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Abstract. This paper presents the first formalization of three classic
confluence criteria for first-order term rewrite systems by Huet and
Toyama. We have formalized proofs, showing that (1) linear strongly
closed systems, (2) left-linear parallel closed systems, and (3) left-linear
almost parallel closed systems are confluent. The third result is extended
to commutation. The proofs were carried out in the proof assistant
Isabelle/HOL as part of the library IsaFoR and integrated into the cer-
tifier CeTA, significantly increasing the number of certifiable proofs pro-
duced by automatic confluence tools.

1 Introduction

Confluence of rewrite systems is an important property, which is intimately
connected to uniqueness of normal forms, and hence to determinism of programs.
In recent years there has been tremendous progress in establishing confluence
or non-confluence of TRSs automatically, with a number of tools under active
development, like ACP [2], Saigawa [8,11], CoLL [18], and our own tool, CSI [23].

The recent achievements in confluence research have enabled a competition1

where such automated tools try to establish/refute confluence. As the proofs
produced by these tools are often complicated and large, there is interest in
checking them with trustable certifiers like CeTA [21]. (CeTA is a certifier for
termination, confluence and complexity proofs for TRSs. Other certifiers exist
for termination proofs, notably Rainbow [4] and CiME3 [5].) Given a certificate
in CPF (certification problem format) [19], CeTA will either answer CERTIFIED
or return a detailed error message why the proof was REJECTED. Its correctness
is formally proven as part of IsaFoR, the Isabelle Formalization of Rewriting.
IsaFoR contains executable “check”-functions for each formalized proof technique
together with formal proofs that whenever such a check succeeds, the technique
was indeed applied correctly. Isabelle’s code-generation facility is used to obtain
a trusted Haskell program from these check functions: the certifier CeTA.2

In the recent past, several confluence results have been formalized, start-
ing from the fundamental result by Knuth and Bendix [12] that a terminating
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rewrite system is confluent if and only if all its critical pairs are joinable. For
non-terminating rewrite systems, weak orthogonality as well as sufficient con-
ditions for non-joinability of critical pairs based on unification, discrimination
pairs [1], interpretations, and tree automata [6] have been formalized. These
results are described in [14]. More recently, redundant rules [13] and rule label-
ing [15] increased the number of certifiable confluence proofs significantly.

In this paper we report on the formalization of three classical confluence
results. Two of these are due to Huet [10] and presented in full detail in the
textbook of Baader and Nipkow [3, Lemma 6.3 and Sect. 6.4]. The third result
is due to Toyama [22].

The remainder of this paper is organized as follows. After recalling basic
notions of term rewriting in the next section, in Sect. 3 we report on the for-
malization of the result that linear strongly closed rewrite systems are conflu-
ent. Linearity is an important limitation, but the result does have its uses [7].
Section 4 is devoted to the formalization of the result of Huet that a left-linear
rewrite system is confluent if its critical pairs are parallel closed. In Sect. 5 we
consider Toyama’s generalization of the previous result. Apart from a weaker
joinability requirement on overlays, the result is extended to the commuta-
tion of two rewrite systems. Our formalization is an important first step for
the certification of confluence proofs produced by CoLL [18], which is based on
commutation. In Sect. 6 we explain what is needed for the automatic certifica-
tion of confluence proofs that employ the formalized techniques and we present
experimental results. In the final section we conclude with an outlook on future
work, in particular the challenges that need to be overcome when extending
the results from parallel closed rewrite systems to development closed higher-
order rewrite systems [17]. The main Isabelle theories developed and integrated
into IsaFoR are Strongly Closed.thy, for the result on strongly closed rewrite
systems, Parallel Closed.thy for results on (almost) parallel closed systems
(where we make heavy use of multihole contexts, cf. Multihole Context.thy),
and Critical Pair Closure Impl.thy for the executable check functions.

2 Preliminaries

We assume familiarity with the basics of rewriting [3,20]. Knowledge of Isabelle [16]
is not essential but experience with an interactive theorem prover might be helpful.

Let F be a signature and V a set of variables disjoint from F . By T (F ,V) we
denote the set of terms over F and V. Positions are strings of positive natural
numbers, i.e., elements of N

∗
+. We write q � p if qq′ = p for some position q′,

in which case p\q is defined to be q′. Furthermore q < p if q � p and q �= p.
Finally, positions q and p are parallel, written as q ‖ p, if neither q � p nor
p < q. Positions are used to address subterm occurrences. The set of positions
of a term t is defined as Pos(t) = {ε} if t is a variable and as Pos(t) = {ε}∪{iq |
1 � i � n and q ∈ Pos(ti)} if t = f(t1, . . . , tn). The subterm of t at position
p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if p = iq and
t = f(t1, . . . , tn). We write s[t]p for the result of replacing the subterm at position

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Strongly_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Parallel_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Rewriting/Multihole_Context.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Critical_Pair_Closure_Impl.thy
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p of s with t. The size of a term t, i.e., the size of Pos(t), is denoted by |t|. We
write Var(t) for the set of variables occurring in the term t. A term t is linear if
every variable occurs at most once in it. A substitution is a mapping σ from V
to T (F ,V) such that its domain {x ∈ V | σ(x) �= x} is finite. We write tσ for
the result of applying σ to the term t.

