
On Necessary and Sufficient Conditions
for Eigenstrain-Type Control of Stresses
in the Dynamics of Force-Loaded Elastic Bodies

Juergen Schoeftner and Hans Irschik

Abstract In the present contribution, the possibility of controlling dynamic stresses
in force-loaded bodies by means of actuating eigenstrain fields is addressed.
The action of eigenstrains, such as thermal or piezoelectric actuating strains, is
subsequently gathered under the notion of actuating stresses. Our study is performed
in the framework of the theory of small incremental dynamic deformations super-
imposed upon a state of possibly large static pre-deformation of a hyperelastic body.
Particularly, we present a solution for the general problem of producing certain
incremental stress trajectories by means of specifically tailored actuation stresses
that are superimposed onto the force-loaded body. This we shortly call the stress
tracking problem. The problem of suppressing incremental stresses is contained as a
special case. Subsequently, particular emphasis is given to the systematic derivation
of necessary and sufficient conditions that must be satisfied in order to solve the
stress tracking problem. Necessary conditions are presented that must be satisfied
by the intermediate configuration and by the desired incremental stress field that
shall be tracked, and sufficient conditions are derived that must be satisfied by the
incremental actuating stresses. As an illustrative example, our three-dimensional
formulation is eventually applied to the one-dimensional dynamic case of a straight
homogeneous rod with a support excitation at one end and a single point-mass at
the other end.
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1 Fundamental Relations

1.1 Local Balance of Linear Momentum and Boundary
Conditions in the Actual Configuration

In the following, we use a natural (unstressed) state of the body as common
reference configuration. The local relation of balance of linear momentum reads:

DivP C b0 D �0 Ru (1)

The first Piola–Kirchhoff stress tensor is denoted as P, and Div stands for the
divergence operator with respect to the place in the reference configuration. The
imposed body force per unit volume in the reference configuration is b0, and �0

is the mass density in the reference configuration. The total displacement vector
from the reference configuration is written as u, and a superimposed dot denotes the
material time derivative. On some portions @B1 of the boundary @B D @B1 [ @B2,
kinematic boundary conditions are prescribed:

@B1W u D u� (2)

The imposed surface displacements at @B1 are denoted as u�. At @B2, dynamic
boundary conditions (boundary conditions of traction) are given:

@B2 W P n0 D t�0 (3)

Here, n0 stands for the unit outer normal vector at the surface in the reference
configuration, and t�0 is the imposed Lagrange surface traction.

1.2 Introduction of a Static Intermediate Configuration

Incremental dynamic displacements and stresses are considered relative to an
intermediate configuration, which in general may be a (possibly) large static pre-
deformation from the reference configuration. The use of a common reference
configuration allows applying the following additive decomposition:

b0 D b0i C b0C; t�0 D t�0i C t�0C; u D ui C uC; P D Pi C PC (4)

The subscript .i/ refers to the static intermediate configuration, and the subscript
.C/ indicates the dynamic increments from the intermediate configuration. Substi-
tuting into Eqs. (1)–(4) and subtracting the relations for the intermediate state gives:

DivPC C b0C D �0 RuC (5)
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@B1W uC D u�C (6)

@B2 W PC n0 D t�0C (7)

Since the intermediate state is assumed to be static, i.e., it is at rest, trivial initial
conditions for the incremental motion are obtained:

t D 0 W uC D 0; PuC D 0 (8)

1.3 Linearization About the Incremental State

From now on, we consider infinitesimally small incremental dynamic deformations
superimposed upon the intermediate state. The latter may represent a large static pre-
deformation from the common reference configuration. Considering a hyperelastic
body, the linearized constitutive relations read

PC D Ai ŒGrad uC� C PaC (9)

The fourth order tensor of elastic constants in the intermediate configuration is
abbreviated by Ai, and Grad denotes the gradient operator with respect to the place
in the reference configuration. For the square bracket notation, which indicates the
linear mapping of a second order tensor onto a second order tensor via a fourth
order tensor, see Gurtin [1]. The incremental actuation stress tensor, a second order
tensor, is denoted as PaC. It represents a linear mapping of the actuating incremental
eigenstrains. In case of thermal eigenstrains, it relates the stress to the temperature
via the second order stress–temperature tensor, see Carlson [2] for the linear theory
of thermoelasticity, i.e., when intermediate and natural reference configuration do
coincide. When using eigenstrains for the purpose of controlling deformations,
one also talks about a smart actuation in the literature. Note that in case of an
intermediate state with a large deformation from the reference configuration, Ai as
well as PaC depend on the intermediate state and thus do vary across the body, even
if it is homogeneous in the natural reference configuration.

