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Abstract. In this paper, we develop a user-centric privacy framework
for quantitatively assessing the exposure of personal information in open
settings. Our formalization addresses key-challenges posed by such open
settings, such as the necessity of user- and context-dependent privacy
requirements. As a sanity check, we show that hard non-disclosure guar-
antees are impossible to achieve in open settings.

In the second part, we provide an instantiation of our framework to
address the identity disclosure problem, leading to the novel notion of
d-convergence to assess the linkability of identities across online commu-
nities. Since user-generated text content plays a major role in linking
identities between Online Social Networks, we further extend this linka-
bility model to assess the effectiveness of countermeasures against linking
authors of text content by their writing style.

We experimentally evaluate both of these instantiations by applying
them to suitable data sets: we provide a large-scale evaluation of the
linkability model on a collection of 15 million comments collected from
the Online Social Network Reddit, and evaluate the effectiveness of four
semantics-retaining countermeasures and their combinations on the Ext-
ended-Brennan-Greenstadt Adversarial Corpus. Through these evalua-
tions we validate the notion of d-convergence for assessing the linkability
of entities in our Reddit data set and explore the practical impact of
countermeasures on the importance of standard writing style features on
identifying authors.

1 Introduction

The Internet has undergone dramatic changes in the last two decades, evolving
from a mere communication network to a global multimedia platform in which
billions of users not only actively exchange information, but increasingly con-
duct sizable parts of their daily lives. While this transformation has brought
tremendous benefits to society, it has also created new threats to online privacy
that existing technology is failing to keep pace with. Users tend to reveal per-
sonal information without considering the widespread, easy accessibility, poten-
tial linkage and permanent nature of online data. Many cases reported in the
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press show the resulting risks, which range from public embarrassment and loss
of prospective opportunities (e.g., when applying for jobs or insurance), to per-
sonal safety and property risks (e.g., when sexual offenders or burglars learn
users’ whereabouts online). The resulting privacy awareness and privacy con-
cerns of Internet users have been further amplified by the advent of the Big-
Data paradigm and the aligned business models of personalized tracking and
monetizing personal information in an unprecedented manner.

Developing a suitable methodology to reason about the privacy of users in
such a large-scale, open web setting, as well as corresponding tool support in
the next step, requires at its core a formal privacy model that lives up to the
now increasingly dynamic dissemination of unstructured, heterogeneous user
content on the Internet: While users traditionally shared information mostly
using public profiles with static information about themselves, nowadays they
disseminate personal information in an unstructured, highly dynamic manner,
through content they create and share (such as blog entries, user comments,
a “Like” on Facebook), or through the people they befriend or follow. Fur-
thermore, ubiquitously available background knowledge about a dedicated user
needs to be appropriately reflected within the model and its reasoning tasks, as
it can decrease a user’s privacy by inferring further sensitive information. As an
example, Machine Learning and other Information Retrieval techniques provide
comprehensive approaches for profiling a user’s actions across multiple Online
Social Networks, up to a unique identification of a given user’s profiles for each
such network.

Prior research on privacy has traditionally focused on closed database
settings – characterized by a complete view on structured data and a clear dis-
tinction of key- and sensitive attributes – and has aimed for strong privacy
guarantees using global data sanitization. These approaches, however, are inher-
ently inadequate if such closed settings are replaced by open settings as described
above, where unstructured and heterogeneous data is being disseminated, where
individuals have a partial view of the available information, and where global
data sanitization is impossible and hence strong guarantees have to be replaced
by probabilistic privacy assessments.

As of now, even the basic methodology is missing for offering users technical
means to comprehensively assess the privacy risks incurred by their data dis-
semination, and their daily online activities in general. Existing privacy models
such as k-anonymity [54], l-diversity [40], t-closeness [39] and the currently most
popular notion of Differential Privacy [22] follow a database-centric approach
that is inadequate to meet the requirements outlined above. We refer the reader
to Sect. 3.3 for further discussions on existing privacy models.

1.1 Contribution

In this paper, we present a rigorous methodology for quantitatively assessing the
exposure of personal information in open settings. Concretely, the paper makes
the following three tangible contributions: (1) a formal framework for reasoning
about the disclosure of personal information in open settings, (2) an instantiation
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of the framework for reasoning about the identity disclosure problem, and
(3) an evaluation of the framework on a collection of 15 million comments col-
lected from the Online Social Network Reddit.

A Formal Framework for Privacy in Open Settings. We propose a novel frame-
work for addressing the essential challenges of privacy in open settings, such as
providing a data model that is suited for dealing with unstructured dissemina-
tion of heterogeneous information through various different sources and a flexible
definition of user-specific privacy requirements that allow for the specification of
context-dependent privacy goals. In contrast to most existing approaches, our
framework strives to assess the degree of exposure individuals face, in contrast to
trying to enforce an individual’s privacy requirements. Moreover, our framework
technically does not differentiate between non-sensitive and sensitive attributes
a-priori, but rather starts from the assumption that all data is equally important
and can lead to privacy risks. More specifically, our model captures the fact that
the sensitivity of attributes is highly user- and context-dependent by deriving
information sensitivity from each user’s privacy requirements. As a sanity check
we prove that hard non-disclosure guarantees cannot be provided for the open
setting in general, providing incentive for novel approaches for assessing privacy
risks in the open settings.

Reasoning about Identity Disclosure in Open Settings. We then instantiate our
general privacy framework for the specific use case of identity disclosure. Our
framework defines and assesses identity disclosure (i.e., identifiability and link-
ability of identities) by utilizing entity similarity, i.e., an entity is private in a
collection of entities if it is sufficiently similar to its peers. At the technical core
of our model is the new notion of d-convergence, which quantifies the similar-
ity of entities within a larger group of entities. It hence provides the formal
grounds to assess the ability of any single entity to blend into the crowd, i.e., to
hide amongst peers. The d-convergence model is furthermore capable of assess-
ing identity disclosure risks specifically for single entities. To this end, we extend
the notion of d-convergence to the novel notion of (k, d)-anonymity, which allows
for entity-centric identity disclosure risk assessments by requiring d-convergence
in the local neighborhood of a given entity. Intuitively, this new notion provides
a generalization of k-anonymity that is not bound to matching identities based
on pre-defined key-identifiers.

Empirical Evaluation on Reddit. Third, we perform an instantiation of our iden-
tity disclosure model for the important use case of analyzing user-generated text
content in order to characterize specific user profiles. We use unigram frequencies
extracted from user-generated content as user attributes, and we subsequently
demonstrate that the resulting unigram model can indeed be used for quantify-
ing the degree of anonymity of – and ultimately, for differentiating – individual
entities. For the sake of exposition, we apply this unigram model to a collec-
tion of 15 million comments collected from the Online Social Network Reddit.
The computations were performed on two Dell PowerEdge R820 with 64 virtual
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cores each at 2.60 GHz over the course of six weeks. Our evaluation shows that
(k, d)-anonymity suitably assesses an identity’s anonymity and provides deeper
insights into the data set’s structure.

Assessing the Effectiveness of Countermeasures Against Authorship Recognition.
Fourth, by extending the linkability model model introduced in the second step,
we develop a novel measure for assessing the importance of stylometric features
for the identifiability of authors. We adapt and extend the user models intro-
duced in the general framework to fit our use case of authorship recognition,
effectively defining a model for writing style that allows us to capture a com-
prehensive list of stylometric features, as introduced by Abbasi and Chen [3].
Overall, we develop a model of the authorship recognition problem that allows
us to formally reason about authorship recognition in the open setting of the
Internet.

By using these writing-style models, we then derive how we can identify
important stylometric features that significantly contribute to the identification
of the correct author from the context in which text is published. We employ
standard regression and classification techniques to determine the importance
of each type of stylometric feature. From this importance assessment we then
further derive the gain measure for the effectiveness of countermeasures against
authorship identification by measuring how well they reduce the importance of
stylometric features.

Countermeasure Evaluation. Finally, we apply this measure to assess the effec-
tiveness of four automatic countermeasures, namely synonym substitution, spell
checking, special character modification and adding/removing misspellings. In
this evaluation, we follow a general and comprehensive methodology that struc-
tures the evaluation process and is easily extensible for future evaluation.

We perform our experiments on the Extended-Brennan-Greenstadt Adver-
sarial Corpus consisting of texts written by 45 different authors. Each author
contributed at least 6500 words to the corpus [11].

1.2 Outline

We begin by discussing related work in Sect. 2 and explain why existing pri-
vacy notions are inadequate for reasoning about privacy in open web settings in
Sect. 3. We then define our privacy framework in Sect. 4 and instantiate it for
reasoning about identity disclosure in Sect. 5. In Sect. 6 we perform a basic eval-
uation of the identity disclosure model on the Reddit Online Social Network. We
extend the identity disclosure model to a model for assessing the effectiveness
of countermeasures against authorship recognition in Sect. 7, which we then also
evaluate on Reddit in Sect. 8. We summarize our findings Sect. 9.

2 Related Work

In this section, we give an overview over other relevant related work that has
not yet been considered in the previous subsection.
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Privacy in Closed-World Settings. The notion of privacy has been exhaus-
tively discussed for specific settings such as statistical databases, as well as for
more general settings. Since we already discussed the notions of k-anonymity [54],
l-diversity [40] t-closeness [39] and Differential Privacy [22] in Sect. 3.3 in great
detail, we will now discuss further such notions.

A major point of criticism of Differential Privacy, but also the other existing
privacy notions, found in the literature [9,35] is the (often unclear) trade-off
between utility and privacy that is incurred by applying database sanitation
techniques to achieve privacy. Several works have shown that protection against
attribute disclosure cannot be provided in settings that consider an adversary
with arbitrary auxiliary information [21,23,24]. We later show, as sanity check,
that in our formalization of privacy in open settings, general non-disclosure
guarantees are indeed impossible to achieve. By providing the necessary formal
groundwork in this paper, we hope to stimulate research on assessing privacy
risks in open settings, against explicitly spelled-out adversary models.

Kasiviswanathan and Smith [34] define the notion of ε-semantic privacy to
capture general non-disclosure guarantees. We define our adversary model in a
similar fashion as in their formalization and we use ε-semantic privacy to show
that general non-disclosure guarantees cannot be meaningfully provided in open
settings.

Several extensions of the above privacy notions have been proposed in the
literature to provide privacy guarantees in use cases that differ from traditional
database privacy [7,15,16,30,59,61]. These works aim at suitably transforming
different settings into a database-like setting that can be analyzed using differen-
tial privacy. Such a transformation, however, often abstracts away from essential
components of these settings, and as a result achieve impractical privacy guar-
antees. As explained in Sect. 3.3, the open web setting is particularly ill-suited
for such transformations.

Specifically for the use case in Online Social Networks (in short, OSNs),
many works [16,30,37,59,61] apply the existing database privacy notions for
reasoning about attribute disclosure in OSN data. These works generally impose
a specific structure on OSN data, such as a social link graph, and reason about
the disclosure of private attributes through this structure. Zhaleva et al. [59] show
that mixed public and private profiles do not necessarily protect the private
part of a profile since they can be inferred from the public part. Heatherly
et al. [30] show how machine learning techniques can be used to infer private
information from publicly available information. Kosinksi et al. [37] moreover
show that machine learning techniques can indeed be used to predict personality
traits of users and their online behavior. Zhou et al. [61] apply the notions of k-
anonymity and l-diversity to data protection in OSNs and discuss the complexity
of finding private subsets. Their approach does however suffer from the same
problems these techniques have in traditional statistical data disclosure, where
an adversary with auxiliary information can easily infer information about any
specific user. Chen et al. [16] provide a variation of differential privacy which
allows for privacy and protection against edge-disclosure attacks in the correlated



92 M. Backes et al.

setting of OSNs. The setting, however, remains static, and it is assumed that the
data can be globally sanitized in order to provide protection against attribute
disclosure. Again, as discussed in Sect. 3.3, this does not apply to the open web
setting with its highly unstructured dissemination of data.

