic
that combines these two components to perform the overall refinement proof.

Refinement Calculus. Figure 6 depicts the corres rules in our calculus for
variables, let, if , and for take and put expressions for boxed records. The full
calculus is available online [1] under c − refinement/COGENT Corres.thy. The
proofs of the corres rules for compound expressions rely on Theorem 1 to infer
value well-typedness.

The assumptions for these rules fall under three main groups:

1. Well-typedness assumptions; we generate typing theorems to discharge these.
2. Assumptions relating the values and mutable heaps of Cogent and C. Once

a C program is read and concrete data relations (Sect. 3.2) are defined, we
specialise the corres rules to simplify these assumptions.

3. corres assumptions on sub-expressions, discharged through our proof
automation.

The rules Var and Let correspond respectively to the two basic monadic oper-
ations return, which yields values, and do . . . ; . . . od, for sequencing compu-
tations.
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Fig. 6. Some of the important corres rules

Observe that Let is compositional : to prove that let x = e1 in e2 corre-
sponds to do e′

1; e′
2 od, we must prove that (1) e1 corresponds to e′

1 and (2) e2
corresponds to e′

2 when each are executed over corresponding results vu and vm

(e.g. as yielded by e1 and e′
1 respectively). This compositionality, which is present

in our whole calculus, significantly simplifies the automation of the refinement
proof.

The If rule relates if c then e1 else e2 expressions to monadic
condition (bool c′ �= 0) e′

1 e′
2 statements. It works similarly to Let, requir-

ing an equivalence between c and (bool c′ �= 0), and correspondences between e1
and e′

1, and between e2 and e′
2. Note that we represent booleans in C using a

struct bool with an integer field named bool ; we avoid C’s builtin type Bool
because it may be an alias for an existing integer type like U8 and therefore
indistinguishable from that integer type.
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The more intricate rules in Fig. 6 are Put and Take, which apply to put
and take on boxed records (additional rules exist for unboxed records). Recall
that boxed records are stored on the heap and are subject to the linear typing
rules. These two rules are involved and contain many assumptions. They are
mainly presented here to illustrate to the reader why we have a separate phase
later on dedicated to simplifying them.

The Put rule handles the correspondence between (let x = put e1.fk :=
e2 in e3) expressions and (do ← guard (λσ. is-valid σ p′); ← modify h;
e′
3 od) statements. Note that unlike let, if , and take, put does not contain

a continuation. Therefore, the compiler ensures that put expressions always
appear within let expressions, which allows us to have a compositional rule for
put in the same style as the other operators.

Recall that if e1 is a pointer p, put updates the field fk, of the record pointed
to by p to the value of e2. Similarly, the monadic code asserts that the corre-
sponding p′ is a valid pointer, then modifies the record at p′ in h. At this stage h
and is-valid are left unspecified, as these rules are defined generically regardless
of type. Therefore, our Put rule additionally includes a number of assumptions
describing the expected properties of h and is-valid . In the next subsection, we
specialise this rule to eliminate these assumptions.

Take is similar, it relates (take x {fk = y} = e1 in e2) expressions and

(do ← guard (λσ. is-valid σ p′); y′ ← gets f ′; e′ y′ od)

statements. Recall that take removes the field fk from e1, binds it to a new
variable y and runs e2. The corres assumptions of Take are that (1) p′ and
e1’s value are related, and (2) given related values vu and vm, e2 corresponds to
e′
2 vm under the extended value environment (fk �→ vu, e1 �→ p (Ptr r), U). We

need to re-add e1 to U because it is linear and cannot be reused.

Generating Specialised Rules. As mentioned earlier, we generate program-
specific proof rules for operators involving specific C types, such as take and
put. This is because the set of C types, different for each program, is shallowly
embedded into Isabelle/HOL. Thus, the assumptions for rules involving those
types can only be discharged once the C code has been parsed into Isabelle/HOL.

We could prove these assumptions while applying the corres rules, but this
would be inefficient for rules that are applied many times. Thus, we generate spe-
cialised rules in a separate preprocessing phase. Implemented as an Isabelle/ML
program, this phase reads the (Cogent,C) type list used for generating data
relations to produce rules for the appropriate C and Cogent types.

