
Alessandro Aldini
Javier Lopez
Fabio Martinelli (Eds.)

Tu
to

ria
l

LN
CS

 9
80

8

FOSAD 2014/2015/2016 Tutorial Lectures

Foundations
of Security Analysis
and Design VIII

 123

Lecture Notes in Computer Science 9808

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Alessandro Aldini • Javier Lopez
Fabio Martinelli (Eds.)

Foundations
of Security Analysis
and Design VIII
FOSAD 2014/2015/2016 Tutorial Lectures

123

Editors
Alessandro Aldini
University of Urbino
Urbino
Italy

Javier Lopez
University of Malaga
Malaga
Spain

Fabio Martinelli
National Research Council C.N.R.
Pisa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-43004-1 ISBN 978-3-319-43005-8 (eBook)
DOI 10.1007/978-3-319-43005-8

Library of Congress Control Number: 2016945140

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The International Summer School on Foundations of Security Analysis and Design
(FOSAD) has promoted the publication of books in the LNCS series that collect a
selection of tutorials presented at FOSAD. We are very proud to present the eighth
volume in this series, which includes contributions from three editions of FOSAD from
2014 to 2016. The history of FOSAD goes back to 2000, when it was established as a
high education cradle for young researchers in the field of security for computer
systems and networks. The overall number of participants since the first edition is now
more than 750, and many of them have become well-known and appreciated
researchers and FOSAD lecturers. Analogously, thanks to the quality and high standard
of the lectures, the FOSAD book series represents a clear and comprehensive reference
for graduate students and young researchers from academia and industry.

The first two contributions accompany presentations given at FOSAD 2014. The
former is presented by Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, and Jens
Groth from University College London. In the setting of proof systems for crypto-
graphic protocols verification, the authors provide an overview of techniques behind
the construction of zero-knowledge proofs. The latter is a work by Steven Van Acker
and Andrei Sabelfeld from Chalmers University of Technology, who discuss the
security of Web applications executing JavaScript code and the sandboxing systems
used to restrict and control JavaScript functionalities. A contribution from FOSAD
2015 is authored by Michael Backes, Pascal Berrang, and Praveen Manoharan from
Saarland University. They developed a user-centric privacy framework for quantita-
tively assessing the exposure of personal information in open environments. The
proposed methodology is instantiated in the setting of identity disclosure and validated
in a large-scale real-world case study. The last contribution, selected from FOSAD
2016, is by Ankur Taly and Asim Shankar, researchers at Google Inc. They define a
fully decentralized authorization model for large and open distributed systems. Such a
model is deployed as part of an open-source application framework called Vanadium.

We are grateful to the organizations and institutions that have supported FOSAD in
the last few years, among which we would like to mention the IFIP Working Groups
1.7 on Theoretical Foundations of Security Analysis and Design and 11.14 on Secure
Engineering. We also thank the EU FP7 project Confidential and Compliant Clouds
(CoCoCloud), the EU H2020 project European Network for Cyber Security (NeCS),
and the EPSRC CryptoForma network. We finally wish to thank the staff of the
University Residential Centre of Bertinoro for the organizational and administrative
support.

June 2016 Alessandro Aldini
Javier Lopez

Fabio Martinelli

Contents

Efficient Zero-Knowledge Proof Systems . 1
Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, and Jens Groth

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 32
Steven Van Acker and Andrei Sabelfeld

From Zoos to Safaris—From Closed-World Enforcement to Open-World
Assessment of Privacy . 87

Michael Backes, Pascal Berrang, and Praveen Manoharan

Distributed Authorization in Vanadium . 139
Ankur Taly and Asim Shankar

Author Index . 163

http://dx.doi.org/10.1007/978-3-319-43005-8_1
http://dx.doi.org/10.1007/978-3-319-43005-8_2
http://dx.doi.org/10.1007/978-3-319-43005-8_3
http://dx.doi.org/10.1007/978-3-319-43005-8_3
http://dx.doi.org/10.1007/978-3-319-43005-8_4

Efficient Zero-Knowledge Proof Systems

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, and Jens Groth(B)

University College London, London, UK

j.groth@ucl.ac.uk

Abstract. A proof system can be used by a prover to demonstrate to
one or more verifiers that a statement is true. Proof systems can be
interactive where the prover and verifier exchange many messages, or
non-interactive where the prover sends a single convincing proof to the
verifier. Proof systems are widely used in cryptographic protocols to
verify that a party is following a protocol correctly and is not cheating.

A particular type of proof systems are zero-knowledge proof systems,
where the prover convinces the verifier that the statement is true but
does not leak any other information. Zero-knowledge proofs are useful
when the prover has private data that should not be leaked but needs to
demonstrate a certain fact about this data. The prover may for instance
want to show it is following a protocol correctly but not want to reveal
its own input.

In these lecture notes we give an overview of some central techniques
behind the construction of efficient zero-knowledge proofs.

1 Introduction

Imagine a company is trying to assess a candidate for a highly specialized posi-
tion. A simple solution would be for them to present her with a task of their
choice and rate her performance. The candidate declines, as the assessment might
have her doing useful work without compensation. She proposes the choice of
the task is left to her, to ensure the company does not unfairly profit from this
process. The company is not convinced; the task may be too easy, or selected to
hide the candidate’s weaknesses.

For the assessment to go forward we need a special set of tasks: on the one
hand they must be hard enough such that only qualified candidates are able to
accomplish them, on the other hand they should not give away anything else
since candidates do not want to function as unpaid workers. In job interviews
this often takes the form of logic puzzles.

In cryptographic protocols, we do not have jobs and candidates; but we often
have situations where we want to demonstrate some property holds or a state-
ment is true without giving away any other information. Here zero-knowledge
proofs are appropriate tools.

Zero-knowledge proof systems, introduced by Goldwasser et al. [GMR85],
take place between two parties called prover and verifier. The prover wants to
convince the verifier a certain statement is true, but without the verifier gaining
c© Springer International Publishing Switzerland 2016
A. Aldini et al. (Eds.): FOSAD VIII, LNCS 9808, pp. 1–31, 2016.
DOI: 10.1007/978-3-319-43005-8 1

2 J. Bootle et al.

any other knowledge during the exchange (e.g. why the statement is true). Thus,
there are three core requirements in zero-knowledge proofs:

Completeness. For true statements, a prover can convince the verifier.
Soundness. For false statements, a prover cannot convince the verifier (even

if the prover cheats and deviates from the protocol).
Zero-Knowledge. The verifier will not learn anything from the interaction

apart from the fact that the statement is true.

The statements we will be concerned with here are of the form u ∈ LR, where
LR is an NP-language defined by a polynomial time decidable binary relation
R. For (u,w) ∈ R, we say u is the statement and w is a witness for u ∈ LR.
The prover knows the witness w, and wants to convince the verifier that u ∈ LR

without revealing anything else. In particular, the prover does not want to reveal
the witness w.

