
Chapter 4
Ergodicity of the Weil–Petersson Geodesic Flow

Keith Burns, Howard Masur, and Amie Wilkinson

4.1 The Proof of Ergodicity

4.1.1 The Ergodicity Theorem

These notes describe some of the dynamical properties of the Weil–Petersson
geodesic flow for the moduli space of Riemann surfaces, notably that this flow
is ergodic. Ergodicity implies that a randomly chosen, unit-speed Weil–Petersson
geodesic in moduli space becomes equidistributed over time. What is more, the
tangent vectors to such a geodesic also become equidistributed in the space of all
unit tangent vectors to moduli space. To state this more precisely and to put it in
context, we first review the basic setting of Teichmüller theory. Let S be a surface of
genus g � 0 with n � 0 punctures, and let M.S/ be the moduli space of conformal
structures on S, up to conformal equivalence. Assume that 3gCn � 4, which implies
that in each conformal class there is a complete hyperbolic metric. Then M.S/ has
the alternate description of the moduli space of hyperbolic structures on S, up to
isometry. The orbifold universal cover of M.S/ is the Teichmüller space Teich.S/
of marked conformal structures on S. It is a classical result due to Fricke and Klein
that Teich.S/ is homeomorphic to a ball of dimension 6g � 6 C 2n. Teichmüller
space carries a natural complex structure via a special embedding of Teich.S/ into
a complex representation variety QF.S/, called quasi-Fuchsian space. Under this
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map, called the Bers embedding, the image of Teich.S/ sits as a complex subvariety
(indeed there is a biholomorphic equivalence QF.S/ ' Teich.S/ � Teich.S/).
The orbifold fundamental group of M.S/ is the mapping-class group MCG.S/ of
orientation-preserving homeomorphisms of S modulo isotopy. The mapping-class
group acts holomorphically on Teich.S/. The stabilizer of each point is finite, which
gives M.S/ the structure of a complex orbifold.

A naturally defined and well-studied metric on Teichmüller space, and the focus
of this course, is the Weil–Petersson metric gWP, which is the Kähler metric induced
by the Weil–Petersson symplectic form !WP and the almost complex structure J on
Teich.S/:

gWP.v;w/ D !WP.v; Jw/:

The Weil–Petersson metric is invariant under MCG.S/ and so descends to a metric
on M.S/. It has finite volume determined by the volume form

ˇ
ˇ!

^3g�3Cn
WP

ˇ
ˇ. A striking

feature of the Weil–Petersson metric is its intimate connection with hyperbolic
geometry:

• The hyperbolic length of a closed geodesic (for a fixed free homotopy class on
S) is a convex function along Weil–Petersson geodesics in Teich.S/ [Wo08];

• Fenchel–Nielsen coordinates .`i; �i/
3g�3Cn
iD1 on Teich.S/ are Darboux coordi-

nates: the Weil–Petersson symplectic form has the simple expression !WP D
1

2

3g�3Cn
X

iD1
d`i ^ d�i [Wo82];

• the growth of the hyperbolic lengths of simple closed curves on S is related to the
Weil–Petersson volume of M.S/ [Mi08]; and

• the Weil–Petersson metric has a formulation in terms of dynamical invariants of
the geodesic flow on hyperbolic surfaces [Br10, Mc08].

The Weil–Petersson metric has several notable features that make it an interesting
geometric object of study in its own right. It is negatively curved, but incomplete.
The sectional curvatures are neither bounded away from 0 (except in the simplest
cases of .g; n/ D .1; 1/ and .g; n/ D .0; 4/), nor bounded away from �1.

The Weil–Petersson geodesic flow thus presents a naturally-occurring example
of a hyperbolic dynamical system with singularities, for which one might hope
to reproduce the known properties of the geodesic flow for a compact, negatively
curved manifold, such as: ergodicity, equidistribution of closed orbits, exponentially
fast mixing and decay of correlations, and Central Limit Theorem.

We summarize the pertinent literature prior to [BMW12]. Wolpert [Wo03]
showed that the geodesic flow is defined for all time on a full-volume subset
of the unit tangent bundle T1Teich.S/ and thus descends to a volume-preserving
flow on the finite-volume quotient M1.S/ WD T1Teich.S/=MCG.S/. Pollicott et al.
proved in the case .g; n/ D .1; 1/ that the geodesic flow is transitive on M1.S/ and
that periodic orbits are dense in M1.S/ [PWW10]. Brock et al. [BMM10] proved
transitivity and denseness of periodic orbits for arbitrary .g; n/ and also showed
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that the topological entropy of the geodesic flow is infinite (that is, unbounded on
compact invariant sets). Hamenstädt [Ha10] proved a measure-theoretic version of
density of closed orbits: the set of invariant Borel probability measures for the Weil–
Petersson geodesic flow that are supported on a closed orbit is dense in the space of
all ergodic invariant probability measures.

The focus of the CIRM workshop was:

Theorem 4.1.1 Let S be a Riemann surface of genus g � 0, with n � 0 punctures.
Assume that 3g C n � 4. The Weil–Petersson geodesic flow on M1.S/ is ergodic
(and in fact Bernoulli) with respect to Weil–Petersson volume and has finite, positive
measure-theoretic entropy.
The Bernoulli property means that the time-1 map of the geodesic flow is abstractly
isomorphic (as a measure-preserving system) to a Bernoulli process on a finite
alphabet. In particular, it is mixing of all orders. An interesting open question is
to determine the rate of mixing of this flow.