Privacy in Online Social Networks. A growing body of research shows that
commonly used machine learning and information retrieval techniques can be
used to match a user’s profiles across different OSNs [13,19] or to identify the
unique profile of a given user [8,17,53]. Scerri et al., in particular, present the
digital.me framework [51,52] which attempts to unify a user’s social sphere across
different OSNs by, e.g., matching the profiles of the same user across these OSNs.
While their approach is limited to the closed environment they consider, their
work provides interesting insights into identity disclosure in more open settings.

Several works in the literature (e.g., [38,41]) have focused on the protection
of so-called Personally Identifiable Information (PII) introduced in privacy and
data-protection legislation [2], which constitute a fixed set of entity attributes
that even in isolation supposedly lead to the unique identification of entities.
Narayanan and Shmatikov, however, show that the differentiation between key
attributes that identify entities, and sensitive attributes that need to be pro-
tected, is not appropriate for privacy in pervasive online settings such as the
Internet [47,48]. Technical methods for identifying and matching entities do not
rely on the socially perceived sensitivity of attributes for matching, but rather
any combination of attributes can lead to successful correlation of corresponding
profiles. Our privacy model treats every type of entity attribute as equally impor-
tant for privacy and allows for the identification of context-dependent, sensitive
attributes.

Authorship Recognition. The field of linguistic stylometry is a is a widely
explored topic in the literature [3,36,43,57]. This starts from pre-computer
approaches to identifying text-authors based on simple text features such as
word-length [43] to the, nowadays, machine-learning centered approaches that
try to include a plethora of statistical features to correctly identify the author
of a given text [3,36,57].

Stylometry has successfully been utilized in various areas: as an assisting tool
in historical research [31,49], allowing for the correct attribution of text with pre-
viously unknown origin, or providing evidence in criminal investigations [12,14].

With the rise of the Internet as a large-scale communication platform for
end-users, however, stylometry now also poses a significant threat to user pri-
vacy. As shown by Narayanan et al. [46], it is entirely feasible to identify the
authors of, e.g., blog-posts on a scale as large as the Internet. Afroz et al. [5] also
show that authors of private messages in underground forums can effectively be
de-anonymized by stylometry.

Adversarial Stylometry. Several works have shown that hiding an author’s
identity is indeed possible by means of obfuscation and imitation [10,42].
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In particular, Brennan et al. [10] show that, for text corpora with at least 6500
words per author, applying methods such as asking the authors to rewrite their
texts or doubly translating with machine translation can indeed reduce the accu-
racy of state-of-the-art stylometric methods. They also provide an implementa-
tion of their ideas in Anonymouth [6], a semi-automatic tool, assisting users in
anonymizing their writing style by identifying critical text features and asking
them to rewrite corresponding text passages. This work, however, only provides
results for text corpora with large amounts of text per author and is based on
the same dataset as ours.

Authorship obfuscation can also be detected, as shown by various work in
the literature [4,33,50]. However, these works again require text corpora with
large amounts of text per author. It would be interesting to see the effectiveness
of these obfuscation-detection methods in the online setting with much less text
per author.

3 Privacy in Open Settings

Before we delve into the technical parts of this paper, we give an informal
overview over privacy in the Internet of the future. To this end, we first pro-
vide an example that illustrates some of the aspects of privacy in the Internet,
and then in detail discuss the challenges of privacy in the Internet and why
existing privacy notions are not applicable to this setting.

3.1 Example

Consider the following example: Employer Alice receives an application by poten-
tial employee Bob which contains personal information about Bob. Before she
makes the decision on the employment of Bob, however, she searches the internet
and tries to learn even more about her potential employee. A prime source of
information are, for example, Online Social Networks (OSNs) which Alice can
browse through. If she manages to identify Bob’s profile in such an OSN she can
then learn more about Bob by examining the publicly available information of
this profile.

In order to correctly identify Bob’s profile in an OSN, Alice takes the following
approach: based on the information found in Bob’s application, she constructs
a model θB that contains all attributes, such as name, education or job history,
extracted from Bob’s application. She then compares this model θB to the profiles
P1, . . . , Pn found in the OSNs and ranks them by similarity to the model θB.
Profiles that show sufficient similarity to the model θB are then chosen by Alice
as belonging to Bob. After identifying the (for Alice) correctly matching profiles
P ∗
1 , . . . , P ∗

i of Bob, Alice can finally merge their models θ∗
1 , . . . , θ

∗
i with θB to

increase her knowledge about Bob.
Bob now faces the problem that Alice could learn information about him

that he does not want her to learn. He basically has two options: he either does
not share this critical information at all, or makes sure that his profile is not
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identifiable as his. In OSNs such as Facebook, where users are required to identify
themselves, Bob can only use the first option. In anonymous or pseudonymous
OSNs such as Reddit or Twitter, however, he can make use of the second option.
He then has to make sure that he does not share enough information on his
pseudonymous profiles that would allow Alice to link his pseudonymous profile
to him personally.

Privacy in the open web is mostly concerned with the second option: we
cannot protect an entity ε against sharing personal information through a profile
which is already uniquely identified with the entity ε. We can, however, estimate
how well an pseudonymous account of ε can be linked to ε, and through this
link, learn personal information about ε. As the example above shows, we can
essentially measure privacy in terms of similarity of an entity ε in a collection of
entities E .

The identifiability of ε then substantially depends on the attributes ε exhibits
in the context of E and does not necessarily follow the concept of personally iden-
tifiable information (PII) as known in the more common understanding of pri-
vacy and in privacy and data-protection legislation [2]: here, privacy protection
only goes as far as protecting this so-called personally identifiable information,
which often is either not exactly defined, or restricted to an a-priori-defined set
of attributes such as name, Social Security number, etc. We, along with other
authors in the literature [47,48], find however that the set of critical attributes
that need to be protected differ from entity to entity, and from community to
community. For example, in a community in which all entities have the name
“Bob”, exposing your name does not expose any information about yourself. In
a different community, however, where everyone has a different name, exposing
your name exposes a lot of information about yourself.

In terms of the privacy taxonomy formulated by Zheleva and Getoor [60],
the problem we face corresponds to the identity disclosure problem, where one
tries to identify whether and how an identity is represented in an OSN. We
think that this is one of the main concerns of users of frequently used OSNs,
in particular those that allow for pseudonymous interactions: users are able to
freely express their opinions in these environments, assuming that their opinions
cannot be connected to their real identity. However, any piece of information
they share in their interactions can leak personal information that can lead to
identity disclosure, defeating the purpose of such pseudonymous services.

To successfully reason about the potential disclosure of sensitive information
in such open settings, we first have to consider various challenges that have not
been considered in traditional privacy research. After presenting these challenges,
we discuss the implications of these challenges on some of the existing privacy
notions, before we consider other relevant related work in the field.

3.2 Challenges of Privacy in Open Settings

In this subsection, we introduce the challenges induced by talking about privacy
in open settings:
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(C1) Modeling Heterogeneous Information. We require an information model
that allows for modeling various types of information and that reflects the het-
erogeneous information shared throughout the Internet. This models needs to
adequately represent personal information that can be inferred from various
sources, such as static profile information or from user-generated content, and
should allow statistical assessments about the user, as is usually provided by
knowledge inference engines. We propose a solution to this challenge in Sect. 4.1.

(C2) User-Specified Privacy Requirements. We have to be able to formalize
user-specified privacy requirements. This formalization should use the previously
mentioned information model to be able to cope with heterogeneous information,
and specify which information should be protected from being publicly dissemi-
nated. We present a formalization of user privacy requirements in Sect. 4.4.

(C3) Information Sensitivity. In open settings, information sensitivity is a func-
tion of user expectations and context: we therefore need to provide new defini-
tions for sensitive information that takes user privacy requirements into account.
We present context- and user-specific definitions of information sensitivity in
Sect. 4.5.

(C4) Adversarial Knowledge Estimation. To adequately reason about disclosure
risks in open settings we also require a parameterized adversary model that
we can instantiate with various assumptions on the adversary’s knowledge: this
knowledge should include the information disseminated by the user, as well as
background knowledge to infer additional information about the user. In Sect. 4,
we define our adversary model based on statistical inference.

In the following sections, we provide a rigorous formalization for these
requirements, leading to a formal framework for privacy in open settings. We
will instantiate this framework in Sect. 5.3 to reason about the identity disclo-
sure in particular.

We begin by discussing why existing privacy notions are not suited for rea-
soning about privacy in open settings. Afterwards, we provide an overview over
further related work.

3.3 Inadequacy of Existing Models

Common existing privacy notions such as k-anonymity [54], l-diversity [40], t-
closeness [39] and the currently most popular notion of Differential Privacy [22]
provide the technical means for privacy-friendly data-publishing in a closed-
world setting: They target scenarios in which all data is available from the
beginning, from a single data source, remains static and is globally sanitized
in order to provide rigorous privacy guarantees. In what follows, we describe
how these notions fail to adequately address the challenges of privacy in open
settings discussed above.
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(a) Absence of Structure and Classification of Data. All the aforementioned
privacy models require an a-priori structure and classification of the data under
consideration. Any information gathered about an individual thus has to be
embedded in this structure, or it cannot be seamlessly integrated in these models.

(b) No Differentiation of Attributes. All of these models except for Differential
Privacy require an additional differentiation between key attributes that iden-
tify an individual record, and sensitive attributes that a users seeks to protect.
This again contradicts the absence of an a-priori, static structure in our setting.
Moreover, as pointed out above and in the literature [48], such a differentiation
cannot be made a-priori in general, and it would be highly context-sensitive in
the open web setting.

(c) Ubiquitously Available Background Knowledge. All of these models, except
for Differential Privacy, do not take into account adversaries that utilize ubiq-
uitously available background knowledge about a target user to infer additional
sensitive information. A common example of background knowledge is openly
available statistical information that allows the adversary to infer additional
information about an identity.

(d) Privacy for Individual Users. All these models provide privacy for the whole
dataset, which clearly implies privacy of every single user. One of the major
challenges in open settings such as the Internet, however, is that accessing and
sanitizing all available data is impossible. This leads to the requirement to design
a local privacy notion that provides a lower privacy bound for every individual
user, even if we only have partial access to the available data.

The notion of Differential Privacy only fails to address some of the aforemen-
tioned requirements (parts a and d), but it comes with the additional assump-
tion that the adversary knows almost everything about the data set in question
(everything except for the information in one database entry). This assump-
tion enables Differential Privacy to avoid differentiation between key attributes
and sensitive attributes. This strong adversarial model, however, implies that
privacy guarantees are only achievable if the considered data is globally per-
turbed [21,23,24], which is not possible in open web settings.

The conceptual reason for the inadequacy of existing models for reasoning
about privacy in open web settings is mostly their design goal: Privacy mod-
els have thus far mainly been concerned with the problem of attribute disclo-
sure within a single data source: protection against identity disclosure was then
attempted by preventing the disclosure of any (sensitive) attributes of a user to
the public. In contrast to static settings such as private data publishing, where
we can decide which information will be disclosed to the adversary, protection
against any attribute disclosure in open settings creates a very different set of
challenges which we will address in the following sections.
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4 A Framework for Privacy in Open Settings

In this section, we first develop a user model that is suited for dealing with the
information dissemination behavior commonly observed on the Internet. We then
formalize our adversary model and show, as a sanity check, that hard privacy
guarantees cannot be achieved in open settings. We conclude by defining privacy
goals in open settings through user-specified privacy requirements from which
we then derive a new definition of information sensitivity suited to open settings.

4.1 Modeling Information in Open Settings

We first define the notion of entity models and restricted entity models. These
models capture the behavior of these entities and in particular describe which
attributes an entity exhibits publicly.

Definition 1 (Entity Model). Let A be the set of all attributes. The entity
model θε of an entity ε provides for all attributes α ∈ A an attribute value
θε(α) ∈ dom(α) ∪ {NULL} where dom(α) is the domain over which the attribute
αi is defined.

The domain dom(θ) of an entity model θ is the set of all attributes α ∈ A
with value θ(α) �= NULL.

An entity model thus corresponds to the information an entity can publicly
disseminate. With the specific null value NULL we can also capture those cases
where the entity does not have any value for that specific attribute.

In case the adversary has access to the full entity model, a set of entity models
basically corresponds to a database with each attribute α ∈ A as its columns. In
the open setting, however, an entity typically does not disseminate all attribute
values, but instead only a small part of them. We capture this with the notion
of restricted entity models.