1.1 Motivation

Here we will describe a few applications of zero-knowledge protocols. We do not
aim to be exhaustive, but rather to provide some context in terms of applications.

e-Voting. Let’s consider a simple voting setting: individual voters cast their votes
and the electoral authorities produce the tally. To keep their votes private, the
voters encrypt their votes. There are encryption schemes with a homomorphic
property that allows the addition of the votes in encrypted form. If ballots consist
of encrypted 0 s and 1 s (signifying “no” and “yes”), then the authorities can use
the homomorphic property to produce an encrypted sum of all the votes. The
authorities can then decrypt the ciphertext with the sum of the votes to get the
election result, the number of “yes” votes, without the need to decrypt any of
the individual ballots.

Unfortunately, this solution is too simple. What is to stop a voter from cheat-
ing by encrypting a 2 instead of the prescribed 0 or 1? In effect, the voter would
be voting twice. We want to prevent voters from deviating from the voting pro-
tocol, but at the same time we want their votes to remain private. So, we want
to verify that their ballots are valid, i.e., encrypt 0 or 1, but at the same time
the voters do not want to reveal which vote they are casting, i.e., whether the
plaintext is a 0 or a 1. This can be accomplished by using zero-knowledge proofs
between the voters and the electoral authorities. Each voter acts as a prover that
demonstrates her encrypted vote is valid. Completeness means that the ballots of
honest voters are accepted. Soundness ensures that invalid ballots are rejected.
And zero-knowledge keeps the votes secret.

Mix-Nets. Mix-nets [Cha88] are a tool for anonymous messaging given a broad-
cast channel. Instead of directly addressing messages to their recipients, a sender
might opt to use a Mix server as an intermediary. The sender encrypts the mes-
sage and recipient with the server’s public key and addresses the message to the

Efficient Zero-Knowledge Proof Systems 3

server. Once the server has collected a number of messages, it decrypts all of
them and broadcasts the plaintexts in a randomized order. We can expand on
this construction by using multiple servers in sequence and threshold decryp-
tion: each server removes part of the encryption and randomly reorders the list
of ciphertexts. The advantage of this construction is that no single server can
determine which input corresponds to which output.

However, this procedure gives dishonest servers too much freedom. In partic-
ular, they might opt to drop messages and replace them with their own. Worse,
even if the replacement is noticed, it will be hard to attribute it to a single
server. Again zero-knowledge proofs come to the rescue. A solution is to ask
each server to prove it acted honestly; that is to demonstrate that there exists a
reordering such that the server’s outputs is a partial decryption (consistent with
the server’s private key) of the server’s inputs. Obviously, this proof should not
reveal the concrete reordering or the server’s private key, which is why it should
be zero-knowledge.

Playing Nicely. In general, we can use zero-knowledge protocols to ensure that
parties are following the prescribed protocol for any particular operation. This
is a powerful tool since it prevents active attacks where somebody tries to cheat
by deviating from the protocol.

1.2 Example: A Zero-Knowledge Proof for Graph Isomorphism

In this section we will use a simple zero-knowledge proof for graph isomor-
phism [GMW91] as an example to illustrate a common protocol flow. We can
think of an undirected graph as a set of vertices V and a set of edges E between
the vertices. Two graphs G0 = (V,E0) and G1 = (V,E1) are isomorphic if there
is a permutation of the vertices and edges mapping one graph to the other, see
Fig. 1 for an example. More precisely, we say a permutation f : V → V is an
isomorphism from G0 to G1 if for all pairs of vertices (u, v) ∈ E1 if and only
if (f(u), f(v)) ∈ E2. Graph isomorphisms are transitive, if we have two graph
isomorphisms f : G0 → G1 and g : G1 → G2 then g ◦ f : G0 → G2 is a graph
isomorphism between G0 and G2.

Given graphs G0, G1 it is easy to check whether a permutation f of the ver-
tices is a graph isomorphism. On the other hand, there is currently no known
polynomial time algorithm that given two graphs G0 and G1 can determine
whether they are isomorphic or not. We will in the following consider the situa-
tion where the statement consists of a claim that two graphs are isomorphic to
each other. The prover knows an isomorphism between the graphs, but wants
to convince the verifier that they are isomorphic without revealing the isomor-
phism. More precisely, we consider the language of pairs of isomorphic graphs
LR = {(G0, G1)} defined by the relation R = {((G0, G1), f) : G1 = f(G0)}.

4 J. Bootle et al.

A

B

C D

A

B

C D

Fig. 1. Two isomorphic graphs: Reordering ABCD to CDAB maps the first graph to
the second.

Statement: A pair of graphs G0, G1 on the same set of vertices V .
Prover’s witness: An isomorphism f between G0 and G1.
Protocol:

– The prover picks a random permutation h : V → V and computes
H = h(G1). She stores h and sends H to the verifier.

– The verifier picks a random challenge b ← {0, 1}.
– If b = 0 the prover sends g = h ◦ f to the verifier.

If b = 1 the prover sends g = h to the verifier.
– The verifier accepts the proof if g(Gb) = H.

It is simple to see that our protocol is complete. If G0 and G1 are isomorphic
to each other, then both of them are isomorphic to H. Furthermore, the prover
who knows the isomorphism f can easily compute both the isomorphism between
G0 and H and the isomorphism between G1 and H. So she can answer both of
the possible challenges b ∈ {0, 1} and has 100 % probability of convincing the
verifier.

Our protocol is sound in the sense that there is 50 % chance of catching a
cheating prover. If G0 and G1 are not isomorphic then H cannot be isomorphic
to both. So, if the verifier picks b such that Gb is not isomorphic to H, then the
prover cannot answer the challenge.

To increase our chance of catching a cheating prover, we can repeat the
challenge and response protocol. We modify the protocol to perform n repetitions
for the same G0, G1 but different Hi, bi and gi. In each interaction, we have 50 %
chance of catching the cheating prover, so overall the risk of cheating is reduced
to 2−n.

In the soundness discussion above, we considered a cheating prover using
non-isomorphic G0, G1. But what about the case where G0 and G1 are iso-
morphic but the prover might or might not know f? Soundness provides no
guarantees: it ensures that a witness w exists, but not that the prover knows
it. The graph isomorphism protocol gives a stronger guarantee, which we will

Efficient Zero-Knowledge Proof Systems 5

refer to as extractability. Suppose the prover after having sent H can answer
both challenges b = 0 and b = 1, then it could actually compute an isomorphism
f = g−1

1 ◦ g0 between G0 and G1. We will later define a zero-knowledge protocol
to be extractable if it is possible to extract a witness from a successful prover,
for instance by rewinding it and running it again on a new challenge.

Finally, there is the zero-knowledge property. This can be somewhat puz-
zling: what does it mean for a run of the protocol not to give the verifier any
new information? We will define zero-knowledge through simulation. If the ver-
ifier could simulate the protocol transcript himself without interacting with the
prover, then he cannot have learned anything new from seeing the transcript.