Example 4. For the Cogent record {f :: U8} in Fig. 5, we generate the following
specialised rules for take and put:
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(Γ1Γ2) � (take x {f = y} = e1 in e2) : τ ′

(Γ1Γ2) � e1 : {f :: U8} w (y �→ U8, x �→ {f :: U8} w, Γ2) � e2 : τ ′

p′ has type rec1 ptr (e1 �→ p (Ptr r)) ∈ U val-rel (p (Ptr r)) p′

type-rel (repr(U8)) word8 type-rel (repr({f :: U8} w)) (rec1 ptr)
(∀vu vm. val-rel vu vm −→ corresR e2 (e′

2 vm) (y �→ vu, x �→ (p (Ptr r)), U)
(y �→ U8, x �→ {f :: U8} w, Γ2) μ σ)

corres R (take x {f = y} = e1 in e2)
(do ← guard (λσ. is-valid σ p′); y′ ← gets (λσ. σ[p′].f); e′ y′ od)

U (Γ1Γ2) μ σ

Take

∃τ. (Γ1Γ2) � (let x = put e1.f := e2 in e3) : τ (Γ1Γ2) � e1 : {f :: U8} w

Γ1 � (put e1.f := e2) : {f :: U8} w (e1 �→ p (Ptr r)) ∈ U (e2 �→ v) ∈ U
val-rel (p (Ptr r)) p′ type-rel (repr({f :: U8} w)) (rec1 ptr) val-rel v v′

(∀μ′, σ′. corresR e3 e′
3 (e1 �→ p (Ptr r), U) (e1 �→ {f :: U8} w, Γ2) μ′ σ′)

corresR (let x = put e1.f := e2 in e3)
(do ← guard (λσ. is-valid σ p′); ← modify (λσ. σ[p′].f := v′); e′

3 od)
U (Γ1Γ2) μ σ

Put

Note that the cumbersome record-update assumptions from Fig. 6 have been
reduced to val -rel and type-rel statements. This is only possible after we obtain
the concrete program and its data relations. We also instantiate the state relation
R and show that take and put preserve it, allowing us to simplify the heap-
update assumptions.

Well-Typedness. The Cogent compiler proves, via an automated Isabelle
tactic, that the deep embedding of the input program is well-typed. Specifically,
it shows for each function f with argument x, body e, and type τ1 → τ2, that
x �→ τ1 � e : τ2.

Recall that the type system is substructural, and that proving refinement
requires access to the typing judgements for each sub-expression of the program.
To solve this, the Cogent compiler instructs Isabelle to store all intermediate
typing judgements established during type checking. These theorems are stored
in a tree structure, isomorphic to the Cogent program’s type derivation tree.
Each node is a typing theorem for a program sub-expression, and can be retrieved
by the refinement proof tactic as it descends into the program.

Proof Automation. The core of our refinement prover is an Isabelle/ML tactic
that proves the corres refinement theorem (Sect. 3.3) for each Cogent function
in the program, by applying the corres rules previously proven, both generic
and specialised (Sect. 3.4). This algorithm is straightforward as our rules are
syntax-directed.

The tactic also expands definitions of val -rel and type-rel (Sect. 3.2) in order to
discharge data relation assumptions in those corres rules, and retrieves the type
derivation tree for the given Cogent function to discharge all well-typedness
assumptions.
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Example 5. For flip in Fig. 5, we wish to prove the refinement theorem

corres R flip (flipCvm) (x �→ u) (x : {f :: U8} ) μ σ

or after unfolding
corres R (take x′ {f = y} = x in . . . )

(do guard (λσ. is-valid σ x); y ← gets (λσ. σ[r].f); . . . od)
(x �→ u) (x : {f :: U8} ) μ σ

The first step of the proof applies the specialised take rule for {f :: U8} (Sect. 3.4).
After discharging its typing and val -rel assumptions, we are left with a corres
obligation on the remainder of the function, which can in turn be solved using
the other proof rules.

Our tactic can be used easily for single functions, but extending it to whole
programs required significant proof engineering effort, as we must handle func-
tion calls both to externally-defined C functions and to (potentially higher-order)
Cogent functions.

Foreign functions. Cogent code depends on calls to foreign C functions to per-
form loops and I/O. Our framework requires these functions to be well-behaved,
i.e. they respect Cogent’s termination order and do not break the Cogent
type system (e.g. by modifying variables they do not have access to).

Foreign functions are user-supplied and not verified automatically. Thus,
when proving refinement theorems for Cogent code that calls these functions,
we automatically insert assumptions that they are well-behaved. These assump-
tions remain until they are resolved by manual verification.