1.4 Stress-Based Reformulation

Since we deal with stress tracking, a stress-based reformulation of the above
incremental relations is desirable. In the framework of the linear theory of elasticity,
i.e., when the intermediate configuration coincides with the natural reference
configuration, this strategy dates back to Ignaczak [3] and [4]. This reformulation
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requires that Ai is invertible:

Grad uC D Ki ŒPC � PaC� with Ki D Ai
�1 (10)

The existence of the compliance tensor Ki in any point of the body represents a first
necessary condition in order that our subsequent solutions for the stress tracking
problemmake sense. Substituting Eq. (10) into Eqs. (5)–(8), we obtain the following
stress-based reformulation of the incremental initial boundary value problem under
consideration:

Grad
�
�0

�1 .DivPC C b0C/
� D Ki

� RPC � RPaC
�

(11)

@B1W DivPC C b0C D �0 Ru�C (12)

@B2 W PC n0 D t�0C (13)

t D 0 W PC � PaC D 0; PPC � PPaC D 0 (14)

2 The Dynamic Stress Tracking Problem

2.1 Formulation of the Stress Tracking Problem

We now formulate the stress tracking problem as follows: derive a space- and time-
wise distribution of an incremental actuation stress field PaC, such that the above
initial boundary value problem, Eqs. (5)–(9), results in a desired incremental stress
field Z everywhere in the body under consideration and for all times:

PC � Z (15)

Note that the desired incremental stress field Z may be both, space- and time-
dependent. For a convenient solution strategy, we introduce an error stress field:

Pe D PC � Z (16)

Our goal in the following will be enforcing that the error stress field does vanish
everywhere and for all times, Pe D 0.

2.2 Direct Solution of the Stress Tracking Problem

In a first step, we derive a direct solution strategy for the stress tracking problem
by replacing the incremental stress PC by the entities Z and Pe, see Eq. (16), in the
stress-based formulation in Eqs. (11)–(14). Putting the expressions that contain Pe
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onto the left-hand side of the corresponding relations yields:

Grad
�
�0

�1DivPe
� � Ki

� RPe
�

D �Grad
�
�0

�1 .Div Z C b0C/
� C Ki

� RZ � RPaC
�

(17)

@B1W DivPe D �Div Z � b0C C �0 Ru�C (18)

@B2 W Pe n0 D �Z n0 C t�0C (19)

t D 0 W Pe D PaC � Z; PPe D PPaC � PZ (20)

The desired goal, Pe � 0, then may be reached, when the right-hand sides of
Eqs. (17)–(20) do vanish. First, note that Eqs. (18) and (19) result into two necessary
conditions that must be satisfied by the desired incremental stress field Z:

@B1W DivZ D �b0C C �0 Ru�C (21)

@B2 W Z n0 D t�0C (22)

In other words, at the boundary of the body B, the desired incremental stress field
Z cannot be chosen independently from the imposed incremental body forces and
boundary data. Moreover, two sufficient conditions for the incremental actuation
stress follow from Eqs. (17) and (20):

RPaC D �Ai
�
Grad

�
�0

�1 .DivZ C b0C
�� C RZ (23)

t D 0 W PaC D Z; PPaC D PZ (24)

In the present context of (infinitesimally) small incremental deformations superim-
posed upon the large pre-deformation of the intermediate state, it is required that
the latter is stable in some sense, such that a further necessary condition must be
formulated.

