
Jasmin Christian Blanchette
Stephan Merz (Eds.)

 123

LN
CS

 9
80

7

7th International Conference, ITP 2016
Nancy, France, August 22–25, 2016
Proceedings

Interactive
Theorem Proving



Lecture Notes in Computer Science 9807

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Jasmin Christian Blanchette • Stephan Merz (Eds.)

Interactive
Theorem Proving
7th International Conference, ITP 2016
Nancy, France, August 22–25, 2016
Proceedings

123



Editors
Jasmin Christian Blanchette
Inria Nancy – Grand Est
Villers-lès-Nancy
France

Stephan Merz
Inria Nancy – Grand Est
Villers-lès-Nancy
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-43143-7 ISBN 978-3-319-43144-4 (eBook)
DOI 10.1007/978-3-319-43144-4

Library of Congress Control Number: 2016945777

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

The International Conference on Interactive Theorem Proving (ITP) is the premier
venue for publishing research in the area of logical frameworks and interactive proof
assistants, ranging from theoretical foundations, technology, and implementation
aspects to their applications in areas such as verifying algorithms and programs,
ensuring their safety and security, or formalizing significant mathematical theories. ITP
grew out of the TPHOLs conferences and ACL2 workshops organized since the early
1990s.

Previous editions of ITP took place in Edinburgh, Nijmegen, Princeton, Rennes,
Vienna, and Nanjing. The seventh edition (ITP 2016) was organized by the Inria
research center Nancy – Grand Est in Nancy, France, during August 22–25, 2016. In
all, 55 submissions were received for ITP 2016. Each submitted paper was reviewed by
at least three members of the Program Committee or external reviewers, and the
Program Committee decided to accept 27 regular contributions and five rough dia-
monds. Viktor Kuncak, Grant Olney Passmore, and Nikhil Swamy were invited to
present keynote talks at the conference. The main conference was followed by work-
shops dedicated to the Coq and Isabelle systems, as well as to the Mathematical
Components library.

The present volume collects the scientific contributions accepted for publication at
ITP 2016. It also contains abstracts of the keynote presentations.

We are very grateful to the members of the ITP Steering Committee for their
guidance and advice. Our colleagues in the Program Committee and the external
reviewers did an excellent job in preparing timely and helpful reviews as a basis for
selecting the accepted contributions. We extend our thanks to the authors of all sub-
mitted papers and the ITP community at large, without which the conference would not
exist.

The Inria research center Nancy – Grand Est, and in particular the delegate for
colloquia Anne-Lise Charbonnier, provided professional support for the organization of
ITP 2016. We gratefully acknowledge financial support by Aesthetic Integration,
Communauté Urbaine du Grand Nancy, Microsoft Research, Région Alsace Cham-
pagne-Ardenne Lorraine, and Springer. As in previous years, Springer accepted to
publish the proceedings of ITP 2016 as a volume in the LNCS series, and we would
like to thank the editorial team for the very smooth interaction.

June 2016 Jasmin Christian Blanchette
Stephan Merz
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Propositions as Programs, Proofs as Programs

Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL)

Leon is a system that (among other features) enables writing verified programs and
their properties in a purely functional subset of Scala. The key specification statement
in Leon is that a function satisfies its contract for all inputs. Leon proves properties and
finds counterexamples using SMT solvers and an unfolding strategy for recursive
functions. A newly developed link with Isabelle provides an additional safety net for
soundness of the approach.

Due to Leon’s unfolding mechanism, it is possible to write additional, semantically
redundant, expressions that help Leon prove a theorem. We attempt to formalize this
“accidental” feature of Leon. In our view, propositions, as well as proofs, are just
terminating programs. This makes Leon statements and proofs (syntactically) acces-
sible to the half a million of Scala developers. We explain some limitations of this
approach in writing proof tactics and controlling the space of assumptions, suggesting
that a form of reflection would provide benefits of Turing-complete tactic language
without ever leaving the paradise of purely functional Scala programs.



Formal Verification of Financial Algorithms,
Progress and Prospects

Grant Olney Passmore

Aesthetic Integration and University of Cambridge

Many deep issues plaguing today’s financial markets are symptoms of a fundamental
problem: The complexity of algorithms underlying modern finance has significantly
outpaced the power of traditional tools used to design and regulate them. At Aesthetic
Integration, we’ve pioneered the use of formal verification for analysing the safety and
fairness of financial algorithms. With a focus on financial infrastructure (e.g., the
matching logics of exchanges and dark pools), we’ll describe the landscape, and
illustrate our Imandra formal verification system on a number of real-world examples.
We’ll sketch many open problems and future directions along the way.



Dijkstra Monads for Free: A Framework
for Deriving and Extending F*’s

Effectful Semantics

Nikhil Swamy

Microsoft Research

F* is a higher-order effectful language with dependent types. It aims to provide equal
support for general purpose programming (as in the ML family of languages) as well as
for developing formal proofs (like other type-theory based proof assistants, e.g., Coq,
Agda or Lean). By making use of an SMT solver while type-checking, F* provides
automation for many routine proofs.

At the heart of F* is the manner in which effects and dependent types are combined:
this presents several well-known difficulties. Our basic approach to solving these dif-
ficulties is not surprising: effectful computations are encapsulated within monad-like
structures. More specifically, F* interprets effectful computations using monads of
predicate transformers, so called “Dijkstra monads” that compute weakest pre-condi-
tions for arbitrary post-conditions. These Dijkstra monads are arranged in a lattice of
effect inclusions, e.g., pure computations are included within stateful ones.

In this talk, I will describe a new technique for deriving F*’s Dijkstra monad lattice
by CPS’ing (with result type Prop) purely functional definitions of monads corre-
sponding to F*’s effects. Several benefits ensue:

1. For starters, programmers are able to customize F*’s effect lattice using familiar
Haskell-style monadic definitions, while gaining for each such monad a weakest
pre-condition calculus suitable for Hoare-style verification of programs.

2. Next, several useful properties, e.g., monotonicity of predicate transformers, are
guaranteed by the derivation, reducing the proof obligations for adding an effect
to F*.

3. Third, our technique supports a mechanism to break the abstraction of a monadic
effect in a controlled manner, reifying an effectful computation as its pure coun-
terpart, and reflecting pure reasoning on the reified program back on to the effectful
code.

I will also provide a general introduction to F* and its applications, notably its use
in Everest, a new project to build and deploy a verified, secure implementation of
HTTPS, including Transport Layer Security, TLS-1.3.

F* is open source and developed on github by researchers at Microsoft Research
and Inria. For more information, visit https://fstar-lang.org.
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An Isabelle/HOL Formalisation
of Green’s Theorem

Mohammad Abdulaziz1,2(B) and Lawrence C. Paulson3

1 Canberra Research Laboratory, NICTA, Canberra, Australia
mohammad.abdulaziz@nicta.com.au

2 Australian National University, Canberra, Australia
3 Computer Laboratory, University of Cambridge, Cambridge, England

Abstract. We formalise a statement of Green’s theorem in Isabelle/
HOL, which is its first formalisation to our knowledge. The theorem state-
ment that we formalise is enough for most applications, especially in
physics and engineering. An interesting aspect of our formalisation is that
we neither formalise orientations nor region boundaries explicitly, with
respect to the outwards-pointing normal vector. Instead we refer to equiv-
alences between paths.

1 Introduction

The Fundamental Theorem of Calculus (FTC) is a theorem of immense impor-
tance in differential calculus and its applications, relating a function’s differential
to its integral. Having been conceived in the seventeenth century in parallel to
the development of infinitesimal calculus, more general forms of the FTC have
been developed, the most general of which is referred to as the General Stokes’
Theorem.

A generalisation of the FTC or a special case of the General Stokes’ Theorem
in R

2 was published in 1828 by George Green [2], with applications to electro-
magnetism in mind. This generalisation is referred to as Green’s Theorem, and
it is the main topic of this work. In modern terms the theorem can be stated as
follows:

Theorem 1. Given a domain D with an “appropriate” positively oriented
boundary ∂D, and a field F , with components Fx and Fy “appropriately” defined
on D, the following identity holds:

∫

D

∂Fy

∂x
− ∂Fx

∂y
dxdy =

∮

∂D

Fxdx + Fydy,

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-43144-4 1



4 M. Abdulaziz and L.C. Paulson

where the left hand side is a double integral and the right hand side is a line
integral1 in R

2.

Many statements of Green’s theorem define with varying degrees of generality
what is an appropriate boundary (i.e. the geometrical assumptions), and what
is an appropriate field (i.e. the analytic assumptions). This mainly depends on
how geometrically sophisticated the proof is, and the underlying integral. The
prevalent text book form of Green’s theorem asserts that, geometrically, the
region can be divided into elementary regions and that, analytically, the field is
continuous and has continuous partial derivatives throughout the region. Also,
usually the underlying integral is a Riemann integral.

Despite this being enough for most applications, more general forms of the
theorem have been proved in the analysis literature. Although a full literature
review is not appropriate here, we present some examples of very general for-
mulations of Green’s theorem. For example, Michael [7] proves a statement of
the theorem that generalises the geometrical assumptions, where it only assumes
that the region has a rectifiable cycle as its boundary. Jurkat et al. [6] prove a
statement of the theorem with very general analytic assumptions on the field.
They only assume that the field is continuous in the region, and that the total
derivative of the field exists in the region except for a σ1-finite set of points in the
region. Then, they also derive a very general form of Cauchy’s integral theorem.

Having Green’s theorem formalised is significant because of its wide range of
applications, too many to list in full. There are applications in physics (electro-
dynamics, mechanics, etc.) and engineering (deriving moments of inertia, hydro-
dynamics, the basis of the planimeter, etc.). In mathematics, Green’s theorem
is a fundamental result: it can be used to derive Cauchy’s integral theorem.

We formalise a statement of Green’s theorem for Henstock-Kurtzweil gauge
integrals in the interactive theorem prover Isabelle/HOL [8]. Our work builds
on the work of Hölzl et al., where we use the Isabelle/HOL multivariate analysis
library [5] and the probability library [4]. We also build on the second author’s
porting of John Harrison’s complex analysis library [3]. Our formalisation does
not strictly follow a certain proof, but it was inspired by Zorich and Cooke [11],
Spivak [10] and Protter [9].

2 Basic Concepts and Lemmas

In this section we discuss the basic lemmas we need to prove Green’s theorem.
However, we need to firstly discuss two basic definitions needed to state the
theorem statement: line integrals and partial derivatives. Definitions of both of
those two concepts are ubiquitous in the literature, nonetheless, we had to adapt
1 This line integral can be physically interpreted as the work done by F on the ∂D,

making this statement a special case of the 3-dimensional Kelvin-Stokes’ theorem.
If the line integral is replaced with

∮

∂D

Fxdx−Fydy, it can be interpreted as the flux

of F through ∂D and the theorem would be the 2-dimensional special case of the
divergence theorem.
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them to be defined on the Euclidean spaces type class in the Isabelle multivariate
analysis library.

We define the line integral of a function F on the parameterised path γ as
follows:

Definition 1. Line Integral
∫

γ

F �B =
∫ 1

0

ΣbεB((F (γ(t)) · b)(γ′(t) · b))dt

A difference in our definition is that we add the argument B, a set of vectors,
to which F and γ, and accordingly the line integral are projected. The reasons
for adding the B argument will become evident later. Above, · denotes the inner
product of two vectors. Formally, the definition is:

Note that integral refers to the Henstock-Kurzweil gauge integral implementa-
tion in Isabelle/HOL library. As one would expect, the line integral distributes
over unions of sets of vectors and path joins.

The line integral also admits a transformation equivalent to integration by sub-
stitution. This lemma applies to paths where all components are defined as a
function in terms of one component orthogonal to all of them. It is a criti-
cal lemma for proving Green’s theorem for “elementary” regions (to be defined
later).



6 M. Abdulaziz and L.C. Paulson

Partial derivatives are defined on the Euclidean space type class implemented
in Isabelle/HOL. For a function F defined on a Euclidean space, we define its
partial derivative to be w.r.t. the change in the magnitude of a component vector
b of its input. At a point a, the partial derivative is defined as:

Definition 2. Partial Derivative

∂F (v)
∂b

∣∣∣∣
v=a

=
dF (a + (x − a · b)b)

dx

∣∣∣∣
x=a·b

Again, this definition is different from the classical definition in that the partial
derivative is w.r.t. the change of magnitude of a vector rather than the change in
one of the variables on which F is defined. However, our definition is similar to
the classical definition of a partial derivative, when b is a base vector. Formally
we define it as:

The following FTC for the partial derivative follows from the FTC for the vector
derivative that is proven in Isabelle/HOL analysis library.
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Given these definitions and basic lemmas, we can now start elaborating on
our formalisation of Green’s theorem. The first issue is how to formalise R

2. We
use pairs of real to refer to members of R2, where we define the following locale

that fixes the base vector names:

Proofs of Green’s theorem usually start by proving “half” of the theorem
statement for every type of “elementary regions” in R

2. These regions are referred
to as Type I, Type II or Type III regions, defined below.2

Definition 3. Elementary Regions
A region D (modelled as a set of real pairs) is Type I iff there are C1 smooth
functions g1 and g2 such that for two constants a and b:

D = {(x, y) | a ≤ x ≤ b ∧ g2(x) ≤ y ≤ g1(x)}.

Similarly D would be called type II iff for g1, g2, a and b

D = {(x, y) | a ≤ y ≤ b ∧ g2(y) ≤ x ≤ g1(y)}.

Finally, a region is of type III if it is both of type I and type II.

To prove Green’s theorem a common approach is to prove the following two
“half” Green’s theorems, for any regions Dx and Dy that are type I and type
II, respectively, and their positively oriented boundaries:

∫

Dx

− ∂(Fi)
∂j

dxdy =
∫

∂Dx

F �{i},

2 Using elementary regions that are bounded by C1 smooth functions is as general as
using piece-wise smooth functions because it can be shown that the latter can be
divided into regions of the former type (see [9]).
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and ∫

Dy

∂(Fj)
∂i

dxdy =
∫

∂Dy

F �{j}.

Here i and j are the base vectors while Fi and Fj are the x-axis and y-axis
components, respectively, of F . However, the difference in the expressions for
the type I and type II regions is because of the asymmetry of the x-axis and
the y-axis w.r.t. the orientation. We refer to the top expression as the x-axis
Green’s theorem, and the bottom one as the y-axis Green’s theorem. Below
is the statement of the x-axis Green’s theorem for type I regions as we have
formalised it in Isabelle/HOL. For the boundary, we model its paths explicitly
as functions of type , where γ1, γ2, γ3 and γ4 are the
bottom, right, top and left sides, respectively.

Proving the lemma above depends on the observation that for a path γ (e.g.
γ1 above) that is straight along a vector x (e.g. i),

∫
γ

F �{x} = 0, for an F

continuous on γ. (Formally, this observation follows immediately from theorem
work_on_pair_path .) The rest of the proof boils down to an application of Fubini’s
theorem and the FTC to the double integral, the integral by substitution to
the line integrals and some algebraic manipulation ([11, p. 238]). Nonetheless,
this algebraic manipulation proved to be quite tedious when done formally in
Isabelle/HOL.

However, we did not discuss the predicate analytically_valid , which repre-
sents the analytic assumptions of our statement of Green’s theorem, to which an
“appropriate” field has to conform. Firstly let 1s be the indicator function for a
set s. Then, for the x-axis Green’s theorem, our analytic assumptions are that
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(i) Fi is continuous on Dx

(ii) ∂(Fi)
∂j exists everywhere in Dx

(iii) the product 1Dx
(x, y)∂(Fi)

∂j (x, y) is Lebesgue integrable

(iv) the product 1[a,b](x)
∫ g2(x)

g1(x)
F (x, y)dy, where the integral is a Henstock-

Kurzweil gauge integral, is a borel measurable function

These assumptions vary symmetrically for the y-axis Green’s theorem, so
to avoid having two symmetrical definitions, we defined the predicate
analytically_valid to take the axis (as a base vector) as an argument.

These conditions refer to Lebesgue integrability and to measurability because
we use Fubini’s theorem for the Lebesgue integral in Isabelle/HOL’s probability
library to derive a Fubini like result for the Henstock-Kurzweil integral. Proving
Fubini’s theorem for the gauge integral would allow for more general analytic
assumptions. However, the rest of our approach would still be valid.

We prove the y-axis Green’s theorem for type II regions similarly, where this
is its conclusion.

3 More General Structures

Now that we described some of the basic definitions and how to derive Green’s
theorem for elementary regions, the remaining question is how to prove the
theorem for more general regions. As we stated earlier in the introduction, a lot
of the text book proofs of Green’s theorem are given for regions that can be
divided into elementary regions. It can be shown that any regular region can be
divided into elementary regions [9,11]. Regular regions (see their definition in
[9, p. 235]), are enough for a lot of applications, especially practical applications
in physics and engineering.
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Fig. 1. An annulus and its partitioning in type I and type II regions. In this figure
every 1-cube (i.e. path) is represented with an arrow whose direction is the same as
the orientation of the 1-cube. (a) The positively oriented boundary of the annulus.
(b), (c) and (d) The members of a type I partitioning of the annulus. (e) A 1-chain
that includes all the horizontal boundaries in the type I partition. (f), (g) and (h) The
members of a type II partitioning of the annulus. (i) A 1-chain that includes all the
vertical boundaries in the type II partition. (j) A common subdivision of the chains in
(e) and (i).

In this section we describe how we prove Green’s theorem for regions that can
be divided both into type I regions and type II regions only using vertical and
horizontal edges, respectively. We believe that for most practical purposes, the
additional assumption that the division is done only by vertical and horizontal
edges is equivalent to assuming just the existence of type I and type II divisions.
Indeed, we conjecture that the additional constraints do not lead to any loss of
generality, however, we would not pursue the proof of this claim in the current
paper.

Figure 1 shows an example of a region and its type I and type II partitions.
In this example, some of the elementary regions appear to have a missing edge.
This is because the type I or the type II partitioning induced a one-point path:
a function mapping the interval [0, 1] to a single point in R

2. For instance, the
left edge in the left 1-chain in 1b is a point on the x-axis.
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3.1 Chains and Cubes

For tackling more general regions and their boundaries we use the concepts of
cubes and chains [10, Chap. 8]. One use of cubes is to represent parameterisable
(sub)surfaces (regions in R

2 and paths in our case). A k-dimensional such surface
embedded in R

n is represented by a function whose domain is a space homeo-
morphic to R

k and whose codomain is R
n. Roughly speaking, we model cubes

as functions and chains as sets of cubes. We use the existing Isabelle/HOL for-
malisation of paths, where we model 1-cubes as functions defined on the interval

. We model a 1-chain as a set of pairs of int (coefficients) and 1-cubes.
For example, the following definition shows the lifting of the line integrals to
1-chains.

We extend the way we model 1-cubes to model 2-cubes, which we model
as functions of type defined on the inter-
val .

The orientation of the boundary of a 2-cube (a 1-chain) is taken to be counter-
clockwise. A 1-cube is given the coefficient −1 if the path’s direction is against the
counter-clockwise boundary traversal order, otherwise it is given the coefficient 1.
Formally this is defined as follows:

We follow the convention and define the 2-cubes in such a way that the top and
left edges are against the counter-clockwise orientation (e.g. see the 2-cube in
Fig. 1c). Accordingly both the left and top edges take a −1 coefficient in the
1-cube representation. Defining 2-cubes in that way makes it easier to define
predicates identifying type I and type II 2-cubes, as follows.
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Although we do not render it here, an analogous predicate is defined for type II
2-cubes. We also require that all 2-cubes conform to the following predicate:

This predicate filters out cases where 2-cubes have either: (i) right and top
edges that are both one point paths, or (ii) left and bottom edges that are both
one point paths. Although this assumption potentially leaves our theorems less
general regarding some corner cases, it makes our computations much smoother.
After defining these concepts on 2-cubes, we derive the following statement of
x-axis Green’s theorem (and its equivalent y-axis Green’s theorem) in terms of
2-cubes.

Although we anticipated that proving this theorem would be a straightforward
unfolding of definitions and usage of GreenThm_typeI , it was a surprisingly long
and tedious proof that took a few hundred lines.

For 2-chains, we model them as sets of 2-cubes, which suits our needs in
working in the context of Green’s theorem. We define the boundary of a 2-chain
as follows:

We similarly defined the functions two_chain_horizontal_boundary and
two_chain_vertical_boundary . We also lift the double integral to 2-chains as
follows.
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Lastly, to smoothe our computations on integrals over 2-chains and their
boundaries, we require that a 2-chain: (i) only has valid 2-cubes members,
(ii) edges of different 2-cubes only coincide if they have opposite orientations, and
(iii) different 2-cubes have different images. These requirements are formally
defined in the following predicate:

Given these definitions on 2-chains, we lift our x-axis Green’s theorem from
2-cubes to 2-chains, as shown in the following statement.

A similar lemma can be derived for a 2-chain whose members are all of Type II
(with the obvious consequences of orientation asymmetry).

After proving the x-axis and y-axis Green’s theorems, the next step is, after
algebraic and analytic manipulation, to add the line integral sides of the x-axis
Green’s theorem to its counterpart in the y-axis theorem and similarly add the
double integrals of both theorems. Given GreenThm_typeI_twoChain and its type
II equivalent, we can sum up both sides of the equalities in the conclusion and
get Green’s theorem in terms of 2-chains and their boundaries. However, the
main goal of the paper is to obtain the theorem directly for a region and its
boundary, given that the region can be vertically sliced intro regions of type I
and horizontally sliced into regions of type II.

The first (and easier) part in proving this is to prove the equivalence of the
double integral on a region and the integral on a 2-chain that divides that region.
Before deriving such a theorem we generalised the notion of division_of , defined
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in Isabelle/HOL’s multivariate analysis library, to work when the division is not
constituted of rectangles.

Then we show the following equivalence:

The other part concerning the line integrals, proved to be trickier, and we
will explain it in the next section.

3.2 Dealing with Boundaries

What remains now is to prove an equivalence between the line integral on the
1-chain boundary of the region under consideration and the line integral on the
1-chain boundary of the region’s elementary division (i.e. the 2-chain division
of the region). The classical approach depends on that the line integrals on the
introduced boundaries will cancel each other, leaving out the line integral on
the region’s original boundary. For example, the vertical-straight-line paths in
Figs. 1b, c and d, are the introduced boundaries to obtain the type I division
of the annulus. In this example, the line integrals on the introduced vertical-
straight-line paths will cancel each other because of their opposite orientations,
thus, leaving out the integral on the original boundary.

To prove this formally, the classical approach needs to define what is a pos-
itively oriented boundary, which requires an explicit definition of the boundary
of a region, and also defining the exterior normal of the region (examples of this
approach can be found in [1,9]). However, we use a different approach that does
not depend on these definitions and avoids a lot of the resulting geometrical and
analytic complications. Our approach depends on two observations:

O1: if a path γ is straight along a vector x, then
∫
γ

F �{x} = 0, for an F continuous

on γ.
O2: partitioning the region in type I/type II regions was done by introducing

only vertical/horizontal boundaries.

For a type I 2-chain division of a region, consider the 1-chain γx,
that: (i) includes all the horizontal boundaries of the dividing 2-chain, and
(ii) includes some subpaths of the vertical boundaries of the dividing 2-chain
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(call this condition Cx). Based on O1, the line integral on the vertical edges in the
1-chain boundary of the type I division and accordingly γx, projected on i, will
be zero. Accordingly we can prove the x-axis Green’s theorem for γx. Formal
statements of Cx (formally: only_vertical_division), and the consequence of a
1-chain conforming to it are:

In the previous lemma, valid_typeI_division is an abbreviation that, for a
region and a 2-chain, means that the 2-chain constitutes only valid type I cubes
and that this 2-chain is a division of the given region.

An analogous condition, Cy, for a type II partitioning asserts that the 1-chain
includes all the vertical boundaries of the dividing 2-chain, and includes some
subpaths of the horizontal boundaries of the dividing 2-chain. For Cy, we for-
mally define the predicate (only_horizontal_division) and prove an analogous
theorem for type II partitions, with the obvious changes in the conclusion.

From the second observation, O2, we can conclude that there will always be

– a 1-chain, γx, whose image is the boundary of the region under consideration
and that satisfies Cx for the type I division.

– a 1-chain, γy, whose image is the boundary of the region under consideration
and that satisfies Cy for the type II division, where it is not necessary that
γx = γy.

Figure 1e and i show two 1-chains that satisfy Cx and Cy for the type I and type
II divisions of the annulus. Notice that in this example, those two 1-chains are
not equal even though they have the same orientation and image.

Now, if we can state and formalise the equivalence between γx and γy, and
that this equivalence lifts to equal line integrals, we can obtain Green’s theorem
in terms of the region, which is our goal. One way to formalise path equivalence
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is to explicitly define the notion of orientation. Then the equivalence between γx

and γy can be characterised by their having similar orientations and images. An
advantage of this approach is that it can capture equivalence in path orientations
regardless of the path image.

However, we do not need this generality in the context of proving the equiv-
alence of 1-chains that have the same image and orientation, especially that this
generality will cost a lot of analytic and geometric complexities to be formalised.
Instead we choose to foramlise the notion of equivalence in terms of having a
common subdivision. For example the 1-chain shown in Fig. 1j is a subdivision
of each of the 1-chains in Fig. 1e and Fig. 1i as well as the original boundary
1-chain in Fig. 1a, i.e. a common subdivision between the three 1-chains. We
now formally define the concept of a common subdivision between 1-chains,
where we mainly focus on “boundary” 1-chains, defined as follows.

First, we lift the path_join operator defined in the Isabelle/HOL multivariate
analysis library, to act on 1-chains ordered into lists as follows.

To use the theory for paths developed in the multivariate analysis library, we
need the joined chains to be piece-wise C1 smooth in the sense that is defined in
that library (valid_path). A necessary condition for a path to be valid, is that
the ending point of every piece of that path to be the starting point of the next.
Accordingly we define the following predicate for the validity 1-chains ordered
into lists.

Based on those concepts we now define what it means for a 1-chain to be a
subdivision of a path, which is a straightforward definition.
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We call a 1-chain γ, a subdivision of another 1-chain η, if one can map every
cube in η to a sub-chain of γ that is a subdivision of it. Formally this is defined
as follows:

After proving that each of the previous notions of equivalence implies equality
of line integrals, we define equivalence of 1-chains in terms of having a common
subdivision, and prove that it implies equal line integrals. We define it as having
a boundary 1-chain that is a subdivision for each of the 1-chains under consid-
eration. Formally this definition and the equality of line integrals that it implies
are as follows:

Based on this lemma, finally, we prove the following statement of Green’s theo-
rem.
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This theorem does not require the 1-chains γ_x and γ_y to have as their image
exactly the boundary of the region. However, of course it applies to the 1-chains if
their image is the boundary of the region. Accordingly it fits as Green’s theorem
for a region that can be divided into elementary regions just by vertical and
horizontal slicing.

It is worth noting that although this statement seems to have a lot of assump-
tions, its analytic assumptions regarding the field are strictly more general than
the those in [9,11], where they retuire the field and both of its partial deriva-
tives to be continuous in the region. For the geometric assumptions, on the other
hand, we have two extra requirements: the type I and type II divisions should
be obtained using only vertical slicing and only horizontal slicing, respectively.

4 Conclusion and Future Work

We formalised a statement of Green’s theorem that is enough for a lot of practical
applications. Theory and concepts we developed here can be used in proving
more general statements of Green’s theorem [6,7]. Most such proofs depend
on approximating both line and double integrals on a region by corresponding
integrals on a region that can be divided into elementary regions. An interesting
aspect of our work is that we avoided defining the region’s boundary and its
orientation explicitly. We did so by assuming that the division was done by
inserting only vertical edges for the type I division, and only horizontal edges
for the type II division. We claim that this added condition on the division
represents no loss of generality, and intend to prove this claim in the future.

Isabelle Notation and Availability. All blocks starting with isabelle
keywords: lemma, definition, fun have been generated automatically using
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Isabelle/HOL’s LATEX pretty-printing utility. Sometimes we have edited them
slightly to improve readability, but the full sources are available online.3
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Abstract. HOL Zero is a basic theorem prover that aims to achieve the
highest levels of reliability and trustworthiness through careful design
and implementation of its core components. In this paper, we concentrate
on its treatment of concrete syntax, explaining how it manages to avoid
problems suffered in other HOL systems related to the parsing and pretty
printing of HOL types, terms and theorems, with the goal of achieving
well-behaved parsing/printing and Pollack-consistency. Included are an
explanation of how Hindley-Milner type inference is adapted to cater for
variable-variable overloading, and how terms are minimally annotated
with types for unambiguous printing.

1 Introduction

1.1 Overview

HOL Zero [16] is a basic theorem prover for the HOL logic [8]. It differs from
other systems in the HOL family [7] primarily due to its emphasis on reliability
and trustworthiness. One innovative area of its design is its concrete syntax for
HOL types, term and theorems, and the associated parsers and pretty printers.
These are not only important for usability, to enable the user to input and read
expressions without fuss or confusion during interactive proof, but also for high
assurance work, when it is important to know that what has been proved is what
is supposed to have been proved.

In this paper we cover aspects of HOL Zero’s treatment of concrete syntax,
explaining how it manages to avoid classic pitfalls suffered in other HOL systems
and achieve, or so we claim, two desirable qualities outlined by Wiedijk [15],
namely well-behaved parsing/printing and Pollack-consistency.

In Sect. 2, we provide motivation for a thorough treatment of concrete syn-
tax. In Sect. 3, we cover the concrete syntax problems suffered in other HOL
systems. In Sect. 4, we explain the solutions provided in HOL Zero by its lex-
ical syntax. In Sect. 5, we describe HOL Zero’s solution for interpreting terms
involving variable-variable overloading, through its variant of the Hindley-Milner
type inference algorithm. In Sect. 6, we describe HOL Zero’s solution for printing
terms and theorems that would be ambiguous without type annotation, through
its algorithm for minimal type annotation. In Sect. 7, we present our conclusions.

c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 20–35, 2016.
DOI: 10.1007/978-3-319-43144-4 2
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1.2 Concepts, Terminology and Notation

In [15], a theorem prover’s term parser and printer are well-behaved if the result
of parsing the output from printing any well-formed term is always the same as
the original term. This can be thought of as ∀ tm • parse(print(tm)) = tm. A
term parser is input-complete if every well-formed term can be parsed from con-
crete syntax. A term or theorem printer is Pollack-consistent if provably different
terms or theorems can never be printed the same. For any printer, by unambigu-
ous printing we mean that different internal representation can never be printed
the same. Note that well-behaved parsing/printing implies input-completeness,
unambiguous printing and Pollack-consistency for terms. Also note that none of
these notions fully address the issue of faithfulness, where internal representation
and concrete syntax correctly correspond. A printer that printed false as true
and true as false might be Pollack-consistent but would not be faithful.

By entity we mean a HOL constant, variable, type constant or type variable.
Note that the same entity can occur more than once in a given type or term. Two
different entities are overloaded if they occur in the same scope and have the same
name. A syntax function is an ML function dedicated to a particular syntactic
category of HOL type or term, for constructing a type or term from components,
destructing into components, or testing for the syntactic category. A quotation
is concrete syntax for a HOL type or term that can be parser input or printer
output. An antiquotation is an embedding of ML code within HOL concrete
syntax (this is only supported by some HOL systems). A symbolic name is a non-
empty string of symbol characters such as !, +, |, #, etc. An alphanumeric name
is a non-empty string of letter, numeric, underscore or single-quote characters.
An irregular name is a name that is neither symbolic nor alphanumeric. Note
that the precise definitions of symbolic and alphanumeric vary between systems.

In Table 1 we summarise the concrete syntax constructs used in this paper.

Table 1. Syntactic constructs used in our examples. Constructs are listed in increasing
order of binding power, so for example x + y <= z is the same as (x + y) <= z, but
note that equality binds less tightly than implication in HOL4.

Construct HOL4, HOL Light Isabelle/HOL ProofPower HOL
and HOL Zero

logical entailment P |- Q Q [P] P � Q

universal quantification !v. P ALL v. P ∀ v• P

existential quantification ?v. P EX v. P ∃ v• P

lambda abstraction \v. E %v. P λ v• E

implication P ==> Q P --> Q P ⇒ Q

disjunction P \/ Q P | Q P ∨ Q

conjunction P /\ Q P & Q P ∧ Q

equality x = y x = y x = y

non-equality x <> y x ∼= y x 	= y

less than or equals x <= y x <= y x � y

addition x + y x + y x + y



22 M. Adams

2 The Need for Good Parsers and Printers

2.1 Proof Auditing

In recent years, HOL systems have been employed in large-scale high-assurance
projects such as the verification of the seL4 operating system kernel [10], the
verification of safety-critical avionics in the EuroFighter Typhoon [2], and the
Flyspeck project formalising the Kepler Conjecture proof [6], a major result in
mathematics. Projects of such importance should be independently audited to
reduce the risk that they contain fundamental errors. As argued in [13], not only
is it vital that the inference steps performed in a formal proof are correct, but
also that the formal proof is proving what is intended to be proved. In a soft-
ware verification project, there may be a large specification of required program
behaviour and/or various formal statements of properties that the program must
satisfy, and these should be reviewed. In a mathematics formalisation, the state-
ment of the ultimate theorem being proved should be reviewed. The definitions
of the constants used in any of these statements also need to be reviewed.

To be reviewed, these expressions need to be written in human-readable form.
But how can the auditor be sure that the expressions seen in concrete syntax
correctly correspond to their internal representation that gets manipulated in the
formal proof? They must rely on the parsers and/or pretty printers to faithfully
and unambiguously convert between the two representations. However, as with
most theorem provers that support concrete syntax, the parsers and printers of
HOL systems (other than HOL Zero) are known to suffer from problems such as
input-incompleteness, ambiguous printing and Pollack-inconsistency, as pointed
out in [15] and detailed further in Sect. 3.

As discussed in [1], the auditor can avoid the need to trust the system’s
parsers, as well as the need to review the project’s proof scripts, by examining
the system’s state after the formal proof has been processed. This would normally
require the full concrete syntax printers to be trusted.

Arguably, the auditor could also avoid the need to trust the full concrete syntax
printers, either by using relatively-simple primitive syntax printers, or by using
syntax functions to decompose expressions, or by directly viewing internal repre-
sentation in ML. However, any of these measures would greatly reduce readability
(for example, see how the small expression in Fig. 1 balloons up), and for non-
trivial content, the process of review would itself become error-prone. It would be
far better if the auditor could trust the correctness of the printers for full concrete
syntax, because this would greatly simplify the review process.

Many of the known problems with printing are obscure cases. However, we
do not consider it satisfactory to dismiss them as too unlikely to occur in prac-
tice. For two reasons, they are more likely than might be imagined. Firstly,
because industrial-sized formal proof projects inevitably involve extending the
theorem prover with bespoke automated proof routines, problematic obscure
syntax that would not be used in interactive proof could quite conceivably be
generated by poorly written code, for example in generating a variable name.
Secondly, because formal proofs can be outsourced, as was done in Flyspeck, we
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Fig. 1. Concrete and primitive syntax for the same expression in HOL Light.

cannot discount the possibility of users maliciously exploiting flaws in a pretty
printer in order to cheat the system and get paid for theorems they did not really
prove.

Neither do we consider it realistic that the auditor can properly rule out
the possibility of subtle printer exploits by reviewing the project’s proof scripts.
These can run to tens or even hundreds of thousands of lines of code, and unless
they adhere to a language subset that rules out exploits, they are virtually
impossible to review properly in reasonable time (e.g. see [1]).

Finally, the auditor not only needs to trust the pretty printers, but also needs
to know why they can be trusted. Thus it is preferable if their implementation is
simple or has a simple architectural argument for why it is fail-safe, or ideally a
formal proof of correctness. Complex code implementing a complex architecture
of interaction does not help in this regard.

2.2 Usability

Another concern, quite separate from the need to review results, is usability
during interactive proof. Users naturally expect not to be distracted with using
convoluted mechanisms to ensure their input gets parsed to the intended internal
representation, or with worries about whether a printed expression gets wrongly
printed, or whether it gets ambiguously printed and wrongly interpreted by the
user. In addition, users reasonably expect to always be able to parse back in
printed terms to result in the same internal term. However, there is no HOL
system (other than HOL Zero) that meets these expectations in basic usage.

3 Classic Problems with HOL Parsers and Printers

In this section, we attempt to enumerate all the common problems that exist in
the treatment of concrete syntax, and comment on how well they are addressed in
each of the four main HOL systems: HOL4 [14], Isabelle/HOL [12], HOL Light [9]
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and ProofPower HOL [3]. The problems relate to basic interaction with the sys-
tem, in monochrome and using the system’s standard character set (UTF-8 for
HOL4, ASCII for Isabelle/HOL and HOL Light, extended ASCII for Proof-
Power HOL). We illustrate some problems with examples, providing code for
reproducing simple but seemingly absurd theorem results (thus showing Pollack-
inconsistency). The reader need not understand the code, but just the concrete
syntax (see Table 1) of the resulting theorem, printed at the bottom.

Some systems have facilities that can be employed to help. Both HOL4
and Isabelle/HOL support coloured syntax highlighting in printed output when
used with certain GUIs, distinguishing between free variables, bound variables,
constants and keywords. However, this restricts choice of GUI, complicates
the trusted code base and does not help the parser parse the output. HOL4,
Isabelle/HOL and ProofPower HOL support antiquotation in parsed type and
term quotations, allowing entities to be constructed outside of concrete syntax.
However, such expressions are quite difficult to read, and the user must know how
to use syntax functions for constructing entities. Also, HOL4 and Isabelle/HOL
do not print using antiquotation, and so this facility does not help the auditor.

HOL4, Isabelle/HOL and ProofPower HOL each have a type annotation
printing mode for their term and theorem printers, which can provide solutions
but are unset by default. HOL4’s (set by the show types flag) annotates one
occurrence of each variable entity, and each instance of a polymorphic constant
unless it is a function with at least one argument supplied. Isabelle/HOL’s (set
by the show types flag) annotates one occurrence of each variable entity but
no constants. ProofPower HOL’s (set by the pp show HOL types flag) annotates
every occurrence of each variable but no constants.

3.1 Entities with Irregular Names

In HOL abstract syntax, there are no restrictions on the form of the name that
can be given to an entity.1 In HOL4 and Isabelle/HOL, irregular names can
only be parsed by using antiquotation, and are printed incorrectly and without
delimitation. In HOL Light, irregular names cannot be parsed, and are printed
incorrectly without delimitation. ProofPower HOL does cater for irregular entity
names, by allowing names to be enclosed within $"" delimiters, except that type
variable names that do not begin with the single-quote character cannot be
parsed, and entity names that begin with a double-quote character can only be
parsed using antiquotation and are printed with antiquotation.

Example 1. The following theorem about natural numbers gets misleadingly
printed in HOL Light due to the irregular variable name “!y. x”.

# let x = mk_var ("x",‘:num‘) and y = mk_var ("y",‘:num‘) in
let v = mk_var ("!y. x",‘:num‘) in
let tm1 = list_mk_comb (‘(+)‘,[v;y]) in
EXISTS (mk_exists (x, mk_eq (tm1,x)), tm1) (REFL tm1);;

val it : thm = |- ?x. !y. x + y = x

1 Although in hol90, type variable names must start with a single-quote character.
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3.2 Entities with Keyword Names

In HOL abstract syntax, there is nothing preventing an entity from having
the same name as a keyword from a given system’s concrete syntax. In HOL4,
such entities are prefixed with $ in their identifier for both parsing and print-
ing, and can also be distinguished from the keyword by syntax highlighting. In
Isabelle/HOL, such entities can only be parsed by using antiquotation, and in
printed output can only be distinguished from keywords by using coloured syn-
tax highlighting. In HOL Light, such entities cannot be parsed, and are printed
incorrectly as though they were keywords. ProofPower HOL uses $"" delimiters
for entities overloaded with keywords, and does not suffer from any problems
like those for irregular names because no keywords involve the single or double
quote characters.

3.3 Variable-Constant Overloading

In HOL abstract syntax, constants cannot be overloaded with other constants,
and type constants cannot be overloaded with other type constants.2 However,
variables may be overloaded with constants, and type variables overloaded with
type constants. In HOL4 and Isabelle/HOL, such variables and type variables
can only be parsed by using antiquotation, and in printed output can only be
distinguished from constants and type constants by using coloured syntax high-
lighting. In HOL Light, such variables and type variables cannot be parsed, and
are printed incorrectly as though they are the corresponding constants or type
constants respectively. In ProofPower HOL, such variables and type variables
can only be parsed by using antiquotation, and are printed using antiquotation.

3.4 Variable-Variable Overloading

HOL abstract syntax allows different variables with the same name but different
types to occur in the same scope. This causes problems for the term quotation
parser in any system that uses the basic algorithm for Hindley-Milner type infer-
ence, because this algorithm does not cater for variable-variable overloading (as
explained in Sect. 5.1). HOL4, Isabelle/HOL, HOL Light and ProofPower HOL
all use the Hindley-Milner algorithm, and so cannot parse terms with overloaded
variables, even if antiquotation is used. Neither can these systems show distinc-
tion between overloaded variables in default printed output, although the type
annotation printing modes of HOL4, Isabelle/HOL and ProofPower HOL do.

Example 2. The bound variable for the inner universal quantification in the fol-
lowing theorem proved in ProofPower HOL is a boolean x, rather than the
natural number x used elsewhere in the theorem.

2 We refer here to the “vanilla” version of the HOL language, implemented by all HOL
systems except Isabelle/HOL and HOL Omega.
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:) let val x1 = mk var ("x",�:N�) and x2 = mk var ("x",�:BOOL�)
and v = mk var ("a",�:N�)
val tm = mk eq (x1,v)

in
∀ intro x1
(∃ intro (mk ∃ (v, mk ⇒ (tm, mk ∀ (x2,tm))))

(⇒ intro tm (∀ intro x2 (asm rule tm))))
end;

val it = � ∀ x• ∃ a• x = a ⇒ (∀ x• x = a): THM

3.5 Type Ambiguity in Printed Terms

Typically, the default mode for printing in HOL systems, including in HOL4,
Isabelle/HOL, HOL Light and ProofPower HOL, is to not provide any type anno-
tation when printing terms and theorems. This is problematic because an expres-
sion involving variables or polymorphic constants then gets printed ambiguously
when there is more than one type-correct way of assigning types to the atoms
in the expression. However, HOL4’s type annotation printing mode will perform
sufficient annotation to remove ambiguity, except potentially in the obscure cir-
cumstance of a polymorphic function constant application with types not fully
resolved by the arguments supplied. Isabelle/HOL’s and ProofPower’s will also
suffice, so long as no constant annotation is required.

Example 3. The following theorem in HOL4 is proved for the one-valued type
unit, but by default is not printed with type annotation and so looks like it has
been proved for any type.

> let val x = ‘‘x:unit‘‘and y = ‘‘y:unit‘‘
in

GENL [x,y]
(DISCH ‘‘(x:unit)<>y‘‘

(TRANS (SPEC x oneTheory.one)
(SYM (SPEC y oneTheory.one)) ))

end;
# val it = |- !x y. x <> y ==> (x = y): thm

3.6 Juxtaposition of Lexical Tokens in Printed Expressions

Concrete syntax is generally printed with spacing characters separating lexi-
cal tokens, to ensure that the boundaries between tokens are obvious. In some
circumstances, however, it tends to be more readable to be more concise and
print without spacing, for example between parentheses and the expression they
enclose. This is safe providing that boundaries between tokens are still clear, so
that juxtaposed tokens without intervening space cannot be confused for a single
token, or vice versa. HOL Light, however, does not ensure boundaries still exist
when it prints without spacing in the printing of bindings, pairs and lists. We
do not know of any problem cases in HOL4, Isabelle/HOL or ProofPower HOL.



HOL Zero’s Solutions for Pollack-Inconsistency 27

Example 4. In the following theorem in HOL Light, no space is printed in the
second conjunct between the binder !, binding variable # and “.” keyword,
making it indistinguishable from the variable “!#.” in the first conjunct.

# let x = mk_var ("x",‘:num‘) and v1 = mk_var ("#",‘:num‘)
and v2 = mk_var ("!#.",‘:num->num‘) in
let tm1 = mk_comb (v2,v1) in
let tm2 = mk_exists (x, list_mk_comb (‘(<=)‘,[tm1;x])) in
CONJ (EXISTS (tm2,tm1) (SPEC tm1 LE_REFL))

(MESON [ARITH_RULE ‘!x. ~ (SUC x <= x)‘]
‘~ ?x. ! # . # <= x‘);;

val it : thm = |- (?x. !#. # <= x) /\ ~(?x. !#. # <= x)

4 Lexical Solutions

Some of the problems highlighted in Sect. 3 are tackled in HOL Zero purely
through lexical considerations. This section covers those solutions.

4.1 Identifier Delimiters

For the problems of irregular entity names (see Sect. 3.1) and entities with the
same name as keywords (see Sect. 3.2), HOL Zero allows an entity’s identifier to
wrap double-quote delimiters ("") around the entity name. Any entity name can
be wrapped with these delimiters, but an irregular or keyword name must be
wrapped in order to get properly parsed. An entity identifier gets printed with
the delimiters if and only if the entity name is irregular or a keyword.

This is essentially the same solution as used in ProofPower HOL, but there
are no corner cases that cause problems. The backslash character (\) functions
as an escape in the identifier, where double-quote and backslash are preceded by
a backslash, and unprintable ASCII characters (such as tab and line feed) and
back-quote (used in HOL Zero to delimit HOL type and term quotations) are
denoted by their 3-digit decimal ASCII code preceded by a backslash.

Example 5. The irregular variable name in Example 1 is parsed and printed in
HOL Zero using double-quote delimiters.

# ‘?x. "!y. x" + y = x‘;;
- : term = ‘?x. "!y. x" + y = x‘

4.2 Variable Marking

For the problem of variables being overloaded with constants (see Sect. 3.3),
HOL Zero allows a variable identifier to indicate that it denotes a variable, by
preceding the variable’s name with a percent character (%). This marking must
immediately precede the variable name, without intervening space. Similarly, a
type variable identifier can be marked as such by preceding the name with a
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single-quote character (’). If a variable is overloaded with a constant, or a type
variable with a type constant, then it necessarily gets marked as such in printed
output.

These marking characters must occur outside any double-quote delimiters
used in the entity identifier (see Sect. 4.1). Note that a single-quote mark at the
start of a type variable identifier cannot get confused with a single-quote at the
start of a type variable name, because alphanumeric names in HOL Zero cannot
start with a single-quote and so the name would be classed as irregular and get
enclosed within double-quote delimiters. Similarly, a percent mark at the start of
a variable identifier cannot get confused with a percent at the start of a variable
name, because in HOL Zero percent is not classed as a symbolic character.

Example 6. The variable true is overloaded with the constant, and so needs a
variable mark when parsed and printed.

# ‘%true + 1 < 5‘;;
- : term = ‘%true + 1 < 5‘

Example 7. The type variable nat is overloaded with the type constant for nat-
ural numbers, and so needs a type-variable mark when parsed and printed. Note
that, by default, all type variables are printed with the type variable mark.

# ‘!(x:’nat) (y:A). ?z. z = (x,y)‘;;
- : term = ‘!(x:’nat) (y:’A). ?z. z = (x,y)‘

4.3 Spacing Between Tokens

For the problem of juxtaposed lexical tokens (see Sect. 3.6), HOL Zero ensures
that in any situation where tokens get printed without any intervening space, a
check is performed to make sure that the two tokens are compatible, i.e. that
there is a lexical boundary between them when printed together, and if this
check fails then spacing is inserted.

Example 8. In HOL Zero, the juxtaposed symbolic tokens in the head of the
universal quantification in the second conjunct in Example 4 are printed with
spacing to make clear they are separate tokens.

# ‘(?x. !#. # <= x) /\ ~ (?x. ! # . # <= x)‘;;
- : term = ‘(?x. !#. # <= x) /\ ~ (?x. ! # . # <= x)‘

5 Type Inference for Variable-Variable Overloading

In order to cater for variable-variable overloading in the interpretation of HOL
concrete syntax (see Sect. 3.4), it is not sufficient to use the classic Hindley-Milner
type inference algorithm [11] that is used in other HOL systems. This algo-
rithm was originally designed for parsing the programming language ML, which
supports parametric polymorphism, needed for HOL’s polymorphic constants,
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but not ad-hoc polymorphism, needed for HOL’s variable-variable overloading.
In this section, we explain how the Hindley-Milner algorithm is adapted in HOL
Zero to cater for both.

Note that the discussion takes place at the level of HOL primitive syntax,
because this is the level of representation used in the abstract syntax tree (AST)
upon which type inference is carried out, and thus binding refers to lambda
abstraction.

5.1 Hindley-Milner Type Inference

The Hindley-Milner type inference algorithm first involves assigning provisional
types to all constant and variable atoms in the AST of the expression being
parsed. Each instance of a non-polymorphic constant is simply assigned the con-
stant’s type, each instance of a polymorphic constant is assigned the constant’s
generic type but with unique meta type variables replacing any placeholder
types, and each variable is given a unique meta type variable which is assigned to
each occurrence of the variable (according to the scoping rules explained below).
These meta type variables are then resolved bottom-up when function applica-
tions are encountered in ascending the AST, where the domain type of a function
is unified with the type of its argument.

The notion of a variable identifier’s syntactic scope in Hindley-Milner is
straightforward. All variable atoms with a given name refer to the same entity
throughout the AST of the expression up to the first common binding for a vari-
able with that name (if such a binding exists), or otherwise the top level of the
expression (when the variable is free). The types of all these variable atoms must
unify, or otherwise the expression is ill-typed. Above the binding in the AST, the
variable ceases to be in scope and any variable atoms with the given name refer
to a different entity. This notion of scope does not allow for variable-variable
overloading.

Example 9. Consider the following expression in HOL Zero concrete syntax:

x \/ (!(x:nat). x = 5 \/ true = x)

Using purely primitive syntax, this is written as follows (where $ is used to
strip an operator of its fixity):3

$\/ x ($! (\(x:nat). $\/ ($= x 5) ($= true x)))

We uniquely number variables that are different according to the Hindley-
Milner scoping rules, as well as each instance of the same polymorphic constant,
so that they can be treated distinctly.

$\/ x1 ($! (\(x2:nat). $\/ ($=1 x2 5) ($=2 true x2)))

3 Note that, in HOL Zero, numerals are not atoms of primitive syntax, but for illus-
trative purposes it suffices to treat 5 as an atom in this example.
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Provisional types get assigned as follows, with τn denoting the nth generated
meta type variable:

\/ bool → bool → bool x1 τ4
! (τ1 → bool) → bool x2 τ5
=1 τ2 → τ2 → bool
=2 τ3 → τ3 → bool
5 nat
true bool

Type inference on the AST then resolves meta type variables bottom-up,
starting as follows on the branches of the inner \/:

τ2 = τ5 = nat
τ3 = bool = τ5

At this point, there is a conflict: τ5 cannot be both nat and bool. Thus the
expression is ill-typed according to traditional Hindley-Milner rules.

5.2 A New Notion of Syntactic Scope for Variables

Clearly we need a new notion of a variable’s syntactic scope in order to cater
for variable-variable overloading. As in Hindley-Milner type inference, we want
this notion to be simple and intuitive for users, as well as relatively light in the
amount of type annotation required. We do not want this notion, for example,
to require every occurrence of every variable to be type-annotated, because this
would be too inconvenient for the user.

In HOL Zero, the scoping rules are exactly the same as for Hindley-Milner
for the basic case when there is no variable overloading – all variable atoms with
a given name denote the same entity up to the binding for the variable name, or
the top level of the expression if there is no such binding, so long as the types of
these variable atoms all unify. The difference lies in the case when the variable
atoms for a given variable name don’t all unify. Unlike Hindley-Milner, HOL Zero
allows for an extra case, for when the variable atoms each have fully-resolved
types (i.e. not involving meta type variables) purely from local type resolution
that can take place within the binding alone, i.e. not considering contextual type
information from outside the binding in the AST. In this special case, according
to the HOL Zero scoping rules there is a variable in scope for each of the fully
resolved types, and only the variable corresponding to the binding variable ceases
to be in scope above the binding in the AST.

Thus, in a nutshell, the HOL Zero scoping rules say that at a binding, all
variables with the same name as the binding variable must unify or otherwise
have types that can be fully resolved locally. Although more complicated than
in Hindley-Milner, this new notion of variable scope is still relatively straightfor-
ward to understand and to use. All expressions that parse under Hindley-Milner
type inference will still parse under HOL Zero type inference, to result in the
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same internal term. However, any expression involving variable-variable over-
loading can also be parsed, so long as there is sufficient type-annotation. Note
that one consequence of the rules is that the scope of a variable can only be
determined at the type inference stage of parsing, rather than earlier, but we do
not see this as a problem.

5.3 Adjustments to the Hindley-Milner Algorithm

To support the HOL Zero notion of variable scope, the Hindley-Milner algorithm
needs a few adjustments. The first is that, in the initial assignment of provisional
types throughout the AST, each variable atom, rather than variable entity, is
given its own unique meta type variable. This is because the variable referred to
by a given variable atom is only determined as type inference unfolds, and at the
start of type inference each variable atom could potentially refer to a different
variable.

The second adjustment is to the variable environment that is inevitably
passed around in the algorithm’s implementation, that provides the partially
resolved type for a given variable name. This environment needs to be adjusted
to carry a list of types, rather than a single type, with one type for each poten-
tially distinct variable.

The third adjustment is another restriction on how the algorithm is imple-
mented. In the Hindley-Milner algorithm, the variable environment for the com-
ponents of a compound expression may build on the variable environment for
a sibling component. However, this is not allowed in general in the HOL Zero
type inference implementation, because the scoping rules must consider whether
variables’ types are fully resolved purely locally.

The fourth adjustment is to type inference at a binding, to cater for the extra
case, of having variables overloaded with the binding variable, instead of simply
raising an error.

Example 10. In the expression from Example 9, we uniquely number each vari-
able atom, because at this stage they are potentially all different according to
the HOL Zero scoping rules.

$\/ x1 ($! (\(x2:nat). $\/ ($=1 x3 5) ($=2 true x4)))

Provisional types get assigned as follows:

\/ bool → bool → bool x1 τ4
! (τ1 → bool) → bool x2 τ5
=1 τ2 → τ2 → bool x3 τ6
=2 τ3 → τ3 → bool x4 τ7
5 nat
true bool
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Meta type variables are resolved bottom-up. On reaching the binding, the
following type information has been inferred:

τ2 = τ6 = nat
τ3 = bool = τ7
τ5 = nat

This means that types for the variables local to the binding are thus:

x2 nat
x3 nat
x4 bool

According to HOL Zero scoping rules, given that x is the name of the binding
variable and the types of the different x atoms do not all unify, all of the local
x atoms at this point must have fully resolved types, which they do. The atom
for the binding variable is x2 and has the same resolved type as x3, and so these
refer to the same variable, and are both removed from scope, leaving just x4 in
the local variable environment. Type inference can now proceed upwards from
the binding.

τ1 = τ5
τ4 = bool

Having reached the top level of the expression, there are no conflicts, so the
expression has passed type inference. The atoms are thus resolved as follows:

\/ bool → bool → bool x1 bool
! (nat → bool) → bool x2 nat
=1 nat → nat → bool x3 nat
=2 bool → bool → bool x4 bool
5 nat
true bool

Thus there are two variables with name x: one with type nat, which is a
bound variable, and one with type bool, which is free.

6 Minimal Unambiguous Type Annotation

Unless the types of its variables and polymorphic constants can be fully resolved
from context, a printed term or theorem needs to be type-annotated in order to
avoid type ambiguity (see Sect. 3.5). However, type annotating every variable and
constant atom significantly reduces readability of output. HOL4’s type annota-
tion printing mode offers a better solution by annotating each variable entity only
once in a given term, and only annotating instances of polymorphic constants.
However, this level of annotation can still be excessive for large expressions.
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In this section, we describe HOL Zero’s algorithm for minimal type annotation
when printing, so that there is just enough to avoid ambiguity and the output
stays readable. This algorithm works for HOL Zero’s notion of variable scoping
that caters for variable-variable overloading (see Sect. 5.2).

Example 11. No type annotation is necessary when types can be inferred, as in
the example in Fig. 1.

‘!x y. x > 1 /\ y > 1 ==> x * y > 1‘

Example 12. It is not necessary to type-annotate variable a from Example 2,
because its type can be inferred:

‘!x. ?a. x = a ==> (!(x:bool). (x:nat) = a)‘

The basic outline of the algorithm is first to make a copy of the term to be
printed but with each atom replaced with a provisional type, in exactly the same
way as is done for HOL Zero type inference, with unique meta type variables for
each variable atom and for each placeholder type in a polymorphic constant’s
generic type. The mapping from meta type variables to actual types is then
worked out by matching this term copy with the original term. A subset of
the atoms in the term copy is then picked for annotation, in such a way as
to be minimal but sufficient to remove ambiguity from the printed term. The
chosen atoms are then annotated with their types according to the meta type
variable mapping to actual types. Before being printed, the resulting annotated
term is passed to the type analyser to check that type resolution results in an
internal term that is identical to the original term. This final check means that
the relatively-complicated minimal type annotation algorithm does not need to
be trusted, at the expense of having to trust the relatively-simple type analyser.

The only part of this that needs any further description is the process for
picking atoms for annotation from the term copy. This first involves calculating
four lists of atoms from the term copy, corresponding to the overloaded variables,
the free variables, the bound variables and the polymorphic constants of the
expression. The atoms in these four lists are the candidates for type annotation.
Type inference is then performed on the term copy (with its meta type variables
in place of actual types), to result in a partial instantiation list for the meta type
variables based purely on what can be deduced from the term copy without any
type annotations added.

This partial instantiation list is then used as the basis for removing atoms
from the four atom lists, to remove those atoms that have types that can be
fully resolved without any type annotation. The remaining atoms are selected
down into a list to be type annotated. This is done by first ordering the atoms
according to priority, with overloaded variables having highest priority, then
bound variables, then free variables and polymorphic constants having lowest
priority. The list is then scanned to remove atoms coming later in the list that
will not need annotating because their types are inferred by annotating atoms
earlier on in the list. The remaining atoms are then returned for annotation.
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7 Conclusions

In this paper, we have enumerated the classic problems that have plagued default
usage of HOL system parsers and pretty printers over the years. Some HOL sys-
tems fare better than others, and offer a patchwork of solutions such as antiquo-
tation and coloured syntax highlighting which can be employed to solve some
problems. However, these complicate the trusted code base, complicate output
and restrict how the auditor can work, and in any case do not completely solve
all problems. Our view is that simpler and more comprehensive solutions are
possible, that work in monochrome ASCII and are easier to trust. We find it
surprising that such solutions are not already prevalent for a logic that is so
established as HOL.

We have shown how HOL Zero manages to overcome all the classic problems
we list and fit our criteria for simplicity, by employing three main solutions.
The first is a better lexical syntax regime that supports delimiting and mark-
ing for otherwise problematic entity names, and that ensures sufficient spacing
between lexical tokens. The second is an adapted form of Hindley-Milner type
inference that enables term quotations with variable-variable overloading to be
represented in concrete syntax. The third is an algorithm for performing minimal
type annotation on the atoms of a term, so that it can be printed in a way that
is both unambiguous and about as readable as can be expected.

Together, these solutions enable parsing and printing of concrete syntax to be
more complete and less ambiguous than in the other HOL systems. This boosts
HOL Zero’s credentials as a trustworthy system for auditing formal proofs. We
believe HOL Zero does not suffer from any incompleteness or ambiguity in its
parsers or printers, and printed output can always be parsed back in to give the
same internal representation. This would make HOL Zero’s parsers and printers
well-behaved and Pollack-consistent. As far as we know, this would be a first
amongst not only HOL systems, but also various other theorem proving systems
that support concrete syntax, such as Coq and Mizar.

It would be interesting to establish for certain whether our claims of correct-
ness in HOL Zero’s parsing and printing are true. HOL Zero has a bounty [16]
that, as well as for logical unsoundness, gets paid out for “printer unsoundness”,
i.e. if the pretty printer can be made to produce output that is ambiguous or
not faithful to internal representation. Six printer-related problems have been
reported, but none since August 2011. Trustworthiness could be further bolstered
by adding a check for well-behaved parsing/printing to the printers.

Ideally there would be a formal proof about the correctness of HOL Zero’s
parsers and printers, which would cover questions of faithfulness as well as well-
behaved parsing/printing and Pollack-consistency. The challenges in achieving
this would presumably be quite different from those in formally verifying [5]
the parser and printer of the Milawa theorem prover [4], which has no concrete
syntax as such and so effectively boiled down to verifying the underlying Lisp
implementation’s parser and pretty printer for s-expressions.

Our solutions could conceivably be implemented in other HOL systems,
to improve their usability as well as trustworthiness. It should be possible to
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incorporate type inference for overloaded variables and minimal type annota-
tion without any major backwards compatibility issues, because the former just
expands the set of term quotations that can be parsed, and the latter could be an
optional printing mode. Incorporating delimiters for problematic entity names
and marking for variables would require adjustment to the lexical syntax as well
as the parser, and may have knock-on effects, but these are unlikely to be severe.
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Abstract. TRACER [8] is a tool for verifying safety properties of
sequential C programs. TRACER attempts at building a finite symbolic
execution graph which over-approximates the set of all concrete reach-
able states and the set of feasible paths.

We present an abstract framework for TRACER and similar
CEGAR-like systems [2,3,5,6,9]. The framework provides (1) a graph-
transformation based method for reducing the feasible paths in
control-flow graphs, (2) a model for symbolic execution, subsumption,
predicate abstraction and invariant generation. In this framework we
formally prove two key properties: correct construction of the symbolic
states and preservation of feasible paths. The framework focuses on core
operations, leaving to concrete prototypes to “fit in” heuristics for com-
bining them.

Keywords: TRACER · CEGAR · Symbolic execution · Feasible paths ·
Control-flow graphs · Graph transformation

1 Introduction

TRACER [8] is a symbolic execution-based tool for verifying safety properties
of imperative programs. TRACER tries to build from a program control-flow
graph (CFG) a finite symbolic execution tree which over-approximates the set of
reachable states. To this end, TRACER avoids the full enumeration of symbolic
paths by learning from infeasible paths, i.e. from paths for which no input state
exists allowing their execution. This learning phase uses interpolants for each
program point. An interpolant is a formula characterizing a set of program states.
If an interpolant allows to establish that a symbolic state is subsumed by a
previous state in its path, TRACER annotates the symbolic execution tree by
so-called subsumption links turning the tree into a graph. Thus, this annotated
tree can represent infinite sets over-approximating the feasible paths.

Finding accurate approximations of the feasible paths of a program is of
wide-spread interest for static analysis techniques, worst-time analyzers, code
optimization and code-slicing techniques and structural test-case generation.
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Since in many programs the ratio of infeasible paths to feasible ones may be
very high, a lot of computing power in a static analyser could be addressed
at more rewarding targets, while dramatically improving the quality of results
by discarding information stemming from infeasible paths. Our motivation is
in random-testing of imperative programs: there exist efficient algorithms that
draw in a statistically uniform way long paths from very large graphs [4]. If the
probability to find a feasible path from a (transformed) CFG is high, one could
use these methods to randomly draw long paths, compute their path predicate,
and test the program along an instance of the path predicate against a user-
defined post-predicate (note that this method does not depend on user-defined
loop-invariants). Thus, the method could be extended to an effective statistical
structural (white-box) testing method.

When adapting TRACER mechanisms to our own purposes, we found that
the presented proof sketches in the accompanying literature revealed a sen-
sible gap to a formal proof development. We therefore built a formal the-
ory in Isabelle/HOL of an abstract version of the TRACER algorithm, called
ATRACER. ATRACER is a highly non-deterministic model of TRACER, con-
sisting on five graph transformations of a so-called red-black graph, where the
red part roughly corresponds to the analyzed symbolic execution tree gained
by partial unfolding of the CFG and the black part is the initial CFG of the
program. For ATRACER, two major theoretic results were established:

1. correctness: for every path in the new graph, there exists a path with the
same trace in the original one, and

2. preservation of feasible paths: each transformation preserves the set of feasible
paths. This very important property is often claimed in papers without a
complete proof.

These results extend to an entire family of TRACER-like algorithms, which add
to ATRACER specific heuristics in their goal to provide approximations of feasi-
ble paths of a given program. These heuristics fill in the non-deterministic “gaps”
of ATRACER: which node to select, which interpolant to choose, which learned
invariant to inject, etc. Note that our goal is not to provide a formal proof of
TRACER implementation: heuristics aspects are not modeled, and ATRACER
uses completely different data-structures. ATRACER is a rational reconstruc-
tion of TRACER identifying the core operations performed on symbolic execu-
tion graphs (SEGs) in order to prove the two above properties. In this paper,
TRACER is essentially used as an instance of such systems.

This paper proceeds as follows: After providing a short introduction into
Isabelle/HOL and the notations we need, we present in Sect. 3 ATRACER by a
small example. Section 4.1 is devoted to the introduction of the formal machin-
ery of red-black graphs and their symbolic execution. We present in Sect. 4.2 the
formalization of graph-transformations. In Sect. 4.3 we state formally the correct-
ness and preservation properties and outline the proofs. The entire formalization
and proof effort in Isabelle/HOL consists of about one hundred definitions or
abbreviations and two hundred lemmas, representing about 8k lines of code.
All proofs were written using the Isar proof language in a structured manner.
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No fancy theorem proving technologies were needed: the most expensive tac-
tic used is force. The sources are available under https://www.lri.fr/∼wolff/
atracer.zip.

2 Background: Isabelle and Isabelle/HOL

Isabelle/HOL [10] is an interactive theorem proving environment for Church’s
higher-order logic (HOL), a classical logic based on a simply typed λ-calculus
extended by parametric polymorphism. HOL provides the usual logical connec-
tives like ∧ , → , ¬ as well as the object-logical quantifiers ∀x. P x and
∃x. P x; in contrast to first-order logic, quantifiers may range over arbitrary
types, including total functions f ::α ⇒ β. HOL is centered around extensional
equality = ::α ⇒ α ⇒ bool.

Isabelle/HOL comes with rich libraries for lists, typed sets, total and par-
tial functions, etc. We introduce some library notations used throughout this
paper: wrt. to sets, we use the usual for set comprehensions, x ∈ S for
inclusion, A ∪ B, A ∩ B for union and intersection, etc. Lists were built by the
constructors Nil and # . Of particular importance for this paper is the use of
record notation; records are basically cartesian products where the components
have a tag-name. As example, we declare a record by the specification construct:

record (’α, ’β) point = x ::"’α" y :: "’β"

This specification construct introduces a number of operations on record types
(such as (’α, ’β)point). For example, is a construc-
tor of a record (of type (int, bool) point), where as P’ = P(x := 3) is an
update function of the record at the component x. The tag-names implicitly
define selector functions on records; thus y P’ is equivalent to True.

3 A Guided Run of ATRACER

TRACER avoids the full enumeration of symbolic paths by learning from infea-
sible paths and computing interpolants for program points. In this context, an
interpolant is a logical formula associated with a program point that constraints
a set of program states: whenever symbolic execution reaches that program point
in a state satisfying the interpolant, it is ensured that the final program point
can be reached from that point (without going through a given error statement).
Once an interpolant has been synthesized for a program point, any symbolic exe-
cution path that reaches that point in a symbolic state satisfying the interpolant
needs not to be extended further: it is ensured that it will reach the final program
point. The new path is said to be subsumed by the previous one.

To avoid unrolling loops infinitely, when reaching a loop header TRACER
checks if that program point can be subsumed by one of its prior occurrences
on the path. Detection of subsumptions at loop headers is performed by com-
puting abstraction between symbolic states, that is weakening constraints on
the symbolic states for that point. Abstraction can be performed, for example,

https://www.lri.fr/~wolff/atracer.zip
https://www.lri.fr/~wolff/atracer.zip
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by removing or weakening (e.g. turning equalities into inequalities) constraints
from the path predicates. Abstraction can be seen as a synthesis of a loop invari-
ant. If the synthesized invariant is not strong enough, this can result in “false neg-
atives” where paths that are infeasible in the original program are not ruled out
by the abstraction of the program states. Such abstractions have to be refined:
Whenever a symbolic path leading to an error statement is produced from a
point where an abstraction occurred, TRACER checks if that path exists with-
out the abstraction. If this is the case, the error statement is truly reachable.
Otherwise, information about the unfeasability is collected and an interpolant
characterizing the unreachability of the error statement is attached to the node
where the faulty abstraction was made. The analysis is restarted from that point,
with its new interpolant serving as a safeguard for abstractions: abstractions at
that point must now satisfy the interpolant. When it is not possible to find an
abstraction between different occurrences of a loop header, the loop is unrolled
one more time in the hope of later subsumptions. Absence of valid subsumptions
leads TRACER to unroll loops infinitely. Otherwise, abstraction and subsump-
tion result in a SEG that includes all the behaviors of the original program with
respect to the reachability of error statements.

3.1 Presenting ATRACER by an Example

Our abstraction of the original TRACER is conceived as a set of graph trans-
formations of an annotated CFG we call red-black graph. Its transitions are
annotated with basic blocks of assignments, the skip-statement, or a guard that
has to hold when executing this transition. A red-black graph represents the
over-approximated set of feasible paths and is made of two parts: the black part
is the initial CFG and remains unchanged throughout the transformations; the
red part consists initially of a single vertex and is extended by unfolding the
initial CFG using our graph-transformation operators, i.e. by adding transitions
that are symbolically executed, subsumption links, etc. The red and black parts
are the known and unknown parts, respectively.

We illustrate ATRACER with the example drawn from Jaffar et al. [7]. The
program in Fig. 1a implements a lock acquisition algorithm. The goal of the
authors is to check that statement at line 8 is not reachable on any feasible
path, ensuring that the lock is held when the execution exits the loop. The
condition of statement if (*) at line 4 abstracts a call to an external condition
(like a function or a system call) that returns true if the lock is held by another
process. Hence at each traversal either branch of such a conditional can be taken
independently of the current state of the execution. Doing so is equivalent to
executing a true-guard. In Fig. 1b we give the CFG for the lock program.

Since we are interested in illustrating the graph transformation operators, not
in finding how to combine them in an actual system, in ATRACER we proceed
as if we always guess correctly the next step. Thus, our sequence of elementary
transformations differs from the one described by the authors in [7], whose order
is controlled by several heuristics. However, we end up with the same final SEG
as the original algorithm.
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Notation: to distinguish the different occurrences of program points in the red
part, we decorate the original location label (the line number) with a superscript.
Superscripts start at 0 and increase with every further visit. Vertices labels
without superscript refer to the black part, those with a superscript to the red
part. In Fig. 2a and latter, some red vertices are linked to their black counterpart
by dotted edges. These links represent the continuation of the computation in
the original program, i.e. parts that has not been symbolically executed yet.

Fig. 1. The ‘lock’ example and its CFG.

In the red part (depicted with square vertices), vertices are implicitly anno-
tated with configurations. Configurations are tuples: the first component, called
the symbolic state, is a function associating symbolic variables with program vari-
ables; the second component is the path predicate, i.e. the conjunction of con-
straints over symbolic variables that are accumulated during symbolic execution
of the current path up to that point. Path predicates are written under static single
assignment form, introducing new symbolic variables for each assignment.

Initialization: We start the symbolic execution of the program in Fig. 1a with
the configuration ({lock 
→ lock0,new 
→ new0, old 
→ old0}, true) The red
part consists of the single red vertex 10, corresponding to the entry program
point in the black part and is linked to the latter (Fig. 2a).

Symbolic execution of assignments: from 10, we perform symbolic execution
over the black transition leading from 1 to 2. This results in the addition of
a red transition from 10 to 20. The symbolic state at 20 is obtained from the
one at 10 by associating fresh symbolic variables with variables lock and new
and adding two constraints to the path predicate. The configuration for 20

is: ({lock 
→ lock1,new 
→ new1, old 
→ old0}, lock1 = 0 ∧ new1 = old0 + 1).
Symbolic execution of guards: assuming the first symbolic path enters the

loop, symbolic execution is performed from 20 over the transition from 2
to 3. The path predicate at 30 is the conjunct of path predicate at 20 with
the constraint new1 �= old0 , obtained by substituting occurrences of pro-
gram variables in the guard by the symbolic variables they are associated
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Fig. 2. Partial unfoldings of the lock acquisition CFG.

with in the symbolic state. Assuming we follow first the then branch of the
inner conditional, i.e. statements at line 5, symbolic execution is performed
until the statement at line 2 (the loop header) is reached for the second
time, completing one loop iteration. The configuration for 21 is ({lock 
→
lock3,new 
→ new2, old 
→ old1}, lock1 = 0 ∧ new1 = old0 + 1 ∧ lock2 =
1 ∧ old1 = new1 ∧ lock3 = 0 ∧ new2 = new1 + 1).

Subsumption between loop headers: 20 and 21 are two occurrences on the
current path of the same loop header. Given two occurrences v and v′ of
a same program point, v′ can be subsumed by v if it is a particular case
of v. When candidates for subsumption are discovered, in most cases the
subsumption cannot occur directly. Subsuming a vertex often requires the
configuration of the subsumer to be abstracted, that is relaxing some con-
straints of its path predicate, to force the subsumee to imply its subsumer.
This is not needed here, since 21 and 20 can be shown to be logically equiva-
lent. Vertex 21 is subsumed by 20 and the small dotted edge linking 21 to the
black part is replaced by a subsumption link from 21 to 20 in Fig. 2b (depicted
by the big dotted edge). After that subsumption, symbolic execution resumes
at 40 and extends up to 22, a new target for a subsumption.

Limiting abstractions with interpolants: Before processing 22, the inter-
polant new �= old (written between brackets in Fig. 2c) is added at 20 to
prevent the subsumption of 22 by 20. Labeling a vertex with an interpolant
needs to show that the configuration entail the interpolant, which is the case
here. The symbolic state at 22 is not a particular case of the one at 20 and
abstraction is forbidden by the interpolant: subsumption cannot occur and
the loop is unrolled, performing symbolic execution from 22 to 31.

Marking nodes as unsatisfiable: The path predicate at 31 is unsatisfiable,
as it requires new and old to be both equal and different. We mark (with a
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Fig. 3. A partial and a complete unfolding of the lock acquisition CFG.

⊥ symbol, in Fig. 3a) nodes known as unsatisfiable. In practice, this would
result from a call to a constraint solver: in ATRACER only configurations
proved as unsatisfiable can be marked. As we do not expect the user to call a
solver at every node, for performances reasons, we let it be an explicit action.
We do not disallow to pursue from a marked configuration, but symbolic
execution will carry the mark to its successors.

Symbolic execution resumes at node 22, and follows the exit branch of the
loop. The exit point and the error location are reached, respectively at E 0 and
80, and the latter is marked since its path predicate is unsatisfiable. Symbolic
execution now resumes at node 20, the last pending point, and exits the loop,
reaching 71. As the configuration at 20 does not satisfy the exit condition, 71 is
marked as unsatisfiable (Fig. 3b).

In Fig. 3b, every leaf of the red part is either marked as unsatisfiable, sub-
sumed or an occurrence of the final black location. Every feasible path of the
black part is contained in the red part! The error statement at line 8 is no longer
reachable from a feasible symbolic path (from the red entry) either in the red
part or in the black part (red vertices linked to the black part are all marked as
unsatisfiable) which can therefore be pruned.

4 The Formalization of ATRACER

4.1 The Theory of Red-Black Graphs

In this section, we introduce the main concepts needed in order to formalize
red-black graphs and to state and prove the main theorems we are interested in.
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We first introduce the definitions we use to model graphs and CFGs, then present
main definitions and facts about symbolic execution.

Basic Definitions About Graphs. The notion of graph and associated con-
cepts like sub-paths are central to our formalization because we need an abstrac-
tion of sharing in the abstract syntax as well as arbitrary cycles in the CFG.
Moreover, we need to consider paths going through subsumption links, a notion
that is specific to our approach. We start with a conventional definition of a
graph over some type of vertices ’a as a set of arcs linking the nodes:

record’a arc = src :: "’a" record ’a rgraph = root :: "’a"

tgt :: "’a" arcs :: "’a arc set"

Our notion of graph assumes that they have one single root (which comes in
handy when modeling CFG’s). So far the definitions do neither imply that the
graph is connected and that root has any connection to the arcs. These kind of
side-conditions are captured by additional predicates, and sometimes managed
by the Isabelle concept of a locale, covered by Ballarin in [1].

On this basis, a rich theory of auxiliary concepts must be developed. For
instance, we need the concept of a “consistent arc sequence”:

fun cas :: "’a ⇒ ’a arc list ⇒ ’a ⇒ bool"

where

"cas v1 [] v2 = (v1 = v2)"

| "cas v1 (a#seq) v2 = (src a = v1 ∧ cas (tgt a) seq v2)"

which paves the way to the concept of a subpath:

"subpath g v1 seq v2 ≡ cas v1 seq v2 ∧ v1 ∈ verts g ∧ set seq ⊆ arcs g"

and path (a sub-path from the root). Both concepts were borrowed from Nochin-
ski’s Graph Library for Isabelle [11]. Here, we define as vert the nodes which are
either root, source or target of an arc, and add the usual notions of in- or outgo-
ing arcs. We add abstract operations on graphs (like adding arcs) and establish
a number of properties wrt. vertices, paths, inarcs, and outarcs.

We then define graphs equipped with a subsumption relation. In the follow-
ing, subsumptions only involve vertices of the red part that represent different
occurrences of a same vertex of the black part. We represent subsumption rela-
tions by sets of pairs of indexed vertices:

type_synonym ’a sub_t = "((’a × nat) × (’a × nat))"

type_synonym ’a sub_rel_t = "’a sub_t set"

Again, paths and sub-paths in a graph equipped with such a relation are
defined using the notion of consistency of an arc sequence. An arc sequence
is consistent in presence of a subsumption relation if it is made of a number
of consecutive consistent (without the subsumption relation) sequences whose
extremities are linked throughout elements of the subsumption relation.

If we add an arc labeling function to graphs, we speak of labeled transition
systems (lts). Their type is defined by the record-extension:
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record (’a,’b,’c) lts = "’a rgraph" + labf :: "’a arc ⇒(’b,’c) label"

where ’c is the type of values taken by program variables. It enriches the ’a
rgraph with a labeling function; these labels turning an arbitrary graph into a
CFG have a richer structure that we describe in the following.

Main Definitions and Facts About Symbolic Execution. First, we define
corresponding to program variables ’a the symbolic variables with their super-
scripts (cf. Sect. 3.1) by a type synonym (pairing that program variable with an
integer) and define the concept of a store for bookkeeping the current association
of a program variable with its symbolic variable represented by its superscript.

type_synonym ’b symvar = "’b × nat"

type_synonym ’b store = "’b ⇒ nat"

States are used to give values to variables. Arithmetic and boolean expressions
are modeled in shallow embedding style, by total functions from variables to
their domain and to boolean values, respectively.

type_synonym (’b,’c) state = "’b ⇒’c"

type_synonym (’b,’c) aexp = "(’b,’c) state ⇒’c"

type_synonym (’b,’c) bexp = "(’b,’c) state ⇒ bool"

This way of modeling expressions has the advantage that there is no need to for-
malize the different operators on expressions, which would have been necessary
using a syntactic approach. Moreover, shallow embedding allows the use of the
existing Isabelle notations and theorems about functions.

On the other hand, it makes it a bit harder to describe the set of variables of
such expressions, which is needed when reasoning about the freshness of some
symbolic variable for a configuration. We define the set of variables of an arith-
metic (resp. boolean) expression as the set of variables that can actually have
an influence over the value of this expression.

definition vars :: "(’b,’c) aexp ⇒’b set" where

"vars e = {v. ∃ σ val. e (σ(v := val)) �= e σ}"

Since configurations and subsumption between configurations have been
introduced in Sect. 3.1, we skip their formal definitions here and go directly
to symbolic execution. We note c  c′ the fact that configuration c is subsumed
by configuration c′.

Symbolic execution is defined as an inductive predicate se that takes two
configurations c and c′ and a label l and evaluates to true if c′ is a result of the
symbolic execution of l from c. Results are defined up to the way fresh indexes
are chosen in the case of Assign labels. We prove that fresh indexes exist when
needed, assuming expressions in labels and configurations from which symbolic
execution is performed have finite sets of variables.

Labels are either Skip, Assume φ, where φ is a boolean expression, or
Assign v e where v is a program variable and e an arithmetic expression.

datatype (’b,’c) label =

Skip | Assume "(’b,’c) bexp" | Assign ’b "(’b,’c) aexp"
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inductive se :: "(’b,’c) conf ⇒(’b,’c) label ⇒(’b,’c) conf ⇒bool"

where

"se c Skip c"

| "se c (Assume e) (| store c, pred = pred c ∪ {adapt_bexp e (store c)} |)"
| "fresh_symvar (v,i) c =⇒

se c (Assign v e)

(| store = (store c)(v := i),

pred = pred c ∪ {(λ σ. σ (v,i) = (adapt_aexp e (store c)) σ)} |)"
Here, adapt aexp e s (resp. adapt bexp) represent the expression obtained
from the arithmetic (resp. boolean) expression e by substituting every occur-
rence of program variables by their symbolic counterpart given by s. It would
have been possible to define se as a function, but the assumption about freshness
in the case of an assignment would require a special treatment. This could be
done in a number of ways. For example, se could be a partial function defined
only in those cases where the new symbolic variable is indeed fresh.1 In the end,
we found that using a predicate was the simplest way to model se, and also
yields simpler proofs in the rest of the formalization.

We extend symbolic execution to sequences of labels, and model it by an
inductive predicate se star that takes two configurations and a sequence of
labels, and evaluates to true if the second configuration is a possible result of
symbolic execution of the given sequence from the first configuration.

To prove the key properties of our approach, one first proves that symbolic
execution is monotonic with respect to the previous definition of subsumption.
We only state the theorem for se, a similar one holds for se star.

theorem se_mono_for_sub :

assumes "se c1 l c1’"

assumes "se c2 l c2’"

assumes "c2 
 c1"

shows "c2’ 
 c1’"

The proof is obtained by case distinction on l, expressing the states of c1′ and
c2′ as functions of the states of c1 and c2, respectively. In the case of sequence
of labels ls, the proof is obtained by induction on ls, using se mono for sub.

4.2 Graph-Transformations on Red-Black Graphs

We are ready to give the structure of (’a,’b,’c) pre RedBlack before defining
what means to be a (’a,’b,’c) RedBlack graph.

record (’a,’b,’c) pre_RedBlack =

red :: "(’a ×nat) rgraph"

black :: "(’a,’b,’c) lts"

subs :: "((’a ×nat) ×(’a × nat)) set"

init_conf :: "’b conf"

1 Given an arbitrary configuration, there is no guarantee that there exists a fresh
symbolic variable for a given program variable, since expressions are defined as total
functions.
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confs :: "(’a ×nat) ⇒ (’b,’c) conf"

marked :: "(’a ×nat) ⇒ bool"

strengthenings :: "(’a ×nat) ⇒(’b,’c) bexp"

The fields red and black represent the red and black parts, respectively.
init conf is the configuration initially chosen to start the analysis. subs is the
subsumption relation which contains the subsumption links between the vertices
of red. Finally, confs, marked and strengthenings are functions associating to
the vertices of red their current configuration, the fact that they are marked as
unsatisfiable or not, and their current interpolant, respectively.

We now specify what we call the GT-calculus, ı.e. the five graph transfor-
mations and the set of reachable red-black graphs from an initial configuration
containing just a black part and an empty well-formed red part.2 The construc-
tion proceeds per inductive definition as follows:

inductive RedBlack :: "(’a,’b,’c) pre_RedBlack ⇒bool" where

init :

"fst (root (red rb)) = init (black rb) =⇒
arcs (red rb) = {} =⇒
subs rb = {} =⇒
(confs rb) (root (red rb)) = init_conf rb =⇒
marked rb = (λ rv. False) =⇒
strengthenings rb = (λ rv. (λ σ. True)) =⇒ RedBlack rb"

| se_step :

"RedBlack rb =⇒ se_extends rb ra c’ rb’ =⇒ RedBlack rb’"

| mark_step :

"RedBlack rb =⇒ mark_extends rb rv rb’ =⇒ RedBlack rb’"

| subsum_step :

"RedBlack rb =⇒ subsum_extends rb sub rb’ =⇒ RedBlack rb’"

| abstract_step :

"RedBlack rb =⇒ abstract_extends rb rv e rb’ =⇒ RedBlack rb’"

| strengthen_step :

"RedBlack rb =⇒ strengthen_extends rb rv e rb’ =⇒RedBlack rb’"

where operations se extends, mark extends, subsum extends, abstract -
extends and strengthen extends are abbreviations (macros) for a number of
constraints necessary to describe, one by one, the graph transformations infor-
mally introduced in Sect. 3.1. We pick the graph transformation se extends as
example:

abbreviation se_extends ::

"(’a,’b,’c) pre_RedBlack ⇒(’a × nat) arc ⇒ (’b,’c) conf ⇒
(’a,’b,’c) pre_RedBlack ⇒bool"

where

"se_extends rb ra c’ rb’ ≡
ui_arc ra ∈ arcs (black rb) (* 1 *)

∧ ArcExt.extends (red rb) ra (red rb’) (* 2 *)

∧ src ra /∈ subsumees (subs rb) (* 3 *)

2 This is ensured by a number of constraints on the free variable rb forcing the root
of the red part to be the initial location of the black part, etc.
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∧ se (confs rb (src ra)) (labf (black rb)(ui_arc ra)) c’ (* 4 *)

∧ rb’ = (| red = red rb’,

black = black rb,

subs = subs rb,

init_conf = init_conf rb,

confs = (confs rb) (tgt ra := c’),

marked = (marked rb)(tgt ra := marked rb (src ra)),

strengthenings = strengthenings rb |) (* 5 *)"

The constraints describe formally the following side-conditions (we follow the
labels in comments above):

1. ui arc ra, the (unindexed) black counterpart of red arc ra must exist in the
black graph,

2. ArcExt.extends is an abbreviation that states that the source of ra must be
an existing vertex of the red graph, but not its target, and that the new red
graph is obtained by adding ra to the arcs of the old one,

3. the source of ra is not already subsumed,3

4. c′ is the new configuration obtained by symbolic execution of ra
5. the new red-black graph rb′ is constructed from the old one by the following

updates:
– ra is added to the red graph
– the new configuration is added at the target of ra
– the satisfiability-flag of the target of ra is set to the one of its source.

Recall that we want registration of unsatisfiablity to be an explicit action.

The amount of detail that must be added when reasoning precisely over the
correctness issues of these type of graph-based static analysis algorithms is quite
substantial and makes it a valuable target for a machine-checked analysis.

From now on, we call red-black graphs the set of pre RedBlack reachable by the
predicate RedBlack.

4.3 Main Theorems of ATRACER

Relation Between Red Vertices. In the case of a classical symbolic execution
tree, one would prove that, given one sub-path in the tree, the symbolic state at
its end has been obtained by symbolic execution of its trace from the symbolic
state at its beginning. This property is too strong for red graphs obtained by the
GT-calculus. We must handle sub-paths that go through subsumption links and
configurations along these sub-paths may have been abstracted, both inducing a
loss of information about program states.4 In ATRACER, the configuration at
the end of a sub-path merely subsumes the one obtained by classical symbolic
execution. This is expressed by the following theorem.
3 The conjunction of 2 and 3 is equivalent to say that the source of ra is a pending

point in the analysis.
4 Note that in the second assumption of gt calc se rel, unlike in Sect. 4.1, subpath

has a fifth parameter: the subsumption relation of rb.
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theorem gt_calc_se_rel :

assumes "RedBlack rb"

assumes "subpath (red rb) r1 s r2 (subs rb)"

assumes "se_star (confs rb r1) (trace (ui_as s) (labelling(black rb))) c"

shows "c 
 (confs rb r2)"

The proof is obtained by rule induction on RedBlack, i.e. the five trans-
formation operators maintain the property. All cases are quite straightforward,
except for adding a subsumption link. The details of its proof are quite tedious
and numerous, so we skip them here and just give the main idea. The problem
is that we do not know how many times the considered sub-path goes through
the new subsumption, if it does. But as we consider finite sub-paths only, this
number is finite: the proof is obtained by a backward induction on s, using the
fact that subsumption between configurations is a partial ordering for which
symbolic execution is monotonic.

Red-Black Sub-paths and Paths. Before stating our two main theorems,
we formalize the notion of sub-path of a red-black graph and its set of paths.
Given a vertex rv of the red graph, we first define the set of red-black sub-paths
starting from rv as the union of the two following sets:

– the sets of black sub-paths entirely represented in the red graph by sub-paths
starting at rv and ending in a non-marked red vertex,

– the sets of black sub-paths that have a prefix represented in the red graph
leading to a non-marked red vertex rv ′, which is not subsumed and from which
there exist black arcs that have not been symbolically executed yet. Moreover,
the remaining black suffix must have no (non-empty) prefixes represented in
the red graph (starting at rv ′).

As in Sect. 4.1, we define the set of red-black paths as the set of red-black
sub-paths starting at the root of the red graph. This complex definition is needed
to ensure that what we call the set of red-black paths is not simply the set of
paths of the black graph.

Correctness of the GT-Calculus. Our first main theorem states that red-
black paths all come from paths of the black part. More precisely, every red-black
sub-path starting at some red vertex rv is also a sub-path starting at the black
vertex represented by rv in the black graph. Thus, our approach is correct in the
sense that it does not introduce new paths in the red-black graph and preserve
program behavior.

theorem gt_calc_correct :

assumes "RedBlack rb"

shows "RedBlack_subpaths_from rb rv

⊆Graph.subpaths_from (black rb) (fst rv)"

The theorem relies on the fact that arcs added to the red part are simply
indexed versions of black arcs, and that subsumption links only involve different
occurrences of the same black vertices.
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Preservation of Feasible Paths. Finally, we prove that the original set of
feasible paths is contained in the red-black graph. Our main theorem is the
following: given a red vertex rv , every feasible black sub-path bs starting at
the black vertex represented by rv from the configuration associated to rv is a
red-black sub-path starting at rv .

theorem gt_calc_preserves :

assumes "RedBlack rb"

assumes "rv ∈ red_vertices rb"

assumes "bs ∈ feasible_subpaths_from (black rb) (confs rb rv) (fst rv)"

shows "bs ∈ RedBlack_subpaths_from rb rv"

As for correctness, the proof (which is 2.3k loc, and can be found in file
RB.thy) is obtained by rule induction on RedBlack. For each operator, we use
the induction hypothesis to get that bs is also a red-black sub-path of the old
red-graph, before proving that it is not ruled out by the current transformation.
The initial case is trivial, as well as those of abstracting a configuration and
adding an interpolant, since the former only makes the set of red-black sub-
paths larger and the latter does not modify the graph structure but only prevents
future abstractions. The case of adding a red arc is simple but tedious as one
needs to treat the numerous sub-cases. Marking a red vertex as unsatisfiable is
proved using the fact that the vertices that bs goes through cannot be marked,
otherwise bs would not be feasible. The case of adding a subsumption link is
the difficult one, for the same reasons as previously. Again, the proof is obtained
by a backward induction on the considered sub-path before proceeding by case
distinction.

We rephrase our main theorem in more readable way:

theorem gt_calc_preserves2 :

assumes "RedBlack rb"

shows "feasible_paths (black rb) (init_conf rb) ⊆ RedBlack_paths rb"

It is proved using the fact that the initial configuration of a red-black graph
is subsumed by the one associated with the root of its red part, hence the set of
feasible paths starting from the former is a subset of the set of the latter.

4.4 Summary

The formalization of ATRACER presented a number of challenges. We first
attempted to formalize the whole TRACER’s algorithm, heuristics aspects
included. At this time, the SEG was modeled as a tree, whose nodes and leaves
could have different types: simple, unsatisfiable, subsumed, subsumer, and were
decorated with much information, like configurations, the identity of the sub-
sumer, etc. We then faced major difficulties. First, this structure is not suitable
to describe inductively how its set of paths evolves after adding a new node, a
subsumption, etc. Our current modeling of graphs equipped with subsumption
relations makes this task far more easy. Second, it is very difficult to model
in details the heuristics aspects, like graph traversals, how subsumptions are



50 R. Aissat et al.

detected, or how abstractions are refined in practice, for example. We finally
chose to “break” TRACER’s algorithm into pieces in order to identify and
formalize the core operations it performs on SEG, and to give up the heuris-
tics aspects, since they have no influence on the preservation of feasible paths.
Finally, due to the nature of the problem - symbolic execution in presence of
unbounded loops, TRACER-like algorithms might not terminate. In practice,
this is handled using some kind of time-out condition. When such conditions
are triggered, the only way to preserve all feasible paths is to “plug” the actual
SEGs into the original graph. In ATRACER, this is represented by the black
part and the complex definition of red-black paths. This is also what motivates
identifying the core operations, since the problem of preservation is reduced to
showing that each operator never rules out feasible paths.

5 Conclusion

Related Work. Our work is inspired by Tracer [8] and the more wider class
of Cegar-like systems [2,3,5,6,9] based on predicate abstraction. However, we
did not attempt any code-verification of these systems and rather opted for
their rational reconstruction allowing for a clean separation of heuristics and
fundamental parts. Moreover, our treatment of Assume and Assign-labels is
based on shallow encodings for reasons of flexibility and model simplification,
which these systems lack. There is a substantial amount of formal developments
of graph-theories in HOL, most closest is perhaps by Lars Noschinski [11] in
the Isabelle AFP. However, we do not use any deep graph-theory in our work;
graphs were just used as a kind of abstract syntax allowing sharing and arbitrary
cycles in the control-flow. And there are a large number of works representing
programming languages, be it by shallow or deep embedding; on the Isabelle
system alone, there is most notably the works on Ninja, NanoJava, IMP, etc.
However, these works represent the underlying abstract syntax by a free data-
type and are not concerned with the introduction of sharing in the program
presentation; to our knowledge, our work is the first approach that describes
optimizations by a series of graph transformations on CFG’s in HOL.

Summary. We formally proved the correctness of a set of graph transforma-
tions used by systems that compute approximations of sets of (feasible) paths
by building symbolic evaluation graphs. Formalizing all the details needed for a
machine-checked proof was a substantial work. To our knowledge, such formal-
ization was not done before.

The ATRACER model separates the fundamental aspects and the heuristic
parts of the algorithm. Additional graph transformations for restricting abstrac-
tions or for computing interpolants or invariants can be added to the current
framework, reusing the existing machinery for graphs, paths, configurations, etc.

Future Work. Currently, we are implementing a prototype “by hand” that
must not only preserve feasible paths but heuristically generate abstractions and
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subsumptions. It would be possible to generate the core operations on red-black
graphs by the Isabelle code-generator, by introducing un-interpreted function
symbols for concrete heuristic functions that were mapped to implementations
written by hand. This represents a substantial, albeit rewarding effort that has
not yet been undertaken.

Acknowledgement. We thank Marie-Claude Gaudel for her support while doing this
work and for her remarks on this article.
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Abstract. We present a simple yet scalable framework for formal rea-
soning and machine-assisted proof of interrupt-driven concurrency in
operating-system code, and use it to prove the principal scheduling prop-
erty of the embedded, real-time eChronos OS : that the running task
is always the highest-priority runnable task. The key differentiator of
this verification is that the OS code itself runs with interrupts on, even
within the scheduler, to minimise latency. Our reasoning includes context
switching, interleaving with interrupt handlers and nested interrupts; and
it is formalised in Isabelle/HOL, building on the Owicki-Gries method for
fine-grained concurrency. We add support for explicit concurrency con-
trol and the composition of multiple independently-proven invariants.
Finally, we discuss how scalability issues are addressed with proof engi-
neering techniques, in order to handle thousands of proof obligations.

1 Introduction

We address the problem of providing strong machine-checked guarantees for
(uniprocessor) operating-system code with a high-degree of interrupt-driven con-
currency, but without hardware-enforced memory protection. Our contribution
is a technique to reason feasibly about preemptive real-time kernels; we demon-
strate its effectiveness on the commercially-used embedded eChronos OS [3].

Rather than inventing our own, new concurrency formalism from scratch, we
chose to “go for simplicity”. The Owicki-Gries method [19], more than 40 years
old, was invented when mechanised theorem proving was scarce, when the prin-
cipal concern was compact, elegant formalisms applied to small intricate prob-
lems.1 Proving an elegant property of a small, intricate operating system thus
seemed to be an ideal experiment; an added attraction was that the system is
in real-world use. We further motivate the choice of Owicki-Gries in Sect. 4.1.

There were, however, two immediate concerns: even a small operating system
kernel is nowhere near small enough to be reasoned about by hand, as the
1 Broadly speaking, this was the “Hoare/Dijkstra/Gries School” of Formal Methods.
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OG (Owicki-Gries) pioneers typically did [8]; and the OG concurrency model
did not at first seem right for reasoning about the coarse-grained concurrency
of switching between tasks. In OG , atomic actions are arbitrarily interleaved,
and OG ’s “await statements” (Sect. 2 below) are not designed for reasoning
about interrupt-driven scheduling including the scheduler and context-switching
code itself.

The former concern would, we hoped, be taken care of by the increased power
and sophistication of theorem provers in the decades since OG was introduced:
we use Isabelle/HOL [18]. The latter concern is handled by our novel style of
OG reasoning, presented in a previous paper [4], that adapts OG to allow rea-
soning about interrupt-induced and scheduler-controlled concurrency. Although
conceptually simple, this style introduces significant extra text that we hide
through modern techniques: we call it “await painting”. Await-painting intro-
duces an active-task variable that tracks which task is allowed to execute, and
wraps every atomic statement with an AWAIT using that variable to restrict
the allowed interleavings. It is what allows the program code itself to control the
interleaving between tasks, something not normally done in OG .

The top-level theorem we prove is a scheduling property, not directly express-
ible in OG without the await-painting step: that the currently executing task is
the highest-priority runnable task. We prove it on a model of the interleaving
between the OS and the (possibly nested) interrupt handlers. In future work,
we aim to prove that this model is a correct abstraction of the existing eChronos
OS implementation. Our proof assumes that all application-provided code is well
behaved; that is, it does not change any OS variables, and application-provided
interrupt handlers only call a specific API function. Although the eChronos OS
does not explicitly export any functions modifying OS variables, the OS is not
able to enforce these constraints as the system runs on hardware with no memory
protection. These assumptions can, however, be statically checked.

Our specific contributions are the following ones. We extend the model pre-
sented previously [4] (Contribution 2), while the proofs themselves are new (Con-
tributions 1, 3, 4, 5). Most of our model and proof framework is generic and
should apply to systems that support interruptible OS-es, preemptible applica-
tions and nested interrupts. All our proofs and model are available online [1].

1. We provide a proof framework, using a formalisation of OG in
Isabelle/HOL [20], to reason about interrupt-driven and scheduler-controlled
concurrency. Our framework is driven by the aim to handle complex parallel
composition which requires that invariants can be proved compositionally.
(Sect. 4.1)

2. We give an updated model of our interleaving framework and instantiation
to the eChronos OS . It extends the one presented previously [4] by includ-
ing system calls that can influence the scheduling decisions, introduces non-
determinism to properly represent under-specified operations, and properly
separates generic interleaving and eChronos instantiation. (Sect. 3)

3. We show that proving the scheduling property for the eChronos system is
within the capabilities of modern theorem provers, at least for an application
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of this size. This includes handling the OG-characteristic of quadratically
many “interference-freedom” verification conditions. (Sect. 4.2)

4. We develop a number of proof engineering techniques to address some
observed problems that occur in a proof of this scale. (Sect. 4.3)

5. We contribute to the real-world utility of an existing preemptive kernel that
is in widespread use, in particular in medical devices.

2 Background and Big Picture

The goal of our work is to provide a verification framework for OS code involving
interrupt-induced concurrency, in particular real-time embedded OS -es.

A real-time OS (RTOS), like the eChronos OS , is typically used in tightly
constrained embedded devices, running on micro-controllers with limited mem-
ory and no memory-protection support. The role of the OS is closer to that of
a library than of a fully-fledged operating environment, allowing the application
running on top to be organised in multiple independent tasks and providing
a set of API functions that the application tasks can call to synchronise (sig-
nals, semaphores, mutexes). The OS also provides the underlying mechanism for
switching from one task to another, and is responsible for sharing the available
time between tasks, by scheduling them according to some given OS -specific
policy. For instance, tasks can cooperatively yield control to each other (cooper-
ative scheduling); or tasks can be scheduled according to their assigned priority,
and their execution must then be preempted if a higher priority is made avail-
able (preemptive scheduling). The system typically also reacts to external events
via interrupts. An interrupt handler needs to be defined for each interrupt by
the application. When an interrupt occurs, the hardware ensures that the corre-
sponding interrupt handler is executed (unless the interrupt is disabled/masked).

The job of the scheduler is to ensure that at any given point the running task
is the correct one, as defined by the scheduling policy of the system.

For instance, in a priority-based preemptive system, when a task in unblocked
(e.g. by an interrupt handler sending the signal it was waiting for) a context
switch should occur if this task is at a higher priority than the currently running
one. This defines the correctness of the scheduling behavior and is the target of
our proof about the eChronos OS .

To reason about such an RTOS, and prove such a scheduling property, we
present a verification framework supporting the concurrency reasoning required
by preemption and interrupt handling (on uniprocessor hardware).

In previous work [4] we provided a model of interleaving that faithfully rep-
resents the interaction between application code, OS code, interrupt handler and
scheduler, in such an RTOS. Roughly, the system is modelled as a parallel com-
position A1||...||An||Sched ||H1||...||Hm, where the code for each application Ai

is parameterised (including calls to OS API functions), as well as the code for
each interrupt handler Hj , and the code for the scheduler. The key feature of
the framework is that the interleaving in the parallel composition is controlled
using a small formalised API of the hardware mechanisms for taking interrupts,
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returning from interrupts, masking interrupts, etc. We have formalised our logic
in Isabelle/HOL, based on [20].

In this paper we present (a) a logic to prove invariants about such parallel
composition, with support for handling complex proofs and (b) instantiation of
the model to the eChronos OS and proof of its scheduling behavior.
Namely, the property we prove is

‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|} (1)

where ‖−b is the derivability of a “bare” program (i.e. with no annotations),
and is defined in terms of ‖−i at the end of Sect. 4.1. The notation ‖−i I p c q

means that if the (annotated) parallel program c starts in a state satisfying the
precondition p, then the invariant I holds at all reachable execution steps of c,
and the postcondition q holds if c terminates. The definition, explained in detail
in Sect. 4.1, adds an invariant to the original Owicki-Gries statement ‖− p c q,
which in turn is an extension of traditional Hoare-logic statement � p c q.
Owicki-Gries extends the sequential programs of Hoare-logic with two constructs:
the parallel composition c1||c2 and the AWAIT -statement AWAIT b DO c OD.
The execution of c1||c2 is the execution of the current instruction of either c1 or
c2. The statement AWAIT b DO c OD can only execute if condition b is satisfied,
in which case c is executed atomically (meaning that b is still true as c begins,
and reasoning within c is purely sequential).

eChronos sys is our model of an eChronos system. The eChronos OS2 pro-
vides a priority-based preemptive scheduler with static priorities. It comprises
about 500 lines of C code and runs on ARM uniprocessor hardware.3 Our model
is an instantiation of the generic model of interleaving [4], with definitions for
the scheduler, and for the API system calls (the ones that may influence the
scheduling decisions) which are called from application or handler code. This
model is given in Sect. 3.

Coming back to the property (1), it says that the eChronos system, starting
in any initial state and never terminating, will satisfy the scheduler invariant
at every point of execution. The precondition True is always trivially satisfied
and the postcondition False is valid because the system is an infinite loop of
execution. The invariant property for the eChronos OS states that the running
task is always the highest priority runnable task. We describe its formal definition
and proof in Sect. 4.2.

Owicki-Gries reasoning introduces quadratically many proof obligations due
to parallelism: indeed our proof for the eChronos scheduling behavior initially
generates thousands. However, using a combination of (a) compositional proofs

2 The eChronos OS [3] comes in many variants, varying in the hardware they run
on, the scheduling policy they enforce and the synchronisation primitives they offer.
In this paper we simply refer to the eChronos OS for the specific variant that we
are targeting, called Kochab, which supports the features that create interesting
reasoning challenges (preemption, nested-interrupts, etc.).

3 We specifically target an ARM Cortex-M4 platform, simply referred to as ARM here.
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for proving invariants; (b) controlled interleaving to eliminate unfeasible exe-
cutions; and (c) proof engineering techniques to automate discharging a large
number of conditions, we show the feasibility of this approach for a preemptive
and interruptible real-time OS running on a uniprocessor (Sect. 4.3).

3 The Model

In recent work [4] we presented a model of interleaving between application code,
interrupt handler code, and scheduler code, for an ARM platform that supports
both direct and delayed calls to the scheduler. The model was designed to be
generic and we then instantiated it to the eChronos OS .

Here we present this model, with several improvements. We explicitly sepa-
rate the generic portion to clarify how one could use the framework to formalise
a different system. We extended the formalisation of the eChronos OS to include
system calls that can influence the scheduling decisions. Finally, we introduce
non-determinism to properly represent under-specified operations.

3.1 A Generic Model of Interrupt-Driven Interleaving

In the generic part of the model we focus both on formalising the hardware
mechanisms that control interleaving and on faithfully representing the concur-
rency induced by interrupts. The system is modelled as the parallel composition
svcaTake||svca||svcs||H1||...||Hm||A1||...||An, where the scheduler (Sched in Sect. 2)
is taking into account here both direct/synchronous calls to the scheduler (svcs)
and delayed/asynchronous ones (svca). ARM provides a direct (synchronous)
supervisor call (SVC) mechanism that can be thought of as a program-initiated
interrupt. It is triggered by the execution of the SVC instruction (SV C now),
which results in the execution switching to an SVC handler (svcs). ARM also
provides a delayed (asynchronous) supervisor call, also behaving like an inter-
rupt, with instructions allowing programs to enable and disable it. It is triggered
by raising a flag (svcaReq), whose status is constantly checked by the hard-
ware (modelled by svcaTake). If the flag is raised and the asynchronous SVC is
enabled, the execution will switch to a specific handler (svca). In the case of the
eChronos OS , both SVC handlers will execute the scheduler.

The formal model of interleaving is presented in Fig. 1.4 The code for the
application initialisation, application tasks, interrupt handlers and SVC handlers
are parameters as they are system-specific.

The code for each part of the parallel composition is in fact wrapped in
an infinite WHILE loop, reflecting the reactive nature of the system. More-
over, to faithfully represent the controlled interleaving allowed by the hardware
4 The model is written in a simple formalised imperative language with par-

allel composition and await statements, which has the following syntax:
c ≡ x := v | c;; c | IF b THEN c ELSE c FI | WHILE b DO c OD |

AWAIT b THEN c END | (COBEGIN c ‖ c COEND)
The SCHEME constructor models a parametric number of parallel programs, as seen
in [20]. Here this is the number of handlers plus the number of application tasks.
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Fig. 1. Definition of generic interrupt-driven interleaving in Isabelle/HOL

we await-paint most of the code. This means that we introduce an active-task
variable, AT , and associate each task, including the interrupt handlers, with a
unique identifier. Every atomic statement c in Task t is then converted into a
statement AWAIT AT=t THEN c END . As described in Sect. 2 this prevents
the execution of c until the await-condition holds. Only when the command
AT:= t is performed will Task t be able to execute. In particular, this means
that no other Task t′ with t′ �=t will be able to interfere. In the model this await-
painting is performed by the control function, which recursively wraps every
command with an AWAIT .

To be precise, we await-paint all of the code except for where concurrency can
actually occur: during the background hardware routine svcaTake, and when an
interrupt is taken, ITake. These represent our model of the hardware mecha-
nisms that control the interleaving and context switching. We define them as
below, with an AWAIT with the condition that the interrupt is allowed to be
taken. We have previously described these functions in detail [4], but abstractly
they save the AT variable on a stack (the notation x#xs adds x to the list xs)
and switch to the interrupt or SVC handler. While these are the only places
where concurrency is not controlled, they are still guarded by the condition that
the interrupt is enabled (is in the set EIT of enabled interrupts), is not already
running (or itself interrupted), and is allowed to interrupt the active task.

can-interrupt i ≡ i ∈ EIT − ATStack ∧ i ∈ interrupt-policy AT

ITake i ≡ AWAIT can-interrupt i
THEN ATStack := AT # ATStack ;; AT := i END

svcaTake ≡ AWAIT svcaReq ∧ can-interrupt svca
THEN ATStack := AT # ATStack ;; AT := svca;; svcaReq := False END

One of the central features of the eChronos OS is that while OS code is
interruptible, it is not preemptible. In practice, this means that although stan-
dard interrupts are handled immediately, the call to the scheduler via the SVCa
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interrupt is delayed until the OS code is completed. To achieve this, SVCa is
temporarily removed from EIT , ensuring that svcaTake cannot execute.

We also provide a model of the SV C now and IRet hardware instructions
that are called by OS functions.

SVC-now ≡ ATStack := AT # ATStack ;; AT := svcs

IRet ≡ IF svcaReq ∧ can-interrupt ′ svca
THEN AT := svca;; svcaReq := False
ELSE AT := hd ATStack ;; ATStack := tl ATStack FI

can-interrupt ′ i ≡ i ∈ EIT − ATStack ∧ i ∈ interrupt-policy (hd ATStack)

SV C now is used to directly switch to the SVC interrupt handler. IRet
returns control from an interrupt handler: it either switches control to svca (if
svca has both been requested and is allowed to interrupt the head of ATStack)
or returns control to the head of ATStack, which was saved as part of ITake.
Although not explicitly part of interleaving, we require that the last command
of svca code, svcs code, and handler code is IRet. This can be checked when
instantiating the interleaving model to a specific system.

3.2 Instantiation to the eChronos OS

To model the eChronos OS we now just need to instantiate the above framework
with the OS specific code. We give an overview of this instantiation below5 while
the full details can be found online [1] or in our previous paper [4].

eChronos-sys ≡ interleaving eChronos-init eChronos-svca-code eChronos-svcs-code

eChronos-handler-code eChronos-app-code

eChronos-svca-code ≡ schedule;; context-switch True;; IRet

eChronos-svcs-code ≡ schedule;; context-switch False;; IRet

eChronos-handler-code i ≡ E :∈ {E ′ | E ⊆ E ′};; svcaRequest ;; IRet

eChronos-app-code i ≡ userSyscall :∈ {SignalSend , Block};;
IF userSyscall = SignalSend
THEN svcaDisable;; R :∈ {R ′ | ∀ i . R i = Some True −→ R ′ i = Some True};;
svcaRequest ;; svcaEnable;; WHILE svcaReq DO SKIP OD

ELSE IF userSyscall = Block
THEN svcaDisable;; R := R(i 
→ False);; SVC-now ;; svcaEnable;;
WHILE svcaReq DO SKIP OD

FI
FI

5 For presentation purposes, we omit ghost variables added to the program for veri-
fication purposes. The notation x :∈ S stands for non-deterministically updating x
to be any element of S.
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In this work we focus on the scheduling behaviour, modelling only the parts
that might affect scheduling decisions. These decisions depend on two variables,
R for runnable tasks and E for the events signalled by interrupt handlers.

The parameters eChronos svca code and eChronos svcs code are almost
identical and are used by the OS to call the scheduler. First, schedule, defined
below, picks the next task to run by first updating R through handling the
unprocessed events E before using whichever scheduling policy is in place. After
choosing the task a context switch is performed, with the old task being saved
and the new task being placed on the stack.

schedule ≡ nextT := None;;
WHILE nextT = None
DO E-tmp := E ;; R := handle-events E-tmp R;; E := E − E-tmp;;
nextT := sched-policy R OD

context-switch preempt-enabled ≡
contexts := contexts(curUser 
→ (preempt-enabled , ATStack));;
curUser := the nextT ;; ATStack := snd (the (contexts curUser));;
IF fst (the (contexts curUser))
THEN svcaEnable
ELSE svcaDisable FI

Next, eChronos handler code is mostly application-provided and is only
allowed to affect the behaviour of the OS by expanding the set of events E.
A flag is then raised saying that the scheduler should be run as soon as enabled.
To finish, the handler, by calling IRet, either returns control to the previously
executing context or, if allowed, switches control to the scheduler.

Finally, the only way the application code can affect the interleaving behav-
iour is via system calls. We model two representative syscalls, signal send and
block. In the eChronos OS , syscalls run with interrupts enabled, but preemption
disabled; that is, they are surrounded by disabling and enabling the svca inter-
rupt. This is to delay a call to the scheduler requested by an interrupt handler
until after the OS syscall is finished. Each syscall ends with a loop that ensures
that, if required, the scheduler executes before the OS returns control to the
application. The syscall signal send increases the set of runnable tasks and sets
a flag indicating that the scheduler needs to be run, while block modifies R so
that the specific application task is no longer runnable and then directly calls
svcs via SV C now.

4 Proof Framework and Scheduler Proof

4.1 Framework and Compositionality Lemma

In this section we explain our definition of derivability of a (bare) parallel program
c with respect to an invariant I, precondition p and postcondition q, denoted
‖−b I p c q . We present the framework that we build to ease the proof of such
a statement, by assuming helper invariants, and decomposing the proof into
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composable subproofs. In Sect. 4.2, we use this framework to state and prove the
scheduler correctness ‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|}.

We use the Owicki-Gries (OG) treatment of concurrency, captured in
Isabelle/HOL by Prensa [20]. Reasoning about high-performance shared-variable
system code requires a very low level of abstraction [4], and motivated our choos-
ing OG over alternatives such as the more structured Rely-Guarantee method.
Futhermore, our goal was to verify existing code rather than to synthesise new
code, i.e. a bottom-up proof rather than a top-down correctness-by-construction
exercise. An attractive possibility, however, is to now use the invariants and
assertions that OG and the code helped us to synthesise, and to explore whether
with that “head start” a Rely-Guarantee approach would be possible: probably
it would suggest proof-motivated modification to the code.

TheOG method, introduced 40 years ago, extends the Hoare-style assertional-
proof technique to reason about a number of individually sequential processes that
are executed collectively in parallel. Namely, OG provides (1) a definition of valid-
ity of a Hoare triple over a (fully annotated) parallel composition of programs,
denoted ‖= p c q ; (2) a set of proof rules for efficient verification of such a state-
ment, with an associated derivability statement, denoted ‖− p c q ; (3) a sound-
ness theorem of the rules w.r.t validity, namely ‖− p c q −→ ‖= p c q ; and finally
(4) an automated verification condition generator (VCG), i.e. a tactic oghoare in
Isabelle/HOL to decompose a derivability statement into subgoals.

We explain these standard OG definitions before going into our extensions,
which are proved sound with respect to the concurrency semantics. In the follow-
ing, c and ac are mutually recursive datatypes; c is sequential code, which can
contain a parallel composition of annotated code, ac. The parallel composition
consists of a list of annotated programs with their postconditions. An annotated
program can contain an AWAIT statement, whose body is a sequential program.

c ≡ x := v | c;; c | IF b THEN c ELSE c FI | WHILE b DO c OD |
COBEGIN ts COEND

ts ≡ [ ] | (aco, {|a|})#ts
aco ≡ None | Some ac
ac ≡ {|a|} x := v | ac;; ac | {|a|} IF b THEN ac ELSE ac FI |

{|a|} WHILE b INV {|a|} DO c OD | {|a|} AWAIT b THEN c END

In the above b is a boolean expression, and a is an assertion. Validity ‖= p c q
is defined in terms of the execution semantics of the program, as in Hoare logic
(all states reachable via multiple steps of execution from initial states satisfy-
ing the precondition will satisfy the postcondition). The execution of the stan-
dard language constructs is also defined as in Hoare logic. For parallel composi-
tion, one of the programs is at each step non-deterministically chosen to make
progress. For the AWAIT statement, the body is executed, under the condition
that the guard is satisfied (and that the body does not contain any parallel
composition). The derivability rules (‖− p c q) are also the same as for Hoare
logic. The key feature of OG is providing a proof rule for parallel composition,
which consists in showing local correctness and interference-freedom for a list
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[(Some ac1, q1), ..., (Some acn, qn)] of annotated programs. Each program aci
and postcondition qi is first proved correct in isolation using standard sequential
Hoare logic rules. Then, each assertion a in aci is proved to not be interfered
with by any (annotated) statement {|a′|} st′ in another program acj (shown
using standard Hoare logic as well: {|a ∧ a′|} st′ {|a|}). This interference-freedom
requirement makes the OG technique non-compositional and quadratic. How-
ever, in systems with limited concurrency like ours, the complexity is reduced
and we apply proof engineering techniques to make it scale to verify real OS
scheduling behavior.

Our first, small, extension to the original definition of derivability is to explic-
itly talk about the invariant of the program. The programs we target are infinite
loops, where the postcondition is not reached. Therefore, their correctness can
be expressed better in terms of an invariant over their execution. An invari-
ant for an annotated program is merely a property repeated in all annotations.
However, manually inserting it everywhere is tedious, error-prone and results
in bad readability. Instead, we define the derivability of invariants as follows:

‖−i I p c q ≡ ‖− p (add-inv-com I c) q

where add inv com I c simply inducts over the structure of program c and adds
a conjunction with I to all annotations.

Our second extension is to be able to assume a helper invariant, while proving
a main invariant. This feature is necessary in larger proofs where the property
of interest relies on a number of other invariants. These invariants might need
different sets of annotations; proving them all together quickly becomes unread-
able, and even infeasible due to the explosion of complexity. It also makes it
hard for multiple people to work on a single proof. We modify the original set
of OG derivability rules to allow assuming an invariant, denoted I ‖− p c q , as
follows: preconditions get an extra conjunction with I (i.e. I can be assumed
true initially) and postconditions get an extra implication from I (i.e. the post-
condition itself only need to be proven if I holds). Then ‖− p c q simply stands
for UNIV ‖− p c q (UNIV is the universal set) and I ′ ‖−i I p c q stands for
I ′ ‖− p (add-inv-com I c) q . Putting things together, we provide a composition-
ality lemma to decompose the proof along the invariants.

I ′ ‖−i I p c q ‖−i I ′ p ′ c ′ q ′ merge-prog-com c c ′ = Some c ′′

‖−i (I ′ ∩ I ) (p ∩ p ′) c ′′ (q ∩ q ′)
(2)

where the merge of two programs requires the programs to only differ on annota-
tions (i.e. have identical program text), and if so, returns the same program text
with merged annotations (by conjunction). Our proof of the eChronos scheduler
uses this lemma extensively, and would have not been tractable without it.

Finally we define the derivability of an invariant I over a bare program
(i.e. not annotated) as the existence of an appropriate annotation sufficient to
prove I , as follows:
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‖−b I p c q ≡ ∃ c ′. extract-prg c ′ = c ∧ ‖−i I p c ′ q (3)

Since invariants are merely annotations, we can prove an introduction rule for
derivability, which allows us to directly introduce helper invariants:

∃ c ′. extract-prg c ′ = c ∧ ‖−i (I ∩ I ′) p c ′ q
‖−b I p c q

(4)

4.2 The Statement and Its Proof

Now that we have defined our framework, we present the statement of eChronos’
scheduler correctness:

‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|} (1)

The definition of eChronos sys is described in Sect. 3. Here we define sched-
uler invariant and explain its proof.

As previously mentioned, the key property enforced by the eChronos OS is
that the running application task is always the highest priority runnable task.
We express this property as an invariant scheduler invariant , defined as follows:

scheduler-invariant x ≡
AT x ∈ U ∧ svca ∈ EIT x ∧ ¬ svcaReq x −→
sched-policy (handle-events (E x ) (R x)) = Some (AT x)

where x is the current state. The statement says that whenever the currently
active task is a user (i.e. not an interrupt handler and not the scheduler), and
we are not inside a system call (we will come back to that), then that user
is indeed the one supposed to be running, according to the scheduling policy.
The latter is expressed by the fact that the scheduling policy would choose the
running user if re-run with the current values of events E and of the runnable
set R.

The condition of not being in a system call is because, as explained in Sect. 3,
preemption is turned off during system calls, meaning that any asynchronous
request for the scheduler is delayed until the system call finishes running. There-
fore, when the currently active task is a user, but is inside a system call, it might
not be of highest priority. However, as soon as the system call is finished, the
execution must not go back to that user but must instead immediately call the
scheduler. The invariant should, therefore, only be checked outside of system
calls. Being outside a system call is defined by the asynchronous scheduler being
enabled.6 The third premise represents the specific situation where preemption
is turned back on, but the request for asynchronous scheduling is still on, wait-
ing for the hardware to do the switch (as explained in Sect. 3). The execution
only goes back to the user when this asynchronous scheduling request has been
handled.
6 Disabling the scheduler is one of the functions that the eChronos OS does not export,

to keep control of latency, as mentioned in Sect. 1.
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Now we describe how we prove (1). We use lemma (4), and for this we
create a suitable complete annotation of eChronos sys sufficient to prove the
invariant scheduler invariant . The details of the annotations are not particularly
insightful, but the process of identifying them and incrementally building them
is discussed at the end of this section. The main theorem we prove is:

‖−i ({|scheduler-invariant |} ∩ helper-invs) {|True|} eChronos-sys-ann {|False|} (5)

where eChronos sys ann is the fully annotated program, whose extracted pro-
gram text is eChronos sys, and where helper invs are a set of nine invariants
about eChronos state variables and data structures, required to prove sched-
uler invariant . We prove lemma (5) by applying the compositionality lemma.
We first prove the scheduler invariant assuming all the helper invariants:

helper-invs ‖−i {|scheduler-invariant |} {|True|} eChronos-sys-ann {|False|} (6)

We then prove each helper invariant independently (and this can be done by
different people, increasing efficiency). These invariants reveal much about the
data structures but do not represent a high level correctness property of the
eChronos OS . We omit their definitions for space reasons (they are available
online [1]), and just give two representative examples:

last-stack-inv x ≡ last (AT x # ATStack x) ∈ U
ghostP-inv x ≡ ghostP x −→ AT x ∈ I ∪ {svca, svcs}

The first invariant describes the allowed shape of the stack, namely that its
last element is always a user task. It is representative of the invariants about
the data structures. The second invariant is representative of the need for ghost
variables to express where certain programs are in their execution. Here ghostP is
a ghost flag that represents the fact that the asynchronous scheduler is running.
The invariant ghostP inv ensures that ghostP cannot be set if the active task
is a user application. It is needed in the proofs of interference-freedom of user
applications’ assertions: it tells us that the asynchronous scheduler instructions
cannot violate them as they cannot be running.

For each of the nine helper invariants, we prove that it is preserved by
eChronos sys ann. Some of them rely on others so we reuse the composition-
ality lemma for these.

We proved all of these helper lemmas along with lemma (6) in an iterative
process to discover the required annotations. Roughly, we start with minimal
annotations, and run the oghoare tactic to generate the proof obligation for
local correctness and interference-freedom. We apply the techniques discussed in
Sect. 4.3 to reduce the number of subgoals by removing duplication and auto-
matically discharging as many as possible. We are then left with a manageable
set of subgoals, where we can identify which assertion in the program is being
proved, and can start augmenting assertions as required to prove these subgoals.
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4.3 Proof-Engineering Considerations

The oghoare proof tactic, offered in the Isabelle distribution and derived
from [20], is the VCG used for decomposing an annotated program into subgoals.
Each of these goals is ultimately either a judgement that the precondition for
each program step is sufficient to demonstrate its postcondition or that a given
annotation is not interfered with by anything else running in parallel.

The tactic is defined as a mutually recursive function that decomposes pro-
gram sequencing, program (user-defined) annotations, and parallel composition.
The provided implementation of this tactic results in a quadratic explosion of
proof obligations: a ∼200 line parallel program takes oghoare ∼90 s to generate
∼3, 000 subgoals.

Rather than solve each of these goals by hand, we chose to write a single
custom tactic which was powerful enough to solve all of them. Here we leveraged
Isabelle’s existing proof automation and parallelisation infrastructure [17]. With
some instrumentation and custom lemmas, Isabelle’s simplifier [18, Sect. 3] can
discharge almost all of the subgoals produced from oghoare. Isabelle’s provided
PARALLEL GOALS tactical allows us to apply our custom tactic to all subgoals
simultaneously in parallel, resulting in a significant reduction in overall proof
processing time. Despite this infrastructure, however, these ∼3, 000 subgoals
can still take over an hour to prove. This is impractical from a proof engineering
perspective, as this proof needs to be re-run every time the tactic is adjusted
or the program annotations are changed. This prompted the development of
several proof engineering methodologies that, although generally applicable, were
instrumental in the completion of this proof.