Assume a fresh symbol �, called hole. A multihole context is a term that may
contain an arbitrary number of holes. Filling the holes in a multihole context C
with terms t1, . . . , tn is written as C[t1, . . . , tn]. (At this point we mention that
in the formalization we of course have to make sure that the number of terms n
matches the number of holes in C. To ease readability we usually do not make
this explicit.) A term with exactly one hole is just called context and we also
write s[]p for the context obtained by replacing position p in s by the hole. If
C[s] = t for some context C then s is called a subterm of t and we write s� t. If
additionally C �= � then s is a proper subterm of t, which is denoted by s � t.

A rewrite rule is a pair of terms (�, r), written � → r.3 A rewrite rule � → r is
left-linear if � is linear, right-linear if r is linear, and linear if it is both left- and
right-linear. A variant of a rewrite rule is obtained by renaming its variables. A
term rewrite system (TRS) is set of rewrite rules over a signature. In the sequel,
signatures are left implicit. A TRS is (left-)linear if all its rules are (left-)linear.
A rewrite relation is a binary relation on terms that is closed under contexts and
substitutions. For a TRS R we define →R (often written as →) to be the smallest
rewrite relation that contains R. As usual →= and →∗ denote the reflexive, and
reflexive and transitive closure of →, respectively.

A relation → is said to have the diamond property if ← · → ⊆ → · ← and
is called confluent if its reflexive transitive closure has the diamond property.
It is strongly confluent if ← · → ⊆ →= · ∗←. The results in Sect. 5 will be
proved in the more general setting of commutation. Two relations →1 and →2

commute if ∗
1← · →∗

2 ⊆ →∗
2 · ∗

1←, they strongly commute if 1← · →2 ⊆ →=
2 · ∗

1←.
The following lemma captures the well-known connections between the diamond
property, (strong) confluence and (strong) commutation.

Lemma 1. Let →, →1, →2, →1′ , and →2′ be binary relations.

1. If → has the diamond property then it is confluent.
2. If → is strongly confluent then it is confluent.
3. If →1 and →2 strongly commute then they commute.
4. If → commutes with itself then it is confluent.
5. If →1 ⊆ →1′ ⊆ →∗

1 and →1′ is confluent then →1 is confluent.
6. If →1 ⊆ →1′ ⊆ →∗

1 and →2 ⊆ →2′ ⊆ →∗
2 and →1′ and →2′ commute then

→1 and →2 commute.

Later, when applying the last two statements, the relations →1′ and →2′

between one and many step rewriting that we will use is parallel rewriting.

3 We do not impose the common variable conditions, i.e., the restriction that � is not
a variable and all variables in r are contained in �.
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Definition 1. For a TRS R, the parallel rewrite relation −→∥ R is defined induc-
tively by

– x −→∥ R x if x is a variable,
– �σ −→∥ R rσ if � → r ∈ R, and
– f(s1, . . . , sn) −→∥ R f(t1, . . . , tn) if f is a function symbol of arity n and si −→∥ R ti

for all 1 � i � n.

The following properties of parallel rewriting are well-known and follow by
straight-forward induction proofs.

Lemma 2. The following properties of −→∥ hold:

– →R ⊆ −→∥ R ⊆ →∗
R,

– s −→∥ R s for all terms s,
– if xσ −→∥ R xτ for all x ∈ Var(s) then sσ −→∥ R sτ .

The confluence results formalized in this work are based on (left-)linearity and
restricted joinability of critical pairs. Critical pairs arise from situations where
two redexes overlap with each other. The definition we use here is slightly non-
standard in two regards. First we consider critical pairs for two rewrite systems
to use them in a commutation setting later on. Second we do not exclude root
overlaps of a rule with (a variant of) itself as is commonly done. This allows us
to dispense with the variable condition that all variables in the right-hand side of
a rule must also occur on the left. Moreover, if a TRS does satisfy the condition
then all extra critical pairs that would normally be excluded are trivial.

A critical overlap (�1 → r1, C, �2 → r2)μ of two TRSs R1 and R2 consists of
variants �1 → r1 and �2 → r2 of rewrite rules in R1 and R2 without common
variables, a context C, such that �2 = C[�′] with �′ /∈ V and a most general
unifier μ of �1 and �′. From a critical overlap (�1 → r1, C, �2 → r2)μ we obtain a
critical peak Cμ[r1μ] R1← Cμ[�1μ] →R2 r2μ and the corresponding critical pair
Cμ[r1μ] R1←�→R2 r2μ. If C = �, the corresponding critical pair is called an
overlay and written as r1μ R1←��→R2 r2μ, otherwise it is called an inner critical
pair, and denoted using R1←·�→R2 . When considering the critical pairs of a TRS
R with itself we drop the subscripts and write ←�→ instead of R←�→R.