4.1.2 Hyperbolic Dynamics

Our basic approach to proving Theorem 4.1.1 is as follows. The Weil–Petersson
geodesic flow ' t preserves a finite volume m on M1.S/ (which we may then assume
normalized to a probability measure), and one can show using properties of the
Weil–Petersson metric that log kD'1k is integrable with respect to the measure m.
The Oseledec Multiplicative Ergodic Theorem (cf. [KH95, Theorem S.2.9]) then
implies that there is a full-volume subset˝ � M1.S/ such that for every v 2 ˝ and
every nonzero tangent vector � 2 TvM1.S/, the limit

�.�/ WD lim
t!1

1

t
log kDv'

t.�/k

exists and is finite. This real number �.�/ is called the (forward) Lyapunov exponent
of ' t at �. Observe that if � is in the line bundle R P'.v/ tangent to the orbits of the
flow, then �.�/ D 0. We say that ' t is nonuniformly hyperbolic if the converse
holds a.e.: for almost every v 2 ˝ and every � 2 TvM1.S/ X R P'.v/, the Lyapunov
exponent �.�/ is nonzero.

Using that the Weil–Petersson sectional curvatures are negative, we establish
that the Weil–Petersson geodesic flow is nonuniformly hyperbolic. Nonuniform
hyperbolicity is the starting point for a rich ergodic theory of volume-preserving
diffeomorphisms and flows, developed first by Pesin for closed manifolds and
expanded by Sinai, Katok–Strelcyn, Chernov, and others to systems with singu-
larities, such as the Weil–Petersson geodesic flow.
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4.1.3 The Hopf Argument

The main achievement of Burns et al. [BMW12] is the step from nonuniform
hyperbolicity to ergodicity. The basic argument for establishing ergodicity of such
systems originates with Eberhard Hopf and his proof of ergodicity for geodesic
flows for closed, negatively curved surfaces [Ho39, Ha17]. His method was to study
the Birkhoff averages of continuous functions along leaves of the stable and unstable
foliations of the flow. This type of argument has been used since then in increasingly
general contexts and has come to be known as the Hopf Argument (see also [Ha17]).

The core of the Hopf Argument is simple. Suppose that  t is a C1 flow defined
on a full-measure subset˝ of a Riemannian manifold V , preserving a finite volume
on V . For any x 2 ˝ , one defines the stable and unstable sets

Ws.x/ WD ˚

x0 2 ˝ W lim
t!C1 d. t.x/;  t.x0// D 0

�

Wu.x/ WD ˚

x0 2 ˝ W lim
t!�1 d. t.x/;  t.x0// D 0

�

:

The stable (respectively unstable) sets partition˝ into measurable subsets.
The first step in the Hopf Argument is to observe that for any continuous function

f W V ! R with compact support, the forward and backward upper Birkhoff averages

f s WD lim sup
T!C1

1

T

Z T

0

f ı  t dt and f u WD lim sup
T!�1

1

T

Z T

0

f ı  t dt

have the property that f s is constant on any stable set Ws.x/ and f u is constant on any
unstable set Wu.x/. Both functions f s and f u are evidently invariant under the flow
 t, and the Birkhoff and von Neumann Ergodic Theorems (see, e.g., [Ha17, KH95])
imply that f s D f u almost everywhere. To show that  t is ergodic it suffices to show
that f s is constant almost everywhere for every continuous f with compact support.
The fundamental idea is to use the properties of the equivalence relation generated
by the stable sets, the unstable sets, and the flow to conclude that f s D f u must be
constant.

In the next step in the Hopf Argument, one assumes some form of hyperbolicity
of the flow, which will imply that the stable and unstable sets are in fact smooth
manifolds. In the original context of Hopf’s argument, V D ˝ D T1S is the unit
tangent bundle of a compact, negatively curved surface S and  t is the geodesic
flow. In this setting, the stable and unstable sets have a particularly nice description.
For almost every unit vector v, the stable and unstable Busemann functions Bs

v

and Bu
v are globally defined C1 functions. The stable and unstable sets are the

orthogonal vectors to the level sets of these functions or equivalently the gradients
of these functions on the level sets. They are C1, globally defined, and for � 2
s; u, the collection W� WD ˚

W�.v/ W v 2 T1S
�

defines a C1 foliation of T1S. At
each point v 2 T1S, the tangent space TvT1S is spanned by the tangents to Ws.v/,
Wu.v/ and the direction P .v/ of the flow. A local argument in C1 charts using
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the Fubini Theorem shows that any  t-invariant function that is almost everywhere
constant along leaves of Ws and Wu must be locally almost everywhere constant, and
hence globally almost everywhere constant, since T1S is connected. In particular,
the function f s is constant for any continuous, compactly supported f , and so  t is
ergodic.

Hopf’s original argument does not generalize immediately to geodesic flows
for higher-dimensional compact, negatively curved manifolds. In this higher-
dimensional setting, the stable and unstable foliations Ws and Wu exist, again arise
from the level sets of Busemann functions, and have C1 leaves. In general, however,
they fail to be C1 foliations (except when the curvature is 1/4-pinched) and so the
argument using the Fubini Theorem in local C1 charts fails.