Subgoal Deduplication and Memoization. An initial investigation revealed
that many of the proof obligations produced by oghoare were identical. Isabelle’s
provided distinct subgoals tactic can remove duplicate subgoals, but takes over
30 s to complete on 3, 000 subgoals. We found that we could instead store proof
obligations as goal hypotheses as they are produced, which are efficiently de-
duplicated by Isabelle’s proof kernel. This adds negligible overhead, and results
in approximately a 3-fold reduction in the total number of proof obligations.

This large number of duplicate subgoals is a consequence of having many
identical program annotations. The oghoare tactic recurses on the syntax of the
annotated program, generating non-interference verification conditions for each
annotation. Rather than complicate the implementation of oghoare, we chose to
simply de-duplicate these proof obligations as they are produced.

Although this de-duplication reduces the total time required to finish the
proof, it still indicates that the oghoare tactic is doing redundant computation
and that the observed ∼90 s overhead could be reduced. To address this, we
developed a new tactical for memoization, SUBGOAL CACHE, which caches
the result of applying a given tactic to the current subgoal. When the tactic is
subsequently invoked again, the cache is consulted to determine if it contains a
previously-computed result for the current subgoal. On a cache hit, the stored
result is simply applied rather than having the tactic re-compute it. Isabelle’s
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LCF-style proof kernel guarantees that such a cache is sound, as each cached
result is a previously-checked subgoal that was produced by the kernel.

We applied SUBGOAL CACHE to each of the mutually recursive tactics
that oghoare comprises. Including subgoal de-duplication, this change reduces
the running time of oghoare from ∼90 s to ∼5 s (on a ∼200 line program),
without requiring any change to the underlying algorithm.

Subgoal Proof Skipping. Even once these ∼3, 000 subgoals have been de-
duplicated down to ∼1, 000 distinct subgoals, discharging them all can take
between 5 and 30 min, depending on the particular annotations. The develop-
ment strategy was to run the simplifier on all the subgoals and then analyse
those that remained unsolved. Each iteration required adding additional pro-
gram annotations or providing the simplifier with additional lemmas in order
to discharge more subgoals. This would then require waiting for up to 30 min
again to see if the change was successful.

To save time, we added another tactical, PARALLEL GOALS SKIP, which
builds on Isabelle’s skip proofs mode and PARALLEL GOALS tactical. This
tactical is equivalent to the existing PARALLEL GOALS, but records which
subgoals were successfully discharged as global state data. This global record
can then be accessed if the tactic is re-executed in Isabelle/jEdit (after, for
example, going back and adding another annotation to the function). When
re-executing the tactic, subgoals that were previously discharged are instead
simply skipped and assumed solved. In practice, this reduces the effective itera-
tion time from minutes to seconds, depending on the significance of the change.
When the proof is complete, PARALLEL GOALS SKIP is then replaced with
PARALLEL GOALS in order to avoid skipping proofs and guarantee soundness.

Together these methodologies make this approach far more tractable and
scalable than was previously thought possible.

5 Related Work

We discuss models of interrupts, verification of operating systems, models of real-
world systems with concurrency, and automation and mechanisation of OG .

The closest work to ours formalises interrupts explicitly [9,12,13], using
“ownership” to reason about resource sharing. That provides verification modu-
larity, but the run-time discipline it induces limits the effective concurrency unac-
ceptably for a real-time system where low latency is paramount. Indeed, they
assume that interrupts are disabled when data is shared and during scheduling
and context switching; we do not. They also do not support nested interrupts,
although some [9] do suggest how they could. However, one [12] does support
multicore.

Other works in OS verification, less closely related, either do not model inter-
rupts, or target systems where OS code runs with interrupts disabled. Close
to the eChronos OS is FreeRTOS [2], a real-time OS for embedded micro-
controllers. Its verification has been the target of several projects: in [6,7,10], the
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focus of the verification is on the scheduling policy itself (picking the next task),
or on the correct handling of the data-structure lists and tasks by the scheduler.
While FreeRTOS runs with interrupts mostly enabled, interrupt handling is not
modelled in these works, nor is context-switching. That work is complementary
to ours, where we leave the policy generic. In [5], the authors target progress
properties (absence of data-race and deadlock) of their proposed multicore ver-
sion of FreeRTOS. Again, this is orthogonal to our focus on correctness. Another
embedded real-time OS that has been verified [14] is used in the OSEK/VDX
automotive standard. It has been model-checked in CSP, and the interleaving
model has some similarities with ours, where tasks are in parallel composition
with the scheduler. But again, interrupts are out of scope.

In OS verification generally, existing, larger OS -es that are formally veri-
fied [16,21], run with interrupts disabled throughout the executions of system
calls from applications, making those calls’ executions sequential.

Finally, a notable verification effort outside the pure OS world is on-the-fly
garbage collection (GC) in a relaxed memory model [11]. They too chose the
rigour of Isabelle/HOL, and used a system-wide invariant. Concurrency control
is via message passing, while the eChronos OS uses shared variables.

A GC is also the target of the main existing use of formalised and mechanised
Owicki-Gries. Prensa, the author of the OG formalisation [20] in Isabelle/HOL,
on which our work is based, used her framework to verify a simple GC algorithm.
In terms of scale, Prensa’s model contains only two threads in parallel, one
of which contains only 2–3 instructions: this generates only ∼100 verification
conditions. Our proof effort generates ∼3, 000 VC ’s, and so requires significant
proof engineering [15] to be feasible. Also, Prensa’s work does not extract the
correctness property in a separate, well-identified invariant annotation. Nor does
it allow control of concurrency and interleaving between the parallel processes,
that is, the inclusion of a task-scheduler which is itself subject to verification.

6 Conclusion

Our contribution has been the intersection of three ideas: that modern proof-
automation now makes Owicki-Gries reasoning about concurrency feasible for
much larger programs than before; that OG can be used in a style that allows
reasoning about programs that control and limit their own concurrency; and
that an ideal target to test these ideas is a small, highly interleaved preemp-
tive real-time operating system. To our knowledge this is the first proof of an
OS system running with interrupts enabled even during scheduling, and allow-
ing nested interrupts. The proof does make assumptions about application code
conventions, as remarked in Sect. 1, precisely because the OS is not hardware
protected. But these are statically checkable and reasonable for applications
running on a real-time OS . Our experience in doing this proof should be use-
ful to the wider ITP community: we can contribute proof-engineering insights
for dealing with a huge amount of goals. Furthermore, our proof of scheduler
correctness for a real-time OS already in commercial use in medical devices has
real, practical value.
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The work we have done so far sits roughly in the middle of a complete verifi-
cation of an application running on the eChronos OS platform. Above, further
work could provide a verified OS API specification that application program-
mers could use to prove their programs’ correct behavior. Below, we have yet
to prove refinement between the large-grained atomic steps and the low-level
primitives for concurrency, and that the OG model on which our proof is based
accurately captures the behaviour of our target processor. Those last two will
be our next step, as well as continuing to develop proof-engineering techniques
crucially needed for efficient and scalable concurrency software verification.
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Abstract. Brzozowski introduced the notion of derivatives for regular
expressions. They can be used for a very simple regular expression match-
ing algorithm. Sulzmann and Lu cleverly extended this algorithm in order
to deal with POSIX matching, which is the underlying disambiguation
strategy for regular expressions needed in lexers. Sulzmann and Lu have
made available on-line what they call a “rigorous proof” of the correct-
ness of their algorithm w.r.t. their specification; regrettably, it appears to
us to have unfillable gaps. In the first part of this paper we give our induc-
tive definition of what a POSIX value is and show (i) that such a value is
unique (for given regular expression and string being matched) and (ii)
that Sulzmann and Lu’s algorithm always generates such a value (pro-
vided that the regular expression matches the string). We also prove the
correctness of an optimised version of the POSIX matching algorithm.
Our definitions and proof are much simpler than those by Sulzmann and
Lu and can be easily formalised in Isabelle/HOL. In the second part we
analyse the correctness argument by Sulzmann and Lu and explain why
the gaps in this argument cannot be filled easily.

Keywords: POSIX matching · Derivatives of regular expressions ·
Isabelle/HOL

1 Introduction

Brzozowski [2] introduced the notion of the derivative r\c of a regular expres-
sion r w.r.t. a character c, and showed that it gave a simple solution to the
problem of matching a string s with a regular expression r : if the derivative
of r w.r.t. (in succession) all the characters of the string matches the empty
string, then r matches s (and vice versa). The derivative has the property (which
may almost be regarded as its specification) that, for every string s and regular
expression r and character c, one has cs ∈ L(r) if and only if s ∈ L(r\c). The
beauty of Brzozowski’s derivatives is that they are neatly expressible in any func-
tional language, and easily definable and reasoned about in theorem provers—
the definitions just consist of inductive datatypes and simple recursive functions.
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A mechanised correctness proof of Brzozowski’s matcher in for example HOL4
has been mentioned by Owens and Slind [9]. Another one in Isabelle/HOL is
part of the work by Krauss and Nipkow [6]. And another one in Coq is given by
Coquand and Siles [3].

If a regular expression matches a string, then in general there is more than one
way of how the string is matched. There are two commonly used disambiguation
strategies to generate a unique answer: one is called GREEDY matching [4] and
the other is POSIX matching [7,11,13]. For example consider the string xy and
the regular expression (x + y + xy)�. Either the string can be matched in two
‘iterations’ by the single letter-regular expressions x and y, or directly in one
iteration by xy. The first case corresponds to GREEDY matching, which first
matches with the left-most symbol and only matches the next symbol in case of a
mismatch (this is greedy in the sense of preferring instant gratification to delayed
repletion). The second case is POSIX matching, which prefers the longest match.

In the context of lexing, where an input string needs to be split up into a
sequence of tokens, POSIX is the more natural disambiguation strategy for what
programmers consider basic syntactic building blocks in their programs. These
building blocks are often specified by some regular expressions, say rkey and rid

for recognising keywords and identifiers, respectively. There are two underlying
(informal) rules behind tokenising a string in a POSIX fashion according to a
collection of regular expressions:

• The Longest Match Rule (or “maximal munch rule”): The longest initial sub-
string matched by any regular expression is taken as next token.

• Priority Rule: For a particular longest initial substring, the first regular expres-
sion that can match determines the token.

Consider for example a regular expression rkey for recognising keywords such
as if, then and so on; and rid recognising identifiers (say, a single character
followed by characters or numbers). Then we can form the regular expression
(rkey + r id)

� and use POSIX matching to tokenise strings, say iffoo and if.
For iffoo we obtain by the Longest Match Rule a single identifier token, not
a keyword followed by an identifier. For if we obtain by the Priority Rule a
keyword token, not an identifier token—even if rid matches also.

One limitation of Brzozowski’s matcher is that it only generates a YES/NO
answer for whether a string is being matched by a regular expression. Sulzmann
and Lu [11] extended this matcher to allow generation not just of a YES/NO
answer but of an actual matching, called a [lexical] value. They give a simple
algorithm to calculate a value that appears to be the value associated with
POSIX matching. The challenge then is to specify that value, in an algorithm-
independent fashion, and to show that Sulzmann and Lu’s derivative-based algo-
rithm does indeed calculate a value that is correct according to the specification.

The answer given by Sulzmann and Lu [11] is to define a relation (called an
“order relation”) on the set of values of r, and to show that (once a string to
be matched is chosen) there is a maximum element and that it is computed by
their derivative-based algorithm. This proof idea is inspired by work of Frisch
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and Cardelli [4] on a GREEDY regular expression matching algorithm. However,
we were not able to establish transitivity and totality for the “order relation”
by Sulzmann and Lu. In Sect. 5 we identify some inherent problems with their
approach (of which some of the proofs are not published in [11]); perhaps more
importantly, we give a simple inductive (and algorithm-independent) definition
of what we call being a POSIX value for a regular expression r and a string
s; we show that the algorithm computes such a value and that such a value
is unique. Our proofs are both done by hand and checked in Isabelle/HOL.
The experience of doing our proofs has been that this mechanical checking was
absolutely essential: this subject area has hidden snares. This was also noted by
Kuklewicz [7] who found that nearly all POSIX matching implementations are
“buggy” [11, Page 203] and by Grathwohl et al. [5, Page 36] who wrote:

“The POSIX strategy is more complicated than the greedy because of the
dependence on information about the length of matched strings in the var-
ious subexpressions.”

Contributions: We have implemented in Isabelle/HOL the derivative-based
regular expression matching algorithm of Sulzmann and Lu [11]. We have proved
the correctness of this algorithm according to our specification of what a POSIX
value is (inspired by work of Vansummeren [13]). Sulzmann and Lu sketch in
[11] an informal correctness proof: but to us it contains unfillable gaps.1 Our
specification of a POSIX value consists of a simple inductive definition that given
a string and a regular expression uniquely determines this value. Derivatives as
calculated by Brzozowski’s method are usually more complex regular expressions
than the initial one; various optimisations are possible. We prove the correctness
when simplifications of 0 + r, r + 0, 1 · r and r · 1 to r are applied.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being rep-
resented by the empty list, written [], and list-cons being written as :: . Often
we use the usual bracket notation for lists also for strings; for example a string
consisting of just a single character c is written [c]. By using the type char for
characters we have a supply of finitely many characters roughly corresponding to
the ASCII character set. Regular expressions are defined as usual as the elements
of the following inductive datatype:

r :=0 | 1 | c | r1 + r2 | r1 · r2 | r�

where 0 stands for the regular expression that does not match any string, 1 for
the regular expression that matches only the empty string and c for matching
a character literal. The language of a regular expression is also defined as usual
by the recursive function L with the six clauses:
1 An extended version of [11] is available at the website of its first author; this extended

version already includes remarks in the appendix that their informal proof contains
gaps, and possible fixes are not fully worked out.
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(1) L(0) def= ∅

(2) L(1) def= {[]}
(3) L(c) def= {[c]}

(4) L(r1 · r2)
def= L(r1) @ L(r2)

(5) L(r1 + r2)
def= L(r1) ∪ L(r2)

(6) L(r�) def= (L(r))�

In clause (4) we use the operation @ for the concatenation of two languages
(it is also list-append for strings). We use the star-notation for regular expres-
sions and for languages (in the last clause above). The star for languages is defined
inductively by two clauses: (i) the empty string being in the star of a language and
(ii) if s1 is in a language and s2 in the star of this language, then also s1 @ s2 is
in the star of this language. It will also be convenient to use the following notion
of a semantic derivative (or left quotient) of a language defined as

Der c A
def
= {s | c :: s ∈ A} .

For semantic derivatives we have the following equations (for example mechani-
cally proved in [6]):

Der c ∅
def= ∅

Der c {[]} def= ∅

Der c {[d ]} def= if c = d then {[]} else ∅

Der c (A ∪ B) def= Der c A ∪ Der c B
Der c (A @ B) def= (Der c A @ B) ∪ (if [] ∈ A then Der c B else ∅)
Der c (A�) def= Der c A @ A�

(1)

Brzozowski’s derivatives of regular expressions [2] can be easily defined by two
recursive functions: the first is from regular expressions to booleans (implement-
ing a test when a regular expression can match the empty string), and the second
takes a regular expression and a character to a (derivative) regular expression:

nullable (0) def= False
nullable (1) def= True
nullable (c) def= False
nullable (r1 + r2)

def= nullable r1 ∨ nullable r2

nullable (r1 · r2)
def= nullable r1 ∧ nullable r2

nullable (r�) def= True

(0)\c def= 0

(1)\c def= 0

d\c def= if c = d then 1 else 0

(r1 + r2)\c def= (r1\c) + (r2\c)
(r1 · r2)\c def= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

(r�)\c def= (r\c) · r�
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We may extend this definition to give derivatives w.r.t. strings:

r\[] def= r
r\(c :: s) def= (r\c)\s

Given the equations in (1), it is a relatively easy exercise in mechanical reasoning
to establish that

Proposition 1
(1 ) nullable r if and only if [] ∈ L(r), and
(2 ) L(r\c) = Der c (L(r)).

With this in place it is also very routine to prove that the regular expression
matcher defined as

match r s
def
= nullable (r\s)

gives a positive answer if and only if s ∈ L(r). Consequently, this regular expres-
sion matching algorithm satisfies the usual specification for regular expression
matching. While the matcher above calculates a provably correct YES/NO
answer for whether a regular expression matches a string or not, the novel idea
of Sulzmann and Lu [11] is to append another phase to this algorithm in order
to calculate a [lexical] value. We will explain the details next.

3 POSIX Regular Expression Matching

The clever idea by Sulzmann and Lu [11] is to define values for encoding how
a regular expression matches a string and then define a function on values that
mirrors (but inverts) the construction of the derivative on regular expressions.
Values are defined as the inductive datatype

v := () | Char c | Left v | Right v | Seq v1 v2 | Stars vs

where we use vs to stand for a list of values. (This is similar to the approach
taken by Frisch and Cardelli for GREEDY matching [4], and Sulzmann and Lu
for POSIX matching [11]). The string underlying a value can be calculated by
the flat function, written | | and defined as:

|()| def= []
|Char c| def= [c]
|Left v | def= |v |
|Right v | def= |v |

|Seq v1 v2| def= |v1| @ |v2|
|Stars []| def= []
|Stars (v :: vs)| def= |v | @ |Stars vs|

Sulzmann and Lu also define inductively an inhabitation relation that associates
values to regular expressions:
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() : 1 Char c : c

v1 : r1

Left v1 : r1 + r2

v2 : r1

Right v2 : r2 + r1

v1 : r1 v2 : r2

Seq v1 v2 : r1 · r2

Stars [] : r�

v : r Stars vs : r�

Stars (v :: vs) : r�

Note that no values are associated with the regular expression 0, and that the
only value associated with the regular expression 1 is (), pronounced (if one must)
as Void. It is routine to establish how values “inhabiting” a regular expression
correspond to the language of a regular expression, namely

Proposition 2. L(r) = {|v | | v : r}
In general there is more than one value associated with a regular expression.

In case of POSIX matching the problem is to calculate the unique value that sat-
isfies the (informal) POSIX rules from the Introduction. Graphically the POSIX
value calculation algorithm by Sulzmann and Lu can be illustrated by the picture
in Fig. 1 where the path from the left to the right involving derivatives/nullable is
the first phase of the algorithm (calculating successive Brzozowski’s derivatives)
and mkeps/inj, the path from right to left, the second phase. This picture shows
the steps required when a regular expression, say r1, matches the string [a, b, c].
We first build the three derivatives (according to a, b and c). We then use nul-
lable to find out whether the resulting derivative regular expression r4 can match
the empty string. If yes, we call the function mkeps that produces a value v4 for
how r4 can match the empty string (taking into account the POSIX constraints
in case there are several ways). This function is defined by the clauses:

mkeps (1) def= ()
mkeps (r1 · r2)

def= Seq (mkeps r1) (mkeps r2)
mkeps (r1 + r2)

def= if nullable r1 then Left (mkeps r1) else Right (mkeps r2)
mkeps (r�) def= Stars []

Note that this function needs only to be partially defined, namely only for
regular expressions that are nullable. In case nullable fails, the string [a, b, c]
cannot be matched by r1 and the null value None is returned. Note also how
this function makes some subtle choices leading to a POSIX value: for example
if an alternative regular expression, say r1 + r2, can match the empty string and
furthermore r1 can match the empty string, then we return a Left-value. The
Right-value will only be returned if r1 cannot match the empty string.

The most interesting idea from Sulzmann and Lu [11] is the construction of
a value for how r1 can match the string [a, b, c] from the value how the last
derivative, r4 in Fig. 1, can match the empty string. Sulzmann and Lu achieve
this by stepwise “injecting back” the characters into the values thus inverting the
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Fig. 1. The two phases of the algorithm by Sulzmann and Lu [11], matching the string
[a, b, c]. The first phase (the arrows from left to right) is Brzozowski’s matcher building
successive derivatives. If the last regular expression is nullable, then the functions of the
second phase are called (the top-down and right-to-left arrows): first mkeps calculates
a value v4 witnessing how the empty string has been recognised by r4. After that the
function inj “injects back” the characters of the string into the values.

operation of building derivatives, but on the level of values. The corresponding
function, called inj, takes three arguments, a regular expression, a character and
a value. For example in the first (or right-most) inj -step in Fig. 1 the regular
expression r3, the character c from the last derivative step and v4, which is the
value corresponding to the derivative regular expression r4. The result is the new
value v3. The final result of the algorithm is the value v1. The inj function is
defined by recursion on regular expressions and by analysing the shape of values
(corresponding to the derivative regular expressions).

(1) inj d c () def= Char d
(2) inj (r1 + r2) c (Left v1)

def= Left (inj r1 c v1)
(3) inj (r1 + r2) c (Right v2)

def= Right (inj r2 c v2)
(4) inj (r1 · r2) c (Seq v1 v2)

def= Seq (inj r1 c v1) v2

(5) inj (r1 · r2) c (Left (Seq v1 v2))
def= Seq (inj r1 c v1) v2

(6) inj (r1 · r2) c (Right v2)
def= Seq (mkeps r1) (inj r2 c v2)

(7) inj (r�) c (Seq v (Stars vs)) def= Stars (inj r c v :: vs)

To better understand what is going on in this definition it might be instructive
to look first at the three sequence cases (clauses (4)–(6)). In each case we need to
construct an “injected value” for r1 · r2. This must be a value of the form Seq .
Recall the clause of the derivative-function for sequence regular expressions:

(r1 · r2)\c def= if nullable r1 then (r1\c) · r2 + (r2\c) else (r1\c) · r2

Consider first the else-branch where the derivative is (r1\c) · r2. The corre-
sponding value must therefore be of the form Seq v1 v2, which matches the
left-hand side in clause (4) of inj. In the if-branch the derivative is an alter-
native, namely (r1\c) · r2 + (r2\c). This means we either have to consider a
Left- or Right-value. In case of the Left-value we know further it must be a value
for a sequence regular expression. Therefore the pattern we match in the clause
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(5) is Left (Seq v1 v2), while in (6) it is just Right v2. One more interesting point
is in the right-hand side of clause (6): since in this case the regular expression
r1 does not “contribute” to matching the string, that means it only matches the
empty string, we need to call mkeps in order to construct a value for how r1 can
match this empty string. A similar argument applies for why we can expect in
the left-hand side of clause (7) that the value is of the form Seq v (Stars vs)—the
derivative of a star is (r\c) · r�. Finally, the reason for why we can ignore the
second argument in clause (1) of inj is that it will only ever be called in cases
where c = d, but the usual linearity restrictions in patterns do not allow us to
build this constraint explicitly into our function definition.2

The idea of the inj -function to “inject” a character, say c, into a value can
be made precise by the first part of the following lemma, which shows that the
underlying string of an injected value has a prepended character c; the second
part shows that the underlying string of an mkeps-value is always the empty
string (given the regular expression is nullable since otherwise mkeps might not
be defined).

Lemma 1
(1) If v : r\c then |inj r c v | = c :: |v |.
(2) If nullable r then |mkeps r | = [].

Proof. Both properties are by routine inductions: the first one can, for exam-
ple, be proved by induction over the definition of derivatives; the second by an
induction on r. There are no interesting cases. ��

Having defined the mkeps and inj function we can extend Brzozowski’s
matcher so that a [lexical] value is constructed (assuming the regular expres-
sion matches the string). The clauses of the Sulzmann and Lu lexer are

lexer r [] def= if nullable r then Some (mkeps r) else None
lexer r (c :: s) def= case lexer (r\c) s of

None ⇒ None
| Some v ⇒ Some (inj r c v)

If the regular expression does not match the string, None is returned. If the
regular expression does match the string, then Some value is returned. One
important virtue of this algorithm is that it can be implemented with ease in any
functional programming language and also in Isabelle/HOL. In the remaining
part of this section we prove that this algorithm is correct.

The well-known idea of POSIX matching is informally defined by the longest
match and priority rule (see Introduction); as correctly argued in [11], this needs
formal specification. Sulzmann and Lu define an “ordering relation” between
values and argue that there is a maximum value, as given by the derivative-
based algorithm. In contrast, we shall introduce a simple inductive definition

2 Sulzmann and Lu state this clause as inj c c ()
def
= Char c, but our deviation is

harmless.
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that specifies directly what a POSIX value is, incorporating the POSIX-specific
choices into the side-conditions of our rules. Our definition is inspired by the
matching relation given by Vansummeren [13]. The relation we define is ternary
and written as (s, r) → v, relating strings, regular expressions and values.

([], 1) → ()
P1

([c], c) → Char c
Pc

(s, r1) → v
(s, r1 + r2) → Left v

P+L
(s, r2) → v s /∈ L(r1)

(s, r1 + r2) → Right v
P+R

(s1, r1) → v1 (s2, r2) → v2

� s3 s4. s3 
= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)
(s1 @ s2, r1 · r2) → Seq v1 v2

PS

([], r�) → Stars []
P []

(s1, r) → v (s2, r�) → Stars vs |v | 
= []
� s3 s4. s3 
= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r) ∧ s4 ∈ L(r�)

(s1 @ s2, r�) → Stars (v :: vs)
P�

We can prove that given a string s and regular expression r, the POSIX value v
is uniquely determined by (s, r) → v.

Theorem 1
(1 ) If (s, r) → v then s ∈ L(r) and |v | = s
(2 ) If (s, r) → v and (s, r) → v ′ then v = v ′.

Proof. Both by induction on the definition of (s, r) → v. The second parts fol-
lows by a case analysis of (s, r) → v ′ and the first part. ��
We claim that our (s, r) → v relation captures the idea behind the two informal
POSIX rules shown in the Introduction: Consider for example the rules P+L and
P+R where the POSIX value for a string and an alternative regular expression,
that is (s, r1 + r2), is specified—it is always a Left-value, except when the string
to be matched is not in the language of r1; only then it is a Right-value (see
the side-condition in P+R). Interesting is also the rule for sequence regular
expressions (PS ). The first two premises state that v1 and v2 are the POSIX
values for (s1, r1) and (s2, r2) respectively. Consider now the third premise
and note that the POSIX value of this rule should match the string s1 @ s2.
According to the longest match rule, we want that the s1 is the longest initial
split of s1 @ s2 such that s2 is still recognised by r2. Let us assume, contrary
to the third premise, that there exist an s3 and s4 such that s2 can be split up
into a non-empty string s3 and a possibly empty string s4. Moreover the longer
string s1 @ s3 can be matched by r1 and the shorter s4 can still be matched by
r2. In this case s1 would not be the longest initial split of s1 @ s2 and therefore
Seq v1 v2 cannot be a POSIX value for (s1 @ s2, r1 · r2). The main point is
that our side-condition ensures the longest match rule is satisfied.
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A similar condition is imposed on the POSIX value in the P�-rule. Also
there we want that s1 is the longest initial split of s1 @ s2 and furthermore
the corresponding value v cannot be flattened to the empty string. In effect, we
require that in each “iteration” of the star, some non-empty substring needs to
be “chipped” away; only in case of the empty string we accept Stars [] as the
POSIX value.

Next is the lemma that shows the function mkeps calculates the POSIX value
for the empty string and a nullable regular expression.

Lemma 2. If nullable r then ([], r) → mkeps r .

Proof. By routine induction on r. ��
The central lemma for our POSIX relation is that the inj -function preserves
POSIX values.

Lemma 3. If (s, r\c) → v then (c :: s, r) → inj r c v .

Proof. By induction on r. We explain two cases.

• Case r = r1 + r2. There are two subcases, namely (a) v = Left v ′ and
(s, r1\c) → v ′; and (b)v = Right v ′, s /∈ L(r1\c) and (s, r2\c) → v ′. In (a)
we know (s, r1\c) → v ′, from which we can infer (c :: s, r1) → inj r1 c v ′ by
induction hypothesis and hence (c :: s, r1 + r2) → inj (r1 + r2) c (Left v ′)
as needed. Similarly in subcase (b) where, however, in addition we have to use
Proposition 1(2) in order to infer c :: s /∈ L(r1) from s /∈ L(r1\c).

• Case r = r1 · r2. There are three subcases:
(a) v = Left (Seq v1 v2) and nullable r1

(b) v = Right v1 and nullable r1

(c) v = Seq v1 v2 and ¬ nullable r1

For (a) we know (s1, r1\c) → v1 and (s2, r2) → v2 as well as

� s3 s4. s3 
= [] ∧ s3 @ s4 = s2 ∧ s1 @ s3 ∈ L(r1\c) ∧ s4 ∈ L(r2)

From the latter we can infer by Proposition 1(2):

� s3 s4. s3 
= [] ∧ s3 @ s4 = s2 ∧ c :: s1 @ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

We can use the induction hypothesis for r1 to obtain
(c :: s1, r1) → inj r1 c v1. Putting this all together allows us to infer
(c :: s1 @ s2, r1 · r2) → Seq (inj r1 c v1) v2. The case (c) is similar.
For (b) we know (s, r2\c) → v1 and s1 @ s2 /∈ L((r1\c) · r2). From the for-
mer we have (c :: s, r2) → inj r2 c v1 by induction hypothesis for r2. From
the latter we can infer

� s3 s4. s3 
= [] ∧ s3 @ s4 = c :: s ∧ s3 ∈ L(r1) ∧ s4 ∈ L(r2)

By Lemma 2 we know ([], r1) → mkeps r1 holds. Putting this all together,
we can conclude with (c :: s, r1 · r2) → Seq (mkeps r1) (inj r2 c v1), as
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required.
Finally suppose r = r1

�. This case is very similar to the sequence case,
except that we need to also ensure that |inj r1 c v1| 
= []. This follows from
(c :: s1, r1) → inj r1 c v1 (which in turn follows from (s1, r1\c) → v1 and
the induction hypothesis). ��

With Lemma 3 in place, it is completely routine to establish that the Sulzmann
and Lu lexer satisfies our specification (returning the null value None iff the
string is not in the language of the regular expression, and returning a unique
POSIX value iff the string is in the language):

Theorem 2
(1) s /∈ L(r) if and only if lexer r s = None
(2) s ∈ L(r) if and only if ∃ v . lexer r s = Some v ∧ (s, r) → v

Proof. By induction on s using Lemmas 2 and 3. ��
In (2) we further know by Theorem 1 that the value returned by the lexer must
be unique. A simple corollary of our two theorems is:

Corollary 1
(1) lexer r s = None if and only if � v . (s, r) → v
(2) lexer r s = Some v if and only if (s, r) → v

This concludes our correctness proof. Note that we have not changed the algo-
rithm of Sulzmann and Lu,3 but introduced our own specification for what a
correct result—a POSIX value—should be. A strong point in favour of Sulz-
mann and Lu’s algorithm is that it can be extended in various ways.

4 Extensions and Optimisations

If we are interested in tokenising a string, then we need to not just split up the
string into tokens, but also “classify” the tokens (for example whether it is a
keyword or an identifier). This can be done with only minor modifications to
the algorithm by introducing record regular expressions and record values (for
example [12]):

r := ... | (l : r) v := ... | (l : v)

where l is a label, say a string, r a regular expression and v a value. All func-
tions can be smoothly extended to these regular expressions and values. For
example (l : r) is nullable iff r is, and so on. The purpose of the record regular
expression is to mark certain parts of a regular expression and then record in the
calculated value which parts of the string were matched by this part. The label
can then serve as classification for the tokens. For this recall the regular expres-
sion (rkey + r id)

� for keywords and identifiers from the Introduction. With the

3 All deviations we introduced are harmless.
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record regular expression we can form ((key : rkey) + (id : r id))
� and then tra-

verse the calculated value and only collect the underlying strings in record values.
With this we obtain finite sequences of pairs of labels and strings, for example

(l1 : s1), ..., (ln : sn)

from which tokens with classifications (keyword-token, identifier-token and so
on) can be extracted.

Derivatives as calculated by Brzozowski’s method are usually more complex
regular expressions than the initial one; the result is that the derivative-based
matching and lexing algorithms are often abysmally slow. However, various opti-
misations are possible, such as the simplifications of 0 + r, r + 0,1 · r and r · 1
to r. These simplifications can speed up the algorithms considerably, as noted in
[11]. One of the advantages of having a simple specification and correctness proof
is that the latter can be refined to prove the correctness of such simplification
steps. While the simplification of regular expressions according to rules like

0 + r ⇒ r r + 0 ⇒ r 1 · r ⇒ r r · 1 ⇒ r (2)

is well understood, there is an obstacle with the POSIX value calculation algo-
rithm by Sulzmann and Lu: if we build a derivative regular expression and then
simplify it, we will calculate a POSIX value for this simplified derivative regu-
lar expression, not for the original (unsimplified) derivative regular expression.
Sulzmann and Lu [11] overcome this obstacle by not just calculating a simplified
regular expression, but also calculating a rectification function that “repairs”
the incorrect value.

The rectification functions can be (slightly clumsily) implemented in
Isabelle/HOL as follows using some auxiliary functions:

FRight f v def= Right (f v)

FLeft f v def= Left (f v)

FAlt f 1 f 2 (Right v) def= Right (f 2 v)
FAlt f 1 f 2 (Left v) def= Left (f 1 v)
FSeq1 f 1 f 2 v def= Seq (f 1 ()) (f 2 v)

FSeq2 f 1 f 2 v def= Seq (f 1 v) (f 2 ())

FSeq f 1 f 2 (Seq v1 v2)
def= Seq (f 1 v1) (f 2 v2)

simpAlt (0, ) (r2, f 2)
def= (r2, FRight f 2)

simpAlt (r1, f 1) (0, ) def= (r1, FLeft f 1)

simpAlt (r1, f 1) (r2, f 2)
def= (r1 + r2, FAlt f 1 f 2)

simpSeq (1, f 1) (r2, f 2)
def= (r2, FSeq1 f 1 f 2)

simpSeq (r1, f 1) (1, f 2)
def= (r1, FSeq2 f 1 f 2)

simpSeq (r1, f 1) (r2, f 2)
def= (r1 · r2, FSeq f 1 f 2)
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The functions simpAlt and simpSeq encode the simplification rules in (2) and
compose the rectification functions (simplifications can occur deep inside the
regular expression). The main simplification function is then

simp (r1 + r2)
def= simpAlt (simp r1) (simp r2)

simp (r1 · r2)
def= simpSeq (simp r1) (simp r2)

simp r def= (r , id)

where id stands for the identity function. The function simp returns a simplified
regular expression and a corresponding rectification function. Note that we do
not simplify under stars: this seems to slow down the algorithm, rather than
speed it up. The optimised lexer is then given by the clauses:

lexer+ r [] def= if nullable r then Some (mkeps r) else None
lexer+ r (c :: s) def= let (rs, f r) = simp (r\c) in

case lexer+ rs s of
None ⇒ None

| Some v ⇒ Some (inj r c (f r v))

In the second clause we first calculate the derivative r\c and then simplify the
result. This gives us a simplified derivative rs and a rectification function f r.
The lexer is then recursively called with the simplified derivative, but before we
inject the character c into the value v, we need to rectify v (that is construct
f r v). Before we can establish the correctness of lexer+, we need to show that
simplification preserves the language and simplification preserves our POSIX
relation once the value is rectified (recall simp generates a (regular expression,
rectification function) pair):

Lemma 4
(1) L(fst (simp r)) = L(r)
(2) If (s, fst (simp r)) → v then (s, r) → snd (simp r) v .

Proof. Both are by induction on r. There is no interesting case for the first
statement. For the second statement, of interest are the r = r1 + r2 and
r = r1 · r2 cases. In each case we have to analyse four subcases whether
fst (simp r1) and fst (simp r2) equals 0 (respectively 1). For example for
r = r1 + r2, consider the subcase fst (simp r1) = 0 and fst (simp r2) 
= 0.
By assumption we know (s, fst (simp (r1 + r2))) → v. From this we can infer
(s, fst (simp r2)) → v and by IH also (*) (s, r2) → snd (simp r2) v. Given
fst (simp r1) = 0 we know L(fst (simp r1)) = ∅. By the first statement L(r1)
is the empty set, meaning (**) s /∈ L(r1). Taking (*) and (**) together gives
by the P+R-rule (s, r1 + r2) → Right (snd (simp r2) v). In turn this gives
(s, r1 + r2) → snd (simp (r1 + r2)) v as we need to show. The other cases are
similar. ��
We can now prove relatively straightforwardly that the optimised lexer produces
the expected result:
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Theorem 3. lexer+ r s = lexer r s

Proof. By induction on s generalising over r. The case [] is trivial. For the
cons-case suppose the string is of the form c :: s. By induction hypothesis
we know lexer+ r s = lexer r s holds for all r (in particular for r being the
derivative r\c). Let rs be the simplified derivative regular expression, that is
fst (simp (r\c)), and f r be the rectification function, that is snd (simp (r\c)).
We distinguish the cases whether (*) s ∈ L(r\c) or not. In the first case we have
by Theorem 2(2) a value v so that lexer (r\c) s = Some v and (s, r\c) → v
hold. By Lemma 4(1) we can also infer from (*) that s ∈ L(rs) holds. Hence
we know by Theorem 2(2) that there exists a v ′ with lexer rs s = Some v ′ and
(s, rs) → v ′. From the latter we know by Lemma 4(2) that (s, r\c) → f r v ′

holds. By the uniqueness of the POSIX relation (Theorem 1) we can infer that
v is equal to f r v ′—that is the rectification function applied to v ′ produces the
original v. Now the case follows by the definitions of lexer and lexer+.

In the second case where s /∈ L(r\c) we have that lexer (r\c) s = None
by Theorem 2(1). We also know by Lemma 4(1) that s /∈ L(rs). Hence
lexer rs s = None by Theorem 2(1) and by IH then also lexer+ rs s = None.
With this we can conclude in this case too. ��

5 The Correctness Argument by Sulzmann and Lu

An extended version of [11] is available at the website of its first author; this
includes some “proofs”, claimed in [11] to be “rigorous”. Since these are evidently
not in final form, we make no comment thereon, preferring to give general reasons
for our belief that the approach of [11] is problematic. Their central definition is
an “ordering relation” defined by the rules (slightly adapted to fit our notation):

v1 >r1 v1
′

Seq v1 v2 >r1 · r2 Seq v1
′ v2

′ (C2)
v2 >r2 v2

′

Seq v1 v2 >r1 · r2 Seq v1 v2
′ (C1)

len |v1| < len |v2|
Right v2 >r1 + r2 Left v1

(A1)
len |v2| ≤ len |v1|

Left v1 >r1 + r2 Right v2

(A2)

v1 >r2 v2

Right v1 >r1 + r2 Right v2

(A3)
v1 >r1 v2

Left v1 >r1 + r2 Left v2

(A4)

|Stars (v :: vs)| = []

Stars [] >r� Stars (v :: vs)
(K1)

|Stars (v :: vs)| �= []

Stars (v :: vs) >r� Stars []
(K2)

v1 >r v2

Stars (v1 :: vs1) >r� Stars (v2 :: vs2)
(K3)

Stars vs1 >r� Stars vs2

Stars (v :: vs1) >r� Stars (v :: vs2)
(K4)

The idea behind the rules (A1) and (A2), for example, is that a Left-value is
bigger than a Right-value, if the underlying string of the Left-value is longer or
of equal length to the underlying string of the Right-value. The order is reversed,
however, if the Right-value can match a longer string than a Left-value. In this
way the POSIX value is supposed to be the biggest value for a given string and
regular expression.
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Sulzmann and Lu explicitly refer to the paper [4] by Frisch and Cardelli from
where they have taken the idea for their correctness proof. Frisch and Cardelli
introduced a similar ordering for GREEDY matching and they showed that their
GREEDY matching algorithm always produces a maximal element according to
this ordering (from all possible solutions). The only difference between their
GREEDY ordering and the “ordering” by Sulzmann and Lu is that GREEDY
always prefers a Left-value over a Right-value, no matter what the underlying
string is. This seems to be only a very minor difference, but it has drastic con-
sequences in terms of what properties both orderings enjoy. What is interesting
for our purposes is that the properties reflexivity, totality and transitivity for
this GREEDY ordering can be proved relatively easily by induction.

These properties of GREEDY, however, do not transfer to the POSIX “order-
ing” by Sulzmann and Lu, which they define as v1 ≥r v2. To start with, v1 ≥r v2

is not defined inductively, but as (v1 = v2) ∨ (v1 >r v2 ∧ |v1| = |v2|). This
means that v1 >r v2 does not necessarily imply v1 ≥r v2. Moreover, transitiv-
ity does not hold in the “usual” formulation, for example:

Falsehood 1. Suppose v1 : r, v2 : r and v3 : r. If v1 >r v2 and v2 >r v3 then
v1 >r v3.

If formulated in this way, then there are various counter examples: For example
let r be a + ((a + a)·(a + 0)) then the v1, v2 and v3 below are values of r :

v1 = Left (Char a)
v2 = Right (Seq (Left (Char a)) (Right ()))
v3 = Right (Seq (Right (Char a)) (Left (Char a)))

Moreover v1 >r v2 and v2 >r v3, but not v1 >r v3! The reason is that although
v3 is a Right-value, it can match a longer string, namely |v3| = [a, a], while |v1|
(and |v2|) matches only [a]. So transitivity in this formulation does not hold—in
this example actually v3 >r v1!

Sulzmann and Lu “fix” this problem by weakening the transitivity property.
They require in addition that the underlying strings are of the same length.
This excludes the counter example above and any counter-example we were
able to find (by hand and by machine). Thus the transitivity lemma should be
formulated as:

Conjecture 1. Suppose v1 : r, v2 : r and v3 : r, and also |v1| = |v2| = |v3|.
If v1 >r v2 and v2 >r v3 then v1 >r v3.

While we agree with Sulzmann and Lu that this property probably (!) holds,
proving it seems not so straightforward: although one begins with the assump-
tion that the values have the same flattening, this cannot be maintained as one
descends into the induction. This is a problem that occurs in a number of places
in the proofs by Sulzmann and Lu.

Although they do not give an explicit proof of the transitivity property,
they give a closely related property about the existence of maximal elements.
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They state that this can be verified by an induction on r. We disagree with this
as we shall show next in case of transitivity. The case where the reasoning breaks
down is the sequence case, say r1 · r2. The induction hypotheses in this case are

IH r1:
∀ v1, v2, v3.

v1 : r1 ∧ v2 : r1 ∧ v3 : r1

∧ |v1| = |v2| = |v3|
∧ v1 >r1 v2 ∧ v2 >r1 v3

⇒ v1 >r1 v3

IH r2:
∀ v1, v2, v3.

v1 : r2 ∧ v2 : r2 ∧ v3 : r2

∧ |v1| = |v2| = |v3|
∧ v1 >r2 v2 ∧ v2 >r2 v3

⇒ v1 >r2 v3

We can assume that

Seq v1l v1r >r1 · r2 Seq v2l v2r and Seq v2l v2r >r1 · r2 Seq v3l v3r (3)

hold, and furthermore that the values have equal length, namely:

|Seq v1l v1r| = |Seq v2l v2r| and |Seq v2l v2r| = |Seq v3l v3r| (4)

We need to show that Seq v1l v1r >r1 · r2 Seq v3l v3r holds. We can proceed
by analysing how the assumptions in (3) have arisen. There are four cases. Let
us assume we are in the case where we know

v1l >r1 v2l and v2l >r1 v3l

and also know the corresponding inhabitation judgements. This is exactly a case
where we would like to apply the induction hypothesis IH r1. But we cannot!
We still need to show that |v1l| = |v2l| and |v2l| = |v3l|. We know from (4)
that the lengths of the sequence values are equal, but from this we cannot infer
anything about the lengths of the component values. Indeed in general they will
be unequal, that is

|v1l| 
= |v2l| and |v1r| 
= |v2r|
but still (4) will hold. Now we are stuck, since the IH does not apply. As said,
this problem where the induction hypothesis does not apply arises in several
places in the proof of Sulzmann and Lu, not just for proving transitivity.

6 Conclusion

We have implemented the POSIX value calculation algorithm introduced by
Sulzmann and Lu [11]. Our implementation is nearly identical to the original
and all modifications we introduced are harmless (like our char-clause for inj ).
We have proved this algorithm to be correct, but correct according to our own
specification of what POSIX values are. Our specification (inspired from work
by Vansummeren [13]) appears to be much simpler than in [11] and our proofs
are nearly always straightforward. We have attempted to formalise the original
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proof by Sulzmann and Lu [11], but we believe it contains unfillable gaps. In the
online version of [11], the authors already acknowledge some small problems, but
our experience suggests that there are more serious problems.

Having proved the correctness of the POSIX lexing algorithm in [11], which
lessons have we learned? Well, this is a perfect example for the importance of
the right definitions. We have (on and off) explored mechanisations as soon as
first versions of [11] appeared, but have made little progress with turning the
relatively detailed proof sketch in [11] into a formalisable proof. Having seen [13]
and adapted the POSIX definition given there for the algorithm by Sulzmann
and Lu made all the difference: the proofs, as said, are nearly straightforward.
The question remains whether the original proof idea of [11], potentially using
our result as a stepping stone, can be made to work? Alas, we really do not know
despite considerable effort.

Closely related to our work is an automata-based lexer formalised by
Nipkow [8]. This lexer also splits up strings into longest initial substrings, but
Nipkow’s algorithm is not completely computational. The algorithm by Sulz-
mann and Lu, in contrast, can be implemented with ease in any functional
language. A bespoke lexer for the Imp-language is formalised in Coq as part
of the Software Foundations book by Pierce et al. [10]. The disadvantage of
such bespoke lexers is that they do not generalise easily to more advanced fea-
tures. Our formalisation is available from the Archive of Formal Proofs [1] under
http://www.isa-afp.org/entries/Posix-Lexing.shtml.

Acknowledgements. We are very grateful to Martin Sulzmann for his comments
on our work and moreover for patiently explaining to us the details in [11]. We also
received very helpful comments from James Cheney and anonymous referees.

References

1. Ausaf, F., Dyckhoff, R., Urban, C.: POSIX Lexing with Derivatives of Regular
Expressions. Archive of Formal Proofs (2016). http://www.isa-afp.org/entries/
Posix-Lexing.shtml, Formal proof development

2. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
3. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in

type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp.
119–134. Springer, Heidelberg (2011)

4. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,
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Abstract. This paper describes progress with our agenda of formal ver-
ification of information-flow security for realistic systems. We present
CoSMed, a social media platform with verified document confidentiality.
The system’s kernel is implemented and verified in the proof assistant
Isabelle/HOL. For verification, we employ the framework of Bounded-
Deducibility (BD) Security, previously introduced for the conference sys-
tem CoCon. CoSMed is a second major case study in this framework.
For CoSMed, the static topology of declassification bounds and triggers
that characterized previous instances of BD security has to give way to
a dynamic integration of the triggers as part of the bounds.

1 Introduction

Web-based systems are pervasive in our daily activities. Examples include enter-
prise systems, social networks, e-commerce sites and cloud services. Such systems
pose notable challenges regarding confidentiality [1].

Recently, we have started a line of work aimed at addressing information
flow security problems of realistic web-based systems by interactive theorem
proving—using our favorite proof assistant, Isabelle/HOL [26,27]. We have intro-
duced a security notion that allows a very fine-grained specification of what an
attacker can observe about the system, and what information is to be kept con-
fidential and in which situations. In our case studies, we assume the observers
to be users of the system, and our goal is to verify that, by interacting with the
system, the observers cannot learn more about confidential information than
what we have specified. As a first case study, we have developed CoCon [18], a
conference system (à la EasyChair) verified for confidentiality. We have verified
a comprehensive list of confidentiality properties, systematically covering the rel-
evant sources of information from CoCon’s application logic [18, Sect. 4.5]. For
example, besides authors, only PC members are allowed to learn about the con-
tent of submitted papers, and nothing beyond the last submitted version before
the deadline.
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 87–106, 2016.
DOI: 10.1007/978-3-319-43144-4 6
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This paper introduces a second major end product of this line of work:
CoSMed, a confidentiality-verified social media platform. CoSMed allows users
to register and post information, and to restrict access to this information based
on friendship relationships established between users. Architecturally, CoSMed
is an I/O automaton formalized in Isabelle, exported as Scala code, and wrapped
in a web application (Sect. 2).

For CoCon, we had proved that information only flows from the stored docu-
ments to the users in a suitably role-triggered and bounded fashion. In CoSMed’s
case, the “documents” of interest are friendship requests, friendship statuses,
and posts by the users. The latter consist of title, text, and an optional image.
The roles in CoSMed include admin, owner and friend. Modeling the restrictions
on CoSMed’s information flow poses additional challenges (Sect. 3), since here
the roles vary dynamically. For example, assume we prove a property analo-
gous to those for CoCon: A user U1 learns nothing about the friend-only posts
posted by a user U2 unless U1 becomes a friend of U2. Although this property
makes sense, it is too weak—given that U1 may be “friended” and “unfriended”
by U2 multiple times. A stronger confidentiality property would be: U1 learns
nothing about U2’s friend-only posts beyond the updates performed while U1
and U2 were friends. For the verification of both CoCon and CoSMed, we have
employed Bounded-Deducibility (BD) Security (Sect. 3.2), a general framework
for the verification of rich information flow properties of input/output automata.
BD security is parameterized by declassification bounds and triggers. While for
CoCon a fixed topology of bounds and triggers was sufficient, CoSMed requires
a more dynamic approach, where the bounds incorporate trigger information
(Sect. 3.3). The verification proceeds by providing suitable unwinding relations,
closely matching the bounds (Sect. 4).

CoSMed has been developed to fulfill the functionality and security needs of a
charity organization [4]. The current version is a prototype, not yet deployed for
the charity usage. Both the formalization and the running website are publicly
available [5].

Notation. Given f : A → B, a : A and b : B, we write f(a := b) for the
function that returns b for a and otherwise acts like f . [] denotes the empty list
and @ denotes list concatenation. Given a list xs, we write last xs for its last
element. Given a predicate P , we write filter P xs for the sublist of xs consisting
of those elements satisfying P . Given a function f , we write map f xs for the
list resulting from applying the function f to each element of xs. Given a record
σ, field labels l1, . . . , ln and values v1, . . . , vn respecting the types of the labels,
we write σ(l1 := v1, . . . , ln := vn) for σ with the values of the fields li updated
to vi. We let li σ be the value of field li stored in σ.

2 System Description

In this section we describe the system functionality as formalized in Isabelle
(Sect. 2.1)—we provide enough detail so that the reader can have a good grasp
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of the formal confidentiality properties discussed later. Then we sketch CoSMed’s
overall architecture (Sect. 2.2).

2.1 Isabelle Specification

Abstractly, the system can be viewed as an I/O automaton, having a state and
offering some actions through which the user can affect the state and retrieve
outputs. The state stores information about users, posts and the relationships
between them, namely:

– user information: pending new-user requests, the current user IDs and the
associated user info, the system’s administrator, the user passwords;

– post information: the current post IDs and the posts associated to them,
including content and visibility information;

– post-user relationships: the post owners;
– user-user relationships: the pending friend requests and the friend relation-

ships.

All in all, the state is represented as an Isabelle record:

record state =
(* User info: *)

pendingUReqs : userID list userReq : userID → req userIDs : userID list
user : userID → user pass : userID → password admin : userID

(* Friend info: *)
pendingFReqs : userID → userID list friendReq : userID → userID → req
friendIDs : userID → userID list

(* Post info: *)
postIDs : postID list post : postID → post owner : postID → userID

Above, the types userID, postID, password, and req are essentially strings (more
precisely, datatypes with one single constructor embedding strings). Each pend-
ing request (be it for user or for friend relationship) stores a request info (of
type req), which contains a message of the requester for the recipient (the
system admin or a given user). The type user contains user names and infor-
mation. The type post of posts contains tuples (title, text , img , vis), where the
title and the text are essentially strings, img is an (optional) image file, and
vis ∈ {FriendV,PublicV} is a visibility status that can be assigned to posts:
FriendV means visibility to friends only, whereas PublicV means visibility to all
users.

The initial state of the system is completely empty: there are empty lists of
registered users, posts, etc. Users can interact with the system via six categories
of actions: start-up, creation, deletion, update, reading and listing.

The actions take varying numbers of parameters, indicating the user involved
and optionally some data to be loaded into the system. Each action’s behavior
is specified by two functions:
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– An effect function, actually performing the action, possibly changing the state
and returning an output

– An enabledness predicate (marked by the prefix “e”), checking the conditions
under which the action should be allowed

When a user issues an action, the system first checks if it is enabled, in which
case its effect function is applied and the output is returned to the user. If it is
not enabled, then an error message is returned and the state remains unchanged.

The start-up action, startSys : state → userID → password → state, initial-
izes the system with a first user, who becomes the admin:

startSys σ uid p ≡
σ(admin := uid , userIDs := [uid ], user := (user σ)(uid := emptyUser),
pass := (pass σ)(uid := p))

The start-up action is enabled only if the system has no users:

e startSys σ uid p ≡ userIDs σ = []

Creation actions perform registration of new items in the system. They
include: placing a new user registration request; the admin approving such a
request, leading to registration of a new user; a user creating a post; a user placing
a friendship request for another user; a user accepting a pending friendship
request, thus creating a friendship connection.

The three main kinds of items that can be created/registered in the system
are users, friends and posts. Post creation can be immediately performed by
any user. By contrast, user and friend registration proceed in two stages: first a
request is created by the interested party, which can later be approved by the
authorized party. For example, a friendship request from uid to uid ′ is first placed
in the pending friendship request queue for uid ′. Then, upon approval by uid ′,
the request turns into a friendship relationship. Since friendship is symmetric,
both the list of uid ′’s friends and that of uid ’s friends are updated, with uid and
uid ′ respectively.

There is only one deletion action in the system, namely friendship deletion
(“unfriending” an existing friend).

Update actions allow users with proper permissions to modify content
in the system: user info, post content, visibility status, etc. For example, the
following action is updating, on behalf of the user uid , the text of a post with
ID pid to the value text .

updateTextPost σ uid p pid text ≡
σ (post := (post σ)(pid := setTextPost (post σ pid) text))

It is enabled if both the user ID and the post ID are registered, the given pass-
word matches the one stored in the state and the user is the post’s owner. Besides
the text, one can also update the title and the image of a post.
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Reading actions allow users to retrieve content from the system. One can
read user and post info, friendship requests and status, etc. Finally, the listing
actions allow organizing and listing content by IDs. These include the listing of:
all the pending user registration requests (for the admin); all users of the system;
all posts; one’s friendship requests, one’s own friends, and the friends of them.

Action Syntax and Dispatch. So far we have discussed the action behavior,
consisting of effect and enabledness. In order to keep the interface homogeneous,
we distinguish between an action’s behavior and its syntax. The latter is sim-
ply the input expected by the I/O automaton. The different kinds of actions
(start-up, creation, deletion, update, reading and listing) are wrapped in a
single datatype through specific constructors:

datatype act = Sact sAct | Cact cAct | Dact dAct | Uact uAct | Ract rAct | Lact lAct

In turn, each kind of action forms a datatype with constructors having vary-
ing numbers of parameters, mirroring those of the action behavior functions.
For example, the following datatypes gather (the syntax of) all the update and
reading actions:

datatype uAct =
uUser userID password password name info

| uTitlePost userID password postID title
| uTextPost userID password postID text
| uImgPost userID password postID img
| uVisPost userID password postID vis

datatype rAct =
rUser userID password userID

| rNUReq userID password userID
| rNAReq userID password appID
| rAmIAdmin userID password
| rTitlePost userID password postID
| rTextPost userID password postID
| rImgPost userID password postID
| rVisPost userID password postID
| rOwnerPost userID password postID
| rFriendReqToMe userID password userID
| rFriendReqFromMe userID password userID

We have more reading actions than update actions. Some items, such as
new-user and new-friend request info, are readable but not updatable.

The naming convention we follow is that a constructor representing the syn-
tax of an action is named by abbreviating the name of that action. For example,
the constructor uTextPost corresponds to the effect function updateTextPost.

The overall step function, step : state → act → out × state, pro-
ceeds as follows. When given a state σ and an action a, it first pattern-
matches on a to discover what kind of action it is. For example, for the
update action Uact (uTextPost uid p pid text), the corresponding enabled-
ness predicate is called on the current state (say, σ) with the given parameters,
e updateTextPost σ uid p pid text . If this returns False, the result is (outErr, σ),
meaning that the state has not changed and an error output is produced. If
it returns True, the effect function is called, updateTextPost σ uid p pid text ,
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yielding a new state σ′. The result is then (outOK, σ′), containing the new state
along with an output indicating that the update was successful.

Note that start, creation, deletion and update actions change the state but
do not output non-trivial data (besides outErr or outOK). By contrast, reading
actions do not change the state, but they output data such as user info, post
content and friendship status. Likewise, listing actions output lists of IDs and
other data. The datatype out, of the overall system outputs, wraps together all
these possible outputs, including outErr and outOK.

In summary, all the heterogeneous parametrized actions and outputs are
wrapped in the datatypes act and out, and the step function dispatches any
request to the corresponding enabledness check and effect. The end product is a
single I/O automaton.

2.2 Implementation

For CoSMed’s implementation, we follow the same approach as for CoCon [18,
Sect. 2]. The I/O automaton formalized by the initial state istate : state and the
step function step : state → act → out × state represents CoSMed’s kernel—it
is this kernel that we formally verify. The kernel is automatically translated to
isomorphic Scala code using Isabelle’s code generator [15].

Around the exported code, there is a thin layer of trusted (unverified) code.
It consists of an API written with the Scalatra framework and a web application
that communicates with the API. Although this architecture involves trusted
code, there are reasons to believe that the confidentiality guarantees of the ker-
nel also apply to the overall system. Indeed, the Scalatra API is a thin layer:
it essentially forwards requests back and forth between the kernel and the out-
side world. Moreover, the web application operates by calling combinations of
primitive API operations, without storing any data itself. User authentication,
however, is also part of this unverified code. Of course, complementing our secure
kernel with a verification that “nothing goes wrong” in the outer layer (by some
language-based tools) would give us stronger guarantees.

3 Stating Confidentiality

Web-based systems for managing online resources and workflows for multiple
users, such as CoCon and CoSMed, are typically programmed by distinguish-
ing between various roles (e.g., author, PC member, reviewer for CoCon, and
admin, owner, friend for CoSMed). Under specified circumstances, members with
specified roles are given access to (controlled parts of) the documents.

Access control is understood and enforced locally, as a property of the sys-
tem’s reachable states: that a given action is only allowed if the agent has a cer-
tain role and certain circumstances hold. However, the question whether access
control achieves its purpose, i.e., really restricts undesired information flow, is
a global question whose formalization simultaneously involves all the system’s
execution traces. We wish to restrict not only what an agent can access, but also
what an agent can infer, or learn.
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3.1 From CoCon to CoSMed

For CoCon, we verified properties with the pattern: A user can learn nothing
about a document beyond a certain amount of information unless a certain event
occurs. E.g.:

– A user can learn nothing about the uploads of a paper beyond the last uploaded
version in the submission phase unless that user becomes an author.

– A user can learn nothing about the updates to a paper’s review beyond the
last updated version before notification unless that user is a non-conflicted
PC member.

The “beyond” part expresses a bound on the amount of disclosed information.
The “unless” part indicates a trigger in the presence of which the bound is not
guaranteed to hold. This bound-trigger tandem has inspired our notion of BD
security—applicable to I/O automata and instantiatable to CoCon. But let us
now analyze the desired confidentiality properties for CoSMed. For a post, we
may wish to prove:

(P1) A user can learn nothing about the updates to a post content unless
that user is the post’s owner, or he becomes friends with the owner, or the
post is marked as public.

And indeed, the system can be proved to satisfy this property. But is this strong
enough? Note that the trigger, emphasized in (P1) above, expresses a condition
in whose presence our property stops guaranteeing anything. Therefore, since
both friendship and public visibility can be freely switched on and off by the
owner at any time, relying on such a strong trigger simply means giving up too
easily. We should aim to prove a stronger property, describing confidentiality
along several iterations of issuing and disabling the trigger. A better candidate
property is the following:1

(P2) A user can learn nothing about the updates to a post content beyond
those updates that are performed while one of the following holds: either
that user is the post’s owner, or he is a friend of the owner, or the post is
marked as public.

In summary, the “beyond”-“unless” bound-trigger combination we employed for
CoCon will need to give way to a “beyond”-“while” scheme, where “while” refers
to the periods in a system run during which observers are allowed to learn
about confidential information. We will call these periods “access windows.” To
formalize them, we will incorporate (and iterate) the trigger inside the bound.
As we show below, this is possible with the price of enriching the notion of secret
to record changes to the “openness” of the access window. In turn, this leads to
more complex bounds having more subtle definitions. But first let us recall BD
security formally.
1 As it will turn out, this property needs to be refined in order to hold. We’ll do this
in Sect. 3.3.
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3.2 BD Security Recalled

We focus on the security of systems specified as I/O automata. In such an
automaton, we call the inputs “actions.” We write state, act, and out for the
types of states, actions, and outputs, respectively, istate : state for the initial
state, and step : state → act → out × state for the one-step transition function.
Transitions are tuples describing an application of step:

datatype trans = Trans state act out state

A transition trn = Trans σ a o σ′ is called valid if it corresponds to an application
of the step function, namely step σ a = (o, σ′). Traces are lists of transitions:

type synonym trace = trans list

A trace tr = [trn0, . . . , trnn−1] is called valid if it starts in the initial state istate
and all its transitions are valid and compose well, in that, for each i < n−1, the
target state of trni coincides with the source state of trni+1. Valid traces model
the runs of the system: at each moment in the lifetime of the system, a certain
trace has been executed. All our formalized security definitions and properties
quantify over valid traces and transitions—to ease readability, we shall omit the
validity assumption, and pretend that the types trans and trace contain only
valid transitions and traces.

We want to verify that there are no unintended flows of information to attack-
ers who can observe and influence certain aspects of the system execution. Hence,
we specify

1. what the capabilities of the attacker are,
2. which information is (potentially) confidential, and
3. which flows are allowed.

The first point is captured by a function O taking a trace and returning the
observable part of that trace. Similarly, the second point is captured by a function
S taking a trace and returning the sequence of (potential) secrets occurring in
that trace. For the third point, we add a parameter B, which is a binary relation
on sequences of secrets. It specifies a lower bound on the uncertainty of the
observer about the secrets, in other words, an upper bound on these secrets’
declassification. In this context, BD security states that O cannot learn anything
about S beyond B. Formally:

For all valid system traces tr and sequence of secrets sl ′ such that
B (S tr) sl ′ holds, there exists a valid system trace tr ′ such that S tr ′ = sl ′

and O tr ′ = O tr .

Thus, BD security requires that, if B sl sl ′ holds, then observers cannot dis-
tinguish the sequence of secrets sl from sl ′—if sl is consistent with a given
observation, then so must be sl ′. Classical nondeducibility [29] corresponds to B
being the total relation—the observer can then deduce nothing about the secrets.
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Smaller relations B mean that an observer may deduce some information about
the secrets, but nothing beyond B—for example, if B is an equivalence relation,
then the observer may deduce the equivalence class, but not the concrete secret
within the equivalence class.

The original formulation of BD security in [18] includes an additional parame-
ter T, a declassification trigger : The above condition is only required to hold for
traces tr where T does not occur. Hence, as soon as the trigger occurs, the secu-
rity property no longer offers any guarantees. This was convenient for CoCon,
but for CoSMed this is too coarse-grained, as discussed in Sect. 3.1. Since, in gen-
eral, an instance of BD security with T can be transformed into one without,2

in this paper we decide to drop T and use the above trigger-free formulation of
BD security.

Regarding the parameters O and S, we assume that they are defined in terms
of functions on individual transitions:

– isSec : trans → bool, filtering the transitions that produce secrets
– getSec : trans → secret, producing a secret out of a transition
– isObs : trans → bool, filtering the transitions that produce observations
– getObs : trans → obs, producing an observation out of a transition

We then define O = map getObs ◦ filter isObs and S = map getSec ◦ filter isSec.
Thus, O uses filter to select the transitions in a trace that are (partially)
observable according to isObs, and then maps this sequence of transitions to
the sequence of their induced observations, via getObs. Similarly, S produces
sequences of secrets by filtering via isSec and mapping via getSec.

All in all, BD security is parameterized by the following data:

– an I/O automaton (state, act, out, istate, step)
– a security model, consisting of:

• a secrecy infrastructure (secret, isSec, getSec)
• an observation infrastructure (obs, isObs, getObs)
• a declassification bound B

3.3 CoSMed Confidentiality as BD Security

Next we show how to capture CoSMed’s properties as BD security. We first look
in depth at one property, post confidentiality, expressed informally by (P2) from
Sect. 3.1.

Let us attempt to choose appropriate parameters in order to formally capture
a confidentiality property in the style of (P2). The I/O automaton will of course
be the one described by the state, actions and outputs from Sect. 2.1.

For the security model, we first instantiate the observation infrastructure
(obs, isObs, getObs). The observers are users. Moreover, instead of assuming a
single user observer, we wish to allow coalitions of an arbitrary number of users—
this will provide us with stronger security guarantees. Finally, from a transition
2 By modifying S to produce a dedicated value as soon as T occurs, and modifying B
to only consider sequences without that value.
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Trans σ a o σ′ issued by a user, it is natural to allow that user to observe both
their own action a and the output o.

Formally, we take the type obs of observations to be act × out
and the observation-producing function getObs : trans → obs to be
getObs (Trans a o ) ≡ (a, o). We fix a set UIDs of user IDs and define the
observation filter isObs : trans → obs by

isObs (Trans σ a o σ′) ≡ userOf a ∈ UIDs

where userOf a returns the user who performs the action. In summary, the obser-
vations are all actions issued by members of a fixed set UIDs of users together
with the outputs that these actions are producing.

Let us now instantiate the secrecy infrastructure (secret, isSec, getSec). Since
the property (P2) talks about the text of a post, say, identified by PID : postID,
a first natural choice for secrets would be the text updates stored in PID via
updateTextPost actions. That is, we could have the filter isSec a hold just in case
a is such a (successfully performed) action, say, updateTextPost σ uid p pid text ,
and have the secret-producing function getSec a return the updated secret, here
text . But later, when we state the bound, how would we distinguish updates
that should not be learned from updates that are OK to be learned because
they happen while the access is legitimate for the observers—e.g., while a user
in UIDs is the owner’s friend? We shall refer to the portions of the trace when the
observer access is legitimate as open access windows, and refer to the others as
closed access windows. The bound clearly needs to distinguish these. Indeed, it
states that nothing should be learned beyond the updates that occurred during
open access windows.

To enable this distinction, we enrich the notion of secret to include not only
the post text updates, but also marks for the shift between closed and open
access windows. To this end, we define the state predicate open to express that
PID is registered and one of the users in UIDs is entitled to access the text of
PID—namely, is the owner or a friend of the owner, or the post is public.

open σ ≡ PID ∈ postIDs σ ∧
∃uid ∈ UIDs. uid ∈ userIDs σ ∧

(uid = owner σ pid ∨ uid ∈ friendIDs σ (owner σ pid) ∨
visPost (post σ PID) = PublicV)

Now, the secret selector isSec : trans → bool will record both successful post-
text updates and the changes in the truth value of open for the state of the
transition:

isSec (Trans (Uact (uTextPost pid text)) o ) ≡ pid = PID ∧ o = outOK
isSec (Trans σ σ′) ≡ open σ 	= open σ′

In consonance with the filter, the type of secrets will have two constructors

datatype secret = TSec text | OSec bool
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Fig. 1. The bound for post text confidentiality

and the secret-producing function getSec : trans → secret will retrieve either the
updated text or the updated openness status:

getSec (Trans (Uact (uTitlePost text)) ) ≡ TSec text
getSec (Trans σ′) ≡ OSec (open σ′)

In order to formalize the desired bound B, we first note that all sequences of
secrets produced from system traces consist of:

– a (possibly empty) block of text updates TSec text11, . . . ,TSec text1n1

– possibly followed by a shift to an open access window, OSec True
– possibly followed by another block of text updates TSec text21, . . . ,TSec text2n2

– possibly followed by a shift to a closed access window, OSec False
– . . . and so on . . .

We wish to state that, given any such sequence of secrets sl (say, produced from a
system trace tr), any other sequence sl ′ that coincides with sl on the open access
windows (while being allowed to be arbitrary on the closed access windows) is
equally possible as far as the observer is concerned—in that there exists a trace
tr ′ yielding the same observations as tr and producing the secrets sl ′.

The purpose of B is to capture this relationship between sl and sl ′, of coin-
cidence on open access windows. But which part of a sequence of secrets sl
represents such a window? It should of course include all the text updates that
take place during the time when one of the observers has legitimate access to the
post—namely, all blocks of sl that are immediately preceded by an OSec True
secret.

But there are other secrets in the sequence that properly belong to this
window: the last updated text before the access window is open, that is, the
secret TSec textknk

occurring immediately before each occurrence of OSec True.
For example, when the post becomes public, a user can see not only upcoming
updates to its text, but also the current text, i.e., the last update before the
visibility upgrade.

The definition of B reflects the above discussion, using an auxiliary predicate
BO to cover the case when the window is open. The predicates are defined
mutually inductively as in Fig. 1.
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Clause (1), the base case for B, describes the situation where the original
system trace has made no shift from the original closed access window. Here,
the produced sequence of secrets sl consists of text updates only, i.e., sl =
map TSec textl . It is indistinguishable from any alternative sequence of updates
sl ′ = map TSec textl ′, save for the corner case where an observer can learn that
sl is empty by inferring that the post does not exist, e.g. because the system
has not been started yet, or because no users other than the observers exist who
could have created the post. Such harmless knowledge is factored in by asking
that sl ′ (i.e., textl ′) be empty whenever sl (i.e., textl) is.

Clause (2), the base case for BO, handles sequences of secrets produced dur-
ing open access windows. Since here information is entirely exposed, the corre-
sponding sequence of secrets from the alternative trace has to be identical to the
original.

Clause (3), the inductive case for B, handles sequences of secrets
map TSec textl produced during closed access windows. The difference from
clause (1) is that here we know that there will eventually be a shift to a closed
access window—this is marked by the occurrences of OSec True in the conclusion,
followed by a remaining sequence sl . As previously discussed, the only constraint
on the sequence of secrets produced by the alternative trace, map TSec textl ′,
is that it ends in the same secret—hence the condition that the sequences be
empty at the same time and have the same last element. Finally, clause (4), the
inductive case for BO, handles the secrets produced during open access window
on a trace known to eventually move to an open access window.

With all the parameters in place, we have a formalization of post text confi-
dentiality: the BD-security instance for these parameters. However, we saw that
the legitimate exposure of the posts is wider than initially suggested, hence (P2)
is bogus as currently formulated. Namely, we need to factor in the last updates
before open access windows in addition to the updates performed during open
access windows. If we also factor in the generalization from a single user to a
coalition of users, we obtain:

(P3) A coalition of users can learn nothing about the updates to a post
content beyond those updates that are performed while one of the following
holds or the last update before one of the following starts to hold:

– a user in the coalition is the post’s owner or a friend of the post’s owner,
or

– there is at least one user in the coalition and the post is marked as public.

3.4 More Confidentiality Properties

So far, we have discussed confidentiality for post content (i.e., text). However, a
post also has a title and an image. For these, we want to verify the same confi-
dentiality properties as in Sect. 3.3, only substituting text content by titles and
images, respectively. In addition to posts, another type of information with con-
fidentiality ramifications is that about friendship between users: who is friends
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with whom, and who has requested friendship with whom. We consider the con-
fidentiality of the friendship information of two arbitrary but fixed users UID1
and UID2 who are not in the coalition of observers:

(P4) A coalition of users UIDs can learn nothing about the updates to the
friendship status between two users UID1 and UID2 beyond those updates
that are performed while a member of the coalition is friends with UID1
or UID2, or the last update before there is a member of the coalition who
becomes friends with UID1 or UID2.

(P5) A coalition of users UIDs can learn nothing about the friendship
requests between two users UID1 and UID2 beyond the existence of a
request before each successful friendship establishment.

Formally, we declare open access window to friendship information when either
an observer is friends with UID1 or UID2 (since the listing of friends of friends
is allowed), or the two users have not been created yet (since observers know
statically that there is no friendship if the users do not exist yet).

openF σ ≡ (∃uid ∈ UIDs. uid ∈ friendIDs σ UID1 ∨ uid ∈ friendIDs σ UID2)
∨ UID1 /∈ userIDs σ ∨ UID2 /∈ userIDs σ

The relevant transitions for the secrecy infrastructure are the creation of
users and the creation and deletion of friends or friend requests. The creation
and deletion of friendship between UID1 and UID2 produces an FSec True or
FSec False secret, respectively. In the case of openness changes, OSec is produced
just as for the post confidentiality. Moreover, for (P5), we let the creation of
a friendship request between UID1 and UID2 produce FRSec uid text secrets,
where uid indicates the user that has placed the request, and text is the request
message.

The main inductive definition of the two phases of the declassification bounds
for friendship (P4) is given in Fig. 2, where fs ranges over friendship statuses,
i.e., Booleans. Note that it follows the same “while”-“last update before” scheme
as Fig. 1 for the post confidentiality, but with FSec instead of TSec. The overall
bound is then defined as BOF sl sl ′ (since we start in the open phase where

Fig. 2. The bound on friendship status secrets
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UID1 and UID2 do not exist yet) plus a predicate on the values that captures the
static knowledge of the observers: that the FSec’s form an alternating sequence
of “friending” and “unfriending.”

For (P5), we additionally require that at least one FRSec and at most two
FRSec secrets from different users have to occur before each FSec True secret.
Beyond that, we require nothing about the request values. Hence, the bound
for friendship requests states that observers learn nothing about the requests
between UID1 and UID2 beyond the existence of a request before each successful
friendship establishment. In particular, they learn nothing about the “orienta-
tion” of the requests (i.e., which of the two involved users has placed a given
request) and the contents of the request messages.

4 Verifying Confidentiality

Next we recall the unwinding proof technique for BD security (Sect. 4.1) and
show how we have employed it for CoSMed (Sect. 4.2).

4.1 BD Unwinding Recalled

In [18], we have presented a verification technique for BD security inspired by
Goguen and Meseguer’s unwinding technique for noninterference [13]. Classical
noninterference requires that it must be possible to purge all secret transitions
from a trace, without affecting the outputs of observable actions. The unwinding
technique uses an equivalence relation on states, relating states with each other
that are supposed to be indistinguishable for the observer. The proof obliga-
tions are that 1. equivalent states produce equal outputs for observable actions,
2. performing an observable action in two equivalent states again results in two
equivalent states, and 3. the successor state of a secret transition is equivalent
to the source state. This guarantees that purging secret transitions preserves
observations. The proof proceeds via an induction on the original trace.

For BD security, the situation is different. Instead of purging all secret transi-
tions, we have to construct a different trace tr ′ that produces the same observa-
tions as the original trace tr , but produces precisely a given sequence of secrets
sl ′ for which B (S tr) sl ′ holds.

The idea is to construct tr ′ incrementally, in synchronization with tr , but
“keeping an eye” on sl ′ as well. The unwinding relation [18, Sect. 5.1] is therefore
not a relation on states, but a relation on (state×secret list), or equivalently, a set
of tuples (σ, sl , σ′, sl ′). Each of these tuples represents a possible configuration
of the unwinding “synchronization game”: σ and sl represent the current state
reached by a potential original trace and the secrets that are still to be produced
by it; and similarly for σ′ and sl ′ w.r.t. the alternative trace.

To keep proof size manageable, the framework supports the decomposition
of Δ into smaller unwinding relations Δ0, . . . ,Δn focusing on different phases
of the synchronization game. The unwinding conditions require that, from any
such configuration for which one of the relations hold, say, Δi σ sl σ′ sl ′, the
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alternative trace can “stay in the game” by choosing to (1) either act indepen-
dently or (2) wait for the original trace to act and then choose how to react to
it: (1.a) either ignore that transition or (1.b) match it with an own transition.
For the resulting configuration, one of the unwinding relations has to hold again.
More precisely, the allowed steps in the synchronization game are the following:

INDEPENDENT ACTION: There exists a transition trn ′ = Trans σ′ σ′
1 that

is unobservable (i.e., ¬ isObs trn ′), produces the first secret in sl ′, and leads
to a configuration that is again in one of the relations, Δj σ sl σ′

1 sl ′1 for
j ∈ {1, . . . , n}

REACTION: For all possible transitions trn = Trans σ σ1 one of the following
holds:
IGNORE: trn is unobservable and again leads to a related configuration

Δk σ1 sl1 σ′ sl ′ for k ∈ {1, . . . , n}
MATCH: There exists an observationally equivalent transition trn ′ =

Trans σ′ σ′
1 (i.e., isObs trn ←→ isObs trn ′ and isObs trn →

getObs trn = getObs trn ′) that together with trn leads to a related con-
figuration Δl σ1 sl1 σ′

1 sl ′1 for l ∈ {1, . . . , n}

If one of these conditions is satisfied for any configuration, then the unwinding
relations can be seen as forming a graph: For each i, Δi is connected to all the
relations into which it “unwinds,” i.e., the relations Δj , Δk or Δl appearing in
the above conditions. We use these conditions in the inductive step of the proof
of the soundness theorem below.

Finally, we require that the initial relation Δ0 is a proper generalization of
the bound for the initial state, ∀sl sl ′. B sl sl ′ → Δ0 istate sl istate sl ′. This
corresponds to initializing the game with a configuration that loads any two
sequences of secrets satisfying the bound.

Theorem 1. [18] If Δ0, . . . ,Δn form a graph of unwinding relations, and
B sl sl ′ implies Δ0 istate sl istate sl ′ for all sl and sl ′, then (the given instance
of) BD security holds.

Fig. 3. Graph of unwinding relations Fig. 4. Refined graph

4.2 Unwinding Relations for CoSMed

In a graph Δ0, . . . ,Δn of unwinding relations, Δ0 generalizes the bound B. In
turn, Δ0 may unwind into other relations, and in general any relation in the
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graph may unwind into its successors. Hence, we can think of Δ0 as “taking
over the bound,” and of all the relations as “maintaining the bound” together
with state information. It is therefore natural to design the graph to reflect the
definition of B.

We have applied this strategy to all our unwinding proofs. The graph in Fig. 3
shows the unwindings of the post-text confidentiality property (P3). In addition
to the initial relation Δ0, there are 4 relations Δ1–Δ4 with Δi corresponding to
clause (i) for the definition of B from Fig. 1. The edges correspond to the pos-
sible causalities between the clauses. For example, if B sl sl ′ has been obtained
applying clause (3), then, due to the occurrence of BO in the assumptions, we
know the previous clauses must have been either (2) or (4)—hence the edges
from Δ3 to Δ2 and Δ4. Each Δi also provides a relationship between the states
σ and σ′ that fits the situation. Since we deal with repeated opening and closing
of the access window, we naturally require:

– that σ = σ′ when the window is open
– that σ =PID σ′, i.e., σ and σ′ are equal everywhere save for the value of PID’s

text, when the window is closed

Indeed, only when the window is open the observer would have the power to
distinguish different values for PID’s text; hence, when the window is closed the
secrets are allowed to diverge. Open windows are maintained by the clauses for
BO, (2) and (4), and hence by Δ2 and Δ4. Closed windows are maintained by
the clauses for B, (1) and (3), with the following exception for clause (3): When
the open-window marker OSec True is reached, the PID text updates would
have synchronized (last textl = last textl ′), and therefore the relaxed equality
=PID between states would have shrunk to plain equality—this is crucial for the
switch between open and closed windows.

To address this exception, we refine our graph as in Fig. 4, distinguishing
between clause (3) applied to nonempty update prefixes where we only need
σ =PID σ′, covered by Δ1

3, and clause (3) with empty update prefixes where we
need σ = σ′, covered by Δ2

3. Figure 5 gives the formal definitions of the relations.
Δ0 covers the prehistory of PID—from before it was created. In Δ1–Δ4, the
conditions on sl and sl ′ essentially incorporate the inversion rules corresponding
to clauses (1)-(4) in B’s definition, while the conditions on σ and σ′ reflect the
access conditions, as discussed.

Proposition 2. The relations in Fig. 5 form a graph of unwinding relations,
and therefore (by Theorem1) the post-text confidentiality property (P3) holds.

For unwinding the friendship confidentiality properties, we proceed analo-
gously. We define unwinding relations, corresponding to the different clauses in
Fig. 2, and prove that they unwind into each other and that B sl sl ′ implies
Δ0 istate sl istate sl ′. In the open phase, we require that the two states are equal
up to pending friendship requests between UID1 and UID2. In the closed phase,
the two states may additionally differ on the friendship status of UID1 and UID2.
Again, we need to converge back to the same friendship status when changing
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Fig. 5. The unwinding relations for post-text confidentiality

from the closed into the open phase. Hence, we maintain the invariant in the
closed phase that if an OSec True secret follows later in the sequence of secrets,
then the last updates before OSec True must be equal, analogous to Δ1

3 for post
texts, and the friendship status must be equal in the two states immediately
before an OSec True secret, analogous to Δ2

3 for post texts.

5 Verification Summary

The whole formalization consists of around 9700 Isabelle lines of code (LOC).
The (reusable) BD security framework takes 1800 LOC. CosMeD’s kernel imple-
mentation represents 700 LOC. Specifying and verifying the confidentiality prop-
erties for CoSMeD represents the bulk, 6500 LOC. Some additional 200 LOC
are dedicated to various safety properties to support the confidentiality proofs—
e.g., that two users cannot be friends if there are pending friendship requests
between them. Unlike the confidentiality proofs, which required explicit construc-
tion of unwindings, safety proofs were performed automatically (by reachable-
state induction).

Yet another kind of properties were formulated in response to the following
question: We have shown that a user can only learn about updates to posts that
were performed during times of public visibility or friendship, and about the
last updates before these time intervals. But how can we be sure that the public
visibility status or the friendship status cannot be forged? We have proved that
these statuses can indeed only occur by the standard protocols. These prop-
erties (taking 500 LOC), complement our proved confidentiality by a form of
accountability: they show that certain statuses can only be forged by identity
theft.
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6 Related Work

Proof assistants are today’s choice for precise and holistic formal verification
of hardware and software systems. Already legendary verification works are the
AMD microprocessor floating-point operations [24], the CompCert C compiler
[21] and the seL4 operating system kernel [19]. More recent developments include
a range of microprocessors [16], Java and ML compilers [20,22], and a model
checker [11].

Major “holistic” verification case studies in the area of information flow secu-
rity are rather scarce, perhaps due to the more complex nature of the involved
properties compared to traditional safety and liveness [23]. They include a hard-
ware architecture with information-flow primitives [10] and a separation kernel
[9], and noninterference for seL4 [25]. A substantial contribution to web client
security is the Quark verified browser [17]. We hope that our line of work, putting
CoCon and CoSMed in the spotlight but tuning a general verification frame-
work backstage, will contribute a firm methodology for the holistic verification
of server-side confidentiality.

Policy languages for social media platforms have been proposed in the context
of Relationship-based Access Control [12], or using epistemic logic [28]. These
approaches focus on specifying policies for granting or denying access to data
based on the social graph, e.g. friendship relations. While our system implemen-
tation does make use of access control, our guarantees go beyond access control
to information flow control. A formal connection between these policy languages
and BD security would be interesting future work.

Finally, there are quite a few programming languages and tools aimed at sup-
porting information-flow secure programming [2,3,7,30], as well as information-
flow tracking tools for the client side of web applications [6,8,14]. We foresee a
future where such tools will cooperate with proof assistants to offer light-weight
guarantees for free and stronger guarantees (like the ones we proved in this
paper) on a need basis.

Conclusion. CoSMed is the first social media platform with verified confi-
dentiality guarantees. Its verification is based on BD security, a framework for
information-flow security formalized in Isabelle. CoSMed’s specific confidential-
ity needs require a dynamic topology of declassification bounds and triggers.
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Abstract. The impossibility of distributed consensus with one faulty
process is a result with important consequences for real world distrib-
uted systems e.g., commits in replicated databases. Since proofs are not
immune to faults and even plausible proofs with a profound formalism
can conclude wrong results, we validate the fundamental result named
FLP after Fischer, Lynch and Paterson by using the interactive the-
orem prover Isabelle/HOL. We present a formalization of distributed
systems and the aforementioned consensus problem. Our proof is based
on Hagen Völzer’s paper A constructive proof for FLP. In addition to
the enhanced confidence in the validity of Völzer’s proof, we contribute
the missing gaps to show the correctness in Isabelle/HOL. We clarify
the proof details and even prove fairness of the infinite execution that
contradicts consensus. Our Isabelle formalization may serve as a starting
point for similar proofs of properties of distributed systems.

Keywords: Formalization · Isabelle/HOL · Verification · FLP ·
Consensus · Distributed systems

1 Introduction

Many informal proofs have been found to be incorrect and even plausible ones
come to invalid results. One example is the “Effective Implementation for the
Generalized Input-Output Construct of CSP” [3] where a later attempt of a
proof produced a counterexample [9]. Hence, increasing the confidence in the
correctness of fundamental results is a good idea in general.

The impossibility of fault-tolerant distributed consensus in asynchronous sys-
tems is a fundamental result in computer science. Originally, it has been estab-
lished and proved by Fischer, Lynch and Paterson (FLP) [6]. Since the result
implies major consequences in distributed computing, it is worth verifying its
correctness to achieve the highest level of certainty. To our knowledge, it has not
yet been verified mechanically. Due to its relevance we checked the claim in the
interactive theorem prover Isabelle/HOL.

We base our formalization on Völzer’s paper “A Constructive Proof for
FLP” [13]. Compared to the original proof in [6], Völzer is more precise and more
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 107–122, 2016.
DOI: 10.1007/978-3-319-43144-4 7
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extensive in defining the model and in the subproofs leading to the crucial con-
tradiction. Völzer argues in [13], it is “not only showing that a non-terminating
execution does exist but also how it can be constructed”. Due to its higher
degree of detail and constructiveness, we chose Völzer’s proof as foundation for
proving FLP. Accordingly, all design decisions are based on the motivation to
stay as close as possible to Völzer. We extend the proof by providing a higher
level of precision and clarify the proof details. Moreover, we formalize a notion
of fairness and prove that the constructed execution is fair, which Völzer states
without proof or proof sketch. Ultimately, we show that FLP’s result is correct,
up to the correctness of Isabelle/HOL. Our complete formalization is available
in the Archive of Formal Proofs [2].

Overview. We start in Sect. 2 with a brief introduction into distributed systems,
consensus and Isabelle/HOL. In Sect. 3 we sketch our Isabelle formalization of
the model and the proven properties. Section 4 gives an overview of our formal-
ization of the FLP proof and we discuss our observations. We conclude with a
brief summary and an outlook in Sect. 5.

Related Work. In “Nonblocking Consensus Procedures Can Execute Forever” [4],
Constable shows another way of proving the FLP result. He uses the idea of
nonblocking consensus protocols and states that similar work has been formally
verified using Nuprl [5] up to a certain point. In contrast, we fully formalized it
using Isabelle/HOL [11].

More recently, there is a project1 formalizing the original FLP paper in the
theorem prover Coq [1], which has not yet been finished.

Contributions. Our main contributions are (1) the formalization of a generic
model for distributed systems, (2) the constructive proof in the Isabelle/HOL
theorem prover, (3) an additional thorough proof of fairness of the infinite exe-
cution and (4) the discussion of the differences between the proofs. We obtain
an Isabelle/HOL model for distributed consensus that can be reused for future
proofs. The theorem prover forced us to be very precise, e.g., when lifting defi-
nitions from finite to infinite objects. In the proofs, this precision allowed us to
find a tiny error in the paper where the same symbol was used for similar but
evidently different configurations. Völzer states without proof that the execution
constructed in the paper is fair. We formally proved this claim. Additionally, we
obtained a precise list of all preconditions and the dependencies of the previous
lemmata for the individual proofs we formalized. We now have the certainty that
the proof is correct up to the correctness of the Isabelle/HOL theorem prover
and the correctness of our formalization of the model.

2 Preliminaries

We define the (binary) consensus problem as presented by Fischer, Lynch and
Paterson in [6]. Then we present a short introduction to the interactive theorem
prover Isabelle/HOL [11].
1 https://github.com/ConsensusResearch/flp.

https://github.com/ConsensusResearch/flp
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2.1 Distributed Systems and Consensus

Following [6], a distributed system is a collection of finitely many nodes, called
processes, that communicate asynchronously via messages. In general a message
is a pair (p,m), where p is the name of the destination process and m is a
so-called message value. Processes communicate asynchronously by sending and
receiving messages over reliable channels, i.e., no message is lost but it may be
delayed for an arbitrary (finite) amount of time. We assume that this kind of
message transfer is the only way for processes to exchange information. Processes
are modeled as automata by states and a deterministic transition function that
maps a state and a message to its successor state and outgoing messages. The
global state of a distributed system is the collection of the local states of its
processes together with the collection of messages in transit. The system evolves
non-deterministically by choosing one of the messages in transit to be received
by one of the processes and changes according to the local transition of this
single process. A more detailed description of distributed systems is provided by
their formalization described in Sect. 3. Similar to [13], a process is correct if it
eventually consumes every message directed to it and faulty otherwise.

Intuitively, consensus is the problem of whether a distributed system is able
to reach a global state such that all processes agree on some condition. More
formally, a consensus algorithm is a distributed system such that all processes are
initialized with a boolean value and, after a number of transition steps, a process
may decide on a boolean value as output. In [6] initialization of the processes is
modeled by a one-bit input register for each process containing its initial boolean
value in the initial state and a process decides on a boolean value by writing
it into its one-bit output register. Alternatively processes can be enhanced with
variables to carry the input and output values, or this information may be carried
by input and output messages (as described in Sect. 3).

A correct consensus algorithm satisfies the following three conditions:

Agreement: No two processes decide differently.
Validity: The output value of each process is the input value of some process.
Termination: Each correct process eventually decides.

Fischer et al. [6] show that in the presence of a faulty process there are no
correct consensus algorithms, i.e., no correct consensus algorithm can tolerate
a faulty process. More precisely, they prove that in this case the assumption of
agreement and validity implies the existence of an infinite execution violating
the termination property.

2.2 Isabelle/HOL

The interactive theorem prover Isabelle/HOL, initially created by Tobias Nipkow
and Lawrence Paulson [11], supports machine-checked proofs and thus provides
additional confidence in the correctness of proofs. It allows for the reuse of
already defined structures and verified lemmata, which are organized in theories.
Theories are the basic mechanism to organize and encapsulate formalization.
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Established theories can be imported into new theories in order to build upon
the described models and to reuse facts proven within these theories. Locales [7]
provide an additional way to structure formalizations. They introduce local con-
texts, which can fix a number of local assumptions. Within these scopes def-
initions are based on local assumptions and proofs are carried out depending
on them. Locales may also contain local constants and provide syntax rewriting
mechanism. They can be organized hierarchically such that the extending struc-
tures inherit the assumptions and contents of their sublocales and add content
or impose further assumptions.

3 Model

Our model for asynchronous distributed systems is based on the model described
by Völzer [13]. In order to compare the formalization with the paper proof in
[13], we tried to stay as close as possible to the formalization of Völzer.

The definitions are organized into two locales AsynchronousSystem and
Execution. The first contains a basic branching-time model of concurrent
processes communicating by messages. The second adds finite and infinite exe-
cutions and a concept of fairness.

The formalization of the model is decoupled from later proofs concerning
distributed consensus. So these theories can be reused for other proofs about dis-
tributed systems. There are however some design decisions—due to our attempt
to stay close to [13]—that can be considered inefficient for some purposes.

3.1 Asynchronous System

The theory AsynchronousSystem models processes as named automata com-
municating asynchronously by messages addressing processes by names. It is
parametrized over types for process identifiers ’p, process state space ’s and
communication message values ’v.

The model makes no assumption on the number of processes although
the later proof of the FLP-theorem will only be conducted for finitely many
processes.

The communication between processes takes place via messages. Their con-
tent is either a value of a (possibly infinite) type ’v or a Boolean. We explicitly
distinguish messages carrying a Boolean to ensure that the messages used to
initialize the system are of this type.

datatype ’v messageValue =
Bool bool

| Value ’v

According to [13], a message consists of a message value (of type ’v or bool) and
a receiver of the message identified by an element of ’p. We distinguish three
types of messages: input messages, output messages and regular inter-process
messages. Input and output messages are special messages used to differenti-
ate the input and output of the distributed algorithm. Input messages contain
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Boolean start values for the system, i.e., we require that initially there is exactly
one input message for each process. The output messages do not have a receiver
as they can be seen as the Boolean return value of the system. In the consen-
sus setting every correct process (Termination) sends its decision in exactly one
output message and the values of all these messages have to be the same (Agree-
ment). The inner communication of the system is realized with regular messages,
whose type is entirely up to the user. Therefore, the model can easily be adapted
to various settings.

datatype (’p, ’v) message =
InMsg ’p bool ("<_, inM _>")

| OutMsg bool ("<⊥, outM _>")
| Msg ’p ’v ("<_, _>")

A system configuration describes the global state of the system at one instant. It
consists of the current states of all processes (a mapping from the set of processes
to the set of states) and a multiset of all messages in transit, i.e., messages
that have been sent but not yet received; we call these messages enabled. The
predicate enabled checks that a message is part of the messages in transit of a
given configuration. We added a small theory to implement multisets.

record (’p, ’v, ’s) configuration =
states :: "’p ⇒ ’s"
msgs :: "((’p, ’v) message) multiset"

The locale asynchronousSystem consists of three parameters, a transition func-
tion trans for each process, a message function sends for each process and an
initial state start for each process. The transition function describes the local
state changes of a process. The message function determines what messages are
sent in reaction to a received message.

locale asynchronousSystem =
fixes

trans :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ ’s" and
sends :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ (’p, ’v) message multiset" and
start :: "’p ⇒ ’s"

We assume input enabled processes, i.e., every process can accept any message
in transit (directed to the process) at any time. A step in the system consumes
exactly one message, changes the state of the receiving process and adds the
new messages sent by the process to the multisets of messages in transit. Since
we describe an asynchronous distributed system, the executing process does not
wait for the reception of its sent messages and the states of all other processes
remain unchanged.

primrec steps ::
"(’p, ’v, ’s) configuration
⇒ (’p, ’v) message
⇒ (’p, ’v, ’s) configuration
⇒ bool"
("_ � _ �→ _" [70,70,70])

where
StepInMsg: "cfg1 � <p, inM v> �→ cfg2 = (
(∀ s. ((s = p) −→ states cfg2 p = trans p (states cfg1 p) (Bool v))

∧ ((s 
= p) −→ states cfg2 s = states cfg1 s))
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∧ enabled cfg1 <p, inM v>
∧ msgs cfg2 = (sends p (states cfg1 p) (Bool v)

∪# (msgs cfg1 -# <p, inM v>)))"
| StepMsg: "cfg1 � <p, v> �→ cfg2 = (

(∀ s. ((s = p) −→ states cfg2 p = trans p (states cfg1 p) (Value v))
∧ ((s 
= p) −→ states cfg2 s = states cfg1 s))

∧ enabled cfg1 <p, v>
∧ msgs cfg2 = (sends p (states cfg1 p) (Value v)

∪# (msgs cfg1 -# <p, v>)))"
| StepOutMsg: "cfg1 � <⊥,outM v> �→ cfg2 =

False"

The lemma NoReceivingNoChange proves that the states of the other processes
do not change during a step and lemma OtherMessagesOnlyGrowing checks that
no messages, besides the consumed one, disappear. Lemma ExistsMsg shows
that only existing messages can be consumed in a step. The set of outgoing
messages can only grow (lemma OutOnlyGrowing). Messages are enabled per-
sistently, i.e., they remain enabled as long as they are not consumed in a step
(lemma OnlyOccurenceDisables).

The transitive closure of the step relation defines the reachability of states
in the system.

inductive reachable ::
" (’p, ’v, ’s) configuration
⇒ (’p, ’v, ’s) configuration
⇒ bool"

where
init: "reachable cfg1 cfg1"

| step: " [[ reachable cfg1 cfg2; (cfg2 � msg �→ cfg3) ]]
=⇒ reachable cfg1 cfg3"

Transitivity of the predicate reachable is proved in lemma ReachableTrans.
A configuration cfg3 is qReachable from the configuration cfg1 with the

set of processes Q if only processes from the set Q take steps to reach the config-
uration.
inductive qReachable ::

"(’p,’v,’s) configuration
⇒ ’p set
⇒ (’p,’v,’s) configuration
⇒ bool"

where
initQ: "qReachable cfg1 Q cfg1"

| stepQ: " [[ qReachable cfg1 Q cfg2; (cfg2 � msg �→ cfg3) ;
∃ p ∈ Q . isReceiverOf p msg ]]

=⇒ qReachable cfg1 Q cfg3"

qReachable is transitive (lemma QReachableTrans) and the states of processes
outside of Q do not change (lemma NotInQFrozenQReachability). Additionally
no messages addressed to processes not in Q are lost (lemma NoActivityNo-
MessageLoss).

Dual to qReachable, a configuration is withoutQReachable if only processes
not from the set Q take steps. Dual versions of the above lemmata were shown.

With qReachable and withoutQReachable we formalize the confluence prop-
erty Diamond of our model. As visualized in Fig. 1, if configuration cfg1 is
qReachable and another configuration cfg2 is withoutQReachable for the same
Q, there is a configuration cfg’ which is withoutQReachable from cfg1 and
qReachable from cfg2.
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Fig. 1. Diamond property

lemma Diamond:
fixes

cfg cfg1 cfg2 :: "(’p,’v,’s) configuration" and
Q :: "’p set"

assumes
QReach: "qReachable cfg Q cfg1" and
WithoutQReach: "withoutQReachable cfg Q cfg2"

shows
"∃ cfg’. withoutQReachable cfg1 Q cfg’

∧ qReachable cfg2 Q cfg’"

The proof of lemma Diamond is constructed via two auxiliary lemmata. Diamond-
One shows the confluence property for two single steps, DiamondTwo for a number
of steps on the one side and a single step on the other side.

3.2 Executions

The Locale Execution: To model an execution of the system, we extend
the locale asynchronousSystem. Völzer defines an execution as an alternating
sequence of configurations and messages. We split such executions into a list
exec of configurations and a list trace of messages.

locale execution =
asynchronousSystem trans sends start

for
trans :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ ’s" and
sends :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ (’p, ’v) message multiset" and
start :: "’p ⇒ ’s"

+
fixes

exec :: "(’p, ’v, ’s ) configuration list" and
trace :: "(’p, ’v) message list"

assumes
notEmpty: "length exec ≥ 1" and
length: "length exec - 1 = length trace" and
base: "initial (hd exec)" and
step: " [[ i < length exec - 1 ; cfg1 = exec ! i ; cfg2 = exec ! (i + 1) ]]

=⇒ ((cfg1 � trace ! i �→ cfg2)) "

For every execution exec = c0c1c2 . . . and trace = m0m1m2 . . ., there is a step
between ci and ci+1 that consumes mi. For instance, m0 is the message that
is consumed in the step from c0 to c1. Additionally, we require that in c0 all
processes are in their initial state.
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For every execution, we introduce the property minimalEnabled, which is
true for some message msg if it has been enabled for the longest time without
being consumed. It is defined as a predicate, and not as a function, since multiple
messages might be minimalEnabled. We provide a proof that if at least one
message is enabled, then such a minimal enabled message exists.

We define the firstOccurrence of a message, telling that msg has been
enabled, but not consumed, for n steps. As before, we provide a proof that for
any enabled message such a number n exists.

These concepts are used in the construction of the infinite execution to ensure
its fairness.

Extensions of Executions: To model infinite executions, we construct an
increasing chain of executions. Therefore, we show some lemmata concerning
the extension of an execution. In expandExecutionStep we show that if we can
perform some step from the last configuration of our execution, then we can
expand the execution by that step to gain a new execution. We extend this
statement to all configurations that are reachable from the last configuration of
the considered execution. Finally we show that, if we can reach a configuration
cfg by consuming the message msg, then we can extend the execution such that
msg is in the extension of the trace.

While the executions discussed so far are only finite lists, the concepts of
fairness and correctness require infinite executions. Our model defines infinite
executions to be pairs of:

– a map from N to configuration list
– a map from N to message list

both forming strictly increasing infinite chains with respect to the (strict) prefix
relation on lists prefixList.

definition ( in asynchronousSystem) infiniteExecution ::
"(nat ⇒ ((’p, ’v, ’s) configuration list))
⇒ (nat ⇒ ((’p, ’v) message list)) ⇒ bool"

where
"infiniteExecution fe ft ≡

∀ n . execution trans sends start (fe n) (ft n) ∧
prefixList (fe n) (fe (n+1)) ∧
prefixList (ft n) (ft (n+1))"

Another common concept for representing possibly infinite executions are lazy
lists. They are defined as the codatatype corresponding to lists and can be both
finite and infinite. We, however, decided to follow Völzer’s design. He focuses
on finite executions, creating a series of expansions. Keeping finite and infinite
definitions separate also helps us in the cases of definitions that require finite
executions. Especially for the construction in the main proof, we use finite exe-
cutions only.

Within a concrete infinite execution, we consider a process as crashed if there
is a point in time such that there are messages addressed to the process, but
the process does not consume any further messages. A process is correct in a
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given execution if it does not crash. Every correct process that still has messages
addressed to it has to eventually take a step.

definition ( in asynchronousSystem) correctInfinite ::
"(nat ⇒ ((’p, ’v, ’s) configuration list))
⇒ (nat ⇒ ((’p, ’v) message list)) ⇒ ’p ⇒ bool"

where
"correctInfinite fe ft p ≡

infiniteExecution fe ft
∧ (∀ n . ∀ n0 < length (fe n). ∀ msg .

(enabled ((fe n) ! n0) msg)
∧ isReceiverOf p msg

−→ (∃ msg’ . ∃ n’ ≥ n . ∃ n0’ ≥ n0 .isReceiverOf p msg’
∧ n0’ < length (fe n’) ∧ (msg’ = ((ft n’) ! n0’))))"

Finally we define the concept of fairness. An infinite execution is fair, if for
each enabled message having a receiver, there is some later point at which this
message, or a copy of it, is consumed. We do not differentiate between multiple
instances of the same message.

definition ( in asynchronousSystem) fairInfiniteExecution ::
"(nat ⇒ ((’p, ’v, ’s) configuration list))
⇒ (nat ⇒ ((’p, ’v) message list)) ⇒ bool"

where
"fairInfiniteExecution fe ft ≡

infiniteExecution fe ft
∧ (∀ n . ∀ n0 < length (fe n). ∀ p . ∀ msg .

((enabled ((fe n) ! n0) msg)
∧ isReceiverOf p msg ∧ correctInfinite fe ft p )

−→ (∃ n’ ≥ n . ∃ n0’ ≥ n0 . n0’ < length (ft n’)
∧ (msg = ((ft n’) ! n0’))))"

4 FLP Formalization

Our formalization of the FLP result is structured in two locales flpSystem and
flpPseudoConsensus. The first extends the locale asynchronousSystem by the
notion of consensus. The second combines the results of the theory FLPSystem
with the concept of fair infinite executions and culminates in showing the impos-
sibility of a consensus algorithm in the proposed setting.

4.1 FLPSystem

Völzer defines consensus in terms of the classical notions of agreement, validity
and termination. The proof relies on a weaker version called pseudo consensus.
The proof also applies a weakened notion of termination, which we refer to as
“pseudo termination”. The theory FLPSystem contains our formalization of the
consensus properties, i.e., agreement, validity and pseudo termination. Similar
to Völzer we define a concept of non-uniformity regarding pending decision pos-
sibilities, where non-uniform configurations can always reach other non-uniform
ones. It contains all the lemmata and propositions presented by Völzer except for
the final construction of the infinite execution, which is contained in FLPTheorem
together with the fairness proof and the final contradiction.

The locale flpSystem extends the locale asynchronousSystem with restric-
tions on the set of processes and the message function. We assume that there are
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at least two processes in the system, as one process could always decide on its
own. Furthermore, we assume that there are only finitely many processes in the
system and that every process sends only finitely many messages in each step.
To be as general as possible, we make no assumptions on the number of mes-
sages a process sends to another one or other restrictions on the communication
between the processes. The last assumption states that processes cannot send
input messages. Since input messages are special system messages to describe
the start values of the system, this does not restrict the inter-processes commu-
nication. Although not intentionally created for it, several parts of flpSystem
can be reused to solve similar problems in distributed systems.

locale flpSystem =
asynchronousSystem trans sends start

for trans :: "’p ⇒ ’s ⇒ ’v messageValue ⇒’s"
and sends :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ (’p, ’v) message multiset"
and start :: "’p ⇒ ’s" +

assumes finiteProcs: "finite Proc"
and minimalProcs: "card Proc ≥ 2"
and finiteSends: "finite {v. v ∈# (sends p s m)}"
and noInSends: "sends p s m <p2, inM v> = 0"

begin

A configuration is vDecided with value v if it is reachable from an arbitrary
initial configuration and there is an output message with value v in transit. We
call v the decision value.

abbreviation vDecided ::
"bool ⇒ (’p, ’v, ’s) configuration ⇒ bool"

where
"vDecided v cfg ≡ initReachable cfg ∧ (<⊥, outM v> ∈# msgs cfg)"

The pSilentDecisionValues of a process p and a configuration c are the decision
values that are possible if the process p no longer executes steps.

definition pSilDecVal ::
"bool ⇒ ’p ⇒ (’p, ’v, ’s) configuration ⇒ bool"

where
"pSilDecVal v p c ≡ initReachable c ∧

(∃ c’::(’p, ’v, ’s) configuration . (withoutQReachable c {p} c’)
∧ vDecided v c’)"

abbreviation pSilentDecisionValues ::
"’p ⇒ (’p, ’v, ’s) configuration ⇒ bool set" ("val[_,_]")

where
"val[p, c] ≡ {v. pSilDecVal v p c}"

A configuration that is reachable from an arbitrary initial configuration is called
vUniform if, regardless which process stops, v is the only decision value possible.

definition vUniform ::
"bool ⇒ (’p, ’v, ’s) configuration ⇒ bool"

where
"vUniform v c ≡ initReachable c ∧ (∀ p. val[p,c] = {v})"

A configuration is nonUniform if it is neither vUniform for True nor vUniform
for False.
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abbreviation nonUniform ::
"(’p, ’v, ’s) configuration ⇒ bool"

where
"nonUniform c ≡ initReachable c ∧

¬(vUniform False c) ∧
¬(vUniform True c)"

The three main properties of the consensus problem are agreement, validity and
(pseudo) termination.

Agreement states that no two processes decide differently. In our formal-
ization a configuration satisfies this property if all system output messages in
transit carry the same value.

definition agreement ::
"(’p, ’v, ’s) configuration ⇒ bool"

where
"agreement c ≡

(∀ v1. (<⊥, outM v1> ∈# msgs c)
−→ (∀ v2. (<⊥, outM v2> ∈# msgs c)

←→ v2 = v1))"

Validity holds if the output value is the input value of some process. Therefore,
the validity of a configuration depends on the initial configuration. A configura-
tion c that is reachable from an initial configuration i satisfies validity if every
value of an output message in c already is the value of an input message in the
initial configuration i.

definition validity ::
"(’p, ’v, ’s) configuration ⇒ (’p, ’v, ’s) configuration ⇒ bool"

where
"validity i c ≡

initial i ∧ reachable i c −→
(∀ v. (<⊥, outM v> ∈# msgs c)

−→ (∃ p. (<p, inM v> ∈# msgs i)))"

A configuration c that is reachable from an initial configuration satisfies pseudo
termination if a decided configuration can be reached without the participation
of at most t processes and by steps of processes from Q.

definition terminationPseudo ::
"nat ⇒ (’p, ’v, ’s) configuration ⇒ ’p set ⇒ bool"

where
"terminationPseudo t c Q ≡ ((initReachable c ∧ card Q + t ≥ card Proc)

−→ (∃ c’. qReachable c Q c’ ∧ decided c’))"

4.2 FLPTheorem

The locale flpPseudoConsensus contains the construction of the infinite non-
deciding execution, the respective fairness proof and the final contradiction of
the consensus assumptions. Parts of the first and the latter two are not con-
tained in the proof of Völzer. The assumptions for the locale are agreement
and termination. Agreement is required in the form of agreementInit that
requires agreement for all configurations c that are reachable form an initial
configuration.
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locale flpPseudoConsensus =
flpSystem trans sends start

for
trans :: "’p ⇒ ’s ⇒ ’v messageValue ⇒’s" and
sends :: "’p ⇒ ’s ⇒ ’v messageValue ⇒ (’p, ’v) message multiset" and
start :: "’p ⇒ ’s" +

assumes
Agreement: "

∧
i c . agreementInit i c" and

PseudoTermination: "
∧
cc Q . terminationPseudo 1 cc Q"

The final contradiction is shown in ConsensusFails. It uses all previous lem-
mata, directly or indirectly. An infinite execution is said to be a terminationFLP-
execution if at some point it contains a decision message or none of the processes
consumes any further messages.

theorem ConsensusFails:
assumes

Termination:
"
∧

fe ft . (fairInfiniteExecution fe ft =⇒ terminationFLP fe ft)" and
Validity: "∀ i c . validity i c" and
Agreement: "∀ i c . agreementInit i c"

shows
"False"

4.3 Proof Structure

Our proof follows the general structure of Völzer’s proof. In this section we focus
on the ideas and differences to Völzer’s proof instead of concentrating on details.

The main argument of the proof is the construction of a non-uniform infinite
configuration. Non-uniformity implies that no decision has yet been made or is
predetermined and thus violates termination.

The proof uses non-uniformity as an invariant. The first part is the lemma
InitialNonUniformCfg (Lemma 1 in [13]) which shows the existence of a non-
uniform initial configuration. This lemma is proved by constructing a series of
initial configurations such that two consecutive configurations differ only in the
input of one process. Consequently, there are two configurations such that one
is 0-uniform and the other is not 0-uniform. The proof then shows that both
can decide on 0 which means the latter is also not 1-uniform and therefore a
non-uniform initial configuration.

lemma InitialNonUniformCfg:
assumes

Termination: "
∧
cc Q . terminationPseudo 1 cc Q" and

Validity: "∀ i c . validity i c" and
Agreement: "∀ i c . agreementInit i c"

shows
"∃ cfg . initial cfg ∧ nonUniform cfg"

Then we have NonUniformCanReachSilentBivalence, which corresponds to the
Lemma 2 in [13]. Given some non-uniform configuration and any process p, we
can reach a configuration c’ such that if p stops both decisions are possible.
This lemma is proved by a distinction of cases. Either, if p fails, both values
are possible and there is nothing more to show or, if the failure of p would
lead to a decided configuration for 0 or 1, we construct an extension where the
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failure of p leads to a decided configuration for the respective other value. In
lemma SilentDecisionValueNotInverting we have shown that in such a case
we can not reach the latter configuration from the former in one step. There
must be an intermediate configuration where if p fails, both values are possible.
So this—non-uniform—configuration must exist.

lemma NonUniformCanReachSilentBivalence:
fixes

p:: ’p and
c:: "(’p, ’v, ’s) configuration"

assumes
NonUni: "nonUniform c" and
PseudoTermination: "

∧
cc Q . terminationPseudo 1 cc Q" and

Agree: "
∧

cfg . reachable c cfg −→ agreement cfg"
shows

"∃ c’ . reachable c c’ ∧ val[p,c’] = {True, False}"

In NonUniformExecutionsConstructable we use these lemmata to construct
the extended execution according to the invariant. We assume an execution,
that ends in some non-uniform configuration, and chose an arbitrary enabled
message msg. Then we construct an extension of this execution that consumes
msg and again ends in some non-uniform configuration.

lemma NonUniformExecutionsConstructable:
fixes

exec :: "(’p, ’v, ’s ) configuration list " and
trace :: "(’p, ’v) message list" and
msg :: "(’p, ’v) message" and
p :: ’p

assumes
MsgEnabled: "enabled (last exec) msg" and
PisReceiverOf: "isReceiverOf p msg" and
ExecIsExecution: "execution trans sends start exec trace" and
NonUniformLexec: "nonUniform (last exec)" and
Agree: "

∧
cfg . reachable (last exec) cfg −→ agreement cfg"

shows
"∃ exec’ trace’ . (execution trans sends start exec’ trace’)

∧ nonUniform (last exec’)
∧ prefixList exec exec’ ∧ prefixList trace trace’
∧ (∀ cfg . reachable (last exec’) cfg −→ agreement cfg)
∧ stepReachable (last exec) msg (last exec’)
∧ (msg ∈ set (drop (length trace) trace’))"

Figure 2 visualizes the effect of these lemmata. A configuration placed on the
0- or 1-line would mean having decided on the respective value. The infinite
execution starts with a non-uniform configuration which we know to exist from
Lemma 1. With the next step we reach a configuration that moves closer to a
decision for one value. From Lemma 2 we know that from such a configuration
we can reach another one which is also non-uniform, i.e., a configuration that
is a again not directed towards either of the decision values. By applying this
construction repeatedly we never decide. This infinite execution violates the con-
sensus property termination and shows that this setting of distributed consensus
possibly never decides.

Our construction allows us, whenever we are in a non-uniform configuration,
to pic a specific message that is in transit. We choose one that satisfies the
predicate minimalEnabled, while performing these steps. Hence, to prove the
fairness of the constructed execution, we expand the previous lemma by requiring
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Fig. 2. Concept of the infinite execution

that the extension consumes one of the messages that have been enabled for the
longest time.

This construction produces a non-terminating execution, Theorem 1 in [13].
The resulting infinite execution consists only of non-decided configurations and
therefore violates the termination property.

4.4 Discussion

In the following we compare our proof and the one of Völzer [13].
(1) Formalizing the proof in a theorem prover requires a high level of detail.

From our formalization we therefore gained precise assumptions for all lemmata.
One example for this is Proposition 2 in [13]. It states for a reachable config-
uration that each process can decide (a) and that all processes in a decided
configuration agree on one value (b). The proof in [13] solely states that “the
claims follow directly from the definitions”. Our proof in Isabelle/HOL, however,
required in part (a) the definition of a decided process and termination and in
part (b) it was also necessary to have a decided reachable configuration and
agreement for all reachable configurations in addition to the definitions.

(2) This need for precision allowed us to find a small error in the paper where
the same name was used for similar but evidently different configurations. This
error is located in Völzer’s proof of Lemma 1, where he uses one name for two
configurations that necessarily differ in the input of the same process. He states
this himself in the proof, giving the wrong impression these similar configurations
are actually the same configuration.

(3) Völzer’s construction of the final execution lacks any proof of fairness. It
is simply states that “[we] obtain a fair execution where all processes are correct
[...]”. Although the construction is in fact fair, this lack of proof for fairness is
typical of many papers. In contrast, we proved the fairness of our construction.
This turned out to be very time-consuming. We had to consider the aspect
of fairness throughout the whole proof, which changed several already proven
lemmata in retrospect. These changes and the actual fairness proof extended
our formalization by about a quarter.
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(4) Völzer represents messages in transit as a multiset but the messages sent
by a process as a set. We do not make this restriction, i.e. we allow processes to
send the same message multiple times to the same process in one step.

(5) In contrast to the four pages that Völzer needs in [13] to describe his
model and proof, our formalization of his proof has about 4000 lines of code. Of
these, about 1600 are part of defining the model in AsynchronousSystem and
Execution. The remaining 2400 lines consist of the formalization of the FLP
result in flpSystem and flpPseudoConsensus. The proofs considering the so-
called diamond property, for which [13] simply states that it is easy to verify, took
us 300 lines of code. Lemma 1 took us about 400 lines (InitialNonUniformCfg).
The proof of the lemma FairNonUniformExecution that a fair non-uniform
execution exists which is, as mentioned above, stated without proof in [13] took
us about 800 lines of code. Of course, since minimality was not our goal, there
may be ways to reduce the number of lines considerably, e.g. by using variables
to store input and output values instead of the messages used in [13]. Please
note, however, the striking discrepancy in the amount of work related to cover
fairness: approximately half of the lines of the proof in the formalization instead
of a short sentence in the paper.

(6) Finally let us discuss some points one might want to change in order to
reuse the formalization. The initial choice, to stay as close to Völzer as possible,
resulted in some design decisions which lead to unnecessary long and complicated
proofs. Neglecting the design of Völzer, we recommend to model the output of
the system as a variable for each process instead of messages. This helps to
identify decided processes, leading e.g. to a simpler definition of terminationFLP
and a less complicated proof of the final contradiction. Alternatively, if you
want to keep output messages, it helps to add the sender to each message to
simplify some of the proofs. Note that, if you model input values as variables, it is
necessary to revise the definition of processes or to add special trigger messages,
because processes only perform steps when receiving messages. In either way,
we recommend a more differentiated typing of messages. Such a typing could
be used e.g. to prevent the sending of input messages or the consumption of
output messages. This would also have the advantage that the message value
type of interprocess messages does not have to contain Booleans and would be
therefore more generic. Both cases avoid the need to consider output messages
for the message consumed in steps. Furthermore, assumptions to exclude output
messages become unnecessary for several lemmata, leading to clearer proofs.

5 Conclusion

The impossibility of distributed consensus with one faulty process leads to essen-
tial restrictions for distributed systems. In [6] Fischer et al. are arguing that
“solutions” for real-world consensus problems need more refined models that
better reflect realistic assumptions for the system components that are used.
With our Isabelle/HOL proof, we increase the confidence that such real-world
distributed systems in fact need to align their assumptions and guarantees
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to the implied restrictions of FLP’s result. We see the invention of consensus
algorithms like Paxos [10] or RAFT [12] as an evidence of this claim. A frame-
work to formally analyze such algorithms can be found e.g. in [8]. By providing a
precise list of assumptions for Völzer’s proof based on a mechanical verification,
we enable the development of new approaches to solve the consensus problem in
distributed systems.

With our Isabelle/HOL formalization, we completed Völzer’s proof in [13]
by adding the missing proof details and providing a precise list of the neces-
sary assumptions. Moreover we extended Völzer’s proof with a formalization of
fairness and showed that even fair executions cannot ensure consensus.

The lessons learned in Sect. 4.4 should encourage more people to question
and verify more fundamental results with the help of a theorem prover.
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Wilhelm-Weidner, A., Peters, K., Nestmann, U.: A Constructive Proof for FLP.
Archive of Formal Proofs (2016). http://isa-afp.org/entries/FLP.shtml. Formal
proof development

3. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized
input-output construct of CSP. ACM Trans. Program. Lang. Syst. (TOPLAS)
5(2), 223–235 (1983)

4. Constable, R.L.: Effectively Nonblocking Consensus Procedures can Execute For-
ever - a Constructive Version of FLP. Tech. Rep. 11513, Cornell University (2011)

5. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F.,
Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki,
J.T., Smith, S.F.: Implementig Mathematics with the Nuprl Proof Development
System. Prentice-Hall, Upper Saddle River (1986)

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

7. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - a sectioning concept for
Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
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Abstract. The Incredible Proof Machine is an easy and fun to use pro-
gram to conduct formal proofs. It employs a novel, intuitive proof repre-
sentation based on port graphs, which is akin to, but even more natural
than, natural deduction. In particular, we describe a way to determine
the scope of local assumptions and variables implicitly. Our practical
classroom experience backs these claims.

1 Introduction

How can we introduce high-school students to the wonderful world of formal
logic and theorem proving?

Manual proofs on paper are tedious and not very rewarding: The students
have to learn the syntax first, and whatever they produced, they would have to
show it to a teacher or tutor before they knew if it was right or wrong.

Interactive theorem provers can amend some of these problems: These com-
puter programs give immediate feedback about whether a proof is faulty or
correct, allow free exploration and can be somewhat addictive – they have been
called “the world’s geekiest computer game” for a reason. Nevertheless, the stu-
dents still have to learn the syntax first, and beginners without any background
in either logic or programming, initially face a motivationally barren phase.

Therefore we built an interactive theorem prover that allows the students to
start conducting proofs immediately and without learning syntax first. With The
Incredible Proof Machine (http://incredible.pm/) the student just drags blocks –
which represent assumptions, proof rules and conclusions – onto a canvas and
wires them up, using only the mouse or a touch interface. A unification-based
algorithm infers the propositions to label the connections with. Once everything
is connected properly, such a graph constitutes a rigorous, formal proof.

If one thinks of assumptions as sources of propositions, conclusions as con-
sumers of propositions, and proof rules as little machines that transform propo-
sitions to other propositions, then the connections become conveyor belts that
transport truth. This not only justifies the name of the software, but is – in
our opinion – a very natural representation of how the human mind approaches
proving.

Another way of thinking about the Incredible Proof Machine is that it is the
result of taking a graphical programming language (e.g. LabView’s G [8]) and
mangling it through the Curry–Howard correspondence.
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The contributions of this paper are:

– We introduce a visual and natural representation of proofs as graph, which is
generic in the set of proof rules. In contrast to previous approaches, it supports
locally scoped variables and hence predicate logics.

– We infer the scope of local assumptions and variables implicitly from the graph
structure, using post-dominators, instead of expecting an explicit declaration.
This is a novel way to implement the usual freshness side-conditions.

– We give a formal description of such graphs, define when such a graph con-
stitutes a valid formal proof, and sketch its relation to conventional natural
deduction.

– The Incredible Proof Machine provides an intuitive and beginner-friendly way
to learn about logic and theorem proving. We describe its interface design and
its implementation.

– We report on our practical experience with the tool, including the results of
a standard usability questionnaire.

2 Proof Graphs

We begin with a user-level introduction to graphical proofs, as they are used in
the Incredible Proof Machine. We put the focus on motivating and explaining
the elements of such a proof and giving an intuition about them and defer a
rigorous treatment to the subsequent section.

2.1 Conclusion and Assumption

What is the intuitive essence of a proof? We assume certain propositions to be
true. From these assumption, we conclude that further propositions are true,
using the rules of the logic at hand. Eventually we construct a proposition that
matches what we want to prove, i.e. the conclusion. In the simplest case, the
conclusion is among the assumptions, and the proof is trivial.

Fig. 1. A very trivial proof (Color figure online)

If we depict such a proof, the picture in Fig. 1 might come up: A block rep-
resenting the assumption, a second block representing the conclusion, and a line
between them to draw the connection. Both blocks are labelled with the propo-
sition they provide resp. expect, namely A, and the line is also labelled with the
proposition. This is a valid proof, and the conclusion turns green.

It is worth pointing out that in these proof graphs, the train of thought runs
from left to right. Hence, assumptions have ports (the little grey circles where
connections can be attached to) on their right, and conclusions on their left.
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Fig. 2. A very wrong proof (Color figure
online)

Fig. 3. A very incomplete proof (Color
figure online)

Such outgoing and incoming ports also have different shapes. The system does
not allow connections between two outgoing or two incoming ports.

A wrong proof is shown in Fig. 2, where the proposition of the assumption
(B) differs from the proposition of the conclusion (A). Thus, these blocks cannot
legally be connected, the false connection is red, and a scary symbol explains
the problem. Needless to say, the conclusion is not green.

Similarly, the conclusion in Fig. 3 is not green, as the proof is incomplete.
This is indicated by a red port. In general, anything red indicates that the proof
is either incomplete or wrong.

2.2 Rule Blocks

To conduct more than just trivial proofs, we need more blocks. These correspond
to the inference rule of the underlying logic. Figure 4 shows some typical proof
blocks and the corresponding natural deduction rule(s) in conventional inference
rule format (antecedents above, consequent below the line).

Fig. 4. Some natural deduction rules and their proof block counterparts

Again, incoming ports (on the left) indicate prerequisites of a rule, while
outgoing ports (on the right) correspond to the conclusions of a rule. In contrast
to usual inference rules, rule blocks can have multiple conclusions, so both con-
junction projection rules are represented by just one block. If only one of the

Fig. 5. A more complex proof
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conclusions is needed, the other outgoing ports would simply be left unconnected.
Unlike unconnected prerequisites, this does in no way invalidate a proof.

The graph in Fig. 5 shows a proof that from A ∧ B and A → B → C we can
conclude C. Note the connection labels, which indicate the proposition that is
“transported” by a connection.

2.3 Local Hypotheses

Fig. 6. Implication
introduction

Figure 4 shows both the introduction and elimination rule
for conjunction, as well as the elimination form for implica-
tion (modus ponens) – clearly we are missing a block that
allows us to introduce the implication. Such a block would
produce output labelled A → B if given an input labelled
B, where the proof for this B may make use of A. But that
local hypothesis A must not be used elsewhere! This restriction is hinted at by
the shape of the implication introduction block in Fig. 6, where the dent in the
top edge of the block suggests that this block will encompass a subproof. To sup-
port this, the block – colloquially called a “sliding calliper” – can be horizontally
expanded as needed.