3 Strongly Closed Critical Pairs

The first confluence criterion we consider is due to Huet [10] and based on the
observation that in a linear rewrite system it suffices to have strong-confluence
like joins for all critical pairs in order to guarantee strong confluence of the
rewrite system. A preliminary version of the formalization described in this
section was reported in [14].

Definition 2. A TRS R is strongly closed if every critical pair s ←�→ t of R
satisfies both s →= · ∗← t and s →∗ · =← t.
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The following folklore lemma tells us that in a linear term applying a substi-
tution can be done by replacing the one subterm where the variable occurs and
applying the remainder of the substitution.

Lemma 3. Let t be a linear term and let p ∈ Pos(t) be a position with t|p = x.
Then for substitutions σ and τ with σ(y) = τ(y) for all y ∈ Var(t) different from
x we have tτ = tσ[τ(x)]p.

The proof that linear strongly closed systems are strongly confluent is very
similar to the one of the famous critical pair lemma, by analyzing the relative
positions of the rewrite steps in a peak. The next lemma, which appears implicitly
in Huet’s proof of Corollary 1, takes care of the case where one position is above
the other.

Lemma 4. Let R be a linear, strongly closed TRS and assume s →R t with rule
�1 → r1 and substitution σ1 at position p1 and let s →R u with rule �2 → r2 and
substitution σ2 at position p2 with p1 � p2. Then there are terms v and w with
t →∗

R v =
R← u and t →=

R w ∗
R← u.

Proof (Sketch). Since the proof is standard and the formalization closely follows
the paper proof, we only sketch the idea and refer to the formalization for full
details. We distinguish whether the step from s to u overlaps with the one from
s to t or takes place in the substitution. If there is a critical pair, we can close
it by the assumption that the system is strongly closed. If the step from s to u
happens in the substitution we can join in the required shape due to linearity of
R, which avoids duplication of the redex, by using Lemma3.

Now the main result of this section follows easily.

Corollary 1 (Huet [10]). If a TRS R is linear and strongly closed then →R
is strongly confluent.

Proof. Assume s →R t and s →R u. Then there are positions p1, p2 ∈ Pos(s),
substitutions σ1, σ2 and rules �1 → r1, �2 → r2 in R with s|p1 = �1σ1, s|p2 = �2σ2

and t = s[r1σ1]p1 , u = s[r2σ2]p2 . We show existence of a term v with t →∗ v
and u →= v by analyzing the positions p1 and p2. If they are parallel then
t → t[r2σ2]p2 = u[r1σ1]p1 ← u. If they are not parallel then one is above the
other. In both cases we conclude by Lemma 4.

Then by Lemma 1 R is also confluent.

Example 1. Consider the TRS R consisting of the two rewrite rules

f(f(x, y), z) → f(x, f(y, z)) f(x, y) → f(y, x)

There are four non-trivial critical pairs

f(f(x, f(y, z)), v) ←�→ f(f(x, y), f(z, v)) f(x, f(y, z)) ←�→ f(z, f(x, y))
f(z, f(x, y)) ←�→ f(x, f(y, z)) f(f(y, x), z) ←�→ f(x, f(y, z))

Since R is linear and all critical pairs are strongly closed, R is confluent.
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The next example shows how to apply the criterion to a TRS that does not
fulfill the variable conditions.

Example 2. Consider the linear TRS R consisting of the following three rules:

a → f(x) f(x) → b x → f(g(x))

There are five critical pairs modulo symmetry:

f(y) ←�→ f(x) f(g(a)) ←�→ f(x) b ←�→ b

f(g(f(x))) ←�→ b f(g(x)) ←�→ f(g(x))

Using the second rule it is easy to see that all of them are strongly closed. Hence
R is confluent.

The next example shows that, if the variable condition is not satisfied, critical
pairs that arise from overlapping a rule with itself at the root are essential.

Example 3. Consider the linear rewrite system R consisting of the rule a → y.
Because of the peak x ← a → y, R is not confluent and indeed x ←�→ y is a
non-joinable critical pair according to our definition.

In the next section we consider a criterion that drops the condition on R to
be right-linear.

4 Parallel Closed Critical Pairs

The criterion from the previous section requires the TRS to be linear and while
left-linearity is a common restriction, right-linearity is a rather unnatural one.
Thus we turn our attention to criteria for left-linear systems that change the
restriction on the joinability of critical pairs. The crucial observation is that in
a non-right-linear system executing the upper step in variable overlap can dupli-
cate the redex below. Thus to join such a situation multiple steps might be neces-
sary, all of which take place at parallel positions. Consequently we consider parallel
rewriting. The following definition describes the new joinability condition.

Definition 3. A TRS R is parallel closed if every critical pair s ←�→ t of R
satisfies s −→∥ R t.

Together with left-linearity this guarantees the diamond property of the par-
allel rewrite relation.