Definition 2 (Restricted Entity Model). The restricted entity model θA′
ε

is the entity model of εrestricted to the non empty attribute set A′ �= ∅, i.e.,

θA′
ε (α) =

{
θε(α), if α ∈ A′

NULL, otherwise

In the online setting, each of the entities above corresponds to an online profile.
A user u usually uses more than one online service, each with different profiles
Pu
1 , . . . , Pu

l . We thus define a user model as the collection of the entity models
describing each of these profiles.

Definition 3 (User Model / Profile Model). The user model θu = {θPu
1 ,,

. . . , θPu
1
} of a user u is a set of the entity models θPu

1 ,, . . . , θPu
1 ,, which we also

call profile models.

With a user model that separates the information disseminated under different
profiles, we will be able to formulate privacy requirements for each of these
profiles separately. We will investigate this in Sect. 4.4.
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4.2 Adversary Model

In the following we formalize the adversary we consider for privacy in open
settings. In our formalization, we follow the definitions of a semantic, Bayesian
adversary introduced by Kasiviswanathan and Smith [34].

For any profile P , we are interested in what the adversary Adv learns about
P observing publicly available information from P . We formalize this learning
process through beliefs on the models of each profile.

Definition 4 (Belief). Let P be the set of all profiles and let DA be the set
of all distributions over profile models. A belief b = {bP |P ∈ P} is a set of
distributions bP ∈ DA.

We can now define our privacy adversary in open settings using the notion of
belief above.

Definition 5 (Adversary). An adversary Adv is a pair of prior belief b and
world knowledge κ, i.e., Adv = (b, κ).

The adversary Adv’s prior belief b represents his belief in each profile’s profile
model before makes any observations. This prior belief can, in particular, also
include background knowledge about each profile P . The world knowledge κ of
the adversary represents a set of inference rules that allow him to infer additional
attribute values about each profile from his observations.

We next define the publicly observations based on which the adversary learns
additional information about each profile.

Definition 6 (Publication Function). A publication function G is a ran-
domized function that maps each profile model θP to a restricted profile model
G(θP ) = θA′

P such that there is at least one attribute α ∈ A′ with θP (α) =
G(θP )(α).

The publication function G reflects which attributes are disseminated publicly by
the user through his profile P . G can, in particular, also include local sanitization
where some attribute values are perturbed. However, we do require that at least
one attribute value remains correct to capture utility requirements faced in open
settings.

A public observation now is the collection of all restricted profile models
generated by a publication function.

Definition 7 (Public Observation). Let P be the set of all profiles, and let
G be a publication function. The public observation O is the set of all restricted
profile models generated by G, i.e., O = {G(θP )|P ∈ P}.

The public observation O essentially captures all publicly disseminated attribute
values that can be observed by the adversary. Given such an observation O,
we can now determine what the adversary Adv learns about each profile by
determining his a-posteriori belief.
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Definition 8 (A-Posteriori Belief). Let P be the set of all profiles. Given an
adversary Adv = (b, κ) and a public observation O, the adversary’s a-posteriori
belief b = {bP ∈ DA|P ∈ P} is determined by applying the Bayesian inference
rule, i.e.,

bP [θ|O, κ] =
Pr[O|κ, θ] · bP [θ]∑
θ′ Pr[O|κ, θ′] · bP [θ′]

.

Here, the conditional probability Pr[O|κ, θ] describes the likelihood that the
observational O is created by the specific entity model θ.

We will utilize the a-posteriori belief of the adversary to reason about the
violation of the user specified privacy requirements in Sect. 4.4.

4.3 Inapplicability of Statistical Privacy Notions

In the following, we formally show that traditional non-disclosure guarantees,
e.g., in the style of Differential Privacy, are not possible in open settings.

Kasiviswanathan and Smith [34] provide a general definition of non-disclosure
they call ε-privacy. In their definition, they compare the adversary Adv’s a-
posteriori beliefs after observing the transcript t generated from a database san-
itazitaion mechanism F applied on two adjacent databases with n rows: first on
the database x, leading to the belief b0[.|t], and secondly on the database x−i,
where a value in the ith row in x is replaced by a default value, leading to the
belief bi[.|t].

Definition 9 (ε-semantic Privacy [34]). Let ε ∈ [0, 1]. A randomized algo-
rithm F is ε-semantically private if for all belief distributions b on Dn, for all
possible transcripts, and for all i = 1 . . . n:

SD(b0[.|t], bi[.|t]) ≤ ε.

Here, SD is the total variation distance of two probability distributions.

Definition 10. Let X and Y be two probability distributions over the sample
space D. The total variation distance SD of X and Y is

SD(X,Y ) = maxS⊂D [Pr[X ∈ S] − Pr[Y ∈ S]] .

Kasiviswanathan and Smith [34] show that ε-differential privacy is essentially
equivalent to ε-semantic privacy.

In our formalization of privacy in open settings, varying a single database
entry corresponds to changing the value of a single attribute α in the profile
model θP of a profile P to a default value. We denote this modified entity
model with θα

P , and the thereby produced a-posteriori belief by b
α

P . A profile
P would then be ε-semantically private if for any modified profile model θα

P , the
a-posteriori belief of adversary Adv does not change by more than ε.
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Definition 11 (ε-semantic Privacy in Open Settings). Let ε ∈ [0, 1].
A profile P is ε-semantically private in open settings if for any attribute α,

SD(bP [.|O], b
α

P [.|O]) ≤ ε

where bP and b
α

P are the a-posteriori beliefs of the adversary after observing the
public output of θP and θα

P respectively.

As expected, we can show that ε-semantic privacy can only hold for ε = 1 in
open settings.

Theorem 1. For any profile model θP and any attribute α, there is an adversary
Adv such that

SD(b[.|O], b
α
[.|O]) ≥ 1.

Proof. Let Adv have a uniform prior belief, i.e., all possible profile models have
the same probability, and empty world knowledge κ. Let αbe the one attribute
that remains the same after applying the publication function G. Let x be the
original value of this attribute α and let x∗ be the default value that replaces x.

Observing the restricted profile model θP [A′] without any additional world
knowledge will lead to an a-posteriori belief, where the probability of the entity
model θ with θ[A′] = θP [A′] and NULL everywhere else, is set to 1.

Conversely, the modified setting will result in an a-posteriori belief that sets
the probability for the entity model θ∗ to one, where θ∗ is constructed for the
modified setting as θ above. Thus b[θ|O] = 1, whereas b

α
[θ|O] = 0, and hence

SD(b[.|O], b
α
[.|O]) = 1. �	

Intuitively, the adversary can easily distinguish differing profile models because
(a) he can directly observe the profiles publicly available information, (b) he
chooses which attributes he considers for his inference and (c) only restricted, local
sanitization is available to the profile. Since these are elementary properties of pri-
vacy in open settings, we can conclude that hard security guarantees in the style
of differential privacy are impossible to achieve in open settings.

However, we can provide an assessment of the disclosure risks by explicitly
fixing the a-priori knowledge and the attribute set considered by the adversary.
While we no longer all-quantify over all possible adversaries, and therefore lose
the full generality of traditional non-disclosure guarantees, we might still provide
meaningful privacy assessments in practice. We further discuss this approach in
Sect. 4.5, and follow this approach in our instantiation of the general model for
assessing the likelihood of identity disclosure in Sect. 5.

4.4 User-Specified Privacy Requirements

In the following we introduce user-specified privacy requirements that allow us
to formulate privacy goals that are user- and context-dependent. These can then
lead to restricted privacy assessments instead of general privacy guarantees that
we have shown to be impossible in open setting in the previous section.
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We define a user’s privacy requirements on a per-profile basis, stating which
attribute values should not be inferred by adversary after seeing a public obser-
vations O.

Definition 12 (Privacy Policy). A privacy policy R is a set of privacy
requirements r = (P, {αi = xi}) which require that profile P should never expose
the attribute values xi for the attributes αi ∈ A.

By setting privacy requirements in a per-profile basis we capture an important
property of information dissemination in open settings: users utilize different
profiles for different context (e.g., different online services) assuming these pro-
files remain separate and specific information is only disseminated under specific
circumstances.

Given the definition of privacy policies, we now define the violation of a policy
by considering the adversary’s a-posterior belief b, as introduced in Sect. 4.2.

Definition 13 (Privacy Policy Satisfaction / Violation). Let Adv = (b, κ)
be an adversary with a-posteriori belief b, and let θ[α = x] be the set of all entity
models that have the value x for the attribute α. A profile Pu

i σ-satisfies a user’s
privacy requirement ru

j = (P, {αi = xi}), written Pu
i |=σ ru

j , if

– P = Pu
i

– ∀αi :
∑

θ∈θ[αi=xi]
bP [θ|O, κ] ≤ σ

and σ-violates the user’s privacy requirement otherwise.
A user model θu σ-satisfies a user u’s privacy policy Ru, written θu |=σ Ru,

if all profile models θPu
i

σ-satisfy their corresponding privacy requirements, and
σ-violates the privacy policy otherwise.

The above attributes can also take the form of “P belongs to the same user as
P ′”, effectively restricting which profiles should be linked to each other. We will
investigate this profile linkability problem specifically in Sect. 5.

4.5 Sensitive Information

In contrast to the closed-world setting, with its predefined set of sensitive
attributes that automatically defines the privacy requirements, a suitable defini-
tion of information sensitivity in the open setting is still missing. In the following,
we derive the notion of sensitive information from the user privacy requirements
we defined in Sect. 4.4.

Definition 14 (Sensitive Attributes). A set of attributes A∗ is sensitive for
a user u in the context of her profile Pu

i if u’s privacy policy Ru contains a
privacy requirement r = (Pu

i ,A′ = X) where A∗ ⊆ A′.

Here, we use the notation A = X as vector representation for ∀αi ∈ A : αi = xi.
Sensitive attributes, as defined above, are not the only type of attributes

that are worth to protect: In practice, an adversary can additionally infer sensi-
tive attributes from other attributes through statistical inference using a-priori
knowledge. We call such attributes that allow for the inference of sensitive
attributes critical attributes.
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Definition 15 (Critical Attributes). Given a set of attributes A∗, let P be
a profile with dom(θP ) ⊇ A, and let P ′ be the profile with the restricted profile
model θP ′ = θA′

P , where A′ = dom(θP ) \ A∗.
The set of attributes A∗ is σ-critical for the user u that owns the profile P

and an adversary with prior belief bP and world knowledge κ, if u’s privacy policy
Ru contains a privacy requirement r such that P σ-violates r but P ′ does not.

Critical information require the same amount of protection as sensitive informa-
tion, the difference however being that critical information is only protected for
the sake of protecting sensitive information.

As a direct consequence of the definition above, sensitive attributes are also
critical.

Corollary 1. Let A be a set of sensitive attributes. Then A is also 0-critical.

Another consequence we can draw is that privacy requirements will always be
satisfied if no critical attributes are disseminated.

Corollary 2. Let O be a public observations that does not include any critical
attributes for a user u and an adversary Adv. Then u’s privacy policy Ru is
σ-satisfied against Adv.

The corollary above implies that, while we cannot provide general non-disclosure
guarantees in open settings, we can provide privacy assessments for specific pri-
vacy requirements, given an accurate estimate of the adversary’s prior beliefs.

While privacy assessments alone are not satisfactory from a computer security
perspective, where we usually require hard security guarantees quantified over
all possible adversaries, the fact remains that we are faced with privacy issues
in open settings that are to this day unanswered for due to the impossibility
of hard guarantees in such settings. Pragmatically thinking, we are convinced
that we should move from impossible hard guarantees to more practical privacy
assessments instead. This makes particularly sense in settings where users are
not victims of targeted attacks, but instead fear attribute disclosure to data-
collecting third parties.

5 Linkability in Open Settings

In the following we instantiate the general privacy model introduced in the
last section to reason about the likelihood that two profiles of the same user
are linked by the adversary in open settings. We introduce the novel notion of
(k, d)-anonymity with which we assess anonymity and linkability based on the
similarity of profiles within an online community.