Fig. 7. Implication done right Fig. 8. Implication done wrong (Color
figure online)

The graph in Fig. 7 shows the simplest proof using the calliper: By connecting
the port of the local hypothesis A with the assumption A, we obtain a valid proof
of A → A.

The graph next to it (Fig. 8) shows an invalid use of the implication intro-
duction block: The hypothesis is not used locally to prove the assumption of
the block, but is instead connected directly to the conclusion of the proof. The
Incredible Proof Machine allows the user to make that connection, but complains
about it by colouring it in red.

In this picture you can see that despite the proof being in an invalid state, the
system determined that the implication produced by this block would have B as
the assumption, and a not yet determined proposition Y2 as the conclusion. The
ability to work with partial and even wrong proofs is an important ingredient to
a non-frustrating user experience.

A block can have more than one local hypothesis, with different scoping rules.
An example for that is the elimination block for disjunction, shown in Fig. 9. In
this case, the conclusion of the block (P ) is the same as the local goal on each
side of the block. This seems to be a bit redundant, but is necessary to delimit
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Fig. 9. Disjunction introduction and elimination rules

Fig. 10. A local hypotheses of the disjunction block used wrongly.

the scope of the two local hypotheses, respectively, and to keep the two apart –
after all, using the local hypothesis from one side in the proof of the other side
leads to unsoundness (Fig. 10).

2.4 Predicate Logic

So far, the user can only conduct proofs in propositional logic, which is a good
start for beginners, but gets dull eventually. Therefore the Incredible Proof
Machine also supports predicate logic. This opens a whole new can of worms, as
the system has to keep track of the scope of local, fixed variables.

Fig. 11. Blocks for quantifiers

The additional rules are shown in Fig. 11. The introduction rule for the exis-
tential quantifier (bottom left) and the elimination rule for the universal quan-
tifier (top right) are straight forward: If one can prove P (y) for some term y,
then ∃x.P (x) holds, and conversely if one has ∀x.P (x), then P (y) holds for some
term y.

At the first glance, it seems strange that the introduction rule for the uni-
versal quantifier (top left) has the same shape as the one for the existential
quantifier. But there is a small difference, visible only from the naming conven-
tion: To obtain ∀x.P (x) the user has to prove P (c) for an (arbitrary but fixed)
constant c.

Furthermore, and not visible from the shape of the block, is that this constant
c is available only locally, in the proof of P (c). To enforce this, the Incredible
Proof Machine identifies those proof blocks from where all paths pass through
the universal quantifier introduction block on their way to a conclusion, and only
the free variables of these blocks are allowed to be instantiated by a term that
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mentions c. This restriction implements the usual freshness side condition in an
inference rule with explicit contexts:

Γ � P (c) c does not occur in Γ

Γ � ∀x.P (x)

Such a local constant is also used in the elimination rule for the existential
quantifier (bottom right), where in order to prove a proposition Q, we may use
that P (c) holds for some constant c, but this constant may only occur in this part
of the proof, and moreover the proposition P (c) is a local hypothesis (Sect. 2.3)
and may not escape this scope.

In this formulation of predicate logic, the universe is unspecified, but not
empty. In particular, it is valid to derive ∃x.P (x) from ∀x.P (x) (Fig. 12).

Fig. 12. A proof that ∀x.P (x) entails ∃x.P (x).

The asymmetry in Fig. 11 is striking, and the question arises why the elimina-
tion block for the existential quantifier would not just produce P (c) as its output,
forming a proper dual to the universal quantifier introduction block. This could
work, but it would require the Incredible Proof Machine to intelligently deter-
mine a scope for c; in particular it had to ensure that scopes nest properly. With
some scopes extending backwards (universal quantifier introduction) and some
forwards (existential quantifier elimination), automatically inferring sensible and
predictable scoping becomes tricky, so we chose to use a block shape that makes
the scope explicit. More on scopes in Sect. 3.2.

2.5 Helper Block

Fig. 13. The helper block

With full-scale theorem provers such as Isabelle
or Coq it is quite helpful to break down a proof
into smaller steps and explicitly state intermediate
results. The same holds for the Incredible Proof
Machine, and is made possible using the so-called
helper block, shown in Fig. 13. Once placed in the proof area, the user can click
on it and enter a proposition, which is then both assumed and produced by this
block. Logically, this corresponds to a use of the cut rule.

The block is also useful if the desired proposition is not inferred, which can
be the case with partial proofs, especially if quantifiers are involved.
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2.6 Custom Blocks

After performing a few proofs with the Incredible Proof Machine, the user soon
notices that some patterns appear repeatedly. One such pattern would be a
proof by contradiction, which consists of the three blocks highlighted in Fig. 14:
Tertium non datur, disjunction elimination and ex falso quodlibet. (Note that
the negation of X is expressed as X → ⊥.)

Fig. 14. A primitive proof of double negation elimination

Fig. 15. A custom block

When the user has selected a part of the proof this
way (by shift-clicking), he can create a custom block
that represents the selected proof fragment. In this
case, the custom block would look as in Fig. 15, and
with that block, which now directly represents a proof
by contradiction, the whole proof is greatly simplified (Fig. 16). This mechanism
corresponds to the lemma command in, say, Isabelle.

Fig. 16. A shorter proof of double negation elimination

2.7 Custom Logics

The rule blocks, and hence the underlying logic, are not baked into the Incredible
Proof Machine, but read from a simple text file. Figure 17 shows the declaration
of the first disjunction introduction block, the implication introduction block
and the universal quantifier introduction block.

Each rule needs to have an identifier (id), but may specify a more readable
description (desc), which includes a hint towards what side of the block the
description should be aligned. The next two fields specify which variables in the
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Fig. 17. Extract of predicate.yaml, where the rule blocks are defined

following propositions are free, i.e. may be instantiated upon connecting the
blocks, and which are local, i.e. different for each instance of the block.

Then the list of ports is indexed by an arbitrary identifier (in, out, . . . ). A
port has a type, which is assumption, conclusion or local hypothesis. In
the latter case, this port may only be used towards proving the port specified
in the consumedBy field. Every port specifies the proposition that is produced
resp. expected by this block. A local constant (such as the c in rule allI) is
usually scoped by a port of type assumption (see Sects. 2.4 and 3.2).

It is simple to experiment with completely different logics, without changing
the code. For example, we have implemented a Hilbert-style system for propo-
sitional logic (one rule block for modus ponens and three rules blocks for the
axioms) and the typing derivations of the simply typed lambda calculus.

A similar file specifies the pre-defined tasks, which can be grouped into ses-
sions, and each session can use a different logic, or – for an educational progres-
sion between the sessions – can show only a subset of a logic’s rules.

Naturally, none of these files are user-visible. They would, however, provide
the mechanism by which an educator who wants to use the Incredible Proof
Machine in his course, simply by editing the rules and tasks therein as desired.

3 Theory

The previous section has (intentionally) only scratched the surface of the Incredi-
ble Proof Machine, and avoided some more fundamental questions such as: What
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precisely makes up a proof graph (and what is just cosmetic frill)? When is it
valid? And what does it actually prove?

These questions are answered in this section with some level of formalism.
In particularly, we define when the shape of a proof graph is valid (e.g. no
cycles, local hypotheses wired up correctly) and when scoped variables are used
correctly. While we use the language of port graphs as introduced in [2], the
notion of a well-shaped graph is a new contribution.

3.1 Port Graphs

In contrast to those in [2], our port graphs are directed.

Definition 1 (Port Graph Signature). A (directed) port graph signature ∇
over a set N of node names and a set P of port names consists of the two
functions →∇ : N → 2P and ∇→ : N → 2P , which associate to a node name the
names of its incoming resp. outgoing ports.

Definition 2 (Port Graph). A (directed) port graph G over a signature ∇ is
a tuple (V, n,E) consisting of

– a set V of vertices,
– a function n : V → N to associate a node to each vertex, and
– a multiset E ⊆ (V × P) × (V × P) of edges such that for every edge

(v1, p1)—(v2, p2) ∈ E we have p1 ∈ ∇→(n(v1)) and p2 ∈ →∇(n(v2)).

The notation s— t used for an edge is just syntax for the tuple (s, t).

We need a number of graph-theoretic definitions.

Definition 3 (Path). A path in G is a sequence of edges (v1, p′
1)—(v2, p2),

(v2, p′
2)—(v3, p3), . . . , (vn−1, p

′
n−1)—(vn, pn) ∈ E. The path begins in (v1, p′

1)
(or just v1) and ends in (vn, pn) (or just vn).

Definition 4 (Terminal Node, Pruned Graph). A node n ∈ N is called a
terminal node, if ∇→(n) = {}, and a vertex v ∈ V is called a terminal vertex if
n(v) is a terminal node. A graph is called pruned if every vertex v is either a
terminal vertex, or there is a path from v to a terminal vertex.

3.2 Scopes

The key idea to support both local assumptions and scoped variables is that the
scope of a local proof can be implicitly inferred from the shape of the graph.

It is desirable to have as large as possible scopes, so that as many proof
graphs as possible are well-scoped. On the other hand, the scopes must be small
enough to still be valid. This motivates

Definition 5 (Scope). In a port graph G = (V, n,E), the scope of an incoming
port (v, p) with p ∈ →∇(n(v)) is the set S(v, p) ⊆ V of vertices post-dominated
by the port. More precisely: v′ ∈ S(v, p) iff v′ is not a terminal vertex and every
path that begins in v′ and ends in a terminal vertex passes through (v, p).
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As an indication that this is a sensible definition, we show that the scopes nest
the way one would expect them to. We restrict this to pruned graphs; pruning
a graph removes only unused and hence irrelevant parts of the proof.

Lemma 1 (Scopes Nest). Let G = (V, n,E) be a pruned graph. For any
two (v1, p1) and (v2, p2) with vi ∈ V and pi ∈ →∇(n(vi)) (i = 1, 2), we have
S(v1, p1) ⊆ S(v2, p2) or S(v2, p2) ⊆ S(v1, p1) or S(v1, p1) ∩ S(v2, p2) = {}.
Proof. We show that S(v1, p1) ∩ S(v2, p2) �= {} implies S(v1, p1) ⊆ S(v2, p2) or
S(v2, p2) ⊆ S(v1, p1).

Let v ∈ S(v1, p1) ∩ S(v2, p2). The vertex v is not terminal, so there is a path
from v to a terminal node, and it necessarily passes through (v1, p1) and (v2, p2).
W.l.o.g. assume (v1, p1) occurs before (v2, p2) on that path. Then all paths from
(v1, p1) to a terminal node go through (v2, p2), as otherwise we could construct
a path from v to a terminal node that does not go through (v2, p2).

Now consider a v′ ∈ S(v1, p1). All paths to a terminal node go through
(v1, p1), and hence also through (v2, p2), and we obtain S(v1, p1) ⊆ S(v2, p2).

3.3 Graph Shapes

The above definition of scopes allows us to say how a local hypothesis needs to
be wired up. We also need a relaxed definition of acyclicity.

Definition 6 (Local Hypothesis). A local hypothesis specification for a
graph signature ∇ is a partial function hn : P ⇀ P for every n ∈ N such
that hn(p) = p′ implies p ∈ ∇→(n) and p′ ∈ →∇(n). In that case, p is a local
hypothesis of n and p′ defines its scope.

Definition 7 (Well-Scoped Graph). A port graph G = (V, n,E) with a local
hypothesis specification h is well-scoped if for every edge (v1, p1)—(v2, p2) where
hn(v1)(p1) = p′ we have (v2, p2) = (v1, p′) or v2 ∈ S(v1, p′).

Definition 8 (Acyclic Graph). A port graph G = (V, n,E) with a local
hypothesis specification h is acyclic if there is no path connecting a node to
itself, disregarding paths that pass by some local hypothesis, i.e. where there is a
(v, p) on the path with p ∈ dom hn(v).

Definition 9 (Saturated Graph). A port graph G = (V, n,E) is saturated if
every (v, p) with p ∈ →∇(n(v)) is incident to an edge.

To summarise when a graph is in a good shape to form a proof, we give

Definition 10 (Well-Shaped Graph). A port graph G is well-shaped if it is
well-scoped, acyclic and saturated.
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3.4 Propositions

So far we have described the shape of the graphs; it is about time to give
them meaning in terms of logical formulas. We start with propositional logic
(no binders and no scoped variables) first.

Definition 11 (Formulas). Let X be a set of variables, and FX a set of for-
mulas with variables in X.

Definition 12 (Labelled Signature). A port graph signature ∇ is labelled by
formulas l : N × P → FX .

For two vertices v1, v2 with the same node name, the free variables of the
formulas need to be distinct. So in the context of a specific graph, we annotate
the variables with the vertex they originate from:

l′ : V × P → FX×V

l′(v, p) = l(n(v), p)[xv/x | x ∈ X ]

We use the subscript syntax xv to denote the tuple (x, v).
The Incredible Proof Machine employs a unification algorithm to make sure

the formulas expected on either side of an edge match, if possible. Here, we
abstract over this and simply require a unifying substitution, which we model
as a function.

Definition 13 (Instantiation). An instantiation for a port graph G with a
labelled signature is, for every vertex v ∈ N , a function θv : FX×N → FX×N .

Definition 14 (Solution). An instantiation θ for a port graph G with a
labelled signature is a solution if for every edge (v1, p1)—(v2, p2) ∈ E we have
θv1(l

′(v1, p1)) = θv2(l
′(v2, p2)).

Definition 15 (Proof Graph). A proof graph is a well-shaped port graph with
a solution.

3.5 Scoped Variables

To support binders and scoped variables, we need to define which variables
are scoped (a property of the signature), and then ensure that the scopes are
adhered to (a property of the graph). For the latter we need – a bit vaguely, to
stay abstract in the concrete structure of terms – the notion of the range of an
instantiation, ran θi ⊆ X × N , which is the set of free variables of the formulas
that the substitution substitutes for.

Definition 16 (Scoped Variables). A port graph signature ∇ can be anno-
tated with variable scopes by a partial function sn : X ⇀ P, for every n ∈ N ,
where sn(x) = p implies p ∈ →∇(n).
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Definition 17 (Well-Scoped Instantiation). An instantiation θ for a port
graph G with a labelled signature and scoped variables is well-scoped if for every
scoped variable x, i.e. sn(v)(x) = p for some vertex v ∈ V , x ∈ ran θv′ implies
that v′ ∈ S(v, p).

In the presence of scoped variables, we extend Definition 15 to

Definition 18 (Proof Graph). A proof graph is a well-shaped port graph with
a well-scoped solution.

3.6 Example

After this flood of definitions, let us give a complete and comprehensive example.
To prove that ∃x.(P(x) ∧ Q(x)) entails ∃x.P(x) (where the bold P indicates

a constant, not a variable in the sense of X ), we would use node names N =
{a, c, exE, conjE, exI} and port names P = {in, out, in2, out2}. The (labelled
and scoped) signature is given by

→∇(a) = {} ∇→(a) = {out}
→∇(c) = {in} ∇→(a) = {}

→∇(exE) = {in, in2} ∇→(exE) = {out, out2}
→∇(conJ) = {in} ∇→(conjE) = {out, out2}

→∇(exI) = {in} ∇→(exI) = {out}

l(a, out) = ∃x.(P(x) ∧ Q(x)) l(c, in) = ∃x.P(x)
l(exE, in) = ∃x.P (x) l(exE, out) = P (c)

l(exE, in2) = Q l(exE, out2) = Q

l(conjE, in) = X ∧ Y l(conjE, out) = X

l(conjE, out2) = Y

l(exI, in) = P (y) l(exI, out) = ∃x.P (x)

hexE(out) = in2 sexE(c) = in2.

A well-shaped proof graph for this signature – also shown in Fig. 18 – is given
by N = {1..5}, n(1) = a, n(2) = c, n(3) = exE, n(4) = conjE, n(5) = exI and

E = {(1, out)—(3, in), (3, out)—(4, in),
(4, out)—(5, in), (5, out)—(3, in2), (3, out2)—(2, in)}.

A solution for this graph is given by these higher-order substitutions:

θ3 = [(λx.P(x) ∧ Q(x))/P3, ∃x.P(x)/Q3]
θ4 = [P(c3)/X4, Q(c3)/Y4]
θ5 = [(λx.P(x))/P5, c3/y5]

Note that this is well-scoped: We have c3 ∈ ran θi only for i ∈ S(3, in2) = {4, 5}.
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Fig. 18. A comprehensive example

3.7 Proof Conclusions

In order to relate a proof graph with a proof in a given logic, we assume a
partition of the nodes N into assumptions NA, conclusions NC and rules NR,
where NA contains only assumptions (no input and precisely one output) and
NC only conclusions (no output and precisely one input). For a vertex v ∈ V
with n(v) ∈ NA ∪ NC let l′(v) = l′(v, p) where p is the single outgoing resp.
incoming port of n(v).

If we assume that the nodes in NR faithfully implement the inference rules
of a natural deduction-style implementation of a given logic, we can state

Theorem 1 (Soundness and Completeness). The existence of a proof
graph, with a vertex for every conclusion (NC ⊆ n(V )), implies that from the
set of formulas {l′(v) | n(v) ∈ NA}, all formulas in {l′(n) | n(v) ∈ NC} are
derivable by natural deduction, and vice versa.

A mechanized proof of this theorem, built using the interactive theorem
prover Isabelle, can be found in the Archive of Formal Proofs [6].

4 Implementation

The Incredible Proof Machine is based on web technologies (HTML, JavaScript,
SVG) and runs completely in the web browser. Once it is loaded, no further
internet connection is required – this was useful when the workshop WiFi turned
out to be unreliable. This also simplifies hosting customised versions. It adjusts
to the browser’s configured language, currently supporting English and German.

The logical core is implemented in Haskell, which we compile to JavaScript
using GHCJS. It uses the unbound library [16] to handle local names, and a
translation of Nipkow’s higher-order pattern unification algorithm [13]. There is
little in the way of a LCF-style trusted core, and the system can easily be tricked
from the browser’s JavaScript console.

The Incredible Proof Machine greets its users with a list of tasks to prove
(Fig. 19, left). Attempted tasks are highlighted yellowishly; completed tasks in
green. The main working view (Fig. 19, right) consist of a left pane, listing the
current task and the various blocks which can be dragged onto the main pane.
The interface supports undo/redo, zooming and can save the proof as an SVG
graphic.
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Fig. 19. The Incredible Proof Machine, task selection and proving (Color figure online)

The system continuously checks and annotates the proof, even in the pres-
ence of errors, supporting an incremental work flow. This currently happens
synchronously and it gets a little sluggish with larger proofs.

Custom blocks are also listed in the left pane, where they can be created and
deleted. The overview page allows users to quickly define new tasks.

Custom blocks, new tasks and the state of all proofs are stored in the browser
(by way of Web Storage), so a returning user can continue where he left.

An educator would customise the Incredible Proof Machine by adjusting the
files that contain the logic definition (Sect. 2.7) and the tasks.

All code is liberally licensed Free Software, and contributions at http://
github.com/nomeata/incredible are welcome.

5 Evaluation

The Incredible Proof Machine has been used in practice, and our experience
shows that it does indeed achieve the desired goal of providing an entertaining
low barrier entry to logic and formal proofs.

5.1 Classroom Experience

Development of the Incredible Proof Machine was initiated when the author was
given the possibility to hold a four day workshop with high school students to
a topic of his choosing. The audience consisted of 13 students ages 13 to 20,
all receiving a scholarship by the START-Stiftung for motivated students with
migration background. Prior knowledge in logic, proofs or programming was not
expected, and in most cases, not present.

Within the 14 h spent exclusively working with the Incredible Proof Machine,
the class covered the propositional content; two very apt students worked quicker
and managed most of the predicate proofs as well.

After a very quick introduction to the user interface, the procedure was to
let the students explore the next session, which was unlocked using a password

http://github.com/nomeata/incredible
http://github.com/nomeata/incredible
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we gave them to keep everyone on the same page, on their own. They should
experiment and come up with their own mental picture of the next logical con-
nective, before we eventually discussed it together, explained the new content,
and handed out a short text for later reference.

We evaluated the user experience using a standardised usability question-
naire (UEQ, [9]). The students answered 26 multiple-choice questions, which are
integrated into a score in six categories. The evaluation tool compares the score
against those of 163 product evaluations. It confirms an overall positive user
experience, with the Incredible Proof Machine placed in the top quartile in the
categories Attractiveness, Dependability and Novelty and beating the averages
in Perspicuity, Efficiency and Novelty. Additional free-form feedback also con-
firmed that most students enjoyed the course – some greatly – and that some
found the difficulty level rather high.

We have since used the Incredible Proof Machine two further times as a
90 min taster course addressing high-school students interested in the mathe-
matics and computer science courses at our university.

5.2 Online Reception

The Incredible Proof Machine is free to use online, and “random people from
the internet” have played with it. While we cannot provide representative data
on how it was perceived, roughly two hundreds posts on online fora (Twitter,
Reddit, Hacker News)1 are an encouraging indication. Users proudly posted
screenshots of their solutions, called the Incredible Proof Machine “addictive”
and one even reported that his 11-year old daughter wants to play with it again.

A German science podcast ran a 3-h feature presenting the Incredible Proof
Machine [5].

6 Future Directions

We plan to continue developing the Incredible Proof Machine into a versatile
and accessible tool to teach formal logic and rigorous proving. For that we want
to make it easier to use, more educational and more powerful.

To improve usability, we envision a better visualisation of the inferred scopes,
to ease proofs in predicate logic.

To make it more educational, we plan to add an interactive tutorial mode
targeting self-learners. A simultaneous translation of the proof graph in to a
(maybe bumpy) natural language proof, with a way to explore how the respective
components correspond, will also greatly improve the learning experience.

1 https://twitter.com/nomeata/status/647056837062324224, https://reddit.com/mbt
k2, https://reddit.com/3m7li1, https://news.ycombinator.com/item?id=10276160,
https://twitter.com/d christiansen/status/647117704764256260, https://twitter.
com/mjdominus/status/675673521255788544, https://twitter.com/IlanGodik/sta
tus/716258636566290432.

https://twitter.com/nomeata/status/647056837062324224
https://reddit.com/mbtk2
https://reddit.com/mbtk2
https://reddit.com/3m7li1
https://news.ycombinator.com/item?id=10276160
https://twitter.com/d_christiansen/status/647117704764256260
https://twitter.com/mjdominus/status/675673521255788544
https://twitter.com/mjdominus/status/675673521255788544
https://twitter.com/IlanGodik/status/716258636566290432
https://twitter.com/IlanGodik/status/716258636566290432
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A powerful, yet missing, feature is the ability to abstract not only over proofs
(lemmas), but also over terms (definitions). Inspired by ML’s sealing of abstract
types [12], we’d make, for a given proof, a given definition (such as ¬A :=
A → ⊥) either transparent or abstract. This would encourage and teach a more
disciplined approach to abstraction than if a definition could be unfolded locally
whenever convenient.

Proof graphs might be worthwhile to use also in full interactive theorem
provers: Consider a local proof with intermediate results in a typical Isar proof.
It would be quite natural to free the user from having to place them into a linear
order, to give names and to refer to these names when he could just draw lines!
The statefulness of Isabelle code (e.g. attribute changes, simplifier setup, etc.)
pose some interesting challenges in implementing this idea.

7 Related Work

Given how intuitive it appears to us to write proofs as graphs, we were surprised
to find little prior work on that. Closest to our approach is [1], which identified
(undirected) port graphs as defined in [2] as the right language to formulate these
ideas in, and covers intuitionistic propositional logic. We develop their approach
further by deducing scopes from the graph structure and by supporting predicate
logic as well, and we believe that directed port graphs, as used in this work, are
more suitable to represent proofs.

The inner workings of the Incredible Proof Machine, as well as our imple-
mentation of predicate logic, were obviously influenced by Isabelle’s [14].

We looked into existing graphical and/or educational approaches to formal
logic. We particularly like Domino on Acid [4], which represents proofs as domino
pieces. It provides a very game-like experience, but is limited to propositional
proofs with → and ⊥ only. The graphical interactive tools Polymorphic Blocks
[10] and Clickable Proofs [15] support all the usual propositional connectives,
but none of these, though, support predicate logic.

There is a greater variety in tools that allow mouse-based editing of more
textual proof representations. Examples are Logitext [17], which sports a slick
interface and provides a high assurance due to the Coq [7] back end, and KeY
[3], a practical system for program verification. Easyprove [11] sticks out as it
allows the user to click their way to proper, though clumsy, English proofs. With
all these tools the user usually loses a part of his proof when he needs to change a
step done earlier, while the Incredible Proof Machine allows him to edit anything
at any time, and broken or partial proof fragments can stay around.

8 Conclusions

We lowered the entry barrier to formal logic and theorem proving by offering
an intuitive graphical interface to conduct proofs. We have used our program
in practice and found that this approach works: Young students with no prior
knowledge can work with the tool, and actually enjoy the puzzle-like experience.
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We therefore conclude that the non-linear, graphical proof representation,
as presented in this work, has advantages over more conventional text-based
approach in learning logic.

Acknowledgements. We thank Denis Lohner, Richard Molitor, Martin Mohr and
Nicole Rauch for their contributions to the Incredible Proof Machine, and Andreas
Lochbihler and Sebastian Ritterbusch for helpful comments on a draft of this paper.
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Abstract. We present a proof of the fact that 2n ≤ lcm{1, 2, 3, . . . ,
(n + 1)}. This result has a standard proof via an integral, but our proof
is purely number theoretic, requiring little more than list inductions.
The proof is based on manipulations of a variant of Leibniz’s Harmonic
Triangle, itself a relative of Pascal’s better-known Triangle.

1 Introduction

The least common multiple of the consecutive natural numbers has a lower
bound1:

2n ≤ lcm{1, 2, 3, . . . , (n + 1)}
This result is a minor (though important) part of the proof of the complexity of
the “PRIMES is in P” AKS algorithm (see below for more motivational detail).
A short proof is given by Nair [10], based on a sum expressed as an integral.
That paper ends with these words:

It also seems worthwhile to point out that there are different ways to prove
the identity implied [...], for example, [...] by using the difference operator.

Nair’s remark indicates the possibility of an elementary proof of the above
number-theoretic result. Nair’s integral turns out to be an expression of the
beta-function, and there is a little-known relationship between the beta-function
and Leibniz’s harmonic triangle [2]. The harmonic triangle can be described

as the difference table of the harmonic sequence: 1,
1
2
,

1
3
,

1
4
,

1
5
, . . . (e.g., as

presented in [3]).
Exploring this connection, we work out an interesting proof of this result

that is both clear and elegant. Although the idea has been sketched in various
sources (e.g., [9]), we put the necessary pieces together in a coherent argument,
and prove it formally in HOL4.

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

1 We use (n + 1) here since we allow n = 0.
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J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 140–150, 2016.
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Overview. We find that the rows of denominators in Leibniz’s harmonic triangle
provide a trick to enable an estimation of the lower bound of least common
multiple (LCM) of consecutive numbers. The route from this row property to
the LCM bound is subtle: we exploit an LCM property of triplets of neighboring
elements in the denominator triangle. We shall show how this property gives a
wonderful proof of the LCM bound for consecutive numbers in HOL4:

Theorem 1. Lower bound for LCM of consecutive numbers.

� 2n ≤ list lcm [1 .. n + 1]

where list lcm is the obvious extension of the binary lcm operator to a list of
numeric arguments. This satisfies, for example, the following properties:

� list lcm (h ::t) = lcm h (list lcm t)
� list lcm (l1 � l2) = lcm (list lcm l1) (list lcm l2)
� list lcm (REVERSE �) = list lcm �

Motivation. This work was initiated as part of our mechanization of the AKS
algorithm [1], the first unconditionally deterministic polynomial-time algorithm
for primality testing. As part of its initial action, the algorithm searches for a
parameter k satisfying a condition dependent on the input number. The major
part of the AKS algorithm then involves a for-loop whose count depends on the
size of k.

In our first paper on the correctness (but not complexity) of the AKS algo-
rithm [4], we proved the existence of such a parameter k on general grounds, but
did not give a bound. Now wanting to also show the complexity result for the
AKS algorithm, we must provide a tight bound on k. As indicated in the AKS
paper [1, Lemma 3.1], the necessary bound can be derived from a lower bound
on the LCM of consecutive numbers.

Historical Notes. Pascal’s arithmetic triangle (c1654) is well-known, but
Leibniz’s harmonic triangle (1672) has been comparatively neglected. As
reported by Massa Esteve and Delshams [5], Pietro Mengoli investigated cer-
tain sums of special form in 1659, using a combinatorial triangle identical to
the harmonic triangle. Those same sums are the basis of Euler’s beta-function
(1730) defined by an integral.

In another vein, Hardy and Wright’s Theory of Numbers [7] related the LCM
bound of consecutive numbers to the Prime Number Theorem, which work was
followed up by Nair [10], giving the bound in Theorem 1 through application of
the beta-function.

Our approach to prove Theorem 1 is inspired by Farhi [6], in which a binomial
coefficient identity, equivalent to our Theorem 6, was established using Kummer’s
theorem. A direct computation to relate both results of Nair and Farhi was given
by Hong [8].
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Paper Structure. The rest of this paper is devoted to explaining the mechanised
proof of this result. We give some background to Pascal’s and Leibniz’s triangles in
Sect. 2. Section 3 discusses two forms of the Leibniz’s triangle: the harmonic form
and the denominator form, andproves the importantLCMproperty for ourLeibniz
triplets. Section 4 shows how paths in the denominator triangle can make use of an
LCM exchange property, eventually proving that both the consecutive numbers
and a row of the denominator triangle share the same LCM. In Sect. 5, we apply
this LCM relationship to give a proof of Theorem 1, and conclude in Sect. 6.

HOL4 Notation. All statements starting with a turnstile (�) are HOL4
theorems, automatically pretty-printed to LaTEX from the relevant theory in the
HOL4 development. Generally, our notation allows an appealing combination of
quantifiers (∀, ∃), logical connectives (∧ for “and”, ⇒ for “implies”, and ⇐⇒
for “if and only if”). Lists are enclosed in square-brackets [], with members
separated by semicolon (;), using infix operators :: for “cons”, � for append,
and . . for inclusive range. Common list operators are: LENGTH, SUM, REVERSE,
MEM for list member, and others to be introduced as required. Given a binary
relation R, its reflexive and transitive closure is denoted by R∗.

HOL4 Sources. Our proof scripts, one for the Binomial Theory and one for the
Triangle Theory, can be found at https://bitbucket.org/jhlchan/hol/src/, in the
sub-folder algebra/lib.

2 Background

2.1 LCM Lower Bound for a List

The following observation is simple:

Theorem 2. The least common multiple of a list of positive numbers equals at
least its average.

� (∀ x. MEM x � ⇒ 0 < x) ⇒ SUM � ≤ LENGTH � × list lcm �

Proof. For a list �, since every element is nonzero, list lcm � is also nonzero. There
are LENGTH � elements, and each element x ≤ list lcm �. Therefore adding
together LENGTH � copies of list lcm � cannot be smaller than their sum, which
is SUM �. 	


A näıve application of this theorem to the list of consecutive numbers gives
a trivial and disappointing LCM lower bound. For an ingenious application of
the theorem to obtain the better LCM lower bound in Theorem 1, we turn to
Leibniz’s Triangles, close relatives of Pascal’s Triangle.

https://bitbucket.org/jhlchan/hol/src/
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2.2 Pascal’s Triangle

Pascal’s well-known triangle (first in Fig. 1) can be constructed as follows:

– Each boundary entry: always 1.
– Each inside entry: sum of two immediate parents.

The entries of Pascal’s triangle (the k-th element on n-th row) are binomial

coefficients
(

n

k

)
, with the n-th row sum:

n∑
k=0

(
n

k

)
= 2n.

Fig. 1. Pascal’s and Leibniz’s Triangles

Since Leibniz’s triangle (see Sect. 2.3 below) will be defined using Pascal’s
triangle, we include the binomials as a foundation in our HOL4 implementation,
proving the above result:

Theorem 3. Sum of a row in Pascal’s Triangle.

� SUM ( Prow n) = 2n

We use (Prow n) to represent the n-th row of the Pascal’s triangle, counting n
from 0.

2.3 Leibniz’s Harmonic Triangle

Leibniz’s harmonic triangle (second in Fig. 1) can be similarly constructed:

(a) Each boundary entry:
1

(n + 1)
for the n-th row, with n starting from 0.

(b) Each entry (inside or not): sum of two immediate children.

With the boundary entries forming the harmonic sequence, this Leibniz’s
triangle is closely related to Pascal’s triangle. Denoting the harmonic triangle

entries (also the k-th element on n-th row) by
[
n
k

]
, then it is not hard to show

(e.g., [2]) from the construction rules that:

(a)
[
n
k

]
=

1
(n + 1)

(
n
k

)
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(b)
n∑

k=0

(
n

k

) [
n
k

]
= 1

Therefore all entries of the harmonic triangle are unit fractions. So, we choose
to work with Leibniz’s “Denominator Triangle”, by picking only the denomina-
tors of the entries. This allows us to deal with whole numbers rather than rational
numbers in HOL4.

3 Leibniz’s Denominator Triangle and Its Triplets

Taking the denominators of each entry of Leibniz’s Harmonic Triangle to form
Leibniz’s Denominator Triangle, denoted by L, we define its entries in HOL4 via
the binomial coefficients:

Definition 1. Denominator form of Leibniz’s triangle: k-th entry at n-th row.

� L n k = (n + 1) ×
(

n
k

)

Table 1. Leibniz’s denominator triangle. A typical triplet is marked.

row n \ column k k = 0, k = 1, k = 2, k = 3, k = 4, k = 5, k = 6, · · ·
n = 0 1
n = 1 2 2
n = 2 3 6 3
n = 3 4 12 12 4
n = 4 5 20 30 20 5
n = 5 6 30 60 60 30 6
n = 6 7 42 105 140 105 42 7

The first few rows of the denominator triangle are shown (Table 1) in a
vertical-horizontal format. Evidently from Definition 1, the n-th horizontal row
is just a multiple of the n-th row in Pascal’s triangle by a factor (n+1), and the
left vertical boundary consists of consecutive numbers:

� L n 0 = n + 1

Within this vertical-horizontal format, we identify L-shaped “Leibniz
triplets” rooted at row n and column k, involving three entries:

– the top of the triplet being αnk, and
– its two child entries as βnk and γnk on the next row.

In other words, we can define the constituents of a typical Leibniz triplet as:
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Table 2. The Leibniz triplet

· · · · · ·
row · · · · · · · · · · · ·
row n · · · αnk · · · · · · 1

αnk
· · ·

row (n + 1) · · · βnk γnk · · · · · · 1

βnk
· · · 1

γnk
· · ·

row · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Denominator Triangle Harmonic Triangle

� αnk = L n k

� βnk = L (n + 1) k � γnk = L (n + 1) (k + 1)

Note that the values αnk, βnk and γnk occur as denominators in Leibniz’s

original harmonic triangle, corresponding to the situation that the entry
1

αnk

has immediate children
1

βnk

and
1

γnk

(refer to Table 2). By the construction rule

of harmonic triangle, we should have:

1
αnk

=
1

βnk

+
1

γnk

, or
1

γnk

=
1

αnk

− 1
βnk

which, upon clearing fractions, becomes:

αnk × βnk = γnk × (βnk − αnk)

Indeed, it is straightforward to show that our definition of (L n k) satisfies
this property:

Theorem 4. Property of a Leibniz triple in Denominator Triangle.

� αnk × βnk = γnk × (βnk − αnk)

This identity for a Leibniz triplet is useful for computing the entry γnk from
previously calculated entries αnk and βnk. Indeed, the entire Denominator Tri-
angle can be constructed directly out of such overlapping triplets:

– Each left boundary entry: (n + 1) for the n-th row, with n starting from 0.

– Each Leibniz triplet: γnk =
αnk × βnk

βnk − αnk

.

This is also the key for the next important property of the triplet.

3.1 LCM Exchange

A Leibniz triplet has an important property related to least common multiple:
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Theorem 5. In a Leibniz triplet, the vertical pair [βnk; αnk] and the horizon-
tal pair [βnk; γnk] both share the same least common multiple.

� lcm βnk αnk = lcm βnk γnk

Proof. Let a = αnk, b = βnk, c = γnk. Recall from Theorem 4 that: ab = c(b − a).

lcm b c
= bc ÷ gcd(b, c) by definition
= abc ÷ (a × gcd(b, c)) introduce factor a above and below division
= bac ÷ gcd(ab, ca) by common factor a, commutativity
= bac ÷ gcd(c(b − a), ca) by Leibniz triplet property, Theorem 4
= bac ÷ (c × gcd(b−a, a)) extract common factor c
= ba ÷ gcd(b, a) apply GCD subtraction and cancel factor c
= lcm b a by definition. 	


Table 3. A column and a row intersecting at a left boundary entry of denominator
triangle

row n \ column k k = 0, k = 1, k = 2, k = 3, k = 4, k = 5, k = 6, · · ·
n = 0 1
n = 1 2 2
n = 2 3 6 3
n = 3 4 12 12 4
n = 4 5 20 30 20 5
n = 5 6 30 60 60 30 6
n = 6 7 42 105 140 105 42 7

We shall make good use of this LCM invariance through swapping vertical
and horizontal pairs in Leibniz triplets to establish an “enlarged” L-shaped LCM
invariance involving columns and rows, as shown in Table 3. Theorem 1 will be
deduced from this extended LCM invariance.

4 Paths Through Triangles

Our theorem requires us to capture the notion of the least common multiple of
a list of elements (a path within the Denominator Triangle). We formalize paths
as lists of numbers, without requiring the path to be connected. However, the
paths we work with will be connected and include (refer to Table 3):

– (Ldown n): the list [1 .. n + 1], which happens to be the first n+1 elements
of the leftmost column of the Denominator Triangle, reading down;
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– (Lup n): the reverse of Ldown n, or the leftmost column of the triangle reading
up; and

– (Lrow n): the n-th row of the Denominator Triangle, reading from the left.

Then, due to the possibility of LCM exchange within a Leibniz triplet
(Theorem 5), we can prove the following:

Theorem 6. In the Denominator Triangle, consider the first element (at left
boundary) of the n-th row. Then the least common multiple of the column of
elements above it is equal to the least common multiple of elements in its row.

� list lcm ( Ldown n) = list lcm ( Lrow n)

The proof is done via a kind of zig-zag transformation, see Fig. 2. In the
Denominator Triangle, we represent the entries for LCM consideration as a path
of black discs, and indicate the Leibniz triplets by discs marked with small gray
dots. Recall that, by Theorem 5, the vertical pair of a Leibniz triplet can be
swapped with its horizontal pair without affecting the least common multiple.

Fig. 2. Transformation of a path from vertical to horizontal in the Denominator Trian-
gle, stepping from left to right. The path is indicated by entries with black discs. The 3
gray-dotted discs in L-shape indicate the Leibniz triplet, which allows LCM exchange.
Each step preserves the overall LCM of the path.

It takes a little effort to formalize such a transformation. We use the following
approach in HOL4.

4.1 Zig-Zag Paths

If a path happens to have a vertical pair, we can match the vertical pair with a
Leibniz triplet and swap with its horizontal pair to form another path, its zig-zag
equivalent, which keeps the list LCM of the path.

Definition 2. Zig-zag paths are those transformable by a Leibniz triplet.

� p1 � p2 ⇐⇒
∃n k x y. p1 = x � [βnk; αnk] � y ∧ p2 = x � [βnk; γnk] � y

Basic properties of zig-zag paths are:

Theorem 7. Zig-zag path properties.

� p1 � p2 ⇒ ∀ x. [x] � p1 � [x] � p2 zig-zag a congruence wrt (::)

� p1 � p2 ⇒ list lcm p1 = list lcm p2 preserving LCM by exchange via triplet
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4.2 Wriggle Paths

A path can wriggle to another path if there are zig-zag paths in between to facil-
itate the transformation. Thus, wriggling is the reflexive and transitive closure
of zig-zagging, giving the following:

Theorem 8. Wriggle path properties.

� p1 �∗ p2 ⇒ ∀ x. [x] � p1 �∗ [x] � p2 wriggle a congruence wrt (::)
� p1 �∗ p2 ⇒ list lcm p1 = list lcm p2 preserves LCM by zig-zags

4.3 Wriggling Inductions

We use wriggle paths to establish a key step2:

Theorem 9. In the Denominator Triangle, a left boundary entry with the entire
row above it can wriggle to its own row.

� [ L (n + 1) 0] � Lrow n �∗ Lrow (n + 1)

Proof. We prove a more general result by induction, with the step case given by
the following lemma:

� k ≤ n ⇒
TAKE (k + 1) ( Lrow (n + 1)) � DROP k ( Lrow n) �
TAKE (k + 2) ( Lrow (n + 1)) � DROP (k + 1) ( Lrow n)

where the list operators TAKE and DROP extract, respectively, prefixes and suf-
fixes of our paths.

In other words: in the Denominator Triangle, the two partial rows
TAKE (k + 1) (Lrow (n + 1)) and DROP k (Lrow n) can zig-zag to a
longer prefix of the lower row, with the upper row becoming one entry shorter.
This is because there is a Leibniz triplet at the zig-zag point (see, for exam-
ple, Step 5 of Fig. 2), making the zig-zag condition possible. The subsequent
induction is on the length of the upper partial row. 	

With this key step, we can prove the whole transformation illustrated in Fig. 2.

Theorem 10. In the Denominator Triangle, for any left boundary entry: its
upward vertical path wriggles to its horizontal path.

� Lup n �∗ Lrow n

Proof. By induction on the path length n.
For the basis n = 0, both (Lup 0) and (Lrow 0) are [1], hence they wriggle
trivially.

2 This is illustrated in Fig. 2 from the middle (step 4) to the last (step 7).
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For the induction step, note that the head of (Lup (n + 1)) is (L (n + 1) 0).
Then,

Lup (n + 1)

= [L (n + 1) 0] � Lup n by taking apart head and tail
�∗ [L (n + 1) 0] � Lrow n by induction hypothesis and tail wriggle (Theorem 8)
�∗ Lrow (n + 1) by key step of wriggling (Theorem 9). 	


Now we can formally prove the LCM transform of Theorem 6.

� list lcm ( Ldown n) = list lcm ( Lrow n)

Proof. Applying path wriggling of Theorem 10 in the last step,

list lcm (Ldown n)
= list lcm (Lup n) by reverse paths keeping LCM
= list lcm (Lrow n) by wriggle paths keeping LCM (Theorem 8). 	


5 LCM Lower Bound

Using the equality of least common multiples just proved for Theorem 6, here is
the proof of Theorem 1:

� 2n ≤ list lcm [1 .. n + 1]

Proof. Recall from Sect. 3 that the left vertical boundary of Leibniz’s Denomina-
tor Triangle consists of consecutive numbers, thus (Ldown n) = [1 .. n + 1].
Also, the horizontal (Lrow n) is just a multiple of (Prow n) by a factor (n + 1).
Therefore,

list lcm [1 .. n + 1]
= list lcm (Ldown n) as asserted
= list lcm (Lrow n) by LCM transform (Theorem 6)
= (n + 1) × list lcm (Prow n) by LCM common factor
= LENGTH (Prow n) × list lcm (Prow n) by length of horizontal row
≥ SUM (Prow n) by Theorem 2
= 2n by binomial sum (Theorem 3). 	


6 Conclusion

We have proved a lower bound for the least common multiple of consecutive
numbers, using an interesting application of Leibniz’s Triangle in denominator
form. By elementary reasoning over natural numbers and lists, we have not just
mechanized what we believe to be a cute proof, but now have a result that will
be useful in our ongoing work on the mechanization of the AKS algorithm.
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Abstract. We formally verify translations from two-way automata to
one-way automata based on results from the literature. Following Vardi,
we obtain a simple reduction from nondeterministic two-way automata
to one-way automata that leads to a doubly-exponential increase in the
number of states. By adapting the work of Shepherdson and Vardi, we
obtain a singly-exponential translation from nondeterministic two-way
automata to DFAs. The translation employs a constructive variant of
the Myhill-Nerode theorem. Shepherdson’s original bound for the trans-
lation from deterministic two-way automata to DFAs is obtained as a
corollary. The development is formalized in Coq/Ssreflect without axioms
and makes extensive use of countable and finite types.

1 Introduction

Two-way finite automata are a representation for regular languages introduced
by Rabin and Scott [15]. Unlike one-way automata, two-way automata may move
back and forth on the input word and may be seen as read-only Turing machines
without memory.

Both deterministic two-way automata (2DFAs) and nondeterministic two-
way automata (2NFAs) exactly accept regular languages [15,17,20]. However,
some languages have 2DFAs that are exponentially smaller than the minimal
DFA; for instance the languages In := (a + b)∗a(a + b)n from [14]. It is known
that the cost (in terms of the number of states) of simulating both 2DFAs and
2NFAs with DFAs is exponential [17,20]. Whether the cost of simulating NFAs
and 2NFAs using 2DFAs is also exponential is still an open problem [14,16].

As is frequently the case with language-theoretic results, the proofs in the
literature are described in a fairly informal manner. When carried out in detail,
the constructions are delicate and call for formalization. We are the first to
provide constructive and machine-checked proofs of the following results:

1. For every n-state 2NFA M there exists an NFA with at most 22n states
accepting the complement of the language of M .

2. For every n-state 2DFA there is an equivalent DFA with at most (n+1)(n+1)

states.
3. For every n-state 2NFA there is an equivalent DFA with at most 2n

2+n states.

Our proofs mostly refine the proofs given by Shepherdson [17] and Vardi [20].
Result (1) is easiest to show. It establishes that the languages accepted by 2NFAs
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-43144-4 10



152 C. Doczkal and G. Smolka

(and therefore also 2DFAs) are regular. Our proof is based on a construction in [20].
If one wants to obtain an automaton for the original language, using (1) leads to a
doubly exponential increase in the number of states. A singly-exponential bound
can be obtained using a construction from Shepherdson [17] originally used to
establish (2). Building on ideas from [20], we adapt Shepherdson’s construction
to 2NFAs. That this is possible appears to be known [14], but to the best of our
knowledge the construction for 2NFAs has never been published. Once we have
established (3), we obtain (2) by showing that if the input automaton is determin-
istic, the constructedDFAhas atmost (n+1)(n+1) states. This allows us to get both
results with a single construction.

The reduction to DFAs makes use of the Myhill-Nerode theorem. We employ
a constructive variant where Myhill-Nerode relations are represented as functions
we call classifiers that are supplemented with decidability assumptions to provide
for a constructive proof. When constructing DFAs from 2NFAs, the decidability
requirements are easily satisfied. The application of the constructive Myhill-
Nerode theorem to the reduction from 2NFAs to DFAs demonstrates that the
construction is useful.

We formalize our results in Coq [18] using the Ssreflect [9] extension. The
formalization accompanying this paper1 extends and revises previous work [6]
and contains a number of additional results. The development makes extensive
use of finite and countable types [7,8] as provided by Ssreflect. In particular, we
use finite types to represent states for finite automata.

Various aspects of the theory of regular languages have been formalized
in different proof assistants. In addition to executable certified decision meth-
ods [2,3,5,12,19] based on automata or regular expressions, there are a number of
purely mathematical developments. Constable et al. [4] formalize automata the-
ory in Nuprl, including the Myhill-Nerode theorem. Wu et al. [22] give a proof of
the Myhill-Nerode theorem based on regular expressions. Recently, Paulson [13]
has formalized the Myhill-Nerode theorem and Brzozowski’s minimization algo-
rithm in Isabelle.

The paper is organized as follows. Sections 2 and 3 recall some type theo-
retic constructions underlying our proofs and describe how the usual language
theoretic notions are represented in type theory. In Sect. 4 we define one-way
automata. In Sect. 5 we prove the constructive variant of the Myhill-Nerode the-
orem. Section 6 defines two-way automata. Section 7 presents the reduction from
2NFAs to NFAs (for the complement) and Sect. 8 the reductions from 2NFAs
and 2DFAs to DFAs.

2 Type Theory Preliminaries

We formalize our results in the constructive type theory of the proof assistant
Coq [18]. In this setting, decidability properties are of great importance. We
call a proposition decidable, if it is equivalent to a boolean expression. Similarly,

1 www.ps.uni-saarland.de/extras/itp16-2FA.

www.ps.uni-saarland.de/extras/itp16-2FA
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we call a predicate decidable, if it is equivalent to a boolean predicate. In the
mathematical presentation, we will not distinguish between decidable proposi-
tions and the associated boolean expressions.

In type theory, operations such as boolean equality tests and choice operators
are not available for all types. Nevertheless, there are certain classes of types for
which these operations are definable. For our purposes, three classes of types are
of particular importance. These are discrete types, countable types, and finite
types [8].

We call a type X discrete if equality on (elements of) X is decidable. The
type of booleans B and the type of natural numbers N are both discrete.

We call a type X countable if there are functions f : X → N and g : N → X⊥
such that g(f x) = Somex for all x : X, where X⊥ is the option type over X. All
countable types are also discrete. We will make use of the fact that surjective
functions from countable types to discrete types have right inverses.

Lemma 1. Let X be countable, Y be discrete, and f : X → Y be surjective.
Then there exists a function f−1 : Y → X such that f(f−1y) = y for all y.

Proof. The countable type X is equipped with a choice operator

xchooseX : ∀p : X → B. (∃x : X. p x) → X

satisfying p(xchooseX pE) for all E : (∃x : X. p x). Given some y : Y , we con-
struct f−1y using the choice operator with p := λx : X. f x = y. ��

A finite type is a type X together with a list enumerating all elements of X.
If X is finite, we write |X| for the number of elements of X. For our purposes, the
most important property of finite types is that quantification over finite types
preserves decidability.

Discrete, countable, and finite types are closed under forming product types
X × Y , sum types X + Y , and option types X⊥. Moreover, all three classes of
types are closed under building subtypes with respect to decidable predicates.
Let p : X → B. The Σ-type {x : X | p x }, whose elements are dependent pairs
of elements x : X and proofs of p x = true, can be treated as a subtype of X. In
particular, the first projection yields an injection from {x : X | p x } to X since
p x = true is proof irrelevant [10].

Finite types also come with a power operator. That is, if X and Y are finite
types then there is a finite type Y X whose |Y ||X| elements represent the functions
from X to Y up to extensionality. We write 2X for the finite type of (extensional)
finite sets with decidable membership represented as B

X . If a finite type X
appears as a set, it is to be read as the full set over X.

3 Languages in Type Theory

For us, an alphabet is a finite type. For simplicity, we fix some alphabet Σ
throughout the paper and refer to its elements as symbols. The type of lists
over Σ, written Σ∗, is a countable type. We refer to terms of this type as words.
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The letters a, b always denote symbols. The letters x, y, and z always denote
words and ε denotes the empty word. We write |x| to denote the length of the
word x and xy or x · y (if this increases readability) for the concatenation of x
and y. We also write x[n,m] for the subword from position n (inclusive) to m
(exclusive), e.g., x = x[0, j] · x[j, |x|].

A language is a predicate on words, i.e., a function of type Σ∗ → Prop (or
Σ∗ → B for decidable languages). This yields an intensional representation. We
write L1 ≡ L2 to denote that L1 and L2 are equivalent (i.e., extensionally equal).
The absence of extensionality causes no difficulties since all our constructions
respect language equivalence. To increase readability, we employ the usual set-
theoretic notations for languages. In particular, we write L for the complement
of the language L.

4 One-Way Automata

Deterministic one-way automata (DFAs) can be seen as the most basic opera-
tional characterization of regular languages. In addition to DFAs, we also define
nondeterministic finite automata (NFAs) since both will serve as targets for our
translations from two-way automata to one-way automata.

Definition 2. A deterministic finite automaton (DFA) is a structure (Q, s, F, δ)
where

– Q is a finite type of states.
– s : Q is the starting state.
– F : Q → B determines the final states.
– δ : Q → Σ → Q is the transition function.

In Coq, we represent DFAs using dependent records:

dfa := { state : finType
start : state
final : state → B

trans : state → Σ → state}

Here, state : finType restricts the type states to be a finite type. Finite types
provide for a formalization of finite automata that is very convenient to work
with. In particular, finite types have all the closure properties required for the
usual constructions on finite automata [6].

Let A = (Q, s, F, δ) be a DFA. We extend δ to a function δ̂ : Q → Σ∗ → Q
by recursion on words:

δ̂ q ε := q

δ̂ q(a :: x) := δ̂ (δ q a)x
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We say that a state q of A accepts a word x if δ̂ q x ∈ F . The language of A,
written L(A), is then defined as the collection of words accepted by the starting
state:

L(A) := {x ∈ Σ∗ | δ̂ s x ∈ F }
Note that is a decidable language.

Definition 3. We say that a DFA A accepts the language L if L ≡ L(A). We
call L regular if it is accepted by some DFA.

Nondeterministic finite automata differ from DFAs in that the transition
function is replaced with a relation. Moreover, we allow multiple stating states.

Definition 4. A nondeterministic finite automation (NFA) is a structure (Q,
S, F, δ) where:

– Q is a finite type of states.
– S : 2Q is the set of starting states.
– F : 2Q is the set of final states.
– δ : Q → Σ → Q → B is the transition relation.

Let A = (Q,S, F, δ) be an NFA. Similar to DFAs, we define acceptance for
every state of an NFA by structural recursion on the input word.

accept p ε := p ∈ F

accept p (a :: x) := ∃q ∈ Q. δ p a q ∧ accept q x

The language of an NFA is then the union of the languages accepted by its
starting states.

L(A) := {x ∈ Σ∗ | ∃s ∈ S. accept s x }
Note that since S is finite, this is also a decidable language. As with DFAs,

acceptance of languages is defined up to language equivalence.
NFAs can be converted to DFAs using the well-known powerset construction.

Fact 5. For every n-state NFA A, there exists a DFA with at most 2n states
accepting L(A).

5 Classifiers and Myhill-Nerode

We now introduce classifiers as an abstract characterization of DFAs. For us,
classifiers play the role of Myhill-Nerode relations (cf. [11]). Classifiers differ from
Myhill-Nerode relations mainly in that they include decidability assumptions
required for constructive proofs. Classifiers have a cut-off property which yields
a number of useful decidability properties. Further, classifiers provide a sufficient
criterion for the existence of DFAs that is useful for the translation from two-way
automata to one-way automata.

Definition 6. Let Q be a type and let f : Σ∗ → Q. Then f is called right
congruent if fx = fy implies f(xa) = f(ya) for all x, y : Σ∗ and all a : Σ.
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Definition 7. A function f : Σ∗ → Q is called a classifier if it is right congruent
and Q is a finite type. If L is a decidable language, a classifier for L is a classifier
that refines L, i.e., that satisfies ∀x y. f x = f y → (x ∈ L ↔ y ∈ L).

Fact 8. If A = (Q, s, F, δ) is a DFA, then δ̂s is a classifier for L(A).

If f : Σ∗ → Q is a classifier, the congruence property of f allows us to decide
whether a certain element of Q is in the image of f .

Theorem 9 (Cut-Off). Let f : Σ∗ → Q be a classifier and let P : Q → Prop.
Then

∃x. P (f x) ⇐⇒ ∃x. |x| ≤ |Q| ∧ P (f x)

Proof. The direction from right to left is trivial. For the other direction let x
such that P (f x). We proceed by induction on |x|. If |x| ≤ |Q| the claim is
trivial. Otherwise, there exist i < j < |x| such that f(x[0, i]) = f(x[0, j]). Since
f is right congruent, we have f x = f (x[0, i] · x[j, |x|]) and the claim follows by
induction hypothesis. ��
Corollary 10. Let f : Σ∗ → Q be a classifier. Then ∃x. p(f x) and ∀x. p(f x)
are decidable for all decidable predicates p : Q → B.

Proof. Decidability of ∃x. p(f x) follows with Theorem 9, since there are only
finitely many words of length at most |Q|. Decidability of ∀x. p(f x) then follows
from decidability of ∃x.¬p(f x). ��
Corollary 11. Language emptiness for DFAs is decidable.

Proof. Let A = (Q, s, F, δ) be a DFA. Then L(A) is empty iff δ̂ s x /∈ F for all
x : Σ∗. Since δ̂s is a classifier, this is a decidable property (Corollary 10). ��
Remark 12. The proof of Corollary 11 is essentially the proof of decidability of
emptiness given by Rabin and Scott [15].

As mentioned above, every DFA yields a classifier for its language. We now
show that a classifier for a given decidable language L contains all the information
required to construct a DFA accepting L.

Lemma 13. Let f : Σ∗ → Q be a classifier. Then the image of f can be con-
structed as a subtype of Q.

Proof. By Corollary 10, we have that ∃x ∈ Σ∗. f x = q is decidable for all q.
Hence, we can construct the subtype { q : Q | ∃x. f x = q }. ��
If f : Σ∗ → Q is a classifier, we write f(Σ∗) for the subtype of Q corresponding
to the image of f .

Theorem 14 (Myhill-Nerode). Let L be decidable and let f : Σ∗ → Q be a
classifier for L. Then one can construct a DFA accepting L that has at most |Q|
states.
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Proof. By casting the results of f from Q to f(Σ∗), we obtain a surjective classi-
fier g : Σ∗ → f(Σ∗) for L (Lemma 13). Since g is surjective, it has a right inverse
g−1 (Lemma 1). It is straightforward to verify that the DFA (f(Σ∗), s, F, δ)
where

s := g ε

F := { q | g−1q ∈ L }
δ q a := g((g−1q) · a)

��
accepts the language L.

We remark that in order to use Theorem 14 for showing that a language is
regular, one first has to show that the language is decidable. It turns out that this
restriction is unavoidable in a constructive setting. Let P be some independent
proposition. Then P ∨¬P is not provable. Now consider the language L := {w ∈
Σ∗ | P }. Save for the decidability requirement on L, the constant function from
Σ∗ into the unit type is a regular classifier for L. If Theorem 14 were to apply,
the resulting DFA would allow us to decide ε ∈ L and consequently obtain a
proof of P ∨ ¬P .

For the translation from two-way automata to one-way automata, the restric-
tion to decidable languages poses no problem since the language of a two-way
automaton is easily shown to be decidable.

6 Two-Way Finite Automata

A two-way finite automaton (2FA) is essentially a read-only Turing machine,
i.e., a machine with a finite state control and a read head that may move back
and forth on the input word. One of the fundamental results about 2FAs is
that the ability to move back and forth does not increase expressiveness [15].
That is, two-way automata are yet another representation of the class of regular
languages. As for one-way automata, we consider both the deterministic and the
nondeterministic variant.

In the literature, two-way automata appear in a number of variations. Modern
accounts of two-way automata [14] usually consider automata with end-markers.
That is, on input x the automaton is run on the string �x�, where � and � are
marker symbols that do not occur in Σ and allow the automaton to detect the
word boundaries. These marker symbols are not present in early work on two-way
automata [15,17,20]. Marker symbols allow the detection of the word boundaries
and allow for the construction of more compact automata for some languages. In
fact, the emptiness problem for nondeterministic two-way automata with only
one endmarker over a singleton alphabet is polynomial while the corresponding
problem for two-way automata with two endmarkers is NP-complete [21].

Definition 15. A nondeterministic two-way automaton (2NFA) is a structure
M = (Q, s, F, δ, δ�, δ�) where
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– Q is a finite type of states
– s : Q is the starting state
– F : 2Q is the set of final states
– δ : Q → Σ → 2Q×{L,R} is the transition function for symbols
– δ� : Q → 2Q×{L,R} is the transition function for the left marker
– δ� : Q → 2Q×{L,R} is the transition function for the right marker

Let M = (Q, s, F, δ, δ�, δ�) be a 2NFA. On an input word x : Σ∗ the config-
urations of M on x, written Cx, are pairs (p, i) ∈ Q × {0, . . . , |x| + 1} where i is
the position of the read head. We take i = 0 to mean that the head is on the left
marker and i = |x|+1 to mean that the head is on the right marker. Otherwise,
the head is on the i-th symbol of x (counting from 1). In particular, we do not
allow the head to move beyond the end-markers. In following, we write x[i] for
the i-th symbol of x. The step relation →x: Cx → Cx → B updates state and
head position according to the transition function for the current head position:

δ̇ p i :=

⎧⎪⎨
⎪⎩

δ� p i = 0
δ p (x[i]) 0 < i ≤ |x|
δ� p i = |x| + 1

(p, i) −→x (q, j) := (q, L) ∈ δ̇ p i ∧ i = j + 1 ∨ (q,R) ∈ δ̇ p i ∧ i + 1 = j

We write →∗
x for the reflexive transitive closure of →x. The language of M

is then defined as follows:

L(M) := {x | ∃q ∈ F. (s, 1) −→x ∗ (q, |x| + 1) }

That is, M accepts the word x if it can reach the right end-marker while
being in a final state.

In Coq, we represent Cx as the finite type Q × ord(|x| + 2), where ordn :=
{m : N | m < n }. This allows us to represent →x as well as →∗

x as decidable
relations on Cx.2 Hence, L(M) is a decidable language. In the mathematical
presentation, we treat ordn like N and handle the bound implicitly. In Coq, we
use a conversion function inord : ∀n.N → ord(n + 1) which behaves like the
‘identity’ on numbers in the correct range and otherwise returns 0. This allows
us to sidestep most of the issues arising from the dependency of the type of
configurations on the input word.

Definition 16. A deterministic two-way automaton (2DFA) is a 2NFA (Q, s,
F, δ, δ�, δ�) where |δ� q| ≤ 1, |δ� q| ≤ 1, and |δ q a| ≤ 1 for all q : Q and a : Σ.

Fact 17. For every n-state DFA there is an n-state 2DFA that accepts the same
language and only moves its head to the right.

2 That the transitive closure of a decidable relation is decidable is established in the
Ssreflect libraries using depth-first search.
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Remark 18. While Fact 17 is obvious from the mathematical point of view, the
formal proof is somewhat cumbersome due to the mismatch between the accep-
tance condition for DFAs, which is defined by recursion on the input word, and
the acceptance condition for 2FAs, where the word remains constant throughout
the computation.

The rest of the paper is devoted to the translation of two-way automata
to one-way automata. There are several such translations in the literature.
Vardi [20] gives a simple construction that takes as input some 2NFA M and
yields an NFA accepting L(M). This establishes that deterministic and nonde-
terministic two-way automata accept exactly the regular languages. The size of
the constructed NFA is exponential in the size of M . Consequently, if one wants
to obtain an automaton for the input language, rather than its complement,
the construction incurs a doubly exponential blowup in the number of states.
Shepherdson [17] gives a translation from 2DFAs to DFAs that incurs only an
exponential blowup. Building on ideas from [20], we adapt the construction to
2NFAs.

We first present the translation to NFAs since it is conceptually simpler. We
then give a direct translation from 2NFAs to DFAs. We also show that when
applied to 2DFAs, the latter construction yields the bounds on the size of the
constructed DFA established in [17].

7 Vardi Construction

Let M = (Q, s, F, δ, δ�, δ�) be a 2NFA. We construct an NFA accepting L(M).
Vardi [20] formulates the proof for 2NFAs without markers. We adapt the proof
to 2NFAs with markers. The main idea is to define certificates for the non-
acceptance of a string x by M . The proof then consists of two parts:

1. proving that these negative certificates are sound and complete
2. constructing an NFA whose accepting runs correspond to negative certificates

Definition 19. A negative certificate for a word x is a set C ⊆ Cx satisfying:

N1. (s, 1) ∈ C
N2. If (p, i) ∈ C and (p, i) →x (q, j), then (q, j) ∈ C.
N3. If q ∈ F then (q, |x| + 1) /∈ C.

The first two conditions ensure that the negative certificates for x overapprox-
imate the configurations M can reach on input x. The third condition ensures
that no accepting configuration is reachable.

Lemma 20. Let x ∈ Σ∗. There exists a negative certificate for x iff x /∈ L(M).

Proof. Let R := { (q, j) | (s, 1) →∗
x (q, j) }. If there exists a negative certificate C

for x, then R ⊆ C and, therefore, x /∈ L(M). Conversely, if x /∈ L(M), then R is
a negative certificate for x. ��
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Let x be a word and let C be a negative certificate for x. The certificate C can
be viewed as |x|+2-tuple over 2Q where the i-th component, written Ci, is the
set { q | (q, i) ∈ C }.

We define an NFA whose accepting runs correspond to this tuple view of neg-
ative certificates. For this, condition (N2) needs to be rephrased into a collection
of local conditions, i.e., conditions that no longer mention the head position.

Definition 21. Let U, V,W : 2Q and a : Σ. We say that

– (U, V ) is �-closed if q ∈ V whenever p ∈ U and (q,R) ∈ δ� p.
– (U, V ) is �-closed if q ∈ U whenever p ∈ V and (q, L) ∈ δ� p.
– (U, V,W ) is a-closed if for all p ∈ V we have

1. q ∈ U whenever (q, L) ∈ δ p a
2. q ∈ W whenever (q,R) ∈ δ p a

We define an NFA N = (Q′, S′, F ′, δ′) that incrementally checks the closure
conditions defined above:

Q′ := 2Q × 2Q

S′ := {(U, V ) | s ∈ V and (U, V ) is �-closed}
F ′ := {(U, V ) | F ∩ V = ∅ and (U, V ) is �-closed}

δ′ (U, V ) a (V ′,W ) := (V = V ′ ∧ (U, V,W ) is a-closed)

Note that transition relation requires the two states to overlap. Hence, the
runs of N on some word x, which consist of |x| transitions, define |x|+2-tuples.
We will show that the accepting runs of N correspond exactly to negative cer-
tificates.

For this we need to make the notion of accepting runs (of N) explicit. For
many results on NFAs this is not necessary since the recursive definition of
acceptance allows for proofs by induction on the input word. However, for two-
way automata, the word remains static throughout the computation. Having a
matching declarative acceptance criterion for NFAs makes it easier to relate the
two automata models.

We define an inductive relation run : Σ∗ → Q → Q∗ → Prop relating words
and non-empty sequences of states:

q ∈ F ′

run ε q []
δ′ p a q runx q l

run (ax ) p (q :: l)

An accepting run for x is a sequence of states (s :: l) such that s ∈ S′ and runx s l.
Note that accepting runs for x must have length |x|+1. In the following we write
(ri)i≤|x| for runs of length |x| + 1 and ri for the i-th element (counting from 0).

Lemma 22. x ∈ L(N) iff there exists an accepting run for x.

Lemma 23. x ∈ L(N) iff there exists a negative certificate for x.
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Proof. By Lemma 22, it suffices to show that there exists an accepting run iff
there exists a negative certificate.

“⇒” Let (ri)i≤|x| be an accepting run of N on x. We define a negative certificate
C for x where C0 := (r0).1 and Ci+1 := (ri).2.

“⇐” If C is a negative certificate for x we can define a run (ri)i≤|x| for x on M
where r0 := (C0, C1) and ri+1 := (Ci, Ci+1). ��

Remark 24. The formalization of the lemma above is a straightforward but
tedious proof of about 60 lines.

Lemma 25. L(N) = L(M).

Proof. Follows immediately with Lemmas 20 and 23. ��
Theorem 26. For every n-state 2NFA M there exists an NFA accepting L(M)
and having at most 22n states.

If one wants to obtain a DFA for L(M) using this construction, one needs to
determinize N before complementing it. Since N is already exponentially larger
than M , the resulting DFA then has a size that is doubly exponential in |Q|.

8 Shepherdson Construction

We now give a second proof that the language accepted by a 2NFA is regular.
The proof follows the original proof of Shepherdson [17]. In [17], the proof is
given for 2DFAs without end-markers. Building on ideas form Vardi [20], we
adapt the proof to 2NFAs with end-markers.

We fix some 2NFA M = (Q, s, F, δ, δ�, δ�) for the rest of this section. In
order to construct a DFA for L(M), it suffices to construct a classifier for L(M)
(Theorem 14). For this, we need to come up with a finite type X and a function
T : Σ∗ → X which is right congruent and refines L(M).

The construction exploits that the input is read-only. Therefore, M can only
save a finite amount of information in its finite state control. Consider the situa-
tion where M is running on a composite word xz . In order to accept xz , M must
move its head all the way to the right. In particular, it must move the read-head
beyond the end of x and there is a finite set of states M can possibly be in when
this happens for the first time. Once the read head is to the right of x, M may
move its head back onto x. However, the only additional information that can
be gathered about x is set of states M may be in when returning to z. Since
the possible states upon return may depend on the state M is in when enter-
ing x form the right, this defines a relation on Q×Q. This is all the information
required about x to determine whether xz ∈ L(M). This information can be
recorded in a finite table. We will define a function

T : Σ∗ → 2Q × 2Q×Q
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returning the table for a given word. Note that 2Q × 2Q×Q is a finite type. To
show that L(M) is regular, it suffices to show that T is right-congruent and
refines L(M).

To formally define T , we need to be able to stop M once its head reaches a
specified position. We define the k-stop relation on x:

(p, i) k−→x (q, i) := (p, i) −→x (q, j) ∧ i �= k

Note that for k ≥ |x| + 2 the stop relation coincides with the step relation.
The function T is then defined as follows:

T x := ({ q | (s, 1)
|x|+1−−−→x

∗(q, |x| + 1) },

{(p, q)| (p, |x|) |x|+1−−−→x
∗(q, |x| + 1) })

Note that T returns a pair of a set and a relation. We write (T x).1 for the first
component of T x and (T x).2 for the second component.

Before we can show that T is a classifier for L(M), we need a number of
properties of the stop relation. The first lemma captures the intuition, that for
composite words xz , all the information M can gather about x is given by T x.

Lemma 27. Let p, q : Q and let x, z : Σ∗. Then

1. q ∈ (T x).1 ⇐⇒ (s, 1)
|x|+1−−−→xz

∗ (q, |x| + 1)

2. (p, q) ∈ (T x).2 ⇐⇒ (p, |x|) |x|+1−−−→xz
∗ (q, |x| + 1)

Since for composite words xz everything that can be gathered about x is
provided by T x, M behaves the same on xz and yz whenever T x = T y. To
show this, we need to exploit that M moves its head only one step at a time.
This is captured by the lemma below.

Lemma 28. Let i ≤ k ≤ j and let l be a k′
−→x -path from (p, i) to (q, j). Then there

exists some state p′ such that l can be split into a k−→x -path from (p, i) to (p′, k) and

a k′
−→x -path from (p′, k) to (q, j).

Proof. By induction on the length of the k′
−→x -path from (p, i) to (q, j).

Lemma 28 can be turned into an equivalence if k′ ≥ k. We state this equivalence
in terms in terms of transitive closure since for most parts of the development
the concrete path is irrelevant.

Lemma 29. Let i ≤ k ≤ j and let k′ ≥ k. Then (p, i) k′
−→x ∗ (q, j) iff there exists

some p′ such that (p, i) k−→x ∗ (p′, k) k′
−→x ∗ (q, j).
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We now show that for runs of M that start and end on the right part of a
composite word xz , x can be replaced with y whenever T x = T y.

Lemma 30. Let p, q : Q and let x, y, z : Σ∗ such that T x = T y. Then for all
k > 1, i ≤ |z| + 1, and 1 ≤ j ≤ |z| + 1, we have

(p, |x| + i)
|x|+k−−−→xz

∗ (q, |x| + j) ⇐⇒ (p, |y| + i)
|y|+k−−−→yz

∗ (q, |y| + j)

Proof. By symmetry, it suffices to show the direction from left to right. We
proceed by induction on the length of the path from (p, |x| + i) to (q, |x| + j).
There are two cases to consider:

i = 0. According to Lemma 28 the path can be split such that:

(p, |x|) |x|+1−−−→xz
∗ (p′, |x| + 1)

|x|+k−−−→xz
∗ (q, |x| + j)

Thus, (p, p′) ∈ (T x).2 by Lemma 27. Applying Lemma 27 again, we obtain

(p, |y|) |y|+1−−−→yz
∗ (p′, |y| + 1). The claim then follows by induction hypothesis

since the path from (p, |x|) to (p′, |x| + 1) must make at least one step.
i > 0. The path from (p, |x|+i) to (q, |x|+j) is either trivial and the claim follows

immediately or there exist p′ and i′ such that (p, |x| + i)
|x|+k−−−→xz (p′, |x| + i′).

But then (p, |y| + i)
|y|+k−−−→yz (p′, |y| + i′) and the claim follows by induction

hypothesis. ��
Now we have everything we need to show that T is a classifier for L(M).

Lemma 31. T refines L(M).

Proof. Fix x, y : Σ∗ and assume T x = T y. By symmetry, it suffices to show

y ∈ L(M) whenever x ∈ L(M). If x ∈ L(M), then (s, 1)
|x|+2−−−→x

∗ (p, |x| + 1)

for some p ∈ F . We show y ∈ L(M) by showing (s, 1)
|y|+2−−−→y

∗ (p, |y| + 1). By
Lemma 29, there exists a state q such that:

(s, 1)
|x|+1−−−→x

∗ (q, |x| + 1)
|x|+2−−−→x

∗ (p, |x| + 1)

We can simulate the first part on y using Lemma 27 and the second part using
Lemma 30. ��
Lemma 32. T is right congruent

Proof. Fix words x, y : Σ∗ and some symbol a : Σ and assume T x = T y. We
need to show T xa = T ya. We first show (T xa).2 = (T ya).2. Let (p, q) ∈ Q×Q.
We have to show

(p, |xa|) |xa|+1−−−−→xa
∗ (q, |xa| + 1) =⇒ (p, |ya|) |ya|+1−−−−→ya

∗ (q, |ya| + 1)
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Since |xa| + 1 = |x| + 2 this follows immediately with Lemma 30. It remains
to show (T xa).1 = (T ya).1. By symmetry, it suffices to show:

(s, 1)
|xa|+1−−−−→xa

∗ (q, |xa| + 1) =⇒ (s, 1)
|ya|+1−−−−→ya

∗ (q, |ya| + 1)

By Lemma 29, there exists a state p such that:

(s, 1)
|x|+1−−−→xa

∗ (p, |x| + 1)
|xa|+1−−−−→xa

∗ (q, |xa| + 1)

Thus, we have p ∈ (T x).1 (and therefore also p ∈ (T y).1) and (p, q) ∈
(T xa).2. Since we have shown above that (T xa).2 = (T ya).2, the claim follows
with Lemma 27. ��

Note that Lemma 30 is used very differently in the proofs of Lemmas 31 and 32.
In the first case we are interested in acceptance and set k to |x| + 2 so we never
actually stop. In the second case we set k to |xa| + 1 to stop on the right marker.

Using Theorem 14 and the two lemmas above, we obtain:

Theorem 33. Let M be a 2NFA with n states. Then there exists a DFA with
at most 2n

2+n states accepting L(M).

We now show that for deterministic two-way automata, the bound on the
size of the constructed DFA can be improved from 2n

2+n to (n + 1)(n+1).

Fact 34. Let M = (Q, s, F, δ, δ�, δ�) be a 2DFA. Then k−→x is functional for all
k : N and x : Σ∗.

Corollary 35. Let M be a 2DFA with n states. Then there exists a DFA with
at most (n + 1)(n+1) states accepting L(M).

Proof. Let M = (Q, s, F, δ, δ�, δ�) be deterministic and let T : Σ∗ → 2Q×2Q×Q

be defined as above. Since T is right-congruent (Lemma 32) we can construct
the type T (Σ∗) (Lemma 13). By Theorem 14, it suffices to show that T (Σ∗) has
at most (|Q| + 1)(|Q|+1) elements.

Let (A,R) : T (Σ∗). Then T x = (A,R) for some x : Σ∗. We show that A has
at most one element. Assume p, q ∈ A. By the definition of T , we have

(s, 1)
|x|+1−−−→x

∗ (p, |x| + 1) and (s, 1)
|x|+1−−−→x

∗ (q, |x| + 1)

Since
|x|+1−−−→x is functional and both (p, |x| + 1) and (p, |x| + 1) are termi-

nal, we have p = q. A similar argument yields that R is a functional relation.
Consequently, we can construct an injection

i : T (Σ∗) → Q⊥ × (Q⊥)Q

Given some (A,R) : T (Σ∗), (i(A,R)).1 is defined to be the unique element
of A or ⊥ if A = ∅. The definition of (i(A,R)).2 is analogous. The claim then
follows since Q⊥ × (Q⊥)Q has exactly (|Q| + 1)(|Q|+1) elements. ��
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9 Conclusion

We have shown how results about two-way automata can be formalized in Coq
with reasonable effort. The translation from 2NFAs to DFAs makes use of a
constructive variant of the Myhill-Nerode theorem that is interesting in its own
right. When spelled out in detail, the constructions involved become fairly deli-
cate. The formalization accompanying this paper matches the paper proofs fairly
closely and provides additional detail.

Even though both Shepherdson [17] and Vardi [20] consider two-way automata
without end-markers, the changes required to handle two-way automata with end-
markers are minimal. Perhaps surprisingly, the translation to NFAs for the com-
plement becomes simpler and more ‘symmetric’ when end-markers are added. The
original construction [20] uses 2Q + 2Q × 2Q as the type of states while the con-
struction in Sect. 7 gets along with the type 2Q × 2Q. States from the type 2Q

are required to check beginning and end of a negative certificate in the absence of
end-markers.

Automata are a typical example of a dependently typed mathematical struc-
ture. Our representation of finite automata relies on dependent record types and
on finite types being first-class objects. Paulson [13] formalizes finite automata
in Isabelle/HOL using heriditarily finite (HF) sets to represent states. Like finite
types, HF sets have all the closure properties required for the usual construc-
tions on finite automata. Due to the absence of dependent types, the definition
of DFAs in [13] is split into a type that overapproximates DFAs and a predicate
that checks well-formedness conditions (e.g., that the starting state is a state of
the automaton). Thus, the natural typing of DFAs is lost.

We also use dependent types in the representation of two-way automata.
The possible configurations of a two-way automaton are represented as a word-
indexed collection of finite types. The truncation of natural numbers to bounded
natural numbers mentioned in Sect. 6 allows us to recover the separation between
stating lemmas (e.g. Lemma 30) and establishing that all indices stay within the
correct bounds, thus avoiding many of the problems commonly associated with
using dependent types.
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Abstract. The class of stencil programs involves repeatedly updating
elements of arrays according to fixed patterns, referred to as stencils.
Stencil problems are ubiquitous in scientific computing and are used
as an ingredient to solve more involved problems. Their high regularity
allows massive parallelization. Two important challenges in designing
such algorithms are cache efficiency and minimizing the number of com-
munication steps between nodes. In this paper, we introduce a math-
ematical framework for a crucial aspect of formal verification of both
sequential and distributed stencil algorithms, and we describe its Coq
implementation. We present a domain-specific embedded programming
language with support for automating the most tedious steps of proofs
that nested loops respect dependencies, applicable to sequential and dis-
tributed examples. Finally, we evaluate the robustness of our library
by proving the dependency-correctness of some real-world stencil algo-
rithms, including a state-of-the-art cache-oblivious sequential algorithm,
as well as two optimized distributed kernels.

1 Introduction

Broadly speaking, in this paper we are interested in verifying, within a proof
assistant, the correctness of a class of algorithms in which some matrices are
computed, with some matrix cells depending on others. The aim is to check
that these quantities are computed in the right order. This archetypical style of
calculation arises in such situations as computing solutions of partial differential
equations using finite-difference methods. The algorithms used in this setting
are usually referred to as stencil codes, and they are the focus of the framework
that we present in this paper.

A stencil defines a value for each element of a d-dimensional spatial grid at
time t as a function of neighboring elements at times t−1, t−2, . . . , t−k, for some
fixed k, d ∈ N

+. Figure 1 defines a stencil and gives its graphical representation.
Stencil problems naturally occur in scientific-computing and engineering

applications. For example, consider the two-dimensional heat equation:

∂u

∂t
− α

(
∂2u

∂x2
+

∂2u

∂y2

)

= 0
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Fig. 1. A two-dimensional Jacobi stencil

We might try to solve it by discretizing both space and time using a finite-
difference approximation scheme as follows:

∂u

∂t
≈ u(t + Δt, x, y) − u(t, x, y)

Δt

∂2u

∂x2
≈ u(t, x + Δx, y) − 2u(t, x, y) + u(t, x − Δx, y)

Δx2

Proceeding similarly for ∂2u
∂y2 , we obtain the two-dimensional stencil depicted

by Fig. 1. More generally, stencil computations are used when solving partial
differential equations using finite-difference methods on regular grids [4,11], in
iterative methods solving linear systems [11], but also in simulations of cellular
automata, such as Conway’s game of life [8].

In this paper, we will focus on stencil codes where all the values of the grid
are required at the end of the computation–a common situation when partial
differential equations are used to simulate the behavior of a real-world system,
and the user is interested not only in the final result but also in the dynamics of
the underlying process.

Although writing stencil code might seem very simple at first glance–a pro-
gram with nested loops that respects the dependencies of the problem is enough–
there are in fact many different optimizations that have a huge impact on perfor-
mance, especially when the grid size grows. For stencil code running on a single
processor or core, changing the order in which computations are performed can
significantly increase cache efficiency, hence dramatically lowering computation
times. In the case of multicore implementations, reducing the number of syn-
chronizations between the cores is important since communication is usually the
main bottleneck. All these optimizations reorder computations. It is therefore
crucial to check that these reorderings do not break the dependencies implied by
the underlying stencil. This is the overall goal of this paper.

We describe a formal framework to define stencils, encode their sequential and
distributed implementations, and prove their correctness. We show how using a
domain-specific language adapted to stencil code allows a very effective form of
symbolic execution of programs, supporting verification without annotations like
loop invariants that are common in traditional approaches. As for distributed
algorithms, we show how the synchronousness of stencil kernels impacts verifi-
cation. In particular, we show how verification of distributed stencil code boils
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down to verification of sequential algorithms. Finally, we showcase the robustness
of our theory by applying it to some real-world examples, including a state-of-
the-art sequential cache-oblivious algorithm, as well as a communication-efficient
distributed kernel.

We have implemented our framework and example verifications within the
Coq proof assistant1. Because everything is formalized in Coq, we will, in this
paper, tend toward relatively informal explanations, to help develop the reader’s
intuition.

So, to summarize, our contributions are the first mechanized proof of sound-
ness of a dependency-verification framework for loopy programs over multidi-
mensional arrays, in addition to a set of Coq tactics that support use of the
framework with reasonable effort plus a set of case-study verifications showing
the framework in action for both sequential and distributed programs.

1.1 Related Work

To the authors’ knowledge, this is the first attempt at designing a verification
framework for dependencies in stencil code.

Stencils have drawn some attention in the formal-proof community, since
finite-difference schemes are among the simplest (yet most powerful) methods
available to solve differential equations in low dimension. Therefore, recent work
has been more focused on proving stability and convergence of a given discretiza-
tion scheme [2,3,9], rather than investigating different ways to solve a given
stencil. In a different direction, we also mention Ypnos [16], a domain-specific
language that enforces indexing safety guarantees in stencil code through type
checking, therefore eliminating the need for run-time bounds checking.

As mentioned earlier in this introduction, stencil code can suffer from poor
cache performance. This has led to intensive research on cache-oblivious stencil
algorithms [6,7]. Writing such optimized stencil code can be very tedious and
error-prone, and code might have to be rewritten from scratch when switching
architecture. Recently, different techniques have been proposed to automate diffi-
cult parts of stencil implementation, including sketching [18], program synthesis
[21], or compiling a domain-specific stencil language [19]. In our new work, we
show how to verify a posteriori that such generated code respects dependencies,
for infinite input domains.

One of the most natural approaches to generate efficient parallel stencil code
is to use the polyhedral model (see [5,10]), to represent and manipulate loop
nests. The goal of our framework is different from that of a vectorizing compiler,
since we are not trying to generate code, but rather check that it does not violate
any dependencies. Nevertheless, our approach is reminiscent of the line of work
on the polyhedral model and parallelizing compilers (see, e.g., [14,15,17]), in
the sense that we produce an algebraic representation of the current state of the
program and use it to check that dependencies are satisfied. Notice that, since we
are working within a proof assistant, we can represent arbitrary mathematical

1 https://github.com/mit-plv/stencils.

https://github.com/mit-plv/stencils
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sets, which implies that we are not limited to linear integer programs; and indeed
our evaluation includes codes that employ nonlinear arithmetic.

Closely related to this paper, there has been recent work on the formal ver-
ification of GPU kernels. In this direction, we refer the reader to PUG [12],
GKLEE [13], and GPUverify [1]. Our approach is somewhat orthogonal to this
line of work: we study a smaller class of programs, which is also big enough to
have many applications, supporting first-principles proofs at low human cost.

2 Verifying Stencil Code

2.1 Stencils and Their Representation

A stencil is defined on a set G, which represents a spatial grid. Its elements are
called cells, and most stencils of interest are based on G = Z

d for some small
integer d.

We assign a numerical value ut[c] to every cell c ∈ G at every time t ∈ N (or
any time 0 ≤ t ≤ tmax, for some tmax ∈ N). A stencil is then defined by some
initial conditions u0[c] = αc, with c ∈ G, αc ∈ R, and a pattern

ut[c] = F (ut−1[d1(c)], . . . , ut−1[dk(c)]),

for some function F . The cells d1(c), . . . , dk(c) are called c’s neighbors. See Fig. 1
for an example of such a formal stencil definition.

Let us turn to the representation of stencils within the proof assistant.

Definition 1. A stencil is defined by:

– A type cell representing grid elements;
– A term space : set cell, indicating which finite subset of the grid we will be

computing on;
– A term target : set cell, indicating which grid elements have to be computed

by the end of the execution of the algorithm;
– A term dep : cell → list cell representing the dependencies of each cell,

that is, its neighbors.

Figure 2 shows how we formalize the Jacobi 2D stencil we introduced in Fig. 1.
We will conclude this section with a few comments on this definition:

Remark 1. Here, set A denotes “mathematical” sets of elements of type A,
implemented in Coq as A → Prop.

Remark 2. Notice that this is an abstract notion of stencil. In particular, we do
not specify the function applied at each step–it is seen as a black box–nor do we
give the initial conditions. Moreover, the formulation is much more general than
the schematic equation given above and encompasses e.g. Gauss-Seidel iterations
or box-blur filtering.
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Fig. 2. Coq representation of the two-dimensional Jacobi stencil

Remark 3. The space parameter is used to encode boundary conditions. For
example, in the case of the Jacobi 2D stencil, we might want to ensure that
ut[(i, j)] = 0 as soon as i < 0, i > I, j < 0, or j > J , for some parameters I and
J . In this case, we would pick2 space = [[0, I]] × [[0, J ]].

2.2 Programs: Syntax, Semantics, and Correctness

Now that we have a way to describe stencils, we turn to the representation and
correctness of programs. Let us consider the following trivial program solving
the Jacobi 2D stencil:

for t=0 to T do
for i=0 to I do

for j=0 to J do
Compute ut[i, j]

Verifying the correctness of this program amounts to proving that

1. It does not violate any dependency. That is, ut[i, j] is never computed before
ut−1[i, j], ut−1[i + 1, j], ut−1[i − 1, j], ut−1[i, j + 1], or ut−1[i, j − 1];

2. It is complete, in the sense that it computes all the values of cells in target.

Therefore, we see programs as agents, having some knowledge. The state of
a program is a set of cells, those with values known by the program.

For now, we will only discuss requirement 1, and we will see how to prove
requirement 2 in the next section. Our starting point is a basic imperative lan-
guage, which we extend with a flag c command, which adds cell c to the current
state, as well as assert c, which checks that c belongs to the current state. If
not, the program halts abnormally.

To verify requirement 1 for the trivial program above, we would therefore
have to prove the normal termination of the following program:

2 In this paper, for all a, b ∈ Z, we write [[a, b]] for {n ∈ Z : a ≤ n ≤ b}.
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Fig. 3. Syntax of arithmetic and Boolean expressions and programs

for t=0 to T do
for i=0 to I do

for j=0 to J do
assert (t − 1, i, j) ; assert (t − 1, i + 1, j) ;
assert (t − 1, i − 1, j) ; assert (t − 1, i, j + 1) ;
assert (t − 1, i, j − 1) ; flag (t, i, j)

The precise syntax of expressions and programs is given in Fig. 3. Notice that
there is no assignment command x := e, but that a statement like x := e; p can
be simulated by the program for x = e to e do p. Our programs are effect-
free, in the sense that variables are bound to values functionally within loops.
Moreover, our framework is parameterized by a type and evaluation function for
cell expressions.

The operational semantics of our programming language is given by a judg-
ment ρ � (C1, p) ⇓ C2, where ρ assigns an integer value to every variable, C1 and
C2 are sets of cells, and p is a program. The intended meaning is that, in a state
where the program knows the values of the cells in C1 (and these values only),
and where variables are set according to ρ, the execution of p terminates (with-
out any assertion failing) and the final knowledge of the program is described
by C2.

The semantics is given in Fig. 4. There, [[e]]ρ denotes the evaluation of expres-
sion e in environment ρ, when e is an arithmetic, Boolean, or cell expression.
ρ[x ← i] denotes the environment obtained by setting x to i ∈ Z in ρ.

Fig. 4. Operational semantics of programs

Remark 4. As mentioned earlier, assertions check that a cell’s value is known
only if this cell belongs to space. Therefore, in the Jacobi 2D example above,
assert (−1,0,0) would not fail.
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Remark 5. In the loop rule, Si represents the set of cells computed by the pro-
gram at iteration i, while Ui represents the knowledge of the program since its
execution started, until the beginning of iteration i.

2.3 Verification Conditions and Symbolic Execution

Proving the correctness of a program (at least for requirement 1) amounts to
proving a statement of the form ρ � (C1, p) ⇓ C2. Can we automate this process?

The key insight here is that our domain-specific language is very simple. It is
not Turing-complete. We take advantage of this fact to simplify the verification
scheme.

We can in fact perform some symbolic execution of programs. For an environ-
ment ρ and a program p, we define a set Shapeρ(p) that intuitively corresponds
to the knowledge that the program will acquire after its execution if it does not
fail. The rules defining Shapeρ(p) are purely syntactic and given in Fig. 5.

Fig. 5. Symbolic execution of programs

Note that Shapeρ(p) will also allow us to prove requirement 2 from the cor-
rectness statement: the latter can be reformulated as target ⊆ Shapeρ(p). To
be more precise, let us now formalize the notion of correctness for sequential
stencil algorithms.

Definition 2. Consider a stencil (space, target, dep). For every cell c, let fire
c ≡ assert d1; . . . ; assert dn; flag c, where dep(c) = {d1, . . . , dn}. Here and
after, it is assumed that the user uses exclusively the fire c command, and not
flag c.

Let ρ0 denote an empty environment. A program p is correct with respect to
the aforementioned stencil if ρ0 � (∅, p) ⇓ Shapeρ0

(p) and Shapeρ0
(p) ⊆ target.

Now that we have a means to symbolically evaluate programs, we can write
our verification-condition generator. The symbolic-execution step is very impor-
tant, since it allows us to synthesize loop invariants, without the need for any
human intervention. The verification-condition generator is defined in Fig. 6.

Theorem 1 proves the correctness of the verification-condition generator.

Theorem 1. Let p be a program, ρ an environment, and C a set of cells. If
VCρ,C(p) holds, then ρ � (C, p) ⇓ (C ∪ Shapeρ(p)).
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Fig. 6. Verification-condition generator

3 Verifying Distributed Stencil Algorithms

We now turn to the problem of verifying distributed stencil algorithms. We will
start with an informal description of our programming model.

3.1 Reduction to the Sequential Case

Stencil problems are inherently regular. Therefore, they are susceptible to sub-
stantial parallelization. More importantly, distributed stencil code is in gen-
eral synchronous. The program alternates between computation steps, where
each thread computes some cell values, and communication steps, during which
threads send some of these values to other threads. Figure 7 gives a graphical
representation of such an algorithm’s execution, with three threads. Each of the
three threads is assigned a strip in the plane, depicted by the dark dashed line.
There is:

– A computation step, where each thread computes a “triangle”;
– A communication step, during which each thread sends the edges of its “tri-

angle” to its left and right neighbors;
– Another computation step, where each thread computes two “trapezoids.”

We will use the phrase time step to refer to the combination of one computation
step and one communication step. Our model, inspired by that of Xu et. al [21],
also shares similarities with the Bulk-Synchronous Parallel (BSP) model [20].

Let us write a pseudo-code implementation of this simple algorithm, to give
a flavor of what our formalization will eventually look like.

Computation step Communication step
i f T=0 then

for t=0 to 3 do
for i = t to 7 − t do

fire (8 × id + i, t)
else (∗ T=1 ∗)

for t=1 to 3 do
for i = −t to t − 1 do

fire (8 × id + i, t)
for i = −t to t − 1 do

fire (8 × id + 8 + i, t)

i f T=0 then
i f to = id − 1 then

for t=0 to 3 do
fire (8 × id + t, t)

else i f to = id + 1 then
for t=0 to 3 do

fire (8 × id + 4 + t, 3 − t)
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Fig. 7. Example of two computation steps (green) and one communication step (red)
(Color figure online)

On the left is the “computation kernel.” Notice that every thread can access
its unique identifier through the variable “id” and the current time step through
variable “T”. We also implicitly assume that “fire” commands involving a cell
that is out of the rectangle depicted in Fig. 7 have no effect. This is why we
included space in our definition of stencils. The communication step is given
on the right. This time, besides the variables “id” and “T”, every thread has
access to the variable “to”, which contains the unique identifier of the thread
it is currently sending data to. Now “fire” corresponds to sending a cell’s local
value to a neighbor thread.

For the reader familiar with verification of more complicated distributed code,
we would like to emphasize that there is no data race here: threads have their
own separate memories, and communication between threads only happens via
message passing followed by barriers waiting for all threads to receive all mes-
sages sent to them. As a result, it does not make sense to talk about different
threads racing on reads or writes to grid cells.

3.2 Distributed Kernels: Syntax, Semantics, and Correctness

The syntax of distributed code is given in Fig. 8. We use the same syntax for
both computation steps (in which case fire c means “compute the value of cell
c”) and for communication steps (in which case fire c means “send the value
of cell c to the thread we are currently communicating with”). More formally,
we give two different translations to the programs defined in Fig. 8. The first
one, Comp.denote, compiles fire c into the “fire” command of Definition 2,
which checks that all dependencies of c are satisfied. The second semantics,
Comm.denote, simply compiles it into a flag c command, without checking any
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dependencies. This trick allows us to factor computation and communication
steps into the same framework: a distributed kernel is a pair of sequential codes,
one for each step. The translation is formally given in Fig. 9.

Fig. 8. Syntax of distributed code

Fig. 9. Translation of distributed code. The arguments are distributed programs, but
the values returned by denote are sequential programs.

Now that we are equipped with a language describing distributed stencil
kernels and the associated semantics, we can formalize the correctness of such
algorithms. A few intuitive comments are given right below the definitions, and
the reader might find them useful in order to interpret our formalization.

Definition 3. Suppose we fix a number idmax, such that threads are indexed
over [[0, idmax]], and let us fix a maximum execution time Tmax.

A trace is a triple (beforeComp, afterComp, sends), where beforeComp and
afterComp have type time × thread → set cell and sends has type time ×
thread × thread → set cell.

A distributed kernel is a pair (comp, comm) of distributed codes. It is correct
if there exists a trace satisfying the following properties:

– Initially, nothing is known:

∀0 ≤ i ≤ idmax. beforeComp(0, i) = ∅;

– We go from beforeComp(T, i) to afterComp(T, i) through a computation step:
∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax.

ρ0[“id” ← i, “T” ← T ] � (beforeComp(T, i),Comp.denote(comp)) ⇓ afterComp(T, i);

– sends(T, i, j) represents what is sent by thread i to thread j at step T :

∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax.

ρ0[“id” ← i, “to” ← j, “T” ← T ] � (∅,Comm.denote(comm)) ⇓ sends(T, i, j);
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– A thread cannot send a value it does not know:

∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax. sends(T, i, j) ⊆ afterComp(T, i);

– “Conservation of knowledge”: what a thread knows at time T + 1 comes from
what it knew at time T and what other threads sent to it:

∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax.

beforeComp(T + 1, i) ⊆ afterComp(T, i) ∪
⋃

j∈[[0,idmax]]

sends(T, j, i);

– Completeness: when we reach time step Tmax + 1, all the required values have
been computed:

target ⊆
⋃

i∈[[0,idmax]]

beforeComp(Tmax + 1, i).

Remark 6. beforeComp(T, i) represents the set of cells whose values are known
by thread i at the beginning of the T th time step. Similarly, afterComp(T, i)
represents the knowledge of thread i right after the computation step of time
step T . Finally, sends(T, i, j) represents the set of cells whose values are sent
from thread i to thread j at the end of time step T .

3.3 Trace Generation

The definition of correctness involves proving a lot of different properties. Nev-
ertheless, we will now show how the tools developed in the previous section, the
symbolic-execution engine and the verification-condition generator, can be used
to support mostly automated verification. In particular, we will synthesize the
trace that the program would follow if it does not fail. The trace generator is
given in Fig. 10.

Fig. 10. Trace generator

Of course, the trace generator would be useless without a proof of its correct-
ness. Theorem 2 is the key result of this paper: it shows that, thanks to the trace
generator, verification of distributed kernels boils down to verifying two sequen-
tial programs, proving a law of “conservation of knowledge” and a set inclusion
that encodes completeness.
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Theorem 2. Let k = (comp, comm) be a kernel. If the following conditions hold:

– ∀0 ≤ i ≤ idmax. ∀0 ≤ T ≤ Tmax. VCρi,T ,D(Comp.denote(comp)), where ρi,T =
ρ0[“id” ← i, “T” ← T ] and D = [beforeComp](k, idmax, T, i);

– ∀0 ≤ i, j ≤ idmax. ∀0 ≤ T ≤ Tmax. VCρi,j,T ,∅(Comm.denote(comm)), where
ρi,j,T = ρ0[“id” ← i, “to” ← j, “T” ← T ];

– ∀0 ≤ id, to ≤ idmax. ∀0 ≤ T ≤ Tmax. [sends](k, idmax, T, id, to) ⊆
[afterComp](k, idmax, T, id);

– target ⊆
⋃

i∈[[0,idmax]]

[beforeComp](k, idmax, Tmax + 1, i).

Then, k is correct, with trace

([beforeComp](k, idmax), [afterComp](k, idmax), [sends](k, idmax)) .

Notice that we get very close here to the way a human being would write the
proof of correctness: we have to prove that the dependencies are satisfied at any
point, and the current state of the program is synthesized for us. Then, we need
to prove that the final set of values contains all those that had to be computed.

4 Implementation and Experimental Results

The framework described in this paper has been implemented in Coq. In this
section, we show how our library can be used to prove a very simple stencil
algorithm for the two-dimensional Jacobi stencil introduced in Fig. 1, and whose
Coq definition is given in Fig. 2.

4.1 A Simple Example

Let us come back to our straightforward sequential program:

Definition naive_st :=
(For"t" From 0 To T Do

For "i" From 0 To I Do

For "j" From 0 To J Do

Fire ("t":aexpr, "i":aexpr, "j":aexpr))%prog.

Let us start by stating the correctness of this algorithm:

Fact naive_st_correct : correct naive_st.
Proof.
split.

We obtain two subgoals. The first corresponds to the verification conditions
and can be simplified by using the symbolic-execution engine. We then clean up
the goal.

∗ decide i=0; [bruteforce | bruteforce’ [i-1; i0; i1]].
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The case i = 0 is special and deserves special treatment. Both cases are
handled by our automation. The bruteforce tactic discharges the first subgoal,
while its sister, bruteforce’, which takes as argument a list of candidates for
existential-variable instantiation, discharges the second one.

The four other subgoals are handled similarly.

∗ decide i=0; [bruteforce | ].
decide i0=0; [bruteforce | bruteforce’ [i-1; i0-1; i1]].

∗ decide i=0; [bruteforce | ].
decide i0=I; [bruteforce | bruteforce’ [i-1; i0+1; i1]].

∗ decide i=0; [bruteforce | ].
decide i1=0; [bruteforce | bruteforce’ [i-1; i0; i1-1]].

∗ decide i=0; [bruteforce | ].
decide i1=J; [bruteforce | bruteforce’ [i-1; i0; i1+1]].

Although syntactically different, the computer-checked proof is very similar
to the one a human being would write: case analysis to tackle boundaries, and
the remaining proofs are “easy.”

The second part of the proof of correctness is completeness:

Shapeρ0
(naive st) ⊆ target,

which is easily discharged by our automation, this time with the forward tactic.
Contrary to bruteforce, the latter tries to “make progress” on the goal, without
failing if it cannot discharge it completely.

- unfold target; simpl; simplify sets with ceval.
forward. subst; forward. simpl; forward.

Qed.

4.2 Automation: Sets and Nonlinear Arithmetic

In this section, we describe the different tactics that we designed to reduce the
cost of verifying stencil code.

Sets are represented as predicates: given a universe U , a set has type U −→
Prop. The empty set is ∅ : u → ⊥, while for example the union of two sets A and
B is defined as A ∪ B : u → A(u) ∨ B(u). These definitions are here to give an
experience to the user as close as possible to a handwritten proof, and they are
automatically unfolded and simplified though first-order reasoning when using
the tactic library. This process is implemented by two tactics, simplify hyps
and simplify goal, which respectively clean up the current context and goal.

Programs are Coq terms. Therefore, the symbolic execution and trace synthe-
sis are purely syntactic. We provide a tactic symbolic execution that unfolds
all the required definitions.

This choice brings one inconvenience: their output has to be cleaned up.
Some variables may be inferred automatically thanks to symbolic execution,
which leads to expressions of the form if 0=1 then A else B, where A and B
are sets. Or, some of the verification conditions may look like c ∈ ∅∪∅∪∅∪{c},
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where c is a given cell. While the first one is pretty harmless, the second one
can reduce the efficiency of automation: to prove that an element belongs to the
union of two sets, we have to try and prove that it belongs to the first one, and
if that fails, that it belongs to the second one. Therefore, we have implemented
a rewriting system that tries to simplify the goal heuristically. For example, we
use the following simplification rules:

A ∪ ∅ = ∅ ∪ A = A
⋃

c∈[[a,b]] A × {c} = A × [[a, b]]

Moreover, we proved that set-theoretic operations are “morphisms,” which in
Coq’s jargon means that we can apply the simplification rules to subterms. The
rewriting system is implemented as a tactic called simplify sets.

The goals we obtain are set-theoretic: we usually have to prove that an ele-
ment belongs to a set (e.g., to show that a cell’s value has already been com-
puted) or that a set is a subset of another one (e.g., what we need at this step was
already known from the previous step). Most of this is first-order reasoning and
is dealt with by the forward tactic, which repeatedly applies simplify goal,
simplify hyps, and some first-order reasoning to the goal and context until no
progress is made.

The next obstacles are goals of the following forms: x ∈ A ∪ B and
x ∈ ⋃

t∈[[a,b]] At. We have already mentioned how the first one could be han-
dled, contingent on the number of unions being “not too large.” The second one
can be tackled by taking as input a list of candidate variables, which we use
to instantiate unknown parameters like t in the above expression. This more
aggressive automation is implemented as the bruteforce’ tactic, which takes a
list of variables as input. bruteforce is a shortcut for bruteforce’ ∅.

The challenge for full automation in stencil-code verification is that set-
theoretic reasoning has to be followed up by a final arithmetic step. Indeed,
a goal like t ∈ [[a, b]] is equivalent to a ≤ t ≤ b. But most of the time, stencil
code acts on blocks, or subregions within grids, which are parameterized by some
integers. For example, a typical goal might be t ∈ [[N · a, (N + 1) · a − 1]]. This
leads to very nonlinear systems of inequalities. In our experience, most of these
goals can be discharged using Coq’s nia tactic, an (incomplete) proof procedure
for integer nonlinear arithmetic.

Unfortunately, in our experience, nia is somewhat slow to fail, when given
an unprovable goal. This is the main obstruction to a fully automated frame-
work. We built a tactic to accumulate a list of all variables available in the
current context and use it to enumerate expression trees that could be used as
instantiation candidates in goals involving parameterized unions. However, in
practice for interactive proving, we found it unusable with bruteforce due to
the combinatorial explosion, combined with nia’s slowness to fail. It may still
be cost-effective in overnight proof-search runs, for a program that is not likely
to need much further debugging. In that case, we achieve full automation for a
variety of stencil algorithms.
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4.3 More Examples

We have implemented a few stencil algorithms and proved their correctness.
They come from different areas, including simulation of a differential equation,
computational finance, and computational biology. Table 1 shows the number of
lines of code needed to prove their correctness. The framework scales well and
allows to prove optimized and optimal algorithms of various kinds.

Table 1. Stencils implemented using our framework

Type Lines of proof

Heat Equation, 2D Naive 30

American Put Stock Options Naive 25

American Put Stock Options Optimized 25

Distributed American Put Stock Options Naive 65

Distributed American Put Stock Options Optimized 150

Pairwise Sequence Alignment Dynamic programming 20

Distributed Three-Point Stencil Naive 60

Distributed Three-Point Stencil Optimized 160

Universal Three-Point Stencil Algorithm Optimal 300

Examples come in four different groups.

– The two-dimensional Jacobi kernel was introduced at the beginning of this
paper (see Fig. 1). We verified a naive sequential algorithm that is often
used as a textbook example for finite-difference methods, applied to the Heat
Equation.

– We verified a cache-oblivious sequential algorithm as well as a communication-
efficient distributed kernel for three-point stencils.

– We also verified a cache-oblivious sequential algorithm and a communication-
efficient distributed kernel for American put stock options pricing. This exam-
ple is interesting since dependencies go backward in time: the price of an
option depends on the price of the underlying asset in the future.

– The Pairwise Sequence Alignment problem is different from the other exam-
ples. It shows that our framework can be used to prove the correctness of
algorithms based on dynamic programming.

5 Conclusions and Future Work

In this paper, we have shown how dependencies for both sequential and distrib-
uted stencil algorithms could be formally verified, and how to design automation
to drastically reduce the cost of proving the correctness of such programs.
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By focusing on a restricted class of problems and working with a domain-
specific language adapted to this class, we were able to symbolically execute
algorithms, which allowed us to synthesize program states, therefore avoiding
the need to manually write any kind of loop invariants. A natural and interest-
ing extension of this work could be to add symbolic tracking of cache-relevant
behavior.

We also showed how to verify distributed stencil algorithms. Here, the key
result is that verifying synchronous algorithms, when their program states can
be synthesized, actually boils down to the verification of several sequential pro-
grams. An interesting extension to this work would be to design an extraction
mechanism able to translate our DSL into MPI code or conversely, to get a
program in our DSL from MPI code.
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3. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
equation numerical resolution: a comprehensive mechanized proof of a C program.
J. Autom. Reasoning 50(4), 423–456 (2013)

4. Epperson, J.F.: An Introduction to Numerical Methods and Analysis. Wiley, New
York (2014)

5. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996)

6. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proceedings of
the Supercomputing, pp. 361–366. ACM (2005)

7. Frigo, M., Strumpen, V.: The cache complexity of multithreaded cache oblivious
algorithms. Theory Comput. Syst. 45(2), 203–233 (2009)

8. Gardner, M.: Mathematical games - The fantastic combinations of John Conway’s
new solitaire game ”Life”. Sci. Am. 223(4), 120–123 (1970)

9. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in
Isabelle/HOL. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
377–392. Springer, Heidelberg (2012)

10. Kelly, W., Pugh, W.: A unifying framework for iteration reordering transforma-
tions. In: Proceedings of the ICAPP, vol. 1, pp. 153–162. IEEE (1995)

11. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differen-
tial Equations: Steady-State and Time-Dependent Problems, vol. 98. SIAM,
Philadelphia (2007)



Mostly Automated Formal Verification of Loop Dependencies 183

12. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of the FSE, pp. 187–196. ACM (2010)

13. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: PPOPP, pp. 215–224 (2012)

14. Loechner, V.: PolyLib: a library for manipulating parameterized polyhedra(1999).
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analy
sis%20and%20Transformations%20(Polyhedral)/Free%20Libraries/polylib.ps

15. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and exact data dependence
analysis. In: Proceedings of the PLDI, PLDI 1991, pp. 1–14. ACM (1991)

16. Orchard, D., Mycroft, A.: Efficient and correct stencil computation via pattern
matching and static typing. arXiv preprint arXiv:1109.0777 (2011)

17. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: Proceedings of the Supercomputing, pp. 4–13. ACM
(1991)

18. Solar-Lezama, A., Arnold, G., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.:
Sketching stencils. In: Proceedings of the PLDI, pp. 167–178. ACM (2007)

19. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
Pochoir stencil compiler. In: Proceedings of the SPAA, pp. 117–128. ACM (2011)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

21. Xu, Z., Kamil, S., Solar-Lezama, A.: MSL: a synthesis enabled language for dis-
tributed implementations. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 311–322. IEEE
Press (2014)

http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20(Polyhedral)/Free%20Libraries/polylib.ps
http://camlunity.ru/swap/Library/Conflux/Techniques%20-%20Code%20Analysis%20and%20Transformations%20(Polyhedral)/Free%20Libraries/polylib.ps
http://arxiv.org/abs/1109.0777


The Flow of ODEs

Fabian Immler(B) and Christoph Traut

Institut für Informatik, Technische Universität München, Munich, Germany
immler@in.tum.de

Abstract. Formal analysis of ordinary differential equations (ODEs)
and dynamical systems requires a solid formalization of the underlying
theory. The formalization needs to be at the correct level of abstraction,
in order to avoid drowning in tedious reasoning about technical details.
The flow of an ODE, i.e., the solution depending on initial conditions,
and a dedicated type of bounded linear functions yield suitable abstrac-
tions. The dedicated type integrates well with the type-class based analy-
sis in Isabelle and we prove advanced properties of the flow, most notably,
differentiable dependence on initial conditions via the variational equa-
tion and a rigorous numerical algorithm to solve it.

1 Introduction

Ordinary differential equations (ODEs) are ubiquitous for modeling continuous
problems in e.g., physics, biology, or economics. A formalization of the theory of
ODEs allows us to verify algorithms for the analysis of such systems. A popular
example, where a verified algorithm is highly relevant, is Tucker’s proof on the
topic of a strange attractor for the Lorenz equations [9]. This proof relies on the
output of a computer program, that computes bounds for analytical properties
of the so-called flow of an ODE.

The flow is the solution as a function depending on an initial condition. We
formalize the flow and prove conditions for analytical properties like continuity
of differentiability (the derivative is of particular importance in Tucker’s proof).
Most of these properties seem very “natural”, as Hirsch, Smale and Devaney
call them in their textbook [2]. However, despite being “natural” properties and
fairly standard results, they are delicate to prove: In the textbook, the authors
present these properties rather early, but

“postpone all of the technicalities [. . .], primarily because understanding
this material demands a firm and extensive background in the principles
of real analysis.”

In this paper, we show that it is feasible to cope with these technicalities in
a formal setting and confirm that Isabelle/HOL supplies a sufficient background
of real analysis.
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We present our Isabelle/HOL library for reasoning about the flow of ODEs.
The main results are formalizations of continuous and differentiable dependence
on initial conditions. The differentiable dependence is characterized by a partic-
ular ODE, the variational equation, and we show how to use existing rigorous
numerical algorithms to solve it (Sect. 4). The variational equation is posed on
the space of linear functions. We introduce a separate type for this space in order
to profit from the type class based formalization of mathematics in Isabelle/HOL.

We are not aware of any other formalization that covers this foundational
part of the theory of ODEs in similar detail.

2 Overview

We will first (in Sect. 3) present the “interface” to our theory, i.e., the definitions
and assumptions that are needed for formalizing our main results. Any potential
user of the library needs in principle only know about these concepts. Because
the general topic is very theoretical and foundational work, we present a practical
application right afterwards in Sect. 4.

Only then, we go into the details of the techniques that we used to make
this formalization possible. Mathematics and analysis is formalized in Isabelle
mostly based on type classes and filters, as has been presented earlier in earlier
work [3]. We follow this path to formalize the foundations of our work:

Several proofs needed the notion of a uniform limit. We cast this notion into
the “Isabelle/HOL approach to limits”: we define it using a filter. This gives
a versatile formalization and one can profit from the existing infrastructure for
filters in limits. This will be presented in Sect. 5.

The derivative of the flow is a linear function. The space of linear functions
forms a Banach space. In order to profit from the structure and properties that
hold in a Banach space (which is a type class in Isabelle/HOL), we needed to
introduce a type of bounded linear functions. We will present this type and
further applications of its formalization in Sect. 6.

In Sect. 7, we present the technical lemmas that are needed to prove conti-
nuity and differentiability of the Flow in order to give an impression of the kind
of reasoning that is required.

All of the theorems we present here and in the following are formalized in
Isabelle/HOL [8], the source code can be found in the development version of
the Archive of Formal Proof1.

3 The Flow of a Differential Equation

In this section, we introduce the concept of flow and existence interval (which
guarantees that the flow is well-defined) and present our main results (without
proofs at first, we will present some of the lemmas leadings to the proofs in
Sect. 7).

1 http://www.isa-afp.org/devel-entries/Ordinary Differential Equations.shtml.

http://www.isa-afp.org/devel-entries/Ordinary_Differential_Equations.shtml
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The claim we want to make in this section is the flow as definition is a
suitable abstraction for initial value problems. But beware: do not get deceived
by simplicity of statements: as already mentioned in the introduction, these are
all “natural” properties, but the proofs (also in the textbook) require many
technical lemmas.

First of all, let us introduce the concepts we are interested in. We consider
open sets T , X and an autonomous2 ODE with right hand side f

ẋ(t) = f(x(t)), where f : Rn → R
n is a function from X to X (1)

Under mild assumptions (which we will make more precise later in Defin-
ition 27), there exists a solution ϕ(t), which is unique for an initial condition
x(t0) = x0. To emphasize the dependence on the initial condition, we write
ϕ(x0, t) for the solution of Eq. (1). This solution depending on initial conditions
is called the flow of the differential equation:

Definition 1 (Flow). The flow ϕ(x0, t) is the (unique) solution of the ODE (1)
with initial condition x 0 = x0

The solution does not necessarily exist for every t ∈ T . For example, solutions
can explode in finite time s: if limt→s ϕ(x3, t) = ∞, then the flow is only defined
for t < s as is illustrated in Fig. 1 for ϕ(x3, ). We therefore need to define a
notion of (maximal) existence interval.

Definition 2 (Maximal Existence Interval). The maximal existence inter-
val of the ODE (1) is the open interval

ex-ivl (x0) := ]α;β[

for α, β ∈ R∪{∞,−∞}, such that ϕ(x0, t) is a solution for t ∈ ex-ivl . Moreover
for every other interval I and every solution ψ(x0, t) for t ∈ I, one has I ⊆ J
and ∀t ∈ I. ψ(x0, t) = ϕ(x0, t).

We claim that the flow ϕ (together with ex-ivl , which guarantees the flow to
be well-defined) is a very nice way to talk about solutions, because after guar-
anteeing that they are well-defined, these constants have many nice properties,
which can be stated without further assumptions.

3.1 Composition of Solutions

A first nice property is the abstract property of the generic notion of flow. This
notion makes it possible to easily state composition of solutions and to alge-
braically reason about them. As illustrated in Fig. 1, flowing from x1 for time
s + t is equivalent to first flowing for time s, and from there flowing for time t.

This only works if the flow is defined also for the intermediate times (the
theorem can not be true for ϕ(x0, t + (−t)) if t /∈ ex-ivl ).

Theorem 3 (Flow property)

{s, t, s + t} ⊆ ex-ivl (x0) =⇒ ϕ(x0, s + t) = ϕ(ϕ(x0, s), t)
2 This means that f does not depend on t. Many of our results are also formalized for

non-autonomous ODEs, but the presentation is clearer, and reduction is possible.
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Fig. 1. The flow for different initial val-
ues

Fig. 2. Illustration of the derivative of
the flow

3.2 Continuity of the Flow

In the previous lemma, the assumption that the flow is defined (i.e., that the
time is contained in the existence interval) was important. Let us now study the
domain Ω = {(x, t) | t ∈ ex-ivl (x)} ⊆ X × T of the flow in more detail. Ω is
called the state space.

For the first “natural” property, we consider an element in the state space.
(t, x) ∈ Ω means that we can follow a solution starting at x for time t. It is
“natural” to expect that solutions starting close to x can be followed for times
that are close to t. In topological parlance, the state space is open.

Theorem 4 (Open State Space). openΩ

In the previous theorem, the state space allows us to reason about the fact
that solutions are defined for close times and initial values. For quantifying how
deviations in the initial values are propagated by the flow, Grönwall’s lemma is
an important tool that is used in several proofs. Because of its importance in
the theory of dynamical systems, we list it here as well, despite it being a rather
technical result. Starting from an implicit inequality g t ≤ C + K · ∫ t

0
g(s) ds

involving a continuous, nonnegative function g : R → R, it allows one to deduce
an explicit bound for g:

Lemma 5 (Grönwall)

0 < C =⇒ 0 < K =⇒ continuous-on [0; a] g =⇒

∀t. 0 ≤ g(t) ≤ C + K ·
∫ t

0

g(s) ds =⇒

∀t ∈ [0; a]. g(t) ≤ C · eK·t

Grönwall’s lemma can be used to show that solutions deviate at most expo-
nentially fast: ∃K. |ϕ(x, t)−ϕ(y, t)| < |x−y| ·eK·|t| (see also Lemma 30). There-
fore, by choosing x and y close enough, one can make the distance of the solutions
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arbitrarily small. In other words, the flow is a continuous function on the state
space:

Theorem 6 (Continuity of Flow). continuous-on Ω ϕ

3.3 Differentiability of the Flow

Continuity just states that small deviation in the initial values result in small
deviations of the flow. But one can be more precise on how initial deviations
propagate. Consider Fig. 2, which depicts a solution starting at (x, y) and its
evolution up to time t, as well as two other solutions evolving from initial values
that have been perturbed via vectors vx and vy, respectively. A nice property of
the flow is that it is differentiable: the way initial deviations propagate can be
approximated by a linear function. So instead of solving the ODE for perturbed
initial values, one can approximate the resulting perturbation with the linear
function: Dϕ · v ≈ ϕ((x, y), t) − ϕ((x, y) + v, t). More formally, our main result
is the formalization of the fact that the derivative of the flow exists and is
continuous.

Theorem 7 (Differentiability of the Flow). For every (x, t) ∈ Ω There
exists a linear function W (x, t), which is the derivative of the flow at (x, t):

∃W. Dϕ|(x,t) = W (x, t) ∧ continuous-on Ω W

4 Rigorous Numerics for the Derivative of the Flow

In this section, we show that the formalization is not something abstract and
detached, but something that can actually be computed with: The derivative W
of the flow can be characterized as the solution of a linear, matrix-valued ODE,
a byproduct of the (constructive) proof of differentiability in Lemma36: The
derivative with respect to x, written Wx, is the solution to the following ODE3

Ẇ (t) = Df |ϕ(x0,t) · W (t)

with initial condition W (0) is the identity matrix.
We encode this matrix valued variational equation into a vector valued one,

use an existing rigorous numerical algorithm for solving ODEs in Isabelle [5]
to compute bounds on the solutions. Re-interpreting the result as bounds on
matrices, we obtain bounds on the solution of the variational equation. As a
concrete example, we use the van der Pol system: ẋ = y; ẏ = (1 − x2)y − x for
initial condition (x0, y0) = (1.25, 2.27).

The overall setup for the computation is as follows: We have an executable
specification of the Euler method (which is formally verified to produce rigorous
enclosures for the solution of an ODE) and use Isabelle’s code generator [1] to
generate SML code from this specification. We chose to compute the evolution
3 Here, · stands for matrix multiplication.
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until time t = 2 with a discrete grid of 500 time steps. The computation takes
about 3 min on an average laptop computer. As a result, we get the following
inclusion for the variational equation:

Theorem 8

W (2) ∈
(

[0.18; 0.23] [0.41; 0.414]
[−0.048;−0.041] [0.26; 0.27]

)

The left column of the matrix shows the propagation of a deviation in the x direc-
tion: a (1, 0) deviation is propagated to a ([0.18; 0.23], [−0.048;−0.041]) devia-
tion: it gets smaller but remains mostly in the x direction. For the right column,
a deviation in the y direction (0, 1) is propagated to a ([0.41; 0.414]; [0.26; 0.27])
deviation: it contracts as well, but it gets rotated towards the x direction.

5 Uniform Limit as Filter

Filters have proved to be useful to describe all kinds of limits and convergence [3].
We use filters to define uniform convergence. For details about filters, please
consider the source code and the paper [3]. In the formalization, the uniform
limit uniform-limit X f l F is parameterized by a filter F , here we just present
the explicit formulations for the sequentially and at filters.

A sequence of functions fn : α → β for n ∈ N is said to converge uniformly
on X : P(α) against the uniform limit l : α → β, if

Definition 9

uniform-limit X f l sequentially :=
∀ε > 0. ∃N. ∀x ∈ X. ∀n ≥ N. |fn x − l x| < ε

Note the difference to pointwise convergence, where one would exchange the
order of the quantifiers ∃N and ∀x ∈ X.

With the (at z) filter, we can also handle uniform convergence of a family of
functions fy : α → β as y approaches z:

Definition 10

uniform-limit X f l (at z) :=
∀ε > 0. ∃δ > 0. ∀y. |y − z| < δ =⇒ (∀x ∈ X. dist (fy x) (l x) < ε)

The advantage of the filter approach is that many important lemmas can
be expressed for arbitrary filters, for example the uniform limit theorem, which
states that the uniform limit of a (via filter F generalized) sequence fn of con-
tinuous functions is continuous.

Theorem 11 (Uniform Limit Theorem)

(∀n ∈ F. continuous-on X fn) =⇒ uniform-limit X f l F =⇒
continuous-on X fn
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A frequently used criterion to show that an infinite series of functions con-
verges uniformly is the Weierstrass M-test. Assuming majorants Mn for the
functions fn and assuming that the series of majorants converges, it allows one
to deduce uniform convergence of the partial sums towards the series.

Lemma 12 (Weierstrass M-Test)

∀n. ∀x ∈ X. |fn x| ≤ Mn =⇒
∑
n∈N

Mn < ∞ =⇒

uniform-limit X (n �→ x �→
∑
i≤n

fi x) (x �→
∑
i∈N

fi x) sequentially

6 Bounded Linear Functions

We introduce a type of bounded linear functions (or equivalently continuous
linear functions) in order to be able to profit from the hierarchy of mathematical
type classes in Isabelle/HOL.

6.1 Type Classes for Mathematics in Isabelle/HOL

In Isabelle/HOL, many of the mathematical concepts (in particular spaces with
a certain structure) are formalized using type classes.

The advantage of type class based reasoning is that most of the reasoning
is generic: formalizations are carried out in the context of type classes and can
then be used for all types inhabiting that type class. For generic formalizations,
we use Greek letters α, β, γ and name their type class constraints in prose (i.e., if
we write that we “consider a topological space” α, then this result is formalized
generically for every type α that fulfills the properties of a topological space).

The spaces we consider are topological spaces with open sets, (real) vector
spaces with addition + : α → α → α and scalar multiplication · : R → α → α.
Normed vector spaces come with a norm |( )| : α → R. A vector space with
multiplication ∗ : α → α → α that is compatible with addition (a + b) ∗ c =
a∗c+b∗c is an algebra and can also be endowed with a norm. Complete normed
vector spaces are called Banach spaces.

6.2 A Type of Bounded Linear Functions

An important concept is that of a linear function. For vector spaces α and β,
a linear function is a function f : α → β that is compatible with addition and
scalar multiplication.

Definition 13

linear f := ∀x y c. f(c · x + y) = c · f(x) + f(y)
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We need topological properties of linear functions, we therefore now assume
normed vector spaces α and β. One usually wants linear functions to be contin-
uous, and if α and β are vector spaces of finite dimension, any linear function
α → β is continuous. In general, this is not the case, and one usually assumes
bounded linear functions. The norm of the result of a bounded linear function is
linearly bounded by the norm of the argument:

Definition 14

bounded-linear f := linear f ∧ ∃K. ∀x. |f(x)| ≤ K ∗ |x|

We now cast bounded linear functions α → β as a type α →bl β in order to
make it an instance of Banach space.

Definition 15

typedef α →bl β := {f : α → β | bounded-linear f}

6.3 Instantiations

For defining operations on type α →bl β, the Lifting and Transfer package [4]
is an essential tool: operations on the plain function type α → β are automati-
cally lifted to definitions on the type α →bl β when supplied with a proof that
functions in the result are bounded-linear under the assumption that argument
functions are bounded-linear . We write application of a bounded linear function
f : α →bl β with an element x : α as follows.