The graph isomorphism proof can be simulated by first picking a random
permutation g, then guessing at random b ← {0, 1}, and finally setting H =
g(Gb). With 50 % probability the guess b matches what the verifier would send
after seeing H, and in that case we have a simulated proof transcript (H, b, g).
If our guess is wrong, we just rewind the verifier to the start and try again with
a new random g and b until we guess the challenge correctly.

Let us argue that if G0, G1 are isomorphic then the transcripts produced by
successful simulations are identical to those produced by real executions of the
protocol. In both cases we can think of g as a uniformly random renumbering
of the vertices of G0 or G1, which means that H is uniformly random. We
also note that the distribution of b given H is unchanged. Therefore, we see
that the probability distributions of real and simulated transcripts are identical.
The important thing to notice about the simulation is that we do not use the
witness at all to simulate. Therefore, the simulated transcript cannot leak any
information about the witness. Since the real proofs have the same probability
distribution as the simulated proofs this means they do not leak any information
either.

1.3 Security and Performance Parameters

Zero-knowledge proofs come in many flavours depending on the application. The
particular choice depends on the desired security properties and performance
parameters. We will now discuss some of these options.

Security Properties. Completeness, soundness and zero-knowledge often come in
one of three flavours: perfect, statistical and computational. Perfect complete-
ness means that an honest prover will always convince an honest verifier on a
true statement, perfect soundness means that it is impossible to prove a false
statement, and perfect zero-knowledge means that transcripts can be perfectly
simulated and leak no information whatsoever.

In the graph isomorphism example we have perfect completeness and per-
fect zero-knowledge, but not perfect soundness since a cheating prover has 50 %
chance of convincing the verifier on a false statement. Even if we repeat the
protocol n times, there is still 2−n chance of cheating and we do not get per-
fect soundness. However, we get statistical soundness in the sense that there is
negligible small probability of cheating the verifier.

6 J. Bootle et al.

Perfect soundness can be relaxed to statistical soundness, where we require a
prover has negligible probability of cheating the verifier. We can relax it further
to computational soundness, where we admit the possibility of cheating, but
are content if it is computationally infeasible to find a way to cheat. We have
computational soundness, when it is unlikely that a probabilistic polynomial
time prover can cheat.

Perfect zero-knowledge can be relaxed to statistical zero-knowledge, where
the simulated transcript just needs to have a probability distribution that is
close to that of a real proof. It can be further relaxed to computational zero-
knowledge, where a computationally bounded verifier cannot tell whether it is
seeing a transcript of an interaction with a real prover or a simulation of its view
of such an interaction.

Interaction. The graph isomorphism proof we described needs three messages
to be exchanged between the two parties, starting with the prover. In general,
we measure the interaction of a zero-knowledge proof in the number of messages
or moves the parties makes. We will refer to two moves as a round consisting of
one move from each side.

When expanding the graph isomorphism protocol to n repetitions, we can
easily see that the number of moves becomes 2n + 1 since we can combine the
last message of iteration i with the first message of iteration i+1 since both are
sent from the prover. Another option would be to perform the multiple iterations
in parallel to reduce interaction. However, parallel composition does not always
yield the desired result. Parallel composition of zero-knowledge proofs does not
necessarily result in a zero-knowledge proof [GK96], or soundness may be less
than what we might expect [BIN97].

In general, we aim to restrict the number of rounds used by protocols, as it
requires that participants are available and need to remember previous messages
for an extended period. One particular class of zero-knowledge proofs are those
consisting of a single move from the prover to the verifier. We call these proofs
non-interactive and will return to them in Sect. 3.

Communication. We consider the communication cost of the protocol to be
the total bit-length of all messages exchanged by the two parties. We often
compare the communication to the size of the statement as an indication of
relative efficiency.

In the graph isomorphism proof, the statement is two graphs of k vertices
G0, G1, which we can represent with two adjacency matrices using less than k2

bits since they are symmetric. The communication consists of the graph H (less
than 1

2k2 bits), the reply b (1 bit) and a description of g (in the order of k log k
bits). The communication cost is thus linear in the size of the statement.

Computation. We usually distinguish between the computation cost of the prover
and that of the verifier. We often opt to make verification quicker at the expense
of the prover. First, in some settings, such as voting, a non-interactive proof for
a ballot being valid is only created once but may be seen and verified multiple

Efficient Zero-Knowledge Proof Systems 7

times. Second, in applications such as verifiable computation the verifier is much
weaker than the prover and it is only natural to try and lessen the computa-
tional load of the verifier. Finally, one may argue that being computationally
bounded is a core characteristic of the verifier. If the verifier was computation-
ally unbounded, she could check whether a statement u ∈ L directly. This would
eliminate the need for a proof in many cases.

Security Setting. Most protocols do not exist in vacuum; their security is based
on a number of assumptions. These assumptions may be computational in
nature, where a certain mathematical problem is considered hard to solve. There
are also zero-knowledge protocols making stronger assumptions on the under-
lying primitives, e.g., many zero-knowledge proofs rely on the random oracle
model where a cryptographic hash-function is assumed to behave like a truly
random function [BR93].

A potential resource but at the same time potential security liability is the
environment in which the zero-knowledge proof is executed. Interactive zero-
knowledge proofs can be executed without any setup but the availability of a
common reference string, e.g., a bit-string with a certain probability distribu-
tion, may improve performance. For non-interactive zero-knowledge proofs it is
necessary and unavoidable to have a common reference string or some other form
of assistance.

1.4 Notation

In the next two sections, we will give an overview of main ideas in Σ-protocols,
which yield efficient interactive zero-knowledge proofs, and non-interactive zero-
knowledge proofs. It will be useful to establish some common notation.

We write y = A(x; r) when an algorithm A on input x and randomness r,
outputs y. We write y ← A(x) for the process of picking randomness r at random
and setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from a set S. We will for convenience assume uniform random sampling from
various types of sets is possible; there are easy ways to amend our protocols to the
case where the sets are only sampleable with a distribution that is statistically
close to uniform.

We assume all algorithms and parties in a cryptographic protocol will directly
or indirectly get a security parameter λ as input (which for technical reasons will
be written in unary 1λ to ensure the running time is polynomial). The intuition
is that the higher the security parameter the more secure should the scheme be.
We will define security in terms of experiments that define the execution of a
scheme in the presence of the adversary, and predicates that define whether the
adversary succeeded in breaking the scheme. We are interested in the probability
that the adversary breaks the scheme, for which we use the notation

Pr[output ← Experiment(1λ) : Predicate(output)].

8 J. Bootle et al.

We will use the notation A for the adversary and assume it is either unbounded or
efficient, where we define an efficient adversary as one that runs in probabilistic
polynomial time.

Given two probability functions in the security parameter f, g : N → [0, 1]
we say that they are close and write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = O(λ−c)
for every constant c > 0. We say that f is negligible if f(λ) ≈ 0, and we say
that f is overwhelming if f(λ) ≈ 1. We will in many security definitions want
the adversary’s success probability to be negligible in the security parameter.