2.3 Stability Issues

In order to derive a condition for the necessary stability of the intermediate
configuration, we now utilize a strategy originally suggested by Ignaczak [3] for
studying the completeness of a stress-based formulation in the framework of the
linear case. By analogy, we introduce the following scalar error integral over the
volume in the reference configuration, but referring to the incremental error stress:

Ie .t/ D
Z

B0

�
��1

0 DivPe � DivPe C Ki
� PPe

� � PPe
�
dV0 (25)
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Now assume that initially no errors are present:

Pe .t D 0/ D 0; PPe .t D 0/ D 0 ) Ie .t D 0/ D 0 (26)

Considering the major symmetry property of the fourth order tensor of compliance

Ki ŒB� � D D Ki ŒD� � B (27)

see, e.g., Knops and Wilkes [5], the time derivative of Eq. (25) follows to:

1

2

d

dt
Ie D

Z

B0

�
��1

0 DivPe � Div PPe C RPe � Ki
� PPe

��
dV0 (28)

Using some results from tensor algebra and analysis, it can be shown after some
reformulations, using Eqs. (21)–(24) and (26), that the necessary and sufficient
conditions for Pe � 0 yield that

d

dt
Ie D 0 ) Ie .t/ D const: D Ie .t D 0/

) Ie .t/ D
Z

B0

�
��1

0 DivPe � DivPe C Ki
� PPe

� � PPe
�
dV0 � 0 (29)

Now, the first part of the integral in Eq. (29) is positive semi-definite:

Z

B0

�
��1

0 DivPe � DivPe
�
dV0

� D 0 for Pe D 0

> 0 for Pe ¤ 0
(30)

However, the second part of the integral is generally indefinite

Z

B0

�
Ki

� PPe
� � PPe

�
dV0

8
<

:

D 0 for PPe D 0

< 0

> 0
for PPe ¤ 0

(31)

Thus, vanishing of the error integral implies that the error stress vanishes only if:

Pe � 0 if
Z

B0

Ki
� PPe

� � PPe dV0 > 0 for PPe ¤ 0 (32)



On Necessary and Sufficient Conditions for the Control of Stresses 59

This necessary condition is analogous to the Hadamard stability condition, see
Knops and Wilkes [5]

Z

B0

Ki
� PPe

� � PPe dV0 > 0 for PPe ¤ 0 (33)

This necessary condition is also known as infinitesimal superstability of the inter-
mediate configuration under consideration. When the intermediate configuration
and the natural reference configuration do coincide, i.e., in the linear theory of
infinitesimally small deformations superimposed upon an undeformed configura-
tion, stability is pre-assumed. In the present case of a possibly large deformation of
the intermediate configuration from the reference configuration, however, Eq. (33)
represents a practically important requirement.

2.4 Recalling the Three-Dimensional Solution

The above results for solving the stress tracking problem are shortly summarized. If
the following two necessary conditions hold at the boundary of the body:

@B1W DivZ D �b0C C �0 Ru�C; (34)

@B2 W Z n0 D t�0C; (35)

and moreover if the compliance tensor does exist in every point in the intermediate
configuration, and if the Hadamard stability condition stated in Eq. (33) does hold,
then, in order that the goal of stress tracking is reached,

PC � Z; (36)

it is sufficient to use an eigenstrain actuation satisfying the following two relations:

RPaC D �Ai
�
Grad

�
�0

�1 .DivZ C b0C/
�� C RZ; (37)

t D 0 W PaC D Z; PPaC D PZ (38)

For preliminary formulations concerning the linear case of infinitesimally small
deformations superimposed upon the natural reference configuration, see Irschik,
Gusenbauer and Pichler [6] and Irschik [7]. The solution strategy gathered in
Eqs. (34)–(38) will be subsequently exemplified.
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3 Illustrative Example: Straight Rod

3.1 One-Dimensional Boundary Value Problem

In the one-dimensional case, the relation of balance of incremental linear momen-
tum, Eq. (5), becomes

@

@X
PC.X; t/ C b0C.X; t/ D �0.X/

@2

@t2
uC.X; t/ (39)

The axial coordinate in the reference configuration is denoted as 0 � X � L.
The incremental boundary conditions of place and traction, Eqs. (6) and (7), and
the trivial initial conditions for the incremental motion from the static intermediate
configuration, see Eq. (8), read

X D 0W uC.X D 0; t/ D u�C.t/ (40)

X D L W PC.X D L; t/ D t�0C.t/ (41)

t D 0 W uC.X; t D 0/ D 0; PuC.X; t D 0/ D 0 (42)

The one-dimensional form of the linearized constitutive relation in Eq. (10) is

@

@X
uC.X; t/ D Ki.X/ .PC.X; t/ � PaC.X; t// (43)

The Hadamard stability condition for the intermediate configuration, Eq. (33),
locally reduces to