Definition 16 (application of bounded linear functions)

(f · x) : β

We present the definitions of operations involving the type α →bl β by pre-
senting them in an extensional form using ·. Bounded linear functions with point-
wise addition and pointwise scalar multiplication form a vector space.

Definition 17 (Vector Space Operations). For f, g : α →bl β and c : R,

(f + g) · x := f · x + g · x

(c · f) · x := c · (f · x)

The usual choice of a norm for bounded linear functions is the operator norm:
the maximum of the image of the bounded linear function on the unit ball. With
this norm, α →bl β forms a normed vector space and we prove that it is Banach
if α and β are Banach.

Definition 18 (Norm in Banach Space). For f : α →bl β,

|f | := max {|f · y| | |y| ≤ 1}
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One can also compose bounded linear functions according to (f ◦ g) · x = f ·
(g ·x). Bounded linear operators—that is bounded linear functions α →bl α from
one type α into itself—form a Banach algebra with composition as multiplication
and the identity function as neutral element:

Definition 19 (Banach Algebra of Bounded Linear Operators)
For f, g : α →bl α,

(f ∗ g) · x := (f ◦ g) · x

1 · x := x

6.4 Applications

Now we can profit from many of the developments that are available for Banach
spaces or algebras. Here we present some useful applications: The exponential
function is defined generically for banach-algebra and can therefore be used for
bounded linear functions as well. Furthermore, the type of bounded linear func-
tions can be used to describe derivatives in arbitrary vector spaces and therefore
allows one to naturally express (and conveniently prove) basic results from analy-
sis: the Leibniz rule for differentiation under the integral sign and conditions for
(total) differentiability of multidimensional functions. Note that not everything
in this section is directly necessary for the formalizations of our main results, it
is rather intended to show the versatile use of a separate type for bounded linear
functions in Isabelle/HOL.

Exponential of Operators. The exponential function for bounded linear func-
tions is a useful concept and important for the analysis linear ODEs. Here we
present that the solution of linear autonomous homogeneous differential equa-
tions can be expressed using the exponential function. For a Banach algebra α,
the exponential function is defined using the usual power series definition (Bk is
a k fold multiplication B ∗ · · · ∗ B):

Definition 20 (Exponential Function). For a Banach algebra α and B : α,

eB :=
∞∑

k=0

1
k!

· Bk

We prove the following rule for the derivative of the exponential function

Lemma 21 (Derivative of Exponential). d ex·A
dx = ex·A · A

Proof. After unfolding the definition of derivative d ex·A
dx = limh→0

e(x+h)·A−ex·A
h ,

the crucial step in the proof is to exchange the two limits (one is explicit in
limh→0, and the other one is hidden as the limit of the series Definition 20 of
the exponential). Exchange of limits can be done similar to Theorem 11, while
uniform convergence is guaranteed according to the Weierstrass M-Test from
Lemma 12. ��
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With this rule for the derivative and an obvious calculation for the initial value,
one can show the following

Lemma 22. (Solution of linear initial value problem)
ϕx0,t0(t) :=

(
e(t−t0)·A)

(x0) is the unique solution to the ODE ϕ̇ t = A (ϕ t) with
initial condition ϕ(t0) = x0.

Total Derivatives. The total derivative (or Fréchet derivative) is a generaliza-
tion of the ordinary derivative (of functions R → R) for arbitrary normed vector
spaces. To illustrate this generalization, recall that the ordinary derivative yields
the slope of the function: if f ′(x) = m, then

lim
h→0

f(x + h) − f(x)
h

= m (2)

Moving the m under the limit, one sees that the (linear) function h �→ h · m
is a good approximation for the difference of the function value at nearby points
x and x + h:

lim
h→0

f(x + h) − f(x) − h · m

h
= 0

This concept can be generalized by replacing h �→ h · m with an arbitrary
(bounded) linear function A. In the following equation, A is a good linear approx-
imation.

lim
h→0

f(x + h) − f(x) − A · h

|h| = 0 (3)

Note that in the previous equation, we can (just formally) drop many of the
restrictions on the type of f . We started with f : R → R in Eq. 2, but the last
equation still makes sense for f : α → β for normed vector spaces α, β. We call
A : α →bl β the total derivative Df of f at a point x:

Definition 23 (Total Derivative). For A : α →bl β in Eq. 3, we write

Df |x = A

The total derivative is important for our developments as it is for example
the derivative W of the flow in Theorem 7. It is only due to the fact that the
resulting type α →bl α is a normed vector space, that makes it possible to
express continuity of the derivative or to express higher derivatives.

Another example, where interpreting the derivative as bounded linear func-
tion α →bl β is helpful, is when deducing the total derivative of a function f
by looking at its partial derivatives f1 and f2 (that is, the derivatives w.r.t.
one variable while fixing the other). One needs the assumption that the partial
derivatives are continuous.
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Lemma 24 (Total Derivative via Continuous Partial Derivatives)
For f : α → β → γ, f1 : α → β → (α →bl γ), f2 : α → β → (β →bl γ)

∀x. ∀y. D(x �→ f x y)|x = f1 x y =⇒
∀x. ∀y. D(y �→ f x y)|y = f2 x y =⇒
continuous ((x, y) �→ f1 x y) =⇒
continuous ((x, y) �→ f2 x y) =⇒
D((x, y) �→ f x y)|(x,y) · (t1, t2) = (f1 x y) · t1 + (f2 x y) · t2

Leibniz Rule. Another example is a general formulation of the Leibniz rule.
The following rule is a generalization of e.g., the rule formalized by Lelay and
Melquiond [7] to general vector spaces. Here [[a; b]] is a hyperrectangle in Euclid-
ean space R

n. The rule allows one to differentiate under the integral sign: the
derivative of the parameterized integral

∫ b

a
f x tdt with respect to x can be

expressed as the integral of the derivative of f . Note that the integral on the
right is in the Banach space of bounded linear functions.

Lemma 25 (Leibniz rule). For Banach spaces α, β and f : α → R
n → β,

f1 : α → R
n → (α →bl β),

∀t. D(x �→ f x t)|x = f1 x t =⇒
∀x. (f x) integrable-on [[a; b]]
∀xt. t ∈ [[a; b]] =⇒ continuous ((x, t) �→ f x t)

D

(
x �→

∫ b

a

f x tdt

)
|x =

∫ b

a

f1 x tdt

7 Proofs About the Flow

We will now go into the technical details of the proofs leading towards continuity
and differentiability of the flow (Theorems 6 and 7). We still do not present the
proofs: their structure is very similar to the textbook [2] proofs. Nevertheless,
we want to present the detailed statements of the propositions, as they give a
good impression on the kind of reasoning that was required.

7.1 Criteria for Unique Solution

First of all, we specify the common assumptions to guarantee existence of a
unique solution for an initial value problem and therefore a condition for the
flow in Definition 1 to be well-defined.

We assume that f is locally Lipschitz continuous in its second argument: for
every (t, x) ∈ T ×X there exist ε-neighborhoods Uε(t) and Uε(t) around t and x,
in which f is Lipschitz continuous w.r.t. the second argument (uniformly w.r.t.
the first): the distance of function values is bounded by a constant times the
distance of argument values:
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Definition 26

local-lipschitz T X f :=
∀t ∈ T. ∀x ∈ X.

∃ε > 0. ∃L.

∀t′ ∈ Uε(t). ∀x1, x2 ∈ Uε(x). |f t′ x1 − f t′ x2| ≤ L · |x1 − x2|

Now the only assumptions that we need to prove continuity of the flow are open
sets for time and phase space and a locally Lipschitz continuous right-hand side
f that is continuous in t:

Definition 27 (Conditions for unique solution)

1. T is an open set
2. X is an open set
3. f is locally Lipschitz continuous on X: local-lipschitz T X f
4. for every x ∈ X, t �→ f(t, x) is continuous on T .

These assumptions (the detailed proofs that these assumptions guarantee the
existence of a unique solution for initial value problems has been presented in
Theorem 3 of earlier work [6]).

7.2 The Frontier of the State Space

It is important to study the behavior of the flow at the frontier of the state
space (e.g., as time or the solution tend to infinity). From this behavior, one can
deduce conditions under which solutions can be continued. This yields techniques
to gain more precise information on the existence interval ex-ivl .

If the solution only exists for finite time, it has to explode (i.e., leave every
compact set):

Lemma 28 (Explosion for Finite Existence Interval)

ex-ivl (x0) = ]α, β[ =⇒ β < ∞ =⇒ compact K =⇒
∃t ≥ 0. t ∈ ex-ivl (x0) ∧ ϕ(x0, t) /∈ K

This lemma can be used to prove a condition on the right-hand side f of the
ODE, to certify that the solution exists for the whole time. Here the assumption
guarantees that the solution stays in a compact set.

Lemma 29 (Global Existence of Solution)

(∀s ∈ T. ∀u ∈ T. ∃L. ∃M. ∀t ∈ [s;u]. ∀x ∈ X. |f t x| ≤ M + L · |x|)
=⇒ ex-ivl (x0) = T
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7.3 Continuity of the Flow

The following lemmas are all related to continuity of the flow. With the help
of Grönwall’s Lemma 5, one can show that when two solutions (starting from
different initial conditions x0 and y0) both exist for a time t and are restricted to
some set Y on which the right-hand side f satisfies a (global) Lipschitz condition
K, then the distance between the solutions grows at most exponentially with
increasing time:

Lemma 30 (Exponential Initial Condition for Two Solutions)

t ∈ ex-ivl (x0) =⇒ t ∈ ex-ivl (y0) =⇒
x0 ∈ Y =⇒ y0 ∈ Y =⇒ Y ⊆ X =⇒
∀s ∈ [0; t]. ϕ(x0, s) ∈ Y =⇒
∀s ∈ [0; t]. ϕ(y0, s) ∈ Y =⇒
∀s ∈ [0; t]. lipschitz Y (f s) K =⇒
|ϕ(x0, t) − ϕ(y0, t)| ≤ |x0 − y0| · eK·t

Note that it can be hard to establish the assumptions of this lemma, in
particular the assumption that both solutions from x0 and y0 exist for the same
time t. Consider Fig. 1: not all solutions (e.g., from x3) do necessarily exist for
the same time s. One can choose, however, a neighborhood of x1, such that all
solutions starting from within this neighborhood exist for at least the same time,
and with the help of the previous lemma, one can show that the distance of these
solutions increases at most exponentially:

Lemma 31 (Exponential Initial Condition of Close Solutions)

a ∈ ex-ivl (x0) =⇒ b ∈ ex-ivl (x0) =⇒ a ≤ b

∃δ > 0. ∃K > 0. Uδ(x0) ⊆ X ∧
(∀y ∈ Uδ(x0). ∀t ∈ [a; b].

t ∈ ex-ivl (y) ∧ |ϕ(x0, t) − ϕ(y, t)| ≤ |x0 − y| · eK·|t|)

Using this lemma is the key to showing continuity of the flow (Theorem6).
A different kind of continuity is not with respect to the initial condition, but

with respect to the right-hand side of the ODE.

Lemma 32 (Continuity with respect to ODE). Assume two right-hand
sides f, g defined on X and uniformly close |f x−g x| < ε. Furthermore, assume
a global Lipschitz constant K for f on X. Then the deviation of the flows ϕf

and ϕg can be bounded:

|ϕf (x0, t) − ϕg(x0, t)| ≤ ε

K
· eK·t
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7.4 Differentiability of the Flow

The proof for the differentiability of the flow incorparates many of the tools that
we have presented up to now, we will therefore go a bit more into the details of
this proof.

Assumptions. The assumptions in Definition 27 are not strong enough to prove
differentiability of the flow. However, a continuously differentiable right-hand
side f : Rn → R

n suffices. To be more precise:

Definition 33 (Criterion for Continuous Differentiability of the Flow)

∃f ′ : Rn → (Rn →bl R
n). (∀x ∈ X. Df |x = f ′ x) ∧ continuous-on X f ′

From now on, we denote the derivative along the flow from x0 with Ax0 :
R → R

n:

Definition 34 (Derivative along the Flow). Ax0(t) := Df |ϕ(x0,t)

The derivative of the flow is the solution to the so-called variational equa-
tion, a non-autonomous linear ODE. The initial condition ξ is supposed to be
a perturbation of the initial value (like vx and vy in Fig. 2) and in what follows
we will prove that the solution to this ODE is a good (linear) approximation of
the propagation of this perturbation.

{
u̇(t) = Ax0(t) · u(t)
u(0) = ξ

, (4)

We will write ux0(ξ, t) for the flow of this ODE and omit the parameter x0

and/or the initial value ξ if they can be inferred from the context.
As a prerequisite for the next proof, we begin by proving that ux0(ξ, t) is

linear in ξ, a property that holds because u is the solution of a linear ODE (this
is often also called the “superposition principle”).

Lemma 35 (Linearity of ux0(ξ, t) in ξ)

α · ux0,a(t) + β · ux0,b(t) = ux0,α·a+β·b(t).

Because ξ �→ ux0(ξ, t) : Rn → R
n is linear on Euclidean space, it is also bounded

linear, so we will identify this function with the corresponding element of type
R

n →bl R
n. The main efforts go into proving the following lemma, showing that

the aforementioned function is the derivative of the flow ϕ(x0, t) in x0.

Lemma 36 (Space Derivative of the Flow). For t ∈ ex-ivl (x0),

(D(x → ϕ(x, t))|x0) · ξ = ux0(ξ, t)
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Proof. The proof starts out with the integral identities of the flow, the perturbed
flow, and the linearized propagation of the perturbation:

ϕ(x0, t) = x0 +
∫ t

0

f(ϕ(x0, s)) ds

ϕ(x0 + ξ, t) = x0 + ξ +
∫ t

0

f(ϕ(x0 + ξ, s)) ds

ux0(ξ, t) = ξ +
∫ t

0

Ax0(s) · ux0(ξ, s) ds

= ξ +
∫ t

0

f ′(ϕ(x0, s)) · ux0(ξ, s) ds

Then, for any fixed ε, after a sequence of estimations (3 pages in the textbook
proof) involving e.g., uniform convergence (Sect. 5) of the first-order remainder
term of the Taylor expansion of f , continuity of the flow (Theorem6), and lin-
earity of u (Lemma 35) one can prove the following inequality.

‖ϕ(x0 + ξ, t) − ϕ(x0, t) − ux0(ξ, t)‖
‖ξ‖ ≤ ε

This shows that ux0(ξ, t) is indeed a good approximation for the propagation of
the initial perturbation ξ and exactly the definition for the space derivative of
the flow. ��

Note that ux0(ξ, t) yields the space derivative in direction of the vector ξ. The
total space derivative of the flow is then the linear function ξ �→ ux0,ξ(t). But this
derivative can also be described as the solution of the following “matrix-valued”
variational equation:

{
Ẇx0(t) = Ax0(t) ◦ Wx0(t)
Wx0(0) = Id

(5)

This initial value problem is defined for linear operators of type R
n →bl R

n.
Thanks to Lemma 29, one can show that it is defined on the same existence
interval as the flow ϕ. The solution Wx0 is related to solutions of the variational
IVP as follows:

ux0(ξ, t) = Wx0(t) · ξ

The derivative of the flow ϕ at (x0, t) with respect to t is given directly by
the ODE, namely f(ϕ(x0, t)). Therefore and according to Lemma 24 the total
derivative of the flow is characterized as follows:

Theorem 37. (Derivative of the Flow)

Dϕ|(x0,t) · (ξ, τ) = Wx0(t) · ξ + τ · f (ϕ(x0, t))
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7.5 Continuity of Derivative

Regarding the continuity of the derivative Dϕ|(x0,t) ·(ξ, τ) with respect to (x0, t):
τ · f (ϕ(x0, t)) is continuous because of Definition 27 and Theorem 6.

Wx0(t) is continuous with respect to t, so what remains to be shown is con-
tinuity of the space derivative regarding x0. The proof of this statement relies
on Theorem 32, because for different values of x0, Wx0 is the solution to ODEs
with slightly different right-hand sides. A technical difficulty here is to establish
the assumption of global Lipschitz continuity for Theorem32.

8 Conclusion

To conclude, our formalization contains essentially all lemmas and proofs of at
least 22 pages (Chap. 17) of the textbook by Hirsch et al. [2] and additionally
required some more general-purpose background to be formalized, in particular
uniform limits and the Banach space of (bounded) linear functions. The separate
type for bounded linear functions was a minor complication that was necessary
because of the type class based library for analysis in Isabelle/HOL. We showed
the concrete usability of our results by verifying the connection of the abstract
formalization with a concrete rigorous numerical algorithm.
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Abstract. Types in Higher-Order Logic (HOL) are naturally inter-
preted as nonempty sets—this intuition is reflected in the type definition
rule for the HOL-based systems (including Isabelle/HOL), where a new
type can be defined whenever a nonempty set is exhibited. However, in
HOL this definition mechanism cannot be applied inside proof contexts.
We propose a more expressive type definition rule that addresses the lim-
itation and we prove its soundness. This higher expressive power opens
the opportunity for a HOL tool that relativizes type-based statements to
more flexible set-based variants in a principled way. We also address par-
ticularities of Isabelle/HOL and show how to perform the relativization
in the presence of type classes.

1 Motivation

The proof assistant community is mainly divided in two successful camps. One
camp, represented by provers such as Agda [7], Coq [6], Matita [5] and Nuprl [10],
uses expressive type theories as a foundation. The other camp, represented by the
HOL family of provers (including HOL4 [2], HOL Light [14], HOL Zero [3] and
Isabelle/HOL [26]), mostly sticks to a form of classic set theory typed using sim-
ple types with rank-1 polymorphism. (Other successful provers, such as ACL2 [19]
andMizar [12], could be seen as being closer to theHOLcamp, although technically
they are not based on HOL.)

According to the HOL school of thought, a main goal is to acquire a sweet
spot: keep the logic as simple as possible while obtaining sufficient expressive-
ness. The notion of sufficient expressiveness is of course debatable, and has been
debated. For example, PVS [29] includes dependent types (but excludes poly-
morphism), HOL-Omega [16] adds first-class type constructors to HOL, and
Isabelle/HOL adds ad hoc overloading of polymorphic constants. In this paper,
we want to propose a gentler extension of HOL. We do not want to promote new
“first-class citizens,” but merely to give better credit to an old and venerable
HOL citizen: the notion of types emerging from sets.

c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 200–218, 2016.
DOI: 10.1007/978-3-319-43144-4 13
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The problem that we address in this paper is best illustrated by an example.
Let lists : α set → α list set be the constant that takes a set A and returns the
set of lists whose elements are in A, and P : α list → bool be another constant
(whose definition is not important here). Consider the following statements,
where we extend the usual HOL syntax by explicitly quantifying over types at
the outermost level:

∀α. ∃xsα list. P xs (1)
∀α. ∀Aα set. A �= ∅ −→ (∃xs ∈ lists A. P xs) (2)

The formula (2) is a relativized form of (1), quantifying not only over all types
α, but also over all their nonempty subsets A, and correspondingly relativizing
the quantification over all lists to quantification over the lists built from elements
of A. We call theorems such as (1) type based and theorems such as (2) set based.

Type-based theorems have obvious advantages compared to the set-based
ones. First, they are more concise. Moreover, automatic proof procedures work
better for them, thanks to the fact that they encode properties more rigidly and
more implicitly, namely, in the HOL types (such as membership to α list) and
not via formulas (such as membership to the set lists A). On the downside, type-
based theorems are less flexible, and therefore unsuitable for some developments.
Indeed, when working with mathematical structures, it is often the case that
they have the desired property only on a proper subset of the whole type. For
example, a function f from τ to σ may be injective or continuous only on a
subset of τ . When wishing to apply type-based theorems from the library to
deal with such situations, users are forced to produce ad hoc workarounds for
relativizing them from types to sets. In the most striking cases, the relativization
is created manually. For example, in Isabelle/HOL there exists the constant
inj-on A f = (∀x y ∈ A. f x = f y −→ x = y) together with a small library
about functions being injective only on a subset of a type. In summary, while
it is easier to reason about type-based statements such as (1), the set-based
statements such as (2) are more general and easier to apply.

An additional nuance to this situation is specific to Isabelle/HOL, which
allows users to annotate types with Haskell-like type-class constraints. This pro-
vides a further level of implicit reasoning. For example, instead of explicitly
quantifying a statement over an associative operation ∗ on a type σ, one marks
σ as having class semigroup (which carries implicitly the assumptions). This
would also need to be reversed when relativizing from types to sets. If (1) made
the assumption that α is a semigroup, as in ∀(αsemigroup). ∃xsα listt. P xs, then
the statement (2) would need to quantify universally not only over A, but also
over a binary operation on A, and explicitly assume it to be associative.

The aforementioned problem, of the mismatch between type-based theorems
from libraries and set-based versions needed by users, shows up regularly in
requests posted on the Isabelle community mailing lists. Here is a concrete
example [33]: Various lemmas [from the theory Finite Set] require me to show
that f [commutes with ◦] for all x and y. This is a too strong requirement for me.
I can show that it holds for all x and y in A, but not for all x and y in general.
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Often, users feel the need to convert entire libraries from type-based theorems
to set-based ones. For example, our colleague Fabian Immler writes about his
large formalization experience [18, Sect. 5.7]: The main reason why we had to
introduce this new type [of finite maps] is that almost all topological properties are
formalized in terms of type classes, i.e., all assumptions have to hold on the whole
type universe. It feels like a cleaner approach [would be] to relax all necessary
topological definitions and results from types to sets because other applications
might profit from that, too.

A prophylactic alternative is of course to develop the libraries in a set-based
fashion from the beginning, agreeing to pay the price in terms of verbosity and
lack of automation. And numerous developments in different HOL-based provers
do just that [4,8,9,15,23].

In this paper, we propose an alternative that gets the best of both worlds:
prove easily and still be flexible. More precisely, develop the libraries type based,
but export the results set based. We start from the observation that, from a set-
theoretic semantics standpoint, the theorems (1) and (2) are equivalent: they
both state that, for every nonempty collection of elements, there exists a list of
elements from that collection for which P holds. Unfortunately, the HOL logic
in its current form is blind to one direction of this equivalence: assuming that (1)
is a theorem, one cannot prove (2). Indeed, in a proof attempt of (2), one would
fix a nonempty set A and, to invoke (1), one would need to define a new type
corresponding to A—an action not currently allowed inside a HOL proof context.
In this paper, we propose a gentle eye surgery to HOL (and to Isabelle/HOL)
to enable proving such equivalences, and show how this can be used to leverage
user experience as outlined above.

The paper is organized as follows. In Sect. 2, we recall the logics of HOL
and Isabelle/HOL. In Sect. 3, we describe the envisioned extension of HOL:
adding a new rule for simulating type definitions in proof contexts. In Sect. 4,
we demonstrate how the new rule allows us to relativize type-based theorems to
set-based ones in HOL. Due to the presence of type classes, we need to extend
Isabelle/HOL’s logic further to achieve the relativization—this is the topic of
Sect. 5. Finally, in Sect. 6 we outline the process of performing the relativization
in a principled and automated way.

We created a website [1] associated to the paper where we published the
Isabelle implementation of the proposed logical extensions and the Isabelle proof
scripts showing examples of applying the new rules to relativize from types to
sets (including this paper’s introductory example).

2 HOL and Isabelle/HOL Recalled

In this section, we briefly recall the logics of HOL and Isabelle/HOL mostly for
the purpose of introducing some notation. For more details, we refer the reader
to standard textbooks [11,25]. We distinguish between the core logic and the
definitional mechanisms.
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2.1 Core Logic

The core logic is common to HOL and Isabelle/HOL: it is classical Higher-
Order Logic with rank-1 polymorphism, Hilbert choice and the Infinity axioms.
A HOL signature consists of a collection of type constructor symbols k ∈ K,
which include the binary function type constructor → and the nullary bool and
ind (for representing the booleans and an infinite type, respectively). The types
σ, τ are built from type variables α and type constructors. The signature also
contains a collection of constants c ∈ C together with an indication of their
types, c : τ . Among these, we have equality, = : α → α → bool, and implication,
−→ : bool → bool → bool. The terms t, s are built using typed (term) variables
xσ, constant instances cσ, application and λ-abstraction. When writing concrete
terms, types of variables and constants will be omitted when they can be inferred.
HOL typing assigns types to terms, t : σ, in a standard way. The notation σ ≤ τ
means that σ is an instance of τ , e.g., bool list is an instance of α list, which itself
is an instance of α. A formula is a term of type bool. The formula connectives and
quantifiers are defined in a standard way starting from equality and implication.

In HOL, types represent “rigid” collections of elements. More flexible col-
lections can be obtained using sets. Essentially, a set on a type σ, also called
a subset of σ, is given by a predicate S : σ → bool. Then membership of an
element a to S is given by S a being true. HOL systems differ in the details
of representing sets: some consider sets as syntactic sugar for predicates, others
use a specialized type constructor for wrapping predicates, yet others consider
the “type of subsets of a type” unary type constructor as a primitive. All these
approaches yield essentially the same notion.

HOL deduction is parameterized by an underlying theory D. It is a system for
inferring formulas starting from the formulas in D and HOL axioms (containing
axioms for equality, infinity, choice, and excluded middle) and applying deduc-
tion rules (introduction and elimination of −→, term and type instantiation and
extensionality).

2.2 Definitional Mechanisms of HOL

Most of the systems implementing HOL follow the tradition to discourage their
users from using arbitrary underlying theories D and to promote merely defini-
tional ones, containing definitions of constants and types.

A HOL constant definition is a formula cσ = t, where:

– c is a fresh constant of type σ
– t is a term that is closed (i.e., has no free term variables) and whose type

variables are included in those of σ

HOL type definitions are more complex entities. They are based on the notion
of a newly defined type β being embedded in an existing type α, i.e., being
isomorphic to a given nonempty subset S of α via mappings Abs and Rep. Let
α(β ≈ S)Abs

Rep denote the formula expressing this:

(∀xβ . Rep x ∈ S) ∧ (∀xβ . Abs (Rep x) = x) ∧ (∀yα. y ∈ S −→ Rep (Abs y) = y)
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When the user issues a command typedef τ = Sσ set, they are required to
discharge the goal S �= ∅, after which the system introduces a new type τ and
two constants Absτ : σ → τ and Repτ : τ → σ and adds the axiom σ(τ ≈ S)Abs

τ

Repτ

to the theory.

2.3 Definitional Mechanisms of Isabelle/HOL

While a member of the HOL family, Isabelle/HOL is special w.r.t. constant
definitions. Namely, a constant is allowed to be declared with a given type σ
and then “overloaded” on various types τ less general than σ and mutually
orthogonal. For example, we can have d declared to have type α, and then
dbool defined to be True and dα list defined to be [dα]. We shall write Δc for
the collection of all types where c has been overloaded. In the above example,
Δd = {bool, α list}.

The mechanism of overloaded definitions offers broad expressive power. But
with power also comes responsibility. The system has to make sure that the defin-
ing equations cannot form a cycle. To guarantee that, a binary constant/type
dependency relation � on types and constants is maintained, where u � v holds
true iff one of the following holds:

1. u is a constant c that was declared with type σ and v is a type in σ
2. u is a constant c defined as c = t and v is a type or constant in t
3. u is a type σ defined as σ = A and v is a type or constant in A

We write �↓ for (type-)substitutive closure of the constant/type dependency
relation, i.e., if p � q, the type instances of p and q are in �↓. The system
accepts only overloaded definitions for which �↓ does not contain an infinite
chain.

In addition, Isabelle supports user-defined axiomatic type classes, which are
essentially predicates on types. They effectively improve the type system with
the ability to carry implicit assumptions. For example, we can define the type
class finite(α) expressing that α has a finite number of inhabitants. Then, we are
allowed to annotate type variables by such predicates, e.g., αfinite or αsemigroup

from Sect. 1. Finally, we can substitute a type τ for αfinite only if τ has been
previously proved to fulfill finite(τ).

The axiomatic type classes become truly useful when we use overloaded con-
stants for their definitions. This combination allows the use of Haskell-style type
classes. E.g., we can reason about arbitrary semigroups by declaring a global
constant ∗ : α → α → α and defining the HOL predicate semigroup(α) stating
that ∗ is associative on α.

In this paper, we are largely concerned with results relevant for the entire
HOL family of provers, but also take special care with the Isabelle/HOL mav-
erick. Namely, we show that our local typedef proposal can be adapted to cope
with Isabelle/HOL’s type classes.
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3 Proposal of a Logic Extension: Local Typedef

To address the limitation described in Sect. 1, we propose extending the HOL
logic with a new rule for type definition with the following properties:

– It enables type definitions to be emulated inside proofs while avoiding the
introduction of dependent types by a simple syntactic check.1

– It is natural and sound w.r.t. the standard HOL semantics à la Pitts [27] as
well as with the logic of Isabelle/HOL.

To motivate the formulation of the new rule and to understand the intuition
behind it, we will first look deeper into the idea behind type definitions in HOL.
Let us take a purely semantic perspective and ignore the rank-1 polymorphism
for a minute. Then the principle behind type definitions simply states that for
all types α and nonempty subsets A of them, there exists a type β isomorphic
to A:

∀α. ∀Aα set. A �= ∅ −→ ∃β. ∃Absα→β Repβ→α. α(β ≈ A)Abs
Rep (�)

The typedef mechanism can be regarded as the result of applying a sequence of
standard rules for connectives and quantifiers to (�) in a more expressive logic
(notationally, we use Gentzen’s sequent calculus):

1. Left ∀ rule of α and A with given type σ and term Sσ set (both provided by
the user), and left implication rule:

Γ  S �= ∅ Γ, ∃β Abs Rep. σ(β ≈ S)Abs
Rep  ϕ

∀L, ∀L, −→L
Γ, (�)  ϕ

Cut of (�)
Γ  ϕ

2. Left ∃ rule for β, Abs and Rep, introducing some new/fresh type τ , and
functions Absτ and Repτ :

Γ  S �= ∅
Γ, σ(τ ≈ S)Abs

τ

Repτ  ϕ
∃L, ∃L, ∃L

Γ, ∃β Abs Rep. σ(β ≈ S)Abs
Rep  ϕ

∀L, ∀L, −→L
Γ, (�)  ϕ

Cut of (�)
Γ  ϕ

The user further discharges Γ  S �= ∅, and therefore the overall effect of this
chain is the sound addition of σ(τ ≈ S)Abs

τ

Repτ as an extra assumption when trying
to prove an arbitrary fact ϕ.

What we propose is to use a variant of the above (with fewer instantiations)
as an actual rule:
1 Dependent type theory has its own pluses and minuses. Moreover, even if we came

to the conclusion that the pluses prevail, we do not know how to combine dependent
types with higher-order logic and the tools built around it. Hence the avoidance of
the dependent types.
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– In step 1. we do not ask the user to provide concrete σ and Sσ set, but work
with a type σ and a term Aσ set that can contain type and term variables.

– In step 2., we only apply the left ∃ rule to the type β and introduce a fresh
type variable β.

We obtain:

Γ  A �= ∅
Γ, ∃Abs Rep. σ(β ≈ A)Abs

Rep  ϕ
[β fresh] ∃L

Γ, ∃β Abs Rep. σ(β ≈ A)Abs
Rep  ϕ

∀L, ∀L, −→L
Γ, (�)  ϕ

Cut of (�)
Γ  ϕ

To conclude, the overall rule, written (LT) as in “Local Typedef”, looks as
follows:

Γ  A �= ∅ Γ  (∃Abs Rep. σ(β ≈ A)Abs
Rep) −→ ϕ

[β �∈ A, ϕ, Γ ] (LT)
Γ  ϕ

This rule allows us to locally assume that there is a type β isomorphic to an arbi-
trary nonempty set A. The syntactic check β �∈ A, ϕ, Γ prevents an introduction
of a dependent type (since A can contain term variables in general).

The above discussion merely shows that (LT) is morally correct and more
importantly natural in the sense that it is an instance of a more general principle,
namely the rule (�).

As for any extension of a logic, we have to make sure that the extension is
correct.

Proposition 1. HOL extended by the (LT) rule is consistent.

This means that using rules of the HOL deduction system together with
the (LT) rule cannot produce a proof of False. The same property holds for
Isabelle/HOL.

Proposition 2. Isabelle/HOL extended by the (LT) rule is consistent.

The justification of both Propositions can be found in the extended version
of this paper [1]. The soundness argument of the (LT) rule in HOL uses the
standard HOL semantics à la Pitts [27] and the soundness of the rule in the
context of Isabelle/HOL’s overloading is based on our new work on proving
Isabelle/HOL’s consistency [21].

In the next section we will look at how the (LT) rule helps us to achieve the
transformation from types to sets in HOL.
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4 From Types to Sets in HOL

Let us look again at the motivating example from Sect. 1 and see how the rule
(LT) allows us to achieve the relativization from a type-based theorem to a set-
based theorem in HOL or Isabelle/HOL without type classes. We assume (1)
is a theorem, and wish to prove (2). We fix α and Aα set and assume A �= ∅.
Applying (LT), we obtain a type β (represented by a fresh type variable) such
that ∃Abs Rep. α(β ≈ A)Abs

Rep , from which we obtain Abs and Rep such that
α(β ≈ A)AbsRep. From this, (1) with α instantiated to β, and the definition of lists,
we obtain

∃xsβ list ∈ lists (UNIVβ set). Pβ list→bool xs.

Furthermore, using that Abs and Rep are isomorphisms between Aα set and
UNIVβ set, we obtain

∃xsα list ∈ lists Aα set. Pα list→bool xs,

as desired.2

We will consider a general case now. Let us start with a type-based theorem

∀α. ϕ[α], (3)

where ϕ[α] is a formula containing α. We fix α and Aα set, assume A �= ∅ and
“define” a new type β isomorphic to A. Technically, we fix a fresh type variable
β and assume

∃Abs Rep. α(β ≈ A)Abs
Rep . (4)

From the last formula, we can obtain the isomorphism Abs and Rep between β
and A. Having the isomorphisms, we can carry out the relativization along them
and prove

ϕ[β] ←→ ϕon[α, Aα set], (5)

where ϕon[α, Aα set] is the relativization of ϕ[β]. In the motivational example:

ϕ[β] = ∃xsβ list. P xs
ϕon[α, Aα set] = ∃xsα list ∈ lists A. P xs

We postpone the discussion how to derive ϕon from ϕ in a principled way and
how to automatically prove the equivalence between them until Sect. 6. We only
appeal to the intuition here: for example, if ϕ contains the universal quantifica-
tion ∀xβ , we replace it by the related bounded quantification ∀xα ∈ A in ϕon.
Or if ϕ contains the predicate inj fβ→γ , we replace it by the related notion of
injon Aα set fα→γ in ϕon.

2 We silently assume parametricity of the quantifier ∃ and P.
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Since the left-hand side of the equivalence (5) is an instance of (3), we dis-
charge the left-hand side and obtain ϕon[α, Aα set], which does not contain the
locally “defined” type β anymore. Thus we can discard β. Technically, we use
the (LT) rule and remove the assumption (4). Thus we obtain the final result:

∀α. ∀Aα set. A �= ∅ −→ ϕon[α, A]

This theorem is the set-based version of ∀α. ϕ[α].
We will move to Isabelle/HOL in the next section and explore how the iso-

morphic journey between types and sets proceeds in the environment where we
are allowed to restrict type variables by type-class annotations.

5 From Types to Sets in Isabelle/HOL

Isabelle/HOL goes beyond traditional HOL and extends it by axiomatic type
classes and overloading. We will explain in this section how these two features
are in conflict with the algorithm described in Sect. 4 and how to circumvent
these complications.

5.1 Local Axiomatic Type Classes

The first complication is the implicit assumptions on types given by the
axiomatic type classes. Let us recall that αfinite means that α can be instan-
tiated only with a type that we proved to fulfill the conditions of the type class
finite, namely that the type must contain finitely many elements.

To explain the complication on an example, let us modify (3) to speak about
types of class finite:

∀αfinite. ϕ[αfinite] (6)

Clearly, the set that is isomorphic to αfinite must be some nonempty set A that
is finite. Thus as a modification of the algorithm from Sect. 4, we fix a set A and
assume that it is nonempty and finite. As previously, we locally define a new
type β isomorphic to A. Although β fulfills the condition of the type class finite,
we cannot add the type into the type class since this action is allowed only at
the global theory level in Isabelle and not locally in a proof context.

On the other hand, without adding β into finite we cannot continue since we
need to instantiate β for αfinite to prove the analog of the equivalence (5). Our
solution is to internalize the type-class assumption in (6) and obtain

∀α. finite(α) −→ ϕ[α], (7)

where finite(α) is a term of type bool, which is true if and only if α is a finite
type.3 Now we can instantiate α by β and get finite(β) −→ ϕ[β]. Using the fact
3 This is Wenzel’s approach [32] to represent axiomatic type classes by internalizing

them as predicates on types, i.e., constants of type ∀α. bool. As this particular type
is not allowed in Isabelle, Wenzel uses instead α itself → bool, where α itself is a
singleton type.
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that the relativization of finite(β) is finite A, we apply the isomorphic translation
between β and A and obtain

finite A −→ ϕon[α, A].

Quantifying over the fixed variables and adding the assumptions yields the final
result, the set-based version of (6):

∀α. ∀Aα set. A �= ∅ −→ finite A −→ ϕon[α, A]

The internalization of type classes (inferring (7) from (6)) is already sup-
ported by the kernel of Isabelle—thus no further work is required from us. The
rule for internalization of type classes is a result of the work by Haftmann and
Wenzel [13,32].

5.2 Local Overloading

In the previous section we addressed implicit assumptions on types given by
axiomatic type classes and showed how to reduce the relativization of such types
to the original translation algorithm by internalizing the type classes as predi-
cates on types. As we explained in Sect. 2.3, the mechanism of Haskell-like type
classes in Isabelle is more general than the notion of axiomatic type classes since
additionally we are allowed to associate operations with every type class. In this
respect, the type class finite is somewhat special since there are no operations
associated with it.

Therefore we use semigroups as the running example in this section since
semigroups require an associated operation—multiplication. A general specifi-
cation of a semigroup would contain a nonempty set Aα set, a binary operation
fα→α→α such that A is closed under f , and a proof of the specific property
of semigroups that f is associative on A. We capture the last property by the
predicate

semigrouponwith A f = (∀x y z ∈ A. f (f x y) z = f x (f y z)),

which we read along the paradigm: a structure on the set A with operations
f1, . . . , fn.

The realization of semigroups by type classes in Isabelle is somewhat more
specific. The type σ can belong to the type class semigroup if semigroup(σ) is
provable, where

semigroup(α) iff ∀xα yα zα. (x ∗ y) ∗ z = x ∗ (y ∗ z). (8)

Notice that the associated multiplication operation is represented by the global
overloaded constant ∗α→α→α, which will cause the complication.

Let us relativize ∀αsemigroup. ϕ[αsemigroup] now. We fix a nonempty set A, a
binary f such that A is closed under f and assume semigrouponwith A f . As before,
we locally define β to be isomorphic to A and obtain the respective isomorphisms
Abs and Rep.
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Having defined β, we want to prove that β belongs into semigroup. Using
the approach from the previous section, this goal translates into proving
semigroup(β), which requires that the overloaded constant ∗β→β→β used in the
definition of semigroup (see (8)) must be isomorphic to f on A. In other words,
we have to locally define ∗β→β→β to be a projection of f onto β, i.e., xβ ∗yβ must
equal Abs(f (Rep x) (Rep y)). Although we can locally “define” a new constant
(fix a fresh term variable c and assume c = t), we cannot overload the global
symbol ∗ locally for β. This is not supported by Isabelle.

We will cope with the complication by compiling out the overloaded constant
∗ from

∀α. semigroup(α) −→ ϕ[α] (9)

by the dictionary construction as follows: whenever c = . . . ∗ . . . (i.e., c was
defined in terms of ∗ and thus depends implicitly on the overloaded meaning of
∗), define cwith f = . . . f . . . and use it instead of c. The parameter f plays a
role of the dictionary here: whenever we want to use cwith, we have to explicitly
specify how to perform multiplication in cwith by instantiating f . That is to
say, the implicit meaning of ∗ in c was made explicit by f in cwith. Using this
approach, we obtain:

∀α. ∀fα→α→α. semigroupwith f −→ ϕwith[α, f ], (10)

where semigroupwith fα→α→α = (∀xα yα zα. f (f x y) z = f x (f y z)) and
similarly for ϕwith. For now, we assume that (10) is a theorem and look at how it
helps us to finish the relativization and later we will explain how to derive (10)
as a theorem.

Given (10), we will instantiate α with β and obtain

∀fβ→β→β . semigroupwith f −→ ϕwith[β, f ].

Recall that the quantification over all functions of type β → β → β is isomorphic
to the bounded quantification over all functions of type α → α → α under which
Aα set is closed.4 The difference after compiling out the overloaded constant ∗ is
that now we are isomorphically relating two bounded (local) variables from the
quantification and not a global constant ∗ to a local variable.

Thus we reduced the relativization once again to the original algorithm and
can obtain the set-based version

∀α. ∀Aα set. A �= ∅ −→
∀fα→α→α. (∀xα yα ∈ A. f x y ∈ A) −→ semigrouponwith A f −→ ϕon

with[α, A, f ].

Let us get back to the dictionary construction. Its detailed description can be
found, for example, in the paper by Krauss and Schropp [20]. We will outline the
4 Let us recall that ∀x. P x is a shorthand for All (λx. P x) and ∀x ∈ A. P x for
Ball A (λx. P x), where All and Ball are the HOL combinators for quantification.
Thus the statement about isomorphism between the two quantifications means iso-
morphism between All and Ball A.
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process only informally here. Our task is to compile out an overloaded constant
∗ from a term s. As a first step, we transform s into swith[∗/f ] such that s =
swith[∗/f ] and such that unfolding the definitions of all constants in swith does
not yield ∗ as a subterm. We proceed for every constant c in s as follows: if c
has no definition, we do not do anything. If c was defined as c = t, we first apply
the construction recursively on t and obtain twith such that t = twith[∗/f ]; thus
c = twith[∗/f ]. Now we define a new constant cwith f = twith. As cwith ∗ = c,
we replace c in s by cwith ∗. At the end, we obtain s = swith[∗/f ] as a theorem.
Notice that this procedure produces swith that does not semantically depends on
∗ only if there is no type in s that depends on ∗.

Thus the above-described step applied to (9) produces

∀α. semigroupwith ∗α→α→α −→ ϕwith[α, fα→α→α][∗α→α→α/fα→α→α].

To finish the dictionary construction, we replace every occurrence of ∗α→α→α by
a universally quantified variable fα→α→α and obtain (10). This derivation step
is not currently allowed in Isabelle. The idea why this is a sound derivation is as
follows: since ∗α→α→α is a type-class operation, there exist overloaded definitions
only for strict instances of ∗ (such as ∗nat→nat→nat) but never for ∗α→α→α; thus
the meaning of ∗α→α→α remains unrestricted. That is to say, ∗α→α→α permits
any interpretation and hence it must behave as a term variable. We will formulate
a rule (an extension of Isabelle’s logic) that allows us to perform the above-
described derivation.

First, let us recall that �↓ is the substitutive closure of the constant/type
dependency relation � from Sect. 2.3 and Δc is the set of all types for which c
was overloaded. The notation σ �≤ S means that σ is not an instance of any type
in S. We shall write R+ for the transitive closure of R. Now we can formulate
the Unoverloading Rule (UO):

ϕ[cσ/xσ]
[¬(u �↓+ cσ) for any type or constant u in ϕ; σ �≤ Δc] (UO)∀xσ. ϕ

This means that we can replace occurrences of the constant cσ in ϕ by the
universally quantified variable xσ under the following two side conditions:

1. All types and constant instances in ϕ do not semantically depend on cσ

through a chain of constant and type definitions. The constraint is fulfilled in
the first step of the dictionary construction since for example ϕwith[α, ∗] does
not contain any hidden ∗s due to the construction of ϕwith.5

2. There is no matching definition for cσ. In our use case, cσ is always a type-class
operation with its most general type (e.g., ∗α→α→α). As already mentioned,
we overload a type-class operation only for strictly more specific types (such
as ∗nat→nat→nat) and never for its most general type and thus the condition
σ �≤ Δc must be fulfilled.

5 Unless there is a type depending on ∗.
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Proposition 3. Isabelle/HOL extended by the (UO) rule is consistent.6

Notice that the (UO) rule suggests that even in presence of ad hoc over-
loading, the polymorphic overloaded constants retain parametricity under some
conditions.

In the next section, we will look at a concrete example of relativization of a
formula with type classes.

5.3 Example: Relativization of Topological Spaces

We will show an example of relativization of a type-based theorem with type
classes in a set-based theorem from the field of topology (addressing Immler’s
concern discussed in Sect. 1). The type class in question will be a topological
space, which has one associated operation open : α set → bool, a predicate
defining the open subsets of α. We require that the whole space is open, finite
intersections of open sets are open, finite or infinite unions of open sets are open
and that every two distinct points can be separated by two open sets that contain
them. Such a topological space is called a T2 space and therefore we call the
respective type class T2-space.

One of the basic properties of T2 spaces is the fact that every compact set
is closed:

∀αT2-space. ∀Sα set. compact S −→ closed S (11)

A set is compact if every open cover of it has a finite subcover. A set is closed
if its complement is open. i.e., closed S = open (−S). Recall that our main
motivation is to solve the problem when we have a T2 space on a proper subset
of α. Let us show the translation of (11) into a set-based variant, which solves
the problem. We will observe what happens to the predicate closed during the
translation.

We will first internalize the type class T2-space and then abstract over its
operation open via the first step of the dictionary construction. As a result, we
obtain

∀α. T2-spacewith open −→ ∀Sα set. compactwith open S −→ closedwith open S,

where closedwith open S = open (−S). Let us apply (UO) and generalize over
open:

∀α. ∀openα set→bool.

T2-spacewith open −→ ∀Sα set. compactwith open S −→ closedwith open S
(12)

The last formula is a variant of (11) after we internalized the type class T2-space
and compiled out its operation. Now we reduced the task to the original algo-
rithm (using Local Typedef) from Sect. 4. As always, we fix a nonempty set
6 Again, the rigorous justification of this result is based on our work on Isabelle/HOL’s

consistency [21] and can be found in the extended version of this paper [1].
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Aα set, locally define β to be isomorphic to A and transfer the β-instance of (12)
onto the Aα set-level:

∀α. ∀Aα set. A �= ∅ −→ ∀openα set→bool. T2-space
on
with A open −→

∀Sα set ⊆ A. compactonwith A open S −→ closedonwith A open S

This is the set-based variant of the original theorem (11). Let us show what
happened to closedwith: its relativization is defined as closedonwith A open S =
open (−S ∩ A). Notice that we did not have to restrict open while moving
between β and A (since the function does not produce any values of type β),
whereas S is restricted since subsets of β correspond to subsets of A.

5.4 General Case

Having seen a concrete example, let us finally aim for the general case. Let us
assume that Υ is a type class depending on the overloaded constants ∗1, . . . , ∗n,
written ∗. We write A ↓ f to mean that A is closed under operations f1, . . . , fn.

The following derivation tree shows how we derive, from the type-based the-
orem  ∀αΥ . ϕ[αΥ ] (the topmost formula in the tree), its set-based version (the
bottommost formula). Explanation of the derivation steps follows after the tree.

 ∀αΥ . ϕ[αΥ ]
(1) ∀α. Υ (α) −→ ϕ[α]

(2) ∀α. Υwith ∗[α] −→ ϕwith[α, f ][∗/f ]
(3) ∀α. ∀f [α]. Υwith f −→ ϕwith[α, f ]

(4)
Aα set �= ∅, α(β ≈ A)Abs

Rep  ∀α. ∀f [α]. Υwith f −→ ϕwith[α, f ]
(5)

Aα set �= ∅, α(β ≈ A)Abs
Rep  ∀f [β]. Υwith f −→ ϕwith[β, f ]

(6)
Aα set �= ∅, α(β ≈ A)Abs

Rep  ∀f [α]. A ↓ f −→ Υ on
with A f −→ ϕon

with[α, A, f ]
(7)

Aα set �= ∅  ∀f [α]. A ↓ f −→ Υ on
with A f −→ ϕon

with[α, A, f ]
(8) ∀α. ∀Aα set. A �= ∅ −→ ∀f [α]. A ↓ f −→ Υ on

with A f −→ ϕon
with[α, A, f ]

Derivation steps:

(1) The class internalization from Sect. 5.1.
(2) The first step of the dictionary construction from Sect. 5.2.
(3) The Unoverloading rule (UO) from Sect. 5.2.
(4) We fix fresh α, Aα set and assume that A is nonempty. We locally define a

new type β to be isomorphic to A; i.e., we fix fresh β, Absα→β and Repβ→α

and assume α(β ≈ A)Abs
Rep .

(5) We instantiate α in the conclusion with β.
(6) Relativization along the isomorphism between β and A—see Sect. 6.
(7) Since Abs and Rep are present only in α(β ≈ A)Abs

Rep , we can existentially
quantify over them and replace the hypothesis with ∃Abs Rep. α(β ≈ A)Abs

Rep ,
which we discharge by the Local Typedef rule from Sect. 3, as β is not present
elsewhere either (the previous step (6) removed all occurrences of β in the
conclusion).
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(8) We move all hypotheses into the conclusion and quantify over all fixed vari-
ables.

As previously discussed, step (2), the dictionary construction, cannot be per-
formed for types depending on overloaded constants unless we want to compile
out such types too. In the next section, we will explain the last missing piece:
the relativization step (6).

Note that our approach addresses one of the long-standing user complaints:
the impossibility to provide two different orders for the same type when using
the type class of orders. With our approach, users can still enjoy the advantages
of type classes while proving abstract properties about orders, and then only
export the final product as a set-based theorem (which quantifies over all possible
orders).

6 Transfer: Automated Relativization

In this section, we will describe a procedure that automatically achieves rel-
ativization of the type-based theorems. Recall that we are facing the follow-
ing problem: we have two types β and α such that β is isomorphic to some
(nonempty) set Aα set, a proper subset of α, via two isomorphisms Absα→β and
Repβ→α. In this setting, given a formula ϕ[β], we want to find its isomorphic
counterpart ϕon[α, A] and prove ϕ[β] ←→ ϕon[α, A]. Thanks to the previous work
in which the first author of this paper participated [17], we can use Isabelle’s
Transfer tool, which automatically synthesizes the relativized formula ϕon[α, A]
and proves the equivalence with the original formula ϕ[β].

We will sketch the main principles of the tool on the following example, where
the formula (14) is a relativization of the formula (13):

∀fβ→γ xsβ list ysβ list. inj f −→ (map f xs = map f ys) ←→ (xs = ys) (13)

∀fα→γ . ∀xs ys ∈ lists Aα set. injon A f −→ (map f xs = map f ys) ←→ (xs = ys)
(14)

First of all, we reformulate the problem a little bit. We will not talk about
isomorphisms Abs and Rep but express the isomorphism between A and β by a
binary relation Tα→β→bool such that T x y = (Rep y = x). We call T a transfer
relation.

To make transferring work, we require some setup. First of all, we assume
that there exists a relator for every nonnullary type constructor in ϕ. Relators lift
relations over type constructors: Related data structures have the same shape,
with pointwise-related elements (e.g., the relator list all2 for lists), and related
functions map related input to related output. Concrete definitions follow:

list all2 : (α → β → bool) → α list → β list → bool

(list all2 R) xs ys ≡ (length xs = length ys) ∧ (∀(x, y) ∈ set (zip xs ys). R x y)
�⇒ : (α → γ → bool) → (β → δ → bool) → (α → β) → (γ → δ) → bool

(R �⇒ S) f g ≡ ∀x y. R x y −→ S (f x) (g y)
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Moreover, we need a transfer rule for every constant present in ϕ. The transfer
rules express the relationship between constants on β and α. Let us look at some
examples:

((T �⇒ =) �⇒ =) (injon A) inj (15)
((T �⇒ =) �⇒ =) (∀ ∈ A) (∀) (16)
((list all2 T �⇒ =) �⇒ =) (∀ ∈ lists A) (∀) (17)
((T �⇒ =) �⇒ list all2 T �⇒ list all2 =) map map (18)
(list all2 T �⇒ list all2 T �⇒ =) (=) (=) (19)

As already mentioned, the universal quantification on β corresponds to
a bounded quantification over A on α (∀ ∈ A). The relation between the
two constants is obtained purely syntactically: we start with the type (e.g.,
(β → γ) → bool for inj) and replace every type that does not change (γ and
bool) by the identity relation =, every nonnullary type constructor by its corre-
sponding relator (→ by �⇒ and list by list all2) and every type that changes by
the corresponding transfer relation (β by T).

To derive the equivalence theorem between (13) and (14), we use the above-
stated transfer rules (15)–(19) (they are leaves in the derivation tree) and com-
bine them with the following three rules (for a bound variable, application and
lambda abstraction):

R x y ∈ Γ

Γ 	 R x y

Γ1 	 (R �⇒ S) f g Γ2 	 R x y

Γ1 ∪ Γ2 	 S (f x) (g y)

Γ, R x y 	 S (f x) (g y)

Γ 	 (R �⇒ S) (λx. f x) (λy. g y)

Similarity of the rules to those for typing of the simply typed lambda calculus is
not a coincidence. A typing judgment here involves two terms instead of one, and
a binary relation takes the place of a type. The environment Γ collects the local
assumptions for bound variables. Thus since (13) and (14) are of type bool, the
procedure produces (13) = (14) as the corresponding relation for bool is =. Having
all appropriate transfer rules for all the involved constants (such as (15)–(19)), we
can derive the equivalence theorem for any closed lambda term.

Of course, it is impractical to provide transfer rules for every instance of a
given constant and for every particular transfer relation (T, in our example). In
general, we are solving the transfer problem for some relation Rα→β→bool such
that R is right-total (∀y. ∃x. R x y), right-unique (∀x y z. R x y −→ R x z −→
y = z) and left-unique (∀x y z. R x z −→ R y z −→ x = y). Notice that
our concrete T fulfills all these three conditions. Instead of requiring specific
transfer rules (such as (15)–(19)), we automatically derive them from general
parametrized transfer rules7 talking about basic polymorphic constants of HOL.

7 These rules are related to Reynolds’s relational parametricity [28] and Wadler’s free
theorems [31]. The Transfer tool is a working implementation of Mitchell’s represen-
tation independence [24] and it demonstrates that transferring of properties across
related types can be organized and largely automated using relational parametricity.
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For example, we obtain (16) and (19) from the following rules:

right total R −→ ((R �⇒ =) �⇒ =) (∀ ∈ (Domain R)) (∀)
left unique R −→ right unique R −→ (R �⇒ R �⇒ =) (=) (=)

These rules are part of Isabelle’s library. Notice that, in the Transfer tool, we
cannot regard type constructors as mere sets of elements, but need to impose
an additional structure on them. Indeed, we required a relator structure for the
involved type constructors. In addition, for standard type constructors such as
list we implicitly used some ad hoc knowledge, e.g., that “lists whose elements
are in A” can be expressed by lists A. For space constraints, we cannot describe
the structure in detail here. We only note that the Transfer tool generates auto-
matically the structure for every type constructor that is a natural functor (sets,
finite sets, all algebraic datatypes and codatatypes) [30]. More can be found in
the first author’s thesis [22, Sect. 4].

Overall, the tool is able to perform the relativization completely automatically.

7 Conclusion

In this paper, we proposed extending Higher-Order Logic with a Local Typedef
(LT) rule. We showed that the rule is not an ad hoc, but a natural addition
to HOL in that it incarnates a semantic perspective characteristic to HOL: for
every nonempty set A, there must be a type that is isomorphic to A. At the
same time, (LT) is careful not to introduce dependent types since it is an open
question how to integrate them into HOL.

We demonstrated how the rule allows for more flexibility in the proof devel-
opment: with (LT) in place, the HOL users can enjoy succinctness and proof
automation provided by types during the proof activity, while still having access
to the more widely applicable, set-based theorems.

Being natural, semantically well justified and useful, we believe that the Local
Typedef rule is a good candidate for HOL citizenship. We have implemented this
extension in Isabelle/HOL, but its implementation should be straightforward
and noninvasive in any HOL prover. And in a more expressive prover, such as
HOL-Omega [16], this rule could simply be added as an axiom in the user space.

In addition, we showed that our method for relativizing theorems is applicable
to types restricted by type classes as well, provided we extend the logic by a rule
for compiling out overloading constants (UO). With (UO) in place, the Isabelle
users can reason abstractly using type classes, while at the same time having
access to different instances of the relativized result.

All along according to the motto: Prove easily and still be flexible.
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22. Kunčar, O.: Types, Abstraction and Parametric Polymorphism in Higher-Order
Logic. Ph.D. thesis, Fakultät für Informatik, Technische Universität München
(2016). http://www21.in.tum.de/∼kuncar/documents/kuncar-phdthesis.pdf

23. Maggesi, M.: A formalisation of metric spaces in HOL Light. In: Presented at
the workshop formal mathematics for mathematicians, CICM 2015 (2015). http://
www.cicm-conference.org/2015/fm4m/FMM 2015 paper 3.pdf

24. Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986,
pp. 263–276. ACM (1986)

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL–A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. Part of the Isabelle 2015 distribution (2015). https://isabelle.
in.tum.de/dist/Isabelle2015/doc/tutorial.pdf

27. Pitts, A.: The HOL Logic. In: Gordon and Melham [11], pp. 191–232 (1993)
28. Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP

Congress, pp. 513–523 (1983)
29. Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. Computer Science Laboratory,

SRI International (1993)
30. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional

(co)datatypes for higher-order logic: category theory applied to theorem proving.
In: LICS 2012, pp. 596–605. IEEE (2012)

31. Wadler, P.: Theorems for Free! In: FPCA 1989, pp. 347–359. ACM (1989)
32. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter,

E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer,
Heidelberg (1997)

33. Wickerson, J.: Isabelle Users List, February 2013. https://lists.cam.ac.uk/
mailman/htdig/cl-isabelle-users/2013-February/msg00222.html

http://andreipopescu.uk/HOLC.html
http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
http://www.cicm-conference.org/2015/fm4m/FMM_2015_paper_3.pdf
http://www.cicm-conference.org/2015/fm4m/FMM_2015_paper_3.pdf
https://isabelle.in.tum.de/dist/Isabelle2015/doc/tutorial.pdf
https://isabelle.in.tum.de/dist/Isabelle2015/doc/tutorial.pdf
https://lists.cam.ac.uk/mailman/htdig/cl-isabelle-users/2013-February/msg00222.html
https://lists.cam.ac.uk/mailman/htdig/cl-isabelle-users/2013-February/msg00222.html


Formalizing the Edmonds-Karp Algorithm

Peter Lammich(B) and S. Reza Sefidgar(B)

Technische Universität München, Munich, Germany
{lammich,sefidgar}@in.tum.de

Abstract. We present a formalization of the Ford-Fulkerson method for
computing the maximum flow in a network. Our formal proof closely fol-
lows a standard textbook proof, and is accessible even without being an
expert in Isabelle/HOL — the interactive theorem prover used for the
formalization. We then use stepwise refinement to obtain the Edmonds-
Karp algorithm, and formally prove a bound on its complexity. Further
refinement yields a verified implementation, whose execution time com-
pares well to an unverified reference implementation in Java.

1 Introduction

Computing the maximum flow of a network is an important problem in graph
theory. Many other problems, like maximum-bipartite-matching, edge-disjoint-
paths, circulation-demand, as well as various scheduling and resource allocating
problems can be reduced to it. The Ford-Fulkerson method [10] describes a class
of algorithms to solve the maximum flow problem. An important instance is the
Edmonds-Karp algorithm [9], which was one of the first algorithms to solve the
maximum flow problem in polynomial time for the general case of networks with
real-valued capacities.

In this paper, we present a formal verification of the Edmonds-Karp
algorithm and its polynomial complexity bound. The formalization is conducted
in the Isabelle/HOL proof assistant [27]. Stepwise refinement techniques [1,2,33]
allow us to elegantly structure our verification into an abstract proof of the Ford-
Fulkerson method, its instantiation to the Edmonds-Karp algorithm, and finally
an efficient implementation. The abstract parts of our verification closely follow
the textbook presentation of Cormen et al. [7]. Using the Isar [32] proof lan-
guage, we were able to produce proofs that are accessible even to non-Isabelle
experts.

While there exists another formalization of the Ford-Fulkerson method in
Mizar [23]1, we are, to the best of our knowledge, the first that verify a poly-
nomial maximum flow algorithm, prove the polynomial complexity bound, or
provide a verified executable implementation. Moreover, this paper is a case
study on elegantly formalizing algorithms.

The rest of this paper is structured as follows: In Sect. 2 we give a short infor-
mal introduction to the Ford-Fulkerson method. In Sect. 3, we report on our for-
malization of the abstract method. Section 4 gives a brief overview of the Isabelle
1 Section 8.1 provides a detailed discussion.

c© Springer International Publishing Switzerland 2016
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Refinement Framework [17,22], which supports stepwise refinement based
algorithm development in Isabelle/HOL. In Sect. 5, we report on our instantia-
tion of the Ford-Fulkerson method to the Edmonds-Karp algorithm and the proof
of its complexity. Section 6 reports on the further refinement steps required to
yield an efficient implementation. Section 7 reports on benchmarking our imple-
mentation against a reference implementation of the Edmonds-Karp algorithm
from Sedgewick et al. [31]. Finally, Sect. 8 gives a conclusion and discusses related
and future work. The source code of our formalization is available at http://
www21.in.tum.de/∼lammich/edmonds karp/.

2 The Ford-Fulkerson Method

In this section, we give a short introduction to the Ford-Fulkerson method,
closely following the presentation by Cormen et al. [7].

A (flow) network is a directed graph over a finite set of vertices V and edges
E, where each edge (u, v) ∈ E is labeled by a positive real-valued capacity
c(u, v) > 0. Moreover, there are two distinct vertices s, t ∈ V , which are called
source and sink.

A flow f on a network is a labeling of the edges with real values satisfying
the following constraints: (1) Capacity constraint : the flow on each edge is a
non-negative value smaller or equal to the edge’s capacity; (2) Conservation
constraint : For all vertices except s and t, the sum of flows over all incoming
edges is equal to the sum of flows over all outgoing edges. The value of a flow f
is denoted by |f |, and defined to be the sum over the outgoing flows of s minus
the sum over the incoming flows of s. Given a network G, the maximum flow
problem is to find a flow with a maximum value among all flows of the network.

To simplify reasoning about the maximum flow problem, we assume that our
network satisfies some additional constraints: (1) the source only has outgoing
edges while the sink only has incoming edges; (2) if the network contains an edge
(u, v) then there is no parallel edge (v, u) in the reverse direction2; and (3) every
vertex of the network must be on a path from s to t. Note that any network can
be transformed to a network with the aforementioned properties and the same
maximum flow [7].

An important result is the relation between flows and cuts in a network.
A cut is a partitioning of the vertices into two sets, such that one set contains
the source and the other set contains the sink. The capacity of a cut is the sum
of the capacities of all edges going from the source’s side to the sink’s side of the
cut. It is easy to see that the value of any flow cannot exceed the capacity of
any cut, as all flow from the source must ultimately reach the sink, and thus go
through the edges of the cut. The Ford-Fulkerson theorem tightens this bound
and states that the value of the maximum flow is equal to the capacity of the
minimum cut.

The Ford-Fulkerson method is a corollary of this theorem. It is based on a
greedy approach: Starting from a zero flow, the value of the flow is iteratively
2 With u = v, this also implies that there are no self loops.
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increased until a maximum flow is reached. In order to increase the overall flow
value, it may be necessary to redirect some flow, i. e. to decrease the flow passed
through specific edges. For this purpose the Ford-Fulkerson method defines the
residual graph, which has edges in the same and opposite direction as the network
edges. Each edge is labeled by the amount of flow that can be effectively passed
along this edge, by either increasing or decreasing the flow on a network edge.
Formally, the residual graph Gf of a flow f is the graph induced by the edges
with positive labels according to the following labeling function cf :

cf (u, v) =

⎧⎪⎨
⎪⎩

c(u, v) − f(u, v) if (u, v) ∈ E

f(v, u) if (v, u) ∈ E

0 otherwise

In each iteration, the Ford-Fulkerson method tries to find an augmenting
path, i. e. a simple path from s to t in the residual graph. It then pushes as
much flow as possible along this path to increase the value of the current flow.
Formally, for an augmenting path p, one first defines the residual capacity cp as
the minimum value over all edges of p:

cf (p) = min{cf (u, v) : (u, v) is on p}

An augmenting path then yields a residual flow fp, which is the flow that can
be passed along this path:

fp(u, v) =

{
cf (p) if (u, v) is on p

0 otherwise

Finally, to actually push the flow induced by an augmenting path, we define
the augment function f↑f ′, which augments a flow f in the network by any
augmenting flow f ′, i. e. any flow in the residual graph:

(f↑f ′)(u, v) =

{
f(u, v) + f ′(u, v) − f ′(v, u) if (u, v) ∈ E

0 otherwise

Note that, for any edge in the network, the augmenting flow in the same direction
is added to the flow, while the augmenting flow in the opposite direction is
subtracted. This matches the intuition of passing flow in the indicated direction,
by either increasing or decreasing the flow of an edge in the network.

The correctness of the Ford-Fulkerson algorithm follows from the Ford-
Fulkerson theorem, which is usually stated as the following three statements
being equivalent:

1. f is a maximum flow in a network G.
2. there is no augmenting path in the residual graph Gf .
3. there is a cut C in G such that the capacity of C is equal to the value of f .
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The Ford-Fulkerson method does not specify how to find an augmenting
path in the residual graph. There are several possible implementations with dif-
ferent execution times. The general method is only guaranteed to terminate for
networks with rational capacities, while it may infinitely converge against non-
maximal flows in the case of irrational edge capacities [10,34]. When always
choosing a shortest augmenting path, the number of iterations is bound by
O(V E), even for the general case of real-valued capacities. Note that we write V
and E instead of |V | and |E| for the number of nodes and edges if the intended
meaning is clear from the context. A shortest path can be found by breadth first
search (BFS) in time O(E), yielding the Edmonds-Karp algorithm [9] with an
overall running time of O(V E2).

3 Formalizing the Ford-Fulkerson Method

In this section, we provide a brief overview of our formalization of the Ford-
Fulkerson method. In order to develop theory in the context of a fixed graph or
network, we use Isabelle’s concept of locales [3], which allows us to define named
contexts that fix some parameters and assumptions. For example, the graph
theory is developed in the locale Graph, which fixes the edge labeling function
c, and defines the set of edges and nodes based on c:

locale Graph = fixes c :: edge ⇒ capacity begin
definition E ≡ {(u, v). c (u, v) �= 0}
definition V ≡ {u. ∃v. (u, v) ∈ E ∨ (v, u) ∈ E}
[. . . ]

Moreover, we define basic concepts like (simple, shortest) paths, and provide
lemmas to reason about them.

Networks are based on graphs, and add the source and sink nodes, as well as
the network assumptions:

locale Network = Graph + fixes s t :: node

assumes no_incoming_s: ∀u. (u, s) /∈ E

[. . . ]

Most theorems presented in this paper are in the context of the Network locale.

3.1 Presentation of Proofs

Informal proofs focus on the relevant thoughts by leaving out technical details
and obvious steps. In contrast, a formal proof has to precisely specify each step
as the application of some inference rules. Although modern proof assistants
provide high-level tactics to summarize some of these steps, formal proofs tend
to be significantly more verbose than informal proofs. Moreover, formal proofs
are conducted in the tactic language of the proof assistant, which is often some
dialect of ML. Thus, many formal proofs are essentially programs that instruct
the proof assistant how to conduct the proof. They tend to be inaccessible with-
out a deep knowledge of the used proof assistant, in many cases requiring to
replay the proof in the proof assistant in order to understand the idea behind it.



Formalizing the Edmonds-Karp Algorithm 223

For the Isabelle/HOL proof assistant, the Isar proof language [32] allows to
write formal proofs that resemble standard mathematical textbook proofs, and
are accessible, to a certain extent, even for those not familiar with Isabelle/HOL.
We use Isar to present our proof of the Ford-Fulkerson method such that it
resembles the informal proof described by Cormen et al. [7].

As an example, consider the proof that for a flow f and a residual flow f ′,
the augmented flow f↑f ′ is again a valid flow. In particular, one has to show
that the augmented flow satisfies the capacity constraint. Cormen et al. give the
following proof, which we display literally here, only replacing the references to
“Equation 26.4” by “definition of ↑”:

For the capacity constraint, first observe that if (u, v) ∈ E, then cf (v, u) =
f(u, v). Therefore, we have f ′(v, u) ≤ cf (v, u) = f(u, v), and hence

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v) − f ′(v, u) (definition of ↑)
≥ f(u, v) + f ′(u, v) − f(u, v) (because f ′(v, u) ≤ f(u, v))
= f ′(u, v)
≥ 0.

In addition,

(f ↑ f ′)(u, v) = f(u, v) + f ′(u, v) − f ′(v, u) (definition of ↑)
≤ f(u, v) + f ′(u, v) (because flows are nonnegative)
≤ f(u, v) + cf (u, v) (capacity constraint)
= f(u, v) + c(u, v) − f(u, v) (definition of cf )
= c(u, v).

In the following we present the corresponding formal proof in Isar:

lemma augment_flow_presv_cap:

shows 0 ≤ (f↑f’)(u,v) ∧ (f↑f’)(u,v) ≤ c(u,v)

proof (cases (u,v)∈E; rule conjI)

assume [simp]: (u,v)∈E
hence f(u,v) = cf(v,u)

using no_parallel_edge by (auto simp: residualGraph_def)

also have cf(v,u) ≥ f’(v,u) using f’.capacity_const by auto

finally have f’(v,u) ≤ f(u,v) .

have (f↑f’)(u,v) = f(u,v) + f’(u,v) - f’(v,u)

by (auto simp: augment_def)

also have . . . ≥ f(u,v) + f’(u,v) - f(u,v)

using 〈f’(v,u) ≤ f(u,v) 〉 by auto

also have . . . = f’(u,v) by auto

also have . . . ≥ 0 using f’.capacity_const by auto

finally show (f↑f’)(u,v) ≥ 0 .

have (f↑f’)(u,v) = f(u,v) + f’(u,v) - f’(v,u)

by (auto simp: augment_def)
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also have . . . ≤ f(u,v) + f’(u,v) using f’.capacity_const by auto

also have . . . ≤ f(u,v) + cf(u,v) using f’.capacity_const by auto

also have . . . = f(u,v) + c(u,v) - f(u,v)

by (auto simp: residualGraph_def)

also have . . . = c(u,v) by auto

finally show (f↑f’)(u, v) ≤ c(u, v) .
qed (auto simp: augment_def cap_positive)

The structure of the Isar proof is exactly the same as that of the textbook proof,
except that we had to also consider the case (u, v) /∈ E, which is not mentioned
in the informal proof at all, and easily discharged in our formal proof by the
auto-tactic after the qed. We also use exactly the same justifications as the
original proof, except that we had to use the fact that there are no parallel
edges to show cf (v, u) = f(u, v), which is not mentioned in the original proof.

3.2 Presentation of Algorithms

In textbooks, it is common to present algorithms in pseudocode, which captures
the essential ideas, but leaves open implementation details. As a formal equiv-
alent to pseudocode, we use the monadic programming language provided by
the Isabelle Refinement Framework [17,22]. For example, we define the Ford-
Fulkerson method as follows:

definition ford_fulkerson_method ≡ do {

let f = (λ(u,v). 0);

(f,brk) ← while (λ(f,brk). ¬brk)
(λ(f,brk). do {

p ← selectp p. is_augmenting_path f p;

case p of

None ⇒ return (f,True)

| Some p ⇒ return (augment c f p, False)

})

(f,False);

return f

}

The code looks quite similar to pseudocode that one would expect in a text-
book, but actually is a rigorous formal specification of the algorithm, using
nondeterminism to leave open the implementation details (cf. Sect. 4). Note that
we had to use the available combinators of the Isabelle Refinement Framework,
which made the code slightly more verbose than we would have liked. We leave
it to future work to define a set of combinators and appropriate syntax that
allows for more concise presentation of pseudocode.

Finally, using the Ford-Fulkerson theorem and the verification condition gen-
erator of the Isabelle Refinement Framework, it is straightforward to prove (par-
tial) correctness of the Ford-Fulkerson method, which is stated in Isabelle/HOL
by the following theorem:

theorem ( in Network) ford_fulkerson_method ≤ (spec f. isMaxFlow f)
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4 Refinement in Isabelle/HOL

After having stated and proved correct an algorithm on the abstract level, the
next step is to provide an (efficient) implementation. In our case, we first special-
ize the Ford-Fulkerson method to use shortest augmenting paths, then implement
the search for shortest augmenting paths by BFS, and finally use efficient data
structures to represent the abstract objects modified by the algorithm.

A natural way to achieve this formally is stepwise refinement [33], and in
particular refinement calculus [1,2], which allows us to systematically transform
an abstract algorithm into a more concrete one, preserving its correctness.

In Isabelle/HOL, stepwise refinement is supported by the Isabelle Refinement
Framework [17,22]. It features a refinement calculus for programs phrased in a
nondeterminism monad. The monad’s type is a set of possible results plus an
additional value that indicates a failure:

datatype α nres = res α set | fail

The operation return x of the monad describes the single result x, and the opera-
tion bind m f nondeterministically picks a result from m and executes f on it. The
bind operation fails iff either m = fail, or f may fail for a result in m,

We define the refinement ordering on α nres by lifting the subset order-
ing with fail being the greatest element. Intuitively, m ≤ m′ means that m is
a refinement of m′, i. e. all possible results of m are also possible results of m′.
Note that the refinement ordering is a complete lattice, and bind is monotonic.
Thus, we can define recursion using a fixed-point construction [16]. Moreover,
we can use the standard Isabelle/HOL constructs for if, let and case distinc-
tions, yielding a fully fledged programming language, shallowly embedded into
Isabelle/HOL’s logic. For simpler usability, we define standard loop constructs
(while, foreach), a syntax for postcondition specifications, and use a Haskell-like
do-notation:

spec P ≡ spec x. P x ≡ res {x. P x}
do {x ← m; f x} ≡ bind m f

do {m; m′} ≡ bind m (λ_. m′)

Correctness of a program m with precondition P and postcondition Q is
expressed as P =⇒ m ≤ spec r. Q r (or, eta-contracted, just spec Q), which
means that, if P holds, m does not fail and all possible results of m satisfy Q.
Note that we provide different recursion constructs for partial and total correct-
ness: A nonterminating total correct recursion yields fail, which satisfies no
specification, even if joined with results from other possible runs. On the other
hand, a nonterminating partial correct recursion yields res {}, which refines any
specification and disappears when joined with other results.

The Isabelle Refinement Framework also supports data refinement. The rep-
resentation of results can be changed according to a refinement relation, which
relates concrete with abstract results: Given a relation R, ⇓R m is the set of con-
crete results that are related to an abstract result in m by R. If m = fail, then
also ⇓R m = fail.
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In a typical program development, one first comes up with an initial version
m0 of the algorithm and its specification P,Q, and shows P =⇒ m0 ≤ spec Q.
Then, one iteratively provides refined versions mi of the algorithm, proving
mi ≤ ⇓Ri mi−1. Using transitivity and composability of data refinement, one gets
P =⇒ mi ≤ ⇓Ri. . . R1 spec Q, showing the correctness of the refined algorithm.
If no data refinement is performed, Ri is set to the identity relation, in which
case ⇓Ri becomes the identity function.

Various tools, including a verification condition generator, assist the user in
conducting the refinement proofs by breaking them down to statements that
do not contain monad constructs any more. In many cases, these verification
conditions reflect the core idea of the proof precisely.

Monotonicity of the standard combinators also allows for modular refinement:
Replacing a part of a program by a refined version results in a program that
refines the original program. This gives us a natural formal model for statements
like “we implement shortest path finding by BFS”, or “we use arrays to represent
the edge labeling”.

5 The Edmonds-Karp Algorithm

Specializing the Ford-Fulkerson method to the Edmonds-Karp algorithm is
straightforward, as finding a shortest augmenting path is a refinement of finding
any augmenting path.

Considerably more effort is required to show that the resulting algorithm
terminates within O(V E) iterations. The idea of the proof is as follows: Edges
in the opposite direction to an edge on a shortest path cannot lie on a shortest
path itself. On every augmentation, at least one edge of the residual graph that
lies on a shortest augmenting path is flipped. Thus, either the length of the
shortest path increases, or the number of edges that lie on some shortest path
decreases. As the length of a shortest path is at most V , there are no more than
O(V E) iterations.

Note that Cormen et al. present the same idea a bit differently: They define
an edge of the residual graph being critical if it lies on a shortest path such
that it will be flipped by augmentation. Then, they establish an upper bound
of how often an edge can get critical during the algorithm. Our presentation is
more suited for a formal proof, as we can directly construct a measure function
from it, i. e. a function from flows to natural numbers, which decreases on every
iteration and is bounded by O(V E).

Formalizing the above intuitive argument was more tricky than it seemed
on first glance: While it is easy to prove that, in a fixed graph, an edge and
its opposite cannot both lie on shortest paths, generalizing the argument to
a graph transformation which may add multiple flipped edges and removes at
least one original edge requires some generalization of the statement. Note that
a straightforward induction on the length of the augmenting path or on the
number of flipped edges fails, as, after flipping the first edge, the path no longer
exists.
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Having defined the measure function and shown that it decreases on aug-
mentation, it is straightforward to refine the partial correct while loop to a total
correct one. Moreover, to make explicit the bound on the number of loop itera-
tions, we instrument the loop to count its iterations, and assert the upper bound
after the loop.

6 Refinement to Executable Code

In the previous section, we have presented our abstract formalization of the
Edmonds-Karp algorithm, leaving open how to obtain a shortest augmenting
path and how to implement the algorithm. In this section, we outline the further
refinement steps that were necessary to obtain an efficient implementation.

6.1 Using Breadth First Search

A standard way to find a shortest path in a graph is breadth first search (BFS).
Luckily, we had already formalized a BFS algorithm as an example for the
Isabelle Refinement Framework. Unfortunately, this algorithm only computed
the minimum distance between two nodes, without returning an actual path.
For this project, we extended the formalization accordingly, and added an effi-
cient imperative implementation, using the same stepwise refinement techniques
as for the main algorithm. Note that the resulting BFS algorithm is independent,
and can be reused for finding shortest paths in other applications.

Implementing shortest path finding by BFS in Edmonds-Karp algorithm
yields a specification that algorithmically describes all major operations, but
still leaves open the data structures used for implementation.

6.2 Manipulating Residual Graphs Directly

Next, we observe that the algorithm is phrased in terms of a flow, which is
updated until it is maximal. In each iteration, the augmenting path is searched
on the residual graph induced by the current flow. Obviously, computing the
complete residual graph in each iteration is a bad idea. One solution to this
problem is to compute the edges of the residual graph on the fly from the network
and the current flow. Although this solution seems to be common, it has the
disadvantage that for each edge of the residual graph, two (or even three) edges
of the network and the flow have to be accessed. As edges of the residual graph
are accessed in the inner loop, during the BFS, these operations are time critical.

After our profiling indicated a hot spot on accessing the capacity matrices
of the network and the flow, we switched to an algorithm that operates on
a representation of the residual graph directly. This resulted in a speed-up of
roughly a factor of two. As the residual graph uniquely determines the flow
(and vice versa), it is straightforward to phrase the operations directly on the
residual graph. Performing a data refinement of the flow wrt. the refinement
relation {(cf , f) | f is a flow} then yields the desired algorithm.
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6.3 Implementing Augmentation

In our abstract formalization, which matches the presentation in Sect. 2, we
have formulated augmentation by first defining the residual capacity cp of the
augmenting path. Using cp, we have defined the residual flow fp, which was finally
added to the current flow. In the refinement to operate on residual graphs, we
have refined this to augment the residual graph. For the implementation, we
compute the residual capacity in a first iteration over the augmenting path, and
modify the residual graph in a second iteration. Proving this implementation
correct is straightforward by induction on the augmenting path.

6.4 Computing Successors

In order to find an augmenting path, the BFS algorithm has to compute the
successors of a node in the residual graph. Although this can be implemented on
the edge labeling function by iterating over all nodes, this implementation tends
to be inefficient for sparse graphs, where we would have to iterate over many
possible successor nodes just to find that there is no edge.

A common optimization is to pre-compute an adjacency map from nodes to
adjacent nodes in the network. As an edge in the residual graph is either in the
same or opposite direction of a network edge, it is enough to iterate over the
adjacent nodes in the network, and check whether they are actual successors
in the residual graph. It is straightforward to show that this implementation
actually returns the successor nodes in the residual graph.

6.5 Using Efficient Data Structures

In a final step, we have to choose efficient data structures for the algorithm.
We implement capacities as (arbitrary precision) integer numbers3. Note that

an implementation as fixed precision numbers would also be possible, but requires
additional checks on the network to ensure that no overflows can happen.

We implement nodes as natural numbers less than an upper bound N , and
residual graphs are implemented by their capacity matrices, which, in turn, are
realized as arrays of size N×N with row-major indexing, such that the successors
of a node are close together in memory. The adjacency map of the network is
implemented as an array of lists of nodes. An augmenting path is represented
by a list of edges, i. e. a list of pairs of nodes.

The input network of the algorithm is represented as a function from network
edges to capacities, which is tabulated into an array to obtain the initial residual
graph. This gives us some flexibility in using the algorithm, as any capacity
matrix representation can be converted into a function easily, without losing
efficiency for read-access. Similarly, our implementation expects an adjacency

3 Up to this point, the formalization models capacities as linearly ordered integral
domains, which subsume reals, rationals, and integers. Thus, we could chose any exe-
cutable number representation here.
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map as additional parameter, which is then tabulated into an array. This is
convenient in our context, where a preprocessing step computes the adjacency
map anyway.

The output flow of the algorithm is represented as the residual graph. The
user can decide how to compute the maximum flow from it. For example, in
order to compute the maximum flow value, only the outgoing edges of the source
node have to be computed, which is typically less expensive than computing the
complete flow matrix. The correctness theorem of the algorithm abstractly states
how to obtain the maximum flow from the output.

Note that there is still some optimization potential left in the choice of our data
structures: For example, the BFS algorithm computes a predecessor map P . It then
iterates over P to extract the shortest path as a list of edges. A subsequent iteration
over this list computes the residual capacity, and a final iteration performs the aug-
mentation. This calls for a deforestation optimization to get rid of the intermediate
list, and iterate only two times over the predecessor map directly. Fortunately, iter-
ation over the shortest path seems not to significantly contribute to the runtime of
our implementation, such that we leave this optimization for future work.

Note that we performed the last refinement step using our Sepref tool [19,20],
which provides tool support for refinement from the purely functional programs
of the Isabelle Refinement Framework into imperative programs expressed in
Imperative/HOL [5]. The formalization of this refinement step consists of set-
ting up the mappings between the abstract and concrete data structures, and
then using Sepref to synthesize the Imperative/HOL programs and their refine-
ment proofs. Finally, Imperative/HOL comes with a setup for the Isabelle code
generator [14,15] to generate imperative programs in OCaml, SML, Scala, and
Haskell.

6.6 Network Checker

Additionally, we implemented an algorithm that takes as input a list of edges,
a source node, and a target node. It converts these to a capacity matrix and
an adjacency map, and checks whether the resulting graph satisfies our network
assumptions. We proved that this algorithm returns the correct capacity matrix
and adjacency map iff the input describes a valid network, and returns a failure
value otherwise.

Combining the implementation of the Edmonds-Karp algorithm with the
network checker yields our final implementation, for which we can export code,
and have proved the following theorem:

theorem
fixes el defines c ≡ ln_α el

shows <emp> edmonds_karp el s t <λ
None ⇒ ↑(¬ln_invar el ∨ ¬Network c s t)

| Some (N,cf) ⇒
↑(ln_invar el ∧ Network c s t ∧ Graph.V c ⊆ {0..<N})

* (∃A f. is_rflow c N f cf * ↑(Network.isMaxFlow c s t f))> t
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Note that this theorem is stated as a Hoare triple, using separation logic [21,30]
assertions. There are no preconditions on the input. If the algorithm returns
None, then the edge list was malformed or described a graph that does not sat-
isfy the network assumptions. Here, ln_invar describes well-formed edge lists,
i. e. edge lists that have no duplicate edges and only edges with positive capac-
ity, and ln_α describes the mapping from (well-formed) edge lists to capacity
matrices (note that we set c ≡ ln_α el). If the algorithm returns some num-
ber N and residual graph cf, then the input was a well-formed edge list that
describes a valid network with at most N nodes. Moreover, the returned residual
graph describes a flow f in the network, which is maximal. As the case distinc-
tion is exhaustive, this theorem states the correctness of the algorithm. Note
that Isabelle/HOL does not have a notion of execution, thus total correctness
of the generated code cannot be expressed. However, the program is phrased
in a heap-exception monad, thus introducing some (coarse grained) notion of
computation. On this level, termination can be ensured, and, indeed, the above
theorem implies that all the recursions stated by recursion combinators in the
monad must terminate. However, it does not guarantee that we have not injected
spurious code equations like f x = f x, which is provable by reflexivity, but
causes the generated program to diverge.

7 Benchmarking

We have compared the running time of our algorithm in SML against an unveri-
fied reference implementation in Java, taken from Sedgewick and Wayne’s book
on algorithms [31]. We have used MLton 20100608 [26] and OpenJDK Java
1.7.0 95, running on a standard laptop machine with a 2.8 GHz i7 quadcore
processor and 16 GiB of RAM.

We have done the comparison on randomly generated sparse and dense net-
works, the sparse networks having a density ( = E

V (V −1) ) of 0.02, and the dense
networks having a density of 0.25. Note that the maximum density for networks
that satisfy our assumptions is 0.5, as we allow no parallel edges. For sparse net-
works, we varied the number of nodes between 1000 and 5500, for dense networks
between 1000 and 1450. The results are shown in Fig. 1, in a double-logarithmic
scale.

We observe that, for sparse graphs, the Java implementation is roughly faster
by a factor of 1.6, while for dense graphs, our implementation is faster by a
factor of 1.2. Note that the Java implementation operates on flows, while our
implementation operates on residual graphs (cf. Sect. 6.2). Moreover, the Java
implementation does not store the augmenting path in an intermediate list, but
uses the predecessor map computed by the BFS directly (cf. Sect. 6.5). Finally
note that a carefully optimized C++ implementation of the algorithm is only
slightly faster than the Java implementation for sparse graphs, but roughly one
order of magnitude faster for dense graphs. We leave it to future work to inves-
tigate this issue, and conclude that we were able to produce a reasonably fast
verified implementation.
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Fig. 1. Benchmark of different implementations. The x-axis shows the number of nodes,
the y axis the execution time in seconds.

8 Conclusion

We have presented a verification of the Edmonds-Karp algorithm, using a
stepwise refinement approach. Starting with a proof of the Ford-Fulkerson
theorem, we have verified the generic Ford-Fulkerson method, specialized it to
the Edmonds-Karp algorithm, and proved the upper bound O(V E) for the num-
ber of outer loop iterations. We then conducted several refinement steps to derive
an efficiently executable implementation of the algorithm, including a verified
breadth first search algorithm to obtain shortest augmenting paths. Finally, we
added a verified algorithm to check whether the input is a valid network, and
generated executable code in SML. The runtime of our verified implementation
compares well to that of an unverified reference implementation in Java.

Our formalization has combined several techniques to achieve an elegant and
accessible formalization: Using the Isar proof language [32], we were able to
provide a completely rigorous but still accessible proof of the Ford-Fulkerson
theorem. The Isabelle Refinement Framework [17,22] and the Sepref tool [19,20]
allowed us to present the Ford-Fulkerson method on a level of abstraction that
closely resembles pseudocode presentations found in textbooks, and then for-
mally link this presentation to an efficient implementation. Moreover, modularity
of refinement allowed us to develop the breadth first search algorithm indepen-
dently, and later link it to the main algorithm. The BFS algorithm can be reused
as building block for other algorithms. The data structures are re-usable, too:
although we had to implement the array representation of (capacity) matrices
for this project, it will be added to the growing library of verified imperative
data structures supported by the Sepref tool, such that it can be re-used for
future formalizations.

During this project, we have learned some lessons on verified algorithm
development:
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– It is important to keep the levels of abstraction strictly separated. For exam-
ple, when implementing the capacity function with arrays, one needs to show
that it is only applied to valid nodes. However, proving that, e.g., augment-
ing paths only contain valid nodes is hard at this low level. Instead, one can
protect the application of the capacity function by an assertion — already
on a high abstraction level where it can be easily discharged. On refinement,
this assertion is passed down, and ultimately available for the implementation.
Optimally, one wraps the function together with an assertion of its precondi-
tion into a new constant, which is then refined independently.

– Profiling has helped a lot in identifying candidates for optimization. For exam-
ple, based on profiling data, we decided to delay a possible deforestation opti-
mization on augmenting paths, and to first refine the algorithm to operate on
residual graphs directly.

– “Efficiency bugs” are as easy to introduce as for unverified software. For exam-
ple, out of convenience, we implemented the successor list computation by
filter. Profiling then indicated a hot-spot on this function. As the order of
successors does not matter, we invested a bit more work to make the compu-
tation tail recursive and gained a significant speed-up. Moreover, we realized
only lately that we had accidentally implemented and verified matrices with
column major ordering, which have a poor cache locality for our algorithm.
Changing the order resulted in another significant speed-up.

We conclude with some statistics: The formalization consists of roughly 8000 lines
of proof text, where the graph theory up to the Ford-Fulkerson algorithm requires
3000 lines. The abstractEdmonds-Karp algorithmand its complexity analysis con-
tribute 800 lines, and its implementation (including BFS) another 1700 lines. The
remaining lines are contributed by the network checker and some auxiliary theo-
ries. The development of the theories required roughly 3 man month, a significant
amount of this time going into a first, purely functional version of the implementa-
tion, which was later dropped in favor of the faster imperative version.

8.1 Related Work

We are only aware of one other formalization of the Ford-Fulkerson method con-
ducted in Mizar [25] by Lee. Unfortunately, there seems to be no publication on this
formalization except [23], which provides a Mizar proof script without any addi-
tional comments except that it “defines and proves correctness of Ford/Fulkerson’s
Maximum Network-Flow algorithm at the level of graph manipulations”. More-
over, in Lee et al. [24], which is about graph representation in Mizar, the formal-
ization is shortly mentioned, and it is clarified that it does not provide any imple-
mentation or data structure formalization. As far as we understood the Mizar proof
script, it formalizes an algorithm roughly equivalent to our abstract version of the
Ford-Fulkerson method. Termination is only proved for integer valued capacities.

Apart from our own work [18,28], there are several other verifications of
graph algorithms and their implementations, using different techniques and proof
assistants. Noschinski [29] verifies a checker for (non-)planarity certificates using a
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bottom-up approach. Starting at a C implementation, the AutoCorres tool [12,13]
generates a monadic representation of the program in Isabelle. Further abstrac-
tions are applied to hide low-level details like pointer manipulations and fixed size
integers. Finally, a verification condition generator is used to prove the abstracted
program correct. Note that their approach takes the opposite direction than ours:
While they start at a concrete version of the algorithm and use abstraction steps
to eliminate implementation details, we start at an abstract version, and use con-
cretization steps to introduce implementation details.

Charguéraud [6] also uses a bottom-up approach to verify imperative programs
written in a subset of OCaml, amongst them a version of Dijkstra’s algorithm: A
verification condition generator generates a characteristic formula, which reflects
the semantics of the program in the logic of the Coq proof assistant [4].

8.2 Future Work

Future work includes the optimization of our implementation, and the formal-
ization of more advanced maximum flow algorithms, like Dinic’s algorithm [8]
or push-relabel algorithms [11]. We expect both formalizing the abstract theory
and developing efficient implementations to be challenging but realistic tasks.
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Abstract. We present a formalization of Cauchy’s residue theorem and
two of its corollaries: the argument principle and Rouché’s theorem.
These results have applications to verify algorithms in computer alge-
bra and demonstrate Isabelle/HOL’s complex analysis library.

1 Introduction

Cauchy’s residue theorem — along with its immediate consequences, the argu-
ment principle and Rouché’s theorem — are important results for reasoning
about isolated singularities and zeros of holomorphic functions in complex analy-
sis. They are described in almost every textbook in complex analysis [3,15,16].

Our main motivation of this formalization is to certify the standard quantifier
elimination procedure for real arithmetic: cylindrical algebraic decomposition [4].
Rouché’s theorem can be used to verify a key step of this procedure: Collins’
projection operation [8]. Moreover, Cauchy’s residue theorem can be used to
evaluate improper integrals like∫ ∞

−∞

eitz

z2 + 1
dz = πe−|t|

Our main contribution1 is two-fold:

– Our machine-assisted formalization of Cauchy’s residue theorem and two of
its corollaries is new, as far as we know.

– This paper also illustrates the second author’s achievement of porting major
analytic results, such as Cauchy’s integral theorem and Cauchy’s integral for-
mula, from HOL Light [12].

The paper begins with some background on complex analysis (Sect. 2), fol-
lowed by a proof of the residue theorem, then the argument principle and
Rouché’s theorem (3–5). Then there is a brief discussion of related work (Sect. 6)
followed by conclusions (Sect. 7).

2 Background

We briefly introduce some basic complex analysis from Isabelle/HOL’s Multi-
variate Analysis library. Most of the material in this section was first formalized
in HOL Light by John Harrison [12] and later ported to Isabelle.
1 Source is available from https://bitbucket.org/liwenda1990/src itp 2016/src.
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2.1 Contour Integrals

Given a path γ, a map from the real interval [0, 1] to C, the contour integral of
a complex-valued function f on γ can be defined as

∮
γ

f =
∫ 1

0

f(γ(t))γ′(t)dt.

Because integrals do not always exist, this notion is formalised as a relation:

definition has contour integral ::

"(complex ⇒ complex) ⇒ complex ⇒ (real ⇒ complex) ⇒ bool"

( infixr "has’ contour’ integral" 50)

where "(f has contour integral i) g ≡
((λx. f(g x) * vector derivative g (at x within {0..1}))

has integral i) {0..1}"

We can introduce an operator for the integral to use in situations when we know
that the integral exists. This is analogous to the treatment of ordinary integrals,
derivatives, etc., in HOL Light [12] as well as Isabelle/HOL.

2.2 Valid Path

In order to guarantee the existence of the contour integral, we need to place
some restrictions on paths. A valid path is a piecewise continuously differentiable
function on [0..1]. In plain English, the function must have a derivative on all
but finitely many points, and this derivative must also be continuous.

definition piecewise C1 differentiable on

:: "(real ⇒ ’a :: real normed vector) ⇒real set ⇒ bool"

( infixr "piecewise’ C1’ differentiable’ on" 50)

where "f piecewise C1 differentiable on i ≡
continuous on i f ∧
(∃ s. finite s ∧ (f C1 differentiable on (i - s)))"

definition valid path :: "(real ⇒ ’a :: real normed vector) ⇒ bool"

where "valid path f ≡ f piecewise C1 differentiable on {0..1::real}"

2.3 Winding Number

The winding number of the path γ at the point z is defined (following textbook
definitions) as

n(γ, z) =
1

2πi

∮
γ

dw

w − z

A lemma to illustrate this definition is as follows:

lemma winding number valid path:

fixes γ::"real ⇒ complex" and z::complex

assumes "valid path γ" and "z /∈ path image γ"
shows "winding number γ z

= 1/(2*pi* i) * contour integral γ (λw. 1/(w - z))"
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2.4 Holomorphic Functions and Cauchy’s Integral Theorem

A function is holomorphic if it is complex differentiable in a neighborhood of
every point in its domain. The Isabelle/HOL version follows that of HOL Light:

definition holomorphic on :: ( infixl "(holomorphic’ on)" 50) where
"f holomorphic on s ≡ ∀ x∈s. f complex differentiable (at x within s)"

As a starting point to reason about holomorphic functions, it is fortunate
that John Harrison has made the effort to prove Cauchy’s integral theorem in a
rather general form:

theorem Cauchy_theorem_global:

fixes s::"complex set" and f::"complex ⇒ complex"

and γ::"real ⇒ complex"

assumes "open s" and "f holomorphic_on s"

and "valid_path γ" and "pathfinish γ = pathstart γ"
and "path_image γ ⊆ s"

and "
∧
w. w /∈ s =⇒ winding_number γ w = 0"

shows "(f has_contour_integral 0) γ"

Note, a more common statement of Cauchy’s integral theorem requires the
open set s to be simply connected (connected and without holes). Here, the
simple connectedness is encoded by a homologous assumption

"
∧
w. w /∈ s =⇒ winding_number γ w = 0"

The reason behind this homologous assumption is that a non-simply-connected
set s should contain a cycle γ and a point a within one of its holes, such
that winding number γ a is non-zero. Statements of such homologous version
of Cauchy’s integral theorem can be found in standard texts [1,15].

2.5 Remarks on the Porting Efforts

We have been translating the HOL Light proofs manually in order to make them
more general and more legible. In the HOL Light library, all theorems are proved
for Rn, where n is a positive integer encoded as a type [14]. The type of complex
numbers is identified with R

2, and sometimes the type of real numbers must be
coded as R1. Even worse, the ordered pair (x,y) must be coded, using complicated
translations, as R

m+n. We are able to eliminate virtually all mention of Rn in
favour of more abstract notions such as topological or metric spaces. Moreover,
our library consists of legible structured proofs, where the formal development
is evident from the proof script alone.

3 Cauchy’s Residue Theorem

As a result of Cauchy’s integral theorem, if f is a holomorphic function on a
simply connected open set s which contains a closed path γ, then∮

γ

f(w) = 0
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However, if the set s does have a hole, then Cauchy’s integral theorem will
not apply. For example, consider f(w) = 1

w so that f has a pole at w = 0, and
γ is the circle path γ(t) = e2πit:

∮
γ

dw

w
=

∫ 1

0

1
e2πit

(
d

dt
e2πit

)
dt =

∫ 1

0

2πidt = 2πi �= 0

Cauchy’s residue theorem applies when a function is holomorphic on an open
set except for a finite number of points (i.e. isolated singularities):

lemma Residue_theorem:

fixes s pts::"complex set" and f::"complex ⇒ complex"

and γ::"real ⇒ complex"

assumes "open s" and "connected s" and "finite pts" and
"f holomorphic_on s - pts" and
"valid_path γ" and
"pathfinish γ = pathstart γ" and
"path_image γ ⊆ s - pts" and
"∀ z. (z /∈ s) −→ winding_number γ z = 0"

shows "contour_integral γ f

= 2 * pi * i *(
∑

p∈pts. winding_number γ p * residue f p)"

where residue f p denotes the residue of f at p, which we will describe in details
in the next subsection.

Note, definitions and lemmas described from this section onwards are our
original proofs (i.e. not ported from HOL Light) except where clearly noted.

3.1 Residue

A complex function f is defined to have an isolated singularity at point z, if f
is holomorphic on an open disc centered at z but not at z.

We now define residue f z to be the path integral of f (divided by a constant
2πi) along a small circle path around z:

definition residue::"(complex ⇒ complex) ⇒ complex ⇒ complex" where
"residue f z = (SOME int. ∃ e>0. ∀ ε>0. ε<e

−→ (f has_contour_integral 2 * pi * i * int) (circlepath z ε))"

To actually utilize our definition, we need not only to show the existence of
such integral but also its invariance when the radius of the circle path becomes
sufficiently small.

lemma base_residue:

fixes s::"complex set" and f::"complex ⇒ complex"

and e::real and z::complex

assumes "open s" and "z ∈ s" and "e > 0"

and "f holomorphic_on (s - {z})" and "cball z e ⊆ s"

shows "(f has_contour_integral 2 * pi * i * residue f z) (circlepath z e)"
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Fig. 1. Circlepath ce and cε around an isolated singularity z

Here cball denotes the familiar concept of a closed ball:

definition cball :: "’a::metric space ⇒ real ⇒ ’a set"

where "cball x e = {y. dist x y ≤ e}"

Proof. Given two small circle path cε and ce around z with radius ε and e
respectively, we want to show that∮

cε

f =
∮

ce

f

Let γ is a line path from the end of ce to the start of −cε. As illustrated in Fig. 1,
consider the path

Γ = ce + γ + (−cε) + (−γ)

where + is path concatenation, and −cε and −γ are reverse paths of cε and γ
respectively. As Γ is a valid closed path and f is holomorphic on the interior of
Γ , we have∮

Γ

f =
∮

ce

f +
∮

γ

f + (−
∮

cε

f) + (−
∮

γ

f) =
∮

ce

f −
∮

cε

f = 0

hence ∮
cε

f =
∮

ce

f

and the proof is completed. ��

3.2 Generalization to a Finite Number of Singularities

The lemma base residue can be viewed as a special case of the lemma
Residue theorem where there is only one singularity point and γ is a circle path. In
this section, we will describe our proofs of generalizing the lemma base residue

to a plane with finite number of singularities.
First, we need the Stone-Weierstrass theorem, which approximates continu-

ous functions on a compact set using polynomial functions.2

2 Our formalization is based on a proof by Brosowski and Deutsch [7].



240 W. Li and L.C. Paulson

lemma Stone Weierstrass polynomial function:

fixes f :: "’a::euclidean space ⇒b́::euclidean space"

assumes "compact s"

and "continuous on s f"

and "0 < e"

shows "∃ g. polynomial function g ∧ (∀ x ∈ s. norm(f x - g x) < e)"

From the Stone-Weierstrass theorem, it follows that each open connected
set is actually valid path connected (recall that our valid paths are piecewise
continuous differentiable functions on the closed interval [0, 1]):

lemma connected open polynomial connected:

fixes s::"’a::euclidean space set" and x y::’a

assumes "open s" and "connected s" and "x ∈ s" and "y ∈ s"

shows "∃ g. polynomial function g ∧ path image g ⊆ s ∧
pathstart g = x ∧ pathfinish g = y"

lemma valid path polynomial function:

fixes p::"real ⇒ ’a::euclidean space"

shows "polynomial function p =⇒ valid path p"

This yields a valid path γ on some connected punctured set such that a
holomorphic function has an integral along γ:

lemma get integrable path:

fixes s pts::"complex set" and a b::complex and f::"complex ⇒
complex"

assumes "open s" and "connected (s - pts)" and "finite pts"

and "f holomorphic on (s - pts)¨

and "a ∈ s - pts" and "b ∈ s - pts"

obtains γ where
"valid path γ" and "pathstart γ = a" and "pathfinish γ = b"

and "path image γ ⊆ s-pts" and "f contour integrable on γ"

Finally, we obtain a lemma that reduces the integral along γ to a sum of integrals
over small circles around singularities:

lemma Cauchy_theorem_singularities:

fixes s pts::"complex set" and f::"complex ⇒ complex"

and γ::"real ⇒ complex" and h::"complex ⇒ real"

assumes "open s" and "connected s" and "finite pts"

and "f holomorphic_on (s - pts)" and "valid_path g"

and "pathfinish g = pathstart g" and "path_image g ⊆ (s - pts)"

and "∀ z. (z /∈ s) −→ winding_number g z = 0"

and "∀ p∈s. h p>0 ∧ (∀ w∈cball p (h p). w∈s ∧ (w �=p −→ w /∈ pts))"

shows "contour_integral g f = (
∑

p∈pts. winding_number g p

* contour_integral (circlepath p (h p)) f)"

Proof. Since the number of singularities pts is finite, we do induction on them.
Assuming the lemma holds when there are pts singularities, we aim to show the
lemma for {q} ∪ pts.
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Fig. 2. Induction on the number of singularities

As illustrated in Fig. 2, suppose cq is a (small) circle path around q, by the
lemma get integrable path, we can obtain a valid path γ′ from the end of γ to
the start of cq such that f has an integral along γ′.

Consider the path

Γ = γ + γ′ + cq + ... + cq︸ ︷︷ ︸
n(γ,q)

+(−γ′)

where + is path concatenation, n(γ, q) is the winding number of the path γ
around q and −γ′ is the reverse path of γ′. We can show that Γ is a valid cycle
path and the induction hypothesis applies to Γ , that is

∮
Γ

f =
∑

p∈pts

n(γ, p)
∮

cp

f

hence ∮
γ

f +
∮

γ′
f + n(γ, q)

∮
cq

f −
∮

γ′
f =

∑
p∈pts

n(γ, p)
∮

cp

f

and finally ∮
γ

f =
∑

p∈{q}∪pts

n(γ, p)
∮

cp

f

which concludes the proof. ��
By combining the lemma Cauchy theorem singularities and base residue, we

can finish the proof of Cauchy’s residue theorem (i.e. the lemma Residue theorem).
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3.3 Applications

Besides corollaries like the argument principle and Rouché’s theorem, which we
will describe later, Cauchy’s residue theorem is useful when evaluating improper
integrals.

For example, evaluating an improper integral:∫ ∞

−∞

dx

x2 + 1
= π

corresponds the following lemma in Isabelle/HOL:

lemma improper_Ex:

"Lim at_top (λR. integral {- R..R} (λx. 1 / (x2 + 1))) = pi"

Proof. Let

f(z) =
1

z2 + 1.

Now f(z) is holomorphic on C except for two poles when z = i or z = −i. We
can then construct a semicircle path γR + CR, where γR is a line path from −R
to R and CR is an arc from R to −R, as illustrated in Fig. 3. From Cauchy’s
residue theorem, we obtain∮

γR+CR

f = Res(f, i) = π

where Res(f, i) is the residue of f at i. Moreover, we have∣∣∣∣
∮

CR

f

∣∣∣∣ ≤ 1
R2 − 1

πR

as |f(z)| is bounded by 1/(R2 − 1) when z is on CR and R is large enough.
Hence, ∮

CR

f → 0 when R → ∞

Fig. 3. A semicircle path centered at 0 with radius R > 1
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and therefore
∫ ∞

−∞

dx

x2 + 1
=

∮
γR

f =
∮

γR+CR

f = π when R → ∞

which concludes the proof. ��
Evaluating such improper integrals was difficult for Avigad et al. [2] in their

formalization of the Central Limit Theorem. We hope our development could
facilitate such proofs in the future, though it may not be immediate as their
proof is based on a different integration operator.

3.4 Remarks on the Formalization

It is surprising that we encountered difficulties when generalizing the lemma
base residue to the case of a finite number of poles. Several complex analysis
textbooks [9,16] omit proofs for this part (giving the impression that the proof is
trivial). Our statement of the lemma Cauchy theorem singularities follows the
statement of Theorem 2.4, Chapter IV of Lang [15], but we were reluctant to
follow his proof of generalizing paths to chains for fear of complicating existing
theories. In the end, we devised proofs for this lemma on our own with inspiration
from Stein and Shakarchi’s concept of a keyhole [16].

Another tricky part we have encountered is in the proof of the lemma
improper Ex. When showing

∮
γR+CR

f = Res(f, i) = π

it is necessary to show i (−i) is inside (outside) the semicircle path γR + CR,
that is,

n(i, γR + CR) = 1 ∧ n(−i, γR + CR) = 0

where n is the winding number operation. Such proof is straightforward for
humans when looking at Fig. 3. However, to formally prove it in Isabelle/HOL,
we ended up manually constructing some ad-hoc counter examples and employed
proof by contradiction several times. Partially due to this reason, our proof of
the lemma improper Ex is around 300 lines of code, which we believe can be
improved in the future.

4 The Argument Principle

In complex analysis, the argument principle is a lemma to describe the difference
between the number of zeros and poles of a meromorphic3 function.

3 Holomorphic except for isolated poles.



244 W. Li and L.C. Paulson

lemma argument_principle:

fixes f h::"complex ⇒ complex" and poles s:: "complex set"

defines "zeros≡{p. f p=0} - poles"

assumes "open s" and "connected s" and
"f holomorphic_on (s - poles)" and
"h holomorphic_on s" and
"valid_path γ" and
"pathfinish γ = pathstart γ" and
"path_image γ ⊆ s - (zeros ∪ poles)" and
"∀ z. (z /∈ s) −→ winding_number γ z = 0" and
"finite (zeros ∪ poles)" and
"∀ p∈poles. is_pole f p"

shows "contour_integral γ (λx. deriv f x * h x / f x) = 2 * pi * i *

((
∑

p∈zeros. winding_number γ p * h p * zorder f p)

- (
∑

p∈poles. winding_number γ p * h p * porder f p))"

where

definition is_pole :: "(’a::topological_space ⇒ ’b::real_normed_vector)

⇒ ’a ⇒ bool" where
"is_pole f a = (LIM x (at a). f x :> at_infinity)"

encodes the usual definition of poles (i.e. f approaches infinity as x approaches
a). zorder and porder are the order of zeros and poles, which we will define in
detail in the next subsection.

4.1 Zeros and Poles

A complex number z is referred as a zero of a holomorphic function f if f(z) = 0.
And there is a local factorization property about f(z):

lemma holomorphic factor zero Ex1:

fixes s::"complex set" and f::"complex ⇒ complex" and z::complex

assumes "open s" and "connected s" and "z ∈ s" and "f(z) = 0"

and "f holomorphic on s" and "∃ w∈s. f w �= 0"

shows "∃ !n. ∃ g r. 0 < n ∧ 0 < r ∧ ball z r ⊆ s ∧
g holomorphic on ball z r

∧ (∀ w∈ball z r. f w = (w-z)^n * g w ∧ g w �=0)"

Here a ball, as usual, is an open neighborhood centred on a given point:

definition ball :: "’a::metric space ⇒ real ⇒ ’a set"

where "ball x e = {y. dist x y < e}"

Proof. 4As f is holomorphic, f has a power expansion locally around z:

f(w) =
∞∑

k=0

ak(w − z)k

and since f does not vanish identically, there exists a smallest n such that an �= 0.

4 The existence proof of such n, g and r is ported from HOL Light, while we have
shown the uniqueness of n on our own.
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Therefore

f(w) =
∞∑

k=n

ak(w − z)k = (w − z)n
∞∑

k=0

ak+n(w − z)k = (w − z)ng(w)

and the function g(w) is holomorphic and non-vanishing near z due to an �= 0.
Also, we can show that this n is unique, by assuming there exist m and

another locally holomorphic function h(w) such that

f(w) = (w − z)ng(w) = (w − z)mh(w)

and h(w) �= 0. If m > n, then

g(w) = (w − z)m−nh(w)

and this yields g(w) → 0 when w → z, which contradicts the fact that g(w) �= 0.
If n > m, then similarly h(w) → 0 when w → z, which contradicts h(w) �= 0.
Hence, n = m, and the proof is completed. ��

The unique n in the lemma holomorphic factor zero Ex1 is usually referred
as the order/multiplicity of the zero of f at z:

definition zorder::"(complex ⇒ complex) ⇒ complex ⇒ nat" where
"zorder f z = (THE n. n>0 ∧ (∃ g r. r>0 ∧ g holomorphic on cball z r

∧ (∀ w∈cball z r. f w = g w * (w-z)^n ∧ g w �=0)))"

We can also refer the complex function g in the lemma holomorphic factor

zero Ex1 using Hilbert’s epsilon operator in Isabelle/HOL:

definition zer poly::"[complex ⇒ complex, complex]⇒ complex ⇒ complex"

where
"zer poly f z = (SOME g. ∃ r . r>0 ∧ g holomorphic on cball z r

∧ (∀ w∈cball z r. f w = g w * (w-z)^(zorder f z) ∧ g w �=0))"

Given a complex function f that has a pole at z and is also holomorphic near
(but not at) z, we know the function

λx. if x = z then 0 else
1

f(x)

has a zero at z and is holomorphic near (and at) z. On the top of the definition
of the order of zeros, we can define the order/multiplicity of the pole of f at z:

definition porder::"(complex ⇒ complex) ⇒ complex ⇒ nat" where
"porder f z = (let f’=(λx. if x=z then 0 else inverse (f x))

in zorder f’ z)"
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definition pol_poly::"[complex ⇒ complex,complex]⇒ complex ⇒ complex"

where
"pol_poly f z = (let f’=(λ x. if x=z then 0 else inverse (f x))

in inverse o zer_poly f’ z)"

and a lemma to describe a similar relationship among f, porder and pol poly:

lemma porder_exist:

fixes f::"complex ⇒ complex" and s::"complex set"

and z::complex

defines "n≡porder f z" and "h≡pol_poly f z"

assumes "open s" and "z ∈ s"

and "f holomorphic_on (s - {z})"

and "is_pole f z"

shows "∃ r. n>0 ∧ r>0 ∧ cball z r ⊆ s ∧ h holomorphic_on cball z r

∧ (∀ w∈cball z r. (w �=z −→ f w = h w / (w-z)^n) ∧ h w �=0)"

Proof. With the lemma holomorphic factor zero Ex1, we derive that there exist
n and g such that

if w = z then 0 else
1

f(w)
= (w − z)ng(w)

and g(w) �= 0 for w near z. Hence

f(w) =
1

g(w)

(w − z)n
=

h(w)
(w − z)n

when w �= z. Also, h(w) �= 0 due to g(w) �= 0. This concludes the proof. ��
Moreover, porder and pol poly can be used to construct an alternative defi-

nition of residue when the singularity is a pole.

lemma residue_porder:

fixes f::"complex ⇒ complex" and s::"complex set"

and z::complex

defines "n≡porder f z" and "h≡pol_poly f z"

assumes "open s" and "z ∈ s"

and "f holomorphic_on (s - {z})"

and "is_pole f z"

shows "residue f z = ((deriv ^^ (n - 1)) h z / fact (n - 1))"

Proof. The idea behind the lemma residue porder is to view f(w) as h(w)/
(w − z)n, hence the conclusion becomes

1
2πi

∮
cε

h(w)
(w − z)n

dw =
1

(n − 1)!
dn−1

dwn−1
h(z)

which can be then solved by Cauchy’s integral formula. ��
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4.2 The Main Proof

The main idea behind the proof of the lemma argument principle is to exploit
the local factorization properties at zeros and poles, and then apply the Residue
theorem.

Proof (the argument principle). Suppose f has a zero of order m when w = z.
Then f(w) = (w − z)mg(w) and g(w) �= 0. Hence,

f ′(w)
f(w)

=
m

w − z
+

g′(w)
g(w)

which leads to ∮
γ

f ′(w)h(w)
f(w)

=
∮

γ

mh(w)
w − z

= mh(z) (1)

since

λw.
g′(w)h(w)

g(w)

is holomorphic (g, g′ and h are holomorphic and g(w) �= 0).
Similarly, if f has a pole of order m when w = z, then f(w) = g(w)/(w − z)m

and g(w) �= 0. Hence,
∮

γ

f ′(w)h(w)
f(w)

=
∮

γ

−mh(w)
w − z

= −mh(z) (2)

By combining (1), (2) and the lemma Cauchy theorem singularities5, we can
show

∮
γ

f ′(w)h(w)
f(w)

= 2πi

⎛
⎝ ∑

p∈zeros

n(γ, p)h(p)zo(f, p) −
∑

p∈poles

n(γ, p)h(p)po(f, p)

⎞
⎠

where zo(f, p) (or po(f, p)) is the order of zero (or pole) of f at p, and the proof
is now complete. ��

4.3 Remarks

Our definitions and lemmas in Sect. 4.1 roughly follow Stein and Shakarchi [16],
with one major exception. When f has a pole of order n at z, Stein and Shakarchi
define residue as

Res(f, z) = lim
w→z

1
(n − 1)!

dn−1

dwn−1
[(w − z)nf(w)]

while our lemma residue porder states

Res(f, z) =
1

(n − 1)!
dn−1

dwn−1
h(z)

5 Either the lemma Cauchy theorem singularities or the lemma Residue theorem

suffices in this place.
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where f(w) = h(w)
(w−z)n and h(w) is holomorphic and non-vanishing near z. Note,

h(w) = (w − z)nf(w) only when w �= z, since f(w) is a pole (i.e. undefined)
when w = z. Introducing the function h eliminates the technical difficulties of
reasoning about limits formally.

5 Rouché’s Theorem

Given two functions f and g holomorphic on an open set containing a path γ, if

|f(w)| > |g(w)|

for all w ∈ γ, then Rouché’s Theorem states that f and f + g have the same
number of zeros counted with multiplicity and weighted with winding number:

lemma Rouche_theorem:

fixes f g::"complex ⇒ complex" and s:: "complex set"

defines "fg≡(λp. f p+ g p)"

defines "zeros_fg≡{p. fg p =0}" and "zeros_f≡{p. f p=0}"

assumes "open s" and "connected s" and
"finite zeros_fg" and "finite zeros_f" and
"f holomorphic_on s" and "g holomorphic_on s" and
"valid_path γ" and "pathfinish γ = pathstart γ" and
"path_image γ ⊆ s" and
"∀ z∈path_image γ. cmod(f z) > cmod(g z)" and
"∀ z. (z /∈ s) −→ winding_number γ z = 0"

shows "(
∑

p∈zeros_fg. winding_number γ p * zorder fg p)

= (
∑

p∈zeros_f. winding_number γ p * zorder f p)"

Proof. Let Z(f + g) and Z(f) be the number of zeros that f + g and f has
respectively (counted with multiplicity and weighted with winding number). By
the argument principle, we have

Z(f + g) =
1

2πi

∮
γ

(f + g)′

f + g
=

1
2πi

∮
γ

f ′

f
+

1
2πi

∮
γ

(1 + g
f )′

1 + g
f

and

Z(f) =
1

2πi

∮
γ

f ′

f

Hence, Z(f + g) = Z(f) holds if we manage to show

1
2πi

∮
γ

(1 + g
f )′

1 + g
f

= 0.

As illustrated in Fig. 4, let

h(w) = 1 +
g(w)
f(w).
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Then the image of h ◦ γ is located within the disc of radius 1 centred at 1, since
|f(w)| > |g(w)| for all w on the image of γ. In this case, it can be observed that
0 lies outside h ◦ γ, which leads to∮

h◦γ

dw

w
= n(h ◦ γ, 0) = 0

where n(h ◦ γ, 0) is the winding number of h ◦ γ at 0. Hence, we have
∮

γ

(1 + g
f )′

1 + g
f

=
∫ 1

0

h′(γ(t))
h(γ(t))

γ′(t)dt =
∫ 1

0

(h ◦ γ)′(t)
(h ◦ γ)(t)

dt =
∮

h◦γ

dw

w
= 0

which concludes the proof. ��

Fig. 4. The path image of λt.1 + g(γ(t))
f(γ(t))

when |f(w)| > |g(w)| for all w on the image
of γ

Our proof of the lemma Rouche theorem follows informal textbook proofs
[3,15], but our formulation is more general: we do not require γ to be a regular
closed path (i.e. where n(γ,w) = 0 ∨ n(γ,w) = 1 for every complex number w
that does not lie on the image of γ).

6 Related Work

HOL Light has a comprehensive library of complex analysis, on top of which the
prime number theorem, the Kepler conjecture and other impressive results have
been formalized [11–14]. A substantial portion of this library has been ported to
Isabelle/HOL. It should be not hard to port our results to HOL Light.

Brunel [6] has described some non-constructive complex analysis in Coq,
including a formalization of winding numbers. Also, there are other Coq libraries
(mainly about real analysis), such as Coquelicot [5] and C-Corn [10]. However,
as far as we know, Cauchy’s integral theorem (which is the starting point of
Cauchy’s residue theorem) is not available in Coq yet.
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7 Conclusion

We have described our formalization of Cauchy’s residue theorem as well as two
of its corollaries: the argument principle and Rouché’s theorem. The proofs are
drawn from multiple sources, but we were still obliged to devise some original
proofs to fill the gaps. We hope our work will facilitate further work in formalizing
complex analysis.
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Abstract. In reasoning about effectful computations, it often suffices to
focus on the effect-free parts. We present a package for automatically lift-
ing equations to effects modelled by applicative functors. It exploits prop-
erties of the concrete functor thanks to a modular classification based on
combinators. We formalise the meta theory and demonstrate the usabil-
ity of our Isabelle/HOL package with two case studies. This is a first
step towards practical reasoning with effectful computations.

1 Introduction

In functional languages, effectful computations are often captured by monads.
Monadic effects also feature in many verification projects and formalisations
(e.g., [4,8,20–22]). The reasoning support is typically tailored to the specific
monad under consideration. Thus, the support must be designed and imple-
mented anew for every monad. In contrast, reasoning about monadic effects in
general has been largely neglected in the literature on both mechanised and pen-
and-paper reasoning—one notable exception is [11]. One reason might be that
the monadic operators can be used in too many different ways for one generic
technique covering all of them.

Applicative functors (a.k.a. idioms) [25] are a less well-known alternative for
modelling effects. Compared to monads, sequencing is restricted in idioms such
that the effects of the second computation may not depend on the result of the
first. In return, the structure of the computation becomes fixed. So, idiomatic
expressions can be analysed statically and reasoned about. Every monad is an
applicative functor and many real-world monadic programs can be expressed
idiomatically [24].

In reasoning about effectful computations, only some steps involve reasoning
about the effects themselves. Typically, many steps deal with the effect-free parts
of the computations. In this case, one would like to get the effects out of the way,
as they needlessly complicate the reasoning. Lifting, which transfers properties
from the pure world to the effectful, can formally capture such an abstraction.

In this paper, we present a new package to automate the lifting for equa-
tional reasoning steps over effects modelled by applicative functors. We choose
applicative functors (rather than monads) because they enjoy nicer properties:
the computational structure is fixed and they compose. We focus on equational
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reasoning as it is the fundamental reasoning principle in the verification of func-
tional programs. The theory is inspired by Hinze’s work on lifting [15] (see
Sect. 5 for a comparison). We formalised, refined and implemented the theory in
Isabelle/HOL. Our work is not specific to Isabelle; any HOL-based proof assis-
tant could have been used.

Our package consists of two parts (see Sect. 1.2 for a usage example). First,
the command applicative allows users to register HOL types as applicative
functors. Second, two proof methods applicative-nf and applicative-lifting imple-
ment the lifting of equations as backwards-style reasoning steps over registered
functors.

Crucially, lifting is generic in the applicative functor. That is, the implemen-
tation works uniformly for any applicative functor by relying only on the laws for
applicative functors (Sect. 3). Yet, not all equations can be lifted in all idioms.
If the functor provides additional laws like commutativity or idempotence of
effects, then more equations can be lifted. So, it makes sense to specialise the
reasoning infrastructure to some extent. To strike a balance between genericity
and applicability, we identified classes of idioms for which the liftable equations
can be characterised syntactically (Sect. 4). We achieve modularity in the imple-
mentation by using the same algorithm schema (borrowed from combinatory
logic) for all classes.

Moreover, we have formalised a core idiomatic language and most of the meta-
theory in HOL itself (Sect. 2). In fact, we manually derived the implementation
of the package from this formalisation. Thus, not only does the inference kernel
check every step of our proof method, but we know that the algorithm is indeed
correct.

Two small case studies on tree labelling (Sect. 1.2) and the Stern-Brocot
tree (Sect. 4.4) demonstrate the reasoning power of the package and indicate
directions for future extension (Sect. 6). The implementation and the examples
are available online [9,23].

1.1 Background on Applicative Functors

McBride and Paterson [25] introduced the concept of applicative functors
to abstract a recurring theme they observed in the programming language
Haskell. An applicative functor (or idiom) is a unary type operator F
(here written postfix) with two polymorphic operations pureF :: α ⇒ α F and
(�)F :: (α ⇒ β) F ⇒ α F ⇒ β F. The functor F models the effects of a computa-
tion with result type α, pureF x represents a value x without effects, and f �F x
applies the function resulting from the computation f to the value of the com-
putation x and combines their effects. That is, (�)F lifts function application to
effectful computations. When the functor F is clear from the context, we omit the
subscript F. The infix operator (�) associates to the left like function application.
Idioms must satisfy the following four laws called the applicative laws.
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pureF id �F x = x (identity)
pureF (◦) �F f �F g �F x = f �F (g �F x) (composition)

pureF f �F pureF x = pureF (f x) (homomorphism)
f �F pureF x = pureF (λf. f x) �F f (interchange)

Every monad is an applicative functor—take pure = return and f � x =
f >>= (λf ′. x >>= (λx′. return (f ′ x′)))—but not vice versa. Thus, applicative
functors are more general. For example, streams (codatatype α stream
= α ≺ α stream) host an idiom (1) which cannot be extended to a monad [25].
More examples are given in AppendixA.

pure x = x ≺ pure x (f ≺ fs) � (x ≺ xs) = f x ≺ (fs � xs) (1)

The more restrictive signature of (�) imposes a fixed structure on the com-
putation. In fact, any expression built from the applicative operators can be
transformed into canonical form pure f � x1 � . . . � xn using the applicative laws
(see Sect. 3.1), namely “a single pure function [. . . ] applied to the effectful parts
in depth-first order” [25].