In the late 1960s Anosov [An67] overcame this obstacle by proving that for
any compact, negatively curved manifold, the foliations Ws and Wu are absolutely
continuous. Absolute continuity, a strictly weaker property than C1, is sufficient
to carry out a Fubini-type argument to show that any  t-invariant function almost
everywhere constant along leaves of Ws and Wu is locally constant. See Sect. 4.3 for
a more detailed discussion of absolute continuity. Anosov thereby proved that the
geodesic flow for any compact manifold of negative sectional curvatures is ergodic.

4.1.4 Nonuniform Hyperbolicity

There is an extensive literature devoted to extending the Hopf Argument beyond
the uniformly hyperbolic setting of geodesic flows on compact negatively curved
manifolds. For smooth flows defined everywhere on compact manifolds, Pesin
[Pe76] introduced an ergodic theory of nonuniformly hyperbolic systems. In
short, Pesin theory shows that if  t W V ! V preserves a finite volume and is
nonuniformly hyperbolic, then almost everywhere the stable and unstable sets are
smooth manifolds. The family of stable manifolds is measurable and absolutely
continuous in a suitable sense.

From Pesin theory, one deduces that a nonuniformly hyperbolic diffeomorphism
of a compact manifold has countably many ergodic components of positive measure.
More information about the flow can be used in some contexts to deduce ergodicity.
The obstruction to using the full Hopf Argument in this setting is that stable
manifolds are defined only almost everywhere, and they may be arbitrarily small
in diameter, with poorly controlled curvatures, etc.

In a somewhat different direction than Pesin theory, Sinai [Si70] introduced
methods for proving ergodicity of hyperbolic flows with singularities and applied
them in his study of the n-body problem of celestial mechanics. Here the flow  t

locally resembles the geodesic flow for a compact, negatively curved manifold, but
globally encounters discontinuities and places where the norms of the derivatives
kD tk and kD2 tk become unbounded.

Introducing new techniques in the Hopf argument, Sinai was able to show
that for several important classes of systems, including some billiards and flows
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connected to the n-body system, ergodicity holds. These arguments have since been
generalized to much larger classes of singular hyperbolic systems and singular,
nonuniformly hyperbolic systems.

4.1.5 Addressing Singularities: The Katok–Strelcyn Criteria

In the singular, nonuniformly hyperbolic setting, all aspects of Hopf’s argument
require careful revisiting. The mere existence of local stable manifolds is a delicate
matter and depends in a strong way on the growth of the derivative of  t near the
singularities. To give a sense of how delicate these issues can be, we remark that

• for compact surfaces of nonpositive curvature and genus g � 2, it is unknown
whether the geodesic flow is always ergodic (even though it is always transitive);

• there exist complete, finite-volume surfaces of pinched negative curvature (but
unbounded derivative of curvature) whose stable foliations are not even Hölder-
continuous [BBB87];

• for C1 nonuniformly hyperbolic systems that are not C2, stable sets can fail to be
manifolds [Pu84];

• nonuniformly hyperbolic systems on compact manifolds can fail to be ergodic
and can even have infinitely many ergodic components with positive measure
[DHP01].

A general result providing for the existence and absolute continuity of local stable
and unstable manifolds for singular, nonuniformly hyperbolic systems was proved
by Katok–Strelcyn [KSLP86]. We use this work in an important way.

Returning to the present context, the Weil–Petersson geodesic flow is a singular,
nonuniformly hyperbolic system. To prove that it is ergodic, the first step is to verify
the Katok–Strelcyn conditions to establish existence and absolute continuity of local
stable and unstable manifolds. In particular, one needs to control the norm of the first
two derivatives of the geodesic flow in a neighborhood of the boundary of M1.S/.

To control the first derivative, we use the asymptotic expansions of Wolpert
for the Weil–Petersson curvature and covariant derivative found in [Wo03, Wo09,
Wo11], combined with a careful analysis of the solutions to the Weil–Petersson
Jacobi equations. The precise estimates obtained by Wolpert appear to be essential
for these calculations.

Since Wolpert’s expansions of the Weil–Petersson metric are only to second
order, and we need third order control to estimate the second derivative of the flow,
we borrow ideas of McMullen in [Mc00]. There is a nonholomorphic (in fact totally
real) embedding of Teich.S/ into quasi-Fuchsian space QF.S/, under which the
Weil–Petersson symplectic form has a holomorphic extension. This holomorphic
form is the derivative of a one-form that is bounded in the Teichmüller metric.
Using the Cauchy Integral Formula and a comparison formula between Teichmüller
and Weil–Petersson metrics, one can then obtain bounds on all derivatives of the
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Weil–Petersson metric. These bounds are adequate to control the second derivative
of the geodesic flow, using the bounds on the first derivative already obtained.

Once the conditions of [KSLP86] have been verified, we are guaranteed the
almost everywhere existence of absolutely continuous families Ws and Wu of local
stable and unstable manifolds. Nonetheless these stable and unstable manifolds may
not have uniform size. At this point, we use negative curvature and another key
property of the Weil–Petersson metric called geodesic convexity to show that in fact
Ws and Wu have well-controlled uniform size.