Theorem 1 (Huet [10]). If a TRS R is left-linear and parallel closed then −→∥ R
has the diamond property.
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Fig. 1. Overview of the proof of Theorem1.

The proof of this theorem is much more involved than the one for strongly
closed systems. The first observation is that we will now have to consider a peak
of parallel steps, in order to show the diamond property of −→∥ . In case the two
parallel steps are orthogonal to each other, they simply commute by the well-
known Parallel Moves Lemma. However, if they do interfere the assumption of
the theorem only allows us to close a single critical pair to reduce the amount
of interference. Thus we will have to use some form of induction on how much
the patterns of the two parallel steps overlap. Figure 1 shows the setting for
the overlapping case. The horizontal parallel step, described by the horizontally
striped redexes, and the vertical step, described by the vertically striped redexes,
overlap. Hence there is a critical pair, say the one obtained from overlapping the
leftmost vertical redex with the leftmost horizontal redex. Then, by assumption
there is a closing parallel step, which, since it takes place inside the critical
pair, can be combined with the remaining horizontal redexes to obtain a new
peak with less overlap, which can be closed by the induction hypothesis. When
making this formal we identified two crucial choices. First the representation
of the parallel rewrite relation and second the way to measure the amount of
overlap between two parallel steps with the same source. Huet in his original
proof heavily uses positions. That is, a parallel step is defined as multiple single
steps that happen at parallel positions and for measuring overlap he takes the
sum of the sizes of the subterms that are affected by both steps. More precisely,
writing −→∥ P for a parallel step that takes place at positions in a set P , for a peak
t P1←−∥ s −→∥ P2 u he uses ∑

q∈Q

|s|q|
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where Q = {p1 ∈ P1 | p2 � p1 for some p2 ∈ P2} ∪ {p2 ∈ P2 | p1 � p2 for some
p1 ∈ P1}. This formulation is also adopted in the text book by Baader and Nip-
kow [3]. Consequently, when starting the present formalization, we also adopted
this definition. However, the book keeping required by working with sets of posi-
tions as well as formally reasoning about this measure in Isabelle became so convo-
luted that it very much obscured the ingenuity and elegance of Huet’s original idea
while at the same time defeating our formalization efforts. Hence in the end we had
to adopt a different approach.

Toyama [22], in the proof of his extension of Huet’s result, does not use
positions at all and instead relies on (multihole) contexts, which means a parallel
step is then described by a context and a list of root steps that happen in the
holes. To measure overlap he collects those redexes that are subterms of some
redex in the other step, i.e., decorating the parallel rewrite relation with the
redexes contracted in the step, for a peak t t1,...,tn←−∥ s −→∥ u1,...,um

u Toyama’s
measure is ∑

s∈S

|s|

where S = {ui | ui � tj for some tj} ∪ {tj | tj � ui for some ui}. However, this
measure turns out to be problematic as shown in the following example.

Example 4. Consider the TRS consisting of the following five rewrite rules:

f(a, a, b, b) → f(c, c, c, c) a → b a → c b → a b → c

Then we have the peak f(b, b, a, a)
a,a,b,b←−−−−∥ f(a, a, b, b)

f(a,a,b,b)−−−−−→∥ f(c, c, c, c).
The measure of this peak according to the definition above is 2, since S =
{a, b} ∪ ∅. Now after splitting of one of the four critical steps—it does not
matter which one—and closing the corresponding critical pair, we arrive at

f(a, a, b, b) f(c, c, c, c)

f(b, a, b, b)

f(b, b, a, a)

The measure of the new peak f(b, b, a, a)
a,b,b←−−−∥ f(b, a, b, b)

b,a,b,b−−−−→∥ f(c, c, c, c) is
still 2 since S = {a, b} ∪ {a, b}.

Note that using multisets instead of sets does not help, since then the measure
of the initial peak is 4 (S = {a, a, b, b}) and of the new peak, after closing the
critical pair, it is 7 since S = {a, b, b} 	 {b, a, b, b} (and even if we take into
account that three of the redexes are counted twice we still get 4). The problem
is that in the new peak the redex at position 1 of the closing step is counted
again, because b is a subterm of one the redexes of the other step. Hence it is
crucial to only count redexes at overlapping positions.
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To remedy this situation we will collect all overlapping redexes of a peak in a
multiset. These multisets will then be compared by �mul, the multiset extension
of the proper superterm relation. We start by characterizing parallel rewrite
steps using multihole contexts.

Definition 4. We write s
C,a1,...,an−−−−−−−→∥ R t if s = C[a1, . . . , an] and t =

C[b1, . . . , bn] for some b1, . . . , bn with ai →ε
R bi for all 1 � i � n.

To save space we sometimes abbreviate a list of terms a1, . . . , an by a and
write s

C,a−−→∥ R t leaving length implicit. The following expected correspondence
is easily shown by induction.

Lemma 5. We have s −→∥ R t if and only if s
C,s−−→∥ R t for some C and s.

