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Abstract Dynamical systems are considered that consist of a main rigid body
and one or several movable internal bodies. The internal bodies interact with the
main one by forces created and controlled by drives but do not interact with
the environment. The motion of the internal bodies affects the main body, and
it can move progressively under the influence of resistance forces produced by
the environment. Different kinds of resistance forces are considered including
Coulomb’s friction, piecewise linear and quadratic resistance. Periodic motions of
the internal bodies and the corresponding translational motion of the main body are
analyzed. The average speed of the system locomotion is evaluated and optimized
with respect to the system parameters and control.

1 Introduction

Consider a dynamical system that consists of main rigid body and one or several
internal bodies that can move relative to the main one. The main body is placed
inside the environment that exerts resistance forces upon this body, see Fig. 1. The
resistance forces can be caused by the fluid outside the main body (Fig. 1a) or by
the friction of the body over a rough plane (Fig. 1b). The internal bodies interact
with the main one by forces created and controlled by drives but do not interact with
the environment. The motion of the internal bodies affects the main one, and it can
move under the influence of the outer resistance forces.

If the internal bodies perform specific periodic motions within the bounded
volume inside the main body, the latter can, under certain conditions, perform a
translational movement in the external environment.

This principle of locomotion can be useful for mobile robots. An advantage of
these robots is that they do not need any outer propelling devices such as wheels,
legs, and propellers. They can be readily made hermetic without any protruding
devices. Such robots can be useful for the motion inside vulnerable and aggressive
media, in narrow slots and tubes to perform various technological operations. This
principle of locomotion was applied to robotic systems in [3, 8, 11, 12].
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Fig. 1 Mechanical systems

The dynamics of systems controlled by the periodic motions of internal masses
was first analyzed in [4, 5] for the case of Coulomb’s friction force acting upon the
main body. The average speed of locomotion was evaluated. Optimal parameters of
the internal periodic motion were found that correspond to the maximum average
locomotion speed. Experimental data confirming the obtained theoretical results are
presented in [9, 10].

Other cases of resistance forces acting upon the main body were considered in
[2, 6, 7]. Here, optimal parameters and optimal controls were also found. The case
of two internal masses moving along horizontal and vertical directions was analyzed
in [1].

In this paper, the results on dynamics and optimization for systems controlled by
internal moving masses are described, summarized, and discussed.

2 Mechanical Systems

A mechanical system consists of a main body of mass M and an auxiliary internal
body of mass m. The main body moves in the outer medium and is subjected to
the resistance force R, see Fig. 1. The internal body can move inside the main
one and does not interact with the outer medium. Denote by x and v the absolute
displacement and velocity, respectively, of the main body, and by �, u, and w the
displacement, velocity, and acceleration, respectively, of the internal body relative
to the main one.

The kinematic equations have the form

Px D v; P� D u; R� D Pu D w;

whereas the dynamical equation can be written as follows:

Pv D ��w C r.v/; (1)

where the following notation is introduced:

R D .M C m/r; � D m.M C m/�1:
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Several kinds of resistance forces acting upon the main body are considered, namely
the dry friction obeying Coulomb’s law:

r.v/ D �kgv j v j�1; if v ¤ 0; j r.v/ j� kg; if v D 0I (2)

linear resistance:

r.v/ D �kvI (3)

and quadratic resistance:

r.v/ D �kv j v j : (4)

The coefficients k in Eqs. (2)–(4) are constant in the case of isotropic resistance. For
the anisotropic resistance, these coefficients depend on direction of motion:

k D kC; if v > 0I k D k�; if v < 0: (5)

3 Internal Motions

Let the internal body move periodically with period T relative to the main body, so
that for all t

�.t C T/ D �.t/: (6)

We assume that this motion is bounded:

0 � �.t/ � L: (7)

Without loss of generality, suppose that the internal body starts its motion at the left
end of the interval Œ0;L� and reaches the right end of this interval at the instant of
time � . Then we have

�.0/ D �.T/ D 0; �.�/ D L; u.0/ D u.�/ D 0; � 2 .0;T/: (8)

Let us consider two simple versions of possible internal motions satisfying
(6)–(8).