2 Σ-Protocols

In the previous section we discussed an interactive proof system for graph iso-
morphism. In the example the verifier picks a random challenge in {0, 1} and
the prover has probability 1

2 of convincing the verifier of a false statement. The
protocol needs to be iterated many times in order to reduce this probability
and achieve good soundness. In this section we describe 3-move interactive proof
systems in which the verifier picks a uniformly random challenge from a much
larger space. This means a cheating prover has small probability of guessing the
verifier’s challenge in advance. The size of the challenge space is made big enough
so that a single execution of the protocol suffice to convince the verifier. This
kind of interactive proof systems often goes under the name of Σ-protocols.

2.1 Definitions

Σ-protocols are 3-move interactive proof systems that allow a prover to convince
a verifier about the validity of a statement. The prover sends an initial message
a to the verifier, the verifier replies with a random challenge x, and the prover
answers with a final response z. The verifier finally checks the transcript (a, x, z)
and decides whether to accept or reject the statement.

A Σ-protocol is public coin, which means that the verifier picks the challenge
x uniformly at random and independently of the message sent by the prover.

Definition 1 (Σ-protocol). Let R be a polynomial time decidable binary rela-
tion and let LR be the language of statements u for which there exists a witness
w such that (u,w) ∈ R. A Σ-protocol for a relation R is a tuple (P,V) of prob-
abilistic polynomial time interactive algorithms such that

– a ← P(u,w): given a statement u and a witness w such that (u,w) ∈ R, the
prover computes initial message a and sends it to the verifier.

– x ← S: the verifier picks a uniformly random challenge x from a large set S
and sends it to the prover.

– z ← P(x): given challenge x the prover computes a response z and sends it
to the verifier.

– 1/0 ← V(u, (a, x, z)): the verifier checks the transcript (a, x, z) and returns 1
if she accepts the argument and 0 if she rejects it.

Efficient Zero-Knowledge Proof Systems 9

A pair of efficient algorithms (P,V) is a Σ-protocol if is complete, special
sound and special honest verifier zero-knowledge in the sense of the following
definitions.

Completeness guarantees that if both prover and verifier are honest, then the
verifier accepts when u ∈ LR and the prover knows the corresponding witness.

Definition 2 (Completeness). (P,V) is computationally complete if for all
probabilistic polynomial time adversaries A

Pr
[
(u,w) ← A(1λ); a ← P(u,w);x ← S; z ← P(x) : V(u, (a, x, z)) = 1

]
≈ 1,

where A outputs (u,w) ∈ R.
If this holds for unbounded adversaries A, we say that (P,V) is statistically

complete. If the probability above is also exactly equal to 1 we says that (P,V)
is perfectly complete.

A Σ-protocol is a form of proof of knowledge, in the sense that a prover
should be able to answer random challenges only if she knows a witness for
a statement u. This is formalised via special soundness which says that given
two accepting transcripts corresponding to two distinct challenges and the same
initial message it is possible to extract a witness for the statement.

Definition 3 (Special Soundness). (P,V) is computationally special sound
if there exists an efficient extractor algorithm E such that for all probabilistic
polynomial time adversaries A

Pr
[

(u, a, x, z, x′, z′) ← A(1λ);w ← E(a, x, z, x′, z′) :
V(u, (a, x, z)) = 0 or V(u, (a, x′, z′)) = 0 or (u,w) ∈ R

]
≈ 1.

If this holds for unbounded adversaries A, we say that (P,V) is statistically
special sound. If the probability above is also exactly equal to 1 we says that
(P,V) is perfectly special sound.

A Σ-protocol is zero-knowledge if it does not leak information about the
witness beyond the membership of u in the language LR. The definition of zero-
knowledge follows the simulation paradigm, which says that if it is possible to
simulate an accepting transcript without knowing a witness, then the protocol
is not leaking information about the witness. At first, this might seem in con-
tradiction with the soundness requirement, which says that is should be hard to
produce an accepting transcript without knowing a witness. However, the sim-
ulator is not taking part in the real execution of the protocol, and therefore we
can assume it to be less restricted than the parties directly involved in the pro-
tocol. We can for example allow the simulator to produce messages forming the
transcript in a different order than it happens during the real interaction. In case
of special honest verifier zero-knowledge, we restrict the verifier to be a public
coin verifier that picks random challenges independently from the messages she
receives from the prover. In this setting the simulator is given the verifier’s chal-
lenge x and has to simulate a conversation between prover and verifier without
knowing a witness.

10 J. Bootle et al.

Definition 4 (Special Honest Verifier Zero-Knowledge). A public coin
argument (P,V) is computationally special honest verifier zero-knowledge
(SHVZK) if there exists a probabilistic polynomial time simulator S such that
for all probabilistic polynomial time stateful adversaries A

Pr
[
(u,w, x) ← A(1λ); a ← P(u,w); z ← P(x) : A(a, x, z) = 1

]

≈Pr
[
(u,w, x) ← A(1λ); (a, z) ← S(u, x) : A(a, x, z) = 1

]

If this holds for unbounded adversaries A, we say that (P,V) is statistically
special honest verifier zero-knowledge. If the probabilities above are also exactly
equal we says that (P,V) is perfectly special honest verifier zero-knowledge.

The above definition of zero-knowledge might not be strong enough for many
applications since it is assuming a semi-honest verifier that does not deviate from
the protocol. However, there are efficient transformations [DGOW95,Dam00,
GMY06] for SHVZK Σ-protocols to obtain full zero-knowledge against malicious
verifiers with a small overhead in communication and computation.

2.2 Σ-Protocol for the Equivalence of Discrete Logarithm

Consider two group elements s, t ∈ G, such that they share the same discrete
logarithm with respect to two different generators g, h ∈ G. We now give a simple
Σ-protocol for the equality of discrete logarithms of s and t. More precisely we
describe a Σ-protocol for the following relation

R = {(u,w)|u = (G, p, g, h, s, t); g, h, s, t ∈ G; s = gw; t = hw}
where G is a group of prime order p with |p| = λ.

The prover starts by picking a random field element r from Zp and then
computes two blinding elements a = gr, b = hr and sends them to the verifier.
The verifier picks a uniformly random challenge x ← Zp and sends it back to the
prover. The prover computes the field element z = wx + r and sends it to the
verifier. The verifier checks if both of the following verification equations hold

gz = sxa hz = txb

in which case accept the proof and otherwise rejects it. The argument is sum-
marised in Fig. 2.

The idea behind the protocol is that if the prover knows the discrete logarithm
of s and t, then she can compute the discrete logarithm of sx and tx with respect
to base g and h. Moreover, if a and b have the same discrete logarithm, then so
will sxa and txb.

The protocol above is clearly complete. If both the prover and the verifier
are honest, the verifier will always accept statements in the language.