Now we can formally measure the overlap between two parallel rewrite steps
by collecting those redexes that are below some redex in the other step.

Definition 5. The overlap between two co-initial parallel rewrite steps is defined
by the following equations

�
( �,a←−−∥ s

�,b−−→∥
)

= {s}

�
(

C,a1,...,ac←−−−−−−∥ s
�,b−−→∥

)
= {a1, . . . , ac}

�
( �,a←−−∥ s

D,b1,...,bd−−−−−−→∥

)
= {b1, . . . , bd}

�
(

f(C1,...,Cn),a←−−−−−−−−−∥ f(s1, . . . , sn)
f(D1,...,Dn),b−−−−−−−−−→∥

)
=

n⋃

i=1

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)

where a1, . . . , an = a and b1, . . . , bn = b are partitions of a and b such that the
length of ai and bi matches the number of holes in Ci and Di, for all 1 � i � n.

Example 5. Applying this definition for the two peaks from Example 4 yields

�
(

f(�,�,�,�),a,a,b,b←−−−−−−−−−−−−∥ f(a, a, b, b)
�,f(a,a,b,b)−−−−−−−→∥

)
= {a, a, b, b}

�
(

f(b,�,�,�),a,b,b←−−−−−−−−−−∥ f(b, a, b, b)
f(�,�,�,�),b,a,b,b−−−−−−−−−−−−→∥

)
= {a, b, b}

and {a, a, b, b} �mul {a, b, b} as desired.

Note that our definition of � is in fact an over-approximation of the actual
overlap between the steps. That is because we do not split redexes into the left-
hand side of the applied rule and a substitution but take the redex as a whole.
The following example illustrates the effect.
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Example 6. Consider the rewrite system consisting of the two rules

f(x) → x a → b

and the peak a ← f(a) → f(b). We have

�
(

�,f(a)←−−−−∥ f(a)
f(�),a−−−−→∥

)
= {a}

although the two steps do not overlap—the step to the right takes place com-
pletely in the substitution of the one to the left (in fact the rewrite system in
question is orthogonal).

However, since we are dealing with parallel rewriting, no problems arise from
this over-approximation. This changes when extending the results to develop-
ment steps, see Sect. 7 for further discussion.

The following properties of � turned out to be crucial in our proof of
Theorem 1.

Lemma 6. For a peak
C,a←−−∥ s

D,b−−→∥ the following properties of � hold.

– If s = f(s1, . . . , sn) with C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆ �

(
C,a←−−∥ s

D,b−−→∥
)

for all 1 � i � n.

– The overlap is bounded by a, i.e., {a1, . . . , ac} �=
mul �

(
C,a←−−∥ s

D,b−−→∥
)

.

– The overlap is symmetric, i.e., �
(

C,a←−−∥ s
D,b−−→∥

)
= �

(
D,b←−−∥ s

C,a−−→∥
)

.

There is one more high-level difference between the formalization and the
paper proof. In the original proof one needs to combine the closing step for the
critical pair with the remainder of the original step in order to obtain a new
peak, to which the induction hypothesis can then be applied. This reasoning can
be avoided, by using an additional induction on the source of the peak. Then
the case where neither of the two parallel steps is a root step (and thus a single
step) can be discharged by the induction hypothesis of that induction.

The following technical lemma tells us that a parallel rewrite step starting
from sσ is either inside s, i.e., we can split off a critical pair, or we can do the
step completely inside σ.

Lemma 7. Let s be a linear term. If sσ
C,s1,...,sn−−−−−−→∥ R t then either t = sτ for

some substitution τ such that xσ −→∥ xτ for all x ∈ Var(s) or there exist a context
D, a non-variable term s′, a rule � → r ∈ R, a substitution τ , and a multihole
context C ′ such that s = D[s′], s′σ = �τ , Dσ[rτ ] = C ′[s1, . . . , si−1, si+1, . . . , sn]
and t = C ′[t1, . . . , ti−1, ti+1, . . . , tn] for some 1 � i � n.
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We are now ready to prove the main result of this section. To ease presen-
tation, the following proof does use the condition that the left-hand sides of
rewrite rules are not variables. By employing additional technical case analyses
this restriction can be easily dropped. We refer to the formalization for details.

Proof (of Theorem 1). Assume t
C,a←−−∥ s

D,b−−→∥ u. We show t −→∥ v ←−∥ u for some
term v by well-founded induction on the overlap between the two parallel steps
using the order �mul and continue by induction on s with respect to �. If s = x
for some variable x then t = u = x. So let s = f(s1, . . . , sn). We distinguish four
cases.

1. If C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then t = f(t1, . . . , tn) and
u = f(u1, . . . , un) and we obtain partitions a1, . . . , an = a and b1, . . . , bn = b

of a and b with ti
Ci,ai←−−−∥ si

Di,bi−−−→∥ ui for all 1 � i � n. Then, since we have

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆ �

(
C,a←−−∥ s

D,b−−→∥
)

by Lemma 6 and thus also

�
(

C,a←−−∥ s
D,b−−→∥

)
�=

mul �
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)

we can apply the inner induction hypothesis and obtain terms vi with ti −→∥
vi ←−∥ ui for all 1 � i � n and thus we have t −→∥ f(v1, . . . , vn) ←−∥ u.