1.2 Motivating Example: Tree Labelling

To illustrate lifting and its benefits, we consider the problem of labelling a binary
tree with distinct numbers. This example has been suggested by Hutton and Fulger
[19]; Gibbons et al. [10,11] explore it further. The classic solution shown below uses
a statemonadwith an operation fresh = do { x ← get; put (x + 1); return x } to
generate the labels, where we use Haskell-style do notation.

datatype α tree = L α | N (α tree) (α tree)
lbl (L ) = do { x ← fresh; return (L x) }
lbl (N l r) = do { l′ ← lbl l; r′ ← lbl r; return (N l′ r′) }

Hutton and Fulger expressed lbl concisely in the state idiom as follows.

lbl (L ) = pure L � fresh lbl (N l r) = pure N � lbl l � lbl r

The task is to prove that the labels in the resulting tree are distinct, i.e.,
pure lbls � lbl t returns only distinct lists where the function lbls given below
extracts the labels in a tree and (++) concatenates two lists.

lbls (L x) = [x] lbls (N l r) = lbls l ++ lbls r (2)

As a warm-up, we prove that the list of labels in a relabelled tree equals
a relabelling of the list of labels in the original tree. Formally, define rela-
belling for lists by lbl′ [ ] = pure [ ] and lbl′ (x · l) = pure (·) � fresh � lbl′ l. We
show pure lbls � lbl t = lbl′ (lbls t) by induction on t. In each case, we first unfold
the defining equations for lbl, lbl′ and lbls, possibly the induction hypotheses
and the auxiliary fact lbl′ (l ++ l′) = pure (++) � lbl′ l � lbl′ l′, which we prove
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similarly by induction on l and lifting the defining equations of (++). Then, the
two subgoals below remain.

pure lbls � (pure L � fresh) = pure (·) � fresh � pure [ ]
pure lbls � (pure N � lbl l � lbl r) = pure (++) � (pure lbls � lbl l) � (pure lbls � lbl r)

(3)

Observe that they are precisely liftings of (2). We recover the latter equations
if we remove all pures, replace � by function application and generalise fresh to
a variable x.

Our new proof method applicative-nf performs this transition after the state
idiom has been registered with the package using the command applicative.
Registration takes the name of the idiom (here “state”) and HOL terms for the
applicative operations. Then, the applicative laws must be proven, which the
proof method auto automates in this case.

applicative state for pure : purestate ap : (�)state by(auto simp: (�)state-def)

After the registration, both subgoals in (3) are discharged automatically using
the new proof method applicative-nf and term rewriting. The crucial point is
that we have never unfolded the definitions of the state idiom or fresh. Thus, we
do not break the abstraction.

Let us now return to the actual task. The main difficulty is stating distinct-
ness of labels without looking into the state monad, as this would break the
abstraction. Gibbons and Hinze [11] suggested to use an error monad; we adapt
their idea to idioms. We consider the composition of the state idiom with the
error idiom derived from the option monad (see Appendix A). Then, the correct-
ness of fresh is expressed abstractly as

∀n. purestate (assert distinct) � nfresh n = nfresh n (4)

where purestate lifts the assertion from the error idiom to the state-error idiom.
Further, the function nfresh n = purestate pureoption � repeat n fresh produces n
fresh symbols, where repeat nx repeats the computation x for n times and
collects the results in a list. Again, observe that purestatepureoption embeds the
computation repeat n fresh from the state idiom into the state-error idiom.

Moreover, in the error idiom, we can combine the extraction of labels from
a tree and the test for disjointness in the subtrees of a node into a single func-
tion dlbls :: α tree ⇒ α list option. Here, disjoint l l′ ←→ set l ∩ set l′ = ∅ tests
whether the lists l and l′ are disjoint and �f� uncurries the function f .

dlbls (L x) = pure [x]
dlbls (N l r) = pure �(++)� � (assert �disjoint� � (pure Pair � dlbls l � dlbls r))

Finally, we can state correctness of lbl as follows (lvs t counts the leaves in t).

Lemma 1. If (4) holds, then purestate dlbls �state lbl t = nfresh (lvs t).

Figure 1 shows the complete proof in Isar. The base case for L merely lifts the
equation dlbls (L x) = pure [x], which lives in the option idiom, to the state idiom.
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lemma 1: assumes nfresh : ∀n. purestate (assert distinct) � nfresh n = nfresh n
shows purestate dlbls �state lbl t = nfresh (lvs t)

proof (induction t)
show pure dlbls � lbl (L x) = nfresh (lvs (L x)) for x

unfolding lbl.simps lvs.simps repeat.simps by applicative-nf simp

next
fix l r

assume IH1 : pure dlbls � lbl l = nfresh (lvs l) and IH2 : pure dlbls � lbl r = nfresh (lvs r)
let ?f = λl r. pure �(++)� � (assert �disjoint� (pure Pair � l � r))
have pure dlbls � lbl (N l r) = pure ?f � (pure dlbls � lbl l) � (pure dlbls � lbl r)

unfolding lbl.simps by applicative-nf simp

also have . . . = pure ?f � (pure (assert distinct) � nfresh (lvs l)) �
(pure (assert distinct) � nfresh (lvs r))

unfolding IH1 IH2 nfresh ..
also have . . . = pure (assert distinct) � nfresh (lvs (N l r))

unfolding lvs.simps repeat-plus by applicative-nf simp

also have . . . = nfresh (lvs (N l r)) by (rule nfresh)
finally show pure dlbls � lbl (N l r) = nfresh (lvs (N l r)) .

qed

Fig. 1. Isar proof of Lemma 1. Our proof method is highlighted in grey. X.simps refers
to the defining equations of the function X, and repeat-plus to distributivity of repeat
over (+).

As our package performs the lifting, the proof in Isabelle is automatic. The case
for N requires four reasoning steps, two of which involve lifting identities from
the error idiom to the state-error idiom; the other steps apply the induction
hypotheses and the assumption (4). This compares favourably with Gibbons’
and Hinze’s proof for the monadic version [11], which requires one and a half
columns on paper and has not been checked mechanically.

2 Modelling Applicative Functors in HOL

We model applicative functors in HOL twice. In our first model, a functor F
appears as a family of HOL types α F with HOL terms for the applicative
operations. The package implementation rests on this basis. The second model
is used for the meta theory: we formalise a deep embedding of the idiomatic
language in order to establish the proof procedure and argue for its correctness.

Applicative functors in HOL. The general notion of an applicative functor cannot
be expressed in HOL for the same reasons as for monads [16]: there are no type
constructor variables in HOL, and the applicative operations occur with several
different type instances in the applicative laws. This implies that the first model
cannot be based on definitions and theorems that are generic in the functor.
Instead, we necessarily always work with a concrete applicative functor. The
corresponding terms and theorems can be expressed in HOL, as HOL constants
may be polymorphic. Our package keeps track of a set of applicative functors.
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Thus, the user must register a functor using the command applicative before the
package can use it. During the registration, the user must prove the applicative
laws (and possibly additional properties, see Sect. 4).

The package follows the traditional LCF style of prover extensions. The proof
procedures are written in ML, where they analyse the HOL terms syntactically
and compose the inference rules accordingly. This approach shifts the problem of
(functor) polymorphism to the program level, where it is easily solved. As usual,
the logical kernel ensures that all the proofs are sound. Conversely, the proof
procedures themselves should be correct, namely terminate and never attempt
to create an invalid proof. Arguments to support this are in turn supplied by
the meta theory studied in the second model.

Deep embedding of applicative functors. The second model serves two purposes:
it formalises the meta theory and we derive our package implementation from it.
The model separates the notion of idiomatic terms from the concrete applicative
functor and represents them syntactically. Idiomatic terms consist of pure terms
Pure t, opaque terms Opq x, and applications t1 � t2 of two idiomatic terms.

datatype α iterm = Pure term | Opq α | α iterm � α iterm

Opaque terms represent impure (effectful) values of the functor, or vari-
ables in general; their representation is left abstract as it is irrelevant to
most definitions in the model. In contrast, pure’s argument needs some struc-
ture such that the applicative laws can be stated. To that end, we reuse
Nipkow’s formalisation of the untyped λ-calculus with de Bruijn indices [26]:
datatype term = Var nat | term $ term | Abs term. For readability, we write such
terms as abstractions with named variables, e.g. λx. x ≡ Abs (Var 0), where
the notation λ distinguishes them from HOL terms. The relation �βη on term
denotes equivalence of λ-terms due to βη-conversion.

The model ignores types, as they are not needed for the meta theory. Thus,
we cannot express type safety of our algorithms, either. However, we do not
foresee any difficulties in extending our model with types, e.g., in the style of
Berghofer [1].

Equational reasoning on the applicative functor is formalised by an equiv-
alence relation � on α iterm. It is the least equivalence relation satisfying the
rules in Fig. 2. They represent the applicative laws and the embedding of βη-
equivalence on λ-terms. Clearly, if we interpret two idiomatic terms s and t in
an applicative functor F in the obvious way as s′ and t′, and if s′ and t′ are type
correct, then s � t implies s′ = t′.

Connection between the two models. It is natural to ask how the verified meta
model could be leveraged as part of the proofs in the shallow embedding. We
decided to leave the connection informal and settled for the two-model app-
roach for now. Formally bridging the gap is left as future work, for which two
approaches appear promising.
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Pure B � f � g � x � f � (g � x)
(composition)

Pure I � x � x
(identity)

Pure f � Pure x � Pure (f $ x)
(homomorphism)

t �βη t′

Pure t � Pure t′ (cong-Pure)

f � Pure x � Pure (λf. f $ x) � f
(interchange)

t1 � t′
1 t2 � t′

2

t1 � t2 � t′
1 � t′

2

(cong-�)

Fig. 2. Equivalence of idiomatic terms, where I ≡ λx. x and B ≡ λf g x. f $ (g $ x).

Computational reflection makes the correspondence between objects of the
logic and their representation explicit by an interpretation function with correct-
ness theorems [3]. For idiomatic terms, interpretation cannot be defined directly
in HOL, as a single term may refer to an arbitrary collection of types. Schropp
and Popescu [29] circumvent this limitation by modelling the type universe as
a single type parameter to the meta theory; additional machinery injects the
actual types into this universe and transfers the obtained results. Similar injec-
tions could be crafted for idiomatic terms, but the connection would have to be
built anew upon each usage. It is not clear that the overhead incurred is com-
pensated by the savings in avoiding the replay of the lifting proof in the shallow
embedding.

Alternatively, Tuong and Wolff [30] model the Isabelle API in HOL syntac-
tically and can thus generate code for packages from the HOL formalisation.
This could be used to express our proof tactics as HOL terms. Then, we could
formally verify them and thus obtain a verified package. Before we can apply
this technique in our setting, two challenges must be solved. First, their model
merely defines the syntax, but lacks a semantics for the API. Hence, one would
first have to model the semantics and validate it. Second, the additional code
for usability aspects like preserving the names of bound variables would also
have to be part of the HOL terms. This calls for some notion of refinement or
abstraction, which is not yet available; otherwise, these parts would clutter the
formalisation.

3 Lifting with Applicative Functors

The pureF operation of an applicative functor F lifts values of type α to α F. If we
view HOL terms as functions of their free variables, we can also lift terms via the
following syntactic modification: free variables of type α are replaced by those
of type α F, constants and abstractions1 are embedded in pureF, and function
application is replaced by (�)F. Lifting extends to equations, where both sides are
treated separately. (We assume that the free variables in an equation are implicitly

1 As lifting wraps the types of free variables in F, it does not look into abstrac-
tions, but treats them like constants. For example, λx. x :: α ⇒ α is lifted to
pure (λx. x) :: (α ⇒ α) F rather than λx. x :: α F ⇒ α F. Thus, lifting effectively
operates on first-order terms.
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quantified universally, i.e., in the interpretation as functions, an equation denotes
an equality of two functions.) Associativity (x + y) + z = x + (y + z), e.g., gets
lifted to pure (+) � (pure (+) � x � y) � z = pure (+) � x � (pure (+) � y � z). Con-
versely, unlifting removes the functor from an idiomatic expression or equation
by dropping pures and (�) and replacing opaque terms with fresh variables. An
equation is liftable in F iff the equation implies itself lifted to F. When we con-
sider a term or equation and its lifted counterpart, we say that the former is at
base level (relative to this lifting).

Hinze [15] characterised equations that are liftable in any idiom and showed
that the proof of the lifting step follows a simple structure if both sides are in
canonical form. In this section, we adapt his findings to our setting, formalise the
lifting lemma in our deep model, and discuss its implementation in the package.

3.1 Conversion to Canonical Form

The first step of lifting converts an idiomatic expression into canonical form.
Recall from Sect. 1.1 that an idiomatic term is in canonical form iff it consists of
a single pure applied to the effectful (opaque) terms, i.e., pure f � x1 � . . . � xn.
We formalise canonicity as the inductive set CF defined by (i) Pure x ∈ CF, and
(ii) t � Opq x ∈ CF if t ∈ CF. Borrowing from Hinze’s terminology, we say that n
is a normal form of an idiomatic term t iff n is in canonical form and equivalent
to t, i.e., n ∈ CF and t � n. If t ∈ CF, we refer to the Pure x part as the single
pure subterm of t.

Hinze [15, Lemma 1] gives an algorithm to compute a normal form in the
monoidal representation of idioms, which is essentially an uncurried variant of
the applicative representation from Sect. 1.1. Since HOL functions are typically
curried, we want to retain the applicative style in lifted expressions (to which
normalisation is applied). Therefore, we stick to curried functions and adapt the
normalisation function accordingly. In the following, we first formalise the nor-
malisation function ↓ in the deep model and then explain how a proof-producing
function for the corresponding equation can be extracted. The latter step is a
recurring theme in our implementation.

Figure 3 shows the specification for ↓. The cases of pure and opaque terms
are easy. For applications, ↓ first normalises both arguments and combines the
results using the auxiliary functions normnn and normpn. The auxiliary function
normpn handles the simplest case of applying a pure function f to a term in
canonical form. By repeated application of the composition law, normpn splits
the variables off until only two pure terms remain which can be combined by the

(Pure x)↓ = Pure x (Opq x)↓ = Pure I � Opq x (t � t′)↓ = normnn (t↓) (t′↓)

normnn n (Pure x) = normpn ((λa b. b $a) $x) n normpn f (Pure x) = Pure (f $ x)

normnn n (n′ � x) = normnn (normpn B n) n′ � x normpn f (n�x) = normpn (B$f) n�x

Fig. 3. Specification of the normalisation function t↓.
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homomorphism law. The other function normnn assumes that both arguments
are already in canonical form. The base case n′ = Pure x reduces to the domain
of normpn via the interchange law. In case of an application, normpn incorporates
the added term B into n before normnn recurses. Note that the equations for
normnn and normpn are complete for terms in canonical form.

Lemma 2 (Correctness of ↓). Let t ::α iterm, f :: term and n, n′ ∈ CF. Then,

(a) pure f � n � normpn f n and normpn f n ∈ CF;
(b) n � n′ � normnn n n′ and normnn n n′ ∈ CF;
(c) t � t↓ and t↓ ∈ CF.

Proof. We prove each of (a)–(c) by structural induction. As a representative
example, we focus on the three cases for (c): (i) The case t = Pure is trivial. (ii)
For t = Opq x, we justify Opq x � Pure I � Opq x by the identity law (Fig. 2) and
symmetry. (iii) For (t � t′)↓, the induction hypotheses are t � t↓ and t↓ ∈ CF, and
analogously for t′. Thus, t � t′ � t↓ � t′↓ � normnn (t↓) (t′↓) = (t � t′)↓ by (b).

In the shallow embedding, the proof method applicative-nf not only com-
putes a normal form t′ for an idiomatic term t. It also must prove them being
equivalent, i.e., t = t′. Such a function from terms to equational theorems is
known as a conversion. Paulson [27] designed a library of combinators for com-
posing conversions, e.g., by transitivity. This way, each of (a)–(c) in Lemma 2
becomes one conversion which establishes the part about �. (We ignore the part
about ∈ CF, as it is computationally irrelevant.) The inductive proofs yield
the implementation of the conversions: the induction hypotheses are obtained
by recursively calling the conversion on the subterms; case distinction is imple-
mented by matching; and the concrete applicative laws are known to the package
and instantiated directly. Thus, each proof step involving � indicates which con-
version combinator has to be used.

3.2 Lifting

Hinze’s condition for equations that can be lifted in all idioms is as follows: The
list of variables, when reading from left to right, must be the same on both sides,
and no variable may appear twice on either side. Then, the normal forms of the
two lifted terms differ only in the the pure functions, which are just the base-
level terms abstracted over all variables. The base equation implies that these
functions are extensionally equal.

It is not entirely obvious that the normal form has this precise relationship
with lifting, so we prove it formally. This gives us confidence that our proof
procedure always succeeds if the conditions on the variables are met.

For practical reasons, our proof method performs unlifting rather than lift-
ing. It takes as input an equality between idiomatic expressions, and reduces it
to the weakest base-level equation that entails it—independent of the applicative
functor. Unlifting has two advantages. First, the user can apply the method to
instantiations of lifted equations, where the variables are replaced with concrete
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effects such as fresh. Thus, there is no need to manually generalise the lifted
equation itself. Second, in the lifted equation, the pure terms distinguish con-
stants (to be lifted) from opaque terms, but there are no such markers on the
base level. Rather than lifting, we therefore formalise unlifting, which replaces
each opaque term by a new bound variable (|x| denotes the length of the list x).

unlift t = (let n = |opq t| in Absn (unlift’ n 0 t))

unlift’ n i (Pure x) = shift x n
unlift’ n i (Opq x) = Var i
unlift’ n i (t � t′) = unlift n (i + |opq t′|) t $ unlift n i t′

Here, the function opq t returns the list of all opaque terms from left to right,
so |opq t| counts the occurrences of Opq in t. Nipkow’s function shift xn
increments all loose variables in x by n. For example, unlift (Opq a � (Pure
f � Opq b)) = λg x. g (f x), as expected. Note that this holds independent of a
and b.

The benefit of the meta model is that we can characterise the normal form.

Lemma 3. Let Pure f be the single pure subterm in t↓. Then f �βη unlift t.

Equality in a real theory generally has more axioms than those for term
reductions. Let �′

βη be an extension of �βη, and �′ the corresponding extension
of �. Then, we obtain the following lifting rule, which follows from Lemmas 2
and 3 and opq (t↓) = opq t.

Lemma 4. Let opq s = opq t. Then, unlift s �′
βη unlift t implies s �′ t.

To implement its proof, we rewrite both idiomatic terms of the input equation
with the normal form conversion, i.e., we are left with the subgoal of the form
pure f � x1 . . . � xn = pure g � x1 . . . � xn. It suffices to prove f = g, which follows
from the base-level equation ∀x1 . . . xn. f x1 . . . xn = g x1 . . . xn by extensionality.

Moreover, we get that the normal form is indeed unique.

Lemma 5. If s, t ∈ CF and s �′ t, then s and t have the same structure, and
the pure terms are related by �′

βη.

4 Combinators

Lifting works for equations whose both sides contain the same list of variables
without repetitions. Many equations, however, violate this conditions. Therefore,
Hinze studied the class of idioms in which all equations can be lifted [15]. He
proved that every equation can be lifted if the functor satisfies the two equations

pure S � f � g � x = f � x � (g � x) pure K � x � y = x (5)

for all f , g, x, and y, where S = (λf g x. f x (g x)) and K = (λx y. x) denote the
well-known combinators from combinatory logic. Similar to bracket abstraction
for the λ-calculus, Hinze defines an abstraction algorithm [x]t which removes an
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opaque term x from an idiomatic expression t such that [x]t � x �E t, where �E

extends � with the combinators’ laws. For lifting, Hinze uses the abstraction
algorithm to remove all variables from both sides of the equation in the same
order (which may introduce S and K in the pure part), then applies the lifting
technique and finally removes the combinators again.

However, only few applicative functors satisfy (5). In this section, we subject
Hinze’s idea to a finer analysis of equational lifting for various sets of combina-
tors, present the implementation as a proof method in Isabelle and an application
to the Stern-Brocot tree, and sketch the formalisation in the deep embedding.2

The new proof method applicative-lifting subsumes the one from Sect. 3.

4.1 The Combinatorial Basis BCKW

While SK has become the canonical approach to combinatory logic, we argue
that Curry’s set of combinators BCKW works better for applicative lifting, where
B = (λf g x. f (g x)) and C = (λf x y.f y x) and W = (λf x. f x x). We say
that a functor has a combinator if the equation defining the combinator is liftable.
For BICKW (where I = (λx. x)), the lifted equations are the following.

pure B � f � g � x = f � (g � x) pure C � f � x � y = f � y � x

pure K � x � y = x pure W � f � x = f � x � x pure I � x = x

Note that every applicative functor has combinators B and I as their equations
are exactly the composition and identity law, respectively.

We focus on BCKW for two reasons. First, the combinators can be intuitively
interpreted. A functor has C if effects can be swapped, it has K if effects may be
omitted, and it has W if effects may be doubled. In contrast, Hinze’s combinator
S mixes doubling with a restricted form of swapping; full commutativity addi-
tionally requires K. Second, our set of combinators yields a finer hierarchy of
applicative functors. Thus, the proof method is more widely applicable because
it can exploit more precisely the properties of the particular functor, although
its implementation remains generic in the functor.

Table 1 lists for a number of applicative functors the combinators they pos-
sess. For reference, the functors are defined in AppendixA. The table is complete
in the sense that there is a tick

√
iff the functor has this combinator.

Most of the functors are standard, but some are worth mentioning. Hinze [15]
proved that all functors which are isomorphic to the environment functor (a.k.a.
the reader idiom, e.g., streams and infinite binary trees) have combinatorsS andK.
Thus, they also have the combinatorsC andW, as the two canbe expressed in terms
of SandK.However, some functorswith combinatorsSandKarenot isomorphic to
the environment functor. One example is Huffman’s construction of non-standard
numbers in non-standard analysis [17].

2 Hinze briefly considers functors with the combinators S and C and notes that the
case with only the combinator C might be interesting, too, but omits the details.
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Table 1. List of applicative functors, their combinators and the abstraction algorithm.

Applicative functor B I C K W S Abstraction algorithm

environment, stream, non-standard numbers
√ √ √ √ √ √

(kibtcs)

option, zip list
√ √ √ √ √

(ibtcs)

probability, non-empty set
√ √ √ √

(kibtc)

subprobability, set, commutative monoid
√ √ √

(ibtc)

either, idempotent monoid
√ √ √

(ibtw)

distinct non-empty list
√ √ √

(kibt)

state, list, parser, monoid
√ √

(ibt)

Every monoid yields an applicative functor known as the writer idiom. Given
a monoid on β with binary operation + and neutral element 0, we turn the
functor (β, α) monoid = β × α into an applicative one via

puremonoid x = (0, x) (a, f) �monoid (b, x) = (a + b, f x)

Commutative monoids have the combinator C, idempotent ones have W.
The idioms “probability” and “non-empty set” are derived from the monads

for probabilities and non-determinism without failure. When the latter is imple-
mented by distinct non-empty lists, commutativity is lost because lists respect
the order of elements.

The attentive reader might have noticed that one combination of combina-
tors is missing, namely BIKW, i.e., only C is excluded. As BCKW is a minimal
basis for combinatory logic, C cannot be expressed in terms of BIKW. Surpris-
ingly, an applicative functor always has C whenever it has BIKW, as the follow-
ing calculation shows, where Pair x y = (x, y) and π1 (x, y) = x and π2 (x, y) = y
and G abbreviates λf p q. C f (π2 p) (π1 q)). Steps (i) and (iii) are justified by
the equations for K and I and W; steps (ii) and (iv) hold by lifting of the
identities K (C f (K I z x) y) w = G f (z, x) (y, w) and W (G f) (y, x) = f y x,
respectively.

pure C � f � x � y
(i)
= pure K � (pure C � f � (pure K � pure I � y � x) � y) � x
(ii)
= pure G � f � (pure Pair � y � x) � (pure Pair � y � x)
(iii)
= pureW � (pure G � f) � (pure Pair � y � x)
(iv)
= f � y � x

The crucial difference between combinatory logic and idioms can be seen by
looking at G, which is equivalent to B (B (T π1)) (B (B B) (B (T π2) (B B C)))
where T = (λx f. f x). By the interchange and homomorphism laws, we have
pure (T x) � f = f � pure x in every idiom. This is the very bit of reordering that
C adds to BKW. Note, however, that T is different from the other combinators:
it may only occur applied to a term without Opq (as such terms are lifted to
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pure terms by the homomorphism law). In fact, if T was like the others, every
applicative functor would have C thanks to C = B (T (B B T)) (B B T) [6].

4.2 Characterisation of Liftable Equations

The lifting technique from Sect. 3.2 requires that the list of opaque terms be
the same on both sides and free of duplicates. With additional combinators, we
can try to rewrite both sides such that the lists satisfy this condition. In this
section, we derive for each set of combinators a simple criterion whether this
can be achieved. Simplicity is important because users should be able to easily
judge whether an equation can be lifted to a particular functor using our proof
method. Our analysis heavily builds on the literature on representable λ-terms
in various combinator bases [5]. Therefore, we refer to opaque terms as variables
in the rest of this section.

By using normal forms (cf. Lemma 2), it suffices to consider only the list
of variables on each side of the equation, say vl and vr. Our goal is to find a
duplicate-free variable list v∗ such that vl and vr can both be transformed into
v∗. The permitted transformations are determined by the combinators:

– If C is available, we may reorder any two variables.
– If K is available, we may insert a variable anywhere.
– If W is available, we may duplicate any contiguous subsequence or drop a

repetition of a contiguous subsequence (the repetition must be adjacent).

This yields the following characterisation of liftable equations. (The condi-
tions for all the cases which include the combinator C are equal to the represen-
tation conditions for λ-terms with the given combinators [5].)

BI No transformation is possible. So we require v∗ = vl = vr.
BIC vl and vr must be duplicate-free and permutations of each other. We choose

for v∗ any permutation of vl.
BICK vl and vr must be duplicate-free. We choose for v∗ any duplicate-free list

of the union of the variables in vl and vr.
BICW vl and vr must contain the same variables, but need not be duplicate-free.

We choose for v∗ any duplicate-free list of the variables.
BICKW No constraints on vl or vr. We choose for v∗ any duplicate-free list of

the union of variables in vl and vr. (This is the case considered by Hinze
[15].)

BIK vl and vr must be duplicate-free and the shared variables must occur in the
same order. Take for v∗ any merge of vl and vr, i.e., a duplicate-free sequence
which contains vl and vr as subsequences.

BIW In this case, we work in the free idempotent monoid (FIM) whose letters
are the variables in vl and vr. So, our task boils down to finding a duplicate-
free word v∗ such that vl ∼ v∗ ∼ vr where ∼ denotes equivalence in the
FIM.
Green and Rees [13] characterised ∼ recursively: For a word x, let −→x and ←−x
denote the longest prefix or suffix of x that contains all but one letters of x.
Then, x ∼ y iff x and y contain the same letters and −→x ∼ −→y and ←−x ∼ ←−y .
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This criterion yields the following conditions: (i) vl and vr contain the same
variables; (ii) the orders in which the variables occur for the first or for the last
time must be all the same in vl and vr (we choose v∗ as the list of variables in
this order); and (iii) recursively the same conditions hold for −→vl and −→vr , and
for ←−vl and ←−vr . For example, the equation ∀a b c. f a b c = g a b c a c b a b c
satisfies this condition with v∗ = abc.3

4.3 Implementation via Bracket Abstraction

Bracket abstraction converts a λ-calculus term into combinator form. The basic
algorithm [x]t abstracts the variable x from the term t (which must not con-
tain any abstraction). Like λ-terms, applicative terms are built from constants
(Pure ), variables (Opq ) and applications. So, bracket abstraction also makes
sense for applicative terms. What is interesting about bracket abstraction is
that the algorithm is modular in the combinators. That is, bracket abstrac-
tion allows us to deal with all the different combinator bases in a uniform
way. In detail, we first abstract the variables on both sides of the equation
in the order given by v∗ = v1 . . . vn. As l �E ([v1](. . . ([vn]l))) � v1 � . . . � vn and
r �E ([v1](. . . ([vn]r))) � v1 � . . . � vn by the correctness of bracket abstraction,
we thus obtain an equation whose two sides are in normal form. From there, our
implementation proceeds as before (Sect. 3).

As usual, we specify a bracket abstraction algorithm by a list of rules, say
(kibtcs). This means that the corresponding rules should be tried in that order
and the first one matching should be taken. The algorithm for each set of com-
binators is listed in the last column of Table 1. The rules are shown in Table 2,
where V(t) denotes the set of variables in t. All but (t) and (w) correspond to the
standard abstraction rules for the λ-calculus [5]. The side condition of (t) reflects
the restriction of the interchange law to pure computations (cf. Sect. 4.1). Rule
(w) is used only if C is not available—otherwise (s) is used as S = B (B W)
(B B C). It uses T to allow for pure computations between two occurrences of
the same variable. This way, we avoid repeatedly converting the term to normal
form, as otherwise W could only be used for terms of the form t � x � x for some
variable x.

Our bracket abstraction algorithm (ibtw) is not complete for BIW. A dedi-
cated algorithm would be needed, as it seems not possible to construct equiva-
lence proofs like in Footnote 3 using bracket abstraction, because the transfor-
mations are not local. Bersten’s and Reutenauer’s elementary proof [2, Theo-
rem2.4.1] of Green’s and Rees’ characterisation contains an algorithm, but we
settle with (ibtw) nevertheless. Thus, our implementation imposes stronger con-
ditions on vl and vr than those described in Sect. 4.2, namely vl and vr must
3 The following shows the equivalence (bold face denotes doubling and underlin-

ing dropping of a repetition): abcacbabc ∼ abcacbabcabc ∼ abcacbabcabcabc ∼
abcacbabcabcacabc ∼ abcacbabcabcacbcacabc ∼ abcacbabcabcacbacbcacabc ∼
abcacbabcabcacbabacbcacabc ∼ abcacbabcabcacbabcbabacbcacabc ∼
abcacbabcbabacbcacabc ∼ abcacbabacbcacabc ∼ abcacbacbcacabc ∼ abcacbcacabc ∼
abcacabc ∼ abcabc ∼ abc.
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[x]t = Pure K � t if x /∈ V(t) (k)

[x]x = Pure I (i)

[x](s � t) = Pure B � s � [x]t if x /∈ V(s) (b)

[x](s � t) = Pure T � t � [x]s if V(t) = ∅ (t)

[x](s � t) = Pure C � [x]s � t if x /∈ V(t) (c)

[x](s � t) = Pure S � [x]s � [x]t (s)

[x](s � t) = Pure W � (Pure B � (Pure T � [x]t) � (Pure (B B) � [x]s)) if V([x]t) = ∅ (w)

Table 2. Bracket abstraction rules for applicative expressions.

use the same variables in the same order, but each variable may be repeated any
number of times (with no other variable between the repetitions). In practice,
we have not yet encountered a liftable sequence of variables that needs the full
generality.

Again, we verify unlifting in the deep embedding. We show that the imple-
mentation with bracket abstraction yields the same equation (after reducing the
combinators) as unlifting the lifted equation directly, where v∗ determines the
quantifier order. Thus, it suffices to rearrange the quantifiers according to v∗.

Unlike to Sect. 3.2, unlift must map identical opaque terms to the same vari-
able. So, we assume that Opq’s argument denotes the variable name. Then,
the new function unlift∗ replaces Opq i with Var i, (�) with $ and Pure x with
shift x |v∗|.

Further, we abstract from the concrete bracket abstraction algorithm. We
model the algorithm as two partial functions [ ] and [ ] on term and nat iterm
and assume that they are correct (� � denotes definedness): (i) if [i]t = �t′�,
then t′ $ Var i �βη t and i is not free in t′, (ii) if [i]t = �t′�, then t′ � Opq i �E t
and set (opq t′) = set (opq t) − {Opq i }, and (iii) they commute with unlift-
ing: [i] (unlift∗ n t) = unlift∗ n ([i]t) for i < n. Formalising and verifying bracket
abstraction is left as future work. In the theorem below, the congruence relation
�′

E combines �E with the additional axioms from �′.

Theorem 1. Let s, t :: nat iterm and let v∗ be a permutation of {0, . . . , n − 1}.
Assume that set (opq s) ∪ set (opq t) ⊆ set v∗ and that [ ] succeeds to abstract s
and t over v∗. Then, Absn (unlift∗ n s) �′

βη Absn (unlift∗ n t) implies s �′
E t.

4.4 Application: The Stern-Brocot Tree

Fig. 4. The Stern-Brocot tree

Hinze uses his theory of lifting to reason about
infinite trees of rational numbers [14]. In partic-
ular, he shows that a linearisation of the Stern-
Brocot tree yields Dijsktra’s fusc function [7].
We have formalised his reasoning in Isabelle as a
benchmark for our package [9]. Here, we report
on our findings.

The Stern-Brocot tree stern-brocot enumer-
ates all the rationals in their lowest terms
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(see [12]). It is an infinite binary tree of type frac cotree containing formal
fractions (type-synonym frac = nat × nat). Each node is labelled with the
mediant of its right-most and left-most ancestor (Fig. 4), where mediant (a, c)
(b, d) = (a + b, c + d). Formally, stern-brocot = sb-gen (0, 1) (1, 0) with

codatatype α cotree = Node (root : α) (α cotree) (α cotree)
primcorec sb-gen l u = (let m = mediant l u in Node m (sb-gen l m) (sb-gen m u))

The type constructor cotree forms an idiom analogous to stream, i.e., (�) cor-
responds to zipping trees with function application. Combinators C, K, and W
exist. The idiom homomorphism stream :: α cotree ⇒ α stream linearises a tree
to a stream.

primcorec chop (Node x l r) = Node (root l) r (chop l)
primcorec stream t = root t ≺ stream (chop t)

Hinze shows that stream stern-brocot equals fusc � fusc′ for Dijkstra’s fusc and
fusc′ given by

fusc = 1 ≺ fusc′ fusc′ = 1 ≺ (fusc + fusc′ − 2 ∗ (fusc mod fusc′))

where all arithmetic operations are lifted to streams, e.g., s + t denotes
pure (+) � s � t, and (�) :: α stream ⇒ β stream ⇒ (α × β) stream zips two
streams. The proof shows that stream stern-brocot satisfies the same recursion
equation as fusc � fusc′, so they must be equal. The crucial step is to show that
chop den = num + den − 2 ∗ (num mod den) where num = pure π1 � stern-brocot
and den = pure π2 � stern-brocot project the Stern-Brocot tree to numerators and
denominators. Hinze proves this equality by lifting various arithmetic identities
from integers to trees.

We instantiate Isabelle/HOL’s fine-grained arithmetic type class hierarchy for
cotree and stream up to the class for rings with characteristic 0. This way, we can
use the algebraic operators and reason directly on trees and streams. Almost all
algebraic laws are proven by our lifting package from the base equation. The only
exception are the two cancellative laws in semigroups, namely a = b whenever
a+ c = b+ c or c+ a = c+ b. Such conditional equations are not handled by our
lifting machinery. So, we prove these two laws conventionally by coinduction.

Moreover, we discovered that Hinze’s lifting framework cannot prove the iden-
tity for chop den, contrary to his claims. In detail, the proof relies on the identity
x mod (x + y) = x on natural numbers, but this holds only for y > 0. Hinze does
not explain how to lift and handle such preconditions. As the combinators K
and W exist, we express the lifted precondition as pure (>) � y � 0 = pure True
and split the proof into the three steps shown below: (i) and (iii) hold by lifting
and (ii) by assumption.

x mod (x + y)
(i)
= pure (λb x. if b then x else 0) � (pure (>) � y � 0) � x

(ii)
=

pure (λb x. if b then x else 0) � pure True � x
(iii)
= x

Overall, we found that the lifting package works well for algebraic reasoning
and that we should extend lifting to handle arbitrary relations and preconditions.
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5 Related Work

Most closely related to our work is Hinze’s [15] on lifting. He focuses on the
two extremes in the spectrum: the class of equations liftable in all idioms, and
the idioms in which all equations are liftable. Our implementation for the former
merely adapts his ideas to the HOL setting. For the latter, Hinze requires idioms
to be strongly extensional in addition to them having S and K. This ensures that
the idiom can emulate λ-abstraction, so lifting is defined for all λ-terms. There-
fore, his proof of the Lifting Lemma does not carry over to weaker sets of com-
binators. As we focus on unlifting, we do not need such emulations and instead
use bracket abstraction, which is hidden in Hinze’s emulation of abstraction,
uniformly for all sets of combinators. Hinze also models idiomatic expressions
syntactically using GADTs, which ensures type correctness. He defines equiva-
lence on idiomatic terms semantically. As the interpretation cannot be expressed
in HOL, we use the syntactic relation � instead. This has the advantage that
we can prove uniqueness of normal forms (Lemma 5) by induction.

Several other kinds of lifting are available as Isabelle/HOL packages. Huff-
man’s transfer tactic [17] lifts properties to non-standard analysis (NSA) types
like the hyperreals, which are formalised by the idiom star. The tactic can lift
arbitrary first-order properties by exploiting the properties of star. To that end,
the tactic first unlifts the property similar to our operation unlift and then proves
equivalence by resolving with rules for logical and star operators. Our package
subsumes Huffman’s for equations, but it cannot lift first-order connectives yet.

The package Lifting [18] creates quotient types via partial equivalence rela-
tions. The companion package Transfer, which is different from aforementioned
transfer tactic, exploits parametricity and representation independence to prove
equivalences or implications between properties on the raw type and the quo-
tient. Like for NSA, resolution guides the equivalence proof. Lifting and Transfer
cannot handle lifting to applicative functors, as the functor’s values are usually
more complex than the base values, instead of more abstract. In comparison, our
lifting step is much simpler, as it just considers pairs of extensionally equal func-
tions; the whole automation is needed to extract these functions from idiomatic
expressions. The other packages preserve the term structure and relate each
component of the term as determined by the rules.

6 Conclusion and Future Work

This paper presents a first step towards a infrastructure for reasoning about
effectful programs. Like applicative functors help in delimiting pure and effectful
parts of the computation, our proof method supports separating the effectful and
the pure aspects of the reasoning. The results from our case studies indicate that
applicative functors are a suitable abstraction for reasoning. They seem to be
better suited than monads, as applicative expressions can be analysed statically.
Thus, one should prefer applicative functors over monads whenever possible.
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There is much to be done before proof assistants support reasoning about
effects smoothly. As a next step, we will investigate how to extend the scope of lift-
ing. Going from equations to arbitrary relations should be easy: if the functor has a
relator for which pure and (�) are relationally parametric [28], then the lifting tech-
nique should work unchanged. The extension to preconditions and other first-order
connectives seems to be harder. In any ring with 0 �= 1, e.g., x = x + 1 −→ x = 2x
holds, but it does not when interpreted in the set idiom over the same ring. We
expect that combinators will help there, too. Moreover, we would like to study
whether one should further refine the set of combinators. For example, the idiom
“either” derived from the exception monad has the stronger combinator H with
pure H � f � x � y = f � x � y � x, which cannot be expressed byBIW. Experience
will tell when specialisation is needed and when it goes too far.

The combinator laws can also be interpreted monadically. For example, C
exists in commutative monads and K demands that x >>= (λ .y) = y. Therefore,
we experimented with lifting for monads, too. As (�) and (>>=) are related (cf.
Sect. 1.1), one can express certain parts of a monadic term applicatively using
(�) and apply the lifting approach to those parts. In particular, the monadic laws
for C and K can only be utilised if the affected part can be expressed applica-
tively. In a first attempt, we applied this idea to a security proof of the Elgamal
encryption scheme [22], which uses the subprobability monad (which only has C).
Our package successfully automates the arguments about commutativity in this
proof, which previously were conducted by manual applications of the commuta-
tivity law. At present, we have to manually identify the right parts and rewrite
them into applicative form. One reason is that monadic expressions in general
contain several overlapping applicative subparts and consecutive applications of
commutativity may require different parts for each application. Overall, the new
Isar proof is more declarative, but also longer due to the manual rewrite steps.
It will be an interesting problem to automate the identification of suitable parts
and to combine the appropriate rewrites with lifting.
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Joachim Breitner, and the anonymous reviewers for suggesting many textual improve-
ments. The first author was supported by SNSF grant 153217 “Formalising Computa-
tional Soundness for Protocol Implementations”.

A Definitions of Applicative Functors

This appendix lists Isabelle/HOL definitions for the idioms mentioned in this
paper. The definitional packages and their syntaxes are documented in the
Isabelle/Isar reference manual. The proofs of the applicative laws and combi-
nators are available online [23].
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Environment (Reader)

type-synonym (α, β) env = (β ⇒ α)
definition pureenv x = (λ . x)
definition f �env x = (λy. f y (x y))

Stream

codatatype α stream = α ≺ α stream
primcorec purestream x = x ≺ purestream x
primcorec (f ≺ fs) �stream (x ≺ xs) = f x ≺ (fs �stream xs)

Infinite binary tree

codatatype α cotree = Node α (α cotree) (α cotree)
primcorec purecotree x = Node x (purecotree x) (purecotree x)
primcorec (Node f g h) �cotree (Node x y z) = Node (f x) (g �cotree y) (h �cotree z)

Non-standard numbers as used in non-standard analysis in Isabelle/HOL [17].
The type α star is the quotient of the environment idiom (α, nat) env over
equality in some free ultrafilter U on nat.

quotient-type α star = (α, nat) env / (λX Y. (λn. Xn = Y n) ∈ U)
lift-definition purestar is λx . x
lift-definition (�)star is λf x y. f y (x y)

Option

datatype α option = None | Some α
abbreviation pureoption = Some
fun (�)option where (Some f) �option (Some x) = Some (f x) | �option = None

Zip list

codatatype α llist = [ ] | α · α llist
primcorec purellist x = x · purellist x
primcorec (f · fs) �llist (x · xs) = f x · (fs �llist xs) | �llist = [ ]

Probability

typedef α pmf = { f :: α ⇒ real. (∀x. f x ≥ 0) ∧ (
∑

x f x) = 1 }
lift-definition purepmf is λx y. if x = y then 1 else 0
lift-definition (�)pmf is λF X y.

∑
{ (f,x). f x=y } F f · X x

Subprobability

type-synonym α spmf = α option pmf
definition purespmf = purepmf pureoption
definition f �spmf x = purepmf (�)option �pmf f �pmf x
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Set

definition pureset x = {x }
definition F �set X = { f x. f ∈ F ∧ x ∈ X }

Non-empty set

typedef α neset = {A :: α set. A �= ∅ }
lift-definition pureneset is pureset
lift-definition (�)neset is (�)set

Monoid, commutative monoid, idempotent monoid

type-synonym (α, β) monoid-ap = α × β
definition puremonoid x = (0, x)
fun (�)monoid where (a, f) �monoid (b, x) = (a + b, f x)

The type variable α must have sort monoid-add. If α has sort comm-monoid-add,
then monoid-ap has C. If α has sort idemp-monoid-add, then monoid-ap has W.

Either

datatype (α, β) either = Left α | Right β
definition pureeither = Left
fun (�)either where

Left f �either Left x = Left (f x)
| �either Right y = Right y
| Right y �either Left = Right y

Distinct non-empty list. The function remdups removes duplicates from a list by
retaining only the last occurrence of each element.

typedef α dnelist = {xs :: α list. distinct xs ∧ xs �= [ ] }
lift-definition purednelist is purelist
lift-definition (�)dnelist is λf x. remdups (f �list x)

State

type-synonym (α, σ) state = σ ⇒ α × σ
definition purestate = Pair
definition f �state x = (λs. case f s of (f ′, s′) ⇒ case x s′ of (x′, s′′) ⇒ (f ′ x′, s′′))

List

datatype α list = [ ] | α · α list
definition purelist x = [x]
definition f �list x = concat-map (λf ′. map f ′ x) f
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Parser. The function apfst applies a function to the first component of a tuple.

type-synonym (α, σ) parser = σ ⇒ (α × σ) list
definition pureparser x = (λs. [(x, s)])
definition f �parser x = (λs. concat-map (λ(f ′, s′). map (apfst f ′) (x s′)) (f s))
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(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008)

5. Bunder, M.W.: Lambda terms definable as combinators. Theoret. Comput. Sci.
169(1), 3–21 (1996)

6. Church, A.: The Calculi of Lambda-Conversion. Princeton University Press,
Princeton (1941)

7. Dijkstra, E.W.: An exercise for Dr. R.M. Burstall. In: Selected Writings on Com-
puting: A Personal Perspective. Texts and Monographs in Computer Science, pp.
215–216. Springer, New York (1982)

8. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer,
Heidelberg (2015)

9. Gammie, P., Lochbihler, A.: The Stern-Brocot tree. Archive of Formal Proofs,
(2015). http://isa-afp.org/entries/Stern Brocot.shtml, Formal proof development

10. Gibbons, J., Bird, R.: Be kind, rewind: a modest proposal about traversal (2012).
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/backwards.pdf

11. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: ICFP
2011, pp. 2–14. ACM (2011)

12. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics-A Foundation
for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)

13. Green, J.A., Rees, D.: On semi-groups in which xr = x. Math. Proc. Camb. Philos.
Soc. 48, 35–40 (1952)

14. Hinze, R.: The Bird tree. J. Func. Programm. 19(5), 491–508 (2009)
15. Hinze, R.: Lifting operators and laws (2010). http://www.cs.ox.ac.uk/ralf.hinze/

Lifting.pdf
16. Homeier, P.V.: The HOL-omega logic. In: Berghofer, S., Nipkow, T., Urban,

C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer,
Heidelberg (2009)

17. Huffman, B.: Transfer principle proof tactic for nonstandard analysis. In: Kanovich,
M., White, G., Gottliebsen, H., Oliva, P. (eds.) NetCA 2005, pp. 18–26. Queen
Mary, University of London, Dept. of Computer Science, Research report RR-05-
06 (2005)

http://isa-afp.org/entries/Stern_Brocot.shtml
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/backwards.pdf
http://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf
http://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf


Equational Reasoning with Applicative Functors 273
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Abstract. Finding an elementary form for an antiderivative is often a
difficult task, so numerical integration has become a common tool when
it comes to making sense of a definite integral. Some of the numeri-
cal integration methods can even be made rigorous: not only do they
compute an approximation of the integral value but they also bound its
inaccuracy. Yet numerical integration is still missing from the toolbox
when performing formal proofs in analysis.

This paper presents an efficient method for automatically computing
and proving bounds on some definite integrals inside the Coq formal
system. Our approach is not based on traditional quadrature methods
such as Newton-Cotes formulas. Instead, it relies on computing and eval-
uating antiderivatives of rigorous polynomial approximations, combined
with an adaptive domain splitting. This work has been integrated to the
CoqInterval library.

1 Introduction

Computing the value of definite integrals is the modern and generalized take on
the ancient problem of computing the area of a figure. Quadrature methods hence
refer to the numerical methods for estimating such integrals. Numerical integra-
tion is indeed often the preferred way of obtaining such estimations as symbolic
approaches may be too difficult or even just impossible. Quadrature methods, as
implemented in systems like Matlab, most often consist in interpolating the inte-
grand function by a degree-n polynomial, integrating the polynomial and then
bounding the error using a bound on the n + 1-th derivative of the integrand
function. Estimating the value of integrals can be a crucial part of some math-
ematical proofs, making numerical integration an invaluable ally. Examples of
such proofs occur in various areas of mathematics, such as number theory (e.g.
Helfgott’s proof of the ternary Goldbach conjecture [5]) or geometry (e.g. the
first proof of the double bubble conjecture [4]). This motivates developing high-
confidence methods for computing reliable yet accurate and fast estimations of
integrals.
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The present paper describes a formal-proof producing procedure to obtain
numerical enclosures of definite integrals

∫ v

u
f(t) dt, where f is a real-valued func-

tion that is Riemann-integrable on the bounded integration domain [u, v]. This
procedure can deal with any function f for which we have an interval exten-
sion and/or a polynomial approximation. The enclosure is computed inside the
Coq proof assistant and the computations are correct by construction. Interest-
ingly, the formal proof that the integral exists comes as a by-product of these
computations.

Our approach is based on interval methods, in the spirit of Moore et al. [10],
and combines the computation of a numerical enclosure of the integrand with an
adaptive dichotomy process. It is based on the CoqInterval library for computing
interval extensions of elementary mathematical functions and is implemented as
an improvement of the interval Coq tactic [8].

The paper is organized as follows: Sect. 2 introduces some definitions and
notations used throughout the paper, and describes briefly the Coq libraries
we build on. Section 3 describes the algorithms used to estimate integrals and
Sect. 4 describes the design of the proof-producing Coq tactic. In Sect. 5 we
provide cross-software benchmarks highlighting issues with both our and others’
algorithms. In Sect. 6, we discuss the limitations and perspectives of this work.

2 Preliminaries

In this section we introduce some vocabulary and notations used throughout the
paper and we summarize the existing Coq libraries the present work builds on.

2.1 Notations and First Definitions

An interval is a closed connected subset of the set of real numbers. We use I

to denote the set of intervals: {[a, b] | a, b ∈ R ∪ {±∞}}. A point interval is an
interval of the shape [a, a] where a ∈ R. Any interval variable will be denoted
using a bold font. For any interval x ∈ I, inf x (resp. supx) denotes its left (resp.
right) bound, with inf x ∈ R ∪ {−∞} (resp. supx ∈ R ∪ {+∞}). An enclosure
of x ∈ R is an interval x ∈ I such that x ∈ x.

In the following, we will not denote interval operators in any distinguishing
way. In particular, whenever an arithmetic operator takes interval inputs, it
should be understood as any interval extension of the corresponding operator
on real numbers (see Sect. 2.3). Moreover, whenever a real number appears as
an input of an interval operator, it should be understood as any interval that
encloses this number. For instance, an expression like (v − u) · x denotes the
interval product of the interval x with any (hopefully tight) interval enclosing
the real v − u.

2.2 Elementary Real Analysis in Coq

Coq’s standard library Reals1 axiomatizes real arithmetic, with a classical fla-
vor [9]. It provides some notions of elementary real analysis, including the
1 https://coq.inria.fr/distrib/current/stdlib/.

https://coq.inria.fr/distrib/current/stdlib/
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definition of continuity, differentiability and Riemann integrability. It also comes
with a formalization of the properties of usual mathematical functions like sin,
cos, exp, and so on.

The Coquelicot library is a conservative extension of this library [2]. It pro-
vides a total operator that outputs a real value from a function f : R → R and
two bounds u, v ∈ R:

Definition RInt (f : R -> R) (u : R) (v : R) : R := ...

When the function f is Riemann-integrable on [u, v], the value (RInt f u v)
is equal to

∫ v

u
f(t) dt. Otherwise it is left unspecified and thus most properties

about the actual value of (RInt f u v) hold only if f is integrable on [u, v].
The aim of this work is to provide a procedure that computes a numerical

and formally proved enclosure of an expression (RInt f u v) –and justifies that
this expression is well-defined. This procedure can then be used in an automated
tactic that proves inequalities like | ∫ 1

0

√
1 − x2 dx − π

4 | ≤ 1
100 , stated as:

Goal Rabs (RInt (fun x => sqrt(1 - x * x)) 0 1 - PI / 4) <= 1/100.

Without Coquelicot’s total operator RInt, the user would not be able to
express such a statement as easily.

2.3 Numerical Computations in Coq

CoqInterval is a Coq library for computing numerical enclosures of real-valued
expressions [8]. These expressions belong to a class E built from constants, vari-
ables, arithmetic operations, and some elementary functions. It also provides a
tactic interval to automatically deduce certain goals from these enclosures.

The tactic typically takes a goal A ≤ e ≤ B where e is such an expression, and
A and B are constants. Using the paradigm of interval arithmetic, it builds a set
e such that e ∈ e holds by construction and such that e reduces to an interval
[inf e, sup e] by computation. Then it checks that A ≤ inf e and sup e ≤ B,
again by computation, from which it proves A ≤ e ≤ B. All the computations
on interval bounds are performed using a rigorous yet efficient formalization of
multi-precision floating-point arithmetic.

The library provides several ways to build the interval e: naive interval arith-
metic, automatic differentiation, and rigorous polynomial approximations using
Taylor models. Interval arithmetic is concerned with providing operators on
intervals that respect the inclusion property. Given a binary operator � on real
numbers, naive interval arithmetic provides a binary operator � on intervals
such that

∀x, y ∈ R, ∀x,y ∈ I, x ∈ x ∧ y ∈ y ⇒ x � y ∈ x�y.

This inclusion property is easily transported from operators to whole expres-
sions by induction on these expressions. This ensures that the property e ∈ e
above can be easily proved when e is built using the operators from naive interval
arithmetic. This approach, however, cannot keep track of correlations between
subexpressions and might compute overestimated enclosures which are thus use-
less for proving some goals. For instance, assume that x ∈ [3, 4], so −x ∈ [−4,−3]
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using the interval extension of the negation, so x + (−x) ∈ [3 + (−4), 4 + (−3)]
using the interval extension of the addition. If the goal was to prove that x − x
is always 0, the interval [−1, 1] obtained by naive interval arithmetic is useless.
This is why the CoqInterval library also comes with refinements of naive interval
arithmetic, such as rigorous polynomial approximations, so as to reduce this loss
of correlations.

Our goal is to extend the class E of supported expressions with integrals
whose bounds and bodies are in E .

3 Interval Methods to Approximate an Integral

In this section, we describe how to compute a numerical enclosure of the real
number

∫ v

u
f(t) dt from enclosures of the finite bounds u and v and of the inte-

grand function f . We describe two basic methods based respectively on the
evaluation of a simple interval extension and on a polynomial approximation
of f . They can be combined and improved by a dichotomy process.

3.1 Naive Integral Enclosure

Our first approach uses an interval extension of the integrand.

Definition 1. For any function f : R
n → R, a function F : I

n → I is an
interval extension of f on R if

∀x1, . . . ,xn, {f(x1, . . . , xn) | ∀i, xi ∈ xi} ⊆ F (x1, . . . ,xn).

In the rest of the section we suppose that F : I → I is an interval extension
of the univariate function f , and we want to compute an enclosure of

∫ v

u
f(t) dt,

with u, v ∈ R, and f integrable on [u, v].

Definition 2. The convex hull of a set A ⊆ R is the smallest convex set that
contains A, denoted hull(A). Moreover, the interval hull(a,b) denotes the convex
hull of (the union of) two intervals a and b.

Lemma 1 (Naive integral enclosure)
∫ v

u

f(t) dt ∈ (v − u) · hull{f(t) | t ∈ [u, v] ∨ t ∈ [v, u]}. (1)

Proof. Let us first suppose that u ≤ v. Denote f([u, v]) := {f(t) | t ∈ [u, v]}. If
hull(f([u, v])) = [m,M ] (without loss of generality, m and M can be assumed
to be finite) then for any x ∈ [u, v], we have m ≤ f(x) ≤ M . So (v − u)m ≤∫ v

u
f(x) ≤ (v − u)M , hence (1). The case v ≤ u is symmetrical.

In practice we do not compute with f but only its interval extension F .
Moreover, we want the computations to operate using only enclosures of the
bounds. So we adapt Formula (1) accordingly.
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Lemma 2 (Interval naive integral enclosure). For any intervals u,v such
that u ∈ u and v ∈ v, we have

∫ v

u

f(t) dt ∈ (v − u) · F (hull(u,v)). (2)

Note that if u and v are point intervals and if F is the optimal interval extension
of f , then (2) reduces to (1).

Proof. If u ∈ u and v ∈ v, then by (1) and reusing notations from the proof,
we have

∫ v

u
f(t) dt ∈ (v − u) · hull(f([u, v])). Since (v − u) ∈ (v − u), we only

have to show that hull(f([u, v])) ⊆ F (hull(u,v)). If y ∈ hull(f([u, v])), then
there exist t1, t2 ∈ [u, v] such that f(t1) ≤ y ≤ f(t2). Since F (hull(u,v)) is
an interval, we only need to show that f(t1), f(t2) ∈ F (hull(u,v)). This holds
because t1, t2 ∈ hull(u,v), and F is an interval extension of f .

The naive integral Coq function implements (2). Given u,v ∈ I and F a
function of type I → I, (naive integral prec F u v) computes an interval i
using floating-point arithmetic at precision prec. If F is an interval extension
of f , if u ∈ u and v ∈ v, and if f is integrable on [u, v], then

∫ v

u
f(t) dt ∈ i.

Definition naive_integral prec F u v :=

I.mul prec (F (I.join u v)) (I.sub prec v u).

3.2 Polynomial Approximation

The enclosure method described in Sect. 3.1 is rather crude. Better knowledge
of the integrated function allows for a more efficient approach.

The CoqInterval library defines a rigorous polynomial approximation (RPA)
of f : R → R on the interval x as a pair (p,Δ), with p ∈ I[X], such that
for some polynomial p ∈ R[X] enclosed2 in p we have f(x) − p(x) ∈ Δ for
all x ∈ x. CoqInterval computes these RPAs by composing and performing
arithmetic operations on Taylor expansions of elementary functions [8]. Now that
we have polynomial approximations, we can make use of the following lemma.

Lemma 3 (Polynomial approximation). Suppose f is approximated on
[u, v] by p ∈ R[X] and Δ ∈ I in the sense that ∀x ∈ [u, v], f(x) − p(x) ∈ Δ.
Then for any primitive P of p we have

∫ v

u
f(t) dt ∈ P (v) − P (u) + (v − u) · Δ.

Proof. We have
∫ v

u
f(t) dt − (P (v) − P (u)) =

∫ v

u
(f(t) − p(t)) dt. By hypothesis,

the constant function Δ is an interval extension of t �→ f(t) − p(t) on [u, v],
hence Lemma 1 applies (notice that hull(Δ) = Δ).

Note that our method and proofs do not depend on the way RPAs are
obtained.
2 We say that p ∈ I[X] is an enclosure of p ∈ R[X] if, for all i ∈ N, the ith coefficient
pi of p is an enclosure of the ith coefficient pi of p, where we take the convention
that for i > degp, pi = {0} and for i > deg p, pi = 0.
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3.3 Quality of the Integral Enclosures

Both methods described in Sects. 3.1 and 3.2 use a single approximation of
the integrand on the integration interval. A decomposition of this interval into
smaller pieces may increase the accuracy of the enclosure, if tighter approxima-
tions are obtained on each subinterval. In this section we give an intuition of how
the naive and polynomial approaches compare, from a time complexity point of
view. The naive (resp. polynomial) approach here consists in using a simple
interval approximation (resp. a valid polynomial approximation) to estimate the
integral on each subinterval. Let us suppose that we split the initial integration
interval, using Chasles’ relation, before computing integral enclosures:

∫ v

u

f =
∫ x1

x0

f + . . . +
∫ xn

xn−1

f with xi = u + i
n (v − u).

Let w(x) = supx− inf x denote the width of an interval. The smaller w(x) is,
the more accurately any real x ∈ x is approximated by x. Any sensible interval
arithmetic respects w(x + y) � w(x) + w(y) and w(k · x) � k · w(x).

We consider the case of the naive approach first. We assume that F is an opti-
mal interval extension of f and that f has a Lipschitz-constant equal to k0, that
is, w(F (x)) � k0 ·w(x). Since w(naive([xi, xi+1])) � (xi+1−xi)·w(F ([xi, xi+1])),
we get the following accuracy when computing the integral:

w

(∑
i

naive([xi, xi+1])

)
� k0 · (v − u)2/n.

To gain one bit of accuracy, we need to go from n to 2n integrals, which means
multiplying the computation time by two, hence an exponential complexity.

Now for the polynomial enclosure. Let us assume we can compute a poly-
nomial approximation of f on any interval x with an error Δ(x). We can
expect this error to satisfy w(Δ(x)) � kd · w(x)d+1 with d the degree of the
polynomial approximation and kd depending on f . Since w(poly([xi, xi+1])) �
(xi+1 − xi) · w(Δ([xi, xi+1])), the accuracy is now

w

(∑
i

poly([xi, xi+1])

)
� kd · (v − u)d+2/nd+1.

For a fixed d, one still has to increase n exponentially with respect to the target
accuracy. The power coefficient, however, is much smaller than for the naive
method. By doubling the computation time, one gets d + 1 additional bits of
accuracy.

In order to improve the accuracy of the result, one can increase d instead
of n. If f behaves similarly to exp or sin, Taylor-Lagrange formula tells us that
kd decreases as fast as (d!)−1. Moreover, the time complexity of computing a
polynomial approximation usually grows like d3. So, if n � v − u, doubling the
computation time by increasing d gives about 25% more bits of accuracy.
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As can be seen from the considerations above, striking the proper balance
between n and d for reaching a target accuracy in a minimal amount of time is
difficult, so we have made the decision of letting the user control d (see Sect. 4.3)
while the implementation adaptively splits the integration interval.

3.4 Dichotomy and Adaptivity

Both methods presented in Sects. 3.1 and 3.2 can compute an interval enclos-
ing

∫ v

u
f(t) dt. Polynomial approximations usually give tighter enclosures of the

integral, but not always, so we combine both methods by taking the intersection
of their result.

This may still not be sufficient for getting a tight enough enclosure, in which
case we recursively split the integration domain in two parts, using Chasles’
rule. The function integral float absolute performs this dichotomy and the
integration on each subdomain. It takes an absolute error parameter ε; it stops
splitting as soon as the width of the computed integral enclosure is smaller
than ε. The function also takes a depth parameter, which means that the initial
domain is split into at most 2depth+1 subdomains. Note that, because the depth
is bounded, there is no guarantee that the target width will be reached.

Let us detail more precisely how the function behaves. It starts by splitting
[u, v] into [u,m] and [m, v] and computes some enclosures i1 of

∫ m

u
f(t) dt and i2

of
∫ v

m
f(t) dt. If depth = 0, then the function returns i1 + i2. Otherwise, several

cases can occur:

– If w(i1) ≤ ε
2 and w(i2) ≤ ε

2 , then the function simply returns i1 + i2.
– If w(i1) ≤ ε

2 and w(i2) > ε
2 , then the first enclosure is sufficient but the

second is not. So integral float absolute calls itself recursively on [m, v]
with depth − 1 as the new maximal depth and ε − w(i1) as the new target
accuracy, yielding i′2. The function then returns i1 + i′2.

– If w(i1) > ε
2 and w(i2) ≤ ε

2 , we proceed symmetrically.
– Otherwise, the function calls itself on [u,m] and [m, v] with depth − 1 as the

new maximal depth and ε
2 as the new target accuracy, yielding i′1 and i′2. It

then returns i′1 + i′2.

4 Automating the Proof Process

In this section we explain how to compute the approximations of the integrand
required by the theorems of Sect. 3, and how to automate the proof of its inte-
grability. We conclude by describing how all the ingredients combine into the
implementation of a parameterized Coq tactic.

4.1 Straight-Line Programs and Enclosures

As described in Sect. 2.3, enclosures and interval extensions are computed from
expressions that appear as bounds or as the body of an integral, like for instance
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ln 2, 3, and (t + π)
√

t − (t + π), in
∫ 3

ln 2
((t + π)

√
t − (t + π)) dt. The tactic

represents these expressions symbolically, as straight-line programs. This allows
for explicit sharing of common subexpressions. Such a program is just a list of
statements indicating what the operation is and where its inputs can be found.
The place where the output is stored is left implicit: the result of an operation is
always put at the top of the evaluation stack.3 The stack is initially filled with
values corresponding to the constants of the program. The result of evaluating
a straight-line program is at the top of the stack.

Below is an example of a straight-line program corresponding to the expres-
sion (t + π)

√
t − (t + π). It is a list containing the operations to be performed.

Each list item first indicates the arity of the operation, then the operation itself,
and finally the depth at which the inputs of the operation can be found in the
evaluation stack. Note that, in this example, t and π are seen as constants, so the
initial stack contains values that correspond to these subterms.4 The comments
in the term below indicate the content of the evaluation stack before evaluating
each statement.

(* initial stack: [t, pi] *) Binary Add 0 1

(* current stack: [t+pi, t, pi] *) :: Unary Sqrt 1

(* current stack: [sqrt t, t+pi, t, pi] *) :: Binary Mul 1 0

(* current stack: [(t+pi)*sqrt t, sqrt t, ...] *) :: Binary Sub 0 2

(* current stack: [(t+pi)*sqrt t - (t+pi), ...] *) :: nil

The evaluation of a straight-line program depends on the interpretation of the
arithmetic operations and on the values stored in the initial stack. For instance, if
the arithmetic operations are the operations from the Reals library (e.g. Rplus)
and if the stack contains the symbolic value of the constants, then the result is
the actual expression over real numbers.

Let us denote �p�R(�x) the result of evaluating the straight-line program p
with operators from Reals over an initial stack �x of real numbers. Similarly,
�p�I(�x) denotes the result of evaluating p with interval operations over a stack of
intervals. Then, thanks to the inclusion property of interval arithmetic, we can
prove the following formula once and for all:

∀p, ∀�x ∈ R
n, ∀�x ∈ I

n, (∀i ≤ n, xi ∈ xi) ⇒ �p�R(�x) ∈ �p�I(�x). (3)

Theorem (3) is the basic block used by the interval tactic for proving
enclosures of expressions [8]. Given a goal A ≤ e ≤ B, the tactic first looks for a
program p and a stack �x of real numbers such that �p�R(�x) = e. Note that this
reification process is not proved to be correct, so Coq checks that both sides of
the equality are convertible. More precisely, the goal A ≤ e ≤ B is convertible
to �p�R(�x) ∈ [A,B] if A and B are floating-point numbers and if the tactic
successfully reified the term.

3 Note that the evaluation model is quite simple: the stack grows linearly with the
size of the expression since no element of the stack is ever removed.

4 The only thing that will later distinguishes the integration variable t from an actual
constant such as π is that its value is placed at the top of the initial evaluation stack.
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The tactic then looks in the context for hypotheses of the form Ai ≤ xi ≤ Bi

so that it can build a stack �x of intervals such that ∀i, xi ∈ xi. If there is no
such hypothesis, the tactic just uses (−∞,+∞) for xi. The tactic can now apply
Theorem (3) to replace the goal by �p�I(�x) ⊆ [A,B]. It then attempts to prove
this new goal entirely by computation. Note that even if the original goal holds,
this attempt may fail due to loss of correlation inherent to interval arithmetic.

Theorem (3) also implies that if a function f can be reified as t �→ �p�R(t, �x),
then t �→ �p�I(t, �x) is an interval extension of f if ∀i, xi ∈ xi. This way, we
obtain the interval extensions of the integrand that we need for Sect. 3.

There is also an evaluation scheme for computing RPAs for f . The program p
is the same, but the initial evaluation stack now contains RPAs: a degree-1
polynomial for representing the domain of t, and constant polynomials for the
constants. The result is an RPA of t �→ �p�R(t, �x). By computing the image of
this resulting polynomial approximation, one gets an enclosure of the expression
that is usually better than the one computed by t �→ �p�I(t, �x).

4.2 Checking Integrability

When computing the enclosure of an integral, the tactic should first obtain a
formal proof that the integrand is indeed integrable on the integration domain,
as this is a prerequisite to all the theorems in Sect. 3. In fact we can be more
clever: we prove that, if we succeed in numerically computing an informative
enclosure of the integral, the function was actually integrable. This way, the
tactic does not have to prove anything beforehand about the integrand.

This trick requires to explain the inner workings of the CoqInterval library
in more detail. In particular, the library provides evaluation schemes that use
bottom values. In all that follows R denotes the set R ∪ {⊥R} of extended reals,
that is the set of real numbers completed with the extra point ⊥R. The alternate
scheme �p�

R
produces the value ⊥R as soon as an operation is applied to inputs

that are outside the usual definition domain of the operator. For instance, the
resulting of dividing one by zero in R is ⊥R, while it is unspecified in R. This ⊥R

element is then propagated along the subsequent operations. Thus, the following
equality holds, using the trivial embedding from R into R:

∀p, ∀�x ∈ R
n, �p�

R
(�x) �= ⊥R ⇒ �p�R(�x) = �p�

R
(�x). (4)

Moreover, the implementation of interval arithmetic uses not only pairs of
floating-point numbers [inf x, supx] but also a special interval ⊥I, which is prop-
agated along computations. An interval operator produces the value ⊥I when-
ever the input intervals are not fully included in the definition domain of the
corresponding real operator. In other words, an interval operator produces ⊥I

whenever the corresponding operator on R would have produced ⊥R for at least
one value in one of the input intervals. Thus, by extending the definition of an
enclosure so that ⊥R ∈ ⊥I holds, we can prove a variant of Formula (3):

∀p, ∀�x ∈ R
n
, ∀�x ∈ I

n, (∀i ≤ n, xi ∈ xi) ⇒ �p�
R
(�x) ∈ �p�I(�x). (5)
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In CoqInterval, Formula (3) is actually just a consequence of both Formu-
las (4) and (5). This is due to two other properties of ⊥I. First, (−∞,+∞) ⊆ ⊥I

holds, so the conclusion of Formula (5) trivially holds whenever �p�I(�x) evaluates
to ⊥I. Second, ⊥I is the only interval containing ⊥R. As a consequence, whenever
�p�I(�x) does not evaluate to ⊥I the premise of Formula (4) holds.

Let us go back to the issue of proving integrability. By definition, whenever
�p�

R
(�x) does not evaluate to ⊥R the inputs �x are part of the definition domain of

the expression represented by p. But we can actually prove a stronger property:
not only is �x part of the definition domain, it is also part of the continuity
domain. More precisely, we can prove the following property:

∀p, ∀t0 ∈ R, ∀�x ∈ R
n, �p�

R
(t0,�x) �= ⊥R ⇒

t �→ �p�R(t, �x) is continuous at point t0. (6)

Note that this property intrinsically depends on the operations that can
appear inside p, i.e. the operations belonging to the class E of Sect. 2.3. There-
fore, its proof has to be extended as soon as a new operator is supported in E .
In particular, it would become incorrect as such, if the integer part was ever
supported.

By combining Formulas (3) and (6), we obtain a numerical method to prove
that a function is continuous on a domain. Indeed, we just have to compute an
enclosure of the function on that domain, and to check that it is not ⊥I. A closer
look at the way naive integral enclosures are computed provides the following
corollary: whenever the enclosure of the integral is not ⊥I, the function is actually
continuous and thus integrable.

For the sake of completeness, we mention another scheme implemented in the
CoqInterval library, which computes the enclosure of the derivative of a function
through automatic differentiation. As before, the tactic does not have to prove
beforehand that the function is actually differentiable, it is deduced from the
computation not returning ⊥I. This is of no use for computing integrals as done
in this paper. It could however be used to implement a numeric quadrature such
as the trapezoid method, since the latter requires bounding derivatives.

4.3 Integration into a Tactic

The interval tactic is primarily dedicated to computing/verifying the enclosure
of an expression. For this purpose, the expression is first turned into a straight-
line program, as described in Sect. 4.1. There is however no integral operator in
the grammar E of programs: from the point of view of the reification process,
integrals are just constants, and thus part of the initial stack used when evalu-
ating the program.

The tactic supports constants for which it can get a formally-proved enclo-
sure. In previous releases of CoqInterval, the only supported constants were
floating-point numbers and π. Floating-point numbers are enclosed by the cor-
responding point interval, which is trivially correct. An interval function, and its
correctness proof, provides enclosures of the constant π, at the required precision.
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The tactic now supports constants expressed as integrals
∫ v

u
e dt. First, it

reifies the bounds u and v into programs and it evaluates them over I to get
hopefully tight enclosures of them. Second, it reifies e into a program p with t
at the top of the initial evaluation stack. The tactic uses p to instantiate various
evaluation methods, so that interval extensions and RPAs of e can be computed
on all the integration subdomains, as described in Sect. 4.1. Third, using the
formulas of Sect. 3, it creates a term of type I that, once reduced by Coq’s
kernel, has actual floating-point bounds. The tactic also proves that this term is
an enclosure of the integral, using the theorems of Sects. 3 and 4.2.

4.4 Controlling the Tactic

The interval tactic now features three options that supply the user with some
control over how it computes integral enclosures. First, the user can indicate the
target accuracy for the integral, expressed as a relative error: the user indicates
how many bits of the result should be significant (by default, 10 bits, so three
decimal digits). It is an a priori error, that is, the implementation first computes
a coarse magnitude of the integral value and uses it to turn the relative bound
into an absolute one. It then performs computations using only this absolute
bound.

The user can also indicate the degree of the RPAs used for approximating the
integrand (default is 10). This value empirically provides a good trade-off between
bisecting too deeply and computing costly RPAs when targeting the default accu-
racy of 10 bits. For poorly approximated integrands, choosing a smaller degree can
improve timings significantly, while for highly regular integrands and a high target
accuracy, choosing a larger degree might be worth a try.

Finally, the user can limit the maximal depth of bisection (default is 3). If the
target absolute error is reached on each interval of the subdivision, then increas-
ing the maximal depth does not affect timings. There might, however, be some
points of the integration domain around which the target error is never reached.
This setting prevents the computations from splitting the domain indefinitely,
while the computed enclosure is already accurate enough to prove the goal.

Note that as in previous CoqInterval releases, the user can adjust the pre-
cision of floating-point computations used for interval computations, which has
an impact on how integrals are computed. The default value is 30 bits, which is
sufficient in practice for getting the default 10 bits of integral accuracy.

There are three reasons why the user-specified target accuracy might not be
reached. If the computed magnitude during the initial estimate of the integral
is too coarse, the absolute bound used by the adaptive algorithm will be too
large and the final result might be less accurate than desired.5 An insufficient
bisection depth might also lead the result to be less accurate. This is also true
with an insufficient precision of intermediate computations.

5 The magnitude might be so coarse that it is computed as +∞. In that case, the user
setting is directly understood as an absolute bound.
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The following script shows how to prove in Coq that the surface of a quarter
unit disk is equal to π/4, at least up to 10−6. The target accuracy is set to 20
bits, so that we can hope to reach the 10−6 bound. Since the integrand is poorly
approximated near 1 (due to the square root), the integration domain has to be
split into small pieces around 1. So we significantly increase the bisection depth
to 15. Finally, since here the RPAs are poor, decreasing their degree to 5 shaves
a few tenths of second off the time needed to check the result. In the end, it
takes under a second for Coq to formally check the proof on a standard laptop.

Goal Rabs (RInt (fun t => sqrt (1 - t*t)) 0 1 - PI/4) <= 1/1000000.

interval with (i_integral_prec 20, i_integral_depth 15, i_integral_deg 5).

Qed.

5 Benchmarks

This section presents the behavior of the tactic on several integration problems,
each given as a symbolic integral, its value (approximate if no closed form exists),
and a set of absolute error bounds that must be reached by the tactic. Each
problem is translated into a set of Coq scripts as follows, one for each bound:

Goal Rabs (RInt function domain - value) <= error.
interval with options.
Qed.

The tactic options have been set using the following experimental protocol.
First, the target relative accuracy is computed from the error bound and the
initial estimation of an integral. The floating-point precision is then set at about
10 more bits than the target accuracy, so that round-off errors do not make
interval enclosures too large. The maximal depth is originally set to a large
enough value. Then, various degrees of RPAs are tested and the one that leads
to the fastest execution is kept. Finally, the maximal depth is reduced as long
as the tactic succeeds in proving the bounds, so that we get an idea of how
deep splitting has to be performed to compute an accurate enclosure of the
integral. Note that reducing the maximal depth might improve timings in case
the adaptive algorithm had been overly conservative and did too much domain
splitting. Reducing the target relative accuracy could also improve timings (again
by preventing some domain splitting), but this was not done. The tables below
indicate, for each error bound, the time needed and the tactic settings. Timings
are in seconds and are obtained on a standard-grade laptop.

For each integral, we also ran several quadrature methods from Octave [3]:
quad, quadv, quadgk, quadl, quadcc. We also used IntLab [13]; it provides
verifyquad, an interval arithmetic procedure that computes integral enclosures
using a verified Romberg method. For each method, we ask for an absolute accu-
racy of 10−15. We only comment when the answer is off, or when the execution
time exceeds 1 s. Finally, we also tested VNODE-LP [11] on each example by
representing the integral as the value of the solution of a differential equation.
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The first problem is the integral of the derivative of arctan, a highly regular
function. As expected, the tactic behaves well on it, since it takes about 3 s to
compute 18 decimal digits of π by integration. Note that the time needed for
reifying the goal and performing the initial computations is incompressible, so
there is not much difference between 10−3 and 10−6.

∫ 1

0

dx

1 + x2
=

π

4

Error Time Accuracy Degree Depth Prec
10−3 0.3 10 15 0 30
10−6 0.3 20 6 2 30
10−9 0.6 30 7 3 40
10−12 1.0 40 7 4 50
10−15 1.7 50 10 5 60
10−18 2.9 60 12 5 70

The second problem is Ahmed’s integral [1]. It is a bit less regular and uses
more operators than the previous problem, but the tactic still behaves well
enough: adding ten bits of accuracy doubles the computation time.

∫ 1

0

arctan
√

x2 + 2√
x2 + 2 (x2 + 1)

dx =
5π2

96

Error Time Accuracy Degree Depth Prec
10−3 0.5 9 5 1 30
10−6 1.2 19 7 3 30
10−9 2.8 29 7 3 40
10−12 5.5 39 10 3 50
10−15 11.2 49 10 4 55

The third problem involves a function that is harder to approximate using
RPAs, so the tactic performs more domain splitting, degrading performances.

∫ π

0

x sin x

1 + cos2 x
dx =

π2

4

Error Time Accuracy Degree Depth Prec
10−3 1.1 11 9 2 30
10−6 2.3 21 6 5 30
10−9 5.0 31 9 5 40
10−12 11.5 41 11 7 50
10−15 27.2 51 11 7 65

The fourth problem is an example from Helfgott6 in the spirit of [5]. The
polynomial part crosses zero, so there is a point where the integrand is not
differentiable because of the absolute value. Thus only degenerate Taylor models
can be computed around that point. Although the tactic has to perform a lot
of domain splitting to isolate that point, it still computes an enclosure of the
integral quickly. Note that the approximate value of the integral was computed
using the interval intro tactic.

∫ 1

0

∣∣(x4 + 10x3 + 19x2 − 6x − 6
)

expx
∣∣ dx � 11.14731055005714

On this example, quadrature methods have some troubles: quad gives only 10
correct digits; verifyquad gives a false answer (a tight interval not containing
6 http://mathoverflow.net/questions/123677/rigorous-numerical-integration.

http://mathoverflow.net/questions/123677/rigorous-numerical-integration
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the value of the integral) without warning;7 quadgk gives only 9 correct digits.
VNODE-LP cannot be used because of the absolute value.

Error Time Accuracy Degree Depth Prec
10−3 0.7 14 5 8 30
10−6 0.9 24 6 13 40
10−9 1.3 34 8 18 50
10−12 1.9 44 10 22 60
10−15 2.7 54 12 28 70

The last two problems are inherently hard to numerically integrate. The
first one is the 12-th coefficient of a Chebyshev expansion. Note that the initial
estimation of the integral is completely off, which explains why the relative
accuracy has to be set about 30 bits higher than one would expect. As with the
previous problem, there are some points where no RPAs can be computed. The
approximate value was again computed using the interval intro tactic.

∫ 1

−1

(
2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1

)

exp
(
− (

x − 3
4

)2) √
1 − x2 dx � −3.2555895745 · 10−6

The quad, quadl, and quadcc procedures give completely off but consistent
answers without warning; quadv gives an answer which is off the mark as well, but
it gives a warning “maximum iteration count reached”; verifyquad works only
for functions that are four times differentiable, hence its failure here; quadgk
gives yet another off answer with no warning. Finally, VNODE-LP fails here
because of computational errors such as divisions by 0.

Error Time Accuracy Degree Depth Prec
10−6 10.7 32 8 17 40
10−9 22.9 42 10 22 50
10−12 48.3 52 13 28 60
10−15 111.8 62 13 35 70

The last problem is an example taken from Tucker’s book [14] and originally
suggested by Rump in [13, p. 372]. This integral is often incorrectly approximated
by computer algebra systems, because of the large number of oscillations (about
950 sign changes) and the large value of the n-th derivatives of the function.
While the maximal depth is not too large, the tactic reaches it for numerous
subdomains, hence the large computation time.

The quad, quadcc, and quadgk procedures give off values without any warn-
ing; quadv gives an off value with a warning; verifyquad takes 1.7 s to give a
correct answer; quadl takes 9 s to return a correct answer.

7 The bug lies in an incorrect implementation of Taylor models for absolute value.
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∫ 8

0

sin(x + expx) dx � 0.3474

Error Time Accuracy Degree Depth Prec
10−1 81.0 6 6 12 30
10−2 123.6 9 8 12 30
10−3 183.4 12 10 12 30
10−4 277.6 15 12 12 30

6 Conclusion

We have presented a method for computing and formally verifying numerical
enclosures of univariate definite integrals using the Coq proof assistant. It has
been integrated into the interval tactic. The method just requires that there
exist rigorous polynomial expressions of the elementary functions in the inte-
grand, so it is only limited by the underlying library. At the time of writing,
the supported functions are

√·, cos, sin, tan, exp, ln, arctan, and the integer
power function. Any new function added to the CoqInterval library would be
supported almost immediately by the integration module.

While our adaptive bisection algorithm and our rigorous quadrature based
on primitives of polynomial might seem crude, they proved effective in practice:
They produce accurate approximations of non-pathological integrals in a few
seconds, and thus they are usable in an interactive setting. Moreover, they are
able to handle functions with unbounded second derivatives in a rigorous way.
Another contribution of this paper is the way we are able to infer that a function
is integrable from a successful computation of its integral.

Nested integrals are not supported by our method. The naive enclosure app-
roach could easily be adapted to support them, but performances would be even
worse due to the curse of dimensionality. As there exists no general approach
for integrating multivariate polynomials,8 being able to compute rigorous mul-
tivariate polynomial approximations would presumably not help.

Improper integrals (infinite bounds) and definite integrals with poles are
not supported either. This time, approximation methods are known (including
rigorous ones), but we do not even have a good enough formalization of such
integrals yet. Once we have it, improper integrals could be supported. Indeed,
one would just split the integration domain into a bounded part (solvable using
our current approach) and an infinite part on which the integrand is dominated
by a function such as t �→ exp(−Ct) at +∞. So the work would be mostly in
automating the discovery of the dominating function.

For proper integrals, we could also have tried rigorous quadrature meth-
ods such as Newton-Cotes formulas. Indeed, rather than a degree-n polynomial
approximation of the integrand, we could have integrated a degree-n polynomial
interpolant, which would have given a much tighter enclosure of the integral at
a fraction of the cost. The increased accuracy comes from the ability to com-
pute a tight enclosure of the n+1-th derivative of the integrand. Unfortunately,
we do not have any such tool yet. (CoqInterval only knows how to bound the
8 Any 3-SAT instance can be reduced to approximating the integral of a multivariate

polynomial.
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first derivative.) Note that a very simplified version of this approach has already
been implemented in Coq in the setting of exact real arithmetic by O’Connor
and Spitters [12]. Since it does not involve a derivative, it is akin to our naive
approach and thus the performances are dreadful.

We could also have tried a much more general method, that is, solving a dif-
ferential equation built from the integrand, as we did with VNODE-LP. Again,
there has been some work done for Coq in the setting of exact real arithmetic [7],
but the performances are not good enough in practice. Much closer to actual
numerical methods is Immler’s work in Isabelle/HOL [6], which uses an arith-
metic on affine forms. This approach is akin to computing with degree-1 RPAs.
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Abstract. This paper presents the first formalization of three classic
confluence criteria for first-order term rewrite systems by Huet and
Toyama. We have formalized proofs, showing that (1) linear strongly
closed systems, (2) left-linear parallel closed systems, and (3) left-linear
almost parallel closed systems are confluent. The third result is extended
to commutation. The proofs were carried out in the proof assistant
Isabelle/HOL as part of the library IsaFoR and integrated into the cer-
tifier CeTA, significantly increasing the number of certifiable proofs pro-
duced by automatic confluence tools.

1 Introduction

Confluence of rewrite systems is an important property, which is intimately
connected to uniqueness of normal forms, and hence to determinism of programs.
In recent years there has been tremendous progress in establishing confluence
or non-confluence of TRSs automatically, with a number of tools under active
development, like ACP [2], Saigawa [8,11], CoLL [18], and our own tool, CSI [23].

The recent achievements in confluence research have enabled a competition1

where such automated tools try to establish/refute confluence. As the proofs
produced by these tools are often complicated and large, there is interest in
checking them with trustable certifiers like CeTA [21]. (CeTA is a certifier for
termination, confluence and complexity proofs for TRSs. Other certifiers exist
for termination proofs, notably Rainbow [4] and CiME3 [5].) Given a certificate
in CPF (certification problem format) [19], CeTA will either answer CERTIFIED
or return a detailed error message why the proof was REJECTED. Its correctness
is formally proven as part of IsaFoR, the Isabelle Formalization of Rewriting.
IsaFoR contains executable “check”-functions for each formalized proof technique
together with formal proofs that whenever such a check succeeds, the technique
was indeed applied correctly. Isabelle’s code-generation facility is used to obtain
a trusted Haskell program from these check functions: the certifier CeTA.2

In the recent past, several confluence results have been formalized, start-
ing from the fundamental result by Knuth and Bendix [12] that a terminating

This work is supported by FWF (Austrian Science Fund) project P27528.
1 http://coco.nue.riec.tohoku.ac.jp/.
2 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta/.
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rewrite system is confluent if and only if all its critical pairs are joinable. For
non-terminating rewrite systems, weak orthogonality as well as sufficient con-
ditions for non-joinability of critical pairs based on unification, discrimination
pairs [1], interpretations, and tree automata [6] have been formalized. These
results are described in [14]. More recently, redundant rules [13] and rule label-
ing [15] increased the number of certifiable confluence proofs significantly.

In this paper we report on the formalization of three classical confluence
results. Two of these are due to Huet [10] and presented in full detail in the
textbook of Baader and Nipkow [3, Lemma 6.3 and Sect. 6.4]. The third result
is due to Toyama [22].

The remainder of this paper is organized as follows. After recalling basic
notions of term rewriting in the next section, in Sect. 3 we report on the for-
malization of the result that linear strongly closed rewrite systems are conflu-
ent. Linearity is an important limitation, but the result does have its uses [7].
Section 4 is devoted to the formalization of the result of Huet that a left-linear
rewrite system is confluent if its critical pairs are parallel closed. In Sect. 5 we
consider Toyama’s generalization of the previous result. Apart from a weaker
joinability requirement on overlays, the result is extended to the commuta-
tion of two rewrite systems. Our formalization is an important first step for
the certification of confluence proofs produced by CoLL [18], which is based on
commutation. In Sect. 6 we explain what is needed for the automatic certifica-
tion of confluence proofs that employ the formalized techniques and we present
experimental results. In the final section we conclude with an outlook on future
work, in particular the challenges that need to be overcome when extending
the results from parallel closed rewrite systems to development closed higher-
order rewrite systems [17]. The main Isabelle theories developed and integrated
into IsaFoR are Strongly Closed.thy, for the result on strongly closed rewrite
systems, Parallel Closed.thy for results on (almost) parallel closed systems
(where we make heavy use of multihole contexts, cf. Multihole Context.thy),
and Critical Pair Closure Impl.thy for the executable check functions.

2 Preliminaries

We assume familiarity with the basics of rewriting [3,20]. Knowledge of Isabelle [16]
is not essential but experience with an interactive theorem prover might be helpful.

Let F be a signature and V a set of variables disjoint from F . By T (F ,V) we
denote the set of terms over F and V. Positions are strings of positive natural
numbers, i.e., elements of N

∗
+. We write q � p if qq′ = p for some position q′,

in which case p\q is defined to be q′. Furthermore q < p if q � p and q �= p.
Finally, positions q and p are parallel, written as q ‖ p, if neither q � p nor
p < q. Positions are used to address subterm occurrences. The set of positions
of a term t is defined as Pos(t) = {ε} if t is a variable and as Pos(t) = {ε}∪{iq |
1 � i � n and q ∈ Pos(ti)} if t = f(t1, . . . , tn). The subterm of t at position
p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if p = iq and
t = f(t1, . . . , tn). We write s[t]p for the result of replacing the subterm at position

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Strongly_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Parallel_Closed.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Rewriting/Multihole_Context.thy
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/file/749facec0ad2/thys/Confluence_and_Completion/Critical_Pair_Closure_Impl.thy
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p of s with t. The size of a term t, i.e., the size of Pos(t), is denoted by |t|. We
write Var(t) for the set of variables occurring in the term t. A term t is linear if
every variable occurs at most once in it. A substitution is a mapping σ from V
to T (F ,V) such that its domain {x ∈ V | σ(x) �= x} is finite. We write tσ for
the result of applying σ to the term t.

Assume a fresh symbol �, called hole. A multihole context is a term that may
contain an arbitrary number of holes. Filling the holes in a multihole context C
with terms t1, . . . , tn is written as C[t1, . . . , tn]. (At this point we mention that
in the formalization we of course have to make sure that the number of terms n
matches the number of holes in C. To ease readability we usually do not make
this explicit.) A term with exactly one hole is just called context and we also
write s[]p for the context obtained by replacing position p in s by the hole. If
C[s] = t for some context C then s is called a subterm of t and we write s� t. If
additionally C �= � then s is a proper subterm of t, which is denoted by s � t.

A rewrite rule is a pair of terms (�, r), written � → r.3 A rewrite rule � → r is
left-linear if � is linear, right-linear if r is linear, and linear if it is both left- and
right-linear. A variant of a rewrite rule is obtained by renaming its variables. A
term rewrite system (TRS) is set of rewrite rules over a signature. In the sequel,
signatures are left implicit. A TRS is (left-)linear if all its rules are (left-)linear.
A rewrite relation is a binary relation on terms that is closed under contexts and
substitutions. For a TRS R we define →R (often written as →) to be the smallest
rewrite relation that contains R. As usual →= and →∗ denote the reflexive, and
reflexive and transitive closure of →, respectively.

A relation → is said to have the diamond property if ← · → ⊆ → · ← and
is called confluent if its reflexive transitive closure has the diamond property.
It is strongly confluent if ← · → ⊆ →= · ∗←. The results in Sect. 5 will be
proved in the more general setting of commutation. Two relations →1 and →2

commute if ∗
1← · →∗

2 ⊆ →∗
2 · ∗

1←, they strongly commute if 1← · →2 ⊆ →=
2 · ∗

1←.
The following lemma captures the well-known connections between the diamond
property, (strong) confluence and (strong) commutation.

Lemma 1. Let →, →1, →2, →1′ , and →2′ be binary relations.

1. If → has the diamond property then it is confluent.
2. If → is strongly confluent then it is confluent.
3. If →1 and →2 strongly commute then they commute.
4. If → commutes with itself then it is confluent.
5. If →1 ⊆ →1′ ⊆ →∗

1 and →1′ is confluent then →1 is confluent.
6. If →1 ⊆ →1′ ⊆ →∗

1 and →2 ⊆ →2′ ⊆ →∗
2 and →1′ and →2′ commute then

→1 and →2 commute.

Later, when applying the last two statements, the relations →1′ and →2′

between one and many step rewriting that we will use is parallel rewriting.

3 We do not impose the common variable conditions, i.e., the restriction that � is not
a variable and all variables in r are contained in �.
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Definition 1. For a TRS R, the parallel rewrite relation −→∥ R is defined induc-
tively by

– x −→∥ R x if x is a variable,
– �σ −→∥ R rσ if � → r ∈ R, and
– f(s1, . . . , sn) −→∥ R f(t1, . . . , tn) if f is a function symbol of arity n and si −→∥ R ti

for all 1 � i � n.

The following properties of parallel rewriting are well-known and follow by
straight-forward induction proofs.

Lemma 2. The following properties of −→∥ hold:

– →R ⊆ −→∥ R ⊆ →∗
R,

– s −→∥ R s for all terms s,
– if xσ −→∥ R xτ for all x ∈ Var(s) then sσ −→∥ R sτ .

The confluence results formalized in this work are based on (left-)linearity and
restricted joinability of critical pairs. Critical pairs arise from situations where
two redexes overlap with each other. The definition we use here is slightly non-
standard in two regards. First we consider critical pairs for two rewrite systems
to use them in a commutation setting later on. Second we do not exclude root
overlaps of a rule with (a variant of) itself as is commonly done. This allows us
to dispense with the variable condition that all variables in the right-hand side of
a rule must also occur on the left. Moreover, if a TRS does satisfy the condition
then all extra critical pairs that would normally be excluded are trivial.

A critical overlap (�1 → r1, C, �2 → r2)μ of two TRSs R1 and R2 consists of
variants �1 → r1 and �2 → r2 of rewrite rules in R1 and R2 without common
variables, a context C, such that �2 = C[�′] with �′ /∈ V and a most general
unifier μ of �1 and �′. From a critical overlap (�1 → r1, C, �2 → r2)μ we obtain a
critical peak Cμ[r1μ] R1← Cμ[�1μ] →R2 r2μ and the corresponding critical pair
Cμ[r1μ] R1←�→R2 r2μ. If C = �, the corresponding critical pair is called an
overlay and written as r1μ R1←��→R2 r2μ, otherwise it is called an inner critical
pair, and denoted using R1←·�→R2 . When considering the critical pairs of a TRS
R with itself we drop the subscripts and write ←�→ instead of R←�→R.

3 Strongly Closed Critical Pairs

The first confluence criterion we consider is due to Huet [10] and based on the
observation that in a linear rewrite system it suffices to have strong-confluence
like joins for all critical pairs in order to guarantee strong confluence of the
rewrite system. A preliminary version of the formalization described in this
section was reported in [14].

Definition 2. A TRS R is strongly closed if every critical pair s ←�→ t of R
satisfies both s →= · ∗← t and s →∗ · =← t.
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The following folklore lemma tells us that in a linear term applying a substi-
tution can be done by replacing the one subterm where the variable occurs and
applying the remainder of the substitution.

Lemma 3. Let t be a linear term and let p ∈ Pos(t) be a position with t|p = x.
Then for substitutions σ and τ with σ(y) = τ(y) for all y ∈ Var(t) different from
x we have tτ = tσ[τ(x)]p.

The proof that linear strongly closed systems are strongly confluent is very
similar to the one of the famous critical pair lemma, by analyzing the relative
positions of the rewrite steps in a peak. The next lemma, which appears implicitly
in Huet’s proof of Corollary 1, takes care of the case where one position is above
the other.

Lemma 4. Let R be a linear, strongly closed TRS and assume s →R t with rule
�1 → r1 and substitution σ1 at position p1 and let s →R u with rule �2 → r2 and
substitution σ2 at position p2 with p1 � p2. Then there are terms v and w with
t →∗

R v =
R← u and t →=

R w ∗
R← u.

Proof (Sketch). Since the proof is standard and the formalization closely follows
the paper proof, we only sketch the idea and refer to the formalization for full
details. We distinguish whether the step from s to u overlaps with the one from
s to t or takes place in the substitution. If there is a critical pair, we can close
it by the assumption that the system is strongly closed. If the step from s to u
happens in the substitution we can join in the required shape due to linearity of
R, which avoids duplication of the redex, by using Lemma3.

Now the main result of this section follows easily.

Corollary 1 (Huet [10]). If a TRS R is linear and strongly closed then →R
is strongly confluent.

Proof. Assume s →R t and s →R u. Then there are positions p1, p2 ∈ Pos(s),
substitutions σ1, σ2 and rules �1 → r1, �2 → r2 in R with s|p1 = �1σ1, s|p2 = �2σ2

and t = s[r1σ1]p1 , u = s[r2σ2]p2 . We show existence of a term v with t →∗ v
and u →= v by analyzing the positions p1 and p2. If they are parallel then
t → t[r2σ2]p2 = u[r1σ1]p1 ← u. If they are not parallel then one is above the
other. In both cases we conclude by Lemma 4.

Then by Lemma 1 R is also confluent.

Example 1. Consider the TRS R consisting of the two rewrite rules

f(f(x, y), z) → f(x, f(y, z)) f(x, y) → f(y, x)

There are four non-trivial critical pairs

f(f(x, f(y, z)), v) ←�→ f(f(x, y), f(z, v)) f(x, f(y, z)) ←�→ f(z, f(x, y))
f(z, f(x, y)) ←�→ f(x, f(y, z)) f(f(y, x), z) ←�→ f(x, f(y, z))

Since R is linear and all critical pairs are strongly closed, R is confluent.
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The next example shows how to apply the criterion to a TRS that does not
fulfill the variable conditions.

Example 2. Consider the linear TRS R consisting of the following three rules:

a → f(x) f(x) → b x → f(g(x))

There are five critical pairs modulo symmetry:

f(y) ←�→ f(x) f(g(a)) ←�→ f(x) b ←�→ b

f(g(f(x))) ←�→ b f(g(x)) ←�→ f(g(x))

Using the second rule it is easy to see that all of them are strongly closed. Hence
R is confluent.

The next example shows that, if the variable condition is not satisfied, critical
pairs that arise from overlapping a rule with itself at the root are essential.

Example 3. Consider the linear rewrite system R consisting of the rule a → y.
Because of the peak x ← a → y, R is not confluent and indeed x ←�→ y is a
non-joinable critical pair according to our definition.

In the next section we consider a criterion that drops the condition on R to
be right-linear.

4 Parallel Closed Critical Pairs

The criterion from the previous section requires the TRS to be linear and while
left-linearity is a common restriction, right-linearity is a rather unnatural one.
Thus we turn our attention to criteria for left-linear systems that change the
restriction on the joinability of critical pairs. The crucial observation is that in
a non-right-linear system executing the upper step in variable overlap can dupli-
cate the redex below. Thus to join such a situation multiple steps might be neces-
sary, all of which take place at parallel positions. Consequently we consider parallel
rewriting. The following definition describes the new joinability condition.

Definition 3. A TRS R is parallel closed if every critical pair s ←�→ t of R
satisfies s −→∥ R t.

Together with left-linearity this guarantees the diamond property of the par-
allel rewrite relation.

Theorem 1 (Huet [10]). If a TRS R is left-linear and parallel closed then −→∥ R
has the diamond property.
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Fig. 1. Overview of the proof of Theorem1.

The proof of this theorem is much more involved than the one for strongly
closed systems. The first observation is that we will now have to consider a peak
of parallel steps, in order to show the diamond property of −→∥ . In case the two
parallel steps are orthogonal to each other, they simply commute by the well-
known Parallel Moves Lemma. However, if they do interfere the assumption of
the theorem only allows us to close a single critical pair to reduce the amount
of interference. Thus we will have to use some form of induction on how much
the patterns of the two parallel steps overlap. Figure 1 shows the setting for
the overlapping case. The horizontal parallel step, described by the horizontally
striped redexes, and the vertical step, described by the vertically striped redexes,
overlap. Hence there is a critical pair, say the one obtained from overlapping the
leftmost vertical redex with the leftmost horizontal redex. Then, by assumption
there is a closing parallel step, which, since it takes place inside the critical
pair, can be combined with the remaining horizontal redexes to obtain a new
peak with less overlap, which can be closed by the induction hypothesis. When
making this formal we identified two crucial choices. First the representation
of the parallel rewrite relation and second the way to measure the amount of
overlap between two parallel steps with the same source. Huet in his original
proof heavily uses positions. That is, a parallel step is defined as multiple single
steps that happen at parallel positions and for measuring overlap he takes the
sum of the sizes of the subterms that are affected by both steps. More precisely,
writing −→∥ P for a parallel step that takes place at positions in a set P , for a peak
t P1←−∥ s −→∥ P2 u he uses ∑

q∈Q

|s|q|
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where Q = {p1 ∈ P1 | p2 � p1 for some p2 ∈ P2} ∪ {p2 ∈ P2 | p1 � p2 for some
p1 ∈ P1}. This formulation is also adopted in the text book by Baader and Nip-
kow [3]. Consequently, when starting the present formalization, we also adopted
this definition. However, the book keeping required by working with sets of posi-
tions as well as formally reasoning about this measure in Isabelle became so convo-
luted that it very much obscured the ingenuity and elegance of Huet’s original idea
while at the same time defeating our formalization efforts. Hence in the end we had
to adopt a different approach.

Toyama [22], in the proof of his extension of Huet’s result, does not use
positions at all and instead relies on (multihole) contexts, which means a parallel
step is then described by a context and a list of root steps that happen in the
holes. To measure overlap he collects those redexes that are subterms of some
redex in the other step, i.e., decorating the parallel rewrite relation with the
redexes contracted in the step, for a peak t t1,...,tn←−∥ s −→∥ u1,...,um

u Toyama’s
measure is ∑

s∈S

|s|

where S = {ui | ui � tj for some tj} ∪ {tj | tj � ui for some ui}. However, this
measure turns out to be problematic as shown in the following example.

Example 4. Consider the TRS consisting of the following five rewrite rules:

f(a, a, b, b) → f(c, c, c, c) a → b a → c b → a b → c

Then we have the peak f(b, b, a, a)
a,a,b,b←−−−−∥ f(a, a, b, b)

f(a,a,b,b)−−−−−→∥ f(c, c, c, c).
The measure of this peak according to the definition above is 2, since S =
{a, b} ∪ ∅. Now after splitting of one of the four critical steps—it does not
matter which one—and closing the corresponding critical pair, we arrive at

f(a, a, b, b) f(c, c, c, c)

f(b, a, b, b)

f(b, b, a, a)

The measure of the new peak f(b, b, a, a)
a,b,b←−−−∥ f(b, a, b, b)

b,a,b,b−−−−→∥ f(c, c, c, c) is
still 2 since S = {a, b} ∪ {a, b}.

Note that using multisets instead of sets does not help, since then the measure
of the initial peak is 4 (S = {a, a, b, b}) and of the new peak, after closing the
critical pair, it is 7 since S = {a, b, b} 	 {b, a, b, b} (and even if we take into
account that three of the redexes are counted twice we still get 4). The problem
is that in the new peak the redex at position 1 of the closing step is counted
again, because b is a subterm of one the redexes of the other step. Hence it is
crucial to only count redexes at overlapping positions.
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To remedy this situation we will collect all overlapping redexes of a peak in a
multiset. These multisets will then be compared by �mul, the multiset extension
of the proper superterm relation. We start by characterizing parallel rewrite
steps using multihole contexts.

Definition 4. We write s
C,a1,...,an−−−−−−−→∥ R t if s = C[a1, . . . , an] and t =

C[b1, . . . , bn] for some b1, . . . , bn with ai →ε
R bi for all 1 � i � n.

To save space we sometimes abbreviate a list of terms a1, . . . , an by a and
write s

C,a−−→∥ R t leaving length implicit. The following expected correspondence
is easily shown by induction.

Lemma 5. We have s −→∥ R t if and only if s
C,s−−→∥ R t for some C and s.

Now we can formally measure the overlap between two parallel rewrite steps
by collecting those redexes that are below some redex in the other step.

Definition 5. The overlap between two co-initial parallel rewrite steps is defined
by the following equations

�
( �,a←−−∥ s

�,b−−→∥
)

= {s}

�
(

C,a1,...,ac←−−−−−−∥ s
�,b−−→∥

)
= {a1, . . . , ac}

�
( �,a←−−∥ s

D,b1,...,bd−−−−−−→∥

)
= {b1, . . . , bd}

�
(

f(C1,...,Cn),a←−−−−−−−−−∥ f(s1, . . . , sn)
f(D1,...,Dn),b−−−−−−−−−→∥

)
=

n⋃
i=1

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)

where a1, . . . , an = a and b1, . . . , bn = b are partitions of a and b such that the
length of ai and bi matches the number of holes in Ci and Di, for all 1 � i � n.

Example 5. Applying this definition for the two peaks from Example 4 yields

�
(

f(�,�,�,�),a,a,b,b←−−−−−−−−−−−−∥ f(a, a, b, b)
�,f(a,a,b,b)−−−−−−−→∥

)
= {a, a, b, b}

�
(

f(b,�,�,�),a,b,b←−−−−−−−−−−∥ f(b, a, b, b)
f(�,�,�,�),b,a,b,b−−−−−−−−−−−−→∥

)
= {a, b, b}

and {a, a, b, b} �mul {a, b, b} as desired.

Note that our definition of � is in fact an over-approximation of the actual
overlap between the steps. That is because we do not split redexes into the left-
hand side of the applied rule and a substitution but take the redex as a whole.
The following example illustrates the effect.



Certification of Classical Confluence Results 299

Example 6. Consider the rewrite system consisting of the two rules

f(x) → x a → b

and the peak a ← f(a) → f(b). We have

�
(

�,f(a)←−−−−∥ f(a)
f(�),a−−−−→∥

)
= {a}

although the two steps do not overlap—the step to the right takes place com-
pletely in the substitution of the one to the left (in fact the rewrite system in
question is orthogonal).

However, since we are dealing with parallel rewriting, no problems arise from
this over-approximation. This changes when extending the results to develop-
ment steps, see Sect. 7 for further discussion.

The following properties of � turned out to be crucial in our proof of
Theorem 1.

Lemma 6. For a peak
C,a←−−∥ s

D,b−−→∥ the following properties of � hold.

– If s = f(s1, . . . , sn) with C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆ �

(
C,a←−−∥ s

D,b−−→∥
)

for all 1 � i � n.

– The overlap is bounded by a, i.e., {a1, . . . , ac} �=
mul �

(
C,a←−−∥ s

D,b−−→∥
)

.

– The overlap is symmetric, i.e., �
(

C,a←−−∥ s
D,b−−→∥

)
= �

(
D,b←−−∥ s

C,a−−→∥
)

.

There is one more high-level difference between the formalization and the
paper proof. In the original proof one needs to combine the closing step for the
critical pair with the remainder of the original step in order to obtain a new
peak, to which the induction hypothesis can then be applied. This reasoning can
be avoided, by using an additional induction on the source of the peak. Then
the case where neither of the two parallel steps is a root step (and thus a single
step) can be discharged by the induction hypothesis of that induction.

The following technical lemma tells us that a parallel rewrite step starting
from sσ is either inside s, i.e., we can split off a critical pair, or we can do the
step completely inside σ.

Lemma 7. Let s be a linear term. If sσ
C,s1,...,sn−−−−−−→∥ R t then either t = sτ for

some substitution τ such that xσ −→∥ xτ for all x ∈ Var(s) or there exist a context
D, a non-variable term s′, a rule � → r ∈ R, a substitution τ , and a multihole
context C ′ such that s = D[s′], s′σ = �τ , Dσ[rτ ] = C ′[s1, . . . , si−1, si+1, . . . , sn]
and t = C ′[t1, . . . , ti−1, ti+1, . . . , tn] for some 1 � i � n.
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We are now ready to prove the main result of this section. To ease presen-
tation, the following proof does use the condition that the left-hand sides of
rewrite rules are not variables. By employing additional technical case analyses
this restriction can be easily dropped. We refer to the formalization for details.

Proof (of Theorem 1). Assume t
C,a←−−∥ s

D,b−−→∥ u. We show t −→∥ v ←−∥ u for some
term v by well-founded induction on the overlap between the two parallel steps
using the order �mul and continue by induction on s with respect to �. If s = x
for some variable x then t = u = x. So let s = f(s1, . . . , sn). We distinguish four
cases.

1. If C = f(C1, . . . , Cn) and D = f(D1, . . . , Dn) then t = f(t1, . . . , tn) and
u = f(u1, . . . , un) and we obtain partitions a1, . . . , an = a and b1, . . . , bn = b

of a and b with ti
Ci,ai←−−−∥ si

Di,bi−−−→∥ ui for all 1 � i � n. Then, since we have

�
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)
⊆ �

(
C,a←−−∥ s

D,b−−→∥
)

by Lemma 6 and thus also

�
(

C,a←−−∥ s
D,b−−→∥

)
�=

mul �
(

Ci,ai←−−−∥ si
Di,bi−−−→∥

)

we can apply the inner induction hypothesis and obtain terms vi with ti −→∥
vi ←−∥ ui for all 1 � i � n and thus we have t −→∥ f(v1, . . . , vn) ←−∥ u.

2. If C = D = � then both steps are root steps and thus single rewrite steps
and we can write t = r1σ1

ε←− �1σ1 = s = �2σ2
ε−→ r2σ2 = u. Hence, since

�1σ1 = �2σ2, there is a critical pair r′
1μ ←��→ r′

2μ for variable disjoint variants
�′
1 → r′

1, �′
2 → r′

2 of �1 → r1, �2 → r2 with μ a most general unifier of �′
1 and

�′
2. Then by assumption r′

1μ −→∥ r′
2μ and by closure under substitution also

t = r1σ1 −→∥ r2σ2 = u.
3. If C = f(C1, . . . , Cn) and D = � then the step to the right is a single root

step and we write t = f(t1, . . . , tn)
C,a←−−∥ s = �σ

ε−→ rσ = u. Since � is linear
by assumption, we can apply Lemma 7 and either obtain τ with t = �τ and
xσ −→∥ xτ for all x ∈ Var(�) or a critical pair.
– In the first case define

δ(x) =

{
τ(x) if x ∈ Var(�)
σ(x) otherwise

We have t = �τ = �δ by definition of δ and hence t −→∥ rδ by a single
root step. Moreover we have u = rσ −→∥ rδ since xσ −→∥ xδ for all variables
x ∈ Var(r). This holds because either x ∈ Var(�) and then xσ −→∥ xτ = xδ
or x /∈ Var(�) and then xσ = xδ.

– In the second case Lemma 7 yields a context E, a non-variable term �′′,
a rule �′ → r′ ∈ R, a substitution τ , and a multihole context C ′ such
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that � = E[�′′], �′′σ = �′τ , Eσ[r′τ ] = C ′[a1, . . . , ai−1, ai+1, . . . , ac] and
t = C ′[a′

1, . . . , a
′
i−1, a

′
i+1, . . . , a

′
c] for some 1 � i � c. Since �′′σ = �′τ there

is a critical pair Eμ[r′μ] ←�→ rμ and by assumption Eμ[r′μ] −→∥ rμ and
thus also Eσ[r′τ ] −→∥ rσ. That is, we obtain a new peak

t
C′,a′
←−−−∥ Eσ[r′τ ] −→∥ rσ

with a′ = a1, . . . , ai−1, ai+1, . . . , ac. Since

�
(

C,a←−−∥ s
�,�σ−−−→∥

)
= {a1, . . . , ac} �mul {a1, . . . , ai−1, ai+1, . . . , ac}

�=
mul �

(
C′,a′
←−−−∥ Eσ[r′τ ] −→∥

)

by Lemma 6, we can apply the induction hypothesis and obtain v with
t −→∥ v ←−∥ rσ = u.

4. The final case, D = f(D1, . . . , Dn) and C = �, is completely symmetric.

Finally, by Lemmas 1 and 2 we obtain confluence of →R.

Example 7. Consider the TRS R consisting of the following three rewrite rules:

x + y → y + x (x + y) ∗ z → (x ∗ z) + (y ∗ z) (y + x) ∗ z → (x ∗ z) + (y ∗ z)

Since the four critical pairs of R

(y + x) ∗ z ←�→ (x ∗ z) + (y ∗ z) (y ∗ z) + (x ∗ z) ←�→ (x ∗ z) + (y ∗ z)
(x + y) ∗ z ←�→ (x ∗ z) + (y ∗ z) (x ∗ z) + (y ∗ z) ←�→ (y ∗ z) + (x ∗ z)

are parallel closed, R is confluent.

5 Almost Parallel Closed Critical Pairs and Commutation

In this section we consider two extensions to Huet’s result due to Toyama [22].
The first one allows us to weaken the joining condition for some critical pairs.

When carefully examining the proof of Theorem1 one realizes that in the
case where both steps of the peak are single root steps, i.e., the case where
C = D = �, the induction hypothesis does not need to be applied, since
closing the critical pair immediately closes the whole peak. This suggests that
the joining condition can be weakened for overlays. A first idea could be to
take ←��→ ⊆ −→∥ · ←−∥ since then we would still have the diamond property in the
overlay case. However Toyama realized that one can do even better by weakening
the diamond property to strong confluence. The following definition captures the
new conditions.

Definition 6. A TRS R is almost parallel closed if s −→∥ · ∗← t for all overlays
s ←��→ t and s −→∥ t for all inner critical pairs s ←·�→ t.
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Fig. 2. Asymmetry in the proof of Theorem2.

Using exactly the same proof structure as before we could now prove strong
confluence of −→∥ for left-linear almost parallel closed systems. However, consid-
ering Toyama’s second extension of Theorem 1, we will prove the theorem in the
more general setting of commutation.

Theorem 2 (Toyama [22]). Let R1 and R2 be left-linear TRSs. If s −→∥ 2 · ∗
1← t

for all critical pairs s 1←�→2 t and additionally s −→∥ 1 t for all inner critical
pairs s 2←·�→1 t then −→∥ 1 and −→∥ 2 strongly commute.

Proof (Adaptations). We only highlight the differences to the proof of Theorem1
and refer to the formalization for the full proof details. Assume

t 1
C,a←−−∥ s

D,b−−→∥ 2 u

We show t −→∥ 2 v ∗
1← u for some term v. We apply the same inductions and

case analyses as before. The cases C = f(C1, . . . , Cn), D = f(D1, . . . , Dn) and
C = D = � require no noteworthy adaptation. The main difference is that now
the cases D = f(D1, . . . , Dn), C = � and C = f(C1, . . . , Cn), D = � become
asymmetric for the critical pair case—the corresponding diagrams are shown in
Fig. 2.

First, suppose C = f(C1, . . . , Cn) and D = �, write t = f(t1, . . . , tn) 1
C,a←−−∥

s = �σ
ε−→2 rσ = u, and assume there is a critical pair according to Lemma 7.

That is, we obtain Eμ[r′μ] 1←�→2 rμ with Eσ[r′τ ] −→∥ 1 t and by assumption
we obtain a v such that Eσ[r′τ ] −→∥ 2 v ∗

1← rσ. Then using the same reasoning as
before, for the new peak

t 1
C′,a′
←−−−∥ Eσ[r′τ ] −→∥ 2 v

we have

�
(

C,a←−−∥ s
�,�σ−−−→∥

)
�mul �

(
C′,a′
←−−−∥ Eσ[r′τ ] −→∥

)

and can apply the induction hypothesis to obtain a v′ with t −→∥ 2 v′ ∗
1← v, which

combined with u = rσ →∗
1 v concludes this case.

In the second case, i.e., when D = f(D1, . . . , Dn) and C = �, observe that
the critical pair we obtain is an inner critical pair between R2 and R1, since
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D �= �. Thus, after applying the assumption for critical pairs 2←·�→1, the
proof is the same as for Theorem 1.

Instantiating R1 and R2 with the same TRS R yields the corresponding
result for confluence.

Corollary 2 (Toyama [22]). If the TRS R is left-linear and almost parallel
closed then −→∥ R is strongly confluent.

Proof. Immediate from the definition of almost parallel closed, Theorem2 and
the fact that s ←�→ t if and only if s ←��→ t or s ←·�→ t.

Example 8. Recall the rewrite system from Example 4. One easily verifies that
all its critical pairs are almost parallel closed, and hence it is confluent.

6 Certification and Experiments

To facilitate checking of confluence proofs generated by automatic tools based
on Corollarys 1 and 2 we extended the CPF to represent such proofs. Since in
order to check that a given TRS is strongly or almost parallel closed, CeTA has
to compute all critical pairs anyway, in the certificate we just require the claim
that the system is strongly or almost parallel closed, together with a bound on
the length of the rewrite sequences to join the critical pairs.4 Certificates for
commutation are not yet supported, since currently no tool produces them, and
CPF does not contain a specification for commutation proofs.

For experiments we considered all 277 TRSs in the Cops5 database and used
the confluence tool CSI to obtain certificates in CPF for confluence proofs. All
generated certificates have been certified by CeTA. Table 1 shows the results of
running CSI with different strategies. The first and second column show the
results of applying just Corollarys 1 and 2 respectively, the third column is the
combination. In the fourth column we show the result when additionally adding
and removing redundant rewrite rules [13], which yields a considerable boost
in power. The idea of that technique is to add and remove rules that can be
simulated by other rules, which consequently does not change confluence of the
system, but often makes other criteria, like the ones we consider here, applicable.
Column “full” shows the results for the full certified strategy of CSI, which
additionally includes Knuth and Bendix’ criterion, weak orthogonality (which is
subsumed by Corollary 2, however) and the rule labeling heuristic [15] as well as
several criteria for non-confluence. The last column shows the difference to last
year’s version of CSI’s certified strategy, which already included Corollary 1, but
not Corollary 2. In addition to the new certifiable proofs, several existing proofs
of CSI 2015 could be simplified and no longer require complicated reasoning via
decreasing diagrams.

4 This bound is necessary to ensure termination of the certifier.
5 http://cops.uibk.ac.at.

http://cops.uibk.ac.at
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Table 1. Experimental results.

SC PC SC+PC SC+PC+RR full 2015

yes 38 21 41 92 110 104

no 0 0 0 0 48 48

maybe 239 256 236 185 119 125

7 Conclusion

In this paper we presented the first formalization of three classical criteria for
confluence and commutation of (left-)linear rewrite systems. Building on top of
IsaFoR—which provided invaluable support on the one hand, e.g. by its theories
on critical pairs and multihole contexts, and on the other hand, as expected,
was also extended with new basic facts about lists, multisets, multihole contexts
etc.—we formalized proofs that linear strongly closed systems, and left-linear
(almost) parallel closed systems are confluent (commute). The major difference
to the paper proof is our definition of the overlap between two parallel steps that
are represented via multihole contexts.

Concerning future work, another important extension of the results of Huet
and Toyama due to van Oostrom [17] is using multisteps (also called development
steps) −→○ which allow nested non-overlapping redexes. This extension not only
strengthens Huet’s criterion in the first-order world but also makes it applicable
to higher-order rewriting, where using parallel steps fails due to β-reduction.

However, although the paper proofs superficially look very similar, and do
employ similar ideas, obtaining a formalized proof will require serious effort.
In fact neither our representation of (parallel) rewrite steps, nor our definition
of �, nor the idea of using an induction on the source of the peak to avoid
reasoning about combining steps, carry over. To make the concepts that are hard
to formalize in a proof assistant, e.g. measuring the amount of overlap between
two multisteps or the descendants of a multistep, Hirokawa and Middeldorp [9]
suggested to use proof terms to obtain a rigorous proof (and at the same time
extended the result to commutation). This is a step forward but more is needed
to obtain a formalized proof, also for the extension to higher-order systems.
In particular, we anticipate the extensive use of sets of positions (in [9]) to be
problematic without alternative notions. We plan to employ residual theory [20,
Sect. 8.7] and to develop a notion of overlap for multisteps similar to Definition 5
to close the gap.

Acknowledgments. We thank Nao Hirokawa for suggesting Lemma 6 and Bertram
Felgenhauer and Christian Sternagel for insightful discussion.
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Abstract. In a new approach, functional correctness specifications of
insert/update and delete operations on search trees are expressed on the
level of lists by means of an inorder traversal function that projects trees
to lists. With the help of a small lemma library, functional correctness
and preservation of the search tree property are proved automatically (in
Isabelle/HOL) for a range of data structures: unbalanced binary trees,
AVL trees, red-black trees, 2-3 and 2-3-4 trees, 1-2 brother trees, AA
trees and splay trees.

1 Introduction

Most books and articles on search tree data structures do not discuss func-
tional correctness, which is taken to be obvious, but concentrate on non-obvious
structural invariants like balancedness. This paper confirms that this is the right
attitude by providing a framework for proving the functional correctness of eight
different search tree data structures automatically (in Isabelle/HOL [19,21]).

What is proved automatically? Functional correctness of insert, delete and
isin together with the preservation of the search tree invariant, i.e. sortedness, by
insert and delete. Structural invariants like balancedness are proved manually,
depend on the specific data structure, and are not discussed here.

Which data structures are covered? Unbalanced binary trees, AVL trees, red-
black trees, 2-3 and 2-3-4 trees, 1-2 brother trees, AA trees and splay trees.1 As
far as we know, these are the first formal proofs for 2-3 and 2-3-4 trees, 1-2
brother trees and AA trees, and the first automatic proofs for most of the eight
data structures.

What does automatic mean? It means that all the required theorems are
proved by induction followed by a single invocation of Isabelle’s auto proof
method, parameterized with a fixed set of basic lemmas plus further lemmas
about auxiliary functions. The lemmas to be proved about insert, delete and
isin are fixed; lemmas about auxiliary functions need to be invented but (mostly)
follow a simple pattern.

T. Nipkow—Supported by DFG Koselleck grant NI 491/16-1.
1 See http://isabelle.in.tum.de/library/HOL/HOL-Data Structures/ or the source

directory src/HOL/Data Structures/ in the Isabelle distribution.
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The paper is structured as follows. Section 3 presents two approaches to the
specification and verification of set implementations: the standard approach and
our new approach. Section 4 details the verification framework behind the new
approach. In Sect. 5 eight different search tree implementations and their cor-
rectness proofs are discussed. In a final section it is shown how the framework
can be generalized from sets to maps.

Related work is discussed in the body of the paper. With one exception, the
proofs in previous work are not automatic. We refrain from stating this each
time and we do not describe how far from automatic they are, although this
varies significantly (from a few to more than a hundred lines).

2 Lists and Trees

Lists (type ′a list) are constructed from the empty list [] via the infix cons-
operator “·”. The notation [x ,y ,z ] is short for x · y · z · []. The infix @ concate-
nates two lists.

Binary trees are defined as the data type ′a tree with two constructors: the
empty tree or leaf 〈〉 and the node 〈l , a, r〉 with subtrees l , r :: ′a tree and
contents a :: ′a.

There is also a type ′a set of sets with their usual operations.

3 Set Implementations

We require that an implementation of sets provides some type ′a t (where ′a is
the element type) and the operations

empty :: ′a t
insert :: ′a ⇒ ′a t ⇒ ′a t
delete :: ′a ⇒ ′a t ⇒ ′a t
isin :: ′a t ⇒ ′a ⇒ bool

In the rest of the paper we ignore empty because it is trivial.
In order to specify these operations we assume that there is also an abstraction

function set :: ′a t ⇒ ′a set and a data type invariant invar :: ′a t ⇒ bool. These
are not part of the interface and need not be executable but have to be provided
in order to prove an implementation correct w.r.t. the specification in Fig. 1.
Specifications phrased in terms of abstraction functions that are required to be
homomorphisms go back to Hoare [11] and became an integral part of the model-
oriented specification language VDM [13]. In the first-order context of universal
algebra it was shown that there are always fully abstract models such that any
concrete implementation can be shown correct with a homomorphism [16]. In
Isabelle, implementations that satisfy such specifications can automatically be
plugged in for the abstract type by regarding the abstraction function as a
constructor [9]. For example, turning the equation isin s x = (x ∈ set s) around
tells us how to evaluate x ∈ set s with the help of isin.

From now on we assume that the element type ′a is linearly ordered.
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Fig. 1. Specification of set implementations

3.1 The Standard Approach

The most compact form of the standard approach to the verification of search
tree implementations of sets consists of the following items:

– An abstraction function set that extract the set of elements in a tree.
– A recursively defined (binary) search tree invariant
bst 〈l ,a,r〉 = (bst l ∧ bst r ∧ (∀ x ∈ set l . x < a) ∧ (∀ x ∈ set r . a < x )

– Proof of the correctness conditions in Fig. 1 where invar is bst, possibly con-
joined with additional structural invariants.

There are many variations of the above setup, some of which address two compli-
cations that arise when automating the proofs, the quantifiers and the non-free
data type of sets:

– In the definition of bst, quantifiers are replaced by auxiliary functions that
check if all elements in a tree are less/greater than a given element.

– Instead of extensional equality of sets, e.g. set (insert x s) = {x} ∪ set s,
pointwise equality is proved, e.g. isin (insert x s) y = (x = y ∨ isin s y).

– The predicate bst is defined inductively rather than recursively.

We subsume all of these variations under the “standard approach”. Unless stated
otherwise, all related work follows the standard approach.

3.2 The inorder Approach

Why is it perfectly obvious that the following equation (where R/B construct
red/black nodes) preserves sortedness and the set of elements of a tree?

balance (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4)

Because the sequence of subtrees and elements is the same on both sides! We
merely need to make the machine see this as well as we do.