For special soundness consider two accepting transcripts (a, b, x, z) and
(a, b, x′, z′) for distinct challenges x, x′ and the same initial message (a, b). Divid-
ing the verification equation gz = sxa by gz′

= sx′
a we obtain gz−z′

= sx−x′
.

Efficient Zero-Knowledge Proof Systems 11

P(G, p, g, h, s, t, w) V(G, p, g, h, s, t)

r ← Zp

a = gr

b = hr a, b

x ← Zp

z = wx + r mod p z Accept if and only if
a, b ∈ G

gz = sxa
hz = txb

Fig. 2. Σ-protocol for equivalence of discrete logarithm.

Therefore we have that the discrete logarithm of s with respect to g is w =
z−z′
x−x′ mod p. Similar calculations on the other verification equations tells us that
the discrete logarithm of t with respect to base h is w too.

For SHVZK we need to show a simulator that given a uniformly random
challenge x as input can produce a transcript indistinguishable from a real tran-
script. The simulator can pick a uniformly random field element z and compute
the first message as a = gzs−x and b = hzt−x. Note that x and z have the same
distribution as in the real execution of the protocol and that a, b are uniquely
determined given x and z. Therefore the transcript (a, b, x, z) output by the
simulator has the same distribution as an honestly generated transcript.

2.3 Commitment Schemes

Commitment schemes are key primitives for the construction of many crypto-
graphic protocols. They allow a sender to create a commitment to a secret value.
The sender may later decide to open the commitment and reveal the value in a
verifiable manner. We require two main properties to commitment schemes:

• Hiding: a commitment should not reveal the secret value it contains.
• Binding: the sender should not be able to open the commitment to a different

value.

Non-interactive commitments are a particularly useful type of commitment
scheme, for which both committing and verifying the opening of a commitment
can be done locally, without any interaction with other parties.

Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial time algorithms (Gen,Com). The setup algorithm ck ← Gen(1λ)
generates a commitment key ck. The commitment key specifies a message
space Mck, a randomness space Rck and a commitment space Cck. The com-
mitment algorithm combined with the commitment key specifies a function
Comck : Mck×Rck → Cck. Given a message m ∈ Mck the sender picks uniformly
at random r ← Rck and computes the commitment c = Comck(m; r).

12 J. Bootle et al.

Definition 5 (Hiding). A non-interactive commitment scheme (Gen,Com) is
computationally hiding if for all probabilistic polynomial time stateful interactive
adversaries A

Pr
[

ck ← Gen(1λ); (m0,m1) ← A(ck); b ← {0, 1};
r ← Rck; c ← Comck(mb; r) : A(c) = b

]
≈ 1

2

where A outputs m0,m1 ∈ Mck. If this holds for unbounded adversaries A, we
say that (Gen,Com) is unconditionally hiding. If the probability above is also
exactly equal to 1

2 , we says that (Gen,Com) is perfectly hiding.

Definition 6 (Binding). A non-interactive commitment scheme (Gen,Com)
is computationally binding if for all probabilistic polynomial time adversaries A

Pr
[

ck ← Gen(1λ); (m0, r0,m1, r1) ← A(ck) :
Comck(m0; r0) = Comck(m1; r1) andm0 �= m1

]
≈ 0

where A outputs m0,m1 ∈ Mck and r0, r1 ∈ Rck. If this holds for unbounded
adversaries A, we say that (Gen,Com) is unconditionally binding. If the prob-
ability above is also exactly equal to 0, we says that (Gen,Com) is perfectly
binding.

Many examples of commitment schemes have been proposed in the literature.
Two well-known examples are Pedersen [Ped91] and Elgamal [EG85] commit-
ments, which are based on the discrete logarithm assumption. In addition to the
above properties, both commitment schemes are also additively homomorphic,
which means that multiplying two commitments produces a commitment to the
sum of the openings. More precisely, we say a commitment scheme is additively
homomorphic if for all valid keys ck the message, randomness and commitment
spaces are abelian groups and for all messages m0,m1 ∈ Mck and randomness
r0, r1 ∈ Rck we have

Comck(m0; r0) · Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Pedersen Commitments. Consider a group G of prime order p and let g, h be
random generators of the group. Message and randomnesses are in Zp and the
commitment space is the group G. The sender commits to an element m ∈ Zp

by picking a uniformly random r from Zp and computing c = gmhr. The scheme
is perfectly hiding and computationally binding, assuming that the discrete log-
arithm assumption holds (Fig. 3).

ElGamal Commitments. The commitment key, the message space and the
randomness space are defined as for Pedersen commitments. The commitment
space is G × G. Commitments are generated by picking a random r ← Zp and
computing (gr, gmhr). The ElGamal commitment scheme is perfectly binding
and computationally hiding given that the decision Diffie-Hellman assumption
holds (Fig. 4).

Efficient Zero-Knowledge Proof Systems 13

Gen(1λ) → ck Comck(m) → c

· p ← {0, 1}λ s.t. p is prime · If m /∈ Zp → ⊥
· G of order p · r ← Zq

· h ← G s.t. 〈h〉 = G · c := gmhr

· g = hx for x ← Zp

· ck := (G, p, g, h)

Fig. 3. Pedersen commitment.

Gen(1λ) → ck Comck(m) → c

· p ← {0, 1}λ s.t. p is prime · If m /∈ Zp → ⊥
· G of order p · r ← Zq

· h ← G s.t. 〈h〉 = G · c := (gr, gmhr)
· g = hx for x ← Zp

· ck := (G, p, g, h)

Fig. 4. ElGamal commitment.

After seeing the above examples one might wish to build a commitment
scheme that achieves both hiding and binding properties unconditionally. Unfor-
tunately, this is not achievable. The reason is that an unbounded adversary A is
always able to compute an opening to a commitment. If the scheme is such that
there exists only one possible opening, then the scheme cannot be hiding. On
the other hand, if there are several distinct openings to a commitment then an
unbounded adversary can compute all of them and break the binding property.

2.4 Two Useful Examples of Σ-Protocols

Commitment schemes and Σ-protocols are closely related. It is possible in fact to
construct commitment schemes out of Σ-protocols for hard relations as described
in [Dam90]. It is also convenient to rethink the interaction of Σ-protocols in
terms of committing and opening. A general way to build Σ-protocols is to let the
prover commit to some values in the first move, and to open some commitments
depending on the challenge in the last move.

We try to illustrate this general approach by showing two examples of
Σ-protocols. The first one is a protocol for showing that a commitment opens to
0. The second protocol is for proving that a commitment opens to the product
of the openings of two other commitments.

Σzero . Consider a commitment A opening to 0 to be part of the statement.
The prover computes a random commitment B = Comck(0; s) and sends it to
the verifier, which answer with a random challenge x. The prover then sends
opening information z to the verifier, which checks the commitment AxB opens
to 0 using randomness z. The full description of the protocol is in Fig. 5.