2. If C = D = � then both steps are root steps and thus single rewrite steps
and we can write t = r1σ1

ε←− �1σ1 = s = �2σ2
ε−→ r2σ2 = u. Hence, since

�1σ1 = �2σ2, there is a critical pair r′1μ ←��→ r′2μ for variable disjoint variants
�′1 → r′1, �′2 → r′2 of �1 → r1, �2 → r2 with μ a most general unifier of �′1 and
�′2. Then by assumption r′1μ −→∥ r′2μ and by closure under substitution also
t = r1σ1 −→∥ r2σ2 = u.

3. If C = f(C1, . . . , Cn) and D = � then the step to the right is a single root

step and we write t = f(t1, . . . , tn)
C,a←−−∥ s = �σ

ε−→ rσ = u. Since � is linear
by assumption, we can apply Lemma 7 and either obtain τ with t = �τ and
xσ −→∥ xτ for all x ∈ Var(�) or a critical pair.
– In the first case define

δ(x) =

{
τ(x) if x ∈ Var(�)
σ(x) otherwise

We have t = �τ = �δ by definition of δ and hence t −→∥ rδ by a single
root step. Moreover we have u = rσ −→∥ rδ since xσ −→∥ xδ for all variables
x ∈ Var(r). This holds because either x ∈ Var(�) and then xσ −→∥ xτ = xδ
or x /∈ Var(�) and then xσ = xδ.

– In the second case Lemma 7 yields a context E, a non-variable term �′′,
a rule �′ → r′ ∈ R, a substitution τ , and a multihole context C ′ such



Certification of Classical Confluence Results 301

that � = E[�′′], �′′σ = �′τ , Eσ[r′τ ] = C ′[a1, . . . , ai−1, ai+1, . . . , ac] and
t = C ′[a′

1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
c] for some 1 � i � c. Since �′′σ = �′τ there

is a critical pair Eμ[r′μ] ←�→ rμ and by assumption Eμ[r′μ] −→∥ rμ and
thus also Eσ[r′τ ] −→∥ rσ. That is, we obtain a new peak

t
C′,a′
←−−−∥ Eσ[r′τ ] −→∥ rσ

with a′ = a1, . . . , ai−1, ai+1, . . . , ac. Since

�
(

C,a←−−∥ s
�,�σ−−−→∥

)
= {a1, . . . , ac} �mul {a1, . . . , ai−1, ai+1, . . . , ac}

�=
mul �

(
C′,a′
←−−−∥ Eσ[r′τ ] −→∥

)

by Lemma 6, we can apply the induction hypothesis and obtain v with
t −→∥ v ←−∥ rσ = u.

4. The final case, D = f(D1, . . . , Dn) and C = �, is completely symmetric.

Finally, by Lemmas 1 and 2 we obtain confluence of →R.

Example 7. Consider the TRS R consisting of the following three rewrite rules:

x + y → y + x (x + y) ∗ z → (x ∗ z) + (y ∗ z) (y + x) ∗ z → (x ∗ z) + (y ∗ z)

Since the four critical pairs of R

(y + x) ∗ z ←�→ (x ∗ z) + (y ∗ z) (y ∗ z) + (x ∗ z) ←�→ (x ∗ z) + (y ∗ z)
(x + y) ∗ z ←�→ (x ∗ z) + (y ∗ z) (x ∗ z) + (y ∗ z) ←�→ (y ∗ z) + (x ∗ z)

are parallel closed, R is confluent.

5 Almost Parallel Closed Critical Pairs and Commutation

In this section we consider two extensions to Huet’s result due to Toyama [22].
The first one allows us to weaken the joining condition for some critical pairs.

When carefully examining the proof of Theorem1 one realizes that in the
case where both steps of the peak are single root steps, i.e., the case where
C = D = �, the induction hypothesis does not need to be applied, since
closing the critical pair immediately closes the whole peak. This suggests that
the joining condition can be weakened for overlays. A first idea could be to
take ←��→ ⊆ −→∥ · ←−∥ since then we would still have the diamond property in the
overlay case. However Toyama realized that one can do even better by weakening
the diamond property to strong confluence. The following definition captures the
new conditions.

Definition 6. A TRS R is almost parallel closed if s −→∥ · ∗← t for all overlays
s ←��→ t and s −→∥ t for all inner critical pairs s ←·�→ t.
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Fig. 2. Asymmetry in the proof of Theorem2.

Using exactly the same proof structure as before we could now prove strong
confluence of −→∥ for left-linear almost parallel closed systems. However, consid-
ering Toyama’s second extension of Theorem 1, we will prove the theorem in the
more general setting of commutation.