To simplify the notation we introduce in this section, we will, in the following,
talk about matching entities ε and ε′ the adversary wants to link, instead of
profiles P1 and P2 that belong to the same user u. All definitions introduced in
the general framework above naturally carry over to entities as well.
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5.1 Model Instantiation for Linkability

In the linkability problem, we are interested in assessing the likelihood that
two matching entities ε and ε′ can be linked, potentially across different online
platforms. The corresponding privacy requirements, as introduced in Sect. 4.4,
are r1 = (ε, αL) and r2 = (ε′, αL), where αL is the attribute that ε and ε′ belong
to the same user. Consequently, we say that these entities are unlinkable if they
satisfy the aforementioned privacy requirements.

Definition 16 (Unlinkability). Two entities ε and ε′ are σ-unlinkable if
{θε, θε′} |=σ {r1, r2}.

5.2 Anonymity

To assess the identity disclosure risk of an entity ε within a collection of entities
E , we use the following intuition: ε is anonymous in E if there is a subset E ′ ⊆ E
to which ε is very similar. The collection E ’ then is an anonymous subset of E
for ε.

To assess the similarity of entities within a collection of entities, we will use
a distance measure dist on the entity models of these entities. We will require
that this measure provides all properties of a metric.

A collection of entities in which the distance of all entities to ε is small (i.e.,
≤ a constant d) is called d-convergent for ε.

Definition 17. A collection of entities E is d-convergent for ε if dist(θε, θε′) ≤ d
for all ε′ ∈ E.

Convergence measures the similarity of a collection of individuals. Anonymity
is achieved if an entity can find a collection of entities that are all similar to
this entity. This leads us to the definition of (k, d)-anonymity, which requires a
subset of similar entities of size k.

Definition 18. An entity ε is (k, d)-anonymous in a collection of entities E if
there exists a subset of entities E ′ ⊆ E with the properties that ε ∈ E, that |E ′| ≥ k
and that E ′ is d-convergent.

An important feature of this anonymity definition is that it provides anonymity
guarantees that can be derived from a subset of all available data, but continue
to hold once we consider a larger part of the dataset.

Corollary 3. If an entity is (k, d)-anonymous in a collection of entities E, then
it is also (k, d)-anonymous in the collection of entities E ′ ⊃ E.

Intuitively, (k, d)-anonymity is a generalization of the classical notions of k-
anonymity to open settings without pre-defined quasi-identifiers. We schemati-
cally illustrate such anonymous subsets in Fig. 1.
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Fig. 1. Anonymity in crowdsourcing systems. (Color figure online)

5.3 Entity Matching

We define the notion of matching identities. As before, we use the distance
measure dist to assess the similarity of two entities.

Definition 19. An entity ε c-matches an entity ε′ if dist(θε, θε′) ≤ c.

Similarly, we can also define the notion of one entity matching a collection of
entities.

Definition 20. A collection of entities E c-matches an entity ε′ if all entities
ε ∈ E c-match ε′.

Assuming the adversary only has access to the similarity of entities, the best
he can do is comparing the distance of all entities ε ∈ E to ε′ and make a
probabilistic choice proportional to their relative distance values.

Now, if the matching identity ε∗ is d-convergent in E the, all entities in E will
have a comparatively similar distance to ε′.

Lemma 1. Let E be d-convergent for ε∗. If ε∗ c-matches ε′, then E (c + d)-
matches ε′.

Proof. Since E is d-convergent for ε∗, ∀ε′ ∈ E : dist(ε∗, ε′) ≤ d. Using the triangle
inequality, and the fact that ε∗ c-matches the entity ε′, we can bound the distance
of all entities ε ∈ E to ε′ by ∀ε′′ ∈ E : dist(ε, ε′) ≤ c+d. Hence E (c+d)-matches
the entity ε′. �	

Hence, the matching entity ε∗ does not c-match ε′ for a small value of c, the
adversary Adv he will have a number of possibly matching entities that are
similarly likely to match ε′.

We get the same result if not the whole collection E is convergent, but if there
exists a subset of convergent entities that allows the target to remain anonymous.
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Corollary 4. Let ε’ be (k, d)-anonymous in E. If ε’ c-matches an entity εthen
there is a subset E ′ ⊆ E of size at least k which (c + d)-matches ε.

5.4 Identity Disclosure

We assume that the adversary uses the similarity of the candidate entities to his
target entity ε′ to make his decision. The likelihood that the adversary chooses
a specific entity ε∗ then is the relative magnitude of dist(ε∗, ε), i.e.

Pr[Adv chooses ε∗] = 1 − dist(ε∗, ε′)∑
ε∈E dist(ε, ε′)

.

We can now bound the likelihood with which a specific entity ε∗ would be chosen
by the adversary if ε∗ is (k, d)-anonymous.

Theorem 2. Let the matching entity ε∗ of the entity ε′ in the collection E =
{ε1, . . . , εn} be (k, d)-anonymous in E. Furthermore let ε∗ c-match ε′. Then an
adversary Adv = (b, ∅) with uniform prior belief b and with empty world knowl-
edge that only observes the similarity of entities links the entity ε∗ to ε′ with a
likelihood of at most t ≤ 1 − c

c+(k−1)(c+d) .

Proof. Let E∗ be the (k, d) anonymous subset of ε∗ in E . Let t∗ be the likelihood
of identifying ε∗ from E∗. Then clearly t < t∗ since we remove all possible, but
wrong candidates in E \ E∗.

Since ε∗ c-matches ε′, by Lemma 1, we can upper bound the distance of each
entity in E∗ to ε′, i.e.,

∀ε ∈ E∗ : dist(ε, ε′) ≤ c + d

We can now bound t∗ as follows:

t∗ = Pr[Adv chooses ε]

= 1 − c

c + (k − 1)(
∑

ε∈E∗\{ε∗}
dist(ε, ε′))

≤ 1 − c

c + (k − 1)(c + d)

�	
Theorem 2 shows that, as long as entities remain anonymous in a suitably large
anonymous subset of a collection of entities, an adversary will have difficulty
identifying them with high likelihood. Recalling our unlinkability definition from
the beginning of the section, this result also implies that ε∗ is σ-unlinkable for
σ = t.

Corollary 5. Let the matching entity ε∗ of the entity ε′ in the collection E =
{ε1, . . . , εn} be (k, d)-anonymous in E. Then ε∗ and ε′ are σ-unlinkable for σ =
1 − c

c+(k−1)(c+d) against an adversary Adv = (b, ∅) with uniform prior belief and
empty world knowledge that only observes entity similarity.

In Sect. 6.5 we present experiments that evaluate the anonymity and linkability
of individuals in the Online Social Network Reddit, and measure how well they
can be identified from among their peers.
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5.5 Limitations

The quality of the assessment provided by the d-convergence model largely
depends on adversarial prior belief we assume: in our results above, we assume
an adversary without any prior knowledge. In practice, however, the adversary
might have access to prior beliefs that can help him in his decision making. There-
fore, turning such assessments into meaningful estimates in practice requires a
careful estimation of prior knowledge by, e.g., producing a more accurate pro-
file model: the problem of comprehensive profile building for entities in an open
setting is an open question that has been examined somewhat in the litera-
ture [8,13,17,19,53], but on the whole still leaves a lot of space for future work.

This concludes the formal definitions of our d-convergence model. In the
next sections, we instantiate it for identity disclosure risk analyses based on
user-generated text-content and apply this instantiation to the OSN Reddit.

6 Linkability Evaluation on Reddit

While the main focus of this paper is to present the actual privacy model as such,
the following experiments are meant to provide first insights into the application
of our framework, without taking overly complex adversarial capabilities into
account. The evaluation can easily be extended to a more refined model of an
adversary without conceptual difficulties.

We first articulate the goals of this evaluation, and then, secondly, describe
the data collection process, followed by defining the instantiation of the general
framework we use for our evaluation in the third step. Fourth, we introduce the
necessary processing steps on our dataset, before we finally discuss the results
of our evaluation.

6.1 Goals

In our evaluation, we aim at validating our model by conducting two basic exper-
iments. First, we want to empirically show that, our model instantiation yields a
suitable abstraction of real users for reasoning about their privacy. To this end,
profiles of the same user should be more similar to each other (less distant) than
profiles from different users.

Second, we want to empirically show that a larger anonymous subset makes
it more difficult for an adversary to correctly link the profile. Thereby, we inspect
whether anonymous subsets provide a practical estimate of a profile’s anonymity.

Given profiles with anonymous subsets of similar size, we determine the per-
centage of profiles which the adversary can match within the top k results, i.e.,
given a source profile, the adversary computes the top k most similar (less dis-
tant) profiles in the other subreddit. We denote this percentage by precision@k
and correlate it to the size of the anonymous subsets.

We fix the convergence of the anonymous subsets to be equal to the matching
distance between two corresponding profiles. Our intuition is that, this way, the
anonymous subset captures most of the profiles an adversary could potentially
consider matching.
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6.2 Data-Collection

For the empirical evaluation of our privacy model, we use the online social net-
work Reddit [1] that was founded in 2005 and constitutes one of the largest
discussion and information sharing platforms in use today. On Reddit, users
share and discuss topics in a vast array of topical subreddits that collect all
topics belonging to one general area; e.g. there are subreddits for world news, tv
series, sports, food, gaming and many others. Each subreddit contains so-called
submissions, i.e., user-generated content that can be commented on by other
users.

To have a ground truth for our evaluation, we require profiles of the same
user same user across different OSNs to be linked. Fortunately, Reddit’s struc-
ture provides an inherent mechanism to deal with this requirement. Instead of
considering Reddit as a single OSN, we treat each subreddit as its own OSN.
Since users are identified through the same pseudonym in all of those subreddits,
they remain linkable across the subreddits’ boundaries. Hence our analysis has
the required ground truth. The adversary we simulate, however, is only provided
with the information available in the context of each subreddit and thus can only
try to match profiles across subreddits. Ground truth in the end allows us to
verify the correctness of his match.

To build up our dataset, we built a crawler using Reddit’s API to collect com-
ments. Recall that subreddits contain submissions that, in turn, are commented
by the users. For our crawler, we focused on the large amount of comments
because they contain a lot of text and thus are best suitable for computing the
unigram models.

Our crawler operates in two steps that are repeatedly executed over time.
During the whole crawling process, it maintains a list of already processed users.
In the first step, our crawler collects a list of the overall newest comments on
Reddit from Reddit’s API and inserts these comments into our dataset. In the
second step, for each author of these comments who has not been processed yet,
the crawler also collects and inserts her latest 1, 000 comments into our dataset.
Then, it updates the list of processed users. The number of 1, 000 comments per
user, is a restriction of Reddit’s API.

In total, during the whole September 2014, we collected more than 40 million
comments from over 44, 000 subreddits. The comments were written by about
81, 000 different users which results in more than 2.75 million different profiles.

The whole dataset is stored in an anonymized form in a MySQL database
and is available upon request.

6.3 Model Instantiation

On Reddit, users only interact with each other by by posting comments to text
of link submissions. Reddit therefore does not allow us to exploit features found
in other social networks, such as friend links or other static data about each
user. On the other hand, this provides us with the opportunity to evaluate the
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linkability model introduced in Sect. 5 based dynamic, user-generated content,
in this case user-generated text content.

Since we only consider text content, we instantiate the general model from
the previous sections with an unigram model, where each attribute is a word
unigram, an its value is the frequency with which the unigram appears in the
profiles comments. Such unigram models have succesfully been used in the past
to characterize the information within text content and to correlate users across
different online platforms [28,45].

Definition 21 (Unigram Model). Let V be a finite vocabulary. The unigram
model θP = pi of a profile is a set of frequencies pi ∈ [0, . . . , 1] with which each
unigram wi ∈ V appears in the profile P . Each frequency pi is determined by

pi =
count(wi, P )∑

w∈V count(w,P )

Since the unigram model essentially constitutes a probability distribution, we
instantiate our distance metric dist with the Jensen-Shannon divergence [25].
The Jensen-Shannon divergence is a symmetric extension of the Kullback-Leiber
divergence has been shown to be successful in many related information retrieval
scenarios.