Ki D 1=Ai > 0 (44)

3.2 Conditions for Stress Tracking in the One-Dimensional
Case

We assume a support excitation u�C.t/ at X D 0 and boundary conditions of traction
at X D L:

X D 0W @

@X
Z.0; t/ D �b0C.0; t/ C �0.0/

@2

@t2
u�C.t/ (45)

X D L W Z.L; t/ D t�0C.t/ (46)
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Sufficient conditions for stress tracking, PC.X; t/ � Z.X; t/, then become, see
Eqs. (37) and (38):

@2

@t2
PaC.X; t/ D �Ai.X/

�
@

@X

�
�0

�1.X/ .
@

@X
Z.X; t/ C b0C.X; t//

	


C @2

@t2
Z.X; t/ (47)

t D 0 W PaC.X; 0/ D Z.X; 0/; PPaC.X; 0/ D PZ.X; 0/ (48)

3.3 Linear Elastic Rod with End-Mass and Support Excitation

For simplicity sake, from now on we restrict to the case of an intermediate
configuration, which coincides with the natural reference configuration, such that
we deal with the linear theory of elastic bodies in the presence of eigenstrains. We
take body forces to be absent, b

0C
.X; t/ D 0, and assume that the mass density �0,

the cross-section a0 and the elastic constant A0 (the effective Young’s modulus) of
the rod are constant. As complicating aspects, the rod, however, is assumed to be
firmly connected to a single point-mass M at the free end X D L. The boundary
condition of traction at this end of the rod thus becomes, see Eqs. (39) and (41):

X D L W PC.L; t/ D t�0C.t/ D �M

a0

@2

@t2
uC.L; t/ D � M

�0 a0

@

@X
PC.L; t/ (49)

Now, let the desired stress be separable in space and time Z.X; t/ D
z.X/ �0

@2

@t2
u�C.t/, then the necessary conditions stated in Eqs. (45) and (46) yield

that

X D 0W @

@X
z.0/ D 1 (50)

X D L W z.L/ C M

�0 a0

@

@X
z.L/ D 0 (51)

A suitable function z.X/ is chosen, which satisfies the necessary conditions,
Eqs. (50) and (51), and the sufficient conditions, Eqs. (47) and (48), are eventually
solved for a given u�C.t/, resulting in an actuation stress field that satisfies
PC.X; t/ � Z.X; t/. This strategy is subsequently demonstrated in an example.
The following peak-type functional dependence for the support excitation is taken
into consideration in this example, see also Fig. 1, where C and ˛ are constants:

u�C.t/ D C.˛ t/3 exp .�˛ t/ L (52)
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Fig. 1 Support excitation at X D 0 and Fourier transform

Fig. 2 Spatial and temporal distribution of the desired stress Z.X; t/

In Fig. 1, the first three natural frequencies of the rod are marked as f1, f2 and f3.
The following values (in SI-units) have been chosen in the numerical computations:
C D .e=3/3, ˛ D 2500, modulus of elasticity A0 D 6:29 � 109, cross-section
a0 D 4 � 10�5, mass density �0 D 7750, single mass M D 10, length of rod
L D 0:8. From Eqs. (48) and (52), we find that:

PaC.X; 0/ D 0;
@

@t
PaC.X; 0/ D 0 (53)

For the desired stress Z.X; t/, we use, see also Fig. 2:

z.X/ D L
� NX � 3 NX2 C 3 NX3 � NX4

�
with NX D X=L (54)
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Fig. 3 Time-wise distribution of stress in three locations; controlled case

Fig. 4 Time-wise distribution of stress in three locations; uncontrolled case (PaC.X; t/ D 0)

Note that the selected spatial distribution z.X/ in Eq. (54) satisfies the necessary
conditions stated in Eqs. (50) and (51). The required actuation stress PaC.X; t/
is eventually found by integration of Eq. (47), using the trivial initial conditions
stated in Eq. (53). It is found that the desired stress Z.X; t/ is indeed obtained by
our method. Results are depicted in the following figures for the controlled (Fig. 3)
and the uncontrolled case (Fig. 4). Note that the stress maxima in the uncontrolled
case are substantially higher than in the controlled case. A more detailed discussion
and further examples will be given in a forthcoming contribution, Schoeftner and
Irschik [8].
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