Theorem 2 (Toyama [22]). Let R1 and R2 be left-linear TRSs. If s −→∥ 2 · ∗
1← t

for all critical pairs s 1←�→2 t and additionally s −→∥ 1 t for all inner critical
pairs s 2←·�→1 t then −→∥ 1 and −→∥ 2 strongly commute.

Proof (Adaptations). We only highlight the differences to the proof of Theorem1
and refer to the formalization for the full proof details. Assume

t 1
C,a←−−∥ s

D,b−−→∥ 2 u

We show t −→∥ 2 v ∗
1← u for some term v. We apply the same inductions and

case analyses as before. The cases C = f(C1, . . . , Cn), D = f(D1, . . . , Dn) and
C = D = � require no noteworthy adaptation. The main difference is that now
the cases D = f(D1, . . . , Dn), C = � and C = f(C1, . . . , Cn), D = � become
asymmetric for the critical pair case—the corresponding diagrams are shown in
Fig. 2.

First, suppose C = f(C1, . . . , Cn) and D = �, write t = f(t1, . . . , tn) 1
C,a←−−∥

s = �σ
ε−→2 rσ = u, and assume there is a critical pair according to Lemma 7.

That is, we obtain Eμ[r′μ] 1←�→2 rμ with Eσ[r′τ ] −→∥ 1 t and by assumption
we obtain a v such that Eσ[r′τ ] −→∥ 2 v ∗

1← rσ. Then using the same reasoning as
before, for the new peak

t 1
C′,a′
←−−−∥ Eσ[r′τ ] −→∥ 2 v

we have

�
(

C,a←−−∥ s
�,�σ−−−→∥

)
�mul �

(
C′,a′
←−−−∥ Eσ[r′τ ] −→∥

)

and can apply the induction hypothesis to obtain a v′ with t −→∥ 2 v′ ∗
1← v, which

combined with u = rσ →∗
1 v concludes this case.

In the second case, i.e., when D = f(D1, . . . , Dn) and C = �, observe that
the critical pair we obtain is an inner critical pair between R2 and R1, since
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D �= �. Thus, after applying the assumption for critical pairs 2←·�→1, the
proof is the same as for Theorem 1.

Instantiating R1 and R2 with the same TRS R yields the corresponding
result for confluence.

Corollary 2 (Toyama [22]). If the TRS R is left-linear and almost parallel
closed then −→∥ R is strongly confluent.

Proof. Immediate from the definition of almost parallel closed, Theorem2 and
the fact that s ←�→ t if and only if s ←��→ t or s ←·�→ t.

Example 8. Recall the rewrite system from Example 4. One easily verifies that
all its critical pairs are almost parallel closed, and hence it is confluent.

6 Certification and Experiments

To facilitate checking of confluence proofs generated by automatic tools based
on Corollarys 1 and 2 we extended the CPF to represent such proofs. Since in
order to check that a given TRS is strongly or almost parallel closed, CeTA has
to compute all critical pairs anyway, in the certificate we just require the claim
that the system is strongly or almost parallel closed, together with a bound on
the length of the rewrite sequences to join the critical pairs.4 Certificates for
commutation are not yet supported, since currently no tool produces them, and
CPF does not contain a specification for commutation proofs.

For experiments we considered all 277 TRSs in the Cops5 database and used
the confluence tool CSI to obtain certificates in CPF for confluence proofs. All
generated certificates have been certified by CeTA. Table 1 shows the results of
running CSI with different strategies. The first and second column show the
results of applying just Corollarys 1 and 2 respectively, the third column is the
combination. In the fourth column we show the result when additionally adding
and removing redundant rewrite rules [13], which yields a considerable boost
in power. The idea of that technique is to add and remove rules that can be
simulated by other rules, which consequently does not change confluence of the
system, but often makes other criteria, like the ones we consider here, applicable.
Column “full” shows the results for the full certified strategy of CSI, which
additionally includes Knuth and Bendix’ criterion, weak orthogonality (which is
subsumed by Corollary 2, however) and the rule labeling heuristic [15] as well as
several criteria for non-confluence. The last column shows the difference to last
year’s version of CSI’s certified strategy, which already included Corollary 1, but
not Corollary 2. In addition to the new certifiable proofs, several existing proofs
of CSI 2015 could be simplified and no longer require complicated reasoning via
decreasing diagrams.

4 This bound is necessary to ensure termination of the certifier.
5 http://cops.uibk.ac.at.

http://cops.uibk.ac.at
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Table 1. Experimental results.

SC PC SC+PC SC+PC+RR full 2015

yes 38 21 41 92 110 104

no 0 0 0 0 48 48

maybe 239 256 236 185 119 125

7 Conclusion

In this paper we presented the first formalization of three classical criteria for
confluence and commutation of (left-)linear rewrite systems. Building on top of
IsaFoR—which provided invaluable support on the one hand, e.g. by its theories
on critical pairs and multihole contexts, and on the other hand, as expected,
was also extended with new basic facts about lists, multisets, multihole contexts
etc.—we formalized proofs that linear strongly closed systems, and left-linear
(almost) parallel closed systems are confluent (commute). The major difference
to the paper proof is our definition of the overlap between two parallel steps that
are represented via multihole contexts.