As a by-product of our arguments, we obtain that the Weil–Petersson Busemann
function is C1 for almost every tangent direction to Teich.S/. The local geometry
of Ws and Wu is sufficiently nice that Hopf’s original argument can be used with
small modifications. In particular, none of the more complicated local ergodicity
arguments, such as the “Hopf chains” developed by Sinai, are necessary. We also
obtain positive, finite entropy of the Weil–Petersson flow using results of Katok–
Strelcyn and Ledrappier–Strelcyn in [KSLP86].

The paper [BMW12] does not quite follow the structure of this outline. Rather
than restricting to the special case of the Weil–Petersson metric, we instead develop
an abstract criterion, Theorem 4.3.1 below and in [BMW12], for ergodicity of the
geodesic flow for an incomplete, negatively curved manifold. This has the advantage
of clarifying the issues involved and also might allow for further applications.

4.1.6 The Case of the Punctured Torus

Several interesting features of the Weil–Petersson metric are already present in the
simplest cases .g; n/ D .1; 1/ and .g; n/ D .0; 4/, where S is the once-punctured
torus or the four-times punctured sphere, respectively.1

Here, Teich.S/ is the upper half-space H and M.S/ is the classical moduli space
of elliptic curves H=PSL.2;Z/, which is a sphere with one puncture and two cone
singularities of order 2 and 3. The mapping-class group MCG.S/ is the modular
group SL.2;Z/. Due to the presence of torsion elements in PSL.2;Z/, the space
M.S/ is not a manifold, but the finite branched cover H=� Œk� for k � 3 is a manifold
[Se60], where � Œk� D ˚

A 2 PSL.2;Z/jA � I mod k
�

is the level-k congruence
subgroup. The tangent bundle to Teich.S/ is canonically identified with PGL.2;R/.

There are global coordinates .`; �/ in Teich.S/, the so-called Fenchel–Nielsen
coordinates, which have the asymptotic (first-order) expansions `.z/ � 1

Im.z/ and

�.z/ � Re.z/
Im.z/ as Im.z/ ! 1, and the Weil–Petersson form has the first-order

1Before our work appeared, Pollicott and Weiss [PW09] gave a fairly complete outline of how
to prove ergodicity for the Weil–Petersson metric in these cases. They studied the model case of a
negatively curved surface whose singularities coincide with a surface of revolution for a polynomial
and proved ergodicity of the geodesic flow in this case. They say that the missing ingredients are
the bounds on the first and second derivatives of the geodesic flow.
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asymptotic expansion !WP D 1
2
d` ^ d� � 1

Im.z/3 dz ^ dNz, as Im.z/ ! 1. Since the
complex structure on Teich.S/ is the standard one on H, we obtain the expansion

g2WP � jdzj2
Im.z/3

. A neighborhood of the cusp in M.S/ is formed by taking the quotient
of the points above the line Im.z/ D Im.z0/, for Im.z0/ sufficiently large, by the
mapping class element z 7! z C 1. A model for this neighborhood is the surface of
revolution for the curve fy D x3 W x > 0g about the x-axis.

From the form of the metric one can see the incompleteness: a vertical ray to
the cusp at infinity starting at Im.z/ D y0 has length � 2y�1=2

0 � 2`1=2. Moreover
the curvature K satisfies K � � 3

2`
! �1 as Im.z/ ! 1. These precise rates of

divergence for the minimum sectional curvature hold as well in higher genus and
are crucial to our investigations.

4.2 Geodesic Flows

This section is devoted to making explicit the connections between geometry and the
dynamics of the geodesic flow, notably between negative (or nonpositive) curvature
and hyperbolicity of the geodesic flow, as well as the connections between geometric
structures then present and the structures in a hyperbolic flow, specifically, Jacobi
fields on one hand and the invariant foliations of a hyperbolic flow on the other hand.

Let M be a Riemannian manifold. As usual, hv;wi denotes the inner product of
two vectors and r is the Levi-Cività connection defined by the Riemannian metric.
It is the unique connection that is symmetric and compatible with the metric. The
covariant derivative along a curve t 7! c.t/ in M is denoted by Dc, D

dt or simply ’ if
it is not necessary to specify the curve. If V.t/ is a vector field along c that extends
to a vector field on M, then V 0.t/ D rPc.t/V . Given a smooth map .s; t/ 7! ˛.s; t/,
we let D

@s denote covariant differentiation along a curve of the form s 7! ˛.s; t/ for
a fixed t. Similarly, D

@t denotes covariant differentiation along a curve of the form
t 7! ˛.s; t/ for a fixed s. The symmetry of the Levi-Cività connection means that

D

@s

@˛

@t
.s; t/ D D

@t

@˛

@s
.s; t/

for all s and t. The curve c is a geodesic if it satisfies the equation DcPc.t/ D 0.
Since this equation is a first order ordinary differential equation in the variables
.c; Pc/, a geodesic is uniquely determined by its initial tangent vector. Geodesics
have constant speed, since d

dt hPc.t/; Pc.t/i D 2hDcPc.t/; Pc.t/i D 0 if c is a geodesic.
The Riemannian curvature tensor R is defined by