Definition 22. Let P and Q be two statistical models over a discrete space Ω.
The Jensen-Shannon divergence is defined by

DJS =
1
2
DKL(P ||M) +

1
2
DKL(Q||M)

where DKL is the Kullback-Leibler divergence

DKL(P ||Q) =
∑
ω∈Ω

log

(
P (ω)
Q(ω)

)
P (ω)

and M is the averaged distribution M = 1
2 (P + Q).

In the following, we will use the square-root of the Jensen-Shannon divergence,
constituting a metric, as our distance measure, i.e., dist =

√
DJS.

6.4 Data-Processing

The evaluation on our dataset is divided into sequentially performed computa-
tion steps, which include the normalization of all comments, the computation
of unigram models for each profile, a filtering of our dataset to keep the eval-
uation tractable, the computation of profile distances and the computation of
(k, d)-anonymous subsets.
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Normalizing Comments. Unstructured, heterogeneous data, as in our case,
may contain a variety of valuable information about a user’s behavior, e.g.,
including formatting and punctuation. Although we could transform these into
attributes, we do not consider them here for the sake of simplicity.

In order to get a clean representation to apply the unigram model on, we
apply various normalization steps, including transformation to lower case, the
removal of Reddit formatting and punctuation except for smilies. Moreover, we
apply a encoding specific normalization, replace URLs by their hostnames and
shorten repeated characters in words like cooool to a maximum of three. Finally,
we also filter out a list of 597 stopwords from the comments. Therefore, we
perform six different preprocessing steps on the data, which we describe in more
detail in the following.

1. Convert to lower case letters: In our statistical language models, we do
not want to differentiate between capitalized and lowercased occurrences of
words. Therefore, we convert the whole comment into lower case.

2. Remove Reddit formatting: Reddit allows users to use a wide range of
formatting modifiers that we divide into two basic categories: formatting mod-
ifiers that influence the typography and the layout of the comment, and for-
matting modifiers that include external resources into a comment. The first
kind of modifier, named layout modifiers, is stripped off the comment, while
leaving the plain text. The second kind of modifier, called embedding modi-
fiers, is removed from the comment completely.
One example for a layout modifier is the asterisk: When placing an asterisk
both in front and behind some text, e.g., *text*, this text will be displayed
in italics, e.g., text . Our implementation removes these enclosing asterisks,
because they are not valuable for computing statistical language models for
n-grams and only affect the layout. Similarly, we also remove other layout
modifiers such as table layouts, list layouts and URL formatting in a way
that only the important information remains.
A simple example for embedding modifiers are inline code blocks: Users can
embed arbitrary code snippets into their comments using the ‘ modifier. Since
these code blocks do not belong to the natural language part of the comment
and only embed a kind of external resource, we remove them completely. In
addition to code blocks, the category of embedding modifiers also includes
quotes of other comments.

3. Remove stacked diacritics: In our dataset, we have seen that diacritics are
often misused. Since Reddit uses Unicode as its character encoding, users can
create their own characters by arbitrarily stacking diacritics on top of them.
To avoid this kind of unwanted characters, we first normalize the comment
by utilizing the unicode character composition, which tries to combine each
letter and its diacritics into a single precombined character. Secondly, we
remove all remaining diacritic symbols from the comment. While this process
preserves most of the normal use of diacritics, it is able to remove all unwanted
diacritics.
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4. Replace URLs by their hostname: Generally, a URL is very specific and
a user often does not include the exact same URL in different comments.
However, it is much more common that a user includes different URLs that
all belong to the same hostname, e.g., www.mypage.com. Since our statistical
language models should represent the expected behavior of a user in terms of
used words (including URLs), we restrict all URLs to their hostnames.

5. Remove punctuation: Most of the punctuation belongs to the sentence
structure and, thus, should not a part of our statistical language models.
Therefore, we remove all punctuation except for the punctuation inside URLs
and smilies. We do not remove the smilies, because people are using them in
a similar role as words to enrich their sentences: Every person has her own
subset of smilies that she typically uses. To keep the smilies in the comment,
we maintain a list of 153 different smilies that will not be removed from the
comment.

6. Remove duplicated characters: In the internet, people often duplicate
characters in a word to add emotional nuances to their writing, e.g., cooooo-
oooool. But sometimes the number of reduplicated characters varies, even
if the same emotion should be expressed. Thus, we reduce the number of
duplicated characters to a maximum of 3, e.g., coool. In practice, this trun-
cation allows us to differentiate between the standard use of a word and the
emotional variation of it, while it does not depend on the actual number of
duplicated characters.

Computing Unigram Models. From the normalized data, we compute the
unigram frequencies for each comment. Recall that our dataset consists of many
subreddits that each form their own OSN. Thus, we aggregate the correspond-
ing unigram frequencies per profile, per subreddit, and for Reddit as a whole.
Using this data, we compute the word unigram frequencies for each comment as
described in Sect. 6.3.

Since a subreddit collects submissions and comments to a single topic, we
expect the unigrams to reflect its topic specific language. Indeed, the 20 most
frequently used unigrams of a subreddit demonstrate that the language adapts
to the topic. As an example, we show the top 20 unigrams (excluding stopwords)
of Reddit and two sample subreddits Lost and TipOfMyTongue in Table 1. As
expected, there are subreddit specific unigrams that occur more often in the
context of one subreddit than in the context of any other subreddit. For example,
the subreddit Lost deals with a TV series that is about the survivors of a plane
crash and its aftermath on an island. Unsurprisingly, the word island is the top
unigram in this subreddit. In contrast, the subreddit TipOfMyTongue deals with
the failure to remember a word from memory and, thus, has the word remember
in the list of its top three unigrams.

Filtering the Dataset. To reduce the required amount of computations we
restrict ourselves to interesting profiles. We define an interesting profile as one
that contains at least 100 comments and that belongs to a subreddit with at

www.mypage.com
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Table 1. Top 20 unigrams of Reddit and two sample subreddits Lost and TipOfMy-
Tongue.

Top Reddit Subreddit: Lost Subreddit: TipOfMyTongue

Unigram Frequency Unigram Frequency Unigram Frequency

1 people 4,127,820 island 832 www.youtube.com 3663

2 time 2,814,841 show 750 song 1, 542

3 good 2,710,665 lost 653 remember 1, 261

4 gt 2,444,240 time 580 en.wikipedia.org 1, 100

5 game 1,958,850 people 527 sounds 1, 007

6 pretty 1,422,640 locke 494 solved 924

7 2 1,413,118 season 431 movie 918

8 lot 1,385,167 jacob 429 find 829

9 work 1,352,292 mib 372 :) 786

10 1 1,184,029 jack 310 game 725

11 3 1,124,503 episode 280 time 678

12 great 1,070,299 ben 255 thinking 633

13 point 1,063,239 good 250 good 633

14 play 1,060,985 monster 237 www.imdb.com 584

15 years 1,032,270 lot 220 video 583

16 bad 1,008,607 gt 182 pretty 570

17 day 989,180 character 165 youtu.be 569

18 love 988,567 walt 163 mark 548

19 find 987,171 man 162 edit 540

20 shit 976,928 dharma 162 post 519

least 100 profiles. Additionally, we dropped the three largest subreddits from
our dataset to speed up the computation.

In conclusion, this filtering results in 58, 091 different profiles that belong to
37, 935 different users in 1, 930 different subreddits.

Distances Within and Across Subreddits. Next, we compute the pairwise
distance within and across subreddits using our model instantiation. Excluding
the distance of profiles to themselves, the minimal, maximal and average distance
of two profiles within subreddits in our dataset are approximately 0.12, 1 and
0.79 respectively. Across subreddits, the minimal, maximal and average distance
of two profiles are approximately 0.1, 1 and 0.85 respectively.

Anonymous Subsets. Utilizing the distances within subreddits, we can deter-
mine the anonymous subsets for each profile in a subreddit. More precisely, we
compute the anonymous subset for each pair of profiles from the same user.

www.youtube.com
www.imdb.com
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Fig. 2. The average distance between a profile in subreddit s and all profiles in s′

versus the matching distance between the profile and its correspondence in s′. (Color
figure online)

We set the convergence d to the matching distance between both profiles and
determine the size of the resulting anonymous subset.

6.5 Evaluation and Discussion

In this subsection, we inspect and interpret the results of our experiments with
regard to our aforementioned goals. Therefore, we first start by giving evidence
that our approach indeed provides a suitable abstraction of real users for rea-
soning about their privacy.

To this end, we compare the distance of matching profiles to the average
distance of non-matching profiles. In particular, for each pair of profiles from
the same user in subreddits s and s′, we plot the average distance from the
profile in s to the non-matching profiles in s′ in relation to the distance to
the matching profile in s′ in Fig. 2. The red line denotes the function y = x
and divides the figure into two parts: if a point lies below the line through the
origin, the corresponding profiles match better than the average of the remaining
profiles. Since the vast majority of datapoints is located below the line, we can
conclude that profiles of the same user match better than profiles of different
users.

Our second goal aimed at showing that anonymous subsets indeed can be
used to reason about the users’ privacy. Therefore, we investigate the chances
of an adversary to find a profile of the same user within the top k matches and
relate its chance to the size of the profile’s anonymous subset. More precisely,
given multiple target profiles with similar anonymous subset sizes, we determine
the, so called, precision@k, i.e., the ratio of target profiles that occur in the top
k ranked matches (by ascending distance from the source profiles). We relate
this precision@k to the anonymous subset sizes with a convergence d set to the
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Fig. 3. The anonymous subset size correlated to the precision an adversary has if
considering the top 5 profiles as matching. (Color figure online)

distance between the source and target profiles, and we group the anonymous
subset sizes in bins of size 10.

In our evaluation, we considered k ∈ {1, 5, 10, 20}, which all yield very similar
results. Exemplarily, we correlate the aforementioned measures for k = 5 in
Fig. 3, clearly showing that an increasing anonymous subset size correlates with
an increasing uncertainty – i.e., decreasing precision – for the adversary.

7 Assessing the Effectiveness of Countermeasures
Against Authorship Recognition

In this section, we explore another application of the linkability model we intro-
duced in Sect. 5: we develop a method to assess the effectiveness of various coun-
termeasures against authorship recognition, i.e. the process of linking text con-
tent that were authored by the same user based on stylometric features exhibited
by the content.

7.1 Theoretical Foundation

We first develop the formal foundation for our evaluation of authorship recog-
nition countermeasures. We derive our definitions from those in the previous
sections and adapt them to capture information about writing style.

Threat Model. In our threat model, we assume multiple collections of entities
Ei, also called communities. An entity ε ∈ Ei is characterized by its writing style
and corresponds to a pseudonymous author of a collection of texts. Two entities
ε1 and ε2 are called matching, if both belong to the same author.
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The adversary’s goal is now to identify matching entities across several com-
munities by analyzing their writing style. Figure 4 (see Sect. 7.1) shows two exem-
plary communities including the links between matching entities.

For the application of countermeasures, we assume that a community E
already exists, together with all text passages published by the entities in E ,
and a test author applies a countermeasure on his text passage before it is pub-
lished into E . We simulate this by simply choosing a subset of test authors from
E for which we evaluate the countermeasures.

Statistical Models of Writing-Style. For authorship attribution, we extend
the definition of entity models from Definition 1 in Sect. 4 to include different
types of attributes that each will represent one feature type of the writing style
feature set (e.g., as presented in [3]).

Definition 23 (Attribute Types). An attribute type class T is a collection
of attribute types τ ∈ T . We denote with Aτ the set of all attributes α ∈ Aτ

that realize the attribute type τ .

Intuitively, an attribute type corresponds to a feature or class of features, e.g., the
sentence length or word unigrams. A possible realization for the sentence length
would be 5, whereas house is a possible realization for a word unigram. Statistical
models now associate with each attribute and attribute type a probability, or
relevance estimation, of this attribute for the specific entity.

Definition 24 (Extended Statistical Model). The entity model θε = (θτ1
ε ,

. . . , θτn
ε ) of an entity ε consists of the statistical models of its attribute types τi ∈

T , 1 ≤ i ≤ n.
Each statistical model θτi

ε determines the probability Pr[α | θτi
ε ] that the entity

ε exhibits the attribute α ∈ Aτi .

In the easiest case, the probability of exhibiting a specific attribute (i.e., a
specific feature realization) will be proportional to its frequency in a user’s text.
Additionally, in our experimental evaluation, we also explore the possibility to
set the probability proportional to the popular term frequency inverse document
frequency to better capture the relevance of an attribute in a user’s text given
the context in which it is published.