14 J. Bootle et al.

Pzero(ck, A, (0; r)) Vzero(ck, A)

s ← Zp

B = Comck(0; s) B

x ← Zp

z = rx + s mod p z Accept if and only if
B ∈ G, z ∈ Zp

Comck(0; z) = AxB

Fig. 5. Σ-protocol for opening a commitment to 0.

This protocol could be used also to prove equality of openings of commit-
ments. Given two commitments A1 and A2 it suffices to use Σzero to show that
A1A

−1
2 opens to zero. In the protocol we only require the commitment scheme

to be homomorphic, therefore it can be instantiated with both Pedersen and
ElGamal commitments. In both cases we get perfect completeness, perfect sound-
ness and perfect special honest verifier zero-knowledge.

Σprod . For this protocol we focus on the case of Pedersen commitments and refer
to [CD98] for the more general case. Let A,B,C be commitments opening to
a, b and ab, respectively. Consider a commitment key ck = (G, p, g, h). The main
idea is for the prover to prove knowledge of opening of A and B and showing
that C opens to the same value of A when replacing g with B in the commitment
key. Let ck′ = (G, p, B, h) be the modified key, thus

C = Comck(ab; rc) = gabhrc = Bahrc−arb = Comck′(a; rc − arb)

The full description of the protocol is in Fig. 6. The protocol, Σprod achieves
perfect completeness, perfect SHVZK and computational special soundness.

2.5 Composition of Σ-Protocols

One of the characteristics that makes Σ-protocols very appealing is that it is
easy to combine several of them together to obtain a Σ-protocol for compound
relations. This allows a very modular design of complex Σ-protocols starting
from simple building blocks.

For example, Σ-protocols are closed under parallel composition, therefore we
can combine many Σ-protocols together using a unique verifier’s challenge to
prove that many statements hold simultaneously. Completeness, special sound-
ness and SHVZK of the combined protocol are directly implied by the respec-
tive properties of the singular protocols. In particular for special soundness and
SHVZK, we can define an extractor and a simulator respectively running in par-
allel the extractors and simulators of the constituent Σ-protocols on the same
challenge.

Efficient Zero-Knowledge Proof Systems 15

Pprod(ck, A, (a; ra), B, (b; rb), C, (ab; rc)) Vprod(ck, A, B, C)

d, e, s, s′, t ← Zp

ck′ := (G, p, B, h)
D = Comck(d; s)
D′ = Comck′(d; s′)
E = Comck(e; t) D, D′, E

x ← Zp

f1 = ax + d mod p
z1 = rax + s mod p
f2 = bx + e mod p
z2 = rbx + t mod p Accept if and only if
z3 = (rc − arb)x + s′ mod p f1, f2, z1, z2, z3 D, D′, E ∈ G

f1, f2, z1, z2, z3 ∈ Zp

Comck(f1; z1) = AxD
Comck(f2; z2) = BxE
Comck′(f1; z3) = CxD′

Fig. 6. Σ-protocol for the product of openings of Pedersen commitments.

Given two protocols Σ0 and Σ1 for relations R0 and R1, it is possible to com-
bine them to show that one statement out of u0, u1 holds, without disclosing
which one. This transformation was first introduced in [CDS94] and could be
easily extended to prove the validity of one statement out of many. The idea is
to allow prover POR to simulate the transcript for at most one of the two state-
ments. Without loss in generality, consider a prover knowing a witness w0 for
u0. Then the prover can pick a random challenge x1 and simulate an accepting
transcript (a1, x1, z1) for u1 by invoking simulator S1 for Σ1. In the first move
the prover sends to the verifier a0 generated as in Σ0 and simulated a1. Upon
receiving a challenge x form the verifier, the prover computes x0 = x ⊕ x1. The
prover computes responses z0 using challenge x0 and sends z0, z1, x0, x1 to the
verifier. Then, the verifier checks that x = x0⊕x1 and accepts if both transcripts
(a0, x0, z0) and (a1, x1, z1) are accepting. As above, completeness special sound-
ness and SHVZK of the combined protocol are directly implied by the respective
properties of the individual protocols. In particular for SHVZK, the simulator
SOR receives a challenge x as input, picks a random x1 and computes x0 such
that x = x0 ⊕ x1. Then, SOR invokes S0 and S1 respectively on x0 and x1. The
simulated transcript has the same distribution as a real transcript.

2.6 Arithmetic Circuits

To illustrate the capabilities of Σ-protocols, we show how to build a protocol
for a more general relation combining several simpler protocols. For example
using many parallel executions of the zero and product Σ-protocols in Sect. 2.4
we can provide Σ-protocols for the satisfiability of arithmetic circuits. To prove

16 J. Bootle et al.

×

w1 w2

+

w3

×
w6

+

w5w4

w7

w8

Fig. 7. Example of an arithmetic circuit.

satisfiability of an arithmetic circuit the prover has to commit to all the wi

corresponding to wire assignments and then prove consistency of inputs and
outputs of addition gates using Σzero and multiplication gates using Σprod.

Consider for instance a very simple arithmetic circuit over Zp consisting of
fan-in-2 addition and multiplication gates, as the one pictured in Fig. 7. The
prover computes commitments Wi = Comck(wi, ri) for random ri and then
shows that both commitments W1 · W2 · W−1

3 and W4 · W5 · W−1
7 open to 0 and

that W3 and W8 open to w1 · w2 and w6 · w7, respectively.
For an arithmetic circuits with N addition and multiplication gates we need

to combine N parallel executions of Σzero and Σprod. The resulting communi-
cation amounts to O(N) commitments and field elements.

2.7 Batching

When proving the same relation many times, there are more efficient solutions
than executing many Σ-protocols in parallel. As a simple example, if we have
several commitments A1, . . . , An and want to prove all of them contain zero, we
can use the protocol in Fig. 8. The underlying idea is to use the homomorphic
property to build a committed degree n polynomial in the challenge x, with
the committed values as coefficients. This committed polynomial has negligible
probability of evaluating to 0 in the random challenge x unless it is the zero
polynomial, i.e., all the committed values are 0. Using this protocol we only
communicate a constant number of elements to prove a statement of size n
elements is true.

Another way to batch arguments together is to commit to many values at
once. We can build commitments to vectors rather than single elements and

Efficient Zero-Knowledge Proof Systems 17

Pbatch(ck, A1, . . . , An, r1, . . . , rn) Vbatch(ck, A1, . . . , An)

s ← Zp

B = Comck(0; s) B

x ← Zp

z = s + n
i=1 rix

i mod p z Accept if and only if
B ∈ G, z ∈ Zp

Comck(0; z) = B n
i=1 Axi

i

Fig. 8. Batch Σ-protocol for opening of many commitments to 0.

Gen(1λ) → ck Comck(m) → c

· p ← {0, 1}λ s.t. p is prime · If m /∈ Z
n
p → ⊥

· G of order p · m = (m1, . . . , mn)
· h ← G s.t. 〈h〉 = G · r ← Zq

· (x1, . . . , xn) ← Z
n
p · c := hr n

i=1 gmi
i

· gi = hxi for i ∈ [n]
· ck := (G, p, h, g1, . . . , gn)

Fig. 9. Pedersen commitment for vectors of length n.

extend the previous techniques to vector commitments. We can for instance
extend Pedersen commitments to allow openings in Z

n
p , as described in Fig. 9.