R.A;B/C WD �rArB � rBrA � rŒA;B�
�

C;
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and the sectional curvature of the 2-plane spanned by vectors A and B is

K.A;B/ WD hR.A;B/B;Ai
kA ^ Bk2 :

The action of the Levi-Cività connection extends to covectors and tensors in such a
way that the product rule holds. In particular,

.rWR/.X;Y/Z D rW.R.X;Y/Z/ � R.rWX;Y/Z � R.X;rWY/Z � R.X;Y/rWZ:

Similarly, the second derivative r2
X;YT of a tensor T is defined by the product rule

formula

rX.rYT/ D r2
X;YT C rrXYT:

We will use this later in the case T D R. If T is a vector field Z, a short calculation
using the symmetry of the Levi-Cività connection yields

r2
X;YZ � r2

Y;XZ D R.X;Y/Z:

4.2.1 Vertical and Horizontal Subspaces and the Sasaki Metric

The tangent bundle TTM to TM may be viewed as a bundle over M in three natural
ways shown in the following commutative diagram:

The first is via the composition of the natural bundle projections �TMW TTM ! TM
and �M W TM ! M. The second is via the composition of the derivative map
D�MW TTM ! TM with �M . The third involves a map �W TTM ! TM, often called
the connector map, which is determined by the Levi-Cività connection. If � 2 TTM
is tangent at t D 0 to a curve t 7! V.t/ in TM and c.t/ D �M.V.t// is the curve of
footpoints of the vectors V.t/, then

�.�/ D DcV.0/:

The vertical subbundle is the subbundle ker.D�M/. It is naturally identified with
TM via the map �. The horizontal subbundle is the subbundle ker.�/. It is naturally
identified with TM via the map D�M and is transverse to the vertical subbundle. If
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v 2 TpM, we may identify TvTM with TpM � TpM via the map D�M � �W TTM !
TM�TM. Each element of TvTM can thus be represented uniquely by a pair .v1; v2/
with v1; v2 2 TpM. Put another way, every element � of TvTM is tangent to a curve
VW .�1; 1/ ! TM with V.0/ D v. Let c D �M ı VW .�1; 1/ ! M be the curve of
base-points of V in M. Then � is represented by the pair

.Pc.0/;DcV.0// 2 TpM � TpM:

These coordinates on the fibers of TTM restrict to coordinates on TT1M. Regarding
TTM as a bundle over M in this way gives rise to a natural Riemannian metric
on TM, called the Sasaki metric. In this metric, the inner product of two elements
.v1;w1/ and .v2;w2/ of TvTM is defined:

h.v1;w1/; .v2;w2/iSas D hv1; v2i C hw1;w2i:

This metric is induced by a symplectic form ! on TTM. For vectors .v1;w1/ and
.v2;w2/ in TvTM, we have

!..v1;w1/; .v2;w2// D hv1;w2i � hw1; v2i:

This symplectic form is the pullback of the canonical symplectic form on the
cotangent bundle T�M by the map from TM to T�M induced by identifying a vector
v 2 TpM with the linear functional hv; 	i on TpM. Sasaki [Sa58] showed that the
fibers of the tangent bundle are totally geodesic submanifolds of TTM with the
Sasaki metric. A parallel vector field along a geodesic of M (viewed as a curve in
TM) is a geodesic of the Sasaki metric. Such a geodesic is orthogonal to the fibers
of TM. If v 2 TpM and v0 2 Tp0M, we can join them by first parallel translating
v along a geodesic from p to p0 to obtain w 2 Tp0M and then moving from w to
v0 along a line in Tp0M. If v0 is close to v, we can choose the geodesic so that its
length is d. p; p0/. It follows easily from Topogonov’s comparison theorem [CE08,
Theorem 2.2] that dSas.v; v

0/ 
 d. p; p0/C kw � v0k, as v0 ! v, where the rate of
convergence is controlled by the curvatures of the Sasaki metric in a neighborhood
of v. The notation a 
 b means that the ratios a=b and b=a are bounded from above
by a constant. In this case the constant is 2.

4.2.2 The Geodesic Flow and Jacobi Fields

For v 2 TM, let 	v denote the unique geodesic satisfying P	v.0/ D v. The geodesic
flow ' tW TM ! TM is defined by ' t.v/ D P	v.t/ wherever this is well-defined. The
geodesic flow is always defined locally. Since the geodesic flow is Hamiltonian, it
preserves a natural volume form on T1M called the Liouville volume form. When
the integral of this form is finite, it induces a unique probability measure on T1M
called the Liouville measure or Liouville volume.
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Consider now a one-parameter family of geodesics, i.e., a map ˛W .�1; 1/2 ! M
with the property that ˛.s; 	/ is a geodesic for each s 2 .�1; 1/. Denote by J.t/ the
vector field

J.t/ D @˛

@s
.0; t/

along the geodesic 	.t/ D ˛.0; t/. Then J satisfies the Jacobi equation

J00 C R.J; P	/ P	 D 0;

in which 0 denotes covariant differentiation along 	 . Since this is a second-order
linear ordinary differential equation, the pair of vectors .J.0/; J0.0// 2 T	.0/M �
T	.0/M uniquely determines the vectors J.t/ and J0.t/ along 	.t/. A vector field J
along a geodesic 	 satisfying the Jacobi equation is called a Jacobi field. The pair
.J.0/; J0.0// corresponds in the manner described above to the tangent vector at
s D 0 to the curve V.s/ D @˛

@t .s; 0/. To see this, note that V.s/ is a vector field along
the curve c.s/ D ˛.s; 0/, so V 0.0/ corresponds to the pair

�Pc.0/;Dc
@˛

@t
.s; 0/

� D �

J.0/;
D

@s

@˛

@t
.s; 0/

� D �

J.0/;
D

@t

@˛

@s
.s; 0/

� D .J.0/; J0.0//:

In the same way one sees that .J.t/; J0.t// corresponds to the tangent vector at s D 0

to the curve s 7! @˛
@t .s; t/ D ' t ı V.s/, which is D' t.V 0.0//.