Entity Similarity. In the following, we will use these entity models together
with a similarity measure on these models to evaluate the similarity of entities
with regard to their writing style. We follow the intuition that a higher similarity
between two entities in different communities implies a higher likelihood that
they both correspond to the same author.

Since we characterize each author in terms of statistical models, determining
their similarity boils down to measuring the similarity of probability distribu-
tions. As proposed in Sect. 6.3, we utilize the Jensen-Shannon divergence [25] to
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determine the similarity of our statistical models. The Jensen-Shannon diver-
gence is a symmetric variant of the popular Kullback-Leibler divergence, and
fulfills all properties of a metric distance measure.

We extend this similarity measure to fit our notion of statistical models
with attribute types, resulting in a linear combination of the similarities of each
attribute type.

Definition 25 (Similarity of Entities). Given two entities ε1, ε2 ∈ E, the
similarity of ε1 and ε2 is the linear combination of the similarities of their
statistical models. Let sim(θε1 , θε2) = (sim(θτ1

ε1 , θτ1
ε2 ), . . . , sim(θτn

ε1 , θτn
ε2 )) and λ =

(λτ1 , . . . , λτn). Then,

sim(θε1 , θε2) = λ · sim(θε1 , θε2) + ρ,

where ρ denotes an optional constant.

When applying this theory to an actual dataset, λ and ρ can be learned using
established regression and classification techniques.

Average Entity in a Collection. Next, we further extend statistical models to
a collection of entities E , which gives us the probability that a randomly chosen
entity from the collection exhibits an attribute. While the former part of this
section introduced the formal ground for attributing authorship by similarities,
the definitions in this and the next paragraph will be used for powering some of
our countermeasures.

Definition 26 (Stat. Models for Collections). Given a set of attribute types
T , the statistical model θE of a collection of entities Eis defined as (θτ1

E , . . . , θτn
E ),

where each θτi
E determines the probability Pr[α | θτi

E ] that an entity ε ∈ E, chosen
uniformly at random, exhibits an attribute α ∈ Aτi .

We can compute each statistical model θτi
E of a collection E by

Pr[α | θτi
E ] =

∑
ε∈E Pr[α | θτi

ε ]
|E|

for each attribute α ∈ Aτi .

The statistical model for a collection corresponds to the average entity in that
collection.
(k, d)-anonymity. As described in Sect. 5.2 (cf. Definition 18), we assess
anonymity of an entity by identifying anonymous subsets within a community
that allow an entity to hide amongst her peers: The (k, d)-anonymous subset
of an entity ε ∈ E is a subset of entities A ⊆ E of size k, each of which are at
least d-similar to ε. For a fixed value of k, the anonymous subset’s convergence
is a good indicator for how close the nearest k entities are. We will utilize these
anonymous subsets to improve the automatic countermeasures we propose in
Sect. 7.2 by not changing the text towards the average author from the whole
community, but rather an existing author within an anonymous subset of the
community.
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Countermeasure Formalization. Finally, we formally define countermea-
sures in the context of statistical models and then define our novel notion of
gain provided by a countermeasure.

Definition 27 (Countermeasure). A countermeasure C is a function that
changes the statistical model θε to C(θε).

The optimal weights λ = λτ1 , . . . , λτn obtained from the regression or trained
classifier can be used to determine the importance of each attribute type for
the stylometric similarity. Since their values might also be negative, the actual
importance is defined as (λτi)

2, similar to an approach by Guyon et al. [29].

Definition 28 (Feature Importance). Given λ and an attribute type τ , τ ’s
importance is defined as (λτ )2. The vector I is defined as the element-wise mul-
tiplication λ � λ and contains each attribute type’s importance.

In an ideal, private world no attribute type reliably contributes to the match-
ing of corresponding authors, and hence no attribute type is particularly impor-
tant. We capture this ideal scenario through ideal importances Î that we aim to
achieve through the application of countermeasures. In our case, if no attribute
type is particularly important, we set Î = 0. Motivated by this intuition, we
define a countermeasure’s gain as the improvement towards the ideal scenario.

Definition 29 (Gain). Let I be attribute type importances before the applica-
tion of a countermeasure and I ′ be attribute type importances after the applica-
tion. Then the improvement potential towards the ideal scenario Î is defined as
I − Î.

A countermeasure C’s gain gainτ
C with respect to a specific attribute type τ is

the actual improvement towards the ideal scenario, while the countermeasure’s
overall gain gainC is defined as the sum over the gains for all attribute types.

gainτ
C = |Iτ − Îτ | − |I ′

τ − Îτ |

gainC =
∑
τ∈T

gainτ
C

In the case that the ideal importances are 0, this simplifies to gainτ
C = Iτ −I ′

τ .

Comparison to Other Measures. We compare our approach of computing
the gain of countermeasures to other approaches that can be used to capture
the effectiveness of countermeasures. Namely, we consider both (1) classifier-
dependent measures such as precision, recall, accuracy, and (2) the classifier-
independent measure of information gain.

By comparing such measures before and after the countermeasure’s appli-
cation, a similar measure to our gain is achieved. In contrast to our approach,
however, both of the above approaches lead to drawbacks we will elaborate in
the following.
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Classifier-Dependent Measures. In general, a comparison of precision, recall
and accuracy before and after a countermeasure’s application only gives a global
view on the effectiveness of a countermeasure, i.e., the global loss in those mea-
sures after the countermeasure’s application. Such an approach fails in giving
precise results on a feature-class level, since the underlying measures describe
the total outcome of the classification.

Classifier-Independent Measures. While information gain is capable of
both, providing a feature-level assessment of importance as well as being
classifier-independent, it still fails to match our needs: Intuitively, a feature’s
information gain is higher if it is more discriminating. However, in its compu-
tation, information gain does not take into account which authors are actually
matching.

Narayanan et al. [46] define information gain as IG(Fi) = H(B) − H(B |
Fi) = H(B)+H(Fi)−H(B,Fi) where H is the Shannon entropy, B is the random
variable corresponding to a set identifier (in their case, the blog number), and
Fi is the random variable corresponding to feature i. Adopting this definition
let us define the notions of a feature’s information gain for authors IGA(Fi) and
for entities IGε(Fi).

Unfortunately, knowing which features distinguish authors is not necessarily
the same as knowing which features help matching authors. For example, con-
sider the two communities in Fig. 4, where matching entities are highlighted in
the same color and are connected by a line. In this scenario, IGA(Fi) tells us to
which extent Fi helps distinguishing the authors in general. However, without
considering the boundaries between both communities, it is possible that Fi is
only well discriminating in C1, but not in C2, and is in particular not very helpful
in matching from C1 to C2.

Using IGε(Fi) instead respects the boundaries of the communities, but in
fact does not help us in matching the entities across both communities, since
IGε(Fi) only tells us which features can be used to distinguish between all entities
within one community. The same feature might very well be completely useless
in discriminating entities in the other community.

Fig. 4. Two different communities with matching authors. (Color figure online)
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Gain. In contrast to the previous methods, gain is directly defined in terms
of the optimal matching and values each feature class in their importance for
achieving this matching. In the rest of the paper, we will not only show the
validity of our approach by correlating the countermeasures’ gain to classifier-
dependent performance measures, but we will also demonstrate the usefulness
of our methodology in a detailed analysis of several countermeasures.

7.2 Experimental SetUp

This section provides an overview over our experimental setup. In particular,
we provide a detailed explanation of our dataset, the stylometric features we
consider and the countermeasures we evaluate, including a description of each
countermeasures’ implementation.

Dataset. For our experimental evaluation, we leverage the Extended-Brennan-
Greenstadt corpus [10,11], which provides a decent collection of writing samples
from 45 different authors. The corpus contains writing samples of at least 6500
words for each author, which are split into approximately 500-word passages.
Each writing sample is from a formal source, e.g., school essays, reports or other
types of professional or academic correspondence, which was manually validated
by the creators of the corpus.

We do not use the (1) obfuscation and (2) imitiation part of the corpus, in
which the authors were requested to write passages on a specific topic while
(1) trying to hide their writing style and (2) trying to imitate the writing style
of another author, namely Cormac McCarthy. The methodology we develop is
intended for evaluating the effect of countermeasures changing a given text, while
both the obfuscation and imitation part of the corpus are already obfuscated
texts that do not correspond to the original writing samples.

In order to evaluate authorship attribution between different communities,
we artifically distribute all text passages of an author into three distinct com-
munities. This way, our dataset consists of 3 communities, each containing 233
text passages of 45 authors (between 4 to 8 text passages per author in one
community).

Feature Set. For our evaluation, we take the Writeprints extended feature
set [3] as a basis that we further extend with additional features. However, we
remove word trigrams to make our evaluation computationally more tractable.
In total, we include 33 different stylometric features into our model, some of
which we adjust to fit the structure of our dataset.

In correspondence with the model presented in Sect. 7.1, a feature class, such
as, e.g., letter bigrams, corresponds to an attribute type, whereas each instance
of a feature, e.g., the actual letter bigram “aa”, corresponds to an attribute
within this attribute type. During the evaluation, we store the frequency of
each attribute and construct the statistical model from this observation. The
quantity of a feature class describes the maximum number of features in that
feature class, which we observed in our unmodified dataset. As mentioned in
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Table 2. List of features.
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Sect. 7.1, we also evaluate the use of term frequency inverse document frequency
instead of frequency to instantiate our statistical models in Sect. 8.

A full list of the feature classes and their quantities can be found in Table 2.
We will use the identifiers F1 to F33 for each feature class introduced in this
table throughout the rest of the paper. The table’s last five columns will be
formally introduced throughout the next sections.

In general, we group our features into three different categories depending
on the actual implementation:

1. Character-based feature classes, for which we represent an author’s text-
passage as a list of characters and compute the corresponding attribute
frequencies on that list.

2. POS-tagger-based feature classes rely on the output of the Stanford POS
tagger [55,56] used with a twitter model [20] in order to use enhanced infor-
mation about the current sentence and word in a text passage (e.g., a word’s
POS tag).

3. Word-based feature classes leverage a Java break iterator to efficiently iterate
over the words of an authors text passages.

Additional resources from which we construct feature classes include a syllable
counter that first tries to determine a word’s syllable count from the dictionary
CMUDict [18] by counting the number of vowels in the pronunciation. In case of
failure, it determines an approximate syllable count based on an algorithm written
by Greg Fast [26], counting the number of vowel groups in the word and adjust-
ing the number for certain special cases. Moreover, we use a list of 512 function
words as well as a list of common misspellings taken from Wikipedia [58] and the
Anonymouth framework [42] to construct feature classes (e.g., F28 and F29).

Countermeasures. In this section, we discuss the countermeasures whose
impact we aim to evaluate. We detail their implementation and also argue why
these countermeasures preserve the semantics of the text. Finally, we present a
list of features affected by each countermeasure.

Generally, we distinguish between two types of countermeasures: simple coun-
termeasures and optimizing countermeasures. Simple countermeasures apply the
first possible action to a given text, independent of its context, whereas optimiz-
ing countermeasures rank each available action and apply the most promising
one. We first introduce all countermeasures in general before we discuss their
optimizing variants in Sect. 7.2.

In total, our experiments incorporate four different countermeasures, which
we will not only apply individually, but also in meaningful combinations. For
referencing purposes, we name our countermeasures and present the affected
features per countermeasure in Table 2 (some of which can be affected indirectly
by, e.g., causing the POS tagger to fail).

Spell Checking ( spell). Since we are interested in assessing the impact of
a standard text rewriting tool on the anonymity of text authors, we start with
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the arguably most common such tool: a spell checker. Spell checkers constitute
a simple, but widely used example for tools that modify a text.

Our implementation of this countermeasure employs the open source Java
spell checker LanguageTool [32] that is even able to detect grammar problems.
Each text-passage that gets fed into this countermeasure will be corrected by
the spell checker, always choosing the first suggestion. Due to the usual field
of application of spell checkers, we consider this countermeasure to be mostly
semantics-retaining.