This extension preserves the same properties of the standard Pedersen commit-
ment scheme but committing to n elements only requires sending a single group
element.

Groth [Gro09] used batching techniques and vector commitments together to
give zero-knowledge arguments for linear algebra relations over vectors. These
techniques make it possible to give arguments for the satisfiability of arithmetic
circuits with an overall communication of O(

√
N) group and field elements. So

arithmetic circuit satisfiability and many other relevant relations can be proved
with sublinear communication.

3 Non-interactive Zero-Knowledge Proofs

In interactive zero knowledge proofs, the prover and the verifier interact over
multiple rounds, and can vary their responses depending on the messages that
they have received so far. By contrast, non-interactive zero knowledge proofs
consist of a single message sent by the prover to the verifier. Non-interactive
proofs are typically more difficult to construct than interactive proofs, and
often rely on stronger assumptions. However, they are useful in settings where

18 J. Bootle et al.

interaction cannot or should not take place, such as digital signatures and encryp-
tion schemes.

Non-interactive zero-knowledge proofs were introduced by Blum
et al. [BFM88], who produced a proof for the 3-colourability of graphs under a
number-theoretic assumption.

3.1 Formal Definitions

A non-interactive proof system for a relation R consists of three probabilistic
polynomial time algorithms. There are the common reference string generator
Gen, the prover P, and the verifier V. The common reference string generator
takes the security parameter as input and produces a common reference string
σ. The prover takes (σ, x, w) as input and produces a proof π. The verifier takes
(σ, x, π) as input and outputs 1 if accepting the proof as valid, and 0 if rejecting
the proof.

We call (Gen,P,V) a non-interactive proof system for R if it has the com-
pleteness and perfect soundness properties to be defined below. If (Gen,P,V)
has completeness and computational soundness, we call it a non-interactive argu-
ment system.

Completeness. As with interactive proofs, completeness states that a prover
should be able to prove a true statement.

Definition 7 (Completeness). We say the proof system is perfectly complete
if for all (u,w) ∈ R

Pr
[
σ ← Gen(1λ);π ← P(σ, u, w) : V(σ, u, π) = 1

]
= 1.

For statistical completeness, the definition is changed so that the probability is
close 1 when an unbounded adversary outputs (u,w) after seeing σ. For compu-
tational completeness, we restrict to probabilistic polynomial time adversaries A
outputting (u,w), and change the definition so that the probability close to 1.

Soundness. Soundness states that a cheating prover should not be able to prove
a false statement; even when deviating from the protocol.

Definition 8 (Soundness). We say the proof system has (adaptive) perfect
soundness if for all adversaries A

Pr
[
σ ← Gen(1λ); (u, π) ← A(σ, u) : u /∈ LR and V(σ, u, π) = 1

]
= 0.

The definition can be relaxed to statistical soundness by changing the definition
such that the probability is close from 1 instead of requiring exact equality. For
computational soundness, we restrict to probabilistic polynomial time adversaries
A, and change the definition so that the probability is close 1.

Efficient Zero-Knowledge Proof Systems 19

A weaker definition is that of non-adaptive soundness. Here the adversary A
is given a false statement u /∈ LR independently of the common reference string
σ. Adaptively sound proofs are harder to construct, but are more versatile since
in many cases the false statement could be chosen after seeing the common
reference string. Adaptively sound proofs also have the advantage that the same
common reference string can be reused to prove different statements u from the
same language.

Proof of Knowledge. A non-interactive proof system is a proof of knowledge if
it is possible to recover the witness w from the proof. More formally, we say
that a non-interactive proof system is a proof of knowledge if there exists a
probabilistic polynomial time knowledge extractor E = (E1, E2) such that E1

produces a correctly generated common reference string with extraction key ξ,
which E2 uses to extract a valid witness from a proof.

Definition 9 (Knowledge Extraction). We say the proof system has perfect
knowledge extraction if for all adversaries A

Pr
[
σ ← Gen(1λ) : A(σ) = 1

]
= Pr

[
(σ, ξ) ← E1(1λ) : A(σ) = 1

]

and

Pr
[
(σ, ξ) ← E1(1

λ); (u, π) ← A(σ);w ← E2(σ, ξ, u, π) : (u, w) ∈ R if V (σ, u, π) = 1
]
= 1.

For statistical knowledge extraction, the definition is changed so that the first
two probabilities are close to each other, and the third is close to 1. For the
computational version, we restrict to probabilistic polynomial time adversaries A.

Perfect knowledge extraction implies perfect soundness. This is because if a
valid proof π is given for statement u, we can extract a witness w with (u,w) ∈ R,
so in particular, x ∈ LR.

Zero-Knowledge. The zero-knowledge property ensures that a non-interactive
proof reveals nothing except for the truth of the statement being proved. As
with interactive zero-knowledge proofs, this is achieved using the simulation
paradigm. There must be an efficient simulator for the proof, so that any infor-
mation computed from a real proof could also be computed from a simulated
proof. There is no witness available when simulating the proof, so no informa-
tion about the witness is leaked. However, the simulator must have access to
more than just the statement u and a common reference string σ when simu-
lating a proof. Otherwise, anybody would be able to create a convincing proof,
even without the witness! To this end, the simulator is allowed to produce the
common reference string for itself, along with some extra information τ , the
‘simulation trapdoor’. This trapdoor is used by the simulator, but is unavailable
to an adversary against the protocol.

20 J. Bootle et al.

Definition 10 (Zero-Knowledge). We call (Gen,P,V) an NIZK proof for R
with perfect zero-knowledge if there exists a simulator S = (S1,S2) such that for
all adversaries A

Pr
[
σ ← Gen(1λ); (u,w) ← A(σ);π ← P(σ, u, w) : A(σ, π) = 0

]

= Pr
[
(σ, τ) ← S1(1λ); (u,w) ← A(σ);π ← S2(σ, τ, u) : A(σ, π) = 0

] .

For statistical zero-knowledge, the definition is changed so that the probabilities
are close to each other. For computational zero-knowledge, we restrict to prob-
abilistic polynomial time adversaries A, and change the definition so that the
probabilities are close to each other.

3.2 The Common Reference String

The definitions of an NIZK proof system require a common reference string to
be available to the prover and verifier. It would be desirable to try and remove
this requirement and obtain a proof system where the prover sends a single
message to the verifier, with no setup. Unfortunately, it can be shown that any
such proof system can only be used for languages that are easy to decide [Gol01]
so the verifier does not need the prover to be convinced that u ∈ LR. In order
to construct NIZK proof systems for non-trivial languages, a common reference
string or some other type of assistance is necessary.