To summarize the preceding discussion, there is a one-to-one correspondence
between elements of TvTM and Jacobi fields along the geodesic 	 with P	.0/ D
v. Note that the pair .J.t/; J0.t// defines a section of TTM over 	.t/. We have the
following key proposition.

Proposition 4.2.1 The image of the tangent vector .v1; v2/ 2 TvTM under the
derivative of the geodesic flow Dv'

t is the tangent vector .J.t/; J0.t// 2 T't.v/TM,
where J is the unique Jacobi field along 	 satisfying J.0/ D v1 and J0.0/ D v2.
Any vector field of the form J.t/ D .a C bt/ P	.t/ is a Jacobi field, since in that
case R.J; P	/ D 0 and the Jacobi equation reduces to J00 D 0, which holds since
P	 0 D 0. Conversely, any Jacobi field that is always tangent to 	 must have this form.
Computing the Wronskian of the Jacobi field P	 and an arbitrary Jacobi field J shows
that hJ0; P	i is constant. It follows that if J0.t0/ ? P	.t0/ for some t0, then J0.t/ ? P	.t/
for all t. Similarly, if J.t0/ ? P	.t0/ and J0.t0/ ? P	.t0/ for some t0, then J.t/ ? P	.t/
and J0.t/ ? P	.t/ for all t; in this case we call J a perpendicular Jacobi field. An easy
consequence of the above discussion is that any Jacobi field J along a geodesic 	
can be expressed uniquely as J D Jk C J?, where Jk is a Jacobi field tangent to 	
and J? is a perpendicular Jacobi field.
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4.2.3 Matrix Jacobi and Riccati Equations

Choose an orthonormal basis e1 D P	.0/; e2; : : : ; en at 0 for the tangent space at
	.0/ and parallel-transport the basis along 	.t/. Let R.t/ be the matrix with entries
Rjk.t/ D hR.ej.t/; e1.t//e1.t/; ek.t/i. Any Jacobi field can be written in terms of the
basis as J.t/ D Pn

kD1 ykek.t/, and the Jacobi equation can be written as

d2yk

dt2
.t/C

X

j

y j.t/Rjk.t/ D 0:

A solution is determined by values and derivatives at 0 of the yk. Let J .t/ denote
any matrix of solutions to the Jacobi equation. When the matrix J is nonsingular,
we can define

U D J 0J �1:

Then U satisfies the matrix Riccati equation

U0 C U2 C R D 0; (4.1)

where R is the matrix above. A standard calculation using the Wronskian shows
that the operator U D J 0J �1 is symmetric if and only if for any two columns
Ji; Jj of J , we have

!R2n..Ji; J
0
i/; .Jj; J

0
j // D 0;

where !R2n is the standard symplectic form on R
2n.

4.2.4 Perpendicular Jacobi Fields and Invariant Subbundles

There are two natural subbundles of TTM that are invariant under the derivative D' t

of the geodesic flow, the first containing the second. The first is the tangent bundle
TT1M to the unit tangent bundle of M. Under the natural identification TvTM '
TxM � TxM for v 2 T1x M, the subspace TvT1M is the set of all pairs .w0;w1/ such
that hv;w1i D 0. To see this, note that if ˛.s; t/ is a variation of geodesics generating
the Jacobi field J along the geodesic 	 , with P	.0/ D v and k@˛=@t.s; t/k D 1 for all
s; t, then

0 D D

@s

�
�
�
@˛

@t

�
�
�

2

j.0;0/ D 2
D D2

@s@t
˛;
@˛

@t

E

j.0;0/

D 2
D D2

@t@s
˛;
@˛

@t

E

j.0;0/ D 2hJ0.0/; P	.0/i:
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The D' t-invariance of TT1M follows from the ' t-invariance of T1M. It is reflected
in the fact, noted at the end of Sect. 4.2.2, that hJ0.t/; P	i is constant for any Jacobi
field J along a geodesic 	 .

The second natural invariant subbundle is the orthogonal complement P'? in
TT1M to the vector field P' generating the geodesic flow. Under the natural
identification TvTM ' TxM � TxM, for v 2 T1x M, the vector P'.v/ is .v; 0/, and the
subspace P'?.v/ is the set of all pairs .w0;w1/ such that hv;w0i D hv;w1i D 0. The
D' t-invariance of P'? follows from the earlier observation (end of Sect. 4.2.2) that
a Jacobi field J with J.t0/ ? P	.t0/ and J0.t0/ ? P	.t0/ for some t0 is perpendicular
to 	 for all t. To summarize, the space of all perpendicular Jacobi fields along 	
corresponds to the orthogonal complement to the direction of the geodesic flow
P'.v/ at the point v D P	.0/ 2 T1M. To estimate the norm of the derivative D' t on
TT1M, it suffices to restrict attention to vectors in the invariant subspace P'?; that is,
it suffices to estimate the growth of perpendicular Jacobi fields along geodesics.