The key idea of our approach is to base it on the inorder traversal of trees.
That is, we use lists as an intermediate data type between sets and trees. To
this end we need four auxiliary functions on lists:

– ↑ :: ′a list ⇒ bool
↑ means that the list is sorted in ascending order w.r.t. <.
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Fig. 2. Specification of set implementations over ordered types

↑ [] = True
↑ [x ] = True
↑ (x · y · zs) = (x < y ∧ ↑ (y · zs))

– inslist :: ′a ⇒ ′a list ⇒ ′a list
inslist inserts an element at the correct position into a sorted list if the element
is not present in the list yet.

inslist x [] = [x ]
inslist x (a · xs) =
(if x < a then x · a · xs else if x = a then a · xs else a · inslist x xs)

– dellist :: ′a ⇒ ′a list ⇒ ′a list
dellist deletes the first occurrence of an element from a list.

dellist x [] = []
dellist x (a · xs) = (if x = a then xs else a · dellist x xs)

– elems :: ′a list ⇒ ′a set
elems turns a list into the set of its elements.

elems [] = ∅
elems (x · xs) = {x} ∪ elems xs

A new specification of sets (over a linearly ordered type ′a) is shown in Fig. 2.
The crucial ingredient is an additional specification function

inorder :: ′a t ⇒ ′a list

As the name inorder suggests, you should now think of ′a t as a type of trees.
We abbreviate inorder t by �t.

The fact that some t is a search tree, i.e. sorted, can now be expressed as
↑ �t. This invariant will be dealt with automatically. Of course search trees
frequently have additional structural invariants. These can be supplied via yet
another specification function inv :: ′a t ⇒ bool. Both kinds of invariants are
combined into invar :

invar t = (inv t ∧ ↑ �t)
The first three propositions in Fig. 2 demand the functional correctness of

insert, delete and isin w.r.t. inslist, dellist and elems. The next two propositions
demand that inv is invariant. If we interpret function set as elems ◦ inorder it
is easy to show that Fig. 2 implies Fig. 1 with the help of the following simple
inductive lemmas:
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elems (inslist x xs) = {x} ∪ elems xs
↑ xs =⇒ distinct xs
distinct xs =⇒ elems (dellist x xs) = elems xs − {x}
↑ xs =⇒ ↑ (inslist x xs)
↑ xs =⇒ ↑ (dellist x xs)

In summary: the functional correctness of an implementation of insert, delete
and isin on some data structure can be verified by proving the properties in
Fig. 2 for some suitable definition of inorder and inv. In the following section
we introduce a library of lemmas about ↑, inslist and dellist that allows us to
automate the proofs of (1)–(3).

Note that although we equate (1)–(3) with “functional correctness”, it is
more: (1)–(3) also imply that sortedness is an invariant.

4 The Verification Framework

We do not claim to provide a framework that can prove any implementation of
sets by search trees automatically correct. Instead we provide lemmas that work
in practice (they automate the correctness proofs for a list of benchmark imple-
mentations presented in Sect. 5) and are well motivated by general considerations
concerning the shape of formulas that arise in the verification.

As a motivating example we consider ordinary unbalanced binary trees
′a tree. The textbook definitions of insert, delete and isin are omitted. Let us
examine how to prove

↑ �t =⇒ �insert x t = inslist x �t
The proof is by induction on t and we consider the case t = 〈l , a, r〉 such that
x < a. Ideally the proof looks like this:

�insert x t = �insert x l @ a · �r = inslist x �l @ a · �r
= inslist x (�l @ a · �r) = inslist x t

The first and last step are by definition, the second step by induction hypothesis,
but the third step requires two lemmas:

↑ (xs @ y · ys) = (↑ (xs @ [y ]) ∧ ↑ (y · ys))
↑ (xs @ [a]) ∧ x < a =⇒ inslist x (xs @ a · ys) = inslist x xs @ a · ys

The first lemma rewrites the assumption ↑ �t to ↑ (�l @ [a]) ∧ ↑ (a · �r),
thus allowing the second lemma to rewrite the term inslist x (�l @ a · �r) to
inslist x �l @ a · �r.

It may seem that the two lemmas just shown are rather arbitrary, but we
will see that in the context of trees, where each node is a tuple 〈s0,a1,s1,. . . ,sn〉
of subtrees si alternating with elements ai, there is an underlying principle. In
the properties in Fig. 2 the following three terms are crucial: ↑ �t, inslist x �t
and dellist x �t. Assuming that the properties are proved by induction, t will be
some (possibly complicated) tree constructor term. Evaluating �t will thus lead
to a list of the following form where sublists and individual elements alternate:
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Fig. 3. Lemmas for ↑, inslist, dellist and elems

�t1 @ a1 · �t2 @ a2 · . . . · �tn
Now we discuss a set of lemmas (see Fig. 3) that allow us to simplify the appli-
cation of ↑, inslist and dellist to such terms.

Terms of the form ↑(xs1 @ a1 · xs2 @ a2 · . . . · xsn) are decomposed into
the following basic formulas

↑ (xs @ [a]) (simulating ∀ x∈set xs. x < a)
↑ (a · xs) (simulating ∀ x∈set xs. a < x )
a < b

by the rewrite rules (6)–(7). Lemmas (8)–(9) enable deductions from basic for-
mulas.

Terms of the form inslist x (xs1 @ a1 · xs2 @ a2 · . . . · xsn) are rewritten
with equation (10) (and the defining equations for inslist) to push inslist inwards.
Terms of the form dellist x (xs1 @ a1 · xs2 @ a2 · . . . · xsn) are rewritten with
Eq. (11) (and the defining equations for dellist) to push dellist inwards.

Finally we need lemmas (12)–(14) about elems on sorted lists.
The lemmas in Fig. 3 form the complete set of basic lemmas on which the

automatic proofs of almost all search trees in the paper rest; only splay trees
need additional lemmas.

4.1 Proof Automation by Rewriting

The automatic proofs rely on conditional, contextual term rewriting with the
following bells and whistles (which Isabelle’s simplifier provides):

– Conjunctions in the context are split up into their conjuncts.
– Conditionals and case-expressions can be split automatically.
– A decision procedure for linear orders that can decide if some literal (a possibly

negated atom a < b or a ≤ b) follows from a set of literals in the context.
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– Implications (8)–(9) lead to nontermination when used as conditional rewrite
rules. It must be possible to direct the simplifier to solve the preconditions of
those rules by assumptions in the context rather than a recursive simplifier
invocation. In Isabelle there is a constant ASSUMPTION = (λx . x ) that can
be wrapped around a precondition of a rewrite rule and prevents recursive
applications of the simplifier to that precondition.

5 An Arboretum

In the rest of this section we focus on (1) and (2) when discussing the proofs of
the properties in Fig. 2. This is because requirement (3) can always (except for
splay trees) be proved automatically without further lemmas and (4) and (5) are
specific to the individual data structures and not part of functional correctness.

Because there is not enough space to present all definitions and proofs, Table 1
gives an overview in terms of lines of code and numbers of functions needed for
each data structure. Because isin is (almost) the same for all of them (except
splay trees), it is excluded. The table shows that there is at most one lemma per
function, except for splay trees.

Table 1. Code and proof statistics for insert + delete (l.o. = lines of)

Unbal AVL Red-Black 2-3 2-3-4 Brother AA Splay

l.o. code 17 45 61 88 143 66 55 46

functions 3 8 11 12 16 10 8 4

lemmas 3 6 11 10 14 10 6 5

The majority of lemmas about auxiliary functions follow a simple pattern.
Typical examples are balancing functions, e.g. �bal t = �t, or smart construc-
tors, e.g. �node l a r = �l @ a · �r. We call these trivial lemmas. More com-
plicated lemmas are discussed explicitly in the text; we call them non-trivial.

All our implementations compare elements with a comparison operator cmp
that returns an element of the datatype cmp = LT | EQ | GT.

5.1 Unbalanced Trees

Function insert is trivial and (1) is proved directly. Function delete is more
interesting because it is defined with the help of an auxiliary function:

delete x 〈〉 = 〈〉
delete x 〈l , a, r〉 =
(case cmp x a of LT ⇒ 〈delete x l , a, r〉
| EQ ⇒ if r = 〈〉 then l else let (x , y) = del min r in 〈l , x , y〉
| GT ⇒ 〈l , a, delete x r〉)
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del min 〈l , a, r〉 =
(if l = 〈〉 then (a, r) else let (x , l ′) = del min l in (x , 〈l ′, a, r〉))

The proof of (2) requires the following lemma about del min that the user has
to formulate himself; the proof is again automatic.

del min t = (x , t ′) ∧ t �= 〈〉 =⇒ x · �t ′ = �t
This is one of the more “difficult” lemmas to invent.

5.2 AVL Trees

Our starting point was an existing formalization [20] which follows the standard
approach. Functional correctness of AVL trees can be proved without assuming
any structural (height) invariants. The only non-trivial lemma we require is

del max t = (t ′, a) ∧ t �= 〈〉 =⇒ �t ′ @ [a] = �t

Related Work. Filliâtre and Letouzey [6] report on a verification of AVL trees in
Coq. They follow the standard approach, except that the executable functions
are extracted from constructive proofs. An updated version of their proofs in the
Coq distribution gives the functions explicitly. Ralston [26] reports a proof with
ACL2. The verification by Clochard [4] in Why3 is interesting because he also
abstracts trees to their inorder traversal and reports that the proofs for AVL
trees are automatic.

5.3 Red-Black Trees

Red-black trees were invented by Bayer [3]. Guibas and Sedgewick [8] introduced
the red/black color convention. Red-black trees can be seen as an encoding of
2-3-4 trees as binary trees.

Our starting point was an existing formalization in the Isabelle distribution
(in HOL/Library/RBT Impl.thy, by Reiter and Krauss) which in turn is based
on the code by Okasaki [22] (for insert) and Stefan Kahrs [14] (for delete see
the URL given in the article). The original verification has a certain similarity
to ours because it also involves an inorder listing of the tree (function entries),
but a number of the proofs are distinctly long and manual. In contrast, the only
non-trivial lemmas we require are the following ones that need to be proved
simultaneously about three auxiliary functions:

↑ �t =⇒ �del x t = dellist x �t
↑ �l =⇒ �delL x l a r = dellist x �l @ a · �r
↑ �r =⇒ �delR x l a r = �l @ a · dellist x �r

Of course the proof is automatic, as usual.
Functional correctness of red-black trees can be proved without assuming

any structural (red-black) invariants.
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Related Work. Filliâtre and Letouzey [6] and Appel [2] verified red-black trees
in Coq.

5.4 2-3 Trees

In a 2-3 tree (invented by Hopcroft in 1970 [5]), every non-leaf node has either
two or three children: 〈l , a, r〉 or 〈l , a, m, b, r〉 where l , m, r are trees and a, b
are elements. One can view 〈l , a, m, b, r〉 as a more compact representation
of 〈l , a, 〈m, b, r〉〉 (see AA trees). Their structural invariant is that they are
balanced, i.e. all leaves occur at the same depth.

Our code is based on the lecture notes by Turbak [29], who presents the
key transformations in a graphical format. We present the more complex delete
function in Fig. 4. Function del descends into the tree until the element (or a
leaf) is found. Modified subtrees are recombined with smart constructors nodeij
that combines i subtrees where subtree j has been modified and is wrapped up
in either Td (if the height of the subtree is unchanged) or Upd (if the height
of the subtree has decreased). We only show the functions nodei1 because the
other nodeij are symmetric.

The lemmas required for the correctness proof are similar to what we have
seen already, with one new complication: the balancedness invariant bal is fre-
quently required as a precondition, e.g. here:

del min t = (x , t ′) ∧ bal t ∧ 0 < height t =⇒ x · �treed t ′ = �t
Our automatic framework can cope because bal and height are defined in a
straightforward manner by primitive recursion.

Related Work. The existing formalization of 2-3 trees in the Isabelle distribu-
tion (in HOL/ex/Tree23.thy, by Huffman and Nipkow) proves invariants but not
functional correctness. Hoffmann and O’Donnell [12] give an equational defini-
tion of insertion. Reade [27] gives a similar equational definition of insertion and
adds deletion; Turbak’s version of deletion appears a bit simpler. Reade sketches
(because there are too many cases) a pen-and-paper correctness proof and writes:
“Mechanical support for such reasoning and the potential for partial automation
of similar proofs are topics currently being investigated by the author”.

5.5 2-3-4 Trees

2-3-4 trees are an extension of 2-3 trees where nodes may also have 4 children:
〈t1, a, t2, b, t3, c, t4〉. Their structural invariant is that they are balanced, i.e.
all leaves occur at the same depth. The code for 2-3-4 trees can also be viewed
as an extension of that for 2-3 trees with additional cases. There are also new
smart constructors node4j, e.g. node41:

node41 (T d t1) a t2 b t3 c t4 = T d 〈t1, a, t2, b, t3, c, t4〉
node41 (Upd t1) a 〈t2, b, t3〉 c t4 d t5 = T d 〈〈t1, a, t2, b, t3〉, c, t4, d , t5〉
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Fig. 4. Deletion in 2-3 trees

node41 (Upd t1) a 〈t2, b, t3, c, t4〉 d t5 e t6 =
T d 〈〈t1, a, t2〉, b, 〈t3, c, t4〉, d , t5, e, t6〉
node41 (Upd t1) a 〈t2, b, t3, c, t4, d , t5〉 e t6 f t7 =
T d 〈〈t1, a, t2〉, b, 〈t3, c, t4, d , t5〉, e, t6, f , t7〉

Related Work. It appears that the only (partially) published functional imple-
mentations of 2-3-4 trees is one in Maude [15] where the full code is available
online. No formal proofs are reported.

5.6 1-2 Brother Trees

A 1-2 brother tree [23,24] is a binary tree with one further constructor N1
from trees to trees for unary nodes. The structural invariant is that the tree
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is balanced (all leaves at the same depth) and that every unary node has a
binary brother. Unary nodes allow us to balance any tree. There is a bijection
between 1-2 brother trees and AVL trees: remove the unary nodes from a 1-2
brother tree and you obtain an AVL tree. Our formalization is based on the
article by Hinze [10] where all code and invariants can be found. Hinze captures
the invariant by two sets B h and U h, the sets of brother trees of height h that
have a binary (or nullary) respectively unary root node. The actual brother trees
are captured by B ; U is an auxiliary notion. The correctness lemmas (1)–(3) for
insert, delete and isin employ the abbreviation T h = B h ∪ U h:

t ∈ T h ∧ ↑ �t =⇒ �insert a t = inslist a �t
t ∈ T h ∧ ↑ �t =⇒ �delete x t = dellist x �t
t ∈ T h ∧ ↑ �t =⇒ isin t x = (x ∈ elems �t)

The non-trivial but automatic auxiliary lemmas are

t ∈ T h ∧ ↑ �t =⇒ �ins a t = inslist a �t
t ∈ T h ∧ ↑ �t =⇒ �del x t = dellist x �t
t ∈ T h =⇒
(del min t = None) = (�t = []) ∧
(del min t = Some (a, t ′) −→ �t = a · �t ′)

5.7 AA Trees

Arne Anderson [1] invented a particularly simple form of balanced trees, named
AA trees by Weiss [30]. They encode 2-3 trees as binary trees (with the help of
an additional height field, although a single bit would suffice). Their main selling
point is simplicity and compactness of the code. Our verification started from
the functional version of AA trees published by Ragde [25] without proofs. The
proofs for insertion were automatic as usual, but deletion posed problems.

The use of non-linear patterns in the Haskell code for delete was easily
fixed. Then a failed correctness proof revealed that function dellrg goes down
the wrong branch in the recursive case. After this bug was corrected the next
complication was the fact that the definition of function adjust (which is sup-
posed to restore the invariant after deletion) does not cover certain trees that
cannot arise. Therefore I needed to introduce the following invariant correspond-
ing to the textual invariants AA1–AA3 in [25]; function lvl returns the height
field of a node:

invar 〈〉 = True
invar 〈h, l , a, r〉 =
(invar l ∧ invar r ∧ h = lvl l + 1 ∧
(h = lvl r + 1 ∨ (∃ lr b rr . r = 〈h, lr , b, rr〉 ∧ h = lvl rr + 1)))

Proving that insertion and deletion preserve the invariant was non-trivial, in
particular because there were two more bugs:
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– Function dellrg fails to call adjust to restore the invariant. This is the correct
code (we call dellrg del max):

del max 〈lv , l , a, 〈〉〉 = (l , a)
del max 〈lv , l , a, r〉 = (let (r ′, b) = del max r in (adjust 〈lv , l , a, r ′〉, b))

– The auxiliary function nlvl is incorrect. The correct version is as follows:
nlvl t = (if sngl t then lvl t else lvl t + 1)

For the verification of functional correctness of deletion the domain of the
partial adjust had to be characterized by a predicate pre adjust (not in [25]).
With its help we can formulate and prove the trivial inorder -lemma for adjust :

t �= 〈〉 ∧ pre adjust t =⇒ �adjust t = �t
The main correctness theorem (2) requires a number of further lemmas:

del max t = (t ′, x ) ∧ t �= 〈〉 ∧ invar t =⇒ �t ′ @ [x ] = �t
invar 〈lv , l , a, r〉 ∧ post del l l ′ =⇒ pre adjust 〈lv , l ′, b, r〉
invar 〈lv , l , a, r〉 ∧ post del r r ′ =⇒ pre adjust 〈lv , l , a, r ′〉
invar t ∧ (t ′, x ) = del max t ∧ t �= 〈〉 =⇒ post del t t ′

invar t =⇒ post del t (delete x t)

As usual, the proofs of the inorder -lemmas and theorems are automatic. The last
four lemmas and the pre- and post-conditions involved are part of the invariant
proofs and are merely reused. Hence they are not included in Table 1.

5.8 Splay Trees

Splay trees [28] are self-adjusting binary search trees where query and update
operations modify the tree by rotating the accessed element to the root of
the tree. The logarithmic amortized complexity of splay trees has been veri-
fied before [18]. The functional correctness proofs [17] followed the standard
approach. Starting from the same code we automated those proofs.

Splay trees are different from the other trees we cover. All operations are
based on a function splay :: ′a ⇒ ′a tree ⇒ ′a tree that rotates the given ele-
ment (or an element close to it) to the root of the tree. For example, this is isin:

isin t x = (case splay x t of 〈〉 ⇒ False | 〈l , a, r〉 ⇒ x = a)

See elsewhere [17,18] for insert and delete. Note that isin should return the new
tree as well to achieve amortized logarithmic complexity. This is awkward in a
functional language and gives the data structure an imperative flavour.

The verification is more demanding than before and we present all the
required lemmas in Fig. 5. Lemmas (15)–(20) extend our lemma library in Fig. 3
but are only required for splay trees. With the help of these lemmas, the proofs
of (1)–(3) are automatic.
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Fig. 5. Lemmas for splay tree verification

6 Maps

6.1 Specifications

Search trees can implement maps as well as sets. Although sets are a special case
of maps, we presented sets first because their simplicity facilitates the explana-
tion of the basic concepts. Now we present the modifications required for maps.
An implementation of maps must provides a type ( ′a, ′b) t (where ′a are the keys
and ′b the values) with the operations

empty :: ( ′a, ′b) t
update :: ′a ⇒ ′b ⇒ ( ′a, ′b) t ⇒ ( ′a, ′b) t
delete :: ′a ⇒ ( ′a, ′b) t ⇒ ( ′a, ′b) t
lookup :: ( ′a, ′b) t ⇒ ′a ⇒ ′b option

where datatype ′a option = None | Some ′a is predefined. Function lookup
also plays the role of the abstraction function. In addition there is a data type
invariant invar :: ( ′a, ′b) t ⇒ bool. The specification of maps is shown in Fig. 6
(corresponding to Fig. 1). It uses the function update notation

f (a := b) = (λx . if x = a then b else f x )

Fig. 6. Specification of map implementations

Now we assume that the keys are linearly ordered. Search trees are abstracted
to a list of key-value pairs sorted by their keys. The auxiliary functions ↑, ins list
and del list are replaced by
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↑1 :: ( ′a × ′b) list ⇒ bool
updlist :: ′a ⇒ ′b ⇒ ( ′a × ′b) list ⇒ ( ′a × ′b) list
dellist :: ′a ⇒ ( ′a × ′b) list ⇒ ( ′a × ′b) list

– ↑1 xs = ↑ (map fst xs) where fst (a, b) = a.
– updlist a b updates a sorted (w.r.t. ↑1) list by either inserting (a, b) at the

correct position (w.r.t. <) if no (a, ) is in the list, or replacing the first (a, )
by (a, b) otherwise.

– dellist a deletes the first occurrence of a pair (a, ) from a list.

Fig. 7. Specification of map implementations over ordered types

Our second specification of maps (over a linearly ordered type ′a) is shown
in Fig. 7 (corresponding to Fig. 2). It is again based on an inorder function:

inorder :: ( ′a, ′b) t ⇒ ( ′a × ′b) list

Again, we abbreviate inorder t by �t.
The search tree invariant is now expressed as ↑1 �t. Structural invariants

can be added via the specification function inv :: ( ′a, ′b) t ⇒ bool and we define

invar t = (inv t ∧ ↑1 �t)
The first three propositions in Fig. 7 express functional correctness of update,

delete and lookup w.r.t. updlist, dellist and map of. The latter is a predefined
function on key-value lists:

map of [] = (λ . None)
map of ((a, b) · ps) = (map of ps)(a := b)

The next two propositions demand that inv is invariant. It is easy to show that
Fig. 7 implies Fig. 6.

6.2 Proof Automation

Figure 8 (corresponding to Fig. 3) shows the set of lemmas used to automate the
correctness proofs of implementations of maps. There are no lemmas about ↑1
because its definition is simply unfolded and the lemmas (6)–(9) about ↑ apply.

The litmus tests for the lemma collection are the correctness proofs for the
map-variants of all the search trees discussed in Sect. 5. The code of the map-
variants is structurally the same as their set-counterparts. The same is true for
the lemmas required in the verification. In the end, the proofs of the map-variants
are just as automatic as the ones of their set-counterparts.
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Fig. 8. Lemmas for updlist, dellist and map of

7 Conclusion

Our proof method works well because all the trees we considered follow the same
ordering principle: inorder traversal yields a sorted list. Two referees suspected
that for Trie-like trees [7] it would not work so well. I formalized binary trees
where nodes are addressed by bit lists indicating the path to the node. A direct
correctness proof is easy. The methods of this paper can also be applied (the list
of addresses of the nodes in a tree, in prefix order, is lexicographically ordered)
but the proof is more complicated and less automatic. Our approach seems
overkill and awkward for such search trees.

Acknowledgement. Daniel Stüwe found and corrected the two invariant-related bugs
in AA trees and proved preservation of the invariant under deletion for AA trees and
1-2 Brother trees.
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20. Nipkow, T., Kunčar, O., Pusch, C.: AVL trees. Archive of Formal Proofs, Formal
proof development, March 2004. http://isa-afp.org/entries/AVL-Trees.shtml

21. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

22. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cam-
bridge (1998)

23. Ottmann, T., Six, H.W.: Eine neue Klasse von ausgeglichenen Binärbäumen. Ange-
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Abstract. Our language Cogent simplifies verification of systems soft-
ware using a certifying compiler, which produces a proof that the gen-
erated C code is a refinement of the original Cogent program. Despite
the fact that Cogent itself contains a number of refinement layers, the
semantic gap between even the lowest level of Cogent semantics and
the generated C code remains large.

In this paper we close this gap with an automated refinement frame-
work which validates the compiler’s code generation phase. This frame-
work makes use of existing C verification tools and introduces a new
technique to relate the type systems of Cogent and C.

1 Introduction

In previous work, we designed a new language called Cogent [9] for easing the
verification of certain classes of systems code such as file systems. Cogent is
a linearly-typed, pure, polymorphic, functional language with a certifying com-
piler. We used it in separate work to write two Linux filesystems, ext2 and
BilbyFs, and achieved performance comparable to their native C implementa-
tions [2].

From a Cogent program the Cogent compiler produces three artefacts: C
code, a shallow embedding of the Cogent program in Isabelle/HOL [8], and
an Isabelle/HOL proof relating the two. The compiler certificate is a series of
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Fig. 1. An overview of the verification chain and our refinement framework.

language-level proofs and per-program translation validation phases that are
combined into one top-level theorem in Isabelle/HOL. The most involved phase,
and the phase we discuss in this paper, is the translation validation phase relating
Cogent’s imperative semantics to the generated C.

We present a refinement framework that enables the full automation of this
phase of Cogent’s certifying compilation. This framework has several compo-
nents that relate Cogent values, states, types, and statements to their C coun-
terparts. We put significant proof engineering work into enabling the framework
to bridge the gap between the Cogent store and the C heap semantics. More-
over, we introduced the idea of partial type erasure to eliminate linearity infor-
mation from a Cogent type in order to relate it to the corresponding C type.
Furthermore, to relate Cogent and C statements, we developed a refinement
calculus which contains a set of compositional proof rules. Given a program,
our framework then customises the proof rules based on the values, types, and
states that are used in this program. Finally, our refinement tactic applies the
customised rules in a syntax-directed manner, certifying the refinement for this
phase.

The method scales to significant Cogent code size, as demonstrated in the
two Linux filesystems [2] mentioned above. A snapshot of our work is available
online [1].

2 Overview and Background

This section explains the contribution of this paper within the broader Cogent
project. The heart of the Cogent project is its certifying compiler. The cer-
tificate the compiler produces is a refinement theorem relating the generated
shallow embedding and the generated C code. To ensure the C code is run cor-
rectly on the binary level, it can be compiled by CompCert [7].1 It also falls into

1 Mind the potential logical gap between our C parser’s C semantics [13] and that of
CompCert.
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the subset of Sewell et al.’s gcc translation validator [12], which can be made to
compose directly with our compiler certificate.2

The shallow Isabelle/HOL embedding is convenient for manual reasoning;
however, the compiler additionally produces a deep embedding of each Cogent
program, for the sake of structuring the generated certificate theorem and proof.
There are two formal semantics for this deep embedding: (1) a functional value
semantics where programs evaluate to values and (2) an imperative update
semantics where programs manipulate references to mutable global state.

The left side of Fig. 1 summarises the generated program representations and
the breakdown of the compiler certificate. The program representations are (from
the bottom of Fig. 1): the C code, the semantics of the C code [13] expressed
in Simpl [11], which is a generic imperative language inside Isabelle/HOL, the
same expressed as a monadic program [4], an A-normal [10] deep embedding of
the Cogent program, and a shallow embedding. Several theorems rely on the
Cogent program being well-typed, which we prove automatically using type
inference information from the compiler.

The labelled arrows and the arrow from C to Simpl represent refinement
proofs and the arrow labels correspond to the numbers in the following descrip-
tion. The only arrow that is not verified is the one crossing from C code into
Isabelle/HOL at the bottom of Fig. 1 — this is the C parser [13], which is a
mature tool used in a number of large-scale verifications [5]. It could addition-
ally be checked by Sewell et al.’s gcc translation validation tool.

We briefly describe each intermediate theorem, starting with Simpl at the
bottom. For well-typed Cogent programs, we automatically prove the following
four theorems, which together form the compiler certificate:
1© The C parser’s Simpl code corresponds to a monadic representation of the C
code.
2© The monadic code terminates and is a refinement of the update semantics
of the Cogent deep embedding. To relate Cogent’s linear type system to the
monadic one, we introduce the reusable idea of partial type erasure.
3© If a Cogent deep embedding evaluates in the update semantics, it evaluates
to the same result in the value semantics.
4© If the Cogent deep embedding evaluates in the value semantics then the
Cogent shallow embedding evaluates to a corresponding shallow Isabelle/HOL
value.

In order to prove high-level functional correctness, an additional step is nec-
essary:

Arrow 5© indicates verification of user-supplied abstract data types (ADTs)
implemented in C and manual high-level proofs on top of the shallow embedding.
We demonstrated that this step is enabled by the previous steps for two real-
world filesystems [2].

Step 3© is a consequence of linear types. It is a general property about the lan-
guage and has been proven manually once and for all [9]. Steps 1©, 2©, and 4©,

2 Cogent’s occasionally larger stack frames lead to memcpy() calls that, while concep-
tually straightforward, the translation validator does not yet cover.
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as well as their respective proofs, are generated by our compiler for every pro-
gram. The proof for step 1© is generated by an adjusted version of the AutoCor-
res tool [4]. For steps 2© and 4© we define compositional refinement calculi which
enable the automation of the proofs. The most involved refinement proof is the
one for step 2© which we present in this paper. It took about three person years
to develop tools for automating this proof. The calculus for step 4© is similar but
much simpler, as at this stage one does not reason about the state. In comparison,
its development only took a few person weeks.

The right side of Fig. 1 expands on the refinement framework used for prov-
ing step 2©. The bottom layer represents the underlying theory we developed
for defining primitive value and type relations which we use to create a refine-
ment calculus between Cogent deeply embedded expressions and correspond-
ing monadic statements. The middle layer represents the proof tools that auto-
mate the refinement proof on a per-program basis. These proof tools rely on the
underlying theories about the language in general, and on compiler generated
theories specific to the program. In particular, we have a tool for generating
non-primitive data relations, one for specialising complex rules in the calculus
to support automation, and finally a proof automation tactic which composes
the proof rules to provide a fully-automatic refinement proof.

2.1 COGENT

Cogent is a restricted, polymorphic, higher-order, and purely functional lan-
guage with linear types. The linear types ensure that resources such as memory
are disposed of correctly without run-time support like garbage collection. Cru-
cially for us, they also allow Cogent to be compiled into efficient C, including
destructive updates to values rather than the repeated copying common in purely
functional styles.

Variables of linear type must be used exactly once. This means each active
mutable heap object has exactly one active pointer in scope at any point in
the program. Hence, the difference between a destructive update and a pure
copy-update is unobservable.

The Cogent compiler generates C code, a shallow embedding, and a collec-
tion of “hints” used by the proof tactic to certify the compilation. Importantly,
the performance of the generated C is comparable to carefully handwritten C.

Cogent’s certifying compilation makes the verification of filesystems more
cost-effective, fully automating a significant part of the low-level proofs. We
demonstrate this on two real-world Cogent filesystems, with a minimal TCB [2].

This paper focuses on the lower-level generated refinement proofs, which con-
nect Cogent’s update semantics to C. Figure 2 introduces a relevant fragment
of Cogent. Many features of the full language are omitted here and described in
detail elsewhere [9], including polymorphism, sum types, and the foreign function
interface. The following gives a brief summary.

Much of the syntax presented in our fragment is standard for a functional
language, such as handling control flow (if) and local bindings (let). The main
point of difference is Cogent’s record system: Some care is needed to reconcile
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Fig. 2. Definitions for Cogent fragment

record types and linear types. If a record contains at least one linear field, the
whole record is of linear type. Otherwise, the linear field could be shared by
sharing the record.

Accessing records becomes more complex as well. For instance, assume that
Object is a type synonym for a record type containing an integer and two (linear)
buffers, where Object = {size :: U32,b1 :: Buf,b2 :: Buf} u. Let us say we want to
extract the field b1 from an Object. If we extract just a single Buf, we have
implicitly discarded the other buffer b2. However, we cannot return the entire
Object along with Buf, as this would introduce aliasing. Our solution is to
return along with Buf an Object where the field b1 cannot be extracted again,
and reflect this in the field’s type, written as b1 :: Buf. This field extractor, whose
general form is take x {f = y} = e1 in e2, operates as follows: given a record e1,
it binds the field f of e1 to the variable y, and the new record to the variable x
in e2. If that field is linear, it will then be marked as unavailable, or taken, in
the type of the new record x.

Conversely, we also introduce a put operation, which, given a record with
a taken field, allows a new value to be supplied in its place. The expression
put e1.f := e2 returns the record in e1 where the field f has been replaced with
the result of e2. Unless the type of the field f allows it to be discarded, it must
already be taken, to avoid accidentally destroying our only reference to a linear
resource.
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Fig. 3. Example function in Cogent. flip updates a record on the heap in place.

We distinguish boxed records stored on the heap from unboxed records that
are passed by value. Unboxed records can be created using a simple struct lit-
eral {fi = ei}. Boxed records are created by invoking an externally-defined C
allocator function. For these allocation functions, it is often convenient to allo-
cate a record with all fields already taken, to indicate that they are uninitialised.
That is, a function for allocating Object-like records might return values of type:
{size :: U32,b1 :: Buf,b2 :: Buf} w.

Also included in a record type is the storage mode of the type. A record
is stored on the heap when its associated mode m is not unboxed. For boxed
records, the storage mode distinguishes between those that are writable vs. read-
only.

Example 1. Figure 3 defines a simple function in Cogent which, given a mutable
record x, first takes the field f and, depending on its value, destructively updates
the field with a new value, returning the updated record.

The details of Cogent’s type system, semantics, and this proof are presented
in [9], we only repeat the top-level concepts here.

The dynamic big step update semantics maps a triple of environment U ,
expression e, and mutable store μ to a result value u and a new mutable envi-
ronment μ′, written U � e | μ ⇓u u | μ′. The rules [9] for variables and let are
straightforward. Functions are top-level functions in Cogent, and a function
name simply evaluates to the lambda-expression it represents. The take and
put rules evaluate as described above.

The static semantics include the standard typing judgement Γ � e : τ . Unlike
conventional type systems, linear type systems are substructural, which means
that the context Γ cannot be treated merely as a set of assumptions that always
grows as one descends into the syntax tree. Instead, assumptions may also be
removed from the context. This complication requires us to occasionally gener-
alise the corres rules presented in Sect. 3.4 with multiple typing assumptions
with different contexts.

To state type preservation for Cogent, we define the corresponding typing
judgement for dynamic values, written u | μ : τ and a generalisation of it to envi-
ronments and contexts, written U | μ : Γ . With this, we can prove the following
(see also [9]).

Theorem 1 (type preservation). For a program e, if Γ � e : τ and U | μ : Γ
and U � e | μ ⇓u u | μ′, then u | μ′ : τ
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Fig. 4. Partial type erasure of dynamic typing relation for update semantics

For a Cogent value to be well-typed, all accessible pointers in this value,
e.g. a record, must be valid. This is important for proving safety, but becomes
cumbersome when showing refinement to C as there exist values in the C code,
such as those for taken fields, which may include temporarily invalid pointers. We
therefore include additional information in each Cogent value, called its repre-
sentation, which provides enough type information to determine the correspond-
ing C type, without requiring recursive descent into the heap. In other words,
the representation shown in Fig. 4 contains only the type information which is
pertinent to C, with the linearity information erased. We call this technique
partial type erasure. The value typing relation ensures that the representation
information agrees with the value’s type.

2.2 AutoCorres and C Monads in Isabelle/HOL

We use the C-to-Simpl [13] parser to provide a formal semantics for the generated
C code. In principle, we could work from the C parser’s output directly; however,
this would mean dealing with the details of its low-level memory model. Instead,
we opt to work with a typed heap model, provided by AutoCorres [4]. Specifically,
the state of the AutoCorres monadic representation contains a set of typed heaps,
each of type τ ptr ⇒ τ , one for each type τ used on the heap in the C input
program.

As AutoCorres was designed for human-guided verification, it uses many
context-sensitive rules to simplify the generated code. As we aim to verify code
automatically, we switch off most of these simplification stages in order to obtain
predictable output.

AutoCorres generates shallow embeddings of code in the nondeterministic
state monad of Cock et al. [3]. In this monad, computation is represented by
functions of type state ⇒ (α × state) set × bool . Here state is the global state of
the monadic program, including global variables, while α is the return-type of the
computation. A computation takes as input the global state and returns a set,
results, of pairs with new state and result value. Additionally the computation
returns a boolean, failed , indicating whether there potentially was undefined
behaviour.

As C does not guarantee that all pointer locations are valid, AutoCorres emits
is-valid guards before each memory access. When proving refinement between
Cogent and monadic code, we need to discharge those guards using a state
invariant (Sect. 3.2).

Figure 5 shows an example AutoCorres specification, using the following key-
words:
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do . . . ; . . . od sequence of statements
condition cond e1 e2 run e1 if cond is true, otherwise run e2
return v monadic return
gets f access part of monadic state given by f
modify h update part of monadic state given by h
guard G program fails if monadic state does not satisfy G

3 Refinement Framework

Recall that for a well-typed Cogent program, the compiler emits C code, a
deep embedding of the program’s semantics, and a proof that the C code cor-
rectly refines this embedding. We choose C as a compilation target because most
existing systems code is written in C, and thanks to tools like CompCert and
gcc translation validation, our C subset has formalised semantics and an existing
formal verification infrastructure.

The right side of Fig. 1 provides an overview of the generation of our refine-
ment proof. To phrase the refinement statement, we first define how deeply-
embedded Cogent values relate to values in the monadic embedding (Sect. 3.2).

The C code generation is straightforward and this step itself does not per-
form global optimisations or transformations. Such transformations, for instance
A-normalisation, are performed in earlier compiler phases. A-normalisation in
particular is performed to simplify code generation, but it also simplifies our C
refinement. Since it is performed early (and verified early on top of the shal-
low embedding [9]), it is sufficient for us to only consider Cogent expressions
in A-normal form here, where nested subexpressions are replaced with explicit

Fig. 5. Intermediate representations of Cogent function from Fig. 3. Left: A-
normalised source code, embedded into Isabelle/HOL. Right: AutoCorres monadic
semantics for generated C code.
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variable bindings. With this, the refinement calculus contains a set of composi-
tional corres proof rules, typically one for each A-normal Cogent construct,
which are applied automatically in a syntax-directed manner (Sect. 3.4).

The corres proof rules depend on preconditions about the expected state of
the program, such as preconditions about the type and validity of pointers in
the heap. We propagate the conditions similarly to the proof calculus of Cock
et al. [3]. Our refinement theorem does not need an explicit assumption of well-
typedness for the whole Cogent program — The proof tactic will simply fail
for programs that are ill-typed.

Since our corres proof rules are specialised to Cogent and to the operation
of the compiler, we can predict the form of their preconditions and design proof
rules to combine them. This forms the basis for automation.

3.1 Refinement Statement

We define refinement generically between a monadic computation pm and a
Cogent expression e, evaluated under the update semantics. We denote the
refinement predicate corres. The state relation R changes for each Cogent
program, so we parametrise corres by an arbitrary state relation R. It is addi-
tionally parametrised by the typing context Γ and the environment U , as well as
by the initial update semantics store μ and monadic shallow embedding state σ.

Definition 1 (correspondence)

corres R e pm U Γ μ σ
def=

U | μ : Γ −→ (μ, σ) ∈ R −→
(¬ failed (pm σ) ∧
(∀vm σ′. (vm, σ′) ∈ results (pm σ) −→

(∃μ′ u. U � e | μ ⇓u u | μ′ ∧ (μ′, σ′) ∈ R ∧ val-rel u vm)))

Definition 1 states for well-typed stores μ that if the state relation R holds
initially, then the monadic computation pm cannot fail and, moreover, for all
executions of pm there must exist a corresponding execution under the update
semantics of the expression e such that the final states are related by a state
relation R and a value relation val -rel holds between the results of e and pm.3

We present the state and value relations in Sect. 3.2.
AutoCorres proves that if the monadic code never fails, then the C code

is type- and memory-safe, and is free of undefined behaviour [4]. We prove
non-failure as a side-condition of the refinement statement, essentially using
Cogent’s type system to guarantee C memory safety during execution. The
corres predicate can compose with itself sequentially: it both assumes and shows
the relation R, and the additional typing assumptions are preserved thanks to
type preservation (Theorem 1).
3 Although corres technically permits the monadic code to return no results, the code

that we generate will additionally always return results �= ∅ as long as it has not
failed .
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3.2 Data Relations

For each program, based on a library for primitive types, we generate a set of
relations between the values, types and heaps of the Cogent and monadic code.
We denote these as val -rel , type-rel and R respectively.

We must give these relations separate definitions for each Cogent type,
because each C struct type is embedded as a distinct Isabelle/HOL record. We
use Isabelle’s ad-hoc overloading mechanism for this.

Recall that AutoCorres generates different typed heaps for each C type. The
type relation type-rel is used by the state relation R to select the corresponding
typed heap for each Cogent type. It is defined using the repr function (Fig. 4)
which performs partial type erasure, unifying Cogent types that differ only in
linear annotations in order to relate them to the same C type.

Given val -rel and type-rel for a particular Cogent program, the state rela-
tion R defines the correspondence between the store μ over which the Cogent
update semantics operates, and the state σ of the monadic shallow embedding.
This relation is made into an invariant in corres (Sect. 3.1); it allows us to show
that all C pointer accesses satisfy is-valid , whenever there are corresponding
objects in the Cogent store μ.

Definition 2 (state relation). (μ, σ) ∈ R if and only if for all pointers p in
the domain of μ, there exists a value v in the appropriate heap of σ (as defined
by type-rel) at location p, such that val-rel (μ p) v holds.

Generating Data Relations. We generate R, val -rel and type-rel after
obtaining the monadic program and its typed heaps from AutoCorres. Our
Cogent compiler outputs a list of (Cogent,C) type pairs, which is used by an
Isabelle/ML procedure to generate the needed relations.

Example 2. The program in Fig. 5 uses the types U8, Bool and {f :: U8}, which
correspond to the C types word8, bool and rec1, respectively. For val -rel and
type-rel , the U8–word8 relation can be defined a priori, but bool and rec1 are
generated with the monadic program and their data relations are generated
dynamically:

(pre-defined) val -rel (a :: U8) (aC :: word8) def= (a = aC)
val -rel (a :: Bool) (aC ::bool) def= (a = (bool aC �= 0))

val -rel (a :: {f :: U8}) (aC :: rec1)
def= val -rel (a.f) (aC .f)

Note that the val -rel definition for {f :: U8} depends on the definition for its field
of type U8. The Cogent compiler always outputs the type list in dependency
order, so this does not pose a problem.

The state relation R cannot be overloaded in the same way as val -rel and
type-rel , because it relates the heaps for every type simultaneously. We introduce
an intermediate state relation, heap-rel , which relates a particular typed heap
with a portion of the Cogent store. Like the other relations, this intermediate
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relation can make use of type-based overloading. Following Definition 2, we define
heap-rel for each type τ that appears on the heap as follows:

heap-rel στ μ
def= ∀p. μ(p) �→ v ∧ type-rel (vrepr(v)) τ −→

is-valid στ p ∧ val -rel v στ [p]

where vrepr gives the partially-erased type for a value, similar to repr. The state
relation over all typed heaps στk is R σ μ

def= (heap-rel στ1 μ ∧ heap-rel στ2 μ ∧ . . . ).

3.3 Refinement Theorem

We state the overall top-level C refinement theorem below. In addition to the
assumptions listed here, it also assumes that corres holds for all the foreign
functions used in the program.

Theorem 2. Let f be a Cogent function, with type τ and body e. Let pm be
the monadic embedding of its generated C code. Let u and vm be arguments of
appropriate type for f and pm respectively. Then:

∀μ σ. val-rel u vm −→ corres R e (pm vm) (x �→ u) (x : τ) μ σ

Example 3. In Fig. 5, f = flip, pm = flipC , and τ = τ ′ = {f :: U8}.

3.4 Refinement Proof

This section describes the main components of the refinement proof automation,
as shown in Fig. 1: the proof calculus used to relate Cogent and C programs, the
generation of well-typedness theorems for Cogent, and the automated tactic
that combines these two components to perform the overall refinement proof.

Refinement Calculus. Figure 6 depicts the corres rules in our calculus for
variables, let, if , and for take and put expressions for boxed records. The full
calculus is available online [1] under c − refinement/COGENT Corres.thy. The
proofs of the corres rules for compound expressions rely on Theorem 1 to infer
value well-typedness.

The assumptions for these rules fall under three main groups:

1. Well-typedness assumptions; we generate typing theorems to discharge these.
2. Assumptions relating the values and mutable heaps of Cogent and C. Once

a C program is read and concrete data relations (Sect. 3.2) are defined, we
specialise the corres rules to simplify these assumptions.

3. corres assumptions on sub-expressions, discharged through our proof
automation.

The rules Var and Let correspond respectively to the two basic monadic oper-
ations return, which yields values, and do . . . ; . . . od, for sequencing compu-
tations.
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Fig. 6. Some of the important corres rules

Observe that Let is compositional : to prove that let x = e1 in e2 corre-
sponds to do e′

1; e′
2 od, we must prove that (1) e1 corresponds to e′

1 and (2) e2
corresponds to e′

2 when each are executed over corresponding results vu and vm

(e.g. as yielded by e1 and e′
1 respectively). This compositionality, which is present

in our whole calculus, significantly simplifies the automation of the refinement
proof.

The If rule relates if c then e1 else e2 expressions to monadic
condition (bool c′ �= 0) e′

1 e′
2 statements. It works similarly to Let, requir-

ing an equivalence between c and (bool c′ �= 0), and correspondences between e1
and e′

1, and between e2 and e′
2. Note that we represent booleans in C using a

struct bool with an integer field named bool ; we avoid C’s builtin type Bool
because it may be an alias for an existing integer type like U8 and therefore
indistinguishable from that integer type.
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The more intricate rules in Fig. 6 are Put and Take, which apply to put
and take on boxed records (additional rules exist for unboxed records). Recall
that boxed records are stored on the heap and are subject to the linear typing
rules. These two rules are involved and contain many assumptions. They are
mainly presented here to illustrate to the reader why we have a separate phase
later on dedicated to simplifying them.

The Put rule handles the correspondence between (let x = put e1.fk :=
e2 in e3) expressions and (do ← guard (λσ. is-valid σ p′); ← modify h;
e′
3 od) statements. Note that unlike let, if , and take, put does not contain

a continuation. Therefore, the compiler ensures that put expressions always
appear within let expressions, which allows us to have a compositional rule for
put in the same style as the other operators.

Recall that if e1 is a pointer p, put updates the field fk, of the record pointed
to by p to the value of e2. Similarly, the monadic code asserts that the corre-
sponding p′ is a valid pointer, then modifies the record at p′ in h. At this stage h
and is-valid are left unspecified, as these rules are defined generically regardless
of type. Therefore, our Put rule additionally includes a number of assumptions
describing the expected properties of h and is-valid . In the next subsection, we
specialise this rule to eliminate these assumptions.

Take is similar, it relates (take x {fk = y} = e1 in e2) expressions and

(do ← guard (λσ. is-valid σ p′); y′ ← gets f ′; e′ y′ od)

statements. Recall that take removes the field fk from e1, binds it to a new
variable y and runs e2. The corres assumptions of Take are that (1) p′ and
e1’s value are related, and (2) given related values vu and vm, e2 corresponds to
e′
2 vm under the extended value environment (fk �→ vu, e1 �→ p (Ptr r), U). We

need to re-add e1 to U because it is linear and cannot be reused.

Generating Specialised Rules. As mentioned earlier, we generate program-
specific proof rules for operators involving specific C types, such as take and
put. This is because the set of C types, different for each program, is shallowly
embedded into Isabelle/HOL. Thus, the assumptions for rules involving those
types can only be discharged once the C code has been parsed into Isabelle/HOL.

We could prove these assumptions while applying the corres rules, but this
would be inefficient for rules that are applied many times. Thus, we generate spe-
cialised rules in a separate preprocessing phase. Implemented as an Isabelle/ML
program, this phase reads the (Cogent,C) type list used for generating data
relations to produce rules for the appropriate C and Cogent types.

Example 4. For the Cogent record {f :: U8} in Fig. 5, we generate the following
specialised rules for take and put:
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(Γ1Γ2) � (take x {f = y} = e1 in e2) : τ ′

(Γ1Γ2) � e1 : {f :: U8} w (y �→ U8, x �→ {f :: U8} w, Γ2) � e2 : τ ′

p′ has type rec1 ptr (e1 �→ p (Ptr r)) ∈ U val-rel (p (Ptr r)) p′

type-rel (repr(U8)) word8 type-rel (repr({f :: U8} w)) (rec1 ptr)
(∀vu vm. val-rel vu vm −→ corresR e2 (e′

2 vm) (y �→ vu, x �→ (p (Ptr r)), U)
(y �→ U8, x �→ {f :: U8} w, Γ2) μ σ)

corres R (take x {f = y} = e1 in e2)
(do ← guard (λσ. is-valid σ p′); y′ ← gets (λσ. σ[p′].f); e′ y′ od)

U (Γ1Γ2) μ σ

Take

∃τ. (Γ1Γ2) � (let x = put e1.f := e2 in e3) : τ (Γ1Γ2) � e1 : {f :: U8} w

Γ1 � (put e1.f := e2) : {f :: U8} w (e1 �→ p (Ptr r)) ∈ U (e2 �→ v) ∈ U
val-rel (p (Ptr r)) p′ type-rel (repr({f :: U8} w)) (rec1 ptr) val-rel v v′

(∀μ′, σ′. corresR e3 e′
3 (e1 �→ p (Ptr r), U) (e1 �→ {f :: U8} w, Γ2) μ′ σ′)

corresR (let x = put e1.f := e2 in e3)
(do ← guard (λσ. is-valid σ p′); ← modify (λσ. σ[p′].f := v′); e′

3 od)
U (Γ1Γ2) μ σ

Put

Note that the cumbersome record-update assumptions from Fig. 6 have been
reduced to val -rel and type-rel statements. This is only possible after we obtain
the concrete program and its data relations. We also instantiate the state relation
R and show that take and put preserve it, allowing us to simplify the heap-
update assumptions.

Well-Typedness. The Cogent compiler proves, via an automated Isabelle
tactic, that the deep embedding of the input program is well-typed. Specifically,
it shows for each function f with argument x, body e, and type τ1 → τ2, that
x �→ τ1 � e : τ2.

Recall that the type system is substructural, and that proving refinement
requires access to the typing judgements for each sub-expression of the program.
To solve this, the Cogent compiler instructs Isabelle to store all intermediate
typing judgements established during type checking. These theorems are stored
in a tree structure, isomorphic to the Cogent program’s type derivation tree.
Each node is a typing theorem for a program sub-expression, and can be retrieved
by the refinement proof tactic as it descends into the program.

Proof Automation. The core of our refinement prover is an Isabelle/ML tactic
that proves the corres refinement theorem (Sect. 3.3) for each Cogent function
in the program, by applying the corres rules previously proven, both generic
and specialised (Sect. 3.4). This algorithm is straightforward as our rules are
syntax-directed.

The tactic also expands definitions of val -rel and type-rel (Sect. 3.2) in order to
discharge data relation assumptions in those corres rules, and retrieves the type
derivation tree for the given Cogent function to discharge all well-typedness
assumptions.
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Example 5. For flip in Fig. 5, we wish to prove the refinement theorem

corres R flip (flipCvm) (x �→ u) (x : {f :: U8} ) μ σ

or after unfolding
corres R (take x′ {f = y} = x in . . . )

(do guard (λσ. is-valid σ x); y ← gets (λσ. σ[r].f); . . . od)
(x �→ u) (x : {f :: U8} ) μ σ

The first step of the proof applies the specialised take rule for {f :: U8} (Sect. 3.4).
After discharging its typing and val -rel assumptions, we are left with a corres
obligation on the remainder of the function, which can in turn be solved using
the other proof rules.

Our tactic can be used easily for single functions, but extending it to whole
programs required significant proof engineering effort, as we must handle func-
tion calls both to externally-defined C functions and to (potentially higher-order)
Cogent functions.

Foreign functions. Cogent code depends on calls to foreign C functions to per-
form loops and I/O. Our framework requires these functions to be well-behaved,
i.e. they respect Cogent’s termination order and do not break the Cogent
type system (e.g. by modifying variables they do not have access to).

Foreign functions are user-supplied and not verified automatically. Thus,
when proving refinement theorems for Cogent code that calls these functions,
we automatically insert assumptions that they are well-behaved. These assump-
tions remain until they are resolved by manual verification.

Whole-program refinement. Cogent is a total language and does not permit
recursion, so we have, in principle, a well-ordering on function calls in any pro-
gram. However, for higher-order functions, this well-ordering is non-obvious and
difficult to work with.

In practice, most function calls in systems code are direct calls to first-
order functions. For such functions, we can simply prove the corres theorems in
bottom-up fashion, starting from the leaf functions and ending at the top-level
functions.

There is one major exception: Cogent code cannot express loops using only
first-order functions. Our Cogent programs use iteration combinators, which
are second-order foreign functions that take a Cogent function pointer as the
loop body (similar to the map or fold combinators in functional programming).

Therefore, our framework also supports second-order calls to foreign func-
tions. Before assuming corres for these functions, we first prove corres for the
argument function (i.e. the loop body).

This technique allows us to automate refinement for code with first- and
second-order calls. While this restriction means that not all Cogent programs
can be verified in our framework, we developed Cogent code for two file system
drivers [2] in this fragment, demonstrating that substantial programs can be
written in this subset.
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4 Related Work

To date, the largest trustworthy compilation projects are the CompCert [7] C
compiler and the CakeML [6] ML environment. In contrast to Cogent, they
compile general-purpose programming languages and rely more heavily on veri-
fied compilation passes.

CompCert translates (a subset of) C to binary while our compiler translates
the functional Cogent language to C. CompCert’s core compilation process is
verified and its optimisation passes are validated; the compiler executable itself
is extracted from Coq into Caml. There is ongoing work to validate the Coq
code extraction process and the Caml compiler for CompCert.

We chose to use certificates for most of Cogent’s compiler passes, because
our proof tools for C run in Isabelle directly, and our Cogent compiler is writ-
ten in Haskell, which does not have a formal semantics nor a verified runtime
at present. On one hand, processing the certificates is time-intensive. On the
other hand, we do not need to trust the code extractor, nor the runtime for the
extracted language. We do need to either trust the C compiler or use a verified
one.

Cogent is closer to CakeML in that it is a high-level source language. How-
ever, Cogent targets a different application area. CakeML is a Turing-complete
dialect of ML with complex semantics, and is suited for application code. On
the other hand, Cogent is a restricted language of total functions with simple
semantics that facilitate equational reasoning. Cogent avoids the need for a
large runtime and a garbage collector so it can be used for embedded systems
code, especially layered systems code with minimal sharing such as the control
code of filesystems or network protocol stacks.

5 Take Away Lessons and Future Work

When designing the certifying compiler, we made a trade-off by writing the
Cogent compiler tool-chain in Haskell, while the proof component was written
in Isabelle’s Standard ML environment. This divide allows the Cogent tool-
chain to be used outside the theorem prover, and allows the proof tools to build
on the existing C parser and AutoCorres framework.

On the other hand, this choice leads to complexity in designing the inter-
face between these components. This is illustrated by our well-typedness proof
of Sect. 3.4, where the Cogent compiler generates a certificate with the nec-
essary type derivation hints. Initially, we used a näıve format consisting of the
entire derivation tree, resulting in gigabyte-sized certificates. We implemented
various compression techniques to reduce the certificates to a reasonable size (a
few megabytes). It is possible to avoid these certificates entirely by duplicating
the type inference algorithm in Isabelle/ML, but this would increase the code
maintenance burden.

Even though reusing the C parser and AutoCorres is desirable, they take a
long time to process our verbose generated C code. They take a total of 12 CPU
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hours to translate the ext2 filesystem into a monadic embedding and they take
32 CPU hours when applied to BilbyFs. Further proof optimisation is needed.

Optimisation of the generated code is another topic for future work. High-
level Cogent-to-Cogent optimisations will be easy, as they can be verified over
the shallow embedding of Cogent using equational rewriting. For instance, we
verified A-normalisation using rewriting; while it is not an optimisation, it is an
example of a code transformation that does not affect the Cogent-to-C proof.
For low-level optimisations, we rely on the C compiler so as not to complicate
our syntax-directed proof approach.

6 Conclusions

We developed a compositional refinement calculus and proof tools to create a
fully automatic refinement certificate from Cogent’s update semantics to C,
including the use of partial type erasure to relate Cogent’s expressive types
to simpler C types. This refinement certificate is the most involved step in the
full automation of the overall compiler certificate. Through the co-generation of
code and proofs, our framework significantly reduces the cost of reasoning about
efficient C code, by automatically discharging cumbersome safety obligations,
and providing an embedding more amenable to verification. Our framework has
been applied successfully to two real-world file-systems.
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Abstract. A formalization in Isabelle/HOL of the resolution calculus
for first-order logic is presented. Its soundness and completeness are for-
mally proven using the substitution lemma, semantic trees, Herbrand’s
theorem, and the lifting lemma. In contrast to previous formalizations of
resolution, it considers first-order logic with full first-order terms, instead
of the propositional case.

Keywords: First-order logic · Resolution · Isabelle/HOL · Herbrand’s
theorem · Soundness · Completeness

1 Introduction

The resolution calculus plays an important role in automatic theorem proving
for first-order logic as many of the most efficient automatic theorem provers, e.g.
E [23], SPASS [25], and Vampire [18], are based on resolution and an extension
called superposition. Studying the resolution calculus is furthermore an integral
part of many university courses on logic in computer science. The resolution
calculus was introduced by Robinson in his groundbreaking paper which also
introduced most general unifiers (MGUs) [20].

The calculus reasons about first-order literals, i.e. atoms and their negations.
Since the literals are first-order, they may contain full first-order terms. Literals
are collected in clauses, i.e. disjunctions of literals. The calculus is refutationally
complete, which means that if a set of clauses is unsatisfiable, then the resolution
calculus can derive a contradiction (the empty clause) from it. One can also use
the calculus to prove any valid formula by first negating it, then transforming it
to an equisatisfiable set of clauses, and lastly refuting this set with the resolution
calculus. Resolution is a calculus for first-order logic, but it does not have any
machinery to handle equality or any other theories.

We mostly follow textbooks by Ben-Ari [1], Chang and Lee [8], and Leitsch
[15]. The idea of Chang and Lee’s completeness proof is to consider semantic
trees, which are binary trees that represent interpretations. Such a tree is cut
smaller and smaller, and for each cut, a derivation is done towards the empty
clause. The theorem that cuts the tree down to finite size is Herbrand’s theorem,
which we also formalize. We prove the completeness theorem for Herbrand uni-
verses only, but e.g. Chang and Lee’s Theorem 4.2 states that this is sufficient
to prove it complete for any universe. That theorem is, however, not formalized.
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 341–357, 2016.
DOI: 10.1007/978-3-319-43144-4 21
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The formalization is included in the IsaFoL project [3], which formalizes
several logical calculi in Isabelle/HOL. IsaFoL is part of a larger effort to formally
prove theorems about logics and logical calculi. This also includes formalizations
of ground resolution, which is propositional by nature. The formalization in
this paper stands out from these by formalizing resolution for first-order logic.
The theory needed to do this is very different from that of ground resolution
since first-order logic involves a richer syntax and semantics. To the best of my
knowledge, I present the first formalized completeness proof of the resolution
calculus for first-order logic.

Harrison formalizes Herbrand’s theorem in a model theoretic formulation
[10]. It says that if a purely existential formula is valid, then some disjunction
of instances of the body is propositionally valid. In automatic theorem proving,
the theorem is viewed in a different, equivalent way: A finite set of clauses is
unsatisfiable if some finite set of ground, i.e. variable free, instances of its clauses
is as well. This is what SAT solvers take advantage of when refuting first-order
formulas. Essentially, they enumerate ground instances and try to refute them.
We formalize a third equivalent view stating exactly what the completeness proof
needs: If a set of clauses is unsatisfiable, then it has a finite closed semantic tree.
This bridges first-order unsatisfiability with decisions made in a semantic tree.

Since this paper is a case study in formalizing mathematics, it is also worth-
while to consider which tools were helpful in this regard:

– The Isabelle/jEdit Prover IDE has many useful features to navigate proof
documents. This was advantageous when the theory grew larger.

– The structured proof language Isar was beneficial because it allows formal
proofs to be written as sequences of claims that follow from the previous
claims. This clearly mirrors mathematical paper proof, which is what we are
formalizing. Furthermore, it makes the proofs easy to read, and this is impor-
tant when a formalization is to help in the understanding of a theory.

– The proof methods of Isabelle such as auto, blast, and metis were effective in
discharging proof goals.

– The Sledgehammer tool finds proofs by picking important facts from the the-
ory and then employing top-of-the-line automatic theorem provers and satis-
fiability modulo solvers. It often helps proving claims that we know are true,
but where finding the necessary facts from the theory and libraries as well as
choosing and instructing a proof method would be tedious.

Understanding proofs of logical systems can be challenging since one must
keep separate which parts of the proofs are about the syntactic level, and which
are about the semantic level. It can be tempting to mix intuition about semantics
and syntax. Fortunately, a formalization makes the distinction very clear, and
hopefully this can aid in understanding the proofs.

2 Overview

A literal l is either an atom or its negation. The sign of an atom is True, while
that of its negation is False. The complement pc of an atom p is ¬p, and the
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complement (¬p)c of its negation is p. The complement LC of a set of literals
L is {lc | l ∈ L}. The set of variables in a clause is varsls C . A clause with an
empty set of variables is called ground. A clause is a set of literals representing the
universal quantification of the disjunction of the literals in the clause. The empty
clause represents a contradiction since it is an empty disjunction. A substitution
σ is a function from variables to terms, and is applied to a clause C by applying
it to all variables in C. The result is written C ·ls σ and is called an instance of
C. We can likewise apply a substitution to a single literal: l ·l σ.

We will consider the following formulation of the resolution calculus:

C1 C2

((C1 − L1) ∪ (C2 − L2)) ·ls σ

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is a substitution and an MGU of L1 ∪ LC
2

The conclusion of the rule is called a resolvent of C1 and C2. L1 and L2

are called clashing sets of literals. Additionally, the calculus allows us to apply
variable renaming to clauses before we apply the resolution rule. Renaming vari-
ables in two clauses C1 and C2 such that varsls C1 ∩ varsls C2 = {} is called
standardizing apart. Notice that L1 and L2 are sets of literals. Some other reso-
lution calculi instead let L1 and L2 be single literals. These calculi then have an
additional rule called factoring, which allows unification of subsets of clauses.

The completeness proof we consider is very much inspired by that of Chang
and Lee [8], and the proof of the lifting lemma by that of Leitsch [15].

Semantic trees are defined from an enumeration of Herbrand, i.e. ground,
atoms. A semantic tree is essentially a binary decision tree in which the decision
of going left in a node on level i corresponds to mapping the ith atom of the
enumeration to True, and in which going right corresponds to mapping it to
False. See Fig. 1. Therefore, a finite path in a semantic tree can be seen as a
partial interpretation. This differs from the usual interpretations in first-order
logic in two ways. Firstly, it does not consist of a function denotation and a pred-
icate denotation, but instead assigns True and False to ground atoms directly.
Secondly, it is finite, which means that some ground literals are assigned neither
True nor False. A partial interpretation is said to falsify a ground clause if it, to
all literals in the clause, assigns the opposite of their signs. A branch is a path
from the root of a tree to one of its leaves. A closed branch is a branch whose
corresponding partial interpretation falsifies some ground instance of a clause in
the set of clauses. A closed semantic tree for a set of clauses is a minimal tree in
which all branches are closed.

Herbrand’s theorem is proven in the following formulation: If a set of clauses
is unsatisfiable, then there is a finite and closed semantic tree for that set. We
prove it in its contrapositive formulation and therefore assume that all finite
semantic trees of a set of clauses have an open (non-closed) branch. Obtaining
longer and longer branches of larger and larger finite semantic trees, we can,
using König’s lemma, obtain an infinite path all of whose prefixes are open
branches of finite semantic trees. Thus these branches satisfy, that is, do not
falsify, the set of clauses. We can then prove that this infinite path, when seen as
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Fig. 1. Semantic tree with partial interpretation [p �→ True, q �→ False]

an Herbrand interpretation, also satisfies the set of clauses, and this concludes
the proof. Converting the infinite path to a full interpretation can be seen as the
step that goes from syntax to semantics.

The lifting lemma lifts resolution derivation steps done on the ground level
up to the first-order world. The lemma considers two instances, C ′

1 and C ′
2, of

two first-order clauses, C1 and C2. It states that if C ′
1 and C ′

2 can be resolved
to a clause C ′ then also C1 and C2 can be resolved to a clause C. And not only
that, but it can even be done in such a way that C ′ is an instance of this C. See
Fig. 2. To prove the theorem we look at the clashing sets of literals L′

1 ⊆ C ′
1 and

L′
2 ⊆ C ′

2. We partition C ′
1 in L′

1 and the rest, R′
1 = C ′

1 − L′
1. Then we lift this

up to C1 by partitioning it in L1, the part that instantiates to L′
1, and the rest

R1 which instantiates to R′
1. We do the same for C2. Since L′

1 and L′C
2 can be

unified, so can L1 and LC
2 , and therefore they have an MGU. Thus C1 and C2

can be resolved to a resolvent C. With some bookkeeping of the substitutions
and unifiers, we can also show that C has the ground resolvent C ′ as an instance.

Lastly, completeness itself is proven. It states that the empty clause can
be derived from any unsatisfiable set of clauses. We start by obtaining a finite
closed semantic tree for the set of clauses. Then we cut off two sibling leaves. The
branches ending in these leaves falsify a ground clause each, and these clauses
can be resolved. We lift this up to the first-order world by the lifting lemma and
resolve the first-order clauses. Repeating this procedure, we obtain a derivation

Fig. 2. The lifting lemma. An arrow from C to C′ indicates that C′ is an instance of
C. The bars are derivations. Full bars or arrows are relations we know, and the stippled
ones are established by the lemma.
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which ends when we have cut the tree down to the root. Only the empty clause
can be falsified here, and so we have a derivation of the empty clause.

3 Clausal First-Order Logic

We briefly explain the formalization of first-order clausal logic. A first-order term
is either a variable consisting of a variable symbol (a string) or it is a function
application consisting of a function symbol (a string) and a list of subterms:

datatype fterm = Var var -sym | Fun fun-sym (fterm list)

A literal is either positive or negative, and it contains a predicate symbol (a
string) and a list of terms. The datatype is parametrized with the type of terms
′t since it will both represent first-order literals (fterm literal) and Herbrand
literals. A clause is a set of literals.

datatype ′t literal = Pos pred -sym (′t list) | Neg pred -sym (′t list)

type-synonym ′t clause = ′t literal set

We formalize the ground fterm literals using a predicate groundl which holds
for l if it contains no variables. Likewise, we formalize ground fterm clauses using
a predicate groundls.

A substitution is a function from variable symbols into terms:

type-synonym substitution = var -sym ⇒ fterm

This is very different from Chang and Lee where they are represented by finite
sets [8]. The advantage of functions is that they make it much easier to apply
and compose substitutions. If C ′ is an instance of C we write instance-ofls. The
composition of two substitutions, σ1 and σ2, is also defined, and written σ1 · σ2.
We also define unifiers and most-general unifiers of literals (and similarly of
terms):

definition unifierls σ L ←→ (∃l ′. ∀l ∈ L. l ·l σ = l ′)

definition mguls σ L ←→ unifierls σ L ∧ (∀u. unifierls u L −→ ∃i . u = σ·i)

One important theorem is that if a finite set of literals has a unifier, then it
also has an MGU. This theorem is formalized in the IsaFoR project [24] by means
of a unification algorithm, and we obtain it by proving the literals, unifiers, and
MGUs of IsaFoR equivalent to ours.

lemma unification:
assumes finite L
assumes unifierls σ L
shows ∃θ. mguls θ L
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We also formalize a semantics of terms and literals. A variable denotation,
var -denot , maps variable symbols to values of the domain. The domain is rep-
resented by the type variable ′u:

type-synonym ′u var -denot = var -sym ⇒ ′u

Interpretations consist of denotations of functions and predicates. A function
denotation maps function symbols and lists of values to values:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u

Likewise, a predicate denotation maps predicate symbols and lists of values
to the two boolean values:

type-synonym ′u pred -denot = pred -sym ⇒ ′u list ⇒ bool .

Similar to other formalizations of first-order logic, the predicate and function
symbols do not have fixed arities. The semantics of a term is then defined by
the recursive function evalt.

fun evalt :: ′u var -denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x ) = E x
|evalt E F (Fun f ts) = F f (map (evalt E F ) ts)

Here, map (evalt E F ) [e1 , . . . , en ] = [evalt E F e1 , . . . , evalt E F en ], and
from now on we abbreviate map (evalt E F ) ts as evalts E F ts.

If an expression evaluates to True in an interpretation, we say that it is
satisfied by the interpretation. If it evaluates to False, we say that it is falsified.
The semantics of literals is a function evall that evaluates literals.

fun evall :: ′u var -denot ⇒ ′u fun-denot ⇒ ′u pred -denot
⇒ fterm literal ⇒ bool where

evall E F G (Pos p ts) ←→ G p (evalts E F ts)
|evall E F G (Neg p ts) ←→ ¬G p (evalts E F ts)

We extend the semantics to clauses.

definition evalc :: ′u fun-denot ⇒ ′u pred -denot
⇒ fterm clause ⇒ bool where

evalc F G C ←→ (∀E . ∃l ∈ C . evall E F G l)

A set of clauses Cs is satisfied, written evalcs F G Cs, if all its clauses are
satisfied.

4 The Resolution Calculus

We first formalize resolvents, i.e. the conclusion of the resolution rule.

definition resolution C1 C2 L1 L2 σ = ((C1 − L1) ∪ (C2 − L2)) ·ls σ



Formalization of the Resolution Calculus for First-Order Logic 347

In Sect. 2 we saw that the resolution rule had three side-conditions. We addi-
tionally restrict the rule to require that L1 and L2 are non-empty. When these
side-conditions are fulfilled, the rule is applicable.

definition applicable C1 C2 L1 L2 σ ←→
C1 �= {} ∧ C2 �= {} ∧ L1 �= {} ∧ L2 �= {}

∧ varsls C1 ∩ varsls C2 = {}
∧ L1 ⊆ C1 ∧ L2 ⊆ C2

∧ mguls σ (L1 ∪ LC
2 )

A step in the resolution calculus either inserts a resolvent of two clauses in a
set of clauses, or it inserts a variable renaming of one of the clauses. Two clauses
are variable renamings of each other if they can be instantiated to each other.
Alternatively we could say that we apply a substitution which is a bijection
between the variables in the clause and another set of variables.

definition var -renaming-of :: fterm clause ⇒ fterm clause ⇒ bool where
var -renaming-of C1 C2 ←→ instance-ofls C1 C2 ∧ instance-ofls C2 C1

The rule for variable renaming allows us to standardize clauses apart.

inductive resolution-step
:: fterm clause set ⇒ fterm clause set ⇒ bool where

resolution-rule:
C1 ∈ Cs =⇒ C2 ∈ Cs =⇒ applicable C1 C2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C1 C2 L1 L2 σ})
| standardize-apart:

C ∈ Cs =⇒ var -renaming-of C C ′ =⇒ resolution-step Cs (Cs ∪ {C ′})

Derivation steps are extended to derivations by taking the reflexive transitive
closure of resolution-step, which is given by rtranclp.

definition resolution-deriv = rtranclp resolution-step

We will prove the resolution rule sound by combining several simpler rules.
The first we need looks as follows:

C

C ·ls σ

It is not entirely trivial to prove, but the needed insight is that given a
function denotation and a variable denotation, any substitution can be converted
to a variable denotation by evaluating the terms of its domain. We do this using
function composition ◦:

definition evalsub E F σ = evalt E F ◦ σ

We can then prove the substitution lemma:

lemma substitution: evall E F G (l ·l σ) ←→ evall (evalsub E F σ) F G l
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Next, we prove a special version of the resolution rule sound. The rule is
special since it is only allowed to remove two literals instead of two sets of
literals:

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})

l1 ∈ C1

l2 ∈ C2

l1 = lc2

Lastly, we prove that from a clause follows any superset of the clause:

C1

C1 ∪ C2

The proofs of all four rules are made as short structured Isar-proofs.
These four sound rules are combined to give the resolution rule, which must

consequently be sound. We are of course allowed to use the assumptions of the
resolution rule, so we know that when σ is applied to L1 and L2, they turn
in to a complementary pair of literals, which we denote l1 ·ls σ and l2 ·ls σ. This
justifies the book keeping inference below. It also means that we can apply the
special resolution rule. The bottommost rule application uses the superset rule.

C1

C1 ·ls σ

C2

C2 ·ls σ

(C1 ·ls σ − {l1 ·ls σ}) ∪ (C2 ·ls σ − {l2 ·ls σ})
special resolution

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)
book keeping

((C1 − L1) ∪ (C2 − L2)) ·ls σ

All this reasoning is made as a structured Isar-proofs.

lemma resolution-sound :
assumes evalc F G C1 ∧ evalc F G C2

assumes applicable C1 C2 L1 L2 σ
shows evalc F G (resolution C1 C2 L1 L2 σ)

5 Herbrand Interpretations

Herbrand interpretations are a special kind of interpretations, which are charac-
terized by two properties. The first is that their universe is the set of Herbrand
terms. Since we chose that the universe should be a type, we need to represent
the universe of Herbrand terms by a type. We do it by introducing a new type
hterm which is similar to fterm, but does not have a constructor for variables.

datatype hterm = HFun fun-sym (hterm list)

This is the same datatype as in Berghofer’s formalization of natural
deduction [2]. Had we chosen to represent the universes by sets like Ridge and
Margetson [19], then we could have represented the Herbrand universe by the set
of ground fterms. Unfortunately, we would then need wellformedness predicates
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for variable and function denotations. We introduce functions fterm-of -hterm
and hterm-of -fterm, converting between hterms and ground fterms.

The second characteristic property is that the function denotation of an
Herbrand interpretation is HFun, and thus, evaluating a ground term under such
an interpretation corresponds to replacing all applications of Fun with HFun,
that is, the ground term is interpreted as itself.

As we saw in Sect. 2, we need an enumeration of Herbrand atoms, such that
we can construct our semantic trees. So we define the type of atoms:

type-synonym ′t atom = pred -sym ∗ ′t list

Isabelle/HOL provides the proof method countable-datatype that can auto-
matically prove that a given datatype, in our case hterm, is countable. Since also
the predicate symbols are countable, then so must hterm atom be. Furthermore,
it is easy to prove that there are infinitely many hterm atoms. Using these facts
and Hilbert’s choice operator, we specify a bijection hatom-from-nat between
the natural numbers and the hterm atoms. We call its inverse nat-from-hatom.
Additionally, we write functions, nat-from-fatom and fatom-from-nat , enumer-
ating the ground fterm atoms in the same order. We also introduce a function
get-atom which returns the atom corresponding to a literal.

5.1 Semantic Trees

We need to formalize semantic trees. In paper-proofs the trees are often labeled
with the atoms which we add to or remove from our partial interpretations. In
this formalization the trees are unlabeled, because for a given level we can always
calculate the corresponding atom.

datatype tree = Leaf | Branching tree tree

Our formalization contains a quite substantial, approximately 700 lines, the-
ory on these unlabeled binary trees, paths within them, and their branches. The
details are not particularly interesting, but a theory of binary trees is necessary
because we, in contrast to paper proofs, cannot rely on intuition about trees.

In our formalization, bool lists represent both paths in trees and partial inter-
pretations, denoted by the type partial -pred -denot . E.g., if we consider the path
[True,True,False], then it is the path from the root of a semantic tree that goes
first left, then left again, and lastly right. On the other hand, it is also the partial
interpretation which considers hatom-from-nat 0 to be True, hatom-from-nat 1
to be True and hatom-from-nat 2 to be False. Our formalization illustrates the
correspondence between partial interpretations and paths clearly by identifying
their types.

Infinite trees and paths can not be represented by datatypes. We, thus, model
possibly infinite trees as sets of paths with a wellformedness property:

abbreviation wf -tree :: dir list set ⇒ bool where
wf -tree T ≡ (∀ds d . (ds @ d) ∈ T −→ ds ∈ T )
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Similarly, we model infinite paths as functions from natural numbers into
finite paths. Applying the function to number i gives us the prefix of length i.
We call such functions infinite paths, and their characteristic property is:

abbreviation wf -infpath :: (nat ⇒ ′a list) ⇒ bool where
wf -infpath f ≡ (f 0 = []) ∧ (∀n. ∃a. f (Suc n) = (f n) @ [a])

We must make formal, what it means for a partial interpretation to falsify
an expression. A partial interpretation G falsifies, written falsifiesl G l , a ground
literal l, if the opposite of its sign occurs on index nat-from-fatom (get-atom l)
of the interpretation.

definition falsifiesl :: partial -pred -denot ⇒ fterm literal ⇒ bool where
falsifiesl G l ←→ groundl l

∧ (let i = nat-from-fatom (get-atom l) in
i < length G ∧ G ! i = (¬sign l))

A ground clause C is falsified, written falsifiesg G C , if all its literals are
falsified. A first-order clause C is falsified, written falsifiesc G C , if it has a
falsified ground instance. A partial interpretation satisfies an expression if it
does not falsify it. Lastly, a semantic tree T is closed, written closed -tree T Cs,
for a set of clauses Cs if it is a minimal tree that falsifies all the clauses in Cs.

5.2 Herbrand’s Theorem

The formalization of Herbrand’s theorem is mostly straightforward and is done
as an Isar-proof that follows the sketch from Sect. 2. The challenging part is to
take an infinite path, all of whose prefixes satisfy a set of clauses Cs and then
prove that its conversion to an interpretation also satisfies Cs. Chang and Lee [8]
do not elaborate much on this, but it takes up a large part of the formalization
and illustrates the interplay of syntax and semantics.

First we must define how to convert the infinite path to an Herbrand inter-
pretation. We know that the function denotation must be HFun, so we just need
to convert the infinite path to a predicate denotation. We do it as follows:

abbreviation extend
:: (nat ⇒ partial -pred -denot) ⇒ hterm pred -denot where

extend f P ts ≡
let n = nat-from-hatom (P , ts) in
f (Suc n) ! n

We use currying, so P and ts can be thought of as the predicate symbol and
list of values which we wish to evaluate in our semantics. We do it by collecting
them to an Herbrand atom, and finding its index. Then we look up a prefix
of our infinite path that is long enough to have decided whether the atom is
considered True or False.
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We now prove that if the prefixes collected in the infinite path f satisfy a set
of clauses Cs then so does its extension to a full predicate denotation extend f .

Since we want to prove that the clauses in Cs are satisfied, we fix one C and
prove that it has the same property.

lemma extend -infpath:
assumes wf -infpath (f ::nat ⇒ partial -pred -denot)
assumes ∀n. ¬falsifiesc (f n) C
assumes finite C
shows evalc HFun (extend f ) C

We will consider four ways in which clauses can be satisfied:

1. A first-order clause can be satisfied by a partial interpretation.
2. A ground clause can be satisfied by a partial interpretation.
3. A ground clause can be satisfied by an interpretation.
4. A first-order clause can be satisfied by an interpretation.

The extend -infpath lemma relates 1 and 4, and does so by using lemmas that
relate 1 to 2 to 3 to 4. The four ways seem similar, but they are in fact very dif-
ferent. That a ground clause is satisfied is very different from a first-order clause
being satisfied since we do not need to worry about any ground instances or
variables. Likewise, a ground clause being satisfied by a partial interpretation is
clearly different from being satisfied by an interpretation since the two types are
vastly different: a partial interpretation is a bool list while an interpretation con-
sists of a fun-sym ⇒ hterm list ⇒ hterm and a pred -sym ⇒ hterm list ⇒ bool .

We relate 1 and 2: If a first-order clause is satisfied by all prefixes of an
infinite path, then so is any, in particular ground, instance. This follows from
the definition of being satisfied by a partial interpretation.

We relate 2 and 3: If a ground clause is satisfied by all prefixes of an infinite
path f , then it is also satisfied by extend f . This follows almost directly from
the definition of extend .

We relate 3 and 4: Ideally we would prove that if a ground clause is satisfied
by an Herbrand interpretation, then so is a first-order clause of which it is an
instance. That is, however, too general. Fortunately, we notice a similarity that
ties first-order clauses and ground clauses together by considering a variable
denotation in the Herbrand universe, i.e. of type var -sym ⇒ hterm. We can
create a function that converts its domain to fterms, and thus get a substitution.

fun sub-of -denot :: hterm var -denot ⇒ substitution
sub-of -denot E = fterm-of -hterm ◦ E

Now we have the machinery to state the needed lemma: If the ground clause
C ·ls sub-of -denot E is satisfied by an Herbrand interpretation under E, then so
is the first-order clause C. The reason is simply that if we look at a variable in
C, then it is replaced by a ground term in sub-of -denot E . This term evaluates
to the same as the Herbrand term that it is interpreted as in E.

The final step is to chain 1, 2, 3, and 4 together to relate 1 and 4.
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1. Assume that C is satisfied by all prefixes of f .
2. Then the ground instance C ·ls sub-of -denot E is satisfied by all f ’s prefixes.
3. Then the ground instance C ·ls sub-of -denot E is satisfied by extend f under

E in particular.
4. Then C is satisfied by extend f under E.

With this, we can formalize Herbrand’s theorem:

theorem herbrand :
assumes ∀G . ¬evalcs HFun G Cs
assumes finite Cs ∧ (∀C ∈ Cs. finite C )
shows ∃T . closed -tree T Cs

6 Completeness

The completeness proof combines Herbrand’s theorem, the lifting lemma, and
reasoning about semantic trees and derivations. We will take a look at the most
challenging parts of the formalization of the proof.

6.1 Lifting Lemma

Our formalization of the resolution rule removes literals from clauses before it
applies the MGU. This is similar to several presentations from the literature
[15,20]. Another approach, which our formalization used in an earlier version, is
to apply the MGU before the literals are removed:

C1 C2

(C1 ·ls σ − L1 ·ls σ) ∪ (C2 ·ls σ − L2 ·ls σ)

varsls C1 ∩ varsls C2 = {}
L1 ⊆ C1, L2 ⊆ C2

σ is an MGU of L1 ∪ LC
2

This is exactly the rule used by Ben-Ari [1]. Chang and Lee use a similar
approach [8]. However, we were not able to formalize their proofs of the lifting
lemma because they had some flaws. The flaws are described in my MSc thesis
[21]. The most critical flaw is that the proofs seem to use that B ⊆ A =⇒
(A − B) ·ls σ = A ·ls σ − B ·ls σ, which does not hold in general. Leitsch [14,
Proposition 4.1] noticed flaws in Chang and Lee’s proof already, and presented
a counter-example to it.

With our current approach, however, the lifting lemma is straightforward to
formalize as an Isar-proof using the proof by Leitsch [15]. The lemma uses the
unification lemma from Sect. 3 to obtain MGUs.

lemma lifting :
assumes finite C ∧ finite D
assumes varsls C ∩ varsls D = {}
assumes instance-ofls C ′ C ∧ instance-ofls D ′ D
assumes applicable C ′ D ′ L′ M ′ σ
shows ∃L M τ. applicable C D L M τ ∧

instance-ofls (resolution C ′ D ′ L′ M ′ σ) (resolution C D L M τ)
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6.2 The Formal Completeness Proof

Like Herbrand’s theorem, we formalize completeness as an Isar-proof following
Chang and Lee [8]. This time, however, the proof is much longer than its infor-
mal counterpart. The paper proof is about 30 lines while the formal proof is
approximately 150 lines. There are several reasons for this:

– We explicitly have to standardize our clauses apart.
– We need to reason very precisely about the numbers of the ground atoms.
– We need to cut the tree twice.

• First to remove two leaves.
• Next to minimize it.

– In both cases we must prove that all branches are closed.
– We must tie our derivation-steps together.

Our completeness proof consists of two steps. First we apply Herbrand’s
theorem to obtain a finite tree. Next we take a finite tree and cut it smaller
while making a derivation. Then we repeat the process on that tree. To prove
that this works, we formalize the process using induction on the size of the tree.
Our formalization uses the induction rule measure induct rule instantiated with
the size of a tree. This gives us the following induction principle.

(
∧
x . (

∧
y . treesize y < treesize x =⇒?P y) =⇒?P x ) =⇒?P ?a

Here, the induction hypothesis holds for any tree of a smaller size, and we
need this since we will cut off several nodes in each step.

6.3 Standardizing Apart

In each step we need to make sure that the clauses we resolve are standardized
apart. We create functions to do this.

abbreviation std1 C ≡ C ·ls (λx . Var (′′1 ′′ @ x ))

abbreviation std2 C ≡ C ·ls (λx . Var (′′2 ′′ @ x ))

They take clauses C1 and C2 and create the clauses std1 C1 and std2 C2

which have added respectively 1 and 2 to the beginning of all variables. The
most important property is that the clauses actually have distinct variables after
we apply it. We need this such that we can apply the resolution rule, and so we
can use the lifting lemma.

lemma std -apart-apart : varsls (std1 C1) ∩ varsls (std2 C2) = {}”

We also need to prove that it actually renames the variables. This was a
prerequisite for the standardize apart rule of the calculus.

lemma std1-renames: var -renaming-of C1 (std1 C1)

In the completeness proof C1 is falsified by B1, but not by B. The same holds
for std1 C1 since it is falsified by the same partial interpretations as C1.

lemma std1-falsifies: falsifiesc G C1 ←→ falsifiesc G (std1 C1)
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6.4 Branches and Ground Clauses

In each step, the completeness proof removes two sibling leaves and resolves the
clauses, C1 and C2, that were falsified by the branches, B1 = B @ [True] and
B2 = B @ [False], ending in the leaves. The resolvent is falsified by B. This is
first proven on the ground level and then lifted to the first-order level using the
lifting lemma. Thus, on the ground level we must prove two properties.

1. The two ground clauses C ′
1 and C ′

2 falsified by B1 and B2 can be resolved.
2. Their ground resolvent C ′ is falsified by B.

We prove 1 first. We do it by proving that C ′
1 contains the negative literal

of number length B and that C ′
2 contains its complement. Here, the case for

C ′
1 is presented. C ′

1 is falsified by B1, but not B, since the closed semantic tree
is minimal. Thus, it must be the decision of going left that was necessary to
falsify C ′

1. Going left falsified the negative literal l with number length B in the
enumeration, and hence it must be in C ′

1.
We prove 2 next. To prove it we must show that the ground resolvent C ′ =

(C ′
1 − {l}) ∪ (C ′

2 − {lc}) is falsified by B. We do it by proving that the literals
in both C ′

1 − {l} and C ′
2 − {lc} are falsified. The case for C ′

1 − {l} is presented
here. The overall idea is that l is falsified by B1, but not by B. The decision of
going left falsified l, and then all of C ′

1 was falsified. Therefore, the other literals
must have been falsified before we made the decision, in other words, they must
have been falsified already by B.

To formalize this we must prove that all the literals in C ′
1 − {l} are indeed

falsified by B. We do it by a lemma showing that any other literal lo ∈ C ′
1

than l is falsified by B. Its proof first shows that lo has another number than
l has, i.e. other than length B . It seems obvious since lo �= l , but we also need
to ensure that lo �= lc. We do this by proving another lemma which says that
a clause only can be falsified by a partial interpretation if it does not contain
two complementary literals. Then we show that lo has a number smaller than
length B @ [True], since lo is falsified by B @ [True]. This concludes the proof.
We abstracts from True to d such that the lemma also works for B @ [False].

lemma other -falsified :
assumes groundls C ′

1 ∧ falsifiesg (B @ [d ]) C ′
1

assumes l ∈ C ′
1 ∧ nat-from-fatom (get-atom l) = length B

assumes lo ∈ C ′
1 ∧ lo �= l

shows falsifiesl B lo

6.5 The Derivation

At the end of the proof we must tie the derivations together:
C1

std1 C1

C2

std2 C2

resolution C1 C2 L1 L2 σ

...
{}
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The dots represent the derivation we obtain from the induction hypothesis. It
is done using the definitions of resolution-step and resolution-deriv . The com-
pleteness lemma is formalized as follows:

theorem completeness:
assumes finite Cs ∧ (∀C ∈ Cs. finite C )
assumes

∀(F :: hterm fun-denot) (G :: hterm pred -denot). ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

7 Related Work

The literature contains several formalizations of first-order logic. Harrison proves
model theoretic results about first-order logic, including the compactness theo-
rem, the Löwenheim-Skolem theorem, and Herbrand’s theorem [10]. There are
also formalizations of the completeness of several logical calculi for first-order
logic. Margetson and Ridge [16] prove, in Isabelle/HOL, a sequent calculus sound
and complete, and they formalize a verified prover based on the calculus [19].
Braselmann and Koepke prove, in Mizar, a sequent calculus sound and complete
[6,7]. Schlöder and Koepke prove it complete even for uncountable languages
[22]. Berghofer proves, in Isabelle/HOL, a natural deduction calculus sound and
complete [2]. Illik formalizes constructive versions of completeness proofs for
classical logic and full intuitionistic predicate logic [12]. Blanchette, Popescu,
and Traytel formalize, in Isabelle/HOL, an abstract completeness proof that
is independent of any specific proof system and syntax for first-order logic [5].
Other important formalizations of logic are Paulson’s formalization of Gödel’s
incompleteness theorems [17], and Harrison’s soundness proof of HOL Light [11]
which is extended upon by Kumar, Arthan, Myreen and Owens [13].

There are also formalizations of sound and complete propositional resolution
calculi. Blanchette and Traytel formalize, in Isabelle/HOL, propositional resolu-
tion [4]. Fleury formalizes, in Isabelle/HOL, many ground calculi including SAT
solvers and propositional resolution [9].

8 Conclusion

This paper describes a formalization of the resolution calculus for first-order
logic as well as its soundness and completeness. This includes formalizations
of the substitution lemma, Herbrand’s theorem, and the lifting lemma. As far
as I know, this is the first formalized soundness and completeness proof of the
resolution calculus for first-order logic.

The paper emphasizes how the formalization illustrates details glanced over
in the paper proofs, which are necessary in a formalization. For instance it shows
the jump from satisfiability by an infinite path in a semantic tree to satisfiability
by an interpretation. It likewise illustrates how and when to standardize clauses
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apart in the completeness proof, and the lemmas necessary to allow this. Fur-
thermore, the formalization combines theory from different sources. The proofs
of Herbrand’s theorem and completeness are based mainly on those by Chang
and Lee [8], while the proof of the lifting lemma is based on that by Leitsch [15].
The existence proof of MGUs for unifiable clauses comes from IsaFoR [24].

Proof assistants take advantage of automatic theorem provers by using them
to dispense of subgoals. This formalization could be a step towards mutual ben-
efit between the two. Perhaps formalizations in proof assistants can help auto-
matic theorem provers by contributing a highly rigorous understanding of their
meta-theory.

Acknowledgement. Jørgen Villadsen, Jasmin Blanchette, and Dmitriy Traytel
supervised me in making the formalization. Jørgen and Jasmin provided valuable feed-
back on the paper.
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6. Braselmann, P., Koepke, P.: Gödel completeness theorem. Formalized Math. 13(1),
49–53 (2005)

7. Braselmann, P., Koepke, P.: A sequent calculus for first-order logic. Formalized
Math. 13(1), 33–39 (2005)

8. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving, 1st
edn. Academic Press Inc., Orlando (1973)

9. Fleury, M.: Formalisation of ground inference systems in a proof assistant. Mas-
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Abstract. Operational transformation (OT) is an approach to concur-
rency control in groupware editors first proposed by C. Ellis and S. Gibbs
in 1989. Google Wave and Google Docs are examples of better known
OT-based systems and there are many other experimental ones described
in the literature. In their recent articles A. Imine et al. have shown that
many OT implementations contain mistakes and do not possess claimed
consistency properties.

The present work describes an experimental library which is based
on SSReflect/Coq and contains several operational transformation algo-
rithms and proofs of their correctness.

1 Introduction

A collaborative groupware editor is an application that allows multiple users to
edit shared data objects (e.g., a text document or a spreadsheet). We will be
mainly concerned with synchronous groupware editors (or real-time collabora-
tive editors), i.e. editors which allow simultaneous editing of the shared data
and provide automatic real-time synchronization between users. Moreover, such
editors usually do not use locks in the implementation of their synchronization
algorithm. Instead, every user is provided with his own replica of the data and
is allowed to modify it freely.

Due to the network latency and the lock-free nature of the editor, a naive syn-
chronization algorithm applying remote operations to a local replica unchanged
will not be consistent. The replicas’ states may diverge significantly from each
other and a remote operation may not have its intended effect when applied to
the local replica. Let us consider the simplest scenario in which this problem
occurs. Alice removes symbol “b” and Bob inserts character “c” at the second
position. After these commands are processed the state of the network becomes
invalid (see Fig. 1a).

Operational transformation was conceived to overcome this problem. In the
simplest case of two communicating clients its idea can be roughly stated as
follows. Instead of applying Bob’s operation oB directly, Alice first “transforms”
oB through the history of her recent local changes oA thereby calculating the
operation o′

B which is applicable to the actual version of Alice’s data and has
the same effect as oB . Similarly, Bob computes o′

A from known oA and oB. Then,
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 358–373, 2016.
DOI: 10.1007/978-3-319-43144-4 22
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Fig. 1. An example illustrating the need of an OT. On (a) unmodified operations lead
to the invalid state. On (b) the state remains consistent if we use an OT

after the operations o′
A and o′

B are executed, the replicas are again in the same
state. Figure 1b illustrates the relationship between oA, oB, o′

A and o′
B.

A typical implementation of an OT algorithm consists of two separated com-
ponents: a transformation function which carries out transformation of opera-
tions (i.e. computes o′

B from specified oB and oA) and an integration algorithm
which is responsible for storing local histories and maintaining communication
between the clients. Only the former component typically depends on the seman-
tics of the data.

An OT algorithm is said to possess the convergence property if the replicas
of a shared document become identical at all sites after all user operations have
been executed. This property is essential for the correct operation of an OT
algorithm because the existence of a counterexample to it necessarily means that
the loss of user data is possible. To guarantee that an OT algorithm satisfies
this convergence property one needs to ensure that the integration algorithm
is correct and, moreover, that the transformation function satisfies correctness
properties C1 and C2 (see, Sect. 2.1 for more details).

– Roughly speaking, the property C1 requires that the effect of executing oper-
ations oB ◦ oA′ and oA ◦ oB′ is the same (compare with Fig. 1b). The property
C1 suffices to ensure the convergence of an OT algorithm in the case where
the network has a tree topology (e.g., in the case of a network with a central
server, see [2]),

– The more complicated property C2 becomes necessary in a more general set-
ting when one considers less restrictive network topologies which may have
loops (e.g., peer-to-peer networks).

Several generic integration algorithms together with proofs of their correct-
ness have been proposed in the literature (e.g., in [8,11]). On the other hand, for
each datatype the transformation function must be implemented separately and
such an implementation is known to be a hard and error-prone task even in the
simplest case when the shared data object in question is a string buffer. Indeed,
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in the recent works of Imine and others it was shown that many implementa-
tions of transformation functions for strings do not possess the above correctness
properties (see [7,9,10]).

Furthermore, even less is known about the correctness of OT algorithms for
more general data types such as trees, despite the fact that such datatypes are
useful in practice. Indeed, strings can be used only as a data model for a text
editor, while trees can represent a variety of different structured documents (e.g.,
a spreadsheet or an XML document). Besides that, earlier efforts mainly con-
centrated on algorithms with a very small set of user operations (e.g., consisting
only of operations of insertion and deletion of a single character). While formal
verfications of such algorithms is easier, their behavior is less satisfactory from
the semantic viewpoint as compared to algorithms with a more complicated set
of operations. For example, if the last-mentioned reduced set of operations is
used then it becomes impossible to take into account any higher-level semantic
entities such as words or sentences in the implementation of the transformation
function and, as a result, the loss of character order in the document may occur
under a certain scenario, see [6, p. 325].

The main goal of this paper is to describe our attempt of formalizing several
transformation functions for two different kinds of a tree datatype, namely the
datatype of ordered trees (which may represent, e.g., an XML-like document)
and the datatype of unordered trees (which may represent the directory structure
of a filesystem). The choice of an OT for trees as a subject for verification was
motivated by the fact that Jetpad platform1 stores shared data in a tree-like
structure.

Our definition of the transformation function for ordered trees is a generalized
and corrected variant of algorithms of Ressel and Sun (cf. [10]). Using Coq we
verify that our transformation functions satisfy convergence property C1 and
inversion property IP1 (in the terminology of [12]). The choice of Coq as our
verification tool was made due to the following considerations:

– many complex algorithms including compilers and static analyzers have been
verified in Coq (e.g., CompCert, Verasco, etc.);

– Coq includes a comprehensive standard library and allows tactic-based proofs,
whose power is greatly increased by the SSReflect library (cf. [5]);

The rest of the article is organized as follows. In Sect. 2 we formalize the
basic terminology related to the operational transformation approach. Then, in
Sect. 3 we present the main results of the paper, namely the precise definitions
of the transformation functions whose correctness has been verified in Coq. The
library source code in Coq can be found at github.com/JetBrains/ot-coq/.

1 Jetpad is a closed-source proprietary collaborative platform of JetBrains upon which
several products such as CoachingSpaces or CensusAnalyzer are based.

https://github.com/JetBrains/ot-coq/
http://coachingspaces.com
https://censusanalyzer.com/
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2 Formalization of OT Algorithms and Their Correctness
Properties

2.1 Operation Model

In this section we formally define the notion of a transformation function and
formulate its correctness properties. Our definitions generally follow [7], however,
there are certain differences which are explained in detail below.

First of all, we need to give names to variables corresponding to a set of
possible states of a shared data object and a set of atomic user operations which
can modify it. Let us denote these two variables by X and cmd, respectively.

Now, we define the type class abstracting the minimal functionality of an OT
algorithm. This class should encapsulate the following three entities:

1. an interpretation (or transition) function interp specifying how user opera-
tions are applied to the data;

2. a transformation function it which performs the transformation of opera-
tions;

3. a formula expressing the convergence property C1 of the function it.

First of all, notice that we do not require the function interp to be total, i.e.
we allow certain operations to be inapplicable to certain states of the data. For
example, an operation of file deletion is only applicable if the file exists. Thus,
we choose the following signature for interp:

interp : cmd → X → option X.

The equality interp op x = None, thus, should be interpreted as “op is inap-
plicable to x”.

Now we are going to specify the signature of the transformation function. In
the literature (e.g., in [4,7,10]) it is typically defined as it : cmd → cmd → cmd.
The operation op′

1 = it op1 op2 is interpreted as the result of a transformation
of op1 through op2.

In this context, convergence property C1 can be stated as follows: any pair
of atomic operations op1, op2 applicable to s can be completed to a square by
means of operations it op1 op2, it op2 op1 (see Fig. 2a).

For the sake of completeness, we also give the precise statement of the con-
vergence property C2. The property C2 requires that for any op1, op2, op3 one
has the following equality of operations (cf. [7, Definition 2.12]):

it (it op1 op2) (it op3 op2) = it (it op1 op3) (it op2 op3).

This property is rather restrictive and difficult to prove in practice. Also, it has
been suggested in [10] that it is not possible to implement a transformation func-
tion for text buffers satisfying C2. Furthermore, as we said before, the property
C2 is not necessary to achieve convergence for networks with dedicated servers
which is the main case of interest for us. For these reasons, we do not include
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Fig. 2. Diagrams expressing different variants of convergence property C1

the statement of C2 into our formal definition of a convergent OT algorithm
presented below.

There are two things that we change in the signature of the function it.
The first is that we make the definition of it asymmetric by adding a special
boolean flag which allows it to take into account possible difference in the
priority of clients. We give an example illustrating why such a prioritization
may be necessary.

Consider the following situation: Alice and Bob simultaneously insert two dif-
ferent characters into the same position of a shared text (say, op1 = ins “a” 0,
op2 = ins “b” 0). The problem with the signature it : cmd → cmd → cmd is
that there appears to be no way to implement it so that the resulting conflict
is resolved in a semantically satisfactory manner and the property C1 is also pre-
served.

A possible way to resolve this problem is to assign different priorities to
different clients and then take them into account in the implementation of the
function it. Thus, in the last example, we could agree to always insert the string
typed by Alice before Bob’s if both are inserted into the same position.

Thus, we are either forced to store the information about client priorities
inside cmd, despite the fact that it is not used in the implementation of an
interpretation function, or we should make the signature of it asymmetric. In
our algorithm we use the latter approach, while the former was used, for example,
in the algorithms of Ellis–Gibbs and Ressel (see [10, Sect. 2.3]). Notice that in
these algorithms the priority of operations is encoded with natural numbers since
they assume the presence of multiple clients with different priorities.

In contrast, in our integration algorithm we do not assign different priorities
to clients. Instead, all users are connected to the central server and each client-
server connection is considered as a network with two collaborating users of
which the central server has the higher priority. Notice that the server does
not modify the shared data by itself and is only used to propagate user-made
changes. With this approach a boolean flag is sufficient to distinguish between
the client and the server on each client-server connection.

The second modification is that we allow the result of a transformation of two
atomic operations to be a composite operation, i.e. a list of atomic operations.

This not only makes our definition more flexible and general, but also simpli-
fies the definition of the operation type cmd in practice. For example, it is very



Verified Operational Transformation for Trees 363

common that the result of a transformation of two nonempty primitive opera-
tions is empty (e.g., if two users simultaneously delete the same file). The fact
that we allow it to return composite operations eliminates the need to define a
dedicated empty operation constructor for cmd. Instead, it can simply return
an empty composite operation. We conclude with the following two definitions
which will be used throughout the rest of the article.

Definition 1. A transformation function is a function with the following
signature:

it : cmd → cmd → bool → list cmd.

Definition 2. We say that the transformation function it satisfies the property
C1 if for any boolean flag f , any pair of primitive operations op1, op2, applicable
to a state s, can be completed to a square Fig. 2b.

We can put together all our formal definitions stated above into the following
Coq class.

Class OTBase (X cmd: Type) := {

interp:cmd → X → option X;

it :cmd → cmd → bool → list cmd;
it_c1 :forall (op1 op2: cmd)(f : bool) m (s1 s2: X),

interp op1 s = Some s1 → interp op2 s = Some s2 →
let s21:= exec_all interp (Some s2) (it op1 op2 f ) in

let s12:= exec_all interp (Some s1) (it op2 op1 ~~f )in
s21 = s12 /\ s21 <> None}.

In the above code example exec all interp is the function extending the inter-
pretation function to composite operations in an obvious way.

In our model we also want to have a special type class formalizing the notion
of an OT algorithm with invertible user operations. We can define it as a descen-
dant class of OTBase by adding the following two members: the inversion function
inv and the formula expressing the property IP1 (see [12]). The latter asserts
that the effect of any operation op applicable to a state s can be undone by
means of inv op.

Class OTInv (X cmd : Type) (M : OTBase X cmd) := {

inv : cmd → cmd;
ip1 : forall op s s1, interp op s = Some s1 → interp (inv op) s1

= Some s}.

Other, more subtle inversion properties have also been described in the lit-
erature (e.g., properties IP2, IP3, see [12]). However, these properties are not
satisfied by the transformation algorithms described in Sect. 3. For this reason
we do not include them into the definition of OTInv.

Apart from the property C1, we do not impose any semantical constraints
on the behavior of the transformation function. In particular, C1 is satisfied
by the trivial transformation function, which always cancels operations of both
clients (e.g., it op1 op2 f = [:: inv op1]). Another trivial example of the function
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satisfying C1 is the function that always rolls back an operation of the client with
a lower priority:

it op1 op2 true = [::], it op1 op2 false = [:: inv op2; op1].

2.2 Transformation of Composite Operations (file Comp.v)2

In the previous subsection we defined the signature of a transformation function
in such a way that the result of transforming two atomic operations could be
a composite operation. While this approach has multiple advantages mentioned
above it also creates difficulties associated with the transformation of composite
operations.

Imagine that we want to write a function transforming a composite operation
op1 through another composite operation op2 provided that we already know
how atomic operations are transformed. Of course, there is only one way to
do this: first cut atomic pieces off op1 and op2, then transform these pieces
using the transformation function it for atomic operations and, finally, run the
transformation recursively on the remaining chunks. The following piece of code
implements this behavior (cf. Fig. 3a):

Fig. 3. Illustration of the transformation of a composite operation

Fixpoint mtrans (it: cmd → cmd → bool → list cmd) (op1 op2:
list cmd) (nSteps: nat): option ((list cmd) * (list cmd)):=

match nSteps with

| 0 ⇒ None

| S nSteps′ ⇒
match op1, op2 with

| nil , _ | _, nil ⇒ Some (op2, op1)
| x :: xs, y :: ys ⇒
match mtrans it xs (it y x false) nSteps′ with

| Some (y′′, xs′) ⇒
match mtrans it ((it x y true) ++ xs′) ys nSteps′ with

2 https://github.com/JetBrains/ot-coq/blob/master/Comp.v.

https://github.com/JetBrains/ot-coq/blob/master/Comp.v
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| Some (ys′, x′′) ⇒ Some (y′′ ++ ys′, x′′)
| _ ⇒ None

end

| _ ⇒ None

end

end

end.

Notice that we had to add a parameter nSteps to the definition of mtrans to
limit the recursion depth, otherwise, Coq would reject the definition as poten-
tially nonterminating. It is easy to see that such nontermination, indeed, may
occur. For example, consider the following trivial implementation of OT (with
the property C1 also trivially satisfied).
Definition bad_it := (fun (_ _ : unit) (_ : bool) ⇒ [::tt;

tt]).

Instance nonterm : OTBase unit unit :=

{interp := (fun _ _ ⇒ Some tt); it := bad_it }.

Although this function works well for elementary operations, we will get an
infinite loop if we try to transform composite operations. Indeed, mtrans loops
on the following simple example after the first two iterations and the result of
transformation can not be computed (cf. Fig. 3b).
Eval compute in mtrans bad_it [::tt] [::tt] 2.

= Some ([:: tt; tt], [:: tt; tt])

Eval compute in mtrans bad_it [::tt] [::tt; tt] 100.

= None

Although the above example looks somewhat artificial it is, in fact, similar to
the following situation often encountered in practice. Imagine that two concur-
rent user operations are semantically inconsistent with each other, i.e. there is no
sensible way to transform them so that the effect of both operations is preserved.
For example, this may happen if the operation model of OT becomes sufficiently
complex. In this case the only way to enforce property C1 is to rollback operation
of one of the users and execute the operation of the other. Such implementation
forces the transformation function to return a composite operation when invoked
on a pair of elementary ones.

In the remainder of this section we describe a condition sufficient for practical
purposes which guarantees that the result of transformation of two composite
operations can be computed in a finite number of steps. We will further refer to
this condition as the computability property.

The idea is to define two natural-valued functionals which should be inter-
preted as assignments of “size” and “cost” to an atomic operation:

sz0 : cmd → nat, si0 : cmd → nat.

The rationale here is the following: if the total “size” of a composite operation
increases in the process of transformation then the value of the “cost” functional
should at the same time decrease. Since the latter is a natural number, it is
guaranteed that the total “size” of the operation will stop increasing at some
point and that the transformation function will terminate.
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Formally speaking, we extend sz0 and si0 by additivity to composite oper-
ations, denoting them by sz and si. Every atomic operation is required to have
nonzero “size” and both functionals sz and si are required not to increase
on each transformation square from Definition 1 (i.e. the sum of values on the
“transformed” right and bottom arrows should not exceed the sum of values on
the “original” left and top arrows). We also assume that for each transformation
square at least one of the following two statements holds:

– The operations are transformed without rollbacks. In this situation “size”
functional sz does not increase for both operations, i.e. sz o′

i ≤ sz oi, i = 1, 2.
– If one of the operations is rolled back, the “size” of one of the transformed

arrows may increase. In this situation we require that “cost” functional strictly
decreases on such transformation square.

It is easy to see that under these assumptions the result of transforming two
composite operations o1 and o2 can be computed in less than (sz o1 + sz o2)2 +
si o1+si o2 steps (i.e. atomic transformations). We formulate this as a theorem
in Coq.

Context {X cmd: Type} (ot: OTBase X cmd) (comp: OTComp X cmd
ot).

Theorem ot_computable : forall (op1 op2: list cmd),
exists nSteps, mtrans it op1 op2 nSteps <> None.

3 Examples of Verified Transformation Functions

In the current section we present two concrete implementations of abstract
classes defined in Sect. 2. In each of the two cases we describe how exactly
the abstract classes and signatures are instantiated and also outline the idea
of the proof of corresponding convergence and computability properties. The
algorithms described below are contained in the following modules of our library:
TreeOt.v3, Fs.v4, RichText.v5.

3.1 The Case of Ordered Trees with Labels

In this subsection we describe an OT algorithm for concurrent editing of ordered
trees. The algorithm in question is a modification of the OT algorithm of Ressel
for text buffers (cf. [10, 2.3.2]).

We are working with ordered trees labeled by elements of some fixed type
T (i.e. a label of type T is assigned to every vertex of a tree). Of course, we
will need the two most basic operations of tree editing: insertion and removal
of a tree branch. Similarly to Sun’s algorithm for strings (see [10, 2.3.3], [13])
we allow sequential insertion and deletion of multiple tree branches in a single
3 https://github.com/JetBrains/ot-coq/blob/master/TreeOt.v.
4 https://github.com/JetBrains/ot-coq/blob/master/Fs.v.
5 https://github.com/JetBrains/ot-coq/blob/master/RichText.v.

https://github.com/JetBrains/ot-coq/blob/master/TreeOt.v
https://github.com/JetBrains/ot-coq/blob/master/Fs.v
https://github.com/JetBrains/ot-coq/blob/master/RichText.v
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operation. We also include one more operation EditLabel which modifies the
label of a single tree node via some user-defined set of commands TC and,
otherwise, leaves the tree structure unchanged.

Since we want our OT algorithm for trees to be C1-consistent we should
first assume the OT algorithm for labels to be C1-consistent (see Sect. 2). We
implement this in Coq by adding several parameter variables.

Context {T : eqType} (TC: Type) {otT : OTBase T TC}.

Now, we can give the following definition for the type of elementary opera-
tions:

Inductive tree_cmd : Type :=

| EditLabel of TC
| TreeInsert of nat & list (tree T )

| TreeRemove of nat & list (tree T )

| OpenRoot of nat & tree_cmd.

The first three constructors of this type correspond to the operations modifying
the root node of a tree, while a sequence of OpenRoot constructors can be used
to specify a position in the tree to which the first three operations are to be
applied.

The semantics of the interpretation function interp for this operation set is
as follows.

– Case EditLabel tc. The operation executes command tc on the label of the
tree’s root node using the function interp specified in the “parameter” class
otT .

– Case TreeInsert n l. The operation inserts the list l into n-th position of the
children list of the root node. None is returned if a range check error occurs
during this process.

– Case TreeRemove n l. The operation compares the list l with the sublist of
branches of the root node starting at n-th position. If these lists are the same
then the corresponding sublist of children is removed from the root node.
Otherwise, or if a range check error occurs, the function returns None.

– Case OpenRoot n c. The operation applies operation c to the n-th child of the
root. The operation returns None if there is no child with such index.

The behavior of the interpretation function is illustrated in Fig. 4.
It is easy to see that the above set of operations satisfies property IP1 pro-

vided so does the algorithm for labels. The inversion function can be defined by
swapping TreeInsert and TreeRemove constructors:

Context (ipT : OTInv _ _ otT ).

Fixpoint tree_inv (c : tree_cmd) :=

match c with

| EditLabel c′ ⇒ EditLabel (@inv _ _ _ ipT c′)
| TreeInsert n l ⇒ TreeRemove n l
| TreeRemove n l ⇒
if l is [::] then TreeInsert 0 [::] else TreeInsert n l

| OpenRoot n c′ ⇒ OpenRoot n (tree_inv c′)
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Fig. 4. An example illustrating the behavior of operations TreeInsert and TreeRemove

end.

Instance treeInv: (OTInv (tree T) tree_cmd treeOT) := {inv :=

tree_inv }.

Notice that the fact that we compare the list of nodes in the actual model with
the list of nodes specified in TreeRemove command before executing the latter
is essential for checking property IP1.

The next step is to define the transformation function for tree operations.
First, we define some auxiliary functions.

Definition tr_ins (len: nat) (n1 n2: nat): nat :=

if (n1 < n2) then n1 else n1 + len.

Definition tr_rem (len: nat) (n1 n2: nat): option nat :=

if (n1 < n2) then Some n1 else

(if (n1 >= n2 + len) then Some (n1 - len) else None).

Fixpoint cut {X} (l : list X) (sc rc : nat) :=

match sc, rc, l with

| S sc′, _, x :: xs ⇒ x :: (cut xs sc′ rc)
| 0, S rc′, x :: xs ⇒ cut xs sc rc′
| _, _, _ ⇒ l
end.

The function cut l n m removes from l the sublist of length m starting from n-th
position. Now we are all set to define the transformation function for trees. The
idea behind its definition is that we attempt to preserve the intuitive “effect”
of both operations op1 and op2. To accomplish this we have to perform a large
case-by-case analysis.

Fixpoint tree_it (op1 op2: tree_cmd) (f : bool): list tree_cmd :=

let triv := [:: op1] in

match op1, op2 with

| EditLabel c1, EditLabel c2 ⇒
map EditLabel (@it _ _ otT c1 c2 f )

| EditLabel _, _ | _, EditLabel _ ⇒ triv

| OpenRoot n1 tc1, OpenRoot n2 tc2 ⇒
if n1==n2 then map(OpenRoot n1) (tree_it tc1 tc2 f ) else triv
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| TreeRemove n1 l1, OpenRoot n2 tc2 ⇒
match tr_rem (size l1) n2 n1 with

| None ⇒ let i := n2 - n1 in

match replace i (tree_interp tc2 (nth i l1)) l1 with

| Some l′1 ⇒ [:: TreeRemove n1 l′1]
| _ ⇒ triv
end

| _ ⇒ triv

end

| _, OpenRoot _ _ ⇒ triv
| OpenRoot n1 tc1, TreeInsert n2 l2 ⇒
[:: OpenRoot (tr_ins (size l2) n1 n2) tc1]

| OpenRoot n1 tc1, TreeRemove n2 l2 ⇒
match tr_rem (size l2) n1 n2 with

| Some n′
1 ⇒ [:: OpenRoot n′

1 tc1]
| None ⇒ nil

end

| TreeInsert n1 l1, TreeInsert n2 l2 ⇒
if (n1==n2) then

(if f then triv else [::TreeInsert (n1+size l2) l1])
else [:: TreeInsert (tr_ins (size l2) n1 n2) l1]

| TreeInsert n1 l1, TreeRemove n2 l2 ⇒
let len := size l2 in

if n1≤n2 then triv else

if n1≥n2+len then[::TreeInsert (n1-len) l1] else nil

| TreeRemove n1 l1, TreeRemove n2 l2 ⇒
let (len1, len2) := (size l1, size l2) in

(if n2 + len2≤n1 then [::TreeRemove (n1-len2) l1] else

(if n2 ≤ n1 then

(if n2 + len2 < n1 + len1

then [:: TreeRemove n2 (cut l1 0 (len2+n2-n1))]

else nil)

else [:: TreeRemove n1 (cut l1 (n2-n1) len2)]))

| TreeRemove n1 l1, TreeInsert n2 l2 ⇒
let (len1, len2) := (size l1, size l2) in

if n1 + len1 ≤ n2 then triv else

(if n2 ≤ n1 then [:: TreeRemove (n1+len2) l1] else

match insert (n2 - n1) l2 l1 with

| Some l′1 ⇒ [:: TreeRemove n1 l′1]
| None ⇒ triv
end)

end.

Instance treeOT: (OTBase (tree T) tree_cmd) :=

{interp := tree_interp ; it := tree_it }.

The above transformation function always cancels TreeInsert whenever it con-
flicts with a concurrent TreeRemove. In order to transform two concurrent
EditLabel operations the transformation function for the label type is invoked.
Notice that the priority flag f is used in this piece of code to resolve the con-
flicting situation when two lists of trees are concurrently inserted into the same
position.
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The proof of the fact that tree it satisfies property C1 is rather bulky
and technical. After applying induction over op1 it essentially comes down to
proving a number of commutation lemmas about list operations. The proof of
C1 itself takes 250 lines of Coq code, in addition, further 700 lines are occupied
by commutation lemmata for list operations.

Notice that the problem of transforming composite operations mentioned in
Sect. 2.2 does not arise for tree it provided it does not arise for the “parameter”
algorithm otT . The reason for this is that tree it can only return a proper
composite operation as a result of transformation of two EditLabel operations
(which is clear from the examination of the definition).

3.2 The Case of Unordered Trees

Now we describe a transformation algorithm for unordered trees i.e., trees for
which the order among siblings is unimportant. Informally speaking, the dif-
ference between the datatypes of ordered and unordered trees is the same as
between the datatypes of ordered lists and sets. The directory structure of a
filesystem may serve as an example of an unordered tree.

From the implementation viewpoint it will be convenient for us to consider
unordered trees as usual ordered trees whose branches are sorted with respect to
some total ordering defined on the type of labels. In particular, such implemen-
tation simplifies the test for equality and also allows us to implement unordered
trees in Coq as a subset type, i.e. as an ordered pair consisting of a tree and the
evidence (proof object) of its sortedness (see, e.g., [1, Sect. 6]).

The main difference between the operation set for unordered trees and the
operation set from the previous subsection is that now we refer to nodes of
an unordered tree using their labels rather than indices. We support 3 different
atomic tree operations: modification of the node’s label (file renaming), insertion
and deletion of a subtree.

Inductive raw_fs_cmd T :=

| Edit of T & T

| Create of tree T
| Remove of tree T
| Open of T & raw_fs_cmd.

More formally, semantics of these operations can be described as follows.

– Case Edit l1 l2. The operation seeks a child with label l1 among the children
of the root node. If such a child is found, its label is changed to l2. None is
returned if there is no such child, or if there is another child with label l2
among the children of the root node.

– Case Create t. The operation adds t to the set of children of the root node.
None is returned if there is already another node with the same label.

– Case Remove t. The operation looks for a child of the root node which coincides
with t and then removes it. None is returned if such a child is not found.

– Case Open l c. The operation looks for a child with label l and applies operation
c to it. As before, None is returned if there is no such child.
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The transformation function presented below is even simpler as compared to
the function tree it from Sect. 3.1 because in the context of unordered trees
there is no need to compare indices of operations and only node labels are to be
taken into account (value t denotes the label of the root node of t).

Fixpoint fs_it (op1 op2 : raw_fs_cmd) (f : bool) : seq fs_cmd :=

match op1, op2 with

| Edit l1 l′1, Edit l2 l′2 ⇒
match l1 == l2, l′1 == l′2 with

|false , false ⇒ [:: op1]
|true , true ⇒ [::]

|true , false ⇒ (if f then [::] else [:: Edit l′2 l′1])
|false , true ⇒ [:: Edit l′2 l2]
end

| Edit l1 l′1, Create t2 ⇒
if l′1 == value t2 then [:: Remove t2; op1] else [:: op1]

| Edit l1 _, Remove t2 ⇒
if l1 == value t2 then [::] else [:: op1]

| Create t1, Edit l2 l′2 ⇒
if value t1 == l′2 then [::] else [:: op1]

| Create t1, Create t2 ⇒
if value t1 == value t2 then merge_trees t1 t2 else [:: op1]

| Remove t1, Edit l2 l′2 ⇒
if l2 == value t1 then [:: Remove (Node l′2 (children t1)) ] else [::

op1]
| Remove t1, Remove t2 ⇒
if value t1 == value t2 then [::] else [:: op1]

| Remove t1, Open l2 yc ⇒
if value t1 == l2 then

(if fs_interp yc t1 is Some t then [:: Remove t]

else [::])

else [:: op1]
| Open l1 c1, Edit l2 l′2 ⇒
if l1 == l2 then [:: Open l′2 c1 ] else [:: op1]

| Open l1 _, Remove t2 ⇒
if value t2 == l1 then [::] else [:: op1]

| Open l1 c1, Open l2 c2 ⇒
if l1 == l2 then map (Open l1) (fs_it c1 c2 f )
else [:: op1]

| _, _ ⇒ [:: op1]
end.

In the above piece of code the priority flag f is used to resolve the conflicting
situation when two users concurrently attempt to replace a node’s label with
two different labels. There is a notable conflicting situation which did not occur
in the previous section, namely when two different trees with identical labels
are concurrently inserted into the same node. We handle such a conflict by
recursively merging the contents of these trees (merge trees t1 t2 generates a
sequence of create operations for all descendants of t1 that are not descendants
of t2).

Notice that the above transformation function can return a composite opera-
tion as a result of transforming two atomic Create operations. In order to verify
that the result of transformation can always be computed in a finite number
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of steps we use the sufficient condition for computability i.e. we define certains
functionals fs sz0, fs si0 : raw fs cmd → nat and check that they satisfy the
inequalities of Sect. 2.2.

4 Related Work

In [3] A.H. Davis et al. have proposed an OT algorithm for editing structured
data (e.g., trees). However, their protocol has not been formally verified and,
moreover, assumed the presence of a garbage collector.

In [7,10] SPIKE theorem prover and UPPAAL TIGA model checker were
used to find counterexamples violating the correctness of several published OT
algorithms for strings. As a result, it was shown that all tested algorithms violate
property C2 while some of them violate even C1. In [9] Coq was applied to the
same problem of finding counterexamples to property C2.

However, to the best of our knowledge, our work is the first to obtain a formal
proof of property C1 by means of a proof assistant.

5 Conclusions and Future Work

In our work we attempted to formalize OT algorithms for two different datatypes
commonly met in practice and obtained the following results:

– a library containing commutation lemmas for lists and trees has been devel-
oped (file ListTools.v)6;

– the correctness of several inclusive transformation functions has been verified
by means of Coq (Sects. 3.1, 3.2).

Our algorithms may be easily extracted from the library (either automatically
or manually) and be used in software applications.

Along the way, we propose a generalized signature of the transformation
function it which allows the transformation result to be a composite operation.
The latter allows the implementation of it to be more flexible and, moreover,
makes possible to define semantically correct transformation functions without
polluting the set of commands with domain-irrelevant entities such as nop oper-
ation. We also present a sufficient condition ensuring computability of trans-
formed operations in this setting, which is an essential requirement for any prac-
tical implementation. We believe that the ideas behind our approach are general
enough to be successfully applied to other data models as well.

There is a number of different directions one could take for future research
within this topic. For example, one could try to figure out whether property C2

holds for the algorithm formulated in Sect. 3.2. One could also attempt to for-
malize OT algorithms for different datatypes and try different sets of operations
for the datatypes used in this article. For example, our library already contains
an attempt to extend the operation set of Sect. 3.1 with two more operations
6 https://github.com/JetBrains/ot-coq/blob/master/ListTools.v

https://github.com/JetBrains/ot-coq/blob/master/ListTools.v
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TreeUnite and TreeFlatten which may be useful for the implementation of
rich-text editors (see RichText.v) https://github.com/JetBrains/ot-coq/blob/
master/RichText.v.
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Abstract. We axiomatize hereditarily finite sets in constructive type
theory and show that all models of the axiomatization are isomorphic.
The axiomatization takes the empty set and adjunction as primitives and
comes with a strong induction principle. Based on the axiomatization, we
construct the set operations of ZF and develop the basic theory of finite
ordinals and cardinality. We construct a model of the axiomatization as a
quotient of an inductive type of binary trees. The development is carried
out in Coq.

1 Introduction

An HF set (hereditarily finite set) is a finite and well-founded set whose elements
are HF sets. The class of HF sets may be defined inductively:

– The empty set is an HF set.
– If x and y are HF sets, then {x} ∪ y is an HF set.

We call the operation x.y := {x} ∪ y adjunction. Set membership can be
expressed with adjunction and equality: x ∈ y ↔ x.y = y. Ackermann [1]
discovered that the natural numbers are in one-to-one correspondence with the
HF sets, and that the class of HF sets satisfies all axioms of ZF set theory but
infinity.

We present an axiomatization of HF sets in a constructive type theory with-
out inductive types and obtain the following results:

– All models of the axiomatization are isomorphic.
– The usual set operations, including separation, replacement, union, power,

and transitive closure, can be constructed.
– A cardinality operation mapping sets to equipotent ordinals can be con-

structed.
– A model of the axiomatization can be constructed as a quotient of an inductive

type of binary trees.

Our axiomatization of HF sets assumes a type X of sets and constants for
the empty set and adjunction. There are four basic axioms

– x.(x.y) = x.y

c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 374–390, 2016.
DOI: 10.1007/978-3-319-43144-4 23
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– x.(y.z) = y.(x.z)
– x.y �= ∅
– x.(y.z) = y.z → x = y ∨ x.z = z

and a strong induction principle:

– ∀p : X →Type. p∅ → (∀xy. px → py → p(x.y)) → ∀x. px

We speak of a strong induction principle since it applies to functions into Type
rather than just functions into Prop (i.e., predicates). The strong induction prin-
ciple provides for the recursive definition of functions and ensures that all sets
are finite and well-founded. In contrast to recursors for inductive types, the
induction principle does not come with equations.