Concerning future work, another important extension of the results of Huet
and Toyama due to van Oostrom [17] is using multisteps (also called development
steps) −→○ which allow nested non-overlapping redexes. This extension not only
strengthens Huet’s criterion in the first-order world but also makes it applicable
to higher-order rewriting, where using parallel steps fails due to β-reduction.

However, although the paper proofs superficially look very similar, and do
employ similar ideas, obtaining a formalized proof will require serious effort.
In fact neither our representation of (parallel) rewrite steps, nor our definition
of �, nor the idea of using an induction on the source of the peak to avoid
reasoning about combining steps, carry over. To make the concepts that are hard
to formalize in a proof assistant, e.g. measuring the amount of overlap between
two multisteps or the descendants of a multistep, Hirokawa and Middeldorp [9]
suggested to use proof terms to obtain a rigorous proof (and at the same time
extended the result to commutation). This is a step forward but more is needed
to obtain a formalized proof, also for the extension to higher-order systems.
In particular, we anticipate the extensive use of sets of positions (in [9]) to be
problematic without alternative notions. We plan to employ residual theory [20,
Sect. 8.7] and to develop a notion of overlap for multisteps similar to Definition 5
to close the gap.

Acknowledgments. We thank Nao Hirokawa for suggesting Lemma 6 and Bertram
Felgenhauer and Christian Sternagel for insightful discussion.
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(eds.) LATA 2014. LNCS, vol. 8370, pp. 347–359. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-04921-2 28

7. Geser, A., Middeldorp, A., Ohlebusch, E., Zantema, H.: Relative undecidability in
the term rewriting, part 2: The confluence hierarchy. Inf. Comput. 178(1), 132–148
(2002). doi:10.1006/inco.2002.3150

8. Hirokawa, N., Klein, D.: Saigawa: a confluence tool. In: Hirokawa, N., Middeldorp,
A. (eds.) IWC 2012, p. 49 (2012). http://cl-informatik.uibk.ac.at/events/iwc-2012/

9. Hirokawa, N., Middeldorp, A.: Commutation via relative termination. In:
Hirokawa, N., van Oostrom, V. (eds.) IWC 2013, pp. 29–33 (2013). http://www.
jaist.ac.jp/∼hirokawa/iwc2013/

10. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980). doi:10.1145/322217.322230

11. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termina-
tion. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp.
258–273. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6 21

12. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

13. Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence
analysis of rewrite systems by redundant rules. In: Fernández, M. (ed.) RTA 2015.
LIPIcs, vol. 36, pp. 257–268. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2015). doi:10.4230/LIPIcs.RTA.2015.257

14. Nagele, J., Thiemann, R.: Certification of confluence proofs using CeTA. In: Aoto,
T., Kesner, D. (eds.) IWC 2014, pp. 19–23 (2014). http://www.nue.riec.tohoku.ac.
jp/iwc2014/

15. Nagele, J., Zankl, H.: Certified rule labeling. In: Fernández, M. (ed.) RTA 2015.
LIPIcs, vol. 36, pp. 269–284. Schloss Dagstuhl–Leibniz-Zentrum für Informatik
(2015). doi:10.4230/LIPIcs.RTA.2015.269

16. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/978-3-642-40885-4_22
http://dx.doi.org/10.1007/978-3-642-40885-4_22
http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1006/inco.2002.3150
http://cl-informatik.uibk.ac.at/events/iwc-2012/
http://www.jaist.ac.jp/~hirokawa/iwc2013/
http://www.jaist.ac.jp/~hirokawa/iwc2013/
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1007/978-3-642-28717-6_21
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.257
http://www.nue.riec.tohoku.ac.jp/iwc2014/
http://www.nue.riec.tohoku.ac.jp/iwc2014/
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.269


306 J. Nagele and A. Middeldorp

17. van Oostrom, V.: Developing developments. Theoret. Comput. Sci. 175(1), 159–
181 (1997). doi:10.1016/S0304-3975(96)00173-9

18. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite
systems. In: Felty, A., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
127–136. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21401-6 8

19. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller,
C., Woltzenlogel Paleo, B. (eds.) UITP 2014. EPTCS, vol. 167, pp. 61–72. Open
Publishing Association (2014). doi:10.4204/EPTCS.167.8

20. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer-
Science, vol. 55. Cambridge University Press, Cambridge (2003)

21. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

22. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
(1988)

23. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 38

http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.4204/EPTCS.167.8
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-22438-6_38

	Certification of Classical Confluence Results for Left-Linear Term Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Strongly Closed Critical Pairs
	4 Parallel Closed Critical Pairs
	5 Almost Parallel Closed Critical Pairs and Commutation
	6 Certification and Experiments
	7 Conclusion
	References