4.2.5 Consequences of Negative Curvature and Unstable
Jacobi Fields

If the sectional curvatures of the Riemannian metric are negative along 	 , then
it follows from the Jacobi equation that hJ00; Ji > 0 for any Jacobi field with
the property that J.t/ and P	.t/ are linearly independent. This has the following
consequence:

Lemma 4.2.2 ([Eb01]) If the sectional curvatures are negative along 	 , then the
functions kJ.t/k and kJ.t/k2 are strictly convex for any nontrivial perpendicular
Jacobi field J along 	 .
We also have the following results from [Eb96, §1.10]. Let 	 W .�1; a� ! M be
a geodesic ray along which the sectional curvatures of the Riemannian metric are
always negative. Then, for each w 2 P	.a/?, there is a unique perpendicular Jacobi
field JC;w along 	 such that JC;w.a/ D w and

kJC;w.t/k � kwk for all t � a:

Since kJC;w.t/k is a strictly convex function of t by Lemma 4.2.2, kJC;w.t/k is
strictly increasing for t � a. In fact, JC;w D lim�!�1 JC;w;� , where JC;w;� is the
Jacobi field such that JC;w;� .a/ D v and JC;w;� .�/ D 0. We call JC;w an unstable
Jacobi field. For each t � a, there is a linear map UC.t/W P	.t/? ! P	.t/? such that

J0C.t/ D UC.t/.JC.t//

for every unstable Jacobi field JC. A Jacobi field along 	 is unstable if and only if it
satisfies J0 D UCJ.
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Proposition 4.2.3 The operators UC.t/ are symmetric and positive-definite. They
satisfy the matrix Riccati equation (4.1). Thus

U0C C U2C C R D 0:

In other words, for any vector w 2 P	.t/?, we have

hw;U0C.w/i D �hR.w; P	/ P	;wi � hw;U2C.w/i:

We call UC the unstable solution of the Riccati equation along the ray 	 . If v 2 T1M
is a vector such that 	v.t/ is defined for all t < 0, then we define UC.v/ to be the
operator UC.0/ associated to the ray 	vW .�1; 0� ! M. If 	 is a geodesic in a
complete Riemannian manifold with negative curvature, the unstable Jacobi fields
along 	 are obtained by varying 	 through geodesics ˇ such that d.ˇ.t/; 	.t// �
d.ˇ.0/; 	.0// for t < 0. These geodesics are orthogonal to a family of immersed
hypersurfaces whose lifts to the universal cover of M are called horospheres. The
operators UC.t/ are the second fundamental forms of horospheres. There is an
analogous definition of stable Jacobi fields and the stable solution of the Riccati
equation along a ray 	 W Œa;1/ ! M. If 	 W .�1;1/ ! M is a complete geodesic,
the unstable Jacobi fields along 	 are the stable Jacobi fields along the geodesic
t 7! 	.�t/. We define U�.v/ analogously to UC.v/; it is symmetric and negative
definite. The norm of a stable Jacobi field J.t/ defined on a ray 	 W Œa;1/ ! M is
strictly decreasing for t � a. Let

D WD ˚

v 2 T1M W 	v.t/ is defined for all t
�

:

If v 2 D , both UC.v/ and U�.v/ exist. This allows us to define a splitting of the
2n�1-dimensional space TvT1M as the direct sum of a one-dimensional space E0.v/
and two spaces Eu.v/ and Es.v/, each of dimension n�1. The space E0.v/ is R P'.v/,
and Eu.v/ ˚ Es.v/ D P'.v/?. In our usual coordinates, E0.v/ is spanned by .v; 0/
while

Eu.v/ D ˚

.w;UC.v/w/ W w 2 v?�

and Es.v/ D ˚

.w;U�.v/w/ W w 2 v?�

:

The splitting at v is mapped to the splitting at ' t.v/ by D' t.
The next proposition shows that while the splitting TDT1M D Eu ˚ E0 ˚ Es

is defined only over the set D , the geometry of this splitting is locally uniformly
controlled.

Proposition 4.2.4 There exists a continuous function ıW T1M ! R>0 such that for
all v 2 D , if .w;w0/ 2 Eu.v/, then

hw;w0i � ı.v/k.w;w0/k2Sas;
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and if .w;w0/ 2 Es.v/, then

hw;w0i � �ı.v/k.w;w0/k2Sas:

Proof It suffices to show that the functions

ıu.v/ D inf
.w;w0/2Eu.v/Xf0g

hw;w0i
k.w;w0/k2Sas

and ıs.v/ D inf
.w;w0/2Es.v/Xf0g

� hw;w0i
k.w;w0/k2Sas

are locally uniformly bounded away from 0 for v 2 D . We prove the statement
for ıs.