Related work. Several axiomatizations of hereditarily finite sets appear in the
literature: Takahashi 1977 [8], Givant and Tarski 1977 [2], Previale 1994 [6],
Świerczkowski 2003 [7], and Kirby 2009 [3]. All of them are formulated as
first-order theories, and all of them employ the empty set, adjunction, and an
adjunction-based induction principle as ingredients. Except for Kirby’s axioma-
tization, which uses no additional constant, the existing axiomatizations are for-
mulated with an additional constant for set membership. Except for Previale’s
axiomatization, which is studied in an intuitionistic setting, the existing axiom-
atizations are studied in a classical setting. Previale’s axiomatization employs
both membership and its transitive closure as additional constants. Previale
derives the decidability of equality and membership. Our axiomatization extends
Kirby’s axiomatization by strengthening the induction principle to types.

A type of HF sets is available in Isabelle/HOL. It is realized with
Ackermann’s [1] encoding. Paulson [4,5] makes essential use of the type of HF
sets in his formalizations of finite automata and Godel’s incompleteness theo-
rems in Isabelle/HOL. Interestingly, Isabelle/HOL can also define a type of HF
sets by recursion through a type constructor for finite sets over a given base type.

Contribution of the paper. The paper explores for the first time an axiomatiza-
tion of HF sets in constructive type theory. We show that the axiomatization is
categorical, a result that has not been shown before for any of the existing axiom-
atizations. Our axiomatization extends Kirby’s axiomatization by strengthening
the induction principle from predicates to general functions.

We construct a model of the axiomatization as a quotient of an inductive
type of binary trees. This natural model construction (from the perspective of
constructive type theory) does not appear in the literature. It complements a
conventional model construction based on numbers and Ackermann’s encoding.
To obtain the quotient with minimal assumptions, we base the construction on
a normalizing sorting function for the lexical tree ordering.

Organization of the paper. We start with a section recalling the underlying
type theory and basic notions like decidability. We also recall how quotients
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can be obtained as subtypes based on normalizers. We then introduce HF struc-
tures and establish basic results including extensionality, decidability, and strong
epsilon induction. In Sect. 4 we show that all HF structures are isomorphic.
We then construct the basic set operations using the strong induction principle
and membership-based specifications. In Sects. 6 and 7 we consider ordinals and
define equipotence of sets. Based on an inductively defined cardinality relation,
we show that every equipotence class contains exactly one ordinal, and that
equipotence is a decidable equivalence relation. We use the strong induction
principle to construct a cardinality operator. In Sect. 8 we extend the underly-
ing type theory with an inductive type of binary trees and show that every HF
structure is a quotient of the tree type. In Sect. 9 we define tree equivalence and
construct a normalizing sorting function for the lexical tree order. Based on the
sorting function, we obtain an HF structure, thus showing consistency of the
axiomatization of HF sets.

Accompanying Coq development. The development of the paper is formalized
in Coq. The Coq development is available at http://www.ps.uni-saarland.de/
extras/hfs and contains additional results that for space reasons could not be
included in the paper.

2 Preliminaries

We assume a constructive type theory with dependent function types, dependent
pair types, sum types, and an impredicative universe Prop of propositions. We
do not use inductive types except for the model construction in Sect. 9, which
requires an inductive type of binary trees and an inductive proposition 
 with
exactly one proof.

We will frequently use inductively defined predicates, which are always
obtained as impredicatively defined intersection predicates. The logical oper-
ations and the equality predicate are also defined impredicatively.

We write P ∨̄ Q for strong disjunctions (sums P + Q in Coq) and ∃̄x.px for
strong existentials (sigT p in Coq). A proposition P is decidable if P ∨̄ ¬P .

A decidable predicate on a type X is a pair consisting of a predicate p :
X → Prop and a function ∀x. px ∨̄ ¬px. Decidable binary predicates are defined
analogously.

A discrete type is a pair of a type X and a function ∀xy. x = y ∨̄ x �= y.
In Sect. 9 we will construct a quotient of an inductive tree type. The quotient

will be obtained as a subtype of the tree type consisting of the fixed points of a
normalizer for the underlying equivalence relation. The quotient construction will
be an instance of the abstract subtype construction described in the following.

We assume a proposition 
 such that ∀AB : 
. A = B.
A predicate p : X → Prop is pure if ∀x∀AB : px. A = B.

http://www.ps.uni-saarland.de/extras/hfs
http://www.ps.uni-saarland.de/extras/hfs


Hereditarily Finite Sets in Constructive Type Theory 377

Fact 1. For every decidable predicate there is an equivalent pure predicate.

Proof. Let p be a decidable predicate. Then λx. if px then 
 else ⊥ is an
equivalent pure predicate (⊥ := ∀P : Prop. P is falsity).

Fact 2 (Subtype). Let f be an idempotent function on a discrete type A. Then
there are a discrete type X and functions S : A → X and I : X → A such that
S(Ix) = x and I(Sa) = fa for all x and all a.

Proof. The assumptions suffice to construct a pure predicate p such that pa ↔
fa = a and a function F : ∀a. p(fa). We define X := ∃̄a.pa, Sa := (fa, Fa),
and I(a, φ) := a.

We may see the type X established by Fact 2 in several ways:

1. X is the subtype of A consisting of all fixed points of f .
2. X is the subtype of A consisting of all points in the range of f .
3. X is the quotient of A under the equivalence relation λab. fa= fb induced

by f .

A normalizer for a relation ∼ on a type X is an idempotent function f :
X → X such that x ∼ y ↔ fx = fy for all x and y. Obviously, a relation is
an equivalence relation if it has a normalizer. Moreover, a relation on a discrete
type is decidable if it has a normalizer.

3 HF Structures

We axiomatize HF sets with a type of sets, a constant ∅ for the empty set, and a
binary operation x.y on sets we call adjunction. Informally, x.y is the set {x}∪y.

Formally, an HF structure consists of the following:

– A type X. The elements of X are called sets.
– A set ∅ called empty set.
– A function X → X → X called adjunction. We write x.y for the adjunction

of two sets x and y.
– A function ∀p : X →Type. p∅ → (∀xy. px → py → p(x.y)) → ∀x. px called
strong induction principle.

– The following laws:
• x.(x.y) = x.y cancellation law
• x.(y.z) = y.(x.z) swap law
• x.y �= ∅ discrimination law
• x.(y.z) = y.z → x = y ∨ x.z = z membership law

We write x.y.z for x.(y.z).
Given an HF structure, we define membership and inclusion:

x ∈ y := (x.y = y)
x ⊆ y := ∀z. z ∈ x → z ∈ y

Using the notation for membership, we may write the membership law more
suggestively as x ∈ y.z → x = y ∨ x ∈ z.
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Example 3. We prove (∅.∅).∅ �= ∅.∅. Suppose A : (∅.∅).∅ = ∅.∅. Cancellation
gives us (∅.∅).(∅.∅).∅ = ∅.∅. Thus ∅.∅ ∈ ∅.∅ using A. Thus either ∅.∅ = ∅ or
∅.∅ ∈ ∅ with the membership law. In either case we have a contradiction by the
discrimination law.

We assume an HF structure X and use the letters x, y, z, a, and b to denote
sets in X.

Fact 4 (Decomposition). x = ∅ ∨̄ ∃̄a∃̄y. x = a.y.

Proof. Immediate consequence of the strong induction principle.

Fact 5.

1. z /∈ ∅.
2. z ∈ x.y ↔ z = x ∨ z ∈ y.
3. x.y ⊆ z ↔ x ∈ z ∧ y ⊆ z.
4. x ⊆ ∅ ↔ x = ∅.
5. a /∈ x → x ⊆ a.y → x ⊆ y.

Proof. Straightforward.

The sets of an HF structure are extensional in that two sets are equal if they
have the same elements. Proving this basic fact constructively is not straightfor-
ward. We employ a nested HF induction and interleave the extensionality proof
with proofs for the decidability of membership, inclusion, and equality of HF
sets. The proof is organized in three lemmas.

Lemma 6.

1. ∅ ⊆ x and x ⊆ ∅ and x ∈ ∅ and x = ∅ are decidable.
2. If x = a and x ∈ y are decidable, x ∈ a.y is decidable.
3. If a ∈ y and x ⊆ y are decidable, a.x ⊆ y is decidable.
4. ∅ ∈ x is decidable.

Proof. Claim (1) follows with Fact 4. Claims (2) and (3) follow with Claims (2)
and (3) of Fact 5. Claim (4) follows by induction on x using Claims (2) and (1).

Lemma 7 (Partition). Let a ∈ x. Then there strongly exists a set u such that
x = a.u and a /∈ u, provided the propositions a ∈ z and a = z are decidable for
all sets z.

Proof. By induction on x. The case x = ∅ is contradictory. Let x = b.x. By
assumption, a ∈ x is decidable. If a /∈ x, the claim follows with u = x and
Fact 5 (2). Otherwise, let a ∈ x. By the inductive hypothesis we have a set u
such that x = a.u and a /∈ u. By assumption, a = b is decidable. If a = b, the
claim follows with u = x. If a �= b, the claim follows with u = b.x.
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Lemma 8. For all sets x and y:

1. x ⊆ y and y ⊆ x are decidable.
2. x ∈ y and y ∈ x are decidable.
3. x ⊆ y → y ⊆ x → x = y.
4. x = y is decidable.

Proof. We prove the claims simultaneously by nested induction on x and y. If
x = ∅ or y = ∅, the claims follow with Lemma 6. Otherwise, we have x = a.x
and y = b.y and inductive hypotheses for a, x, b, and y.

1. a.x ⊆ b.y and b.y ⊆ a.x are decidable. Follows by Lemma 6 (3) and the
inductive hypotheses for a, x, b, and y.

2. a.x ∈ b.y and b.y ∈ a.x are decidable. Follows by Lemma 6 (2) and the
inductive hypotheses for b, y, a, and x.

3. a.x ⊆ b.y → b.y ⊆ a.x → a.x = b.y. Let a.x ⊆ b.y and b.y ⊆ a.x. We show
a.x = b.y. By the inductive hypothesis for x we know that a ∈ x is decidable.
Case analysis.
(a) a ∈ x. Then a.x = x and the claim follows by Claim (3) of the inductive

hypothesis for x.
(b) a /∈ x. We have a ∈ b.y. By Lemma 7 we have a set u such that b.y = a.u

and a /∈ u. Thus it suffices to show x = u, which follows by Claim (3) of
the inductive hypothesis for x provided we have x ⊆ u and u ⊆ x. The
two inclusions hold since a.x ⊆ a.u, a /∈ x, a.u ⊆ a.x, and a /∈ u.

4. a.x = b.y is decidable. Case analysis based on (1).
(a) a.x ⊆ b.y and b.y ⊆ a.x. Then a.x = b.y by (3).
(b) a.x �⊆ b.y or b.y �⊆ a.x. Then a.x �= b.y. ��

Theorem 9 (Extensionality). (∀z. z ∈ x ↔ z ∈ y) → x = y.

Proof. Follows with Lemma 8 (3).

Corollary 10. Set inclusion is a partial ordering on sets.

Theorem 11 (Decidability). Equality, membership, and inclusion of HF sets
are decidable.

Proof. Follows with Lemma 8.

Fact 12 (Decidability). The propositions ∃z. z ∈ x ∧ pz and ∀z. z ∈ x → pz
are decidable if p is a decidable predicate.

Proof. Follows by induction on x.

Fact 13 (Partition). a ∈ x → ∃̄u. x = a.u ∧ a /∈ u.

Proof. Follows with Lemmas 7 and 8.

Fact 14 (Strong Epsilon Induction).
∀p : X →Type. (∀x. (∀z ∈ x. pz) → px) → ∀x. px.
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Proof. Assume p : X →Type and A : ∀x. (∀z ∈ x. pz) → px. By A it suffices to
prove ∀z ∈ x. pz. We prove this claim by induction on x. The case for x = ∅
is obvious. Let x = a.x′ and z ∈ a.x′. It suffices to show pz. If z = a, then pa
follows by A and the inductive hypothesis for a. Otherwise, z ∈ x′ and the claim
follows by the inductive hypothesis for x′.

Fact 15. x /∈ x.

Proof. By ε-induction we have z /∈ z for all z ∈ x. The claim follows.

Corollary 16. There is no set that contains all sets.

Fact 17. x ∈ y → y /∈ x.

Proof. By ε-induction.

The operation λx.x.x of self-adjunction is known as successor operation. The
successor of x contains the elements of x plus one additional element, which is x
itself. That x is in fact a new element is asserted by Fact 15.

The successor operation is injective.

Fact 18 (Successor Injectivity). x.x = y.y → x = y.

Proof. Let x.x = y.y. Then x ∈ y.y and y ∈ x.x. By the membership law, we
have either x = y or y = x or x ∈ y ∈ x. The third case is impossible by Fact 17.

4 Categoricity

We show that all HF structures are isomorphic. In fact, given two HF struc-
tures X and Y , there is exactly one homomorphism from X to Y . We obtain the
homomorphism with the recursion principle from an inductively defined rela-
tional version of the homomorphism.

We start with the definition of an inductive predicate1

R : ∀X Y : HF. X → Y → Prop

homomorphically relating the sets of two HF structures:

R∅∅
Rab Rxy

R(a.x)(b.y)

Given HF structures X and Y , we will show that RXY is a bijection.

Fact 19 (Symmetry). RXY xy → RY X yx.

Proof. By induction on Rxy.
1 An impredicative definition of R looks as follows: λ(XY : HF)(x : X)(y : Y ).

∀S : X → Y → Prop. S∅∅ → (∀axby. Sab → Sxy → S(a.x)(b.y)) → Sxy.
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Fact 20 (Strong Totality). ∀x∃̄y. Rxy.

Proof. By induction on x.

Proving that R is functional requires some effort. The key ingredients are
extensionality and a simulation lemma for membership.

Lemma 21 (Simulation). Rxy → a ∈ x → ∃b. b ∈ y ∧ Rab.

Proof By induction on Rxy. The case for the first rule is trivial. For the second
rule, we have Ra′b′, Rx′y′, and a ∈ a′ .x′ and need a set b ∈ b′ .y′ such that Rab.
If a = a′, b := b′ does the job. Otherwise, we have a ∈ x′. By the inductive
hypothesis we obtain b ∈ y′ with Rab. The claim follows since y′ ⊆ b′ .y′.

Fact 22 (Functionality). Rxy → Rxy′ → y = y′.

Proof. By ε-induction on x. We show y = y′ using extensionality (Theorem 9).
Let b ∈ y. We show b ∈ y′. By the facts for symmetry and simulation we obtain
an a ∈ x such that Rab. By the simulation lemma we obtain b′ ∈ y′ such that
Rab′. By the inductive hypothesis we have b = b′. Thus b ∈ y′. We now have
y ⊆ y′. The other direction y′ ⊆ y follows analogously.

A homomorphism from an HF structure X to an HF structure Y is a function
f : X → Y such that f∅ = ∅, and f(a.x) = fa.fx for all a and x. Two HF
structures X and Y are isomorphic if there are homomorphisms f : X → Y and
g : Y → X such that g(fx) = x and f(gy) = y for all x and y.

Fact 23. Let f be a homomorphism from an HF structure X to an HF struc-
ture Y . Then Rx(fx) for all x.

Proof. By induction on x.

Fact 24. All homomorphisms between two HF structures are equivalent.

Proof. Follows with Facts 23 and 22.

Theorem 25 (Categoricity). All HF structures are isomorphic.

Proof. Follows with Facts 19, 20, and 22.

5 Set Operations

We now construct basic set operations known from ZF for HF structures using
the strong induction principle and preexisting specifications of the desired opera-
tions. The specifications are needed since the induction principle does not come
with equations (in contrast to a full recursor). Suitable specifications for the
basic set operations are easily obtained using to the extensionality property of
sets.
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Fact 26 (Binary Union). There is a function x∪y from sets to sets as follows:

1. z ∈ x ∪ y ↔ z ∈ x ∨ z ∈ y.
2. ∅ ∪ y = y.
3. (a.x) ∪ y = a.(x ∪ y).

Proof. We fix y and define Uxu := ∀z. z ∈ u ↔ z ∈ x ∨ z ∈ y. We construct
a function F : ∀x∃̄u. Uxu using the strong induction principle. The base case
follows with U∅y. For the adjunction case it suffices to prove ∀axu. Uxu →
U(a.x)(a.u), which is straightforward. We define x ∪ y := π1(Fx). We have
Ux(π1(Fx)) and thus Claim 1. Claims 2 and 3 follow with extensionality from
Claim 1.

Note that the two cases of the inductive construction of F choose their wit-
nesses according to Claims 2 and 3. This is by design. Claims 2 and 3 explicate
the ideas behind the construction of F .

The following constructions all follow the scheme used for binary union.

Fact 27 (Big Union). There is a function
⋃

x from sets to sets as follows:

1. z ∈ ⋃
x ↔ ∃y ∈ x. z ∈ y.

2.
⋃∅ = ∅.

3.
⋃

(a.x) = a ∪ ⋃
x.

A set x is transitive if every element of x is a subset of x. For transitive sets,
big union undoes the successor operation.

Fact 28 (Predecessor). Let x be transitive. Then
⋃

(x.x) = x.

Fact 29 (Separation). For every decidable predicate p on sets there is a func-
tion x|p from sets to sets as follows:

1. z ∈ x|p ↔ z ∈ x ∧ pz.
2. ∅|p = ∅.
3. (a.x)|p = if pa then a.(x|p) else x|p.

Constructions and correctness proofs for the remaining set operations of ZF
can be found in the accompanying Coq development, which also covers a tran-
sitive closure operation.

6 Ordinals

We define the class of ordinals as an inductive predicate on sets:

O ∅
Ox

O(x.x)

The ordinals represent the natural numbers as HF sets, where a number n is
represented as the unique ordinal having n elements. The ordinal for n can be
obtained by applying the successor function n-times to the empty set.

We use the letters α and β for sets that should be thought of as ordinals.
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Fact 30 (Transitivity). Ordinals are transitive sets whose elements are ordi-
nals.

Proof. By induction on Oα.

Fact 31 (Empty Ordinal). Let α be an ordinal. Then α = ∅ ∨̄ ∅ ∈ α.

Proof. Show α �= ∅ → ∅ ∈ α by induction on Oα.

Fact 32 (Predecessor Ordinal). Let α be an ordinal. Then
⋃

α is an ordinal.
Moreover, α = (

⋃
α).(

⋃
α) if α �= ∅.

Proof. Both claims follow by induction on Oα using Facts 28 and 30.

Fact 33 (Inversion). Let α be an ordinal. Then α = ∅ ∨̄ ∃̄γ. Oγ ∧α = γ.γ.

Proof. Follows with Fact 32.

Fact 34 (Strong Ordinal Induction).
∀p : X →Type. p∅ → (∀α. Oα → pα → p(α.α)) → ∀α. Oα → pα.

Proof. Follows by strong epsilon induction (Fact 14) using Fact 33.

7 Cardinality

Given an HF structure, we would expect that we can construct a model of the
natural numbers by taking the subtype of the ordinals as type for the numbers.
In constructive type theory, however, the subtype of ordinals does not come for
free. We need an idempotent function on sets whose fixed points are the ordinals.
A natural choice for this function is a cardinality function mapping every set to
the unique equipotent ordinal. Two sets are equipotent if they have same number
of elements.

We define equipotence of sets with an inductive predicate x ∼ y:

∅ ∼ ∅
a /∈ x b /∈ y x ∼ y

a.x ∼ b.y

Our definition of equipotence is tuned for finite sets. From the definition of
equipotence it is not obvious that equipotence is an equivalence relation.

We will construct a function Γ from sets to sets such that Γx is the unique
ordinal equipotent to x. Similar to what we did in the section on categoricity,
we obtain Γ with the strong induction principle from an inductively defined
predicate Cxα :

C∅∅
a /∈ x Cxα

C(a.x)(α.α)

We will show that the relation C is strongly total and functional. Γ will be
defined as the function accompanying C.
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Fact 35 (Soundness). Let Cxy. Then x ∼ y and y is an ordinal.

Proof. By induction on Cxy using Fact 15.

Fact 36 (Strong Totality). ∀x∃̄α. Cxα.

Proof. By induction on x.

Fact 37 (Idempotence). Let α be an ordinal. Then Cαα.

Proof. By induction on Oα using Fact 15.

Sets related to the same ordinal by C are equipotent.

Fact 38 (Injectivity). Cxα → Cyα → x ∼ y.

Proof. By induction on Cxα. The case for the first rule is straightforward. For
the second rule we have x = a.x′, a /∈ x′, Cx′α′, and α = α′ .α′. By inversion
of Cyα we obtain b, y′, and β such that y = b.y′, b /∈ y′, α = β.β, and Cy′β.
By Fact 18 we have α′ = β. Thus x′ ∼ y′ by the inductive hypothesis for Cx′α′.
Hence x ∼ y.

Proving that C is functional takes effort. We need an inversion lemma whose
proof requires a further lemma involving an instance of separation (Fact 29). We
use the notation x ÷ y := x|(λz.z �= y) (read x without y).

Lemma 39. Cxα → a ∈ x → ∃β. α = β.β ∧ C(x ÷ a)β.

Proof. By induction on Cxα. The case for the first rule is straightforward. For
the second rule we have x = a′ .x′, a′ /∈ x′, Cx′α′, and either a = a′ or a ∈ x′. It
suffices to show that C((a′ .x′) ÷ a)α′.

Let a = a′. Then the claim follows with (a′ .x′) ÷ a = x′.
Let a �= a′ and a ∈ x′. The inductive hypothesis for Cx′α′ gives us some β

such that α′ = β.β and C(x′÷a)β. The claim follows since (a′ .x′)÷a = a′ .(x′÷a)
and a′ /∈ (x′ ÷ a). ��
Fact 40 (Inversion). a /∈ x → C(a.x)α → ∃β. α = β.β ∧ Cxβ.

Proof. Follows with Lemma 39.

Fact 41 (Functionality). Cxα → Cxβ → α = β.

Proof. By induction on Cxα. The case for the first rule is straightforward, and
the case for the second rule follows with Fact 40 and the inductive hypothesis.

Fact 42 (Invariance). x ∼ y → Cxα → Cyα.

Proof. By induction on x ∼ y using Fact 40.

Fact 43 (Canonicity). Equipotent ordinals are equal.
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Proof. Let α and β be equipotent ordinals. Then Cαα and Cββ by Fact 37.
Thus Cβα by Fact 42, and α = β by Fact 41.

We define Γ as Γx := π1(Tx) where T is the function established by Fact 36.

Fact 44. Γ is an idempotent function such that Cx(Γx), x ∼ Γx, and Γx is
an ordinal for every set x.

Proof. Cx(Γx) holds by definition for all x. Thus x ∼ Γx and Γx is an ordinal
by Fact 35.

To show the idempotence of Γ , we fix some x. We have C(Γx)(Γ (Γx)). Since
Γx is an ordinal, we also have C(Γx)(Γx) by Fact 37. Hence Γ (Γx) = Γx by
Fact 41.

Fact 45 (Coincidence). x ∼ y ↔ Γx = Γy.

Proof. Let x ∼ y. We have Cx(Γx) and Cy(Γy) by Fact 44. Hence Cy(Γx) by
Fact 42. Thus Γx = Γy by Fact 41.

Let Γx = Γy. Then x ∼ y by Facts 38 and 44. ��
Corollary 46 (Equipotence). Equipotence is a decidable equivalence relation.

Fact 47 (Fixed Point). A set x is an ordinal if and only if Γx = x.

Proof. Let α be an ordinal. Then Cαα by Fact 37 and Cα(Γα) by Fact 44. Thus
Γα = α by Fact 41. The other direction follows by Fact 44.

Corollary 48. It is decidable whether a set is an ordinal.

8 Binary Trees

We now strengthen the type theory by adding an inductive type T of binary
trees:

T := 0 | T.T

We will construct an HF structure in the strengthened type theory.
The letters s, t, and u will range over binary trees. We write s.t.u for s.(t.u).

Fact 49. T is a discrete type.

Proof. We obtain a decision function ∀st. s = t ∨̄ s �= t by induction on s using
the strong induction principle for trees.

We assume an HF structure X and define a function S : T → X mapping
trees to sets:

S0 := ∅
S(s.t) := Ss.St

We may see trees as expressions describing sets and S as a function evaluating
expressions to sets.
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Fact 50. S has a right inverse. That is, there is a function I : X → T such
that S(Ix) = x for every set x. Consequently, we have x = y ↔ Ix = Iy for all
sets x and y.

Proof. With the strong induction principle of X we obtain a certifying function
F : ∀x∃̄s. Ss = x. We define Ix := π1(Fx).

Lemma 51 (Transfer of Induction Principle). Let X be a structure that is
an HF structures except that it does not come with an induction principle. Let
S : T → X and I : X → T be functions such that S(Ix) = x, S0 = ∅, and
S(s.t) = Ss.St for all sets x and all trees s and t. Then X can be extended to
an HF structure.

Proof. Let p : X → Prop. The strong induction principle for X and p can be
obtained from the strong induction principle for T and λs.p(Ss).

9 Tree Model

We now construct an HF structure as a quotient of the tree type under an
equivalence generated by cancellation and swapping. We define this equivalence
as an inductive predicate s ≈ t and call it tree equivalence:

s.s.t ≈ s.t s.t.u ≈ t.s.u

s ≈ s′ t ≈ t′

s.t ≈ s′ .t′

s ≈ s

s ≈ t

t ≈ s

s ≈ t t ≈ u

s ≈ u

Tree equivalence satisfies the cancellation and swapping law by definition. It also
satisfies the discrimination law.

Fact 52. s ≈ t → (s = 0 ↔ t = 0).

Proof. By induction on s ≈ t. We prove s = 0 → t = 0 and t = 0 → s = 0
together so that we can accommodate the symmetry rule.

Fact 53 (Discrimination). s.t �≈ 0.

Proof. Follows with Fact 52.

We define s ∈ t := (s.t ≈ t). Proving that tree equivalence satisfies the
membership law takes a little effort. We need an inductive auxiliary predicate
s ∈̇ t providing a restricted form of membership:

s ∈̇ s.t

s ∈̇ u

s ∈̇ t.u
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Fact 54. u ∈̇ s.t ↔ u = s ∨ u ∈̇ t.

We also need an auxiliary inclusion predicate s � t := ∀u ∈̇ s∃v ∈̇ t. u ≈ v.

Lemma 55. s ≈ t → s � t ∧ t � s.

Proof. By induction on s ≈ t using Fact 54. We prove s � t and t � s together
so that we can accommodate the symmetry rule.

Lemma 56. s ∈̇ t → s ∈ t.

Proof. By induction on s ∈̇ t.

Fact 57 (Membership). u ∈ s.t → u ≈ s ∨ u ∈ t.

Proof. Let u ∈ s.t. Then u.s.t ≈ s.t. Thus u.s.t � s.t by Lemma 55. Since
u ∈̇ u.s.t, we have u ≈ v ∈̇ s.t for some v. Thus either u ≈ v = s or u ≈ v ∈̇ t by
Fact 54. The claim follows with Lemma 56.

The quotient of the tree type for tree equivalence will be obtained with a
normalizer for tree equivalence using Fact 2. The normalizer will be an idempo-
tent function σ : T → T such that s ≈ t ↔ σs = σt. Given that tree equivalence
is generated by cancellation and swapping, we can obtain a normalizer for tree
equivalence as a sorting function for some linear ordering on trees. There is a
natural linear ordering on trees based on the idea of lexical ordering:

0 < s.t

s < s′

s.t < s′ .t′
t < t′

s.t < s.t′

We speak of the lexical tree ordering.

Fact 58. The lexical tree ordering is irreflexive and transitive.

Proof. Follows with induction on s < t.

Fact 59 (Trichotomy). s < t ∨̄ s = t ∨̄ t < s.

Proof. By nested induction on s and t.

We shall obtain the normalizer by duplicate-eliminating insertion sort. We
define a function α : T → T → T for order-observing and duplicate-avoiding
insertion based on the case analysis provided by Fact 59:

αs0 := s.0
αs(t.u) := case s < t ⇒ s.t.u | s = t ⇒ t.u | t < s ⇒ t.αsu

Fact 60. αst ≈ s.t.

Proof. By induction on t using Fact 59.
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We finally define a duplicate-eliminating sorting function σ : T → T:

σ0 := 0
σ(s.t) := α(σs)(σt)

Fact 61. σs ≈ s.

Proof. By induction on s using Fact 60.

Next we show that that σ normalizes equivalent trees to identical trees. The
key insight behind this result is the fact that insertion respects the cancellation
and swap law with respect to equality.

Fact 62. αs(αst) = αst and αs(αtu) = αt(αsu).

Proof. The first claim follows by induction on t and the second claim follows by
induction on u. Both proofs do case analysis according to Fact 59 and eliminate
inconsistent cases with Fact 58. There are many cases to consider. The following
facts are useful for the case analysis:

– αs0 = s.0 and αs(s.t) = s.t.
– If s < t, then αs(t.u) = s.t.u.
– If t < s, then αs(t.u) = t.αsu. ��
Fact 63. s ≈ t → σs = σt.

Proof. By induction on s ≈ t using Fact 62.

Fact 64.

1. s ≈ t ↔ σs = σt.
2. σ is idempotent; that is, σ(σs) = σs.
3. Tree equivalence is decidable.

Proof. The claims follow with Facts 61 and 63.

Theorem 65 (Model Existence). There exist an HF structure X and two
functions S : T → X and I : X → T such that:

1. S(Ix) = x and I(Ss) ≈ s.
2. Ss = St ↔ s ≈ t and Ix = Iy ↔ x = y.
3. S(s.t) = Ss.St and I(x.y) ≈ Ix.Iy.
4. S0 = ∅ and I∅ = 0.

Proof. By Facts 2, 49, and 64 we have a discrete type X and functions S : T → X
and I : X → T such that S(Ix) = x and I(Ss) = σs for all x and s. We
define ∅ := S0 and x.y := S(Ix.Iy). The claims (1)–(4) follow with Fact 64. By
Lemma 51 it suffices to show that the definitions of ∅ and adjunction satisfy the
cancellation, swap, discrimination, and membership law.
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We show the discrimination law. Let x.y = ∅. Then S(Ix.Iy) = S0 by
definition. Thus Ix.Iy ≈ 0 by (2). Contradiction by Fact 53.

We show the swap law. We have Ix.Iy.Iz ≈ Iy.Ix.Iz by definition of
tree equivalence. Thus Ix.I(y.z) ≈ Iy.I(x.z) by (3) and S(Ix.I(y.z)) =
S(Iy.I(x.z)) by (2). Hence x.y.z = y.x.z by the definition of adjunction.

The cancellation law follows analogously.
We show the membership law. Let x.y.z = y.z. By the definition of adjunc-

tion and (2) we have Ix.I(y.z) ≈ Iy.Iz. By (3) we have Ix.Iy.Iz ≈ Iy.Iz.
Hence either Ix ≈ Iy or Ix.Iz ≈ Iz by Fact 57. Thus either x = y or x.z = z
by (2), (1), and the definition of adjunction. ��

We can now transfer results for HF structures to tree equivalence.

Corollary 66 (Extensionality of Tree Equivalence).
(∀u. u ∈ s ↔ u ∈ t) → s ≈ t.

Proof. Let X, S, and I be the objects provided by Theorem65. Then s ∈ t ↔
Ss ∈ St for all s and t with (2) and (3). Suppose ∀u. u ∈ s ↔ u ∈ t. Then
∀x. Ix ∈ s ↔ Ix ∈ t. Thus ∀x. x ∈ Ss ↔ x ∈ St. Hence Ss = St since X is
extensional (Fact 9). Thus s ≈ t.

10 Conclusion

We have studied finite set theory in constructive type theory. In contrast to a
general set theory, finite set theory has a unique model that can be constructed
in constructive type theory. We have presented a categorial axiomatization of
finite set theory providing for a constructive development of the theory, including
the usual set operations, finite ordinals, and cardinality.

We have constructed a model of the axiomatization as a quotient of an induc-
tive type of binary trees. The tree model gives us a natural realization of the type
of finite sets in constructive type theory. The operations and results obtained
on top of the axiomatization apply to the tree model and all other models. Seen
from the perspective of programming, the axiomatization provides an abstrac-
tion layer.

We have been careful in spelling out the type theoretic resources needed
for the development. For the study of the axiomatization, we work in a type
theory with dependent function and pair types, with sum types, and with an
impredicative universe of propositions. For the model construction, we add an
inductive type of binary trees and a single proof proposition 
.

We see finite set theory as a constructive subtheory of general set theory. We
believe that the study of finite sets in constructive type theory is instructive for
students and also prepares them well for the study of general set theory.

There are many possibilities for future work: Prove that the axiomatization of
HF sets is minimal; Find a recursor constructing functions on HF sets in the style
of primitive recursion (step functions will have to be provided with admissibility
proofs); Study the Peano axiomatization of numbers with strong induction and
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show that it enables the construction of a model of HF (following Ackermann [1]);
Establish categorial axiomatizations for flat finite sets over a base type, for finite
multisets, and for finite sets also including non-wellfounded sets; Develop a Coq
library supporting the construction of the mentioned inductive quotient types.

The accompanying Coq development follows the presentation of the paper.
We wrote a tactic supporting membership-based reasoning in HF structures.
With this tactic the proofs of the abstract results turn out to be pleasantly
compact. Unexpectedly, some of the proofs for tree sorting took effort because
there are so many cases to consider (Lemma 55 and Fact 62). We arrived at
compact proofs by devising special-purpose tactics.

Acknowledgement. Denis Müller contributed to the study of tree equivalence during
his Bachelor’s thesis project on finitary sets.
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Abstract. We formalize algebraic numbers in Isabelle/HOL, based on
existing libraries for matrices and Sturm’s theorem. Our development
serves as a verified implementation for real and complex numbers, and it
admits to compute roots and completely factor real and complex polyno-
mials, provided that all coefficients are rational numbers. Moreover, we
provide two implementations to display algebraic numbers, an injective
and expensive one, and a faster but approximative version.

To this end, we mechanize several results on resultants, which also
required us to prove that polynomials over a unique factorization domain
form again a unique factorization domain. We moreover formalize algo-
rithms for factorization of integer polynomials: Newton interpolation,
factorization over the integers, and Kronecker’s factorization algorithm,
as well as a factorization oracle via Berlekamp’s algorithm with the
Hensel lifting.

1 Introduction

Algebraic numbers, i.e., the numbers that are expressed as roots of non-zero
rational (equivalently, integer) polynomials, are an attractive subset of the real
or complex numbers. They are closed under arithmetic operations, the arith-
metic operations are precisely computable, and comparisons are decidable. As
a consequence, algebraic numbers are an important utility in computer algebra
systems.

Our original interest in algebraic numbers stems from a certification problem
about automatically generated complexity proofs, where we have to compute the
Jordan normal form of a matrix in Q

n×n [16]. To this end, all complex roots of
the characteristic polynomial have to be determined.

Example 1. Consider a matrix A whose characteristic polynomial is f(x) = 1 +
2x + 3x4. The complex roots of f are exactly expressed via the real roots of
g = −1− 12x2 +144x6 and h = 7− 216x2 − 336x4 − 1248x6 +1152x8 +6912x12:

root #1 of g + (root #2 of h)i root #1 of g + (root #3 of h)i
root #2 of g + (root #1 of h)i root #2 of g + (root #4 of h)i

Here, real roots are indexed according to the standard order. As the norms of
all of these roots are strictly less than 1 (the norms are precisely root #3 and
#4 of the polynomial i = 1 − 3x4 − 12x6 − 9x8 + 27x12), we can conclude that
An tends to 0 for increasing n.
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 391–408, 2016.
DOI: 10.1007/978-3-319-43144-4 24
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In this paper, we provide a fully verified and efficient implementation of
algebraic numbers in Isabelle/HOL [14].

– The first problem in computation with algebraic numbers is to obtain a non-
zero polynomial which represents a desired algebraic number as its root. To
this end, we formalize the theory of resultants, and thus provide a verified
computation of non-zero polynomials with desired roots (Sect. 2).

– A direct computation of resultants as determinant is infeasible in practice.
Hence, we formalize a method based on a Euclid-like algorithm in combination
with polynomial remainder sequences [1,5] (Sect. 3).

– Polynomials computed via resultants are often not optimal for representing an
algebraic number, and lead to exponential growth of degrees during arithmetic
operations. To avoid this problem, we formalize polynomial factorization algo-
rithms, including an efficient oracle via Berlekamp’s algorithm and the Hensel
lifting, and an expensive but certified version of Kronecker’s algorithm. To
this end, we also formalize algorithms for prime factorization and polynomial
interpolation, as well as Gauss’ lemma. (Sect. 4)

– An algebraic number a is basically represented by a triple (f, l, r) of rational
polynomial f and l, r ∈ Q such that a is the unique root of f within the interval
[l, r]. To compute such an interval, we generalize the existing formalization of
Sturm’s method [6] to work over the rationals, and precompute the Sturm
sequence to avoid recomputation. We also take special care for arithmetic
operations involving a rational number, and finally provide a quotient type for
algebraic numbers, which works modulo different representations of the same
algebraic numbers. (Sect. 5)

– We also integrate complex algebraic numbers. Our algorithms cover complex
root computation, as well as a factorization for rational polynomials over R

or C. (Sect. 6)
– Finally, we develop algorithms for displaying algebraic numbers. A challenge

in precisely representing algebraic numbers is to ensure the uniqueness of
string representation, independent from the internal representation. Here, the
certified factorization algorithm plays a crucial role. (Sect. 7)

For the Coq proof assistant, the Mathematical Components library1 contains
various formalized results around algebraic numbers, e.g., quantifier elimination
procedures for real closed fields [4]. In particular, the executable formalization
of algebraic numbers for Coq is given by Cohen [2]. He employed Bézout’s the-
orem to derive desired properties of resultants. In contrast, we followed proofs
by Mishra [13] and formalized various facts on resultants. We further mecha-
nize an algorithm to compute resultants, as well as the polynomial factorization
algorithms. Our work is orthogonal to the more recent work which completely
avoids resultants [3].

For Isabelle, Li and Paulson [11] independently implemented algebraic num-
bers. They however did not formalize resultants; instead, they employed an

1 See http://math-comp.github.io/math-comp.

http://math-comp.github.io/math-comp
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external tool as an oracle to provide polynomials that represent desired alge-
braic numbers, and provided a method to validate that the polynomials from
the oracle are suitable.2 Although we also use untrusted oracles for polynomial
factorization, the difference is crucial. First, finding polynomials is indispensable
for the computation of algebraic numbers, and hence their implementation is not
ensured to always succeed. On the other hand, factorization is optional, and is
employed only for efficiency. Second, in addition to an external oracle interface,
we also provide an internal one, so that no external tools are required. Finally,
due to our optimization efforts, we can execute their examples [11, Fig. 3] in
0.03 s on our machine, where they reported 4.16 s.3

The whole formalization has been made available in the archive of formal
proofs for Isabelle 2016 (http://afp.sourceforge.net), cf. entries Algebraic Num-
bers, Polynomial Factorization, and Polynomial Interpolation.

2 Resultants

In order to define arithmetic operations over algebraic numbers, the first task is
the following: Given non-zero polynomials that have the input numbers as roots,
compute a non-zero polynomial that has the output number as a root.

Consider an algebraic number a represented as a root of f(x) =
∑m

i=0 fix
i.

To represent the unary minus −a, clearly poly-uminus, defined as the polynomial
f(−x), does the job. For the multiplicative inverse 1

a , it is also not difficult to
show that poly-inverse, defined as

∑m
i=0 fix

m−i, has 1
a as a root.

For addition and multiplication, given another polynomial g(x) =
∑n

i=0 gix
i

representing an algebraic number b, we must compose non-zero polynomials poly-
add f g and poly-mult f g that have a + b and a · b as a root, resp.

For this purpose the resultant is a well-known solution. The resultant of the
polynomials f and g above is defined as Res(f, g) = det(Sf,g), where Sf,g is the
Sylvester matrix (blank parts are filled with zeros):

Sf,g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

fm fm−1 · · · f0
. . . . . . . . .

fm fm−1 · · · f0
gn gn−1 · · · g0

. . . . . . . . .
gn gn−1 · · · g0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

In the remainder of this section, we consider addition – multiplication
is treated similarly. The desired result is informally stated as follows, where
poly-add f g is defined as the resultant of the two bivariate polynomials f(x− y)
and g(y), where the resultant is a univariate polynomial over x.

2 Here one cannot just evaluate the polynomial on the algebraic point and test the
result is 0; we are defining the basic arithmetic operations needed for this evaluation.

3 However, we use a faster computer with 3.5 GHz instead of 2.66 GHz.

http://afp.sourceforge.net


394 R. Thiemann and A. Yamada

Lemma 2. Let f and g be non-zero univariate polynomials with roots a and b,
respectively. Then poly-add f g is a non-zero polynomial having a + b as a root.

The lemma contains two claims: poly-add f g has a+b as a root, and poly-add
f g �= 0. In the next sections we prove each of the claims.

2.1 Resultant Has Desired Roots

For non-constant polynomials f and g over a commutative ring R, we can com-
pute polynomials p and q such that

Res(f, g) = p(x) · f(x) + q(x) · g(x) (1)

To formally prove the result, we first define a function mk-poly that operates
on the Sylvester matrix. For each j-th column except for the last one, mk-poly
adds the j-th column multiplied by xm+n−j to the last column. Each addition
preserves determinants, and we obtain the following equation:

Res(f, g) = det(mk-poly Sf,g) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fm · · · f1 f0 f(x) · xn−1

. . . . . . . . .
...

fm · · · f1 f0 f(x) · x
fm · · · f1 f(x)

gn · · · g1 g0 g(x) · xn−1

. . . . . . . . .
...

gn · · · g1 g0 g(x) · x
gn · · · g1 g(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Now we apply the Laplace expansion, which we formalize as follows.

lemma assumes A ∈ carrierm n n (* meaning A ∈ Rn×n *) and j < n
shows det A = (

∑
i < n. A(i, j) ∗ cofactor A i j)

Here, cofactor A i j is defined as (−1)i+j · det(B), where B is the minor matrix
of A obtained by removing the i-th row and j-th column. Thus we can remove
the last column of the matrix A in (2), by choosing j = m + n − 1. Note that
then every cofactor A i j is a constant. We obtain p and q in (1) as follows:

Res(f, g) =

(
n−1∑

i=0

cofactor A i j · xi

)

· f(x) +

(
m−1∑

i=0

cofactor A (n + i) j · xi

)

· g(x)

Lemma 3. assumes degree f > 0 and degree g > 0
shows ∃p q. degree p < degree g ∧ degree q < degree f ∧

[: resultant f g :] = p ∗ f + q ∗ g
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Here, [: c :] is Isabelle’s notation for the constant polynomial c. The lemma
implies that, if f and g are polynomials of positive degree with a common root
a, then Res(f, g) = p(a)·f(a)+q(a)·g(a) = 0. The result is lifted to the bivariate
case: for any a and b, f(a, b) = g(a, b) = 0 implies Res(f, g)(a) = 0.

lemma assumes degree f > 0 ∨ degree g > 0 and poly2 f a b = 0
and poly2 g a b = 0
shows poly (resultant f g) a = 0

Here, poly is Isabelle’s notation for the evaluation of univariate polynomials, and
poly2 is our notation for bivariate polynomial evaluation.

Now for univariate non-zero polynomials f and g with respective roots a and
b, the bivariate polynomials f(x − y) and g(y) have a common root at x = a + b
and y = b. Hence, the univariate polynomial poly-add fg = Res(f(x − y), g(y))
indeed has a + b as a root.

lemma assumes g �= 0 and poly f a = 0 and poly g b = 0
shows poly (poly-add f g) (a + b) = 0

2.2 Resultant Is Non-Zero

Now we consider the second claim: poly-add f g is a non-zero polynomial. Note
that it would otherwise have any number as a root. Somewhat surprisingly,
formalizing this claim is more involving than the first one.

We first strengthen Lemma 3, so that p and q are non-zero polynomials. Here,
we require an integral domain idom, i.e., there exist no zero divisors.

lemma assumes degree f > 0 and degree g > 0
shows ∃ p q. degree p < degree g ∧ degree q < degree f ∧

[: resultant f g :] = p ∗ f + q ∗ g ∧ p �= 0 ∧ q �= 0

We further strengthen this result, so that Res(f, g) = 0 implies f and g share
a common factor. This requires polynomials over a unique factorization domain
(UFD), which is available as a locale factorial-monoid in HOL/Algebra, but not
as a class. We define the class ufd by translating the locale as follows:

class ufd = idom +
assumes factorial-monoid � carrier = UNIV − {0}, mult = op ∗, one = 1 �

We also show that polynomials over a UFD form a UFD, a non-trivial proof.

instance poly :: (ufd) ufd

Note also that the result is instantly lifted to any multivariate polynomials; if α
is of sort ufd, then so is α poly, and thus so is α poly poly, and so on.

Now we obtain the following result, where coprimeI generalizes the predicate
coprime (originally defined only on the class gcd) over idom as follows:
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definition coprimeI f g ≡ ∀h. h dvd f −→ h dvd g −→ h dvd 1

Lemma 4. assumes degree f > 0 ∨ degree g > 0 and resultant f g = 0
shows ¬ coprimeI f g

Now we reason Res(f(x − y), g(y)) �= 0 by contradiction. If Res(f(x − y),

g(y)) = 0, then Lemma 4 implies that f(x − y) and g(y) have a common proper
factor. This cannot be the case for complex polynomials: Let f = f1 · · · fm and
g = g1 · · · gn be a complete factorization of the univariate polynomials f and g.
Then the bivariate polynomials f(x − y) and g(y) are factored as follows:

f(x − y) = f1(x − y) · · · fm(x − y) g(y) = g1(y) · · · gn(y) (3)

Moreover, this factorization is irreducible and unique (up to permutation and
scalar multiplication). Since there is a common factor among f(x − y) and g(y),
we must have fi(x − y) = gj(y) for some i ≤ m and j ≤ n. By fixing y, e.g., to
0, we conclude fi(x) = gj(0) is a constant. This contradicts the assumption that
fi is a proper factor of f . We conclude the following result:

lemma assumes f �= 0 and g �= 0 and poly f x = 0 and poly g y = 0
shows poly-add f g �= 0

In order to ensure the existence of the complete factorization (3), our original
formalization employs the fundamental theorem of algebra, and thus the above
lemma is initially restricted to complex polynomials. Only afterwards the lemma
is translated to rational polynomials via a homomorphism lemma for poly-add. In
the development version of the AFP (May 2016), however, we have generalized
the lemma to arbitrary field polynomials.

3 Euclid-Like Computation of Resultants

Resultants can be computed by first building the Sylvester matrix and then
computing its determinant by transformation into row echelon form. A better
way to compute resultants has been developed by Brown via subresultants [1],
and a Coq formalization of subresultants exists [12]. We leave it as future work to
formalize this algorithm in Isabelle. Instead, we compute resultants using ideas
from Collins’ primitive PRS (polynomial remainder sequences) algorithm [5].

3.1 The Algorithm and Its Correctness

The algorithm computes resultants Res(f, g) in the manner of Euclid’s algorithm.
It repeatedly performs the polynomial division on the two input polynomials and
replaces one input of larger degree by the remainder of the division.

We formalize the correctness of this algorithm as follows. Here we assume
the coefficients of polynomials are in an integral domain which additionally has
a division function such that (a · b)/b = a for all b �= 0. Below we abbreviate
m = degree f, n = degree g, k = degree r, and c = leading-coeff g.
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Lemma 5 (Computation of Resultants)

1. resultant f g = (− 1)n ∗m ∗ resultant g f
2. assumes d �= 0 shows resultant (d · f) g = dn ∗ resultant f g
3. assumes f = g ∗ q + r and n ≤ m and k < n

shows resultant f g = (− 1)n ∗ (m− k) ∗ cm−k ∗ resultant r g

Lemma 5(1) allows swapping arguments, which is useful for a concise defini-
tion of the Euclid-like algorithm. It is proven as follows: We perform a number of
row swappings on the Sylvester matrix Sf,g to obtain Sg,f . Each swap will change
the sign of the resultant. In Isabelle, we exactly describe how the transformed
matrix looks like after each row-swapping operation.

Lemma 5(2) admits computing Res(f, g) via Res(d·f, g). As we will see, this is
crucial for applying the algorithm on non-field polynomials including bivariate
polynomials, which we are dealing with. To prove the result in Isabelle, we
repeatedly multiply the rows in Sf,g by d, and obtain Sd·f,g.

The most important step to the algorithm is Lemma 5(3), which admits
replacing f by the remainder r of smaller degree. A paper proof again applies
a sequence of elementary row transformations to convert Sqg+r,g into Sr,g. We
formalize these transformation by a single matrix multiplication, and then derive
the property in a straightforward, but tedious way.

To use Lemma 5(3), we must compute a quotient q and a remainder r such
that f = gq + r. For field polynomials one can just perform polynomial long
division to get the corresponding q and r. For non-field polynomials, we formalize
the polynomial pseudodivision, whose key property is formalized as follows:

lemma assumes g �= 0 and pseudo-divmod f g = (q, r)
shows c1+m−n · f = g ∗ q + r ∧ (r = 0 ∨ k < n)

Now we compute Res(f, g) as follows: Ensure m ≥ n using Lemma 5(1), and
obtain r via pseudodivision. We have Res(f, g) = Res(c1+m−nf, g)/c(1+m−n)·n

by Lemma 5(2), and Res(c1+m−nf, g) is simplified to Res(g, r) by Lemma 5(3),
where the sum of the degrees of the input polynomials are strictly decreased.

The correctness of this reduction is formalized as follows:

lemma assumes pseudo-divmod f g = (q, r) and m ≥ n and n > k
shows resultant f g = (− 1)n∗m ∗ resultant g r / c(1+m−n)∗n+k−m

We repeat this reduction until the degree n of g gets to zero, and then use
the following formula to finish the computation.

lemma assumes n = 0 shows resultant f g = cm

3.2 Polynomial Division in Isabelle’s Class Hierarchy

When formalizing the algorithms in Isabelle (version 2016), we encoun-
tered a problem in the class mechanism. There is already the division for
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field polynomials formalized, and based on this the instance declaration
“instantiation poly :: (field) ring-div”, meaning that α poly is in class ring-div
if and only if α is a field. Afterwards, one cannot have a more general instantia-
tion, such as non-field polynomials to be in class idom-divide (integral domains
with partial divisions).

As a workaround, we made a copy of idom-divide with a different name, so
that it does not conflict with the current class instantiation.

class idom-div = idom + fixes exact-div :: α ⇒ α ⇒ α
assumes b �= 0 =⇒ exact-div (a ∗ b) b = a

For polynomials over α :: idom-div, we implement the polynomial long division.
This is then used as exact-div for α poly and we provide the following instantia-
tion (which also provides division for multivariate polynomials):4

instantiation poly :: (idom-div) idom-div

We further formalize pseudodivision which actually does not even invoke a single
division and is thus applicable on polynomials over integral domains.

3.3 Performance Issues

The performance of the algorithm in Sect. 3.1 is not yet satisfactory, due to the
repeated multiplication with c1+m−n, a well-known phenomenon of pseudodivi-
sion. To avoid this problem, in every iteration of the algorithm we divide g by
its content, i.e., the GCD of its coefficients, similar to Collins’ primitive PRS
algorithm. At this point a formalization of the subresultant algorithm will be
benefitial as it avoids the cost of content computation.

We further optimize our algorithm by switching from Q to Z. When invoking
poly-add, etc., over polynomials whose coefficients are integers (but of type rat),
we ensure that the intermediate polynomials have integer coefficients. Thus we
perform the whole computation in type int, and also switch the GCD algorithm
from the one for rational polynomials to the one for integer polynomials.

This has a significant side-effect: In Isabelle, the GCD on rational polynomials
is already defined and it has to be normalized so that the leading coefficient of
the GCD is 1. Thus, the GCD of the rational polynomials 1000(x + 1)x and
2000(x + 2)(x + 1) is just x + 1. In contrast, we formalized5 Collins’ primitive
PRS algorithm for GCD computation for integer polynomials, where the GCD
of the above example is 1000(x + 1). Hence, dividing by the GCD will eliminate
large constants when working on Z, but not when working on Q.

Finally, we provide experimental data in Table 1 in order to compare the
various resultant computation algorithms. In each experiment the complex roots

4 We contributed our formalization to the development version of Isabelle (May 2016).
There one will find the general “instantiation poly :: (idom-divide) idom-divide”.

5 As for the division algorithm, we have not been able to work with Isabelle’s existing
type class for GCDs, as the GCD on polynomials is only available for fields.
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Table 1. Identifying the complex roots of 1 + 2x + 3x4 as in Example 1.

algorithm to compute resultants overall time

(a) algorithm of Sect. 3.1 >24 h

(b) (a) + GCD before pseudodivision 30 m 32 s

(c) (b) with GCD for integer polynomials 34 s

for f of the leading Example 1 are identified. Here, the intermediate computa-
tion invokes several times the resultant algorithm on bivariate polynomials of
degree 12. Note that in experiment (c) – which applies our final resultant imple-
mentation – only 17 % of the time is spent for the resultant computation, i.e.,
below 6 s.

This and all upcoming experiments have been performed using extracted
Haskell code which has been compiled with ghc -O2, and has been executed on
a 3.5 GHz 6-Core Intel Xeon E5 with 32 GB of RAM running Mac OS X.

4 Factorization of Rational Polynomials

Iterated resultant computations will lead to exponential growth in the degree
of the polynomials. Hence, after computing a resultant to get a polynomial f
representing an algebraic number a, it is a good idea to factor f = fe1

1 · · · fek
k

and pick the only relevant factor fi that has a as a root.

Table 2. Computation time/degree of representing polynomials for
∑n

i=1

√
i.

factorization n = 6 n = 7 n = 8 n = 9 n = 10

none 0.16 s/64 2.78 s/128 2 m11 s/256 22m19 s/512 12 h19m/1024

square-free 0.17 s/64 2.86 s/128 2 m14 s/256 15m31 s/384 9 h31 m/768

complete 0.03 s/8 0.14 s/16 0.35 s/16 0.35 s/16 0.59 s/16

The benefit of factorization is shown in Table 2, where
∑n

i=1

√
i is computed

for various n, and the computation time t and the degree d of the represent-
ing polynomial is reported as t/d. The table reveals that factorization becomes
beneficial as soon as at it can simplify the polynomial.

We provide two approaches for the factorization of rational polynomials.
First, we formalize Kronecker’s algorithm. The algorithm serves as a verified
and complete factorization, although it is not efficient. Second, we also employ
factorization oracles, an untrusted code that takes a rational polynomial and
gives a list of factors (and the leading coefficient). Validating factorization is easy:
the product of the factors should be the input polynomial. On the other hand,
completeness is not guaranteed, i.e., the factors are not necessarily irreducible.
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4.1 Verified Kronecker’s Factorization

We formalize Kronecker’s factorization algorithm for integer polynomials. We
also formalize Gauss’ lemma, which essentially states that factorization over
Q is the same as factorization over Z; thus the algorithm works on rational
polynomials. The basic idea of Kronecker’s algorithm is to construct a finite
set of lists of sample points, and for each list of sample points, one performs
polynomial interpolation to obtain a potential factor f and checks if f divides
the input polynomial. Formally proving the soundness of this algorithm is not
challenging; however, many basic ingredients were not available in Isabelle.

For instance, in order to construct the set of lists of sample points, one has to
compute all divisors of an integer n �= 0. If not to be done naively, this basically
demands a prime factorization of |n|, for which we did not find any useful existing
algorithm that has been formalized in Isabelle.

Therefore, we formalize algorithm A of Knuth [9, Sect. 4.5.4] where the list of
trial divisors currently excludes all multiples of 2, 3, and 5. Here, the candidate
generation works via a function next-candidates that takes a lower bound n as
input and returns a pair (m,xs) such that xs includes all primes in the interval
[n,m), provided that n = 0 or n mod 30 = 11. In the following definition,
primes-1000 is a precomputed list consisting of all primes up to 1000.

definition next-candidates n = (if n = 0 then (1001, primes-1000)
else (n + 30, [n, n+2, n+6, n+8, n+12, n+18, n+20, n+26]))

Similarly, we did not find formalized results on polynomial interpolation.
Here, we integrate both Lagrange and Newton interpolation where the latter is
more efficient. Furthermore, we formalize a variant of the Newton interpolation
specialized for integer polynomials, which will abort early and conclude that no
integer interpolation polynomial exists, namely as soon as the first division of
two integers in the interpolation computation yields a non-zero remainder.

Finally, we integrate a divisibility test for integer polynomials, since polyno-
mial divisibility test is by default available only for fields. The algorithm enjoys
the same early abortion property as the Newton interpolation for integers.

4.2 Factorization Oracles

We provide two different factorization oracles: a small Haskell program that
communicates with Mathematica, and an implementation within Isabelle/HOL.
The latter can be used within an Isabelle session (by eval, etc.) as well as in
generated Haskell or ML code.

They both use the same wrapper which converts the factorization over Q to
a factorization over Z, where the latter factorization can assume a square-free
and content-free integer polynomial, represented as a coefficient list. The oracle
is integrated as an unspecified constant:

consts factorization-oracle-int-poly :: int list ⇒ int list list
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The internal oracle implements Berlekamp’s factorization algorithm in com-
bination with Hensel lifting [9, Sect. 4.6.2]. Berlekamp’s algorithm involves matri-
ces and polynomials over finite fields (Z modulo some prime p). Here, we reuse
certified code for polynomials and matrices whenever conveniently possible; how-
ever, the finite fields cannot be represented as a type in Isabelle/HOL since the
prime p depends on the input polynomial to be factored. As a consequence, we
could not use the standard polynomial library of Isabelle directly. Instead, we
invoke the code generator to obtain the various certified algorithms on polyno-
mials as ML-code, then manually replace the field operations by the finite field
operations, and finally define these algorithms as new functions within Isabelle.
Eventually, we had a view on all code equations for polynomials, and detected
potential optimizations in the algorithm for polynomial long division.6

The same problem happens for the matrix operations; however, since the
matrix theory is our formalization, we just modified it. We adjusted some of the
relevant algorithms so that they no longer rely upon the type class field, but
instead take the field operations as parameters. Then in the oracle we directly
apply these generalized matrix algorithms, passing the field operations for finite
fields as parameters.

Table 3. Comparing factorization algorithms

Berlekamp-Hensel Mathematica Kronecker

factorization of h, degree 12 0.0 s 0.3 s 0.6 s

factorization of j, degree 27 0.0 s 0.3 s >24 h

evaluation of
∑5

i=1
3
√
i 17.8 s 9.1 s –

evaluation of
∑6

i=1
3
√
i 63.9 s 57.7 s –

We conclude this section with experimental data where we compare the dif-
ferent factorizations in Table 3. Here, polynomial h is taken from Example 1 and
j is the unique minimal monic polynomial representing

∑5
i=1

3
√

i, which looks
like −64437024420 + 122730984540x + . . . + x27.

The 0.3 s of Mathematica is explained by its start-up time. We can clearly
see that Kronecker’s algorithm is no match against the oracles, which is why we
did not even try Kronecker’s algorithm in computing the sums of cubic roots
examples – these experiments involve factorizations of polynomials of degree 81.
At least on these examples, our internal factorization oracle seems to be not too
bad, in comparison with Mathematica (version 10.2.0).

5 Real Algebraic Numbers

At this point, we have fully formalized algorithms which, given algebraic numbers
a and b represented as roots of rational polynomials f and g, resp., computes a
6 These optimizations became part of the development version of Isabelle (May 2016).
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rational polynomial h having c as a root, where c is any of a+ b, a · b, −a, 1
a , and

n
√

a. To uniquely represent an algebraic number, however, we must also provide
an interval [l, r] in which c is the only root of h.

For c = −a and c = 1
a , bounds can be immediately given from the bound

[l, r] for a: take [−r,−l] and [1r , 1
l ], resp. For the other arithmetic operations, we

formalized various bisection algorithms.

5.1 Separation of Roots

Our main method to separate roots via bisection is based on a root-counting
function rif for polynomial f , such that rif l r is the number of roots of f in
the interval [l, r]. Internally, rif is defined directly for linear polynomials, and is
based on Sturm’s method for nonlinear polynomials.

First, we extend the existing formalization of Sturm’s method by Eberl [6],
which takes a real polynomial and real bounds, so that it can be applied on
rational polynomials with rational bounds; nevertheless, the number of real roots
must be determined. This extension is crucial as we later implement the real
numbers by the real algebraic numbers via data refinement [7]; at this point we
must not yet use real number arithmetics. The correctness of this extension is
shown mainly by proving that all algorithms utilized in Sturm’s method can be
homomorphically extended. For instance, for Sturm sequences we formalize the
following result:

lemma sturm (real-of-rat-poly f) = map real-of-rat-poly (sturm-rat f)

For efficiency, we adapt Sturm’s method for our specific purpose. Sturm’s
method works in two phases: the first phase computes a Sturm sequence, and
the second one computes the number of roots by counting the number of sign
changes on this sequence for both the upper and the lower bounds of the interval.
The first phase depends only on the input polynomial, but not on the interval
bounds. Therefore, for each polynomial f we precompute the Sturm sequence
once, so that when a new interval is queried, only the second phase of Sturm’s
method has to be evaluated. This can be seen in the following code equation:

definition count-roots-interval-rat f =
(let fs = sturm-squarefree-rat f (* precompute *)
in . . . (λ l r. sign-changes-rat fs l − sign-changes-rat fs r + . . .) . . . )

For this optimization, besides the essential (f, l, r) our internal representation
additionally stores a function ri :: Q → Q → N which internally stores the
precomputed Sturm sequence for f .

With the help of the root-counting functions, it is easy to compute a required
interval. For instance, consider the addition of a and b, each represented by
(f, la, ra) and (g, lb, rb), and we already have a polynomial h which has a + b
as one of its roots. If rih (la + lb) (ra + rb) = 1, then we are done. Otherwise,
we repeat bisecting the intervals [la, ra] and [lb, rb] with the help of rif and rig.
Similar bisections are performed for multiplication and n-th roots.
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For further efficiency, we formalize the bisection algorithms as partial func-
tions [10]. This is motivated by the fact that many of these algorithms terminate
only on valid inputs, and runtime checks to ensure termination would be an over-
head. In order to conveniently prove the correctness of the algorithms, we define
some well-founded relations for inductive proofs, which are reused for various
bisection algorithms. For instance, we define a relation based on a decrease in
the size of the intervals by at least δ, where δ is the minimal distance of two
distinct roots of some polynomial.

Finally, we tighten the intervals more than what is required to identify the
root. This is motivated as follows. Assume that the interval [2, 10000] identifies
a real root a ≈ 3134.2 of a polynomial f . Now, consider computing the floor �a�,
which requires us to bisect the interval until we arrive at [3134.003, 3134.308]. It
would be nice if we could update the bounds for a to the new tighter interval at
this point. Unfortunately, we are not aware of how this can be done in a purely
functional language. Hence, every time we invoke �a� or other operations which
depends on a, we have to redo the bisection from the initial interval. There-
fore, it is beneficial to compute sufficiently tight intervals whenever constructing
algebraic numbers. Currently we limit the maximal size of the intervals by 1

8 .

5.2 Comparisons of Algebraic Numbers

Having defined all arithmetic operations, we also provide support for compar-
isons of real algebraic numbers, as well as membership test in Q, etc. For mem-
bership in Q, we formalize the rational root test which we then integrate into
a bisection algorithm. Comparison is, in theory, easy: just compute x − y and
determine its sign, which is trivial, since we have the invariant that the signs of
the interval bounds coincide. This naive approach however requires an expensive
resultant computation. Hence we pursue the following alternative approach: To
compare two algebraic numbers a and b, represented by (f, la, ra) and (g, lb, rb),

– we first decide7 a = b by testing whether gcd f g has a root in [la, ra]∩ [lb, rb].
The latter property can be determined using Sturm’s method; and

– if a �= b, then bisect the intervals [la, ra] and [lb, rb] until they become disjoint.
Afterwards we compare the intervals to decide a < b or a > b.

Note that the recursive bisection in the second step is terminating only if it
is invoked with a �= b. At this point, Isabelle’s partial-function command
becomes essential. Note also that specifying the algorithm via function pro-
hibits code generation.

If we had a proof that the internal polynomials are irreducible, then the first
step could be done more efficiently, since then f �= g implies a �= b. We leave it
for future work to formalize more efficient factorization algorithms.

7 We thank one of the anonymous reviewers for pointing us to this equality test.
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5.3 Types for Real Algebraic Numbers

As the internal representation of algebraic numbers, besides the essential (f, l, r)
and already mentioned ri, we store another additional information: a flag ty
of type poly-type, indicating whether f is known to be monic and irreducible
(Monic-Irreducible) or whether this is unknown (Arbitrary-Poly). We initially
choose Arbitrary-Poly as ty for non-linear polynomials, and Monic-Irreducible
for linear polynomials after normalizing the leading coefficient. If we have a
complete factorization, we may set the polynomial type to Monic-Irreducible;
however, this would require the invocation of the slow certified factorization
algorithm.

In the formalization we create a corresponding type abbreviation for the
internal representation (an option type where None encodes the number 0),
then define an invariant rai-cond which should be satisfied, and finally enforce
this invariant in the type real-alg-intern. For the specification of algorithms on
type real-alg-intern, the lifting and transfer package has been essential [8].

type-synonym rai-intern = (poly-type× root-info× rat poly× rat× rat)option
definition rai-cond tuple = (case tuple of Some (ty,ri,f,l,r) ⇒

f �= 0 ∧ unique-root f l r ∧ sgn l = sgn r ∧ sgn r �= 0 ∧ . . . | None ⇒ True)
typedef real-alg-intern = Collect rai-cond

Then, all arithmetic operations have been defined on type real-alg-intern.
In order to implement the real numbers via real algebraic numbers, we did

one further optimization, namely integrate dedicated support for the rational
numbers. The motivation is that most operations can be implemented more
efficiently, if one or both arguments are rational numbers. For instance, for addi-
tion of a rational number with a real algebraic number, we provide a function
add-rat-rai :: rat ⇒ real-alg-intern ⇒ real-alg-intern which does neither require
a resultant computation, nor a factorization.

Therefore, we create a new datatype real-alg-dt, which has two constructors:
one for the rational numbers, and one for the real algebraic numbers whose
representing polynomial has degree at least two. This invariant on the degree is
then ensured in a new type real-alg-dtc, and the final type for algebraic numbers
is defined as a quotient type real-alg on top of real-alg-dtc, which works modulo
different representations of the same real algebraic numbers. Here, real-of-radtc
is the function that delivers the real number which is represented by a real
algebraic number of type real-alg-dtc.8

quotient-type real-alg = real-alg-dtc / λ x y. real-of-radtc x = real-of-radtc y

Now we provide the following code equations to implement the real numbers
via real algebraic numbers by data refinement, where real-of :: real-alg ⇒ real is
converted into a constructor in the generated code.
8 Note that the quotient type can be in principle defined also directly on top of
real-alg-dt, such that the quotient and invariant construction is done in one step,
but then code generator will fail in Isabelle 2016.
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lemma plus-real-alg[code]: (real-of x) + (real-of y) = real-of (x + y)
(* similar code lemmas for =, <, -, *, /, floor, etc. *)

Note that in the lemma plus-real-alg, the left-hand side of the equality is addition
for type real, whereas the right is addition of type real-alg.

We further prove that real algebraic numbers form an Archimedean field.

instantiation real-alg :: floor-ceiling (* includes Archimedean field *)

Finally, we provide a function real-roots-of-rat-poly :: rat poly ⇒ real list
which computes all real roots of a non-zero rational polynomial. It first fac-
tors the polynomial, and then for each factor it either uses a closed form to
determine the roots, or computes intervals that uniquely identify each root of
the factor and returns the corresponding real algebraic numbers. Below, rpoly
denotes the evaluation of a rational polynomial at a real or complex point.

lemma assumes f �= 0
shows set (real-roots-of-rat-poly f) = {a :: real. rpoly f a = 0}

6 Complex Algebraic Numbers

All of the results on resultants have been developed in a generic way, i.e., they
are available for both real and complex algebraic numbers. Hence, in principle
one can pursue a similar approach as in Sect. 5 to integrate complex algebraic
numbers, one just has to replace Sturm’s method by a similar method to separate
complex roots, e.g., by using results of Kronecker [15, Sect. 1.4.4].

Since we are not aware of any formalization of such a method, instead we just
stick to Isabelle’s implementation of complex numbers, i.e., pairs of real numbers
representing the real and imaginary part. Note that this is also possible in the
algebraic setting: a complex number is algebraic if and only if both the real and
the imaginary part are algebraic.

With this representation, all of the following operations become executable
on the complex numbers for free: +, −, ∗, /,

√·, =, and complex conjugate.
These operations are already implemented via operations on the real numbers,
and those are internally computed by real algebraic numbers via data refinement.

The only operation that is not immediate is a counterpart of
real-roots-of-rat-poly – a method to determine all complex roots of a rational
polynomial f . Here, the algorithm proceeds as follows, excluding optimizations.

– Consider a complex root a+bi of f for a, b ∈ R. Since a = 1
2 ((a+bi)+(a−bi)),

a is a root of the rational polynomial g = poly-mult-rat 1
2 (poly-add f f).

Here, the first f in poly-add f f represents a + bi and the second f repre-
sents a − bi; complex conjugate numbers share the same representing poly-
nomials. Similarly, since b = 1

2i ((a + bi) − (a − bi)), b is a root of h =
poly-mult [:1,0,4:] (poly-add f (poly-uminus f)), where [:1,0,4:] is the polyno-
mial 1 + 4x2 with root 1

2i .
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– Let C be the set of all numbers a + bi such that a ∈ real-roots-of-rat-poly g
and b ∈ real-roots-of-rat-poly h. Then C contains at least all roots of f . Return
{c ∈ C. f(c) = 0} as the final result.

The actual formalization of complex-roots-of-rat-poly contains several special
measures to improve the efficiency, e.g., factorizations are performed in between,
explicit formulas are used, etc. The soundness result looks as in the real case.

lemma assumes f �= 0
shows set (complex-roots-of-rat-poly f) = {a :: complex. rpoly f a = 0}

The most time-consuming task in complex-roots-of-rat-poly is actually the
computation of {c ∈ C. f(c) = 0} from C. For instance, when testing f (c) = 0 in
Example 1, multiplications like b · b occur. These result in factorization problems
for polynomials of degree 144.

With the help of the complex roots algorithm and the fundamental theorem of
algebra, we further develop two algorithms that factor polynomials with rational
coefficients over C and R, resp. Factorization over C is easy, since then every
factor corresponds to a root. Hence, the algorithm and the proof mainly take
care of the multiplicities of the roots and factors. Also for the real polynomials,
we first determine the complex roots. Afterwards, we extract all real roots and
group each pair of complex conjugate roots. Here, the main work is to prove
that for each complex root c, its multiplicity is the same as the multiplicity of
the complex conjugate of c.

7 Displaying Algebraic Numbers

We provide two approaches to display real algebraic numbers.
The first one displays the approximative value of an algebraic number a.

Essentially, the rational number �1000a�
1000 is computed and displayed as string.

For instance, the first root of polynomial g in Example 1 is displayed as
“∼ −0.569”.

The second approach displays a number represented by (ty, ri, f, l, r) exactly
as the string “root #n of f”, provided that ty = Monic-Irreducible and that n
is the number of roots of f in the interval (−∞, r]. In order to determine the
value of n, we just apply Sturm’s method. In case ty �= Monic-Irreducible, at
this point we invoke the expensive certified factorization.

Note that displaying a number must be a function of type real-alg ⇒ string,
i.e., the resulting string must be independent of the representative. Clearly, this
is the case for the first approach. For the second approach we need a uniqueness
result, namely that every algebraic number a is uniquely represented by a monic
and irreducible polynomial. To this end, we first formalize the result, that the
GCD of two rational polynomials stays the same if we embed Q into R or C.

lemma map-poly of-rat (gcd f g) = gcd (map-poly of-rat f) (map-poly of-rat g)

Using this lemma, we provide the desired uniqueness result.
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lemma assumes algebraic a shows ∃! f. alg-poly a f ∧ monic f ∧ irreducible f

Our formalization of this statement works along the following line. Assume f and
g are two different monic and irreducible rational polynomials with a common
real or complex root a. That is, f and g have a common factor x − a as a real
or complex polynomial and hence, the GCD of f and g (over R or C) is a non-
constant polynomial. On the other hand, the GCD of f and g over Q must be
a constant: it cannot be a proper factor of f or g since the polynomials are
irreducible over Q, and it cannot be f or g itself, since this contradicts monicity
and f �= g.

8 Conclusion

We integrated support for real and complex algebraic numbers in Isabelle/HOL.
Although all arithmetic operations are supported, there remain some open tasks.

A formalization of an equivalent to Sturm’s method for the complex numbers
would admit to represent the roots in Example 1 just as root #(1,2,3,4) of f,
without the need for high-degree polynomials for the real and imaginary part.

A certified efficient factorization algorithm would also be welcome: then the
implementation of comparisons of algebraic numbers could be simplified and it
would allow to display more algebraic numbers precisely within reasonable time.

Finally, it would be useful to algorithmically prove that the complex alge-
braic numbers are algebraically closed, so that one is not restricted to rational
coefficients in the factorization algorithms over R and C.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
The early abortion in our divisibility test for integer polynomials is due to Sebastiaan
Joosten. This research was supported by the Austrian Science Fund (FWF) project
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Abstract. Modular datatypes can be given a direct encoding in Coq
using Church-style encodings, but this makes inductive reasoning gener-
ally problematic. We show how Mendler-style induction can be used to
supplement existing techniques in modular inductive reasoning, and we
present a novel technique to apply Mendler-style induction in presence
of dependent induction. This results in type-based, conventional-looking
proofs that take better advantage of existing Coq tactics and depend
less pervasively on general semantic conditions, reducing the need for
boilerplate.

1 Introduction

Structural abstraction and modularity are essential to cost-effective software
development and verification. However, there is a tension between the modular-
ity of an artifact, which allows for its extensibility, and its datatype structuring.
In functional programming, this tension shows in what is known as the expres-
sion problem [27]: recursive datatypes in their conventional form are associated
with fixed sets of shapes, and thus not amenable to extension. The expression
problem is even more acute when we consider languages that insist on totality of
definitions, as in the case of theorem provers based on type theory, such as Coq
[5] and Agda [6]. In such languages, recursive datatypes can also provide the
structural characterisation of inductive proofs, which thus suffer from analogous
limitations with respect to extensibility and reuse.

In functional programming, an answer to the expression problem has been
given in terms of the initial algebra semantics of inductive datatypes [13,26],
with the notion of datatype à la carte, or modular datatype (MDT), introduced
in Haskell by Swierstra [20]. The definition of an MDT consists of two parts: the
signature functor, i.e. a non-recursive datatype that can be treated as a mod-
ule and composed by coproduct, and its recursive closure. In Haskell, the fix-
point closure of the signature functor can be implemented generically. However,
this relies on the datatype definition of fixpoint operators that are not strictly
positive, hence on a representation that does not work for Coq [5].

One way to overcome this problem is to rely on the container semantics of
recursive datatypes [1]. Following this approach, Keuchel et al. [15] implemented
in Coq an encoding of MDT in the container universe. The container represen-
tation of a datatype is a comparatively indirect one. Functors are represented as
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 409–424, 2016.
DOI: 10.1007/978-3-319-43144-4 25
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container extensions, and fixpoints as W types. Moreover, dealing with recursive
relations requires shifting to the universe of indexed containers. A drawback of
this approach is that the encoded objects, even the non-recursive ones, are syn-
tactically different from the encoding in which the proofs are carried out. This
makes it practically difficult not to distinguish between a specification language
and the Coq encoding. Indeed, this is the line consistently pursued by Keuchel
et al. [16] in their language specification tool.

An alternative way to tackle the positivity problem is to rely on impred-
icative, higher-order definitions, in the style of Church encodings, thus getting
around the problem of actually constructing the fixed points predicatively [19].
This approach has been used by Delaware et al. in their Meta-Theory à la Carte
(MTC) formalisation of MDT [11], further extended in [9] and implemented in
Coq [10]. The main advantage of the impredicative approach is that it provides
a direct encoding. Functors are simply encoded as non-recursive datatypes, and
dealing with recursive relations does not involve the cost of changing universe.
The main problem with Church encodings is that together with the predicative
characterisation, we lose the structural induction principle associated with the
conventional datatype [19]. This is a consequence of the eliminative character of
the impredicative encoding: each object carries its own fold with respect to an
algebra, as application to it.

The MTC approach builds on top of the algebraic characterisation of induc-
tive principles in terms of the universal properties associated with the initial
semantics of the corresponding datatypes, as presented by Hutton [14]. Hutton’s
technique, known as universality, is an algebraic, induction-free proof method
for inductive theorems. It permits to dispense with the structural induction prin-
ciple, relying on the strength of the equational characterisation of the fold of an
algebra as the unique mediating map from the initial algebra. Delaware et al.
[11] use universality to prove a fundamental result, that we call the Σ induction
principle: given a property to prove by induction on a datatype, a proof that
the property holds in general can be obtained from an algebra of appropriate
type, here called Σ-proof algebra. Unlike structural induction, this principle is
parametric in the datatype. However, Σ induction can only be applied under two
critical conditions. The first one is that the uniqueness of fold is provable. The
second one is that the Σ-proof algebra is well-formed, according to a criterion
that addresses the proof term, rather than just the type.

Proving the uniqueness of fold, which amounts to proving full initiality of
the inductive type, is generally problematic in the impredicative approach. MTC
gets around this problem resorting to Σ types, by packing objects together with
the associated uniqueness proofs. This approach makes it possible to localise
dependency on initiality, but at the cost of making the proof formalism rather
cumbersome. It also makes it hard to dispense with functional extensionality.
Pervasive reliance on universality is not necessarily a drawback, as indeed one
of the original motivations for the universality approach lies in proof search [14].
However, when structural induction is available, the semantic property that is
more often needed is one that we call isorecursiveness, weaker than initiality,
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stating that a fixpoint and its unfolding are isomorphic. Moreover, the MTC
well-formedness criterion for proof algebras is property-specific. This specificity
can be overcome relying on a computational requirement (a weak induction
principle) that addresses directly the proof term, breaking the type directedness
of proofs.

Is it possible to obtain inductive proofs that are effectively type-directed,
making dependency on universality less pervasive? The answer we can give is
affirmative, and it relies on a different flavour of initial semantics, originally due
to Mendler [18] and Geuvers [12], more recently investigated by various authors
[3,4,17,24]. Intuitively, in the Mendler-style approach each inductive type car-
ries its own induction principle, as much as each object carries its own fold.
In an impredicative encoding à-la-Mendler, each inductive type comes with an
induction principle which is syntactically built into the encoding. It is then pos-
sible to carry out inductive proofs using Mendler induction, along the lines of
conventional inductive ones. The use of Mendler induction in connection with
modular datatypes has been first proposed by Torrini et al. [23] with accom-
panying implementation [21]. However, unlike MTC-style induction, Mendler
induction is considerably more restrictive than structural induction. Crucially,
the Mendler-style approach cannot handle dependent induction – i.e. the cases in
which the goals depends on the inductive argument. This can be a big limitation
in practice.

Here and in the companion code [22] we tackle this problem, observing that
Mendler induction is equivalent to structural induction, provided the goal to
be proved does not depend on the inductive argument, and dependency can be
eliminated by introducing an additional premise, which we call predicatisation of
the inductive argument. In particular, under this assumption, it becomes possible
to prove isorecursiveness, thus making it possible to dispense with pervasive
appeals to initiality. Predicatisation, defined as an indexed Mendler fixpoint
object, can be chosen according to the shape of the inductive argument type.
Reasoning on MDT by Mendler induction generally extends beyond cases in
which predicatisation can be discharged by using basic approaches. Discharging
the predicatisation hypothesis generally requires dependent induction, and thus
Σ induction, relying on an integration of the Mendler approach with MTC.

2 Initial Semantics and Impredicative Encoding

Modular datatypes rely on the categorical representation of a datatype as the
fixed point of the corresponding signature functor [13,26]. In the category of
sets and total functions, essentially coinciding with Set in Coq, F : Set → Set
is a functor (more precisely, a covariant endofunctor) whenever there exists a
corresponding functor map that satisfies identity and composition properties
(i.e. the functor laws). This can be formalised in Coq by instantiating a class
Functor [10] where

fmap {A B : Set} : (A → B) → F A → F B (1)
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satisfies the functor laws. Semantically, an algebra φ determined by a functor
F (F -algebra) is a pair 〈C, f〉 where C is a set (the carrier) and f : F C → C
a function (the structure map). F -algebras together with their homomorphisms
form a category. In this category, it is possible to interpret the inductive datatype
associated with F as the initial object, denoted μ := 〈Fix F, inF 〉. The initiality
of μ boils down to the existence and uniqueness of fold f : Fix F → C. These
correspond, respectively, to the two directions of a logic equivalence known as
the universal property of fold [11,14], of which the uniqueness condition (in fact,
the critical one) is the following.

cfold un F =df ∀w h, (h ◦ inF = f ◦ (fmap h)) → (h w = fold f w) (2)

Initiality also implies that inF (the in-map) denotes an isomorphism, i.e. it has
an inverse outF : Fix F → F (Fix F ) (the out-map) such that the following hold
(we call these isorecursive equations).

∀x : Fix F, x = inF (outF x)
∀x : F (Fix F ), x = outF (inF x) (3)

An alternative initial semantics can be obtained using Mendler algebras, and it
is equivalent to the conventional one [24]. A Mendler F -algebra is a pair 〈C, f〉
where C : Set is the carrier, and f : ∀A : Set, (A → C) → (F A → C) is a
parametric map from morphisms to morphisms satisfying the following (for F
covariant [25]) strong Mendler algebra condition.

∀m : A → C, f A m = (f C id) ◦ (fmap m) (4)

Mendler F -algebras form a category where a morphism between Mendler
algebras 〈C1, f1〉 and 〈C2, f2〉 is a morphism h : C1 → C2 that satisfies
h ◦ f1 C1 idC1 = f2 C1 h. Assuming the conventional initial F -algebra μ exists,
it can be proved that 〈Fix F, λA m. inF ◦ (fmap m)〉 is the initial Mendler F -
algebra. The initiality condition plays an analogous role as in the conventional
case. The uniqueness of Mendler-style fold can be expressed as follows.

mfold un F =df ∀w h, (h ◦ inF = f (Fix F ) h) → (h w = fold f w) (5)

Initial algebra semantics is not restricted to datatypes in Set. An analogous
treatment can be given to relations, relying on indexed algebras. A relation can be
represented as a predicate, i.e. a function from the type of its tupled arguments
to Prop. Thinking for simplicity of Prop as a category, given a type K (i.e.
K : Type) corresponding to a small category, relations of type K → Prop can
be based on the category of diagrams of type K in Prop where an endofunctor
R : (K → Prop) → (K → Prop), called indexed functor here, is associated with
an indexed functor map that preserves identities and composition, as specified
in Coq by a type class FunctorI where

fmapI {A B : K → Prop} : (∀w, A w → B w) → ∀w, R A w → R B w (6)
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satisfies the functor laws. The inductively defined relation associated with R
can be interpreted as the initial object in the category of K-indexed R-algebras
(either of the conventional or the Mendler variety), defined by indexing with K
the carriers as well as the associated maps.

Coq is based on the calculus of inductive constructions (CIC) [5] which
extends the calculus of constructions (CC) [8] with inductive and coinductive
definitions. CC allows for definitions that are impredicative, in the sense of
referring in their bodies to collections that are being defined. The solution to
the positivity problem adopted in MTC [11] goes back to Pfenning et al. [19] in
relying on a Church-style encoding of fixpoint operators, thus requiring impred-
icative definitions. In general, Coq relies on the universe Prop of propositions for
impredicative definitions, whereas it uses the universe Set of sets for the pred-
icative hierarchy. However, we need sets in order to take advantage of Σ types.
For this reason, we resort to using Coq’s impredicative-set option, as MTC
does.

From the point of view of a type theoretic representation, the type of a
conventional algebra (or Church algebra) for a functor F and a set C can be
identified with the type of its structure map.

AlgC F C =df F C → C (7)

If the initiality property of fixed points is weakened to an existence property,
a fixpoint operator can be regarded as a function that maps an algebra to its
carrier. An abstract definition of the type-level fixpoint operator FixC : (Set →
Set) → Set can then be given, as elimination rule for F -algebras, impredicatively
with respect to Set.

FixC F =df ∀A : Set, AlgC F A → A (8)

The map foldC F C : AlgC F C → FixC F → C, corresponding to the elimination
of a fixpoint value, can be defined as the application of that value.

foldC F C f x =df x C f (9)

Relying on the functoriality of F , the in-map inC F : F (Fix F ) → Fix F and the
out-map outC F : Fix F → F (Fix F ) can be defined as functions.

inC F =df λx A f. f (fmap F (foldC F A f) x) (10)

outC F =df foldC F (F (Fix F )) (fmap F (inC F )) (11)

Also Mendler algebras can be characterised impredicatively by the type of
their structure maps. A fixpoint operator can be defined as in the conventional
case [11,18].

AlgM F C =df ∀A : Set, (A → C) → (F A → C) (12)

FixM F =df ∀C : Set, AlgM F C → C (13)
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Unlike the conventional case, the type of a Mendler algebra can be read as the
specification of an iteration step, where the bound type variable A represents
the type of the recursive calls. The corresponding fold operator

foldM F C f x =df x C f (14)

indeed has type

foldM F C : (∀A : Set, (A → C) → (F A → C)) → (FixM F) → C (15)

which can represent an induction principle, under the assumption that the argu-
ment to the induction hypothesis is only used therein without further analysis
[3,18]. In-maps and out-maps can be defined as follows.

inM F (x : F (FixM F )) : FixM F =df

λA (f : AlgM F A). f (FixM F ) (foldM F A f) x
(16)

outM F (x : FixM F ) : F (FixM F ) =df x (F (FixM F ))
(λA (r : A → F (FixM F )) (a : F A). fmap F (λy : A. inM F (r y)) a) (17)

Whenever R : (K → Prop) → (K → Prop) is an indexed functor, an indexed
R-algebra can be characterised as a K-indexed map, given an indexed carrier
D : K → Prop.

AlgCI K R D =df ∀w : K, R D w → D w (18)

Analogously, a K-indexed Mendler R-algebra can be characterised as a function
between indexed morphisms.

AlgMI K R D =df

∀A : K → Prop, (∀w : K, A w → D w) → ∀w : K, R A w → D w
(19)

The corresponding fixpoint operator, with type ((K → Prop) → K → Prop) →
K → Prop, and the structuring operators (mediating map, in-map and out-map)
can be defined as follows (we show the Mendler variant, the conventional one is
analogous).

FixMI K R (w : K) =df ∀A : K → Prop, AlgMI K R A → A w (20)

foldMI K R D (f : AlgMI K R D) (w : K) (x : FixMI K R w) =df x D f (21)

inMI K R (w : K) (x : R (FixMI K R) w) : FixMI K R w =df

λA (f : AlgMI K R A). f (FixMI K R) (foldMI K R A f) w x
(22)

outMI K R (w : K) (x : FixMI K R w) : R (FixMI K R) w =df

x (R (FixMI K R)) (λ A (r : ∀v, A v → R (FixMI K R) v)
(w : K) (a : R A w). fmapI R (λy : A w. inMI K R w (r w y)) a)

(23)
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The strong Mendler algebra property, i.e. (4), is not enforced by the
impredicative definitions. In the Coq formalisation we introduce a type class
(StrongMendlerAlgebra) which requires the satisfaction of (4). This property can
be easily discharged, anyway, given the semantic equivalence between Mendler
and Church approach, and the possibility to transform Mendler fixpoints into
Church ones and vice-versa (see [22]). More critically, in either variant of
the impredicative encoding (either Mendler or conventional, and similarly for
indexed functors) the definitions of fold do not guarantee full initiality – they only
enforce a weaker condition, called quasi-initiality by Wadler [26]. The impred-
icative definitions do not even suffice to enforce the isorecursive equations. In
order to obtain initiality, what is missing is the uniqueness side of the universal
properties of fold [11,14], i.e. in Set, (2) for the conventional variant, and (5) for
the Mendler one.

The universality of fold is a very strong property which ensures semantic
soundness and is required by the Hutton’s approach [14], on which MTC relies.
Proving universality in the impredicative encoding is still an open challenge
to our knowledge. MTC gets around the problem, by packing each fixpoint
object together with a proof of uniqueness of its fold, using Σ types. Essen-
tially, this is done by using a lifted form of in-map, that for functor F has
type AlgC F (Σw, cfold unique F w), to define an enhanced form of smart con-
structors [10]. This complicates significantly the syntax, and involves a major
part of the MTC development. Our implementation [22] does not follow the
MTC workaround. We delegate full initiality to type classes, using FoldUnivProp
(with cfold un) for Church-style fixpoints and MFoldUnivProp (with mfold un) for
Mendler ones, without actually discharging the proof obligations. On the other
hand, we distinguish between full initiality and isorecursiveness, which we del-
egate to a distinct type class, IsoRecursive, associated with the Mendler variant
of the isorecursive equations (3).

3 Modular Datatypes: An Example

Our driving example, a simple language A of arithmetics with natural numbers
and sums, is similar to those already used in the relevant literature [11,20]. The
syntactic categories of types and values are non-recursively defined. Values are
lifted natural numbers. Types include naturals and a bottom type, the latter
as a basic exception type (here included for expository purpose – ensuring case
analysis does not suffice to prove subject reduction).

Inductive Val := val (n : nat) (24)
Inductive Typ := Nat | Bot (25)

Expressions include natural numbers, sums, and a catch-all exception. The cor-
responding signature can be easily shown to instantiate the Functor class.

Inductive ExpS (C : Set) := lit (v : nat) | sum (e1 e2 : C) | err (26)
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The recursive type of expressions can be obtained as fixpoint of the functor.

Definition Exp := Fix ExpS (27)

Here and further on we write Fix for fixpoints in Set, dropping the superscript
(and so for in, etc., and analogously for relations) when we want to emphasise
that we can either use conventional or Mendler fixpoints, bearing in mind that
it is always possible to convert between them [22].

The modularity of datatypes à la carte [20] relies on the fact that coproduct
preserves functoriality: given functors F1, F2, their coproduct F1⊕F2 also defines
a functor. We can then take advantage of compositionality as in the non-recursive
case. Initial algebra semantics also ensures that recursive functions defined on the
structure of an inductive type, represented as fold of an algebra, enjoy modularity
relying on the equivalence between (A → C) ∧ (B → C) and (A ⊕ B) → C.

In our example, expression evaluation can be defined recursively, representing
partiality with option types, starting from the following, auxiliary non-recursive
definitions.

Definition vsum (v1 v2 : option Val) : option Val := match v1 with
| Some (val n1) ⇒ match v2 with

| Some (val n2) ⇒ Some (val (n1 + n2))
| ⇒ None

| ⇒ None
Definition exp (v : option Val) : exp := match v with

| Some (val n) ⇒ lit n
| ⇒ err

(28)

The evaluation function can be structurally characterised as an algebra. The
following definition gives us a Mendler algebra, which unlike a conventional one
allows for control over evaluation, as discussed in [11] (indeed, Mendler algebras
are used in MTC only for this reason).

Definition evalA (A : Set) (r : A → option Val) (e : ExpS A) :
option Val := match e with lit n ⇒ Some (val n)

| sum e1 e2 ⇒ vsum (r e1) (r e2)
| err ⇒ None

(29)

Finally, the following defines our evaluation function as fold of the algebra.

Definition eval : Exp → option Val := foldM evalA (30)

We can define the typing relation inductively, using the indexed functor TypingS
as signature.

Inductive TypingS (T : (Exp ∗ Typ) → Prop) : (Exp ∗ Typ) → Prop :=
| LitTyp : ∀n : nat,TypingS T (in (lit n), Nat)
| SumTyp : ∀ (e1 e2 : Exp),

T (e1, Nat) → T (e2, Nat) → TypingS T (in (sum e1 e2), Nat)
| ErrTyp : TypingS T (in err, Bot)

(31)
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Once the appropriate definition of fmapI is provided, the proof that TypingS is an
instance of FunctorI can be discharged almost automatically. We can then give a
modular definition of Typing

Definition Typing : (Exp ∗ Typ) → Prop := FixMI (Exp ∗ Typ) TypingS (32)

and use it to define the following notion of type preservation

Definition type preservation (e : Exp) : Prop :=
∀t : Typ, TypingX (e, t) → TypingX ((exp ◦ eval) e, t) (33)

relying on TypingX =df TypingS Typing.

4 Inductive Proofs with MTC Induction

The impredicative encoding makes it easy to represent modular datatypes in
Coq, but leaves us with the problem of how to reason inductively about them.
There is no conventional induction principle that can be applied to a term of
type FixC F , as this type is syntactically a higher-order definition rather than
an inductive datatype – and similarly for Mendler-style encodings.

The simplest case of an inductive proof, schematically, is one in which given
a type T as the representation of an inductive datatype and a goal G : Prop
depending on a context Γ , we can produce a valid sequent

Γ, w : T � g : G (34)

reasoning semantically by structural induction on T . This is only a special case of
the more general one, in which the goal can depend on the inductive argument
– as in the following, where we let P : T → Prop be a predicate on T , with
T =df FixC F .

Γ,w : T � g : P w (35)

The following can be proved relying on the isorecursiveness of T .

∀v : T, ∃w : F T, P v = P (inC F w) (36)

Rewriting (35) with (36), we obtain

Γ,w : F T � g′ : P (inC F w) (37)

Here it is possible to apply induction on w, since F T is syntactically an inductive
datatype: however, what we actually get is case analysis.

The solution adopted by MTC [10,11] relies on the following fundamental
result, which we call Σ induction.

Lemma SigmaInduction {F : Set → Set} {HF : Functor F}
{HUP : ∀x : FixC F, FoldUnivProp x}
{P : FixC F → Prop} (p alg : AlgC F (Σx, P x))
{HWF : WellFormedProofAlgebra p alg} :

∀x : FixC F, P x

(38)
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An analogous result can be proved for Mendler algebras – i.e. for Σ-proof
Mendler algebras of type e.g. AlgM F (Σx, P x) [22]. The essential insight
of Σ induction consists of reducing our task to one of proving

Γ � p alg : AlgC F (Σx. P x) (39)

Under the required conditions this suffices to obtain a proof of our original goal.
One of the main assumptions is the initiality for F (HUP ). As mentioned, MTC
can dispense with making explicitly this assumption by packing fixpoint objects
with their universal properties. The other critical assumption is the well formed-
ness of p alg as a Σ-proof algebra (HWF ), which boils down to the following:

∀e : F (Σx, P x), proj1 sig (p alg e) =
in (fmap (Σx, P x) (Fix F ) (proj1 sig (Fix F ) P ) e) (40)

Crucially, this condition applies to algebras (i.e. objects) rather than types.
Indeed, this is a very strong condition for the object, given the type: it says
that the algebra maps each element of the datatype to a dependent sum that
has the same element as witness – so, under the Σ cover, the behaviour is actu-
ally that of a dependent product. MTC provides a general technique to construct
well-formed Σ-proof algebras for a functor. This technique consists of providing
a weak structural induction principle for the datatype (also called poor man’s
induction), and on building Σ-proof algebras based on that principle (39). The
weak induction trick deflates the problem of proving well-formedness for each
object, but it breaks type directedness, introducing a considerable detour: an
inductive principle is used to filter terms that are fed to an induction-free proof
method – such as Σ induction is.

In our example, the weak induction principle for Exp is the following.

Definition ExpWeakInduction (P : Exp → Prop)
(Hlit : ∀n, P (inC (lit n)))
(Hsum : ∀ (e1 e2 : Exp) (I1 : P e1) (I2 : P e2), P (inC(sum e1 e2)))
(Herr : P (inC err))
(e : Exp (Σx, P x)) : Σx, P x := match e with

| lit n ⇒ exist P (inC (lit n)) (Hlit n)
| sum e1 e2 ⇒ exist P (inC(sum e1 e2))

(Hsum (proj1 sig a1) (proj1 sig a2) (proj2 sig a1) (proj2 sig a2))
| err ⇒ exist P (inC err)) Herr

(41)

Using ExpWeakInduction as a refinement step, it is possible to prove a special form
of (36), following the main lines of a conventional inductive proof. As expected,
the proof thus obtained can be easily shown to be a well-formed Σ-proof algebra.
Therefore, under the initiality assumption for Exp, Σ induction can be applied
to obtain a modular version of subject reduction (isorecursiveness of Typ is also
used) [22].
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5 Mendler-Style Induction

Is it possible to obtain modular inductive proofs that are properly type directed?
Reconsidering the schematic example in Sect. 4, let us focus on the non-
dependent case (34): we already know how to get to

Γ,w : F (FixC F ) � g′ : G (42)

using isorecursiveness, and we know that the problem at this point is the lack
of an induction hypothesis. Supplying such hypothesis explicitly would give us
a generic representation of the step lemma in our inductive proof. This is essen-
tially the idea behind Mendler induction: under the assumption that the argu-
ment passed to the induction hypothesis is used only there, without further case
analysis, and that therefore we make no use of its type structure, its type can
be represented by a fresh type variable [3,18]. Under these restriction, which in
fact rules out dependent induction, we can provide the following representation
of the step lemma in our inductive proof.

Γ, A : Type, h0 : A → G, h1 : F A � p : G (43)

Given f =df λA h0 h1. p, the above can be rewritten as a Mendler algebra.

Γ � f : AlgM F G (44)

For the use we are making of it, this is indeed a Mendler proof algebra. The orig-
inal goal (34) can now be obtained by folding, without need of further adjust-
ments.

Γ � foldM F G f : ∀w : T, G (45)

In order to prove (43), case analysis (as provided in Coq e.g. by inversion and
destruct tactics [5]) can be applied to h1, allowing us to reason on the struc-
ture of F A. This actually results in doing induction on that structure, as the
induction hypothesis h0 is already there – granted by the type. In contrast with
Σ-proof algebras, Mendler algebras provide us with a proper induction scheme –
indeed one that has the same content as non-dependent, structural induction. In
relationship with modularity, such algebras can be regarded as proof modules,
that can be composed together in the usual sense of case analysis on coprod-
ucts. This modularity is entirely type directed and does not involve significant
boilerplate, unlike modularity in the MTC approach, which involves not only
composing Σ-proof algebra, but also their well formedness proofs.

Although the isorecursive equations are used already in (42), the applica-
tion of Mendler induction requires neither full initiality, unlike Σ induction, nor
even the strong Mendler algebra property. In contrast with the MTC approach,
the Mendler-style one maintains a distinction between syntactical reasoning by
structural induction, which is directed solely by types, and semantic soundness.

If we consider specifications written in a relational style, as it is particu-
larly natural in structural operational semantics [7], non-dependent induction is
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expressive enough to cover interesting cases [23]. However, in a broader math-
ematical perspective, non-dependent induction is rather restrictive. Indeed, it
does not suffice to prove a simple type preservation property based on a func-
tional characterisation of evaluation, such as in our example. Can we extend the
applicability of this schematic approach beyond non-dependent induction?

We address this problem in terms of a technique which we call predicatisation,
used to reduce dependent induction, transforming proofs that require dependent
structural induction into proofs that rely on non-dependent structural induc-
tion with an additional premise, called predicatisation hypothesis. Predicatisation
makes it possible to switch the inductive argument of the original proof to an
inductive predicate over the original argument, thus lifting the proof dependency
on that argument to a type-level dependency. In our schematic example (35) this
is possible, when there exists a T -indexed functor R : (T → Prop) → T → Prop
(called characterising functor) and a predicate S on T such that S =df FixMI T R
(called characterising predicate), for which the following is provable by structural
induction on h

Γ, w : T, h : S w � l : P w (46)

and moreover the predicatisation hypothesis can be discharged, i.e.

Γ, w : T � S w (47)

Proving (46) by Mendler induction involves proving the following

Γ, A : T → Prop, h0 : ∀v : T, A v → P v, w : T, h1 : R A w � p : P w
(48)

Given f =df λA h0 w h1. p, this is equivalent to

Γ � f : AlgMI T R P (49)

i.e. a T -indexed Mendler algebra. As in the non-dependent example, the original
goal can be simply obtained by folding.

Γ � foldMI T R P f : ∀w : T, S w → P w (50)

The inductive structure of the new proof is determined by S rather than T . In
order to obtain a modular proof that can be easily related to the conventional
one, it is desirable that S and T have the same shape, and so the associated
functors, R and F .

Our Coq formalisation of predicatisation relies on the following type class.

Class Predicatisable (F : Set → Set) {H : Functor F} := {
char pred sig : (FixM F → Prop) → (FixM F → Prop);
char pred sig functor : FunctorI (FixM F ) char pred sig;
char pred : FixM F → Prop := FixMI (FixM F ) char pred sig;
total pred : ∀w : FixM F, char pred w }

(51)
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Notice that the characterising predicate char pred needs to be an indexed
Mendler fixpoint, rather than a conventional one, to support its use as inductive
argument in Mendler-style induction.

The following lemma provides the key for the induction switch which makes
dependent induction reduction possible.

Lemma induct switch (F : Set → Set) {HF : Functor F}
{HP : Predicatisable F} (P : Fix F → Prop) :

(∀w : Fix F, P w) = (∀w : Fix F, char pred F w → P w)
(52)

It is then possible to prove the lemma that essentially constitutes our top-level
tactic to apply Mendler induction to dependent cases over sets.

Lemma Mendler induct (F : Set → Set) {HF : Functor F}
{HP : Predicatisable F} (P : Fix F → Prop) :

AlgMI (Fix F ) (char pred sig F ) P → ∀w : Fix F, P w
(53)

The HP premise makes it possible to discharge the predicatisation hypothesis
for Fix F . The critical part in discharging this instantiation is proving that
the characteristic predicate is total (total pred), as this may require dependent
induction, and therefore Σ induction. For this reason, it is useful to define the
characterising predicate so that we can build a well-formed Σ-proof algebra
Alg F (Σx, char pred x). Unlike in MTC, here Σ induction is needed for the proof
of a single property for each functor. The natural choice for the characteristic
predicate functor is a T -indexed functor that has the same shape as F . A well-
formed Σ-proof algebra can then be written down either in a direct way or
interactively.

In our concrete example, the following Exp-indexed functor is used to define
the characterising predicate IsExp for Exp.

Inductive IsExpS (T : Exp → Prop) : Exp → Prop :=
| litIsExp : ∀ n : nat, IsExpS T (in (lit n))
| sumIsExp : ∀ e1 e2, T e1 → T e2 → IsExpS T (in (sum e1 e2))
| errIsExp : IsExpS T (in err)

(54)

Definition IsExp := FixMI Exp IsExpS (55)

The following Σ-proof algebra can be easily proved to be well-formed.

Definition isExpPA (t : ExpS (Σx, IsExp x)) :
Σx, IsExp x := match t with

| lit n ⇒ exist (inMI (litIsExp n))
| sum e1 e2 ⇒ exist (inMI (sumIsExp

(proj1 sig e1) (proj1 sig e2) (proj2 sig e1) (proj2 sig e2)))
| err ⇒ exist (inMI (errIsExp ))

(56)

Under the predicatisation hypothesis, one can prove that the recursive function
isExpP =df foldC isExpPA defines an injection from Exp to Σx, IsExp x, i.e. that
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proj1 sig ◦ isExpP = id. In fact, this is a property closely associated with well
formedness, that could indeed be included in the specification of predicatisation.

The totality requirement (total pred) can be discharged by Σ induction, under
the initiality assumption for Exp. Notice that while char pred has to be an indexed
Mendler algebra (as it is used as inductive argument of Mendler induction in the
main proof – see below), here we find it more convenient to use the Church
fixpoint of ExpS, constructing the Σ-proof algebra as a conventional algebra,
and doing it directly (rather than interactively). Alternatively, we could have
constructed a well-formed Σ-proof Mendler algebra and used the Mendler version
of Σ induction [22]. Since we have to build a single Σ-proof algebra for each
datatype, no issue arise about generalising such constructions.

The inductive reasoning that is really specific to the subject reduction proof
can take place independently of universality, though depending on isorecursive
equations. Using Mendler induction, isorecursiveness is provable for TypS and
ExpS, under the corresponding predicatisation hypotheses. The subject reduction
proof consists of the construction of a Exp-indexed Mendler algebra for IsExpS
(the characterising functor of Exp) with type preservation (the property to be
proved) as indexed carrier.

Lemma SubRedMAlg {H1 : IsoRecursive TypS} {H2 : IsoRecursive ExpS} :
AlgMI Exp IsExpS type preservation

(57)

We can use the Coq inversion tactic to decompose the goal and reason by case
analysis, relying on the fact that the induction hypothesis are built into each case.
Although we are applying induction on IsExp rather than on Exp, the structure
of the proof is essentially unchanged with respect to the conventional proof.
The type preservation lemma can be finally proved almost immediately, using
Mendler induct and SubRedMAlg. The proof can be either carried out under the
predicatisation hypothesis for ExpS

Lemma subject reduction1 {H1 : IsoRecursive TypS}
{H2 : Predicatisable ExpS} : ∀e : Exp, type preservation e

(58)

or else discharging predicatisation

Lemma subject reduction2 {H1 : IsoRecursive TypS}
{H2 : ∀x : Exp, FoldUnivProp x} : ∀e : Exp, type preservation e

(59)

under conditions that match exactly those of the MTC-style proof discussed in
Sect. 4 [22].

6 Conclusion

In general, the applicability of Mendler induction is wider than the provability
of the corresponding predicatisation hypothesis by Σ induction. For example, in
[23] we discussed the purely relational specification based on small step semantics
of a language including binders among other features, hence requiring inductive
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datatypes with negative occurrences. A similar language could be specified by
an evaluation function, as in our current example. This would require depen-
dent induction, which could be reduced to non-dependent one using predicatisa-
tion. However, in the case of binders we could not discharge the predicatisation
hypothesis using the Σ algebra technique as we have just discussed it. This seems
to match the fact that in MTC binders require a more sophisticated treatment
[11]. This is a limitation of the predicatisation technique, rather than one of
Mendler induction. It is comparatively straightforward to extend Mendler-style
reasoning to more complex cases. In [23] we discussed basic support for mutual
induction, which we have improved in [22] relying on indexed functors on sets.

We have presented a novel modular induction technique, based on Mendler
induction and datatype predicatisation, that improves over existing approaches
in terms of a broader class of proofs which can be addressed in a style closely
resembling the conventional, non-modular one. Different techniques have been
considered to get around the problem of non-positive type definitions, including
type-based termination [2], and more expressive forms of Mendler induction [4].
Such techniques could be useful in tackling current limitations. On the other
hand, a more precise specification of predicatisation would involve relating con-
structor shapes. This seems intuitively easy to express in a container semantics,
as well as in terms of subtyping constraints. Together with the implementation
of smart constructor and boilerplate support for datatype à la carte, it is going
to be matter for further work. A different question is, whether there are condi-
tions that make initiality provable in the impredicative encoding, or whether the
MTC approach of packing proofs with fixpoint objects is the best which can be
achieved.
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20. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008)
21. Torrini, P.: Language specification and type preservation proofs in Coq-companion

code (2015). http://cs.swan.ac.uk/cspt/MDTC
22. Torrini, P.: Modular induction in Coq – companion code (2016). https://bitbucket.

org/ptorrx/modind
23. Torrini, P., Schrijvers, T.: Reasoning about modular datatypes with Mendler induc-

tion. In: Matthes, R., Mio, M. (eds.) Proceedings of FICS 2015. EPTCS, pp. 143–
157 (2015)

24. Uustalu, T., Vene, V.: Mendler-style inductive types, categorically. Nord. J. Com-
put. 6(3), 343 (1999)

25. Uustalu, T., Vene, V.: Coding recursion a la Mendler (extended abstract). Techni-
cal report, Department of Computer Science, Utrecht University (2000)

26. Wadler, P.: Recursive types for free! (1990). http://homepages.inf.ed.ac.uk/
wadler/papers/free-rectypes/free-rectypes.txt

27. Wadler, P.: The expression problem (1998). http://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt

http://people.csail.mit.edu/bendy/3MT/
http://cs.swan.ac.uk/cspt/MDTC
https://bitbucket.org/ptorrx/modind
https://bitbucket.org/ptorrx/modind
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt


Formalized Timed Automata

Simon Wimmer(B)

Institut für Informatik, Technische Universität München, Munich, Germany
wimmers@in.tum.de

Abstract. Timed automata are a widely used formalism for modeling
real-time systems, which is employed in a class of successfulmodel checkers
such as UPPAAL. These tools can be understood as trust-multipliers: we
trust their correctness to deduce trust in the safety of systems checked by
these tools. However, mistakes have previously been made. This particu-
larly regards an approximation operation, which is used bymodel-checking
algorithms to obtain a finite search space. The use of this operation left a
soundness problem in the tools employing it, which was only discovered
years after the first model checkers were devised. This work aims to pro-
vide certainty to our knowledge of the basic theory via formalization in
Isabelle/HOL:we define themain concepts, formalize the classic decidabil-
ity result for the language emptiness problem, prove correctness of the basic
forward analysis operations, and finally outline how both streams of work
can be combined to show that forward analysis with the common approxi-
mation operation correctly decides emptiness for the class of diagonal-free
timed automata.

1 Introduction

The foundations of the theory of timed automata are presented in the semi-
nal work of Alur and Dill [1,2]. They introduced the formalism as a model for
systems with real-time constraints and showed how to decide the language empti-
ness problem via the so-called region construction. Unfortunately, the number
of regions explored by this algorithm is exponential in the size of the automa-
ton under consideration. Moreover, Alur and Dill also showed that the language
emptiness problem for timed automata is PSPACE-hard. Still, the formalism is
employed in practical model checking [12,13,19] by means of algorithms based
on Difference Bound Matrices (DBMs). These algorithms (with some more elab-
orate optimizations) can cope with many interesting real-life model checking
problems. The search space examined by the DBM algorithms is potentially
infinite. Therefore an approximation is used to obtain a finite search space. The
basic idea is to represent every state (called zone) by the smallest set of regions
which contains the state.

It took nearly a decade after this operation was initially devised, until Patricia
Bouyer discovered [5] that the common algorithmic realization of this operation
diverges from its intended result: the computed result is always a convex union of
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regions, whereas the smallest set of regions containing a zone can be non-convex.
This left a soundness problem, which fortunately vanishes for the restricted class
of so-called diagonal-free timed automata [6] (Sect. 2.1 precisely characterizes
this class). While not as expressive as the full formalism of timed automata, this
class is sufficient for modeling most of the problems of practical interest, which
explains why the problem was not discovered for many years.

This work aims to solidify the theoretical grounds on which real-time model
checking with diagonal-free timed automata stands, by formalizing the basic the-
ory and algorithms in Isabelle/HOL, and then going the full length to prove
Bouyer’s correctness result. Section 2 will present the formalization of the basic
notions for diagonal-free timed automata. Then Sect. 3 will show how we for-
malized DBMs and obtained soundness and completeness results for their basic
algorithms. This includes a formalization of the Floyd-Warshall algorithm. After-
wards (Sect. 4) we define the notion of regions and prove that they are suitable for
deciding the emptiness problem on timed automata. Finally, in Sect. 5, a refined
version of these regions will be used to precisely formalize the approximation
operation. To tie the ends of our formalization together, this characterization of
approximation will be connected with its algorithmic version. This enables us to
reuse the decidability result on the first region construction to prove that DBM-
based algorithms together with approximation can decide the language emptiness
problem for diagonal-free timed automata. For lack of space, many of our defin-
itions and proofs are shortened or stated informally. We refer the reader to the
entry in the Archive of Formal Proofs [15] for the full version (over 18500 lines).

1.1 History and Related Work

As mentioned, the basic theory was devised by Alur and Dill [1,2]. The use of
DBMs was also proposed by Dill [10] and brought to practical model checking by
Yi et al. [18]. Bouyer’s developments of our main correctness results are spread
over two papers. The first one presents a generalization of timed automata to
updatable timed automata and revisits the basic decidability results for this
class [7]. The second one [6] connects these results with DBMs to prove that
the combination of DBM-based forward analysis operations and approximation
decides the language emptiness problem.

We are aware of one previous proof-assistant formalization of timed automata
using PVS [16,17]. This work has the basic decidability result using regions
and claims to make some attempt to extend the formalization towards DBMs.
Another line of work [11,14] aims at modeling the class of p-automata [3]
(which is undecidable in the general case) in Coq and proving properties of
concrete p-automata within Coq. A similar approach was pursued with the help
of Isabelle/HOL in the CClair project [8]. In contrast, the most important con-
tributions of our work are the full formalization of the relevant DBM algorithms,
and particularly the rather intricate developments towards the correctness proof
for the approximation operation – both of which pertain to practical real-time
model checking.
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Unless otherwise stated, our formalizations of the basic notions and DBMs are
based on a popular tutorial by Bengtsson and Yi [4],while the developments for
the region constructions and the final correctness result follow Bouyer’s precise
work.

2 Diagonal-Free Timed Automata in Isabelle/HOL

2.1 Syntactic Definition

Compared to standard finite automata, timed automata introduce a notion of
clocks. We will fix a type ′c for the space of clocks, type ′t for time, and a type
′s for locations. While most of our formalizations only require ′t to belong to a
custom type class for totally ordered dense abelian groups, we worked on the
concrete type real for the region construction for simplicity. Figure 1 depicts an
example of a diagonal-free timed automaton.

s1

c1 ≤ 3

s2

c1 > 2 ∧ c2 ≤ 2

c1 < 1, a2, c2 := 0
c1 ≤ 3, a1, c1 := 0

a3

Fig. 1. Example of a diagonal-free timed automaton with two clocks.

Locations and transitions are guarded with clock constraints, which have to
be fulfilled to stay in a location or to transition between them. The variants of
these constraints are modeled by

datatype ( ′c, ′t) cconstraint =
AND (( ′c, ′t) cconstraint) (( ′c, ′t) cconstraint) |
LT ′c ′t | LE ′c ′t | EQ ′c ′t | GT ′c ′t | GE ′c ′t

where the atomic constraints in the second line represent the constraint c ∼ d
for ∼ = <, ≤, =, >, ≥, respectively. The sole difference to the full class of timed
automata is that those would also allow constraints of the form c1 − c2 ∼ d. We
define a timed automaton A as a pair (T , I) where I :: ′s ⇒ ( ′c, ′t) cconstraint
is an assignment of clock invariants to locations; T is a set of transitions written
as A � l −→g ,a,r l ′ where

– l :: ′s and l ′ :: ′s are start and successor location,
– g :: ( ′c, ′t) cconstraint is the guard of the transition,
– a :: ′a is an action label,
– and r :: ′c list is a list of clocks that will be reset to zero when the transition

is taken.
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Standard definitions of timed automata would include a fixed set of locations
with a designated start location and a set of end locations. The language empti-
ness problem usually asks if any number of legal transitions can be taken to reach
an end location from the start location. Thus we can confine ourselves to study
reachability and implicitly assume the set of locations to be given by the tran-
sitions of the automaton. Note that although the definition of clock constraints
allows constants from the whole time space, we will later crucially restrict them
to the natural numbers in order to obtain decidability.

2.2 Operational Semantics

We want to define an operational semantics for timed automata via an inductive
relation. States of timed automata are pairs of a location and a clock valu-
ation of type ′c ⇒ ′t assigning time values to clocks. Time lapse is modeled
by shifting a clock valuation u by a constant value d: u ⊕ d = (λx . u x + d).
Finally, we connect clock valuations and constraints by writing, for instance,
u � AND (LT c1 1 ) (EQ c2 2 ) if u c1 < 1 and u c2 = 2. The precise defini-
tion is standard.

Using these definitions, the operational semantics can be defined as a rela-
tion between pairs of locations and clock valuations. More specifically, we define
action steps

A � l −→g ,a,r l ′ ∧ u � g ∧ u ′ � inv-of A l ′ ∧ u ′ = [r→0 ]u
A � 〈l , u〉 →a 〈l ′, u ′〉

and delay steps via
u � inv-of A l ∧ u ⊕ d � inv-of A l ∧ 0 ≤ d

A � 〈l , u〉 →d 〈l , u ⊕ d〉
. Here inv-of

(T , I) = I and the notation [r → 0 ]u means that we update the clocks in
r to 0 in u. We write A � 〈l , u〉 → 〈l ′,u ′〉 if either A � 〈l , u〉 →a 〈l ′, u ′〉
or A � 〈l , u〉 →d 〈l ′, u ′〉.

2.3 Zone Semantics

The first conceptual step to get from this abstract operational semantics towards
concrete algorithms on DBMs is to consider zones. Informally, the concept
is simple; a zone is the set of clock valuations fulfilling a clock constraint:
( ′c, ′t) zone ≡ ( ′c ⇒ ′t) set. This allows us to abstract from a concrete state
〈l , u〉 to a pair of location and zone 〈l , Z 〉. We need the following operations on
zones:

Z ↑ = {u ⊕ d | u ∈ Z ∧ 0 ≤ d} and Z r → 0 = {[r→0 ]u | u ∈ Z}.

Naturally, we define a zone-based semantics by means of another inductive
relation:
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A � 〈l , Z 〉 � 〈l , (Z ∩ {u | u � inv-of A l})↑ ∩ {u | u � inv-of A l}〉
A � l −→g ,a,r l ′

A � 〈l , Z 〉 � 〈l ′, (Z ∩ {u | u � g})r → 0 ∩ {u | u � inv-of A l ′}〉
With the help of two easy inductive arguments one can show soundness and
completeness of this semantics w.r.t. the original semantics (where ∗ is the Kleene
star operator):

(Sound) A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′ =⇒ ∃ u∈Z . A � 〈l , u〉 →∗ 〈l ′, u ′〉
(Complete) A � 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ u ∈ Z

=⇒ ∃Z ′. A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′

This is an example of where proof assistants really shine. Not only are our Isabelle
proofs shorter to write down than for example the proof given in [18] – we have
also found that the less general version given there (i.e. where Z = {u}) yields
an induction hypothesis that is not strong enough in the completeness proof.
This slight lapse is hard to detect in a human-written proof.

3 Difference Bound Matrices

3.1 Fundamentals

Difference Bound Matrices constrain differences of clocks (or more precisely, the
difference of values assigned to individual clocks by a valuation). The possible
constraints are given by:

datatype ′t DBMEntry = Le ′t | Lt ′t | ∞
This yields a simple definition of DBMs: ′t DBM≡ nat ⇒ nat ⇒ ′t DBMEntry .
To relate clocks with rows and columns of a DBM, we use a numbering
v :: ′c ⇒ nat for clocks. DBMs will regularly be accompanied by a natural
number n, which designates the number of clocks constrained by the matrix.
Although this definition complicates our formalization at times, we hope that it
allows us to easily obtain executable code for DBMs while retaining a flexible
“interface” for applications. To be able to represent the full set of clock con-
straints with DBMs, we add an imaginary clock 0, which shall be assigned to
0 in every valuation. Zero column and row will always be reserved for 0 (i.e.
∀ c. v c > 0 ). If necessary, we assume that v is an injection or surjection for
indices less or equal to n. Informally, the zone [M ]v ,n represented by a DBM M
is defined as

{u | ∀ c1, c2, d . v c1, v c2 ≤ n −→
(M (v c1) (v c2) = Lt d −→ u c1 − u c2 < d)
∧ (M (v c1) (v c2) = Le d −→ u c1 − u c2 ≤ d)}

assuming that v 0 = 0.
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Example 1.

0 c1 c2( )0 ∞ Lt (−3 ) Le 0
c1 ∞ ∞ ∞
c2 Le 4 ∞ ∞

0 c1 c2( )0 Le 0 Lt (−3 ) Le 0
c1 ∞ Le 0 ∞
c2 Le 4 Lt 1 Le 0

0 c1 c2( )0 ∞ Le 0 Le 0
c1 ∞ ∞ Lt (−3 )
c2 ∞ Le 3 Le 0

The left two DBMs both represent the zone described by the constraint
c1 > 3 ∧ c2 ≤ 4, while the DBM on the right represents the empty zone.1

To simplify the subsequent discussion, we will set ′c = nat, v = id and
assume that the set of clocks of the automaton in question is {1 ..n}. We define
an ordering relation ≺ on ′t DBMEntry by means of

a < b
Le a ≺ Le b

a < b
Le a ≺ Lt b

a < b
Lt a ≺ Lt b

a ≤ b
Lt a ≺ Le b Lt ≺ ∞ Le ≺ ∞

and extend it to � in the obvious way. Observe that ≺ and � are total orders.
Additionally, we get the following important ordering property of DBMs (by
nearly automatic proof):

Lemma 1. ∀ i j . i ≤ n −→ j ≤ n −→ M i j � M ′ i j =⇒ [M ]v ,n ⊆ [M ′]v ,n

We can interpret DBMs as a graph with clocks as vertices and difference con-
straints as edges between them. To give a concrete meaning to this interpreta-
tion, we first define addition on DBM entries: a � ∞ = ∞;∞ � b = ∞; and
(∼1 x )� (∼2 y) = ∼ ′ (x + y) where ∼ ′ = Le if ∼1 = ∼2 = Le and ∼ ′ = Lt if oth-
erwise. Now the length of a path (of DBM indices representing clocks) defined by2

len M s t [] = M s t and len M s t (w · ws) = M s w � len M w t ws

gives the key to reasoning about this interpretation: for any u ∈ [M ]v ,n
and i , j , xs with set (i · j · xs) ⊆ {0 ..n},3 we get Lt (u i − u j ) ≺ len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with neg-
ative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist of
vertices less or equal to k for some k :

cycle-free-up-to M k n ≡
∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..k} −→ Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples.
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs.
3 set xs is the set of elements contained in xs.
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3.2 Operations

We define the necessary operations on DBMs to obtain a basic forward analysis
algorithm for reachability.

Floyd-Warshall algorithm. From Example 1 we can see that to be able to tell
if two DBMs represent the same zone, we first need to put them into some
canonical form. Formally, this canonical form is characterized by the following
property:

canonical M n ≡ ∀ i j k . i ≤ n ∧ j ≤ n ∧ k ≤ n −→ M i k � M i j � M j k

The key property of non-empty canonical DBMs is that we can find a valu-
ation u ∈ [M ]v ,n with u i − u j = d for any d between −M j i and M i j, or
equivalently:

Lemma 2. Assume Le d � M i j, Le (−d) � M j i for M with cycle-free M n,
canonical M n, and i , j ≤ n with i �= j. We define M ′ by setting M ′ i j = Le d
and M ′ j i = Le (−d) and M ′ i ′ j ′ = M i ′ j ′ for all (i ′,j ′) where (i ′,j ′) �= (i ,j ),
(j ,i). Then [M ′]v ,n ⊆ [M ]v ,n and cycle-free M ′ n.

Proof. From Lemma 1, we get [M ′]v ,n ⊆ [M ]v ,n. It remains to show that M ′

does not contain a negative cycle. Suppose there is one. Then we can also
find a smallest negative cycle, which, without loss of generality, is of the form
len M ′ i i (j · xs) ≺ Le 0 for some xs where i , j /∈ set xs. This proof step is
rather intricate in Isabelle. We use a function that explicitly computes small-
est negative cycles. An inductive argument yields a result that allows us to
rotate cycles. Now, we get Le d � len M ′ j i xs ≺ Le 0 . We have xs �= [] as this
would directly give us the contradiction Le d � Le (−d) ≺ Le 0 . This means
that Le d � len M j i xs ≺ Le 0 (by induction on xs), and because M is canon-
ical, M j i ≺ Le (−d), which is a contradiction to our assumption. ��
An important consequence is that any canonical DBM without a negative diag-
onal has at least one valuation, which we can construct by repeatedly applying
the theorem. Observe that this also implies that a DBM in canonical form is
empty iff there is a negative entry on its diagonal.