Synonym Substitution ( syn). Our technically most sophisticated counter-
measure replaces words by synonyms. Considering the highly flexible and chang-
ing nature of language, this task introduces several challenges:

1. Most often in natural language, words do not occur in its root form but rather
in an inflected grammatical form. Thus, it is essential to get the canonical
root form of a word.

2. Given such a root form, we have to maintain a dictionary of synonyms for
each word. The dictionary should contain synonyms for at least nouns, verbs
and adjectives – possibly also adverbs.

3. We need to be able to examine the inflection of the original word in order to
replace it by a synonym in exactly the same grammatical form.

4. Finally, if we know the desired form, we have to inflect the synonym.

Fortunately, 1. and 2. can both be handled by leveraging WordNet [27,44], which
is a large lexical database providing so called synsets for nouns, verbs, adjectives
and adverbs. It can also be queried using non-root forms, which renders the first
challenge irrelevant.

Since English as a language is only weakly inflected, a few hints for 3. suffice
to generate the correct inflection of the synonym. More concretely, the output
of the Stanford POS Tagger [55,56] used with a twitter model [20] is enough to
infer the lexical category as well as attributes like tense, plural and person that
allow us to determine the correct grammatical form.

Finally, we use simplenlg, a natural language generation API for Java, to
realize the correct form of our synonym.

Repeating this for all potential synonyms, we select the optimal replacement
according to our optimization strategy. Consequently, this countermeasure is
optimizing. Also, substituting words by synonyms should preserve the initial
semantics of a text.

Adding/Removing Misspellings ( mis). Another optimizing countermea-
sure that we implement makes use of misspellings, e.g., for cases where the
misspelled word is more common than its correct form. Thus, this countermea-
sure first looks up the correct or misspelled variants of a word from a dictionary
and then evaluates which form to use.

To accomplish this task, we adapt a list of common misspellings from Wikipe-
dia [58] and generate a dictionary, providing a set of possibly misspelled and
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corrected substitutions for every word in the list. Although a misspelled word
can potentially create confusion, this kind of substitutions should not drasti-
cally change the semantics of a text, because the correct word is nearly always
recognizable from the context.

Special Characters Modification ( spch). Our last countermeasure seeks
for the replacement of potentially identifying special characters. Since special
characters (excluding punctuation) generally occur only infrequently in natural
language, their usage is more likely to be unique and, consequently, can lead
to an easy author identification. In order to counter this problem, we created a
list of the most common special characters in our dataset and mapped them to
their textual meanings. One example for such a mapping is c© ↔ copyright ↔
(C), where each of the three alternatives could be substituted by another if the
optimization yields a higher result.

Obviously, if the special characters are used with their usual meaning, this
countermeasure preserves the semantics of a text.

Combinations. Instead of only evaluating the presented countermeasures indi-
vidually, we also examine the impact of multiple countermeasures applied in a
sequential manner. However, we exclude any combination that involves both
spell and mis as the two countermeasures are very similar to each other and
potentially could cancel each other out. To further narrow down the number
of possible combinations, we also only apply countermeasures in a meaningful
order. For example, it makes sense to apply spell checking first, because it is not
optimizing and thus could influence the result of previous countermeasures in a
negative way. Synonym substitution should also precede the addition/removal of
misspellings, since our synonym substitution will not be capable of substituting
misspelled words. Only spch is essentially independent of the other counter-
measures and therefore could be placed at any point in the ordering.

In conclusion, we end up with seven different combinations of our
countermeasures: spell syn, spell spch, syn mis, syn spch, mis spch,
spell syn spch and syn mis spch.

Optimizing Countermeasures. For optimizing countermeasures, we try to
make the affected entity more similar to a pre-chosen target entity. We consider
two different methods for choosing a suitable target, and introduce them in the
following.

Optimizing to the Average: The first method simply chooses the average entity
of the community as the target, thus trying to align the current entity’s feature
distribution with the community’s overall feature distribution (cf. Definition 26).

Optimizing using Anonymous Subsets. The second method makes use of the
(k, d)-anonymous subsets to find a (possibly) more suitable target entity: intu-
itively, this method tries to find an (actually existing) entity close by that has
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Fig. 5. Optimizing countermeasure using anonymous subsets. (Color figure online)

many other entities within its near environment. Figure 5 illustrates the follow-
ing, more formal definition of this method: First, we compute the entity ε’s
(k, d)-anonymous subset Aε for a given k, such that d is minimal (indicated by
the purple, dashed circle). Then, we compute the (k, d′)-anonymous subset for
every ε′ ∈ Aε for the same k and choose that entity ε′ as the target, which has
the smallest d. In our illustration, ε2’s anonymous subset (the red, dotted circle)
has the smallest convergence and, thus, would be chosen as the countermeasure’s
target for ε.

Given a target ε′, consider a optimizing countermeasure C that could replace
the current word house by its synonym domicile. Then, C would first estimate
the similarity to the target for both actions – keeping house and replacing it
by domicile – and choose that action that provides the highest similarity (no
matter if ε′ is the average entity or an actually existing entity like ε2).

7.3 Methodology

On a higher level, our evaluation consists of four parts, which are depicted in
Fig. 6:

(1) A-Priori Weight Determination: Both, authorship attribution as well as
assessing the effectiveness of our countermeasures, require training a classifier to
obtain the weights λ and the intercept ρ to determine the similarity of entities
(cf. Definition 25). Thus, we first determine optimal weights λF1, . . . , λF33 for
our dataset by extracting the features from each text passage and computing
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Fig. 6. This flowchart represents our actual set-up and methodology.

the similarity per feature. Ideally, we then compare the weights returned by
multiple different optimization techniques to obtain the best performing set of
weights. In the context of this paper, however, we simply consider the weights
produced by training a linear support vector machine (SVM) using 10-fold cross
validation, as exemplified in [3], with the features F1 to F33, since this approach
has proven to be well-performing for the task of author-attribution.

(2) Preparation Phase: We assume that from the set of all authors, only one
actually deploys countermeasures at any given time: this simulates the scenario
where the community, together with all related text passages, already exists,
and a chosen test author wants to privately publish a new text passage into this
community. To capture this scenario, we select a set of test authors for which we
evaluate the application of countermeasures before the text passage is published.

For our optimizing countermeasures, we pre-compute the (k, d)-anonymous
subsets for the target selection performed by these countermeasures. A detailed
description of this part is presented in Sect. 7.3.

(3) Application of Countermeasures and A-Posteriori Weight Determination: In
this part, we generate the test authors’ text-passages after the application of the
countermeasures introduced in Sect. 7.2. We then calculate the new feature dis-
tributions and the resulting similarities for every countermeasure application to
derive the a-posteriori weights λ′ as well as the intercept ρ′. A detailed descrip-
tion of this part is presented in Sect. 7.3.

(4) Results: This last part finally computes the gain for each countermeasure
given the a-priori and a-posteriori weights and will be discussed in Sect. 8.
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Figure 6 depicts the overall methodology behind our experiments to the point
of each single computation step. While the gray boxes represent the structure
given above, we also numbered each step for reference purposes.

A-Priori Weight Determination

Step (1a,b). The goal of the first part is to determine the weights λF1, . . . , λF33

as well as the intercept ρ as required in Definitions 25 and 28. To this end, we first
determine the feature frequencies (1a) and compute the resulting similarities per
feature (1b).

The similarities are not only computed between entities across communities,
but also between entities within the same community. While only the first kind
of similarities is needed for the training (resulting in 12,150 pairs of entities)
and the authorship attribution, the second kind of similarities is needed for the
determination of (k, d)-anonymous subsets within the communities.

Step (1c). Next, we apply regression or classification algorithms to determine
the weights λF1, . . . , λF33 and the intercept ρ in such a way that matching enti-
ties, i.e. entities that belong to the same author, receive a high similarity score,
whereas non-matching entities receive a low one.

Conceptually, we could apply various methods, such as simple linear regres-
sion, regularized linear regression etc., compare their output and choose the best
performing weights. Due to space restrictions, however, we directly choose the
classification via linear support vector machines (SVMs) using 10-fold cross val-
idation, since SVMs have already shown promising results in previous work on
authorship attribution [3,10]. The resulting weights for each feature are depicted
in the fifth column of Table 2 and are directly obtained from the decision function
D(x) = λ · x + ρ of linear SVMs.

Step (1d): In this final a-priori steps we then take the output of the classifier
above and determine the importance (cf. Definition 28) of each feature class
in discriminating the different authors’ writing styles. We will later compare
this a-prior importance value of each feature with their importance determined
after applying a countermeasure to determine the countermeasure’s gain (cf.
Definition 29).

Preparation Phase. The purpose of the preparation phase is to generate a list
of test authors and to prepare further data necessary for the countermeasures
to be applied.

Step (2a). The set of test authors is randomly chosen from the whole range of
available authors in our dataset. We choose a representative set of least 20 % of
the available authors as test authors, which resulted in 10 authors for our test
set.

Step (2b). For applying optimizing countermeasures using the (k, d)-
anonymous subset technique, we also have to compute the anonymous subsets
within each community. For this task, we fixed k = 5, which corresponds to
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Table 3. Total gains and matching accuracy at top k.

Countermeasure Gain Top 1 Top 5 Top 10 Top 15 Top 20

Before countermeasures - 0.9821 0.98613 0.96025 0.93395 0.9065

spell syn 0.00948 0.98062 0.98062 0.95556 0.92893 0.90189

spell syn spch 0.00934 0.98053 0.98029 0.95498 0.92844 0.90156

syn 0.00879 0.98053 0.98119 0.9558 0.92951 0.90247

syn spch 0.00876 0.98045 0.98095 0.95572 0.92901 0.90214

syn mis 0.00363 0.98053 0.98078 0.95564 0.92885 0.9023

syn mis spch 0.00357 0.98045 0.98053 0.95539 0.92847 0.90206

spell spch 0.00069 0.982181 0.98638 0.960576 0.93403 0.90658

spell 0.00062 0.98193 0.98564 0.95967 0.93337 0.90593

spch −0.00042 0.98235 0.98695 0.96107 0.93453 0.90716

mis −0.0018 0.98202 0.98613 0.96058 0.93362 0.90593

mis spch −0.00227 0.98226 0.9863 0.96132 0.93428 0.90658

approximately 10 % of the entities in a community in our dataset. This way, the
(5, d)-anonymous subset tells us how similar the closest 10 % of the community
is at least.

Application of Countermeasures and A-Posteriori Weight Determi-
nation. This section deals with the actual application of the countermeasures
on our dataset (3a) and the a-posteriori weight and importance determination
(3b–3d).

Step (3a). We apply each countermeasure C separately to the original text-
passages mi of our test authors, yielding modified text-passages C(mi) for every
countermeasure. Afterwards, we yield further modified messages by following
the countermeasure combinations presented in Sect. 7.2, each modified message
recorded separately.

Step (3b,c). The next step on the way towards the countermeasures’ gains
is the computation of the new feature distributions and, thereafter, the corre-
sponding similarities. This time, we only need to compute the similarities across
communities, resulting in a total of 12,150 pairs of entities together with their
corresponding similarity, forming the base for the following a-posteriori weight
determination.

Step (3d). For the a-posteriori weight determination, we follow the same app-
roach as in step (1c): For every application of countermeasures, we compute the
optimal weights λ and the intercept ρ, and therefrom derive the corresponding
importance for each feature class.



From Zoos to Safaris 127

8 Evaluation of Countermeasures

Before reviewing the actual results of our countermeasures, we first examine the
use of the term frequency inverse document frequency (tf-idf) for our statistical
models and analyze the impact of the optimization strategy of our countermea-
sures.
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Fig. 7. Gain regarding different feature classes plotted for each countermeasure.

TF-IDF. At least regarding our dataset, the use of the tf-idf for our statistical
models does not substantially improve the matching accuracy. When considering
only that entity with the highest similarity to a given target entity as matching,
the number of true positives increases only by 1 when using tf-idf. When consid-
ering the top 15 as matching, the accuracy with the usage of tf-idf is even worse
than without. In total, as the use of tf-idf would only increase the complexity
of our methodology without providing substantial benefit, we decided to rely
on the features’ frequencies only and did not consider tf-idf any further in our
evaluation.