1. The relative velocity u(t) is piecewise constant and has two phases (Fig. 2):

u.t/ D u1; if t 2 .0; �/I u.t/ D �u2; if t 2 .�;T/: (9)
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Fig. 2 Velocity control and acceleration control cases

Velocities ui in (9) are assumed to be bounded by a given constant U:

0 < ui � U; i D 1; 2: (10)

2. The relative acceleration w(t) is piecewise constant and has three phases:

w.t/ D w1; if t 2 .0; �1/; w.t/ D �w2; if t 2 .�1; �1 C �2/;

w.t/ D w3; if t 2 .�1 C �2;T/: (11)

Here, �1 and �2 are positive constants, accelerations wi are bounded by constantW:

0 < wi � W; i D 1; 2; 3: (12)

The two cases described above will be referred to as velocity and acceleration
control cases, respectively. They correspond to different possibilities of actuators
controlling the relative motion of the internal body. The graphs of the relative
velocity for these cases are shown in Fig. 2. Note that each of these control modes
has the minimal possible number of intervals of constant control compatible with
the conditions imposed by (6)–(8): two intervals for the velocity control and three
for the acceleration control.

The following requirements are imposed on the motion of the main body:

(a) The velocity v(t) is periodic with the same period T as the period of the internal
motion in (6): v.t C T/ D v.t/ for all t.

(b) For the initial velocity v.0/ D v0, two alternative assumptions are made: either
v0 D 0, or v0 is a free parameter to be chosen.

The total displacement of the system for the period of motion �x and its average
velocity V are defined as

�x D x.T/ � x.0/; V D �x=T: (13)
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We will determine the optimal parameters of the velocity and acceleration
controls that correspond to the maximum average speed V for various resistance
forces under the imposed conditions (a) and (b).

4 Linear and Quadratic Resistance

Consider first the case of the linear isotropic resistance defined by Eq. (3). By
integrating both sides of Eq. (1) over period T, it can be shown easily that�x D 0 for
any periodic internal motion �.t/. Hence, in the linear isotropic medium, the main
body will only oscillate about some mean position, and the progressive motion is
impossible.

The optimal velocity control described by Eqs. (9) and (10) was obtained for the
cases of anisotropic linear and quadratic resistance [7].

We assume that the initial velocity v0 in condition (b) is chosen so as to
maximize the average velocity V. Then the maximum average velocity for the linear
anisotropic case described by (3) and (5) is given by

Vmax D �U2L�1.1 � e1/.1 � e2/.1 � e1e2/�1.k�1C � k�1� /; (14)

where the following notation is used:

e1 D exp.�k�T=2/; e2 D exp.�kCT=2/; T D 2L=U:

The velocity Vmax in (14) is positive, if and only if the resistance for the forward
motion is smaller than for the backward one: kC < k�.

Similarly, the case of the quadratic anisotropic resistance defined by (4) and (5)
has been considered. Contrary to the linear resistance, here the maximum average
velocity is positive even in the isotropic case. We have

Vmax D �.kT/�1 log.1 � �2k2L2/ > 0; T D 2L.1 � �kL/�1U�1; �kL < 1:

More general case of resistance forces was analyzed in [2]. For a wide class of
functions r(v) in Eq. (1), the optimal relative acceleration R�.t/ subject to the bounds
j R� j� W was found that provides the maximum value of �x and V for a given
T. The optimal control R�.t/ has up to four different intervals; on two of them, the
control reaches the bounds imposed; the other two intervals are singular control arcs
where the velocity of the main body v(t) is constant.
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5 Dry Friction

Consider now an important case of the dry friction obeying Coulomb’s law (2). This
case under the condition that v0 D 0 was analyzed in [5]; for free v0 that can be
chosen in an optimal way, it was investigated in [6]. The analysis for the anisotropic
friction is rather complicated. Here, we will present some final results only for the
case of isotropic friction with coefficient k.