Whole-program refinement. Cogent is a total language and does not permit
recursion, so we have, in principle, a well-ordering on function calls in any pro-
gram. However, for higher-order functions, this well-ordering is non-obvious and
difficult to work with.

In practice, most function calls in systems code are direct calls to first-
order functions. For such functions, we can simply prove the corres theorems in
bottom-up fashion, starting from the leaf functions and ending at the top-level
functions.

There is one major exception: Cogent code cannot express loops using only
first-order functions. Our Cogent programs use iteration combinators, which
are second-order foreign functions that take a Cogent function pointer as the
loop body (similar to the map or fold combinators in functional programming).

Therefore, our framework also supports second-order calls to foreign func-
tions. Before assuming corres for these functions, we first prove corres for the
argument function (i.e. the loop body).

This technique allows us to automate refinement for code with first- and
second-order calls. While this restriction means that not all Cogent programs
can be verified in our framework, we developed Cogent code for two file system
drivers [2] in this fragment, demonstrating that substantial programs can be
written in this subset.
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4 Related Work

To date, the largest trustworthy compilation projects are the CompCert [7] C
compiler and the CakeML [6] ML environment. In contrast to Cogent, they
compile general-purpose programming languages and rely more heavily on veri-
fied compilation passes.

CompCert translates (a subset of) C to binary while our compiler translates
the functional Cogent language to C. CompCert’s core compilation process is
verified and its optimisation passes are validated; the compiler executable itself
is extracted from Coq into Caml. There is ongoing work to validate the Coq
code extraction process and the Caml compiler for CompCert.

We chose to use certificates for most of Cogent’s compiler passes, because
our proof tools for C run in Isabelle directly, and our Cogent compiler is writ-
ten in Haskell, which does not have a formal semantics nor a verified runtime
at present. On one hand, processing the certificates is time-intensive. On the
other hand, we do not need to trust the code extractor, nor the runtime for the
extracted language. We do need to either trust the C compiler or use a verified
one.

Cogent is closer to CakeML in that it is a high-level source language. How-
ever, Cogent targets a different application area. CakeML is a Turing-complete
dialect of ML with complex semantics, and is suited for application code. On
the other hand, Cogent is a restricted language of total functions with simple
semantics that facilitate equational reasoning. Cogent avoids the need for a
large runtime and a garbage collector so it can be used for embedded systems
code, especially layered systems code with minimal sharing such as the control
code of filesystems or network protocol stacks.

5 Take Away Lessons and Future Work

When designing the certifying compiler, we made a trade-off by writing the
Cogent compiler tool-chain in Haskell, while the proof component was written
in Isabelle’s Standard ML environment. This divide allows the Cogent tool-
chain to be used outside the theorem prover, and allows the proof tools to build
on the existing C parser and AutoCorres framework.

On the other hand, this choice leads to complexity in designing the inter-
face between these components. This is illustrated by our well-typedness proof
of Sect. 3.4, where the Cogent compiler generates a certificate with the nec-
essary type derivation hints. Initially, we used a näıve format consisting of the
entire derivation tree, resulting in gigabyte-sized certificates. We implemented
various compression techniques to reduce the certificates to a reasonable size (a
few megabytes). It is possible to avoid these certificates entirely by duplicating
the type inference algorithm in Isabelle/ML, but this would increase the code
maintenance burden.

Even though reusing the C parser and AutoCorres is desirable, they take a
long time to process our verbose generated C code. They take a total of 12 CPU
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hours to translate the ext2 filesystem into a monadic embedding and they take
32 CPU hours when applied to BilbyFs. Further proof optimisation is needed.

Optimisation of the generated code is another topic for future work. High-
level Cogent-to-Cogent optimisations will be easy, as they can be verified over
the shallow embedding of Cogent using equational rewriting. For instance, we
verified A-normalisation using rewriting; while it is not an optimisation, it is an
example of a code transformation that does not affect the Cogent-to-C proof.
For low-level optimisations, we rely on the C compiler so as not to complicate
our syntax-directed proof approach.

6 Conclusions

We developed a compositional refinement calculus and proof tools to create a
fully automatic refinement certificate from Cogent’s update semantics to C,
including the use of partial type erasure to relate Cogent’s expressive types
to simpler C types. This refinement certificate is the most involved step in the
full automation of the overall compiler certificate. Through the co-generation of
code and proofs, our framework significantly reduces the cost of reasoning about
efficient C code, by automatically discharging cumbersome safety obligations,
and providing an embedding more amenable to verification. Our framework has
been applied successfully to two real-world file-systems.
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