Optimizing Countermeasures. When comparing both optimization strate-
gies for our countermeasures, optimization to the average and optimization using
anonymous subsets, the second one provided the better results for our evalua-
tion. In some cases the optimization to the average results in larger changes
to the accuracy (with a maximum change of 0.00634 for syn mis in the top
20 accuracy), because the artificial target might be very dissimilar to the entity
applying the countermeasure and, thus, more likely results in substantial changes
to the features.
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However, it frequently happens that the averaged entity of a community is
not the best target for our countermeasures: Consider a community with only
three entities, two of which are far away from each other. Then placing the third
entity in the middle of the others yields a higher identifiability compared to
placing it beneath one of the others. In the latter case, two entities are nearly
indistinguishable, while in the first case all entities are clearly distinguishable. We
therefore focus on the optimization using anonymous subsets in our discussion.

8.1 Observations

We now present the results obtained by following the methodology presented in
the last section. In Figs. 7 and 8 we illustrate the gain for some of the feature
classes individually (cf. Definition 29). A global comparison of all countermea-
sures and their gains with respect to each feature can be found in Fig. 9 in the
Apppendix.

Some of the observed gains are negative: in these cases, the countermeasure
caused an increase in the importance of the corresponding feature class. For
example, applying countermeasure mis (Misspellings) results in a significant
increase of feature F30’s (word unigrams) weight, i.e., making it more significant
in the authorship recognition task.

The overall gain scored by each countermeasure is illustrated in Table 3: the
gains are given in absolute values, summing all feature specific gains. Moreover,
we show also the matching accuracy when considering the top k entities regard-
ing their similarity to our target entity as matching. Note that we trained our
classifier on the whole data set using 10-fold cross validation. We therefore get a
very high accuracy rating, and the countermeasures have a rather low absolute
gain overall. We only use the presented values for a relative comparison of the
gains achieved by each countermeasure. A practical, absolute assessment would
require us to make additional assumptions on how an adversary trains his clas-
sifier, and the presented results can be seen as a worst-case estimation at best.

Interestingly, most of our countermeasures have a positive total gain, with
the only exceptions being mis, spch and mis spch. While mis seems to gen-
erally replace almost all words by their misspelling and thereby facilitates the
matching of those entities, spch performs better, but nevertheless is not optimal
in its decisions. In contrast, the best countermeasures are those involving syn
and spell: Although spell alone does not seem powerful enough to change a
lot (also due to the small amount of spelling mistakes in our dataset), its combi-
nation with syn seems to help the synonym replacement, which is able to shift
the weights into the desired direction.

We can also see that, in almost all cases, a higher total gain also implies a
decreased matching accuracy. Figure 8f depicts this relation exemplary for the
top 1 accuracy.
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Furthermore, Fig. 9 in the appendix clearly shows that only those weights
change for which we expect a modification by our countermeasures (if the weights
do not change, the gain is 0 according to our definition). A more detailed and in
depth explanation for some of the feature classes will be presented in the next
subsection.

8.2 Discussion

We now discuss the results observed in the last section and provide in depth
explanations for the gains achieved for the most interesting feature classes.
Notice, however, that we use different scales on the y-axes in the Figs. 7 and 8
for better readability. For a more comprehensive comparison of each counter-
measure’s gain per feature class please refer to Fig. 9.

Letter Unigrams, Bigrams and Trigrams. While all of our countermeasures
have a very small positive gain for letter unigrams (F1), this is certainly not true
for letter bigrams (F2) and trigrams (F3), which both have negative gains for
most countermeasures and especially those involving syn. To further investigate
this, we start by looking at the letter bigrams (F2) for the syn countermeasure
and trace back the reason for the negative gain:

Letter Bigrams. One frequent action by our synonym replacer is to replace
adjectives by participles (e.g., afraid → frightened), which results in an increased

Fig. 8. Gain regarding different feature classes plotted for each countermeasure and
comparison of total gain.
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use of the bigram ed for our test authors. In fact, the frequency of ed increased
by approximately 100 usages for every test author.

Another frequent action by the synonym replacer is caused by the natural
language generation tool having problems with some adjectives and adverbs:
often, it replaces most by mostest and thereby increases the use of es in a
similar magnitude as of ed.

Letter Trigrams. Next, we also explore syn’s changes with respect to letter
trigrams (F3). Here, the most interesting change is the increased frequency of
ive, which is caused by frequent replacements of have with give and forms of to
be with live.

Letter Unigrams. In general, all of the aforementioned changes in fact facili-
tate the matching of our test authors and thus provide a negative gain. However,
although the changes also affect the letter unigrams, we can observe a small pos-
itive gain for this feature class. While we especially notice an increased usage of
e, this letter is frequent in our dataset anyway (and in English in general) and
thus does not contribute to a facilitated matching as much as the combinations
in letter bigrams and trigrams.

Punctuation and Special Characters. Since the gains are very different
among all four feature classes (F7-F10), we directly discuss their results individ-
ually. However, it is important to note that the gain of both special character
feature classes is nearly zero when compared with others in Fig. 9.

Unicode Punctuation. The unicode punctuation feature class (F7) reveals an
interesting phenomenon: while the mis countermeasure provides almost no gain
and the syn countermeasure provides a positive gain, the combination of both
countermeasures further increases the positive gain.

A careful examination shows that the mis countermeasure only changes this
feature very little by introducing misspelled variants with ’ in it, e.g., countries
→ countrie’s. The syn countermeasure primarily replaces words like double
with compound words as two-fold, changing the feature distribution more sub-
stantially. In combination, the application of the mis countermeasure after syn
yields much more added ’ than without the combination and, thus, is able to
further improve the gain.

Writeprints Punctuation. Regarding the writeprints punctuation feature
class (F8), all of our countermeasures provide either a gain close to 0 or a neg-
ative gain. While the gain close to 0 can be observed for those feature classes,
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which have no real impact on the punctuation, the negative gain clearly is caused
by the syn feature class as it is present in all those countermeasures.

The reason for the negative impact of the syn countermeasure is that it
introduces new punctuation for our test authors when replacing a(n) by one’s.
Since our dataset contains more formal writing, this punctuation character has
not been used very frequently (159 times for our test authors) before the coun-
termeasure’s application, such that the increased usage (341 times for our test
authors) helps in identifying them.

Unicode Special Characters. Interestingly, the gain of our dedicated spch
countermeasure is negative regarding the Unicode special characters (F9), while
other countermeasures can achieve a positive gain here. When inspecting the
reason for that, however, it becomes clear that for example the syn counter-
measure does not change the unicode special characters at all and the very small
gain is only caused by the SVM. This shows that it is very hard to reason about
gains close to 0 and it is better to focus on the substantial gains.

Nevertheless, it is worth noting that our spch countermeasure succeeds in
removing special characters from the test author’s writing, but thereby facilitates
the identification of other authors.

Writeprints Special Characters. Finally, we also take a look at the
Writeprints special characters (F10), for which the gains have approximately
the same small magnitude compared to the Unicode Special Characters. Again,
we can observe the phenomenon that very small gains can be caused by the SVM
without changes in the actual features in case of the mis countermeasure.

The most notable, but nevertheless small change in the actual features is
due to the syn countermeasure, which increases the frequency of - because of
compound words like two-fold (cf. Unicode Punctuation).

Hapax Legomena. Hapax Legomena (F27) are of difficult nature, as the same
action can increase or decrease their frequency only depending on the surround-
ing text. Fortunately, both mis and syn countermeasures achieve a positive
gain for this feature class.

Our mis countermeasure mainly creates new hapax legomena by replacing
all occurrences except for one by a misspelled variant, e.g., for words like from
(→ fomr), who often appear as hapax legomena in other text passages. Unfor-
tunately, it cannot eliminate hapax legomena, because replacing such a word by
a misspelled variant only yields a new, uniquely appearing word.

The syn countermeasure often eliminates hapax legomena by replacing those
with compound words whose components are more frequent within the text, e.g.,
are → make up.
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This way, both optimizing countermeasures are able to harden the matching
in our dataset, at least concerning the hapax legomena.

Misspelled Words. Since we have a dedicated countermeasure for misspelled
words (F28), we also explore the very small, but negative gain caused by our
mis countermeasure.

Clearly, misspelled words were nearly unimportant for the matching before
the countermeasures’ applications (there were only 853 words identified as mis-
spelled in the whole dataset). However, after the application of the mis coun-
termeasure, 13,212 misspellings can be found in the dataset, naturally resulting
in a larger importance during the matching.

Word Unigrams and Bigrams. The last two features, which we will examine
in more detail, are word unigrams (F30) and word bigrams (F31). Especially
word unigrams appear to be the most important feature class in our dataset, so
that we will conclude its analysis with possible reasons for the countermeasures
total gains.

Word Unigrams. When examining the gains of our countermeasures regarding
word unigrams (F30), it becomes visible that syn and mis have the most impact
on our test authors. While syn provides a positive gain, mainly by blending
into the vocabulary and word frequencies of other authors, mis provides only a
negative gain, because it introduces a lot of misspelled words, thereby facilitating
the matching. Moreover, as already mentioned for the hapax legomena, the mis
countermeasure often replaces all occurrences except for one by a misspelling,
which on the one hand influences the hapax legomena in a positive way, but on
the other hand has a negative impact on the word unigrams.

Word Bigrams. Similar to word unigrams, here, the syn countermeasure also
is able to adapt word bigram (F31) frequencies of our test authors to those that
are present in our dataset anyway. Interestingly, the mis countermeasure pro-
duces a positive gain for word bigrams, although the gain for word unigrams
was negative. While, in contrast to the other feature classes, we did not find
a compelling reason for that during our examination, we believe that this hap-
pens because of the strong correlation between word unigrams and bigrams: As
the importance of word unigrams increases, the importance of word bigrams
decreases.

9 Conclusion and Future Work

We presented a user-centric privacy framework for reasoning about privacy in
open web settings. In our formalization, we address the essential challenges of
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privacy in open settings: we defined a comprehensive data model that can
deal with the unstructured dissemination of heterogeneous information, and we
derived the sensitivity of information from user-specified and context-sensitive
privacy requirements. We showed that, in this formalization of privacy in open
settings, hard security guarantees in the sense of Differential Privacy are impos-
sible to achieve. We then instantiated the general framework to reason about the
identity disclosure problem. The technical core of our identity disclosure model is
the new notion of (k, d)-anonymity that assesses the anonymity of entities based
on their similarity to other entities within the same community. We applied this
instantiation to a dataset of 15 million user-generated text entries collected from
the Online Social Network Reddit and showed that our framework is suited for
the assessment of linkablity threats in Online Social Networks.

In a second step, we extended the linkability model we derived from general
privacy framework, and provided the foundations for comprehensively assess-
ing the effectiveness of countermeasures against authorship recognition. Central
to this formalization is the notion of gain with which we quantify how well a
countermeasure achieves reduces the significance of identifying writing style fea-
tures. We evaluate this formalization on the Extended-Brennan-Greenstadt cor-
pus [10,11]. In our evaluation we follow a comprehensive experimental method-
ology we also introduce in this work, structuring the evaluation process and
allowing for an easy extension. We then evaluate four different countermeasures,
one simple and three optimizing, and their combinations and discuss the reduc-
tion regarding feature importance they achieved.

As far as future work is concerned, many directions are highly promising.
First, our general framework only provides a static view on privacy in open
settings. Information dissemination on the Internet, however, is, in particular,
characterized by its highly dynamic nature. Extending the model presented in
this paper with a suitable transition system to capture user actions might lead
to powerful system for monitoring privacy risks in dynamically changing, open
settings. Second, information presented in Online Social Networks is often highly
time-sensitive, e.g., shared information is often only valid for a certain period of
time, and personal facts can change over time. Explicitly including timing infor-
mation in our entity model will hence further increase the accuracy of the entity
models derived from empirical evidence. Finally, our privacy model is well-suited
for the evaluation of protection mechanisms for very specific privacy require-
ments, and new such mechanisms with provable guarantees against restricted
adversaries can be developed. On the long run, we pursue the vision of provid-
ing the formal foundations for comprehensive, trustworthy privacy assessments
and, ultimately, for developing user-friendly privacy assessment tools.
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A Countermeasure Gain
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