Suppose that ıs is not locally bounded away from 0. Then there would be v 2 D ,
a sequence of vectors vn in D with limn!1 vn D v, and a sequence �n 2 Es.vn/

such that �n converges to a vector � D .w;w0/ with hw;w0i D 0. By renormalizing
we may assume that k�nkSas D k�kSas D 1 for each n.

Since v 2 D , there exists � > 0 such that 	v.t/ is defined for jtj < � . Let J be the
Jacobi field along the geodesic 	v determined by �, and let Jn be the (stable) Jacobi
field along 	vn defined by �n. Then .kJk2/0.0/ D 2hw;w0i D 0.

On the other hand, since �n ! � and kJn.t/k is a decreasing function of t for
each n, we see that kJk is nonincreasing on .��; �/. It follows from this and the
strict convexity of kJk2 given by Lemma 4.2.2 that the function kJk2 cannot have a
critical point in the interval .��; �/.
The Hopf argument uses the following corollary of Proposition 4.2.4.

Corollary 4.2.5 Let ıW T1M ! R>0 be the function given by Proposition 4.2.4. The
continuous cone fields

Cu.v/ WD ˚

.w;w0/ 2 P'?.v/ W hw;w0i � ı.v/k.w;w0/k2Sas

�

and

Cs.v/ WD ˚

.w;w0/ 2 P'?.v/ W hw;w0i � �ı.v/k.w;w0/k2Sas

�

;

defined for v 2 T1M, intersect only at the origin and satisfy

Eu.v/ � Cu.v/ and Es.v/ � Cs.v/

for all v 2 D .

4.3 An Ergodicity Criterion for Incomplete Geodesic Flows

In this section we present the general criterion from [BMW12] for ergodicity of the
geodesic flow on a negatively curved manifold, not necessarily complete.
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If R is the curvature tensor of a Riemannian metric on a manifold M, then for
x 2 M, we define

kRxk WD sup
v1;v2;v32T1x N

kRx.v1; v2/v3k; krRxk WD sup
v1;v2;v3;v42T1x N

krv1Rx.v2; v3/v4k

and

kr2Rxk WD sup
v1;v2;v3;v4;v52T1x N

kr2
v1;v2

Rx.v3; v4/v5k;

where r2
X;YR WD rXrYR � rrXYR.

Let M be a contractible Riemannian manifold, negatively curved, possibly
incomplete. Let � be a group that acts freely and properly discontinuously on M
by isometries, and denote by N D M=� the quotient manifold. We denote by d both
the path metric on M and the quotient metric on N, which is just the path metric for
the induced Riemannian metric on N. The quotient map pW M ! N is a covering map
and a local isometry. Recall that the completion X of a metric space .X; d/ is the set
of all Cauchy sequences hxni in X modulo the equivalence relation hxni � hyni ,
limn!1 d.xn; yn/ D 0, with the induced metric d.hxni; hyni/ WD limn!1 d.xn; yn/.
Let NM be the metric completion of M, and let NN be the completion of N. Let
@N D NN X N. We will use d to denote the metric on all of these spaces. Consider the
following additional six assumptions on M and N:

I. M is a geodesically convex: for every p; p0 2 M, there is a unique geodesic
segment in M connecting p to p0. (This implies that M and NM are both CAT(0)
spaces.)

II. N is compact.
III. @N is volumetrically cusplike: there are constants C > 1 and 
 > 0 with

Vol.p 2 N W d. p; @N/ < �/ � C�2C
 for every � > 0:

If these last two assumptions hold, then N has finite volume, and we denote by
m the Riemannian volume (measure) on N, normalized so that m.T1N/ D 1. We
note that in the case of the Weil–Petersson metric, these three assumptions were
either already known or follow in a straightforward way from known results. If they
hold, then the flow is a.e. defined for all time,2 horospheres are contracted by it, and
log kD'1k is integrable. Thus, the Oseledec Theorem can be applied to D'1, and ' t

is nonuniformly hyperbolic [BMW12, Proposition 3.9].
The final (and main) three assumptions are made in order to establish the

existence and absolute continuity of families of local stable manifolds by showing

2For almost every v 2 T1M, there exists an infinite geodesic (necessarily unique) tangent to v.
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that the hypotheses of the main results of [KSLP86] are satisfied [BMW12,
Proposition 3.10 and Appendix B]. These assumptions are that there exist constants
C > 1 and ˇ > 0 such that

IV. N has controlled curvature: for all x 2 N, the curvature tensor R satisfies
max kRxk; krRxk; kr2Rxk � Cd.x; @N/ � ˇ.

V. N has controlled injectivity radius: inj.x/ � C�1d.x; @N/ˇ for every x 2 N.
VI. The derivative of the geodesic flow is controlled: for every infinite geodesic 	

in N and every t 2 Œ0; 1�, we have kD P	.0/' tk � Cd.	.Œ�t; t�/; @N/ � ˇ.

The Burns–Masur–Wilkinson ergodicity criterion is

Theorem 4.3.1 ([BMW12, Theorem 3.1]) Under assumptions I–VI, the geodesic
flow on T1N is m-a.e. defined for all time. It is nonuniformly hyperbolic and ergodic
(in fact, Bernoulli),and its entropy is positive and finite (in fact, equal to the sum of
the positive Lyapunov exponents with respect to m, counted with multiplicity).
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