For the velocity control defined by Eqs. (9) and (10) and for the case with v0 D 0,
we have

Vmax D 0:5.�kLg/1=2; (15)

if the maximal admissible U in (10) satisfies the inequality

U � u0; u0 D .kLg=�/1=2: (16)

If inequality (16) is violated, the motion under consideration is impossible.
For the velocity control and the case where v0 can be chosen arbitrarily, we have

Vmax D .�kLg/1=2.2U2 � u2
0/.2Uu0/

�1; (17)

if the following inequality:

U � 2�1=2u0 (18)

is satisfied. Otherwise, the motion is impossible.
Comparing inequalities (16) and (18), we see that the case with a free value of

v0 can be realized in a wider range of admissible velocities U. Under the condition
U � u0 where the both types of motion can be implemented, the motion with a
free value of v0 provides a higher average velocity Vmax (compare (15) and (17) for
U � u0), which is quite natural.

Let us consider now the acceleration control defined by (11) under the condition
v0 D 0. Here, the motion is possible, if and only if the maximal possible acceleration
W of the internal body in (12) satisfies the inequality

Y D �W.kg/�1 > 1: (19)

Under this condition, the maximal possible velocity of the main body is given by
formulas [5]:

Vmax D .�kLg=2/1=2F.Y/; (20)

F.Y/ D .Y � 1/ŒY.Y C 1/��1=2; if 1 < Y � 2 C p
5;

F.Y/ D ŒY.Y C 1/�1=2; if Y > 2 C p
5;

where Y is defined by (19).
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The analysis of optimal motions for the velocity and acceleration control cases
showed that, for the velocity control, the motion of the main body consists of
alternating forward and backward motions, whereas for the acceleration control,
there are only forward motions and intervals of rest.

Let us compare the maximal speeds of motion (15) and (20) for v0 D 0 and
unbounded internal motions, i.e., for U ! 1 andW ! 1.

We obtain

V1 D 0:5.�kLg/1=2; V2 D 0:707.�kLg/1=2

for the velocity and acceleration control cases, respectively. Thus, the maximal
speeds are of the same order of magnitude, the acceleration control providing a
higher speed.

If the main body contains two internal bodies moving in the horizontal and
vertical directions, respectively, this can give additional possibilities to increase the
average speed of locomotion. The internal body moving in the vertical direction
causes the change in the normal reaction and, hence, in the friction force acting upon
the main body. Optimal control of two internal bodies moving along horizontal and
vertical directions within the main one was obtained in [1].

The principle of locomotion based upon the controlled displacement of internal
masses was implemented in a number of experimental models. In Fig. 3, the internal
motion is performed by an inverted pendulum that oscillates about the vertical
equilibrium position [9]. The system called capsubot and shown in Fig. 3 contains an
internal mass that is driven by an electromagnetic actuator and oscillates inside the
main body [10]. The cart shown in Fig. 4 carries eccentric rotating wheels andmoves
along a horizontal plane. Here, the internal masses move both in the horizontal and
vertical directions.

Mini-robots based on the locomotion principle described above that can move
inside tubes were created in the Institute for Problems in Mechanics [8]. These
vibro-robots are driven by electromagnetic actuators and move inside horizontal,

Fig. 3 Inverted pendulum and capsubot
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Fig. 4 Cart with rotors and vibro-robot in a tube

vertical, sloping, and curved tubes of a diameter of 4–50mm with a speed of 0.1–
0.3m/s. They can carry various sensors and perform inspection as well as other
operations (Fig. 4).

6 Conclusions

Locomotion of a rigid body controlled by internal moving masses is discussed.
Certain classes of periodic motions of the internal masses are examined. The system
can move inside a resistive medium; different types of resistance forces are consid-
ered. The average velocity of locomotion is evaluated. The optimal parameters of
the internal motion are found that correspond to the maximum locomotion speed.
Experimental models of mobile robots are described that implement the principle of
locomotion analyzed in the paper.
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