The canonical form can be computed by the Floyd-Warshall algorithm for the
all-pairs shortest paths problem. A simple HOL formulation of the algorithm is

fw-upd M k i j ≡ M (i := (M i)(j := min (M i j ) (M i k � M k j )))

fw M n 0 0 0 = fw-upd M 0 0 0
fw M n (Suc k) 0 0 = fw-upd (fw M n k n n) (Suc k) 0 0
fw M n k (Suc i) 0 = fw-upd (fw M n k i n) k (Suc i) 0
fw M n k i (Suc j ) = fw-upd (fw M n k i j ) k i (Suc j )

where f (a := b) ≡ λx . if x = a then b else f x. We abbreviate fw M n n n n as
FW M n. To prove that this algorithm computes the tightest difference con-
straint for all pairs of clocks, we claim:



432 S. Wimmer

Theorem 1
cycle-free-up-to M k n ∧ i ′ ≤ i ∧ j ′ ≤ j ∧ i ≤ n ∧ j ≤ n ∧ k ≤ n =⇒
Min {len M i ′ j ′ xs | set xs ⊆ {0 ..k} ∧ i ′ /∈ set xs ∧ j ′ /∈ set xs ∧ distinct xs}
= fw M n k i j i ′ j ′

The proof is a nested induction, which follows the program structure and
uses a standard argument. The theorem implies that FW computes a canonical
form:

Corollary 1. cycle-free M n =⇒ canonical (FW M n) n

The Floyd-Warshall algorithm also detects negative cycles by computing a
negative diagonal entry. The key observation is that a matrix of this kind
either has a negative diagonal entry to start with, or there is a maximal
k < n with cycle-free-up-to M k n. The latter means that the algorithm com-
putes a negative diagonal entry in iteration k + 1. In either case the negative
diagonal entry will be preserved by monotonicity of the algorithm. This yields
an emptiness check for DBMs.

Intersection. The intersection of two DBMs is trivial to compute. It is sim-
ply the point-wise minimum: And A B ≡ λi j . min (A i j ) (B i j ). The oper-
ation is correct in the following sense: [A]v ,n ∩ [B ]v ,n = [And A B ]v ,n. The
⊆-direction can directly be proved by Isabelle’s simplifier, while ⊇ requires a
rather lengthy proof by cases.

Reset. We need an operator reset such that u c = d for all u ∈ [reset M n c d ]v ,n.
Thus we define (reset M n c d) c 0 = Le d and (reset M n c d) 0 c = Le (−d). By
doing so, all difference constraints involving c are invalidated. Therefore we set
the corresponding DBM entries to ∞. However, this alone does not yield a cor-
rect operation. Consider clocks c1, c2 and c3 and a DBM represented by the clock
constraint c1 ≥ c2 + 1 ∧ c1 ≤ c3. By setting c1 to 0, we will lose all constraints
on c2 and c3. This means that the resulting zone will contain a valuation u with
u c1 = u c2 = u c3 = 0. There is clearly no way to set c1 back to a different value
such the resulting valuation would satisfy the original constraint. The way to
resolve this issue is to encode the information we had about c2 and c3 in the origi-
nal constraint (or DBM) also in the new DBM. This is, we derive c2 − c3 ≤ −1.
Concretely, we calculate (reset M n i d) j k =min (M j i + M i k) (M j k) for all
j , k ≤ n. Note that this computation does nothing ifM is already in canonical from,
allowing a simpler implementation.

For a list of clocks cs and a list of time stamps ts(|cs| = |ts|), set-clocks cs ts u
is the valuation for which (set-clocks cs ts u) csi = tsi and the value of u c is
unchanged for all other clocks c /∈ set cs. We lift reset to reset many clocks at
once by simply folding it over the list of clocks. We proved correctness of the
lifted operation (reset ′):

(Sound) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [reset ′ M n cs v d ]v ,n
=⇒ ∃ ts. set-clocks cs ts u ∈ [M ]v ,n

(Complete) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [M ]v ,n
=⇒ [cs→d ]u ∈ [reset ′ M n cs v d ]v ,n



Formalized Timed Automata 433

The proofs for these results are among the most complex ones in the whole
formalization. The reason is that manual case analyses have to be combined
with (linear) arithmetic reasoning, which is hard to automate in Isabelle.

Delay. We need an operation to compute time lapse, i.e. ([M ]v ,n)↑. For canonical
DBMs, this simply amounts to setting M i 0 = ∞ for all i ≤ n. In the general
case, intuitively we can lose information about the difference of two clocks that
was recorded between the upper bound of one of them and the lower bound of
the other. Accounting for this, we arrive at the following general operation:

up M ≡
λi j . if 0 < i then if j = 0 then ∞ else min (M i 0 � M 0 j ) (M i j ) else M i j

Correctness can be obtained similarly to the reset operation.

Abstraction. It is easy to turn an atomic clock constraint into a DBM that rep-
resents the same zone. For instance, the zone {u | u � EQ c d} is represented
by a DBM M where M c 0 = Le d and M 0 c = Le (−d), and all other entries
are unbounded. Using the already defined intersection operation for constructor
AND, a function abstr, which records entries in this manner while working recur-
sively through a constraint, turns constraints into a DBM-equivalent. Again, we
proved correctness (where collect-clks cc is the set of all clocks appearing in
constraint cc):

∀ c∈collect-clks cc. 0 < c ∧ c ≤ n =⇒ [abstr cc (λi j . ∞) v ]v ,n = {u | u � cc}

3.3 DBM Operational Semantics

In the last section we have elaborated the adequacy of our DBM-equivalents for
all zone operations, allowing us to compute the zone semantics with the help of
DBMs. Indeed we can define a new operational semantics based on DBMs:

M i = abstr (inv-of A l) (λi j . ∞) v
A � 〈l , M 〉 �v ,n 〈l , And (up (And M M i)) M i〉

A � l −→g ,a,r l ′ ∧ M i = abstr (inv-of A l ′) (λi j . ∞) v
A � 〈l , M 〉 �v ,n 〈l ′, And (reset ′ (And M (abstr g (λi j . ∞) v)) n r v 0 ) M i〉
Using the correctness results for the DBM operations, it is straightforward to
show that this semantics is equivalent to the zone semantics:

A � 〈l , [M ]v ,n〉 �∗ 〈l ′, Z 〉
←→ ∃M ′. A � 〈l , M 〉 �∗

v ,n 〈l ′, M ′〉 ∧ Z = [M ′]v ,n

However, we are not done yet: while we can practically compute the semantics
of timed automata, the search space could still be infinite. The rest of the paper
is concerned with overcoming this problem.
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4 From Classic Decidability to a Correct Approximation

4.1 Regions

In their seminal paper, Alur and Dill showed decidability of the emptiness prob-
lem for timed automata by giving an adequate finite partitioning of the set of
valuations into what they call regions. In this section, we will present our formal-
ization of this result and then show how to apply it to obtain a finite operational
semantics of zones. We use Bouyer’s definition of regions as, for one it is more
formal and thus easier to formalize, and secondly we will have to use a modified
version of it later on.

From now on we will work in a parametric theory (called locale in Isabelle),
which fixes X as the set of clocks of the automaton. Moreover, a clock ceiling k
will define an upper bound k c for the “relevant” range of any clock c ∈ X –
this ought to correspond to the maximal constant appearing for c in any con-
straint of the timed automaton, e.g., k c1 = 3 and k c2 = 2 for the automaton
of Fig. 1. This is, if ∼ c m is a constraint of the automaton, we postulate that
m ≤ k c, c ∈ X, and that m is a natural number.

A single clock value will always fall into one of three types of intervals from

datatype intv = Const nat | Intv nat | Greater nat

where the set of values they contain is given by the following rules:

u x = d

intv-elem x u (Const d)

d < u x ∧ u x < d + 1

intv-elem x u (Intv d)

d < u x

intv-elem x u (Greater d)

Let I :: ′c ⇒ intv be assigning intervals to clocks and r be a finite total pre-
order over X 0 ≡ {x ∈ X | ∃ d . I x = Intv d}. Then we define the corresponding
region region X I r as the set for which4

u ∈ region X I r iff ∀ x∈X . 0 ≤ u x ∧ intv-elem x u (I x )
and ∀ x∈X 0. ∀ y∈X 0. (x , y) ∈ r ←→ frac (u x ) ≤ frac (u y)

We will fix a set of regions Rα ≡ {region X I r | valid-region X k I r} where
valid-region X k I r holds if X is finite, r is a total preorder on X 0, and d ≤ k x
if I x = Const d, d < k x if I x = Intv d, and k x = d if I x = Greater d for all
x ∈ X. Observe that this definition remedies the potential overlap of intervals
that the definition of intv-elem would admit.

It is clear from Fig. 1, and relatively straightforward to prove in
Isabelle/HOL, that Rα is a finite partitioning of

V ≡ {u | ∀ x∈X . 0 ≤ u x} ,

4 frac r denotes the fractional part of any real number r.
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Fig. 2. (1) A region and its time successors in Rα, (2) the α-closure of a zone, and
(3) the β-approximation of a zone for X = {c1, c2} with k c1 = 3 and k c2 = 2.

the set of all positive valuations. What is not so obvious (and not mentioned
by Bouyer) but a useful property to work with, is that any valid region is also
non-empty. The crux of this proof is to observe that X 0 can be ordered in
equivalence classes according to r such that a valuation u can be chosen for
which frac (u x )≤ frac (u y) iff (x , y) ∈ r . This ordering property of finite total
preorders is non-trivial to formalize and makes this step rather technical.

4.2 Decidability with Regions

How are regions and timed automata connected? We will present three key
properties that connect regions to time lapse, clock resets, and clock con-
straints, respectively, allowing us to implement timed automata with the
help of regions. Let [u]Rα

∈ Rα be the unique region containing u. We call
[u ⊕ t ]Rα a time successor of [u]Rα for t ≥ 0 and denote by Succ Rα R the set
of all such time successors of all u ∈ R (cf. Fig. 2.1). Now the three key properties
are in order of decreasing difficulty:

(Set of regions) R ∈ Rα ∧ u ∈ R ∧ R ′ ∈ Succ Rα R
=⇒ ∃ t≥0 . [u ⊕ t]Rα

= R ′

(Compatibility with resets) R ∈ Rα ∧ u ∈ R ∧ 0 ≤ d ∧ d ≤ k x ∧ x ∈ X
=⇒ [u(x := d)]Rα

= {u(x := d) | u ∈ R}
(Compatibility with constraints)

R ∈ Rα ∧ ∀ (x , m)∈collect-clock-pairs cc. m ≤ k x ∧ x ∈ X ∧ m ∈ IN
=⇒ R ⊆ {u | u � cc} ∨ {u | u � cc} ∩ R = ∅

Proof. We concentrate on the set of regions property as it has the most inter-
esting formalization. Our proof combines elements of the “classic” result as pre-
sented e.g., in [9], and Bouyer’s approach. Let R = region X I r ∈ Rα for some
I, r, let R ′ = [v ⊕ t]Rα

, and assume u, v ∈ R and t ≥ 0. If I x=Greater (k x )
for all x ∈ X (“upper-right region”), we have Succ Rα R = {R} = {R ′} and the
proposition is obvious.

Otherwise observe that there exists a single closest successor Rsucc of R
(depicted as the thick, dark gray line in Fig. 2.1). We refer to Bouyer for a
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formal construction of this successor. We can show the characteristic property
of this closest successor:

∀ u ∈ R. ∀ t≥0 . (u ⊕ t) /∈ R −→ (∃ t ′≤t . (u ⊕ t ′) ∈ Rsucc ∧ t ′ ≥ 0 )

At this point Bouyer states that the proposition follows by “immediate induc-
tion”. However, regarding formalization, this induction is not quite imme-
diate. For instance, we attempted induction on the set of successors. This
necessitates a proof that this set is monotone, which we did not find our-
selves able to prove without asserting the very property we were about to
prove. Instead, we split the argument in two: one for the case where t < 1
and the other for the case where t is an integer. For the first case, con-
sider the “critical” set C = {x ∈ X | ∃ d . I x = Intv d ∧ d + 1 ≤ u x + t},
the set of clocks for which u ⊕ t is shifted beyond R ’s interval boundaries.
Observe that for the closest successor, the critical set is either the same (if
{x ∈ X | ∃ d . I x = Const d} �= ∅) or a strict subset (if otherwise). Thus the
proposition follows by induction on the cardinality of C. The case where t is an
integer follows by direct proof over the structure of regions. Shifting u first by
frac t and then by �t�, we arrive at the proposition. ��

This allows us to define a region-based operational semantics for timed
automata:

R ∈ Rα ∧ R ′ ∈ Succ Rα R ∧ R ∪ R ′ ⊆ {u | u � inv-of A l}
A,Rα � 〈l , R〉 � 〈l , R ′〉

A � l −→g ,a,r l ′ ∧ R ∈ Rα

A,Rα � 〈l , R〉 � 〈l ′, {[r→0 ]u | u ∈ R ∧ u � g} ∩ {u | u � inv-of A l ′}〉
From the aforementioned properties, we proved its adequacy w.r.t. to
reachability:

A,Rα � 〈l ,[u]Rα
〉 �∗ 〈l ′,R ′〉 ∧ R ′ �= ∅

←→ ∃ u ′. A � 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ [u ′]Rα
= R ′

Note that it is quite natural that this property is weaker compared to previous
ones: (sets of) regions only approximate zones and thus can contain valuations
that were never reachable in the concrete semantics.

4.3 Approximating Zone Semantics with Regions

From the pure decidability result on regions, we now move back towards zones by
approximating zones with the smallest set of regions that covers them. Formally
we define the α-closure of a zone Z : Closureα Z =

⋃ {R ∈ R | R ∩ Z �= ∅}.
Observe that this set need not be convex (cf. Fig. 2.2). We use the α-closure
to define an operational semantics on zones that approximates a zone with its
α-closure at the end of each step:

A � 〈l , Z 〉 � 〈l ′, Z ′〉 =⇒ A � 〈l , Z 〉 �α 〈l ′, Closureα Z ′〉
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Bouyer would now go and prove from the region properties that the α-closure
can be “pushed through” each step:

Z ⊆ V ∧ A � 〈l , Closureα Z 〉 � 〈l ′, Z ′〉
=⇒ ∃Z ′′. A � 〈l , Z 〉 �α 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

However, we did not find this property strong enough to prove soundness of �α
∗:

A � 〈l , Z 〉 �α
∗ 〈l ′, Z ′〉 ∧ Z ⊆ V

=⇒ ∃Z ′′. A � 〈l , Z 〉 �∗ 〈l ′, Z ′′〉 ∧ Closureα Z ′ ⊆ Closureα Z ′′ ∧ Z ′′ ⊆ Z ′

Note that this property is really what one wants to have since Closureα Z = ∅
iff Z = ∅ (assuming that Z ⊆ V). We conceived that instead it is sufficient to prove
monotonicity of the α-closure w.r.t. to steps in the zone semantics:

A � 〈l , Z 〉 � 〈l ′, Z ′〉 ∧ Closureα Z = Closureα W ∧ W ⊆ Z ∧ Z ⊆ V
=⇒ ∃W ′. A � 〈l , W 〉 � 〈l ′, W ′〉 ∧ Closureα Z ′ = Closureα W ′ ∧ W ′ ⊆ Z ′

Combining this with the fact that α-closure is an involution, we proved soundness
by induction over �α

∗. Completeness follows easily from monotonicity of �∗:

A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ Z ⊆ V ∧ Z ′ �= ∅
=⇒ ∃Z ′′. A � 〈l , Z 〉 �α

∗ 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

While these results are nice from a theoretical standpoint, it is not easier to
compute the α-closure than to directly implement timed automata with the
region construction presented in the last section. Therefore, the next section
will present Bouyer’s main insight – that these results can be used to show the
correctness of an easily computable approximation operation.

5 Normalization

Consider Fig. 2.3. In addition to Rα (solid lines), the figure shows a refinement
to what we will call Rβ (dashed lines). Observe that the smallest set of regions
covering the zone painted in dark gray (i.e. its β-closure) is convex, whereas
its α-closure is not (cf. Fig. 2.2). The idea is to use this β-closure to obtain an
effectively computable convex approximation for zones represented by DBMs –
DBMs always represent a convex zone and are always covered by a convex β-
closure – while inheriting the correctness result from the α-closure as we only
refine things.

5.1 β − approximation

Due to a lack of space, we do not present our construction of Rβ and only
say that it is can be adopted from Rα with some modifications. Note that we
do not need to transfer the (rather intricate) properties connecting Rα with
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transitions of timed automata since we will infer correctness directly from the
original construction.

We now want to formalize the notion of a convex approximation of zones
with regions from Rβ . We capture the notion of convexity directly with DBMs.
From Example 1, we can see that the types of regions in Rβ also induce a specific
format for our DBMs: for a DBM entry M i j, we do not need constants outside
of [− k i ; k j ] because this is precisely the range to which our regions bound the
corresponding values (analogously for constraints involving 0). Thus we use the
following notion of normalized DBMs:

normalized M ≡
(∀ i j . 0 < i ∧ i ≤ n ∧ 0 < j ∧ j ≤ n ∧ M i j �= ∞ −→

Lt (− k j ) � M i j ∧ M i j � Le (k i)) ∧
(∀ i≤n. 0 < i −→ (M i 0 � Le (k i) ∨ M i 0 = ∞) ∧ Lt (− k i) � M 0 i)

Furthermore, all constraints only need to use integer constants, which we denote
by dbm-int M. Building from these ideas, we define for any zone Z :

Approxβ Z ≡
⋂

{[M ]v,n |
∃U ⊆ Rβ . [M ]v,n =

⋃
U ∧ Z ⊆ [M ]v,n ∧ dbm-int M n ∧ normalized M}

5.2 Connecting Approxβ and Closureα

We already argued that is possible to inherit correctness from Closureα because
we only refine regions. Precisely, Bouyer proposed that for any convex zone
Z (i.e. Z = [M ]v ,n for some DBM M), we have Approxβ Z ⊆ Closureα Z, or
equivalently:

Theorem 2. R ∈ Rα ∧ Z ⊆ V ∧ R ∩ Z = ∅ ∧ Z = [M ]v ,n ∧ dbm-int M n
=⇒ R ∩ Approxβ Z = ∅
The formalization of Bouyer’s proof for this proposition is one of the most com-
plicated parts of our development. As the prose proof is already sufficiently
complicated, we abstain from presenting our formalization of this result.

Analogously to �α, we define an approximating semantics �β using Approxβ .
The main fact we can derive from the Theorem 2 is that �α is an approximation
of �β :

Lemma 3
A � 〈l , [M ]v ,n〉 �β 〈l ′, Z ′〉 ∧ dbm-int M n ∧ [M ]v ,n ⊆ W ∧ W ⊆ V
=⇒ ∃W ′. A � 〈l , W 〉 �α 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

Using this result and some additional work, we could infer soundness and com-
pleteness of �β

∗ from the corresponding results for �α
∗.
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5.3 Computing Approxβ

So far, we have shown how to obtain a correct approximation operation from
Rβ , which only produces convex sets. The huge gain from that is that this
approximation can also be easily computed by normalizing DBMs:

norm M k n ≡
λi j . let ub = if 0 < i then k i else 0 ; lb = if 0 < j then − k j else 0

in if i ≤ n ∧ j ≤ n then norm-lower (norm-upper (M i j ) ub) lb
else M i j

norm-upper e t = (if Le t ≺ e then ∞ else e)
norm-lower e t = (if e ≺ Lt t then Lt t else e)

Lemma 4. canonical M n ∧ [M ]v ,n ⊆ V ∧ dbm-int M n =⇒
Approxβ ([M ]v ,n) = [norm M k n]v ,n

Again, we abstain from providing a full presentation of our formalization and
only mention that the main ideas are: (1) to observe that normalized integral
DBMs can always be represented by an equivalent subset of Rβ , and (2) that
norm M k n computes a minimal normalized DBM.

5.4 A Final Semantics

We have assembled all the ingredients to define a semantics for timed automata
which captures the essence of what DBM-based model checkers compute:

A � 〈l , D〉 �v ,n 〈l ′, D ′〉 =⇒ A � 〈l , D〉 �N 〈l ′, norm (FW D ′ n) k n〉
Combining the fact that β-approximation is computable and the correctness
properties of �β

∗and�∗, we have achieved our main result: a timed automaton
can reach a certain location l ′ iff we can compute a valid run (using the DBM
operations and normalization) that ends in l ′.

Theorem 3. Z = [M ]v ,n ∧ Z ⊆ V ∧ dbm-int M n =⇒
(∃ u∈Z . ∃ u ′. A � 〈l , u〉 →∗ 〈l ′, u ′〉)
←→ (∃M ′. A � 〈l , M 〉 �N ∗ 〈l ′, M ′〉 ∧ [M ′]v ,n �= ∅)

6 Conclusion

We have presented a formalization that, beginning with basic definitions and
classic results, closes the loop to show correcntess of the basic DBM-based
algorithms that are used in forward analysis of timed automata. However, we
have not yet harvested potential practical fruits of this development. A self-
evident goal is to obtain an executable version for the algorithms above. By
combination with a verified version of e.g., depth-first search, this could already
yield a verified tool for deciding language emptiness of timed automata, which
could in turn be extended to a fully verified model checker. In another direction
of development, the author has already started to reuse the presented formaliza-
tion to formalize first results about decidability of probabilistic timed automata.
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Abstract. We introduce a new theorem prover for classical higher-
order logic named auto2. The prover is designed to make use of human-
specified heuristics when searching for proofs. The core algorithm is a
best-first search through the space of propositions derivable from the ini-
tial assumptions, where new propositions are added by user-defined func-
tions called proof steps. We implemented the prover in Isabelle/HOL, and
applied it to several formalization projects in mathematics and computer
science, demonstrating the high level of automation it can provide in a
variety of possible proof tasks.

1 Introduction

The use of automation is a very important part of interactive theorem proving.
As the theories to be formalized become deeper and more complex, having a
good automatic tool becomes increasingly indispensable. Such tools free users
from the tedious task of specifying low level arguments, allowing them to focus
instead on the high level outline of the proof.

There is a large variety of existing automatic proof tools. We will be content
to list some of the representative ones. Some tools emulate human reasoning by
attempting, at any stage of the proof, to apply a move that humans are also
likely to make. These include the grind tactic in PVS [15], and the “waterfall”
algorithm in ACL2 [10]. A large class of automatic provers are classical first-order
logic solvers, based on methods such as tableau, satisfiability-modulo-theories
(SMT), and superposition calculus. Sledgehammer in Isabelle [3] is a representa-
tive example of the integration of such solvers into proof assistants. Finally, most
native tools in Isabelle and Coq are based on tactics, and their compositions to
realize a search procedure. Examples for these include the auto tactic in Isabelle
and Coq. The blast tactic in Isabelle [13] can also be placed in this category,
although it has some characteristics of classical first-order solvers.

All these automatic tools have greatly improved the experience of formaliza-
tion using proof assistants. However, it is clear that much work still needs to be
done. Ideally, formalizing a proof on the computer should be very much like writing
a proof in a textbook, with automatic provers taking the place of human readers
in filling in any “routine” intermediate steps that are left out in the proof. Hence,
one reasonable goal for the near future would be to develop an automatic prover
that is strongly enough to consistently fill in such intermediate steps.
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 441–456, 2016.
DOI: 10.1007/978-3-319-43144-4 27
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In this paper, we describe an alternative approach toward automation in
proof assistants. It is designed to combine various desirable features of existing
approaches. On the one hand it is able to work with human-like heuristics,
classical higher-order logic, and simple type theory. On the other hand it has a
robost, saturation-based search mechanism. We discuss these features and their
motivations in Sect. 2.

As a first approximation, the algorithm in our approach consists of a best-
first search through the space of propositions derivable from the initial assump-
tions, looking for a contradiction (any task is first converted into contradiction
form). New propositions are generated by proof steps: user provided functions
that match one or two existing propositions, and produce new propositions that
logically follow from the matched ones. The order in which new propositions are
added is dictated by a scoring function, as in a best-first search framework. There
are several elaborations to this basic picture, in order to support case analy-
sis, rewriting, skolemization, and induction. The algorithm will be described in
detail, along with a simple example, in Sect. 3.

We implemented our approach in Isabelle/HOL, and used it to develop sev-
eral theories in mathematics and computer science. In these case studies, we aim
to use auto2 to prove all major theorems, either on its own or using a proof out-
line at a level of detail comparable to that of human exposition. We believe this
aim is largely achieved in all the case studies. As a result, the level of automa-
tion provided by auto2 in our examples compares favorably with, and in some
cases greatly exceeds that of existing tools provided in Isabelle. We give some
examples from the case studies in Sect. 4.

The implementation, as well as the case studies, are available at https://
github.com/bzhan/auto2. We choose the name auto2 for two reasons: first, we
intend it to be a general purpose prover capable of serving as the main automatic
tool of a system, as auto in Isabelle and Coq had been. Second, it relates to one
of the main features of the algorithm, which is that any proof step matches at
most two items in the state.

In Sect. 5, we compare our approach with other major approaches toward
automation, as well as list some related work. We conclude in Sect. 6, and discuss
possible improvements and future directions of research.

2 Objectives

In this section, we list the main features our approach is designed to have, and
the motivations behind these features.

Use of human-like heuristics: The prover should make use of heuristics that
humans employ when searching for proofs. Roughly speaking, such heuristics
come in two levels. At the lower level, there are heuristics about when to apply
a single theorem. For example, a theorem of the form A =⇒ B =⇒ C can be
applied in three ways: deriving C from A and B, deriving ¬A from B and ¬C,
and deriving ¬B from A and ¬C. Some of these directions may be more fruitful
than others, and humans often instinctively apply the theorem in some of the

https://github.com/bzhan/auto2
https://github.com/bzhan/auto2
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directions but not in others. At the higher level, there are heuristics concerning
induction, algebraic manipulations, procedures for solving certain problems, and
so on. Both levels of heuristics are essential for humans to work with any suffi-
ciently deep theory. Hence we believe it is important for the automatic prover
to be able to take these into account.

Extensibility: The system should be extensible in the sense that users can easily
add new heuristics. At the same time, such additions should not jeopardize the
soundness of the prover. This can be guaranteed by making sure that every step
taken by the user-added heuristics is verified, following the LCF framework.

Use of higher-order logic and types: The prover should be able to work with higher-
order logic, and any type information (in the Isabelle sense) that is present. In par-
ticular, we want to avoid translations to and from untyped first-order logic that are
characteristic of the use of classical first-order solvers. Avoiding these has several
benefits: many heuristics that humans use are best stated in higher-order logic.
Also, the statement to be proved is kept short and close to what humans work
with, which facilitates printing an informative trace when a proof fails.

Saturation-based search mechanism: Most heuristics are fallible in the sense
that they are not appropriate in every situation, and can lead to dead ends
when applied in the wrong situations. Moreover, when several mutually-exclusive
heuristics are applicable, we would like to consider all of them in turn. Some
kind of search is necessary to deal with both of these problems. We follow a
saturation-based search strategy in order to obtain the following desirable prop-
erty: all steps taken by the prover are both permanent and “non-committal”.
That is, the result of any step is available for use throughout the remainder of
the search, but there is never a requirement for it to be used, to allow for the
possibility that the step is not appropriate for the proof at hand. The choice
of E-matching over simplification to deal with equality reasoning is also chosen
with this property in mind.

Having listed the principles motivating our approach, we also want to clarify
what are not our main concerns. First, our focus is on proof tasks that occur
naturally as intermediate steps during proofs of theorems in mathematics and
computer science. We do not intend the prover to be competitive against more
specialized algorithms when faced with large tasks that would also be difficult for
humans. Second, the prover is not fully automated in the sense that it requires
no human intervention – the user still needs to provide heuristics to the prover,
including how to use each of the previously proved theorems. Finally, we do not
intend to make the prover complete. For more difficult theorems, it expects hints
in the form of intermediate steps.

3 Description of the System

In this section, we describe the auto2 prover in detail, followed by a simple exam-
ple, and a discussion of how the system is used in practice. We begin with a high-
level description of the algorithm, leaving the details to the following subsections.
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The algorithm follows a saturation-based strategy, maintaining and succes-
sively adding to a list of items. We will call this list the main list in the remainder
of this section. For a first pass, we can think of items as propositions that fol-
low from the initial assumptions, and possibly additional assumptions. Later
on (Sect. 3.2) we will see that it can also contain other kinds of information,
in addition to or instead of a proposition. Each item is placed in a box, which
specifies what additional assumptions the item depends on. We discuss boxes in
more detail in Sect. 3.1.

New items that may be added to the list are created by proof steps, which
are user-provided functions that accept as input one or two existing items, and
derive a list of new items from the inputs. With a few exceptions (Sect. 3.3), the
new items must logically follow from the input items. One common kind of proof
steps matches the input items to the one or two assumptions of a theorem, and
when there is a match, return the conclusion of the theorem. However, as proof
steps are arbitrary functions, they can have more complex behavior.

Reasoning with equalities is achieved by matching up to equivalence
(E-matching) using a rewritetable. The rewrite table is a data structure that
maintains the list of currently known equalities (not containing schematic vari-
ables). It provides a matching function that, given a pattern p and a term t,
returns all matches of t against p, up to rewriting t using the known equal-
ities. The rewrite table automatically uses transitivity of equality, as well as
the congruence property (that is, a1 = b1, . . . , an = bn implies f(a1, . . . , an) =
f(b1, . . . , bn)). See [11] for a modern introduction to E-matching. In our imple-
mentation, E-matching is essentially a first-order process (we only make use of
equalities between terms not in function position), but we also allow matching of
certain higher-order patterns, and extend it in other ways (Sect. 3.4). Matching
using the rewrite table is used as the first step of nearly all proof steps.

New items produced by proof steps are collected into updates, and each
update is assigned a score, which indicates its priority in the best-first search.
All new updates are first inserted into a priority queue. At each iteration of
the algorithm, the update with the lowest score is pulled from the queue. The
items contained in the update are then added to the main list and processed
one-by-one. Scoring is discussed in Sect. 3.5.

With these in mind, we can give a first sketch of the main loop of the algo-
rithm. We assume that the statement to be proved is written in contradiction
form (that is, [A1, . . . , An] =⇒ C is written as [A1, . . . , An,¬C] =⇒ False),
so the goal is to derive a contradiction from a list of assumptions A1, . . . , An.

– The algorithm begins by inserting a single update to the priority queue,
containing the propositions A1, . . . , An.

– At each iteration, the update with the lowest score is pulled from the priority
queue. Items within the update are added one-by-one to the main list.

– Upon adding a non-equality item, all proof steps taking one input item are
invoked on the item. All proof steps taking two input items are invoked on all
pairs of items consisting of the new item and another item in the main list.
All updates produced are added to the priority queue.



AUTO2, A Saturation-Based Heuristic Prover for Higher-Order Logic 445

– Upon adding an equality item (without schematic variables), the equality is
added to the rewrite table. Then the procedure in the previous step is redone
with the new rewrite table on all items containing up to equivalence either
side of the equality (this is called incremental matching). All new updates
(those that depend on the new equality) are added to the priority queue.

– The loop continues until a contradiction (depending only on the initial
assumptions) are derived by some proof step, or if there are no more updates
in the queue, or if some timeout condition is reached.

In the current implementation, we use the following timeout condition: the
loop stops after pulling N updates from the priority queue, where N is set to
2000 (in particular, all invocations of auto2 in the given examples involve less
than 2000 steps).

3.1 Box Lattice

Boxes are used to keep track of what assumptions each item depends on. Each
primitive or composite box represents a list of assumptions. They are defined
recursively as follows: a composite box is a set of primitive boxes, represent-
ing the union of their assumptions. The primitive boxes are indexed by integers
starting at 0. Each primitive box inherits from a composite box consisting of
primitive boxes with smaller index, and contains an additional list of assump-
tions. It represents the result of adding those assumptions to the parent box.
The primitive box 0 (inheriting from {}) contains the list of assumptions in the
statement to be proved. Other primitive boxes usually inherit, directly or indi-
rectly, from {0}. The primitive boxes also keep track of introduced variables.
From now on we will simply call a composite box as a box.

If a contradiction is derived in a box (that is, if False is derived from the
assumptions in that box), the box is called resolved, and appropriate propositions
(negations of the assumptions) are added to each of its immediate parent boxes.
The overall goal of the search is then to resolve the box {0}, which contains
exactly the assumptions for the statement to be proved.

There is a natural partial order on the boxes given by inclusion, and a merge
operation given by taking unions, making the set of boxes into a semilattice. New
primitive boxes are created by proof steps, and are packaged into updates and
added to the queue with a score just like new items. Creating a new primitive box
effectively starts a case analysis, as we will explain in the example in Sect. 3.6.

3.2 Item Types

In this section we clarify what information may be contained in an item. In
general, we think of an item in a box b as any kind of information that is
available under the assumptions in b. One important class of items that are not
propositions are the term items. A term item t in box b means t appears as
a subterm of some proposition (or another kind of item) in b. The term items
can be matched by proof steps just like propositions. This allows the following



446 B. Zhan

implementation of directed rewrite rules: given a theorem P = Q, where any
schematic variable appearing in Q also appears in P , we can add a proof step
that matches P against any term item t, and produces the equality P (σ) = Q(σ)
for any match with instantiation σ. This realizes the forward rewrite rule from
P to Q.

In general, each item consists of the following information: a string called
item type that specifies how to interpret the item; a term called tname that
specifies the content of the item; a theorem that justifies the item if necessary,
and an integer score which specifies its priority in the best-first search. The
most basic item type is PROP for propositions, for which tname is the statement
of the theorem, and is justified by the theorem itself. Another basic type is TERM
for terms items, for which tname is the term itself, and requires no justifying
theorems.

The additional information contained in items can affect the behavior of
proof steps, and by outputting an item with additional information, a proof step
can affect how the output is used in the future. This makes it possible to realize
higher level controls necessary to implement more complex heuristics. To give
a simple example, in the current implementation, disjunctions are stored under
two different item types: DISJ and DISJ ACTIVE. The latter type induces case
analysis on the disjunction, while the former does not. By outputting disjunctions
in the appropriate type, a proof step can control whether case analysis will be
invoked on the result.

3.3 Skolemization and Induction

Usually, when a proof step outputs a proposition, it must derive the justifying
theorem for that proposition, using the justifying theorems of the input items.
There are two main exceptions to this. First, given an input proposition ∃x.P (x),
a proof step can output the proposition P (x), where x is a previously unused
constant. This realizes skolemization, which in our framework is just one of the
proof steps.

The second example concerns the use of certain induction theorems. For
example, induction on natural numbers can be written as:

P (0) =⇒ ∀n.P (n − 1) −→ P (n) =⇒ P (n).

This form of the induction theorem suggests the following method of application:
suppose n is an initial variable in a primitive boxi, and proposition n �= 0
is known in (the composite) box {i}. Then we may insert P (n − 1) into box
{i}, where P is obtained from the list of assumptions in i containing n. This
corresponds to the intuition that once the zero case is proved, one may assume
P (n − 1) while proving P (n).

In both cases, any contradiction that depends on the new proposition can
be transformed into one that does not. In this first case, this involves applying
a particular theorem about existence (exE in Isabelle). In the second case, it
involves applying the induction theorem.
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3.4 Matching

In this section, we provide more details about the matching process. First, the
presence of box information introduces additional complexities to E-matching.
In the rewrite table, each equality is stored under a box, and each match is
associated to a box, indicating which assumptions are necessary for that match.
When new items are produced by a proof step, the items are placed in the box
that is the merge of boxes containing the input items, and the boxes associated
to all matches performed by that proof step.

We also support the following additional features in matching:

– Matching of associative-commutative (AC) functions: the matching makes lim-
ited use of properties of AC functions. For example, if x = y � z is known,
where ·� · is AC, then the pattern y�?a can match the term p�x, with instan-
tiation ?a := p � z (since y � (p � z) = p � (y � z) = p � x). The exact policy
used in AC-matching is rather involved, as it needs to balance efficiency and
not missing important matches.

– Matching of higher-order patterns: we support second-order matching, with
the following restriction on patterns: it is possible to traverse the pattern
in such a way that any schematic variable in function position is applied to
distinct bound variables in its first appearance. For example, in the following
theorem:

∀(n :: nat).f(n) ≤ f(n + 1) =⇒ m ≤ n =⇒ f(m) ≤ f(n),

one can match its first assumption and conclusion against two items, since
the left side of the inequality in the first assumption can be matched to give
a unique instantiation for f . The condition given here is slightly more general
than the condition given by Nipkow [12], where all appearances of a schematic
variable in function position must be applied to distinct bound variables.

– Schematic variables for numeric constants: one can restrict a schematic vari-
able to match only to numeric constants (in the current implementation, this
is achieved by a special name ?NUMCi). For example, one can write proof steps
that perform arithmetic operations, by matching terms to patterns such as
?NUMC1+?NUMC2.

– Custom matching functions: one can write custom functions for matching a
pattern against an item. This is especially important for items of type other
than PROP. But it is also useful for the PROPs themselves. For example, if the
pattern is ¬(p < q), one can choose to match q ≤ p instead, and convert any
resulting theorem using the equivalence to ¬(p < q).

3.5 Scoring

The scoring function, which ranks future updates, is crucial for the efficiency of
the algorithm as it determines which updates will be explored first in the search.
It tries to guess which reasoning steps are more likely to be relevant to the
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proof at hand. In the current implementation, we choose a very simple strategy.
Finding a better scoring strategy will certainly be a major focus in the future.

The current scoring strategy is as follows: the score of any update equals the
maximum of the scores of the dependent items, plus an increment depending on
the content of the update. The increment is bigger (i.e. the update is discouraged)
if the terms in the update are longer, or if the update depends on many additional
assumptions.

3.6 A Simple Example

We now give a sample run of auto2 on a simple theorem. Note this example is
for illustration only. The actual implementation contains different proof steps,
especially for handling disjunctions. Moreover, we ignore scoring and the priority
queue, instead adding items directly to the list. We also ignore items that do
not contribute to the eventual proof.

The statement to be proved is
prime p =⇒ p > 2 =⇒ odd p.

Converting to contradiction form (and noting that odd p is an abbreviation for
¬even p), our task is to derive a contradiction from assumptions prime p, p > 2,
and even p. The steps are:
1. Add primitive box 0, with variable p, and assumptions prime p, p > 2, and

even p.
2. Add subterms of the propositions, including TERM prime p and TERM even p.
3. The proof step for applying the definition of prime adds equality

prime p = (p > 1 ∧ ∀m.m dvd p −→ m = 1 ∨ m = p)

from TERM prime p. Likewise, the proof step for applying the definition of even
adds equality even p = 2 dvd p from TERM even p.

4. When the first equality in the previous step is applied, incremental matching is
performed on the proposition prime p. It now matches the pattern ?A∧?B, so
the proof step for splitting conjunctions produces p > 1 and ∀m.m dvd p −→
m = 1 ∨ m = p.

5. A proof step matches the propositions ∀m.m dvd p −→ m = 1 ∨ m = p and
even p (the second item, when rewritten as 2 dvd p, matches the antecedent
of the implication), producing 2 = 1 ∨ 2 = p.

6. The proof step for invoking case analysis matches 2 = 1 ∨ 2 = p with pattern
?A∨?B. It creates primitive box 1, with assumption 2 = 1 (see Fig. 1).

7. A proof step matches 2 = 1 (in box {1}) with pattern ?NUMC1 = ?NUMC2. The
proof step examines the constants on the two sides, finds they are not equal,
and outputs a contradiction. This resolves box {1}, adding 2 �= 1 into box
{0}.

8. A proof step matches 2 = 1 ∨ 2 = p with 2 �= 1, producing 2 = p.
9. When the equality in the previous step is added, incremental matching is

performed on the proposition p > 2 (one of the initial assumptions). This
proposition matches pattern ?n > ?n (when rewritten as p > p or 2 > 2),
giving a contradiction. This resolves box {0} and finishes the proof.
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Fig. 1. State of proof after step 6. Arrow indicates inheritance relation on boxes.

3.7 Proof Scripts

For the case studies, we designed our own language of proof scripts for specifying
intermediate steps in the proof of a more difficult theorem. The proof scripts
are provided as an argument to the auto2 tactic, and are interpreted within
the tactic. This requires some straightforward modifications to the main loop
and the scoring mechanism, which we will not discuss. The benefit of using an
internally interpreted script (instead of Isar) is that the entire state of the proof
is maintained between lines of the script, and all previously proved statements
are available for use at any given point.

The proof script consists of atomic commands joined together with two con-
nectors: THEN and WITH. Each atomic command specifies an intermediate state-
ment to prove, and what update to add once that statement is proved. The
meanings of the two connectors are as follows. The command A THEN B means
first process A, and after A is finished, process B. The command A WITH B (with
A atomic) means attempt to prove the intermediate statement specified in A,
processing B as a part of the attempt.

The simplest atomic commands are OBTAIN and CASE. The command OBTAIN
p means attempt to prove p and add it to the list. The command CASE p means
attempt to prove that p results in a contradiction, and add ¬p to the list. It is
equivalent to OBTAIN ¬p.

The command CHOOSE x, p(x) specifies ∃x.p(x) as an intermediate statement.
After it is proved, the resulting existence fact is instantiated with variable x (the
command fixes variable x so it is not used in other places).

Finally, there are various flavors of induction commands, which specify appli-
cations of various kinds of induction theorems. We designed the script system to
be extensible: it is possible for the user to add new types of atomic commands.

3.8 Practical Usage

We end this section with a discussion of practical issues concerning the use of
the auto2 system.
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First, we describe the process of constructing the collection of proof steps.
The collection of proof steps specifies exactly what steps of reasoning auto2
may take. With the exception of equality reasoning, which relies on the rewrite
table and E-matching, all other forms of reasoning are encoded as proof steps.
This includes basic deductions in logic and arithmetic, and the simplification of
terms. In particular, auto2 does not invoke any of the other Isabelle commands
such as simp and arith, except within the implementation of individual proof
steps, for carrying out very specific tasks.

Each proof step is intended to represent a single step of reasoning, and has
a clearly-defined behavior. The simplest proof steps apply a single theorem. For
example, a theorem of the form A =⇒ B =⇒ C can be added for use in either
the forward or one of the two backward directions. More complex proof steps
are implemented as ML functions. The implementation can make full use of the
existing conversion and tactics facility in Isabelle/ML.

In theories developed using auto2, each proof step using theorems in that
theory is added right after all required theorems are proved. Once the proof
step is added, it is used in all ensuing proofs, both in the current theory and in
all descendent theories. For theorems proved in the Isabelle library, “wrapper”
theories are created to add proof steps using them. The case studies, for example,
use shared wrapper theories for theorems concerning logic, arithmetic, sets, and
lists.

There are some circumstances where removing a proof step after using it in
a few proofs is acceptable. For example, if a theory introduces constructions, or
proves lemmas that are used only within the theory, it is acceptable to remove
proof steps related to those constructions and lemmas once they are no longer
used. The guiding principle is as follows: by the end of the development of a
theory, the collection of proof steps from that theory should form a coherent
system of heuristics on how to use the results in that theory. In subsequent
theories, auto2 should have a basic competence in using results from that theory,
and it should always be possible to specify more involved applications in proof
scripts. In particular, the user should never need to add proof steps for using
theorems from a previous theory, nor temporarily remove a proof step from a
previous theory (to avoid exploding the search space). Realizing this principle
means more work is needed when building each theory, to specify the right set
of proof steps, but it should pay off in the long run, as it frees the user from
having to refer back to the theory in subsequent developments.

Second, we describe the usual interaction loop when proving a theorem or
which applying auto2 directly fails. One begins by working out an informal proof
of the theorem, listing those steps that appear to require some creativity. One
can then try auto2 with these intermediate steps added. If it still does not work,
the output trace shows the first intermediate step that auto2 cannot prove, and
what steps of reasoning are taken in the attempt to prove that step. If there
is some step of reasoning that should be taken automatically but is not, it is
an indication that some proof step is missing. The missing proof step should
be added, either to a wrapper theory if the relevant theorem is proved in the
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Isabelle library, or right after the theorem if it is proved in a theory developed
using auto2. On the other hand, if one feels the missing step should not be
taken automatically, but is a non-obvious step to take in the proof of the current
theorem, one should add that step to the proof script instead. The process of
adding to the collection of proof steps or to the proof script continues until auto2
succeeds.

4 Case Studies

In this section, we give some examples from the case studies conducted using
auto2. We will cover two of the six case studies. Descriptions for the other
four (functional data structures, Hoare logic, construction of real numbers, and
Arrow’s impossibility theorem) can be found in the repository. In writing the
case studies, we aim to achieve the following goal: all major theorems are proved
using auto2, either directly or using proof scripts at a level of detail comparable
to human exposition. When a case study parallels an existing Isabelle theory,
there may be some differences in the definitions, organization, and method of
proof used. The content of the theorems, however, are essentially the same. In
the examples below, we will sometimes compare the length of our scripts with the
length of Isar scripts for the same theorem in the Isabelle library. We emphasize
that this is not intended to be a rigorous comparison, due to the differences just
mentioned, and since auto2 is provided additional information in the form of
the set of proof steps, and takes longer to verify the script. The intent is rather
to demonstrate the level of automation that can be expected from auto2.

Besides the examples given below, we also make a special note of the case
study on Arrow’s impossibility theorem. The corresponding theory in the Isabelle
AFP is one of the seven test theories used in a series of benchmarks on Sledge-
hammer, starting in [4].

4.1 Elementary Theory of Prime Numbers

The development of the elementary theory of prime numbers is one of the
favourites for testing theorem provers [5,14]. We developed this theory start-
ing from the definition of prime numbers, up to the proof of the infinitude of
primes and the unique factorization theorem, following HOL/Number Theory in
the Isabelle library. For the infinitude of primes, the main lemma is that there
always exists a larger prime:

larger_prime: ∃p.prime p ∧ n < p

auto2 is able to prove this theorem when provided with the following proof
script:

CHOOSE p, prime p ∧ p dvd fact n + 1 THEN
CASE p ≤ n WITH OBTAIN p dvd fact n

This corresponds to the following proof of next prime bound in the Isabelle
theory HOL/Number Theory/Primes (18 lines).
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lemma next_prime_bound: ∃p.prime p ∧ n < p ∧ p ≤ fact n + 1
proof−

have f1: fact n + 1 �= (1 :: nat)"using fact_ge_1 [of n, where’a=nat] by arith
from prime_factor_nat [OF f1]
obtain p where prime p and p dvd fact n + 1 by auto
then have p ≤ fact n + 1 apply (intro dvd_imp_le) apply auto done
{ assume p ≤ n

from prime p have p ≥ 1
by (cases p, simp_all)

with p ≤ n have p dvd fact n
by (intro dvd_fact)

with p dvd fact n + 1 have p dvd fact n + 1 − fact n
by (rule dvd_diff_nat)

then have p dvd 1 by simp
then have p ≤ 1 by auto
moreover from prime p have p > 1

using prime_def by blast
ultimately have False by auto}

then have n < p by presburger
with prime p and p ≤ fact n + 1 show ?thesis by auto

qed

Likewise, we formalized the unique factorization theorem. The uniqueness
part of the theorem is as follows (note M and N are multisets, and set M and
set N are the sets corresponding to M and N , eliminating duplicates).

factorization_unique_aux:
∀p ∈ setM.prime p =⇒ ∀p ∈ setN.prime p =⇒ ∏

i∈M i dvd
∏

i∈N i =⇒ M ⊆ N

The script needed for the proof is:

CASE M = ∅ THEN
CHOOSE M ′, m, M = M ′ + {m} THEN
OBTAIN m dvd

∏
i∈N i THEN

CHOOSE n, n ∈ N ∧ m dvd n THEN
CHOOSE N ′, N = N ′ + {n} THEN
OBTAIN m = n THEN
OBTAIN

∏
i∈M′ i dvd

∏
i∈N′ i THEN

STRONG_INDUCT (M, [Arbitrary N ])

This can be compared to the proof of multiset prime factorization
unique aux in the Isabelle theory HOL/Number Theory/UniqueFactorization
(39 lines).

4.2 Verification of Imperative Programs

A much larger project is the verification of imperative programs, building on the
Imperative HOL library, which describes imperative programs involving pointers
using a Heap Monad [6]. The algorithms and data structures verified are:
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– Reverse and quicksort on arrays.
– Reverse, insert, delete, and merge on linked lists.
– Insert and delete on binary search trees.

The proofs are mostly automatic, which is in sharp contrast with the cor-
responding examples in the Isabelle distribution (in Imperative HOL/ex). We
give one example here. The merge function on two linked lists is defined as:

partial_function (heap) merge ::
(’a :: {heap, ord}) node ref ⇒’a node ref ⇒’a node ref Heap
where
[code]: merge p q =

do { np ← !p; nq ← !q;
if np = Empty then return q
else if nq = Empty then return p
else if val np ≤ val nq then

do { npq ← merge (nxt np) q;
p := Node (val np) npq;
return p }

else
do { pnq ← merge p (nxt nq);

q := Node (val nq) pnq;
return q } }

To prove the main properties of the merge function, we used the following
two lemmas (commands adding their proof steps are omitted):

theorem set_intersection_list: (x ∪ xs) ∩ ys = {} ⇒ xs ∩ ys = {} by auto

theorem unchanged_outer_union_ref:
"unchanged_outer h h’ (refs_of h p ∪ refs_of h q) ⇒

r /∈ refs_of h p ⇒
r /∈ refs_of h q ⇒
Ref.present h r ⇒
Ref.get h r = Ref.get h’ r"
by (simp add: unchanged_outer_ref)

The statements of the theorems are:

theorem merge_unchanged:
"effect (merge p q) h h’ r ⇒ proper_ref h p ⇒ proper_ref h q ⇒

unchanged_outer h h’ (refs_of h p ∪ refs_of h q)"

theorem merge_local:
"effect (merge p q) h h’ r ⇒ proper_ref h p ⇒ proper_ref h q ⇒

refs_of h p ∩ refs_of h q = {} ⇒
proper_ref h’ r ∧ refs_of h’ r ⊆ refs_of h p ∪ refs_of h q"

theorem merge_correct:
"effect (merge p q) h h’ r ⇒ proper_ref h p ⇒ proper_ref h q ⇒

refs_of h p ∩ refs_of h q = {} ⇒
list_of h’ r = merge_list (list_of h p) (list_of h q)"
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Each of these theorems is proved (in 30–40 s on a laptop) using the same
proof script, specifying the induction scheme:
DOUBLE_INDUCT (("pl = list_of h p","ql = list_of h q"), Arbitraries ["p","q","h’","r"])

In the Isabelle library the proof of the three corresponding theorems, includ-
ing that of two induction lemmas proved specifically for these theorems, takes
166 lines in total. These theorems also appear to be well beyond the ability of
the Sledgehammer tools. It is important to note that this automation is not
based on Hoare logic or separation logic (the development here is separate from
the case study on Hoare logic), but the proofs here use directly the semantics of
commands like in the original examples.

5 Related Work

The author is particularly inspired by the work of Ganesalingam and Gowers [9],
which describes a theorem prover that can output proofs in a form extremely sim-
ilar to human exposition. Our terminology of “box” is taken from there (although
the meaning here is slightly different).

There are two ways in which our approach resembles some of the classical
first-order solvers. The first is the use of a“blackboard” maintaining a list of
propositions, with many“modules” acting on them, as in a Nelson-Oppen archi-
tecture [2]. The second is the use of matching up to equivalence (E-matching),
which forms a basic part of most SMT solvers. The main differences are explained
in the first three items in Sect. 2: our focus on the use of human-like heuristics,
and our lack of translation to and from untyped first-order logic.

There have been extensive studies on heuristics that humans use when prov-
ing theorems, and their applications to automation. Ganesalingam and Gowers
[9] give a nice overview of the history of such efforts. Some of the more recent
approaches include the concept of proof plans introduced by Bundy [7,8]. Among
proof tools implemented in major proof assistants, the grind tactic [15] and the
“waterfall” algorithm in ACL2 [10] both attempt to emulate human reasoning
processes. Compared to these studies, we place a bigger emphasis on search, in
order to be tolerant to mistaken steps, and to try different heuristics in par-
allel. We also focus more on heuristics for applying single theorems, although
the system is designed with the possibility of higher-level heuristics in mind (in
particular with the use of item types).

Finally, tactic-based automation such as auto, simp, and fast in Isabelle
also use heuristics in the sense that they apply theorems directionally, and are
able to carry out procedures. The main difference with our approach is the search
mechanism used. In tactic-based automation, the search is conducted over the
space of proof states, which consists of the current goal and a list of subgoals. For
blast and other tableau-based methods, the search is over the space of possible
tableaux. In our approach, the search is saturation-based, and performed over
the space of propositions derivable from the initial assumptions.

A similar “blackboard” approach is used for heuristic theorem proving by
Avigad et al. [1], where the focus is on proving real inequalities. The portion of
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our system concerning inequalities is not as sophisticated as what is implemented
there. Instead, our work can be viewed as applying a similar technique to all
forms of reasoning.

6 Conclusion

In this paper, we described an approach to automation in interactive theorem
proving that can be viewed as a mix of the currently prevailing approaches.
While the ideas behind the prover are mostly straightforward, we believe the
combination of these ideas is underexplored and, given the examples above,
holds significant promise that warrants further exploration.

There are many aspects of auto2 that can be improved in the future. Two
immediate points are performance and debugging. The E-matching process is
far from optimized, in the sense of [11]. For debugging, the program currently
outputs the list of updates applied to the state. One might instead want to view
and traverse the dependency graph of updates. One would also like to query the
rewrite table at any point in the proof.

There are also many directions of future research. I will just list three main
points:

– The scoring function is currently very simple. Except for a few cases, there is
currently no attempt at take into account during scoring the proof step used.
Instead, one would like to distinguish between proof steps that “clearly should
be applied”, and those that should be applied “with reluctance”. There is also
the possibility of using various machine learning techniques to automatically
adjust the scoring function for individual proof steps.

– Several aspects of elementary reasoning, such as dealing with associative-
commutative functions, and with ordered rings and fields, pose special chal-
lenges for computers. While the current implementation is sufficient in these
aspects for the examples at hand, more will need to be done to improve in
both completeness and efficiency.

– Finally, one would like to improve auto2’s ability to reason in other, diverse
areas of mathematics and computer science. On the verification of impera-
tive programs front, one would like to know how well auto2 can work with
separation logic, or perhaps a framework based on a mix of separation logic
and“natural” reasoning used in the given examples will be ideal. On the math-
ematical front, each field of mathematics offers a distinctive system of heuris-
tics and language features. One would like to expand the collection of proof
steps, as well as proof script syntax, to reflect these features.
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Abstract. ITPs use names for proved theorems. Good names are either
widely known or descriptive, corresponding to a theorem’s statement.
Good names should be consistent with conventions, and be easy to
remember. But thinking of names like this for every intermediate result
is a burden: some developers avoid this by using consecutive integers
or random hashes instead. We ask: is it possible to relieve the naming
burden and automatically suggest sensible theorem names? We present
a method to do this. It works by learning associations between existing
theorem names in a large library and the names of defined objects and
term patterns occurring in their corresponding statements.

1 Introduction

How do we name theorems? Science has a tradition of historical reference, attach-
ing names by attribution to their discoverer. HOL Light contains fine examples
such as RIEMANN MAPPING THEOREM:

Mere lemmas are seldom honoured with proper names. Papers and textbooks use
localised index numbers instead (“see Lemma 5.7 on p. 312”) which is succinct
but unhelpful. For practical proof engineering, working with large developments
and libraries, we are quickly swamped with intermediate lemmas. Despite search
facilities in some ITPs, users still need to name statements, leading to the pro-
liferation of less profound descriptive names such as:

Descriptive names are convenient and mnemonic, based on the statement of a
theorem, and following conventions due to the author, library or system. But
inventing names requires thought, and remembering them exactly later can be
tricky. Unsurprisingly, people complain about the burden of naming, even invent-
ing schemes that generate automatic names like (in Flyspeck [4]):
c© Springer International Publishing Switzerland 2016
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HOJODCM LEBHIRJ OBDATYB MEEIXJO KBWPBHQ RYIUUVK DIOWAAS

Such (fuzzy) hashes of theorem statements or sequential numbers give no clue of
content, and we are back to old-fashioned indices. Some readers may be happy,
accepting that names should have “denotation but not connotation” (as Kripke
recalled the position of Mill [6]). But like Kripke, we see value in connotation:
after all, a name is the handle for a potentially much longer statement.

So we wonder: is it possible to relieve theorem naming burden by automatically
naming theorems following established conventions? Given that we have large
corpora of carefully named theorems, it is natural to try a learning approach.

2 Parts of Names and Theorems

To start, we examine the form of human-generated descriptive theorem names.
These are compound with separators: l0 . . . lm, where the li are commonly used
stem words (labels). Examples like REAL MIN ASSOC show a connection between
names of constants (MIN), their types (REAL), and the structure of the statement
(ASSOC). Using previous work on features for learning-assisted automated rea-
soning [5], we extract three characterizations of theorem statements:

– Symbols: constant and type names (including function names);
– Subterms: parts of the statement term where no logical operators appear;
– Patterns: subterms, with abstraction over names of defined objects.

Patterns allow us to model certain theorem shapes, such as commutativity, asso-
ciativity, or distributivity, without the actual constants these properties talk
about [2]. For examples like SUC GT ZERO, we see that where the name parts
occur is important. So we also collect:

– Positions: for each feature f , a position p(f), normalised so that 0 ≤ p(f) ≤ 1,
given by the position of f in the print order of the statement.

The leftmost feature has position 0 and the rightmost 1; if only a single feature
is found, it has position 1

2 . Names are treated correspondingly: for l0 . . . lm, the
stems are assigned equidistant positions p(l0) = 0, . . . , p(lm) = 1.

3 Learning Associations Between Names and Statements

We investigate two schemes for associating theorem statements with their names:

– Consistent: builds an association between symbols (e.g., constant and type
names) and parts of theorem names;

– Abstract: uses patterns to abstract from concrete symbols, building a match-
ing between positions in statements and name parts.
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We hypothesise that the first scheme might be the more successful when used
within a specific development, (hopefully) consistently re-using the same sub-
components of relevant names, whereas the second may do better across different
developments (perhaps ultimately, even across different provers).

To try these schemes out, we implement a k-Nearest Neighbours (kNN) multi-
label classifier. A proposed label is computed together with a weighted average of
positions. The algorithm first finds a fixed number k of training examples (named
theorem statements), which are most similar to a set of features being considered.
The stems and positions from the training examples are used to estimate the
relevance of stems and proposed positions for the currently evaluated statement.
The nearness of two statements s1, s2 is given by

n(s1, s2) =
√∑

f∈f(s1)∩f(s2)
w(f)2

where w(f) is the IDF (inverse document frequency) weight of a feature f . To
efficiently find nearest neighbours, we index the training examples by features,
so we can ignore examples that have no features in common with the currently
considered statement. Given the set of k training examples nearest to the current
statement, we evaluate the relevance of a label as follows:

R(l) =
∑

s1∈N,l∈l(s1)

n(s1, s2)∣∣l(s1)∣∣
We propose positions for a stem using the weighted average of the positions in
the recommendations; weights are the corresponding nearness values.

Table 1. Selected features extracted from the statement of ADD ASSOC

Feature Frequency Position IDF

(V0 + (V1 + V2) = (V0 + V1) + V2) 1 0.37 7.82

((V0 + V1) + V2) 1 0.75 7.13

(V0 + V1) 1 0.84 3.95

+ 4 0.72 2.62

num 3 0.21 1.15

= 1 0.43 0.23

∀ 3 0.15 0.03

As an example, we examine how the process works with the consistent naming
scheme and the ADD ASSOC statement shown previously. Our algorithm uses the
statement in a fully-parenthesised form with types attached to binders:

∀num.(∀num.(∀num.((V 0 + (V 1 + V 2)) = ((V 0 + V 1) + V 2))))))



462 D. Aspinall and C. Kaliszyk

Table 2. Nearest neighbours found for ADD ASSOC.

Theorem name Statement Nearness

MULT ASSOC (V0 * (V1 * V2)) = ((V0 * V1) * V2) 553

ADD AC 1 ((V0 + V1) + V2) = (V0 + (V1 + V2)) 264

EXP MULT (EXP V0 (V1 * V2)) = (EXP (EXP V0 V1) V2) 247

HREAL ADD ASSOC (V0 +H (V1 +H V2)) = ((V0 +H V1) +H V2) 246

HREAL MUL ASSOC (V0 *H (V1 *H V2)) = ((V0 *H V1) *H V2) 246

REAL ADD ASSOC (V0 +R (V1 +R V2)) = ((V0 +R V1) +R V2) 246

REAL MUL ASSOC (V0 *R (V1 *R V2)) = ((V0 *R V1) *R V2) 246

REAL MAX ASSOC (MAXR V0 (MAXR V1 V2)) = (MAXR (MAXR V0 V1) V2) 246

INT ADD ASSOC (V0 +Z (V1 +Z V2)) = ((V0 +Z V1) +Z V2) 246

REAL MIN ASSOC (MINR V0 (MINR V1 V2)) = (MINR (MINR V0 V1) V2) 246

From this statement, features are extracted, computing their frequency, average
position and then IDF across the statement. A total of 46 features are extracted;
Table 1 shows a selection ordered by rarity (IDF). The highest IDF value is for
the feature most specific to the overall statement: it captures associativity of +.

Next, Table 2 shows the nearest neighbours for the features of ADD ASSOC

among the HOL Light named theorems, discounting ADD ASSOC itself. Most of
these are associativity statements. The stem AC is commonly used in HOL to
denote associative-commutative properties.

Finally, the first predicted stems with their predicted positions are presented
in Table 3. With ASSOC and ADD being the first two suggested stems, taking into
account their positions, ADD ASSOC is indeed the top prediction for the theorem
name. The following predicitons are reasonable too:

AC ADD ASSOC, AC NUM ADD ASSOC, AC ADD, NUM ADD ASSOC.

Table 3. Stems and positions suggested by our algorithm, sorted by relevance measure.

Unsurprisingly, the consistent scheme performs less well in situations where
new defined objects appear in a statement, it can only suggest stems it has
seen before. The abstract scheme addresses this. For this, we first gather all
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symbol names in the training examples and order them by decreasing frequency.
Next, for every training example we find the non-logical objects that appear, and
replace their occurrences by object placeholders, with the constants numbered in
the order of their global frequencies. For example, a name like DIV EQ 0 becomes
C0 EQ C3, and the theorem statement is abstracted similarly.

For the statement of the theorem ADD ASSOC the first three names predicted
by the abstract naming scheme are: + ASSOC, num +, and num + ASSOC. The
use of the stem ADD is only predicted with k > 20.

4 Preliminary Evaluation

We perform a standard leave-one-out cross-validation to evaluate how good
names predicted on a single dataset are. The predictor is trained on all the
examples apart from the current one to evaluate, and is tested on the features
of the current one.

For 2298 statements in the HOL Light core library, the results are presented
in Table 4. We explored four different options for the algorithm:

– Upper: names are canonicalised to upper case.
– AbsN: we use the abstraction scheme described above for naming.
– AbsT: we use abstraction in statements before training.
– Stem: we use a stemming operation to break down names.

The first option is useful in the libraries of HOL Light and HOL4 where
the capitalization is mostly uniform, but may not be desired in proof assistant
libraries where this is not the case. For example min and Min are used with
different semantics in Isabelle/HOL.

The last option allows us to model the naming convention in HOL Light
where a statement is relative to a type, but the type name does not get repeated.
For example, a theorem that relates the constants REAL ABS and REAL NEG can
be given the name REAL ABS NEG rather than REAL ABS REAL NEG.

Each row in Table 4 is a combination of options. Results are split in the
columns: the number of statements for which the top prediction is the same
as the human-given name (First Choice); the number where the human name
is in place 2–10 (Later Choice); one of the ten names is correct modulo stem
order (Same Stems); the number where the human-used stems are predicted but
not combined correctly (All Stems); and the number for which at least part
of the prediciton is correct (Stem Overlap). Altogether, the human-generated
names are among the top ten predictions by some instance of the algorithm in
over 50 % of cases; 40 % for the best performing version based on the abstract
scheme. The abstract scheme beats the consistent mechanism even in the same
library.

The final column shows the number of cases that fail completely. These
include cases with familiar (historical) names such as:
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– EXCLUDED MIDDLE (proposed reasonable name: DISJ THM)
– INFINITY AX (proposed reasonable name: ONTO ONE).

We would not expect to predict these names, unless they are already given in
the training data. In other cases, failure might indicate inconsistency: the human
names may not always be “correct”. We uncovered some cases of inconsistency
such as where multiplication was occasionally called MULT rather than MUL, for
example.

Table 4. Leave-one-out cross-validation on the HOL Light core dataset.

Setup Options First Later Same All Stem Fail

Choice Choice Stems Stems Overlap Fail

- 118 533 180 911 516 40

Upper 134 583 182 901 474 24

AbsN 187 517 222 849 474 49

AbsN+Stem 218 530 208 849 460 33

AbsN+Upper 203 461 250 888 478 18

AbsN+AbsT 172 243 125 919 755 84

AbsN+AbsT+Upper 206 387 211 771 680 43

AbsN+AbsT+Stem 214 455 178 881 532 38

AbsN+Stem+Upper 238 491 299 835 418 17

AbsN+AbsT+Stem+Upper 273 501 291 757 459 17

Combined 336 728 271 632 321 10

5 Conclusions

The initial results are encouraging and suggest foundations for name-
recommender systems that might be built into ITP interfaces. Even if the perfect
name is not proposed, suggestions may spark an idea for the user. We plan to
go further and look at case studies such as renaming Flyspeck, or using nam-
ing maps as a bridge between different ITPs. Moreover, more advanced machine
learning schemes could be used to distinguish the use of the same symbol for
different operators.

Related work. This appears to be the first attempt to mine named theorems and
produce a recommender system for naming new theorems in a meaningful way.
There have been a number of non-meaningful proposals, e.g., Flyspeck’s random
8-character identifiers [4]; Mizar’s naming scheme of theory names and numbers
(examples like WAYBEL34:67 [3]); the use of MD5 recursive statement hashes [8].
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Identifier naming has been studied in software engineering. Lawrie et al. [7]
investigated name consistency in large developments. Deissenboeck and Pizka [1]
build a recommender similar to our consistent scheme (but using different meth-
ods). They note that programming style guides say identifiers should be “self-
describing” to aid comprehension. Indeed, program obfuscators, intended to hin-
der comprehension, randomize identifiers, producing names like those in Flyspeck.

Acknowledgments. This work has been supported by UK EPSRC (EP/J001058/1)
and the Austrian Science Fund FWF (P26201).
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Abstract. We present an extension of a Coq library for relation alge-
bras, where we provide support for cardinals in a point-free way. This
makes it possible to reason purely algebraically, which is well-suited for
mechanisation. We discuss several applications in the area of graph the-
ory and program verification.

1 Introduction

Binary relations have a rich algebraic structure: rather than considering rela-
tions as objects relating points, one can see them as abstract objects that can
be combined using various operations (e.g., union, intersection, composition,
transposition). Those operations are subject to many laws (e.g., associativity,
distributivity). One can thus use equational reasoning to prove results about
binary relations, graphs, or programs manipulating such structures. This is the
so-called relation-algebraic method [12,14,15].

Lately, the second author developed a library for the Coq proof assistant
[9,10], allowing one to formalise proofs using the relation algebraic approach.
This library contains powerful automation tactics for some decidable fragments
of relation algebra (Kleene algebra and Kleene algebra with tests), normalisation
tactics, and tools for rewriting modulo associativity of relational composition.

The third author recently relied on this library to formalise algebraic cor-
rectness proofs for several standard algorithms from graph theory: computing
vertex colourings [1] and bipartitions [2].

Here we show how to extend this library to deal with cardinals of relations,
thus allowing one to reason about quantitative aspects. We study several appli-
cations in [3]; in this extended abstract we focus on a basic result about the size
of a linear order and an intermediate result from graph theory.

2 Preliminaries

Given two sets X,Y , a binary relation is a subset R ∈ P (X×Y ). The set X
(resp. Y ) is called the domain (resp. codomain) of the relation.
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With the usual set-theoretic operations of inclusion (⊆), union (∪), inter-
section (∩), complement ( · ), the empty relation (OXY ) and the universal rela-
tion (LXY ), binary relations between two sets X and Y form a Boolean lattice.
Given three sets X,Y,Z and relations R ∈ P (X×Y ) and S ∈ P (Y ×Z) we
also consider the operations of composition (RS ∈ P (X×Z)) and transposi-
tion (RT ∈ P (Y ×X)), as well as the identity relation (IX � {(x, x) | x ∈ X} ∈
P (X×X)). These operations can be abstracted through the axiomatic notion of
relation algebra. Binary relations being the standard model of such an algebra,
we use the same notations.

Definition 2.1 (Relation Algebra). A relation algebra is a category whose
homsets are Boolean lattices, together with an operation of transposition (·T)
such that:

(P1) composition is monotone in its two arguments, distributes over unions and
is absorbed by the bottom elements;

(P2) transposition is monotone, involutive (RTT= R), and reverses compositions:
for all morphisms R,S of appropriate types, we have (RS)T= STRT;

(P3) for all morphisms Q,R, S of appropriate types, QR ⊆ S iff QTS ⊆ R iff
S RT⊆ Q ;

(P4) for all morphism R : X → Y , R �= O iff for all objects X ′, Y ′, LRL = LX′Y ′ .

From properties (P2), we deduce that transposition commutes with all
Boolean connectives, and that IT = I. Equivalences (P3) are called Schröder
equivalences in [12]; they correspond to the fact that the structure is residu-
ated [5]. The last property (P4) is known as Tarski’s rule; it makes it possible
to reason algebraically about non-emptiness.

Important classes of morphisms can be defined algebraically. For instance,
we say in the sequel that a morphism R : X → Y is:

– injective if RRT⊆ I,
– surjective if I ⊆ RTR,
– univalent if its transpose is injective (i.e., RTR ⊆ I),
– total if its transpose is surjective (i.e., I ⊆ RRT),
– a mapping if R is total and univalent.

One can easily check that these definitions correspond to the standard definitions
in the model of binary relations.

Before introducing cardinals, we need a way to abstract over the singleton
sets from the model of binary relations; we use the following definition:

Definition 2.2 (Unit in a Relation Algebra). A unit in a relation algebra
is an object 1 such that O11 �= L11 and I1 = L11.

In other words, there are only two morphisms from a unit to itself. In the
model of binary relations, every singleton set is a unit. Using units, we can
axiomatise the notion of cardinal in a relation algebra; we mainly follow Kawa-
hara [8]:
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Definition 2.3 (Cardinal). A relation algebra with cardinal is a relation alge-
bra with a unit 1 and a monotone function |·| from morphisms to natural numbers
such that for all morphisms Q,R, S of appropriate types:

(C1) |O| = 0,
(C2) |I1| = 1,
(C3) |RT| = |R|,
(C4) |R ∪ S| + |R ∩ S| = |R| + |S|,
(C5) if Q is univalent, then |R ∩ QTS| ≤ |QR ∩ S| and |Q ∩ SRT| ≤ |QR ∩ S|.

Note that these requirements for a cardinal rule out infinite binary relations:
we have to restrict to binary relations between finite sets, i.e., graphs. Typically,
in this model, the cardinal of a relation is the number of pairs it contains. This
restriction is harmless in practice: we only work with finite sets when we study,
for example, algorithms.

Many natural facts of cardinal can be derived just from conditions (C1)
to (C4), e.g., monotonicity. The last condition (C5) is less intuitive; it is called the
Dedekind inequality in [8]. It allows one to compare cardinalities of morphisms
of different types. Kawahara uses it to obtain, e.g., the following result:

Lemma 2.4. Assume a relation algebra with cardinal. For all morphisms
Q,R, S of appropriate type, we have:

1. If R and S are univalent, then |RS ∩ Q| = |R ∩ QST|.
2. If R is univalent and S is a mapping, then |RS| = |R|.

Leaving cardinals aside, two important classes of morphisms are that of vec-
tors and points, as introduced in [11], for providing a way to model subsets and
single elements of sets, respectively:

– vectors, denoted with lower case letters v, w in the sequel, are morphisms
v : X → Y such that v = vL. In the standard model, this condition precisely
amounts to being of the special shape V × Y for a subset V ⊆ X.

– points, denoted with lower case letters p, q in the sequel, are injective and
nonempty vectors. In the standard model, this condition precisely amounts to
being of the special shape {x} × Y for an element x ∈ X.

In the binary relations model, one can characterise vectors and points from their
Boolean-matrix representation of binary relations: a vector is a matrix whose
rows are either zero everywhere or one everywhere, and a point is a matrix with
a single row of ones and zeros everywhere else. Every morphism with unit as its
codomain is a vector; points with unit as their codomain have cardinal one:

Lemma 2.5. Let p : X → 1 be a point in a relation algebra with a cardinal (and
unit). We have |p| = 1.

We conclude this preliminary section with the notion of pointed relation
algebra. Indeed, in the model of binary relations, the universal relation between
X and Y is the least upper bound of all points between X and Y . This property
is called the point axiom in [4]. Since we restrict to finite relations, we give a
finitary presentation of this law.
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Definition 2.6. (Pointed Relation Algebra). A relation algebra is pointed
if for all X,Y there exists a (finite) set PXY of points such that LXY =

⋃
p∈PXY

p.

As a consequence, in pointed relation algebras it holds IX =
⋃

p∈PXX
ppT.

When working in pointed relation algebras with cardinal, we also have results
like the following, where we use |X| as a shorthand notation for |LX1|:
Lemma 2.7. For all objects X and Y we have |LXY | = |X|·|Y | and |IX | = |X|.

Any pointed relation algebra with cardinal is in fact isomorphic to an algebra
of relations on finite sets; therefore, the above list of axioms can be seen as a
convenient list of facts about binary relations which make it possible to reason
algebraically. Still, our modular presentation of the theory makes it possible to
work in fragments of it where this representation theorem breaks, i.e., for which
other models exist than that of binary relations.

3 Relation Algebra in Coq

The Coq library RelationAlgebra [9,10] provides axiomatisations and tools for
various fragments of the calculus of relations: from ordered monoids to Kleene
algebra, residuated structures, and Dedekind Categories. It is structured in a
modular way: one can easily decide which operations and axioms to include.

In the present case, these are Boolean operations and constants, composition,
identities, transposition. We extended the library by a module relalg containing
definitions and facts about this particular fragment. For instance, this module
defines many classes of relations, some of which we already mentioned in Sect. 2.
For those properties we use classes in Coq:

Class is_vector (C: ops) X Y (v: C X Y) := vector: v∗top == v.

Here we assume an ambient relation algebra C, ops being the corresponding
notion, as exported by the RelationAlgebra library. Variables X,Y are objects
of the category, and v: C X Y is a morphism from X to Y. The symbols * and
== respectively denote composition and equality; top is the top morphism of
appropriate type: its source and target (Y twice) are inferred automatically.

The RelationAlgebra library provides several automation tactics to ease equa-
tional reasoning [9,10]. The most important ones are:

– ra normalise for normalising the current goal w.r.t. the simplest laws (mostly
about idempotent semirings, units and transposition),

– ra for solving goals by normalisation and comparison,
– lattice for solving lattice-theoretic goals,
– mrewrite for rewriting modulo associativity of categorical composition.

The library also contains a decision procedure for Kleene algebra with tests,
which we do not discuss here for lack of space. Those tactics are defined either by
reflection, where a decision procedure is certified within Coq (ra normalise, ra);
by exhaustive proof search (lattice); or as ad hoc technical solutions (mrewrite,
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which is a plugin in OCaml that applies appropriate lemmas to reorder paren-
theses and generalise the considered (in)equation).

A crucial aspect for this work is the interplay between the definitions from
this library and Coq’s support for setoid rewriting [13], which makes it possible
to rewrite using both equations and inequations in a streamlined way, once the
monotonicity or anti-monotonicity of all operations has been proved.

This is why we use a class to define the above predicate is vector: in this
case, the tactic rewrite vector will look for a subterm of a shape v*top where
v is provably a vector using typeclass resolution, and replace it with v. Similar
classes are set-up for all notions discussed in the sequel (injective, surjective,
univalent, total, mapping, points, and many more).

We also define classes to represent relation algebra with unit, relation algebra
with cardinal, and pointed relation algebra. Units are introduced as follows:

Class united (C: ops) := {
unit: ob C;
top_unit: top’ unit unit == 1;
nonempty_unit:> is_nonempty (top’ unit unit) }.

The field unit is the unit object; the two subsequent fields correspond to the
requirements from Definition 2.2. The symbol 1 is our notation for identity mor-
phisms. Assuming units, one can then define cardinals:

Class cardinal (C: ops) (U: united C) := {
card: forall X Y, C X Y → nat;
card0: forall X Y, @card X Y 0 = 0;
card1: @card unit unit 1 = 1;

cardcnv: forall X Y (R: C X Y), card RT = card R;
cardcup: forall X Y (R S: C X Y), card (R ∪ S) + card (R ∩ S) = card R + card S;
cardded: forall X Y Z (R: C X Y) (S: C Y Z) (T: C X Z),

is_injective R → card (T ∩ (R∗S)) ≤ card (RT ∗ T ∩ S);
cardded’: forall X Y Z (R: C Y X) (S: C Y Z) (T: C Z X),

is_univalent R → card (R ∩ (S∗T)) ≤ card (R ∗ TT ∩ S) }.
The first field is the cardinal operation itself. The remaining ones correspond to
the conditions from Definition 2.3.

Next we give two Coq proofs about cardinals, to show the ease with which
it is possible to reason about them. The first one correspond to Lemma 2.4(2).

Lemma card_unimap X Y Z (R: C X Y) (S: C Y Z):
is_univalent R → is_mapping S → card (R∗S) = card R.

Proof. rewrite ←capxt, card_uniuni, surjective_tx. apply card_weq. ra. Qed.

Here, Lemma uniuni corresponds to Lemma 2.4(1); capxt states that top is a
unit for meet; surjective tx that every surjective morphism R satisfies LR = L;
and card weq that cardinals are preserved by equality.

The second illustrative proof is that of Lemma2.5, which becomes a oneliner:

Lemma card_point X (R: C X unit): is_point R → card R = 1.
Proof. rewrite ←cardcnv, ←dot1x. rewrite card_unimap. apply card1. Qed.

(Lemma dot1x states that I is a left unit for composition.)
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4 Applications

We first detail an easy example where we link the cardinality of morphisms rep-
resenting linear orders to the cardinality of their carrier sets. The second example
is based on a graph theoretic result giving a lower bound for the cardinality of
an independent set.

4.1 Linear Orders

A morphism R : X → X is a partial order on X if R is reflexive, antisymmetric
and transitive (i.e., I ⊆ R, R ∩ RT ⊆ I and RR ⊆ R). If R is additionally linear
(i.e., R ∪ RT= L) we call R a linear order. Recall that for an object X, |X| is a
shorthand for |LX1|. We have

Theorem 4.1. If R : X → X is a linear order, then |R| = |X|2+|X|
2 .

Proof. Since R is antisymmetric we have R∩RT⊆ I. Furthermore, we have I ⊆ R
since R is reflexive so that R ∩ RT= I. Now we can calculate as follows:

|X|2 + |X| = |LXX | + |IX | (by Lemma 2.7)

= |R ∪ RT| + |IX | (R linear)

= |R ∪ RT| + |R ∩ RT| (R reflexive and antisymmetric)

= |R| + |RT| (by (C4))
= |R| + |R| (by (C3))

	

With the presented tools, this lemma can be proved in Coq in a very same

way. First we need to define a notation for the cardinal of an object:

Notation card’ X := card (top’ X unit).
Lemma card_linear_order X (R: C X X): is_order R → is_linear R →
2∗card R = card’ X ∗ card’ X + card’ X.

Proof.
intros Ho Hli.
rewrite ←card_top, ←card_one.
rewrite ←Hli.
rewrite ←kernel_refl_antisym.
rewrite capC, cardcup.
rewrite cardcnv. lia.

Qed.

The standard Coq tactic lia solves linear integer arithmetic. The lemmas
card top and card one correspond to the statements of Lemma 2.7, i.e.,

Lemma card_top X Y: card (top’ X Y) = card’ X ∗ card’ Y.
Lemma card_one X: card (one X) = card’ X.

Lemma kernel refl antisym states that the kernel of a reflexive and antisym-
metric morphism is just the identity.
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4.2 Independence Number of a Graph

In this section we prove bounds for the independence number of an undirected
graph [16]. An undirected (loopfree) graph g = (X,E) has a symmetric and
irreflexive adjacency relation. It can thus be represented by a morphism R :
X → X that is symmetric (i.e., RT⊆ R) and irreflexive (i.e., R ∩ I = O).

An independent set (or stable set) of g is a set of vertices S such that any
two vertices in S are not connected by an edge, i.e., {x, y} /∈ E, for all x, y ∈ S.
Independent sets can be modelled abstractly using vectors: a vector s : X → 1
models an independent set of a morphism R if Rs ⊆ s . Furthermore, we say
that an independent set S of g is maximum if for every independent set T of g
we have |T | ≤ |S|. The maximum size of an independent set is defined as:

αR � max {|s| | s is an independent set of R} .

One easily obtain the lower bound αR ≤
√

|R |. In fact, we have |s| ≤
√

|R |
for every independent set s, which we can prove in two lines using our library.

The upper bound is harder to obtain. We have |R|
k+1 ≤ αR, where k is the max-

imum degree of R. Call maximal an independent set which cannot be enlarged
w.r.t. the preorder ⊆:

Definition maximal (v: C X unit) := forall w, v <== w → R ∗ w <== !w → w <== v.

As expected, maximum independent sets are maximal:

Lemma maximum_maximal (v: C X unit):
R∗v <== !v → card v = independent_number R → maximal v.

(Note that the converse is not necessarily true.) Then we prove the following
algebraic characterisation of maximal independent sets: while independent sets
are characterised by an inequality (Rv ⊆ v ), maximal are characterised by an
equality (Rv = v ).

Lemma maximal_independent_iff (v: C X unit):
R∗v <== !v → (maximal v ↔ R∗v == !v).

Finally, obtaining the lower bound for the independence number consists in
proving that maximal independent sets, defined algebraically, satisfy this bound:

Lemma maximal_lower_bound (v: C X unit):
R∗v == !v → card’ X ≤ (maximum_degree R +1) ∗ card v.

Theorem independent_lower_bound:
card’ X <== (maximum_degree R +1) ∗ independent_number R.

Including the proofs of the three key lemmas, the final theorem is eventually
proved in 41 lines of Coq. We consider this a success as this is comparable to
what is required for a detailed paper proof.
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5 Conclusion

We presented an extension of the Coq RelationAlgebra library [3], that makes
it possible to reason algebraically about cardinalities of binary relations. A key
feature of the Coq proof assistant for this work is dependent types : they allow
us to define relation algebras as categories in a straightforward way, so that we
can talk about vectors or units as one would do on paper. While our approach
to cardinals would certainly work when starting from Kahl’s implementation of
allegories in Agda [7], it remains unclear to us whether it could be adapted to
his formalisation of relation algebra in Isabelle/Isar [6].
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Abstract. We formalise two semantics observing the expected running
time of pGCL programs. The first semantics is a denotational seman-
tics providing a direct computation of the running time, similar to the
weakest pre-expectation transformer. The second semantics interprets a
pGCL program in terms of a Markov decision process (MDPs), i.e. it
provides an operational semantics. Finally we show the equivalence of
both running time semantics.

We want to use this work to implement a program logic in
Isabelle/HOL to verify the expected running time of pGCL programs.
We base it on recent work by Kaminski, Katoen, Matheja, and Olmedo.
We also formalise the expected running time for a simple symmetric
random walk discovering a flaw in the original proof.

1 Introduction

We want to implement expected running time analysis in Isabelle/HOL based
on Kaminski et al. [9]. They present semantics and proof rules to analyse the
expected running time of probabilistic guarded command language (pGCL) pro-
grams. pGCL is an interesting programming language as it admits probabilistic
and non-deterministic choice, as well as unbounded while loops [12].

Following [9], in Sect. 3 we formalise two running time semantics for pGCL
and show their equivalence: a denotational one expressed as expectation trans-
former of type (σ ⇒ ennreal) ⇒ (σ ⇒ ennreal), and a operational one defining
a Markov decision process (MDP). This proof follows the equivalence proof of
pGCL semantics on the expectation of program variables in [4] derived from the
pen-and-paper proof by Gretz et al. [3].

Based on these formalisations we analyse the simple symmetric random walk,
and show that the expected running time is infinite. We started with the proof
provided in [9], but we discovered a flaw in the proof of the lower ω-invariant
based on the denotational semantics. Now, our solution combines results from
the probability measure of the operational semantics and the fixed point solution
from the denotational semantics.

Both proofs are based on our formalisation of Markov chains and MDPs [4].
The formalisation in this paper is on BitBucket1.
1 https://bitbucket.org/johannes2011/avgrun.
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2 Preliminaries

The formulas in this paper are oriented on Isabelle’s syntax: type annotations are
written t :: τ , type variables can be annotated with type classes t :: τ :: tc (i.e. t
has type τ which is in type class tc), and type constructors are written in post-fix
notation: e.g. α set. We write int for integers, ennreal for extended non-negative
real numbers: [0,∞], α stream for infinite streams of α, α pmf for probability
mass functions (i.e. discrete distributions) on α. The state space is usually the
type variable σ. On infinite streams sdrop n ω drops the first n elements from
the stream ω: sdrop 0 ω = ω and sdrop (n + 1) (s·ω) = sdrop n ω.

Least Fixed Points. A central tool to define semantics are least fixed
points on complete lattices: α ⇒ (β :: complete-lattice), bool, enat, and ennreal.
Least fixed points are defined as lfp f =

�{u | f u ≤ u}. For a monotone
function f , we get the equations lfp f = f (lfp f). Fixed point theory also
gives nice algebraic rules: the rolling rule “rolls” a composed fixed point:
g (lfp (λx. f (g x))) = lfp (λx. g (f x)) for monotone f and g, and the diagonal
rule for nested fixed points: lfp (λx. lfp (f x)) = lfp (λx. f x x), for f monotone in
both arguments.

To use least fixed points in measure theory, countable approximations are nec-
essary. This is possible if the function f is sup-continuous: f (

⊔
i C i) =

⊔
i f (C i)

for all chains C. Then f is monotone and lfp f =
⊔

i f
i ⊥. For our proofs we also

need an induction and a transfer rule2:

mono f ∀x ≤ lfp f. P x −→ P (f x) ∀S. (∀x ∈ S. P x) −→ P (
⊔

S)

P (lfp f)

sup-continuous f, g, and α α ⊥ ≤ lfp g α ◦ f = g ◦ α

α(lfp f) = lfp g

Markov Chains (MCs) and Markov Decision Processes (MDPs). An overview of
Isabelle’s MC and MDP theory is found in [4,5]. A MC is defined by a transi-
tion function K :: α ⇒ α pmf, inducing an expectation: EK

s [f ] is the expectation
of f over all traces in K starting in s. A MDP is defined by a transition function
K :: α ⇒ α pmf set, inducing the maximal expectation: ÊK

s [f ] is the supremum of
all expectation of f over all traces in K starting in s. Both expectations EK

s [f ] and
Ê
K
s [f ] have values in ennreal, which is a complete lattice. Both are sup-continuous

on measurable functions (called monotone convergent in measure theory),
which allows us to apply the transfer rule when f is defined as a least fixed point.
Also both expectations support an iteration rule, i.e. we can compute them by
first taking a step in K and then continue in the resulting state t:

E
K
s [f ] =

∫
t

E
K
t [λω. f(t · ω)]dKs and Ê

K
s [f ] =

⊔
D∈Ks

∫
t

Ê
K
t [λω. f(t · ω)]dD.

2 In our formalisation, the transfer rule is stronger: expectation requires measurability,
hence we restrict the elements to which we apply α by some predicate P .
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Fig. 1. pGCL syntax

Fig. 2. Expectation transformer semantics for pGCL running times

Where t · ω is the stream constructor and
∫

fdD is the integral over the pmf D.

3 Probabilistic Guarded Command Language (pGCL)

The probabilistic guarded command language (pGCL) is a simple programming
language allowing probabilistic assignment, non-deterministic choice and arbi-
trary While-loops. A thorough description of it using the weakest pre-expectation
transformer (wp) semantics is found in McIver and Morgan [12]. Gretz et al. [3]
shows the equivalence of wp with a operational semantics based on MDPs. Hurd
et al. [8] and Cock [2] provide a shallow embedding of pGCL in HOL4 and
Isabelle/HOL. We follow the definition in Kaminski et al. [9].

In Fig. 1 we define a datatype representing pGCL programs over an arbi-
trary program state of type σ. Empty has not running time. Halt immediately
aborts the program. Seq is for sequential composition. Par is for non-deterministic
choice, i.e. both commands are executed and then one of the results is cho-
sen. Assign, If, and While have the expected behaviour, and all three commands
require one time step. A probabilistic choice is possible with Assign u, where u
is a probabilistic state transformer (σ ⇒ σ pmf). The expected running time of
Assign u weights each possible running time with the outcome of u. The assign-
ment is deterministic is u is a Dirac distribution, i.e. assigning probability 1 to
exactly one value. We need the datatype to have a deep embedding of pGCL
programs, which is necessary for the construction of the MDP.

Expected Running Time. The denotational semantics for the running time is
given as an expectation transformer, which is similar to the denotational seman-
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Fig. 3. MDP semantics for pGCL running times

tics for the expectation of program variables as weakest pre-expectation trans-
formers. Again we follow the definition in Kaminski et al. [9]. In Fig. 2 we define
the expectation transformer ert taking a pGCL command c and an expecta-
tion f , where f assigns an expected running time to each terminal state of c.
This gives a simple recursive definition of the Seq case, for the expected run-
ning time of a pGCL program we will set f = 0. We proved some validating
theorems about expectation transformer ert, i.e. continuity and monotonicity of
ert c, closed under constant addition for Halt-free programs, sub-additivitiy, etc.

MDP Semantics. For the operational small-step semantics we introduce a MDP
constructed per pGCL program, and compute the expected number of steps until
the program terminates. In Fig. 3 we define the MDP by its transition function
K and the per-state cost function cost f c s x. The per-state cost cost f c s x
computes the running time cost associated with the program c at state s. Here
the program is seen as a list of statements, hence we walk along a list of Seq
and only look at its left-most leaf. If the program is Empty the MDP is stopped
and we return f s containing further running time cost we want to associated
to a finished state s (in most cases this will be 0, but it is essential in the
induction case of Theorem 1). When the execution continues we also add x,
c.f. the definition of coststream.

The transition function K induces now a set of trace spaces, one for each
possible resolution of the non-deterministic choices introduced by Par. We write
Ê
K
(c,s)[f ] for the maximal expectation of f :: (σ pgcl × σ) stream ⇒ ennreal when

the MDP starts in (c, s). We define the cost of a trace as the sum of cost over
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all states in the trace:

coststream f ((c, s)·ω)
lfp
= cost f c s (coststream f ω)

Finally the maximal expectation of coststream computes ert:

Theorem 1. Ê
K
(c,s)[coststream f ] = ert c f s

Proof (Induction on c). The interesting cases are Seq and While. For Seq we prove
the equation Ê

K
(Seq a b,s)[coststream f ] = Ê

K
(a,s)[coststream (λs. ÊK

(b,s)[coststream f ])],
by fixed point induction in both directions. For While we prove

Ê
K
(While g c,s)[coststream f ] = lfp (λF s. 1+ if g s then Ê

K
(c,s)[coststream f ] else f s) s

by equating it to a completely unrolled version using fixed point induction and
then massaging it in the right form using the rolling and diagonal rules. 
�

4 Simple Symmetric Random Walk

As an application for the expected running time analysis Kaminski et al. [9]
chose the simple random walk. As difference to [9] we do not use ω-invariants to
prove the infinite running time, but the correspondence of the program with a
Markov chain (there is no non-deterministic choice).

The simple symmetric random walk (srw) is a Markov chain on Z, in each
step i it goes uniformly to i + 1 or i − 1 (i.e. in both cases with probability
1/2). Surprisingly, but well known (and formalised by Hurd [7]), it reaches each
point with probability 1. Equally surprising, the expected time for the srw to
go from i to i + 1 is infinite! Kaminski et al. [9] prove this by providing a lower
ω-invariant. Unfortunately, this proof has a flaw: in Appendix B.1 of [10] (the
extended version of [9]), the equation 1+�x > 0�·2+�1 < x ≤ n+1�·∞+�0 < x ≤
n−1�·∞ = 1+�x > 0�·2+�0 < x ≤ n+1�·∞ does not hold for n = 0 and x = 1.
The author knows from private communication with Kaminski et al. that it still
is possible to use a lower ω-invariant. Unfortunately, the necessary invariant gets
much more complicated.

After discovering the flaw in the proof, we tried a more traditional proof.
The usual approach in random walk theory uses the generating function of the
first hitting time. Unfortunately, this would require quite some formalizations
in combinatorics, e.g. Stirling numbers and more theorems about generating
functions than available in [4]. Finally, we choose an approach similar to [7],
i.e. we set up a linear equation system and prove that the only solution is infinity.

Now, srw :: int ⇒ int pmf is the transition function for the simple symmet-
ric random walk. The expected time to reach j when started in i is written
H i j

def= E
srw
i [f j], where f j (k · ω)

lfp
= if j = k then 0 else 1 + f j ω is the first

hitting time. Now we need to prove the following rules: (I) H j i = H j k + H k i
if i ≤ j ≤ k, (II) H (i + t) (j + t) = H i j, (III) H i j = H j i and (VI)
H i j = (if i = j then 0 else 1 + (H i (j + 1) + H i (j − 1))/2). From these rules
we can derive H i j = ∞ for i �= j.
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Rule (VI) is derived the expectation transformer semantics. But it is not
clear to us how to prove rule (I) by only applying fixed point transformations or
induction. Instead we prove (I) in a measure theoretic way:

H j k + H k i = E
srw
j [f j + H k i]

=
∑
n

(n + H k i) · Pr
j

(f k = n) (1)

=
∑
n

E
srw
j [λω. (n + f i (sdrop n ω)) · �f k ω = n�]

=
∑
n

E
srw
j [f i] = H j i (2)

Equation 1 requires that f k is finite with probability 1, we do a case distinction:
if it is not finite a.e. the result follows from H j i ≥ H j k = ∞. Equation 2 is now
simply proved by induction on n. The proofs for Eqs. 1 and 2 essentially operate
on each trace ω in our probability space, making them inherently dependent on
the trace space.

Theorem 2 (The running time of srw is infinite). H i j = ∞ if i �= j.

5 Coupon Collector

Another example we formalised is the coupon collector example from [9]. The
idea is to compute the expected time until we collect N different coupons from a
uniform, independent and infinite source of coupons. The left side of Fig. 4 shows
our concrete implementation CCN , the right side is its refinement (there is no
array cp necessary). By fixed point transformations we show that the (refined)
inner loop’s running time has a Geometric distribution, and hence the expected
running time for CCN is: ert CCN 0 s = 2 + 4N + 2N

∑N
i=1

1
i for N > 0.

6 Related Work

The first formalisation of probabilistic programs was by Hurd [7] in hol98, for-
malising a trace space for a stream of probabilistic bits. Hurd et al. [8] is dif-
ferent approach, formalising the weakest pre-expectation transformer semantics

Fig. 4. The Coupon Collector in pGCL and its refinement
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of pGCL in HOL4. Both formalisations are not related. Audebaud and Paulin-
Mohring [1] use a shallow embedding of a probability monad in Coq.
Cock [2] provides a VCG for pGCL in Isabelle/HOL. Hölzl and Nipkow [5,6]
formalises MCs and analyses the expected running time of the ZeroConf protocol.
On the basis of [5] formalises MDPs and shows the equivalence of the weakest
pre-expectation transformer (based on the pen-and-paper proof in [3]).

Unlike Theorem 1, these formalisations either define denotational seman-
tics [1,2,8], or operational semantics [5–7], none of them relate both semantics.

7 Conclusion and Future Work

While formalising the random walk example in [9] we found an essential flaw
in the proof in [10]. Our solution seams to indicate, that for the verification
of expected running times an ω-invariant approach is not enough. While the
expectation transformer gives us a nice verification condition generator (e.g. [2]),
the trace space might be required to get additional information i.e. fairness and
termination. The equivalence between the expectation transformer semantics
and the MDP semantics provides the required bridge between both worlds. Also
we might require a probabilistic, relational Hoare logic (maybe based on [11]) to
automate tasks like Fig. 4.
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Abstract. Fourier transform based techniques are widely used for solv-
ing differential equations and to perform the frequency response analysis
of signals in many safety-critical systems. To perform the formal analysis
of these systems, we present a formalization of Fourier transform using
higher-order logic. In particular, we use the HOL-Light’s differential,
integral, transcendental and topological theories of multivariable calcu-
lus to formally define Fourier transform and reason about the correctness
of its classical properties, such as existence, linearity, frequency shifting,
modulation, time reversal and differentiation in time-domain. In order
to demonstrate the practical effectiveness of the proposed formalization,
we use it to formally verify the frequency response of an automobile
suspension system.

Keywords: Higher-order logic · HOL-Light · Fourier transform

1 Introduction

It is customary to use differential equations for capturing the dynamic behav-
ior of engineering and physical systems for their continuous-time analysis [9].
The complexity of the analysis varies with their size, nature of the input sig-
nals and the design constraints. Fourier Transform [2] is a transform method,
which converts a time varying function to its corresponding ω-domain repre-
sentation, where ω is its corresponding angular frequency [1]. In this way, the
differentiation and integration in time domain analysis are transformed into mul-
tiplication and division operators in the frequency domain and thus are easily
solved through algebraic manipulation. Moreover, the ω-domain representations
of the differential equations can also be used for the frequency response analysis
of the corresponding systems.

The first step in the continuous-time system analysis, using Fourier trans-
form, is to model the dynamics of the system using a differential equation. This
differential equation is then transformed into its equivalent ω-domain represen-
tation by using the Fourier transform. Next, the resulting ω-domain equation is
simplified using various Fourier transform properties, such as existence, linearity,
frequency shifting, modulation, time reversal and differentiation. The main pur-
pose is to either solve the differential equation to obtain values for the variable
c© Springer International Publishing Switzerland 2016
J.C. Blanchette and S. Merz (Eds.): ITP 2016, LNCS 9807, pp. 483–490, 2016.
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ω or obtain the frequency response of the system corresponding to the given
differential equation. Once the frequency response is obtained, it can be used to
analyze the dynamics of the system by studying the impact of different frequency
components on the intended behaviour of the given system.

Traditionally, the transform methods based analysis has been done using
paper-and-pencil, numerical methods and symbolic techniques. However, all of
these techniques cannot ascertain accurate analysis due to their inherent limi-
tations, like human-error proneness, numerical errors and discretization errors.
Given the wide-spread usage of physical systems in many safety-critical domains,
such as medicine and transportation, accurate transform methods based analysis
has become a dire need. With the same motivation, higher-order-logic theorem
proving has been used for the formalization of Z [7] and Laplace [8] transforms.
However, the formalization of Z-transform can only be utilized for discrete-time
system analysis. Similarly, Laplace transform based analysis is only limited to
causal functions, i.e., the functions that fulfill the condition: f(x) = 0 for all
x < 0. Physical systems are often modeled by the non-causal continuous func-
tions, i.e., the functions with infinite extent. Fourier transform can cater for
the analysis involving both continuous and non-causal functions and thus can
overcome the above-mentioned limitations of Z and Laplace transforms.

In this paper, we propose to formalize Fourier transform in higher-order logic
to leverage upon its benefits for formally analyzing physical continuous-time lin-
ear systems. In particular, we formalize the definition of Fourier transform in
higher-order logic and use it to verify the classical properties of Fourier trans-
form, such as existence, linearity, frequency shifting, modulation, time reversal
and differentiation. These foundations can be built upon to reason about the
analytical solutions of differential equations or frequency responses of the phys-
ical systems. In order to demonstrate the practical effectiveness of the reported
formalization, we present a formal analysis of an automobile suspension system.

2 Formalization of Fourier Transform

Mathematically, the Fourier transform is defined for a function f : R1 → C as:

F [f(t)] = F (ω) =
∫ +∞

−∞
f(t)e−jωtdt, ω ε R (1)

We formalize Eq. 1 in HOL-Light as follows:

Definition 1. Fourier Transform
� ∀ w f. fourier f w =

integral UNIV (λt. cexp (--((ii ∗ Cx w) ∗ Cx (drop t))) ∗ f t)

The function fourier accepts a complex-valued function f : R1 → R2 and
a real number w and returns a complex number that is the Fourier transform of
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f as represented by Eq. 1. In the above function, we used complex exponential
function cexp : R2 → R2 because the return data-type of the function f is R2.
To multiply w with ii, we first converted w into a complex number R2 using
Cx. Similarly, t has data-type R1 and to multiply it with ii ∗ Cx w, it is first
converted into a real number by using drop and then it is converted to data-
type R2 using Cx. Next, we use the vector function integral to integrate the
expression f(t)e−iωt over the whole real line since the data-type of this expression
is R2. Since the region of integration of the vector integral function must be a
vector space, therefore we represented the interval of the integral by UNIV : R1

which represents the whole real line.
The Fourier transform of a function f exists, i.e., the integrand of Eq. 1 is

integrable, and the integral has some converging limit value, if f is piecewise
smooth and is absolutely integrable on the whole real line [1,5]. A function is
said to be piecewise smooth on an interval if it is piecewise differentiable on that
interval. Similarly, a function f is absolutely integrable on the whole real line
if it is absolutely integrable on both the positive and negative real lines. The
Fourier existence condition can thus be formalized in HOL-Light as follows:

Definition 2. Fourier Exists
� ∀ f g w a b. fourier exists f =

(∀ a b. f piecewise differentiable on interval [lift a, lift b]) ∧
f absolutely integrable on {x | &0 <= drop x} ∧
f absolutely integrable on {x | drop x <= &0}

In the above function, the first conjunct expresses the piecewise smooth-
ness condition for the function f. In the second conjunct, {x | &0 <= drop x}
represents the interval [0,∞), whereas {x | drop x <= &0} represents the
interval (−∞, 0] in the last conjunct. Both these conjuncts jointly ensure that
the function f is absolutely integrable on whole real line.

3 Formal Verification of Fourier Transform Properties

In this section, we use Definitions 1 and 2 to verify some of the classical properties
of Fourier transform in HOL-Light. The verification of these properties not only
ensures the correctness of our definitions but also plays a vital role in minimizing
the user intervention and time consumption in reasoning about Fourier transform
based analysis of systems.

The existence of the improper integral of Fourier Transform is a pre-condition
for most of the arithmetic manipulations involving the Fourier transforms. This
condition is formalized in HOL-Light as follows:
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Theorem 1. Integrability of Integrand of Fourier Transform Integral
� ∀ f w. fourier exists f ⇒

(λt. cexp (--((ii ∗ Cx w) ∗ Cx (drop t))) ∗ f t) integrable on UNIV

Table 1. Properties of Fourier Transform

Mathematical Form Formalized Form

Linearity

F [αf(t) + βg(t)] =
αF (ω) + βG(ω)

� ∀ f g w a b.

fourier exists f ∧ fourier exists g ⇒
fourier (λt. a ∗ f t + b ∗ g t) w =

a ∗ fourier f w + b ∗ fourier g w

Frequency Shifting

F [eiω0tf(t)] = F (ω − ω0)

� ∀ f w w0.

fourier exists f ⇒
fourier (λt. cexp ((ii ∗ Cx (w0)) ∗ Cx (drop t)) ∗ f t) w =

fourier f (w - w0)

Modulation

F [cos(ω0t)f(t)] =
F (ω − ω0) + F (ω + ω0)

2

� ∀ f w w0.

fourier exists f ⇒
fourier (λt. ccos (Cx w0 ∗ Cx (drop t)) ∗ f t) w =

(fourier f (w - w0) + fourier f (w + w0)) / Cx (&2)

F [sin(ω0t)f(t)] =
F (ω − ω0) − F (ω + ω0)

2i

� ∀ f w w0.

fourier exists f ⇒
fourier (λt. csin (Cx w0 ∗ Cx (drop t)) ∗ f t) w =

(fourier f (w - w0) - fourier f (w + w0)) / (Cx (&2) ∗ ii)

Time Reversal

F [f(−t)] = F (−ω)
� ∀ f w. fourier exists f ⇒

fourier (λt. f (--t)) w = fourier f (--w)

First-order Differentiation

F [
d

dt
f(t)] = iωF (ω)

� ∀ f w.

fourier exists f ∧
fourier exists (λt. vector derivative f (at t)) ∧
(∀t. f differentiable at t) ∧
((λt. f (lift t)) → vec 0) at posinfinity ∧
((λt. f (lift t)) → vec 0) at neginfinity

⇒ fourier (λt. vector derivative f (at t)) w =

ii ∗ Cx w ∗ fourier f w

Higher-order Differentiation

F [
dn

dtn f(t)] = (iω)nF (ω)

� ∀ f w n.

fourier exists higher deriv n f ∧
(∀t. differentiable higher derivative n f t) ∧
(∀p. p < n ⇒

((λt. higher vector derivative p f (lift t)) → vec 0)

at posinfinity) ∧
(∀p. p < n ⇒

((λt. higher vector derivative p f (lift t)) → vec 0)

at neginfinity)

⇒ fourier (λt. higher vector derivative n f t) w =

(ii ∗ Cx w) pow n ∗ fourier f w
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The proof of above theorem is based on splitting of the region of integration,
i.e., the whole real line UNIV : R1, as a union of positive real line (interval
[0,∞)) and negative real line (interval (−∞, 0]). Then, some theorems regarding
integration and integrability are used to conclude the proof of Theorem 1.

Next, we verified some of the classical properties of Fourier transform, given
in Table 1.

The above-mentioned formalization is done interactively and it took around
4000 lines of code and approximately 600 man-hours. The first author started
working with HOL-Light as a novice user and it took him about 200 man-hours to
get familiar with its proof styles and procedures. About another 100 man-hours
were spent in understanding the Multivariate theories of HOL-Light, which are
the foundational theories towards this work. The actual formalization task took
about 300 man-hours. The major difficulty faced during the formalization was
the unavailability of detailed proofs for the properties of Fourier transform in
literature. The available paper-and-pencil based proofs were found to be very
abstract and missing the complete reasoning about the steps. The source code
of our formalization is available for download [6] and can be utilized for further
developments and the analysis of physical systems.

4 Application: Automobile Suspension System

In this section, we provide the verification of the frequency response of an auto-
mobile suspension system, depicted in Fig. 1. An automobile suspension system
consists of the chassis connected to the wheels through a spring and dashpot
(shock absorber). The road surface can be thought of as a superposition of rapid
and gradual small-amplitude changes in elevation, which represents the rough-
ness of the surface. These rapid and gradual changes are acting like high and
low frequencies, respectively. The automobile suspension system is intended to
filter out the rapid variations on the road surface, i.e., to act as a low pass filter.
We perform the formal analysis of this system using our proposed formalization
of Fourier transform within the sound core of HOL-Light theorem prover.

The behaviour of a automobile suspension system with input u(t) and output
y(t) can be expressed by the following differential equation [5]:

M
d2y(t)
dt2

+ b
dy(t)
dt

+ ky(t) = ku(t) + b
du(t)

dt
, (2)

In the above equation, M is the mass of the chassis, whereas, k is the spring
constant and b represents the shock absorber constant, as shown in Fig. 1. All
of these are design parameters of the underlying system and can have positive
values only.

The corresponding frequency response of the automobile suspension system
is given as follows [5]:

Y (ω)
U(ω)

=
b

M (iω) + k
M

(iω)2 + b
M (iω) + k

M

(3)
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Fig. 1. Automobile Suspension System [5]

We aim to verify this frequency response using Eq. 2, which can be verified
as the following theorem in HOL-Light.

Theorem 2. Frequency Response of Automobile Suspension System
� ∀ y u w a. &0 < M ∧ &0 < b ∧ &0 < k ∧

(∀t. differentiable higher derivative 2 y t) ∧
(∀t. differentiable higher derivative 1 u t) ∧
fourier exists higher deriv 2 y ∧
fourier exists higher deriv 1 u ∧
(∀p. p < 2 ⇒

((λt. higher vector derivative p y (lift t)) → vec 0)

at posinfinity) ∧
(∀p. p < 2 ⇒

((λt. higher vector derivative p y (lift t)) → vec 0)

at neginfinity) ∧
((λt. u (lift t)) → vec 0) at posinfinity ∧
((λt. u (lift t)) → vec 0) at neginfinity ∧
(∀t. diff eq ASS y u a b c) ∧ ∼(fourier u w = Cx (&0)) ∧
∼((ii ∗ Cx w) pow 2 + Cx (b / M) ∗ ii ∗ Cx w

+ Cx (k / M) = Cx (&0))

⇒ (fourier y w / fourier u w =

(Cx (b / M) ∗ ii ∗ Cx w + Cx (k / M)) /

((ii ∗ Cx w) pow 2 + Cx (b / M) ∗ ii ∗ Cx w + Cx (k / M))

The first three assumptions ensure that the variables corresponding to mass
of chassis (M), spring constant (k) and shock absorber constant (b) cannot be
negative or zero. The next two assumptions ensure that the functions y and u
are differentiable up to the second-order and first-order, respectively. The next
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assumption represents the Fourier transform existence condition upto the second-
order derivatives of function y. Similarly, the next assumption ensures that the
Fourier transform exists up to the first-order derivative of function u. The next
two assumptions represent the condition lim

t→±∞ y(k)(t) = 0 for each k = 0, 1, i.e.,

lim
t→±∞ y(1)(t) = 0 and lim

t→±∞ y(0)(t) = lim
t→±∞ y(t) = 0, where y(k) is the kth deriv-

ative of y. The next two assumptions provide the condition lim
t→±∞ u(t) = 0. The

next assumption represents the formalization of Eq. 2 and the last two assump-
tions provide some interesting design related relationships, which must hold for
constructing a reliable automobile suspension system. Finally, the conclusion of
the above theorem represents the frequency response given by Eq. 3. The proof
of Theorem 2 is based on Definition 1 and the property of Fourier transform
of higher-order derivative of a function, along with some arithmetic reasoning.
The proof script for this application consists of approximately 500 lines of HOL-
Light code [6] and the proof process took just a couple of hours, which clearly
indicates the usefulness of our proposed formalization in conducting the Fourier
transform analysis of real-world applications. Given the continuous and non-
causal nature of the functions involved in this analysis, the existing Z [7] and
Laplace transform [8] formalizations cannot be used for conducting the above-
mentioned formal analysis.

5 Conclusions

In this paper, we proposed a formalization of Fourier transform in higher-order
logic. We presented the formal definition of Fourier transform and based on
it, verified its properties, namely existence, linearity, frequency shifting, mod-
ulation, time reversal and differentiation in time-domain. Lastly, in order to
demonstrate the practical effectiveness of the proposed formalization, we pre-
sented a formal analysis of an automobile suspension system.

The proposed formalization of Fourier transform can be utilized to conduct
the formal analysis of many safety-critical systems involving signal processing
filters, such as low-pass, high-pass, band-pass and band-stop [5] and in wireless
communication systems, such as antenna [2] and signal transmission [3]. Simi-
larly, in optics, it can be used to formally study the behaviour of light, such as
intensity and diffraction, in different optical devices [2], which can be very use-
ful for the recently initiated project on the usage of higher-order-logic theorem
proving for the formal analysis of optics [4].
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Abstract. In this paper we present CoqPIE(CoqPIE is available for
download at http://github.com/kendroe/CoqPIE), a new development
environment for Coq which delivers editing functionality centered around
common prover usage workflow not found in existing tools. The main
contributions of CoqPIE build from having an integrated parser for both
Coq source and for prover output. The primary novelty is not the parser
but how it is used: CoqPIE includes tools to carry out complex edit-
ing functions such as lemma extraction and replay. In proof replay for
example both new and old outputs of the proof script are parsed into
ASTs. These ASTs allow replay to do updates such as fixing hypothesis
references.

1 Introduction

In this paper we present CoqPIE, a new development environment for Coq which
delivers editing functionality centered around common prover usage workflow
that is not found in existing tools. The design of CoqPIE was driven by the
author’s frustrating with a few of the existing proof development workflows.
First, when a proof gets to be more than about 300 steps, the time it takes
for coqtop to process a single tactic slows; this makes browsing quite tedious.
Second, when developing a large proof with many lemmas, proving a lemma
often reveals an error in the lemma itself. This change then propagates and
requires the statements of other lemmas to be changed. Since many of these
lemmas have likely already been proven, they need to be replayed (likely with
proof script editing), a tedious process.

Improving the above and similar workflows is the primary goal of the design
of CoqPIE, which we now describe.

2 An Overview of CoqPIE

The diagram in Fig. 1 shows the CoqPIE UI with a sample proof derivation
open. There are three views shown. On the left is a tree view of the entire
project similar to the tree view found in modern IDEs. The top level of the
tree view shows the files in the project; opening a file node displays a list of all
the Coq declarations in that file. Opening a theorem declaration in turn shows
c© Springer International Publishing Switzerland 2016
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the steps used to prove that theorem, with steps arranged in a tree based on
subgoal relationships.

The middle view displays the source file based on the selection made in the
tree view on the left. This view functions in a manner similar to the source
file view in CoqIDE or Proof General. As with those tools, shading is used to
indicate the portion of the file already processed by coqtop. Unlike Proof General
and CoqIDE, the CoqPIE process management system automatically recompiles
dependent source files.

Fig. 1. The main CoqPIE window

The window on the right is similar to the Coq state window in CoqIDE or
Proof General: it shows the current goal and hypotheses. However, instead of
showing the state at the current processing point of Coq, it shows the state just
after the selected definition or proof step from the tree view at the left. This
is possible because CoqPIE runs the entire project and saves all output from
coqtop before editing can commence. With this initial pass it is possible to very
quickly browse theorems and to see the state after each step. This full proof
tree state is also maintained during editing: as the user edits a source file and
reruns coqtop to verify the updates, the cached outputs are updated. Differences
from the state just before the most recent tactic was executed are highlighted
in yellow. One can also view differences between hypotheses and the goal or
differences between old and new versions of a state (useful for the replay assist
described later), via the combo box just above the window on the right which
allows selection of which differences to show.
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Since CoqPIE keeps intermediate proof state around it can be more intelligent
about whether definitions and lemmas are up-to-date: definitions with out-of-
date Coq output information are color coded so the user knows they need to be
replayed.

Parsing. Coq has an internal CoqAst data structure, but it is not easily acces-
sible with the current API. So, for the current implementation of CoqPIE, we
chose to create our own parser. This choice has a number of ramifications. First,
the Coq language is quite large and complex; we are only able to parse the
commonly-used subset. Second, Coq has a Notation construct that can add
new syntax to the language. We currently do not have the capability to handle
this construct. Longer-term we hope to see a CoqAst API exposed which we
will directly be able to use. If a definition or proof step cannot be parsed, then
CoqPIE inserts a bad declaration or bad step AST node in the proof tree. The
end point is determined by looking for a period.

Dependency management. CoqPIE maintains dependencies between definitions
and theorems. When a theorem or definition is changed, all dependent theo-
rems and definitions are highlighted in the project treeview. Creating an exact
algorithm for tracking dependencies is very difficult [6] due to the complexi-
ties of Coq’s higher-order semantics. Many other issues arise in doing depen-
dency analysis, see [22], including opaque vs transparent proof dependencies.
An opaque transparency is a dependency that can be identified by the proof
statement alone. Transparent dependencies occur when a tactic in the proof
script depends on another theorem. These can sometimes be hard to identify
as theorems may be chosen automatically by tactics such as auto. Our current
approach is to use an incomplete dependency tracking algorithm: CoqPIE bases
dependency relationships only on identifiers that explicitly appear in a proof or
definition.

Lemma extraction. It is often useful to extract one of the goals of a theorem
as a lemma in order to break a large proof into more manageable pieces. Coq
can process two theorems of 100 steps each much faster than one theorem of
200 steps. CoqPIE provides a command that automates this extraction. The
extraction is done in the following steps:

1. The statement of the new theorem is constructed by taking the goal as
the consequent. Each hypothesis becomes an antecedent. If the hypothesis
appears to be a variable, then it is encoded as part of a forall construct.
Otherwise it is encoded as an antecedent of the form hyp ->.

2. The steps used to prove the goal are extracted and become the script for the
theorem. One can find the end of the sequence of steps used to prove the
current goal at the goal state of each subsequent step. The first step after the
current step for which the number of goals is one less than that of the current
goal is the last step that needs to be extracted with the theorem.

3. In front of the script from the previous step an intros statement is added to
introduce all of the generated antecedents.
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4. The steps to prove the goal are commented out in the main theorem.
5. An apply of the newly generated theorem plus an apply for each hypothesis

is generated in place of those steps that have been commented out.
6. Finally, if there are existential variables in the goal (such as ?508), the lemma

extraction tactic tries to figure out how to fill in this variable. The trick here
is to realize that this variable is likely filled in by the steps that prove this
goal in the parent theorem. The heuristic is to compare the subgoals after
these steps have executed in the main goal to the corresponding subgoals
from before they were executed.

This tactic is only a heuristic, and there are several cases in which it will fail.
For example, a Focus in the middle will break the algorithm for finding the end
of the steps for the lemma.

Replay assist. When the statement of a theorem changes, most of the old proof
script may still be correct, but at each step minor changes may need to be
made. One common example is that hypothesis names may have changed. For
example, apply H may need to become apply H0. To improve the workflow we
have implemented a replay assistant which automatically will replay proof and
apply heuristics to patch the proof back together. Replay assist saves both the
coqtop output from before the theorem changed and the output of the new
theorem up to the point where a patch may need to be made. One can then
compare the two texts and see that H has been renamed H0, and patch the proof
script accordingly.

The replay assistant provides a semi-automated assistant to help with the
task of proof patching. There is a “Replay” button that advances coqtop past
one proof step in a manner similar to “Right.” However, steps will be edited if
necessary. So, unfold noFind in H will be changed to unfold noFind in H0
if the hypothesis was renamed, and then coqtop will advance. There also is a
“Show previous output” button to show the old output that can be used to see
the old goal state. This is useful if hand editing is necessary. Goal information is
attached as annotations to the text of the proof steps. Hence if steps are inserted,
then the goals will automatically retain its connection to the original steps.

The current replay algorithm only makes updates to hypothesis labels, but we
are planning to extend the functionality in the near future. To update hypothesis
labels, CoqPIE finds the renaming by looking at both the old and new result
from the previous step and choosing the hypothesis from the new state that is
the closest match to the one from the old state. Matches are scored by doing a
top down comparison of the two AST trees and counting the number of nodes
that match.

Coq users will often explicitly name hypotheses that keep changing position
during proof development in order to make direct replay more reliable; while
this approach improves the odds of a successful replay, the CoqPIE replay tool
allows users to skip this step. In addition, we aim to extend CoqPIE replay to
support other changes including detecting when a new subgoal has been added,
commenting out a subgoal that has been removed, and reordering proof steps.
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Admittedly it will never be possible to patch back every single proof, but it
should be possible to eliminate many of the tedious steps users must take when
patching a proof.

3 Experience with Implementation

The current implementation has all of the functionality described in this paper.
The first author has been using the tool exclusively for proof editing in a multi-
file project containing around 10000 lines of Coq code. The tool has also been
used to read in a couple of other large derivations including a microprocessor
verification example [26]1 and the first few chapters of Software Foundations
[20]. We needed to make some very minor edits to get Software Foundations to
compile.

There is an up-front cost of using CoqPIE: the full project needs to be run
and intermediate goals parsed and cached. The table in Fig. 2 shows times for
processing some projects from scratch. The times are taken from runs on a 2011
MacBook Pro with a 2.7 Ghz Intel i5 core and 8G of memory. Since this only
needs to re-run if the state of the tool becomes inconsistent, it should be an
infrequent event.

Project Compile CoqPIE Memory usage
time initialization (Python process+

time largest Coq process)

Model.v 0:03 0:46 35M+163M

DPLL 1:36 9:08 94M+581M

Microprocessor 3:14 4:19:29 12M+825M

Software Foundations 0:06 4:01 47M+187M

Fig. 2. Times and memory usage of CoqPIE on different test cases.

Initialization times for CoqPIE are a few times slower than what is needed
to compile the project. While for our current projects the initialization time is
tolerable, as shown in the table, for larger projects it will be problematic and we
will need to do background updating as is done in PIDE.

Future implementation plans. There are a number of areas where improvement
is needed before CoqPIE is ready for widespread adoption. We are looking into
integration with PIDEtop. The coqtop parser may be integrated directly into
CoqPIE if we can get some cooperation from the Coq development team. We plan
to add additional heuristics to replay as we work with more complex theorems.
We also anticipate adding other high level heuristics beyond replay.

1 A couple of type checking errors showed up in CoqPIE but not when compiling
outside of CoqPIE. We are still working to find the source of these errors.
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4 Related Work

In addition to CoqIDE and Proof General, there are several other Coq IDE
development efforts. PIDE/jedit [8,27,28] introduces asynchronous communica-
tion between the IDE and the theorem prover to improve the user experience.
The idea is that as text is being edited in a proof script, the theorem prover is
continuously running in the background verifying the new text and all dependen-
cies. Concurrency is used to speed up theorem proving tasks. The tool saves all
output and adds markups to the text in appropriate places. Our system currently
does not run the prover as a background task or do automatic updating.

CoqPIE provides a goal state window that highlights differences and allows
the showing/hiding of individual hypotheses, whereas PIDE/jedit simply stores
the text of the theorem prover’s output. We do parsing of the output both
for the above functionality and replay. CoqPIE also replaces proof scripts with
admit for proofs on which the user is not working. This gains much of the same
performance advantage as concurrency.

The IDE supplied with Coq 8.5 also introduces concurrency and dependency
analysis to speed up processing of files. We aim to add support for concurrency
in CoqPIE in the future.

Coqoon [15] is an effort to integrate Coq into Eclipse. It provides a tree view
to show all files and declarations in the Coq input, similar to our tree view.
Parsing is less developed than what exists in CoqPIE: Cocoon provides a simple
lexer for tokens and determines the dividing point between definitions by finding
periods. CoqPIE on the other hand provides full AST generation along with links
between the nodes and positions in the text. There is no concept of storing both
the old an new versions of goals in Coqoon and hence no framework for the
style of replay assist provided by CoqPIE. Since there are no ASTs, refactoring
operations such as lemma extraction are not possible in Coqoon. Finally, there
is no difference highlighting since that feature is also dependent on having a
full AST. Coqoon is built on top of PIDE and so it allows for asynchronous
recompilation of proofs. The PIDE protocol also allows Coqoon to have cached
output at each step. The CoqPIE initialization process is not needed; instead,
theorem proving is a background task and annotations are collected as they
become available.

There also are efforts to build Coq IDEs at MIT and UCSD [3,4]. Both are
web-based. However, these tools are primarily intended for teaching.

Proviola [25] is a tool that compiles Coq source code and captures the output
at each step. The tool then generates a Javascript-based web page that can
display the outputs as the user hovers over each tactic in a proof. Our tool in
addition to caching output also parses the output so it can be used by editing
macros. CoqPIE also provides algorithms for updating the cache when the source
code is edited and the Coq process is rerun.

Pcoq [10] is an earlier UI for Coq. It features a window showing the proof
script, another window showing the Coq output and a third window showing a
list of potential theorems that can be applied at the current step. The first two
windows are similar to what exists in Proof General and Coq IDE. The third
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window is unique to Pcoq and would be a useful feature to add to CoqPIE.
CtCoq [9,12] builds on Pcoq. It provides the same basic windows as Pcoq, and
also parses Coq syntax. It is integrated directly with the CoqAst data structure.
Unlike CoqPIE, this AST parsing is used to create a tree-oriented editing para-
digm. UI-based point/click/drag and drop commands are used for constructing
proofs in place of entering commands. In comparison, our system uses the ASTs
to implement many heuristic operations such as replay assist and lemma extrac-
tion.

Company Coq [21] is an extension to Proof General that adds many useful
features, including shortcut text entry, completion, and reference to Coq doc-
umentation. These features would also be useful to add to CoqPIE but they
are not our primary focus. Company Coq also includes a lemma extraction fea-
ture. However, its implementation does not use an actual AST and hence is less
developed.

Proof script transformations have been discussed in [18]. The method involves
creating a few correctness preserving transformations. Since the transformations
must be formally verified it limits the scope of what tasks can be performed.
The refactoring operations in CoqPIE are heuristic in nature so correctness all
falls back on Coq.

5 Conclusion

We have presented CoqPIE, a novel Coq editing framework. A key feature of
CoqPIE is use of an integrated parser that links AST nodes to source text, which
then allows us to create several different forms of intelligent editing functional-
ity, including proof refactoring, showing differences between terms to help guide
proof development, and maintaining dependencies so that out-of-date informa-
tion is clearly highlighted. The current implementation develops a few refactoring
tools, but we have only scratched the surface of what refactoring tools can be
built over the CoqPIE foundation.

Acknowledgements. The authors would like to thank Gregory Malecha, Valentin
Robert and Jesper Bengston for their feedback.
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