A common reference string can be made up of uniformly random bits. In
this case, it is often referred to as a common random string. However, in many
NIZK proof systems, a more structured common reference string is generated
according to a different probability distribution.

The common reference string can be honestly generated by a trusted party.
Another solution is to use the multi-string model of Groth and Ostrovsky [GO14],
where random strings are produced by several authorities, and a majority of
strings are assumed to be honestly generated. This removes the need to com-
pletely trust any single party. Secure multi-party computation can also be used
to ensure that the common reference string is generated correctly.

3.3 Public and Private Verifiability

In the original definitions, the verification algorithm takes σ, u and π as input.
This means that the proof can be verified by anybody. One variation is a
designated-verifier proof system. In this case, the setup algorithm Gen outputs
a verifier key ω as well as the common reference string, and the verification
algorithm takes ω, u and π as input. Now, proofs can only be privately verified.
Public verifiability corresponds to the special case where ω = σ.

Designated-verifier non-interactive proof systems are generally easier to con-
struct, and can be more efficient than publicly verifiable proofs. This is because
unlike publicly verifiable proofs, the verifier has ω, which is not available to the
prover. Designated verifier proofs can only be used to convince somebody in

Efficient Zero-Knowledge Proof Systems 21

posession of ω. This is in contrast with publicly-verifiable proofs, where a sin-
gle proof can be copied and sent to other recipients, and suffices to convince
everybody.

Private verifiability is sufficient for some applications, such as CCA-secure
encryption schemes including the Cramer-Shoup cryptosystem. However, public-
verifiability is necessary for many other applications such as signatures, and
universally-verifiable voting systems.

3.4 The Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a method for converting public coin interactive
zero-knowledge arguments into NIZK proofs. The first step is to include the
description of a cryptographic hash function H in the common reference string.
The prover computes their messages as they would in the interactive proof, but
replaces the verifier’s messages with a hash of the protocol transcript up to that
point (Fig. 10).

The method yields highly efficient NIZK arguments in practice. By modelling
the hash function as a truly random function, or ‘random oracle’, it is possible
argue that the resulting arguments are sound [BR93]. Further, in the random
oracle model, even if the initial interactive proof only has honest verifier zero-
knowledge, the resulting argument will have full zero-knowledge.

However, in reality, hash functions are deterministic. It has been shown
[CGH00,GK03] that there are interactive protocols which have soundness when
H is modelled as a truly random function, but which are insecure for any choice
of hash function H. Despite this theoretical problem, the Fiat-Shamir heuristic
is still used to produce arguments for practical applications, where the hope is
that it does give sound arguments for “natural” problems.

3.5 The Hidden Bits Model

In the hidden bits model, described in [FLS99], the prover uses the common
reference string in a particular way that produces some secret bits known only
to the prover. She can then choose to reveal individual bits to the verifier in a
verifiable manner.

One way the hidden bits model can be implemented is as follows [FLS99,
BY96,Gro10a]: The prover chooses a public key for an encryption scheme. She
then interprets the common reference string as a sequence of ciphertexts. Since
only she knows the secret decryption key, only she knows the corresponding
plaintexts. If the encryption scheme allows revealing a plaintext in a verifiable
manner, she can now selectively disclose some plaintexts and let other plaintexts
remain secret.

A structured hidden bit-string is often more useful than a uniformly random
string. In order to create a structured hidden bit-string the prover may discard
or reveal certain bits in order to obtain, with good probability, a string with a
particular structure. As a simple example, if the prover orders the bits in pairs

22 J. Bootle et al.

Fig. 10. The Fiat-Shamir Heuristic. The first box shows an interactive zero knowledge
proof. The second box shows the non-interactive zero knowledge proof resulting from
applying the Fiat-Shamir transformation.

and reveals the bits in all pairs of the form ‘00’ or ‘11’, then the verifier knows
that statistically speaking the remaining hidden bits are structured such that
almost all pairs are ‘01’ or ‘10’.

One technique to use a structured hidden bit string [KP98] is to group bits
in pairs, and reveal at most one bit from each pair. We refer to ‘11’ and ‘00’
as ‘R’ for random, and ‘10’ and ‘01’ as ‘W’ for wildcard. From ‘W’, the prover
can choose whether to reveal a ‘0’ or a ‘1’. From an ‘R’ pair, the prover has
no choice in what to reveal since both bits are the same. Using this, and more
sophisticated structures, it is possible to set up equations the revealed bits should

Efficient Zero-Knowledge Proof Systems 23

satisfy. When the statement is true, the structure allows the prover to reveal bits
such that all equations are satisfied. When the statement is false, no choice of
bits to reveal will satisfy all equations. We will now give a simple example to
provide some intuition how this can work.

Example. Consider the formulae

x1 ∨ x2 = 1, (¬x1) ∨ x3 = 1, (¬x2) ∨ (¬x3) = 1

This is a very simple instance of the satisfiability problem and will form the
statement for an NIZK proof. Note that each variable and its negation appear
exactly once. We will consider blocks of four bits, and assume that every block
has exactly one ‘W’; we only use the blocks ‘WR’ and ‘RW’. A proof of satisfia-
bility for these formulae will require one block for each variable, 3 blocks in this
case.

The idea behind the proof is as follows. For each variable xi, exactly one of
the literals xi or ¬xi is equal to 1. This will be assigned to the ‘W’ part of the
block, while the other will be assigned the ‘R’ part of the block. This means that
the prover can choose whether to reveal a ‘0’ or ‘1’ for the true value, which will
be the key to completeness, but has no choice about which bit to reveal for the
false value, which will help to enforce soundness.

The assignment x1 = 1, x2 = 0, x3 = 1 is a solution to the satisfiability
problem. This is the witness for the proof.

Suppose for example that the prover receives hidden bits in blocks
‘WR’, ‘WR’, ‘RW’. Variables are assigned to blocks as follows.

W R W R R W
x1 ¬x1 ¬x2 x2 ¬x3 x3

Now, the prover reveals one bit from each pair. For the false values, the prover
is forced to reveal a particular bit, and randomly chooses between the first and
the second bit from the pair. For the true values, the prover chooses whether to
reveal a ‘0’ or a ‘1’ in order to make each formula from the statement have odd
parity. In this example, the prover could reveal bits as follows.

W R W R R W
x1 ¬x1 ¬x2 x2 ¬x3 x3

1? ?1 1? 0? ?1 0?

The verifier now checks that the formulae are satisfied when the revealed bits
are substituted for each variable. The prover can always reveal bits consistent
with the formulae, because at least one ‘W’ has been assigned to each formula.

The proof does not give away any information about the witness, because
the pairs such as ‘1?’ that the verifier sees can originate from several different
bit-strings and possible witnesses.

In this example, the statement was true. But to argue soundness, let us
consider what would happen for an unsatisfiable set of formulae. Then no matter

24 J. Bootle et al.

which assignment the prover chooses, there is at least one formulae where all the
variables have been assigned an ‘R’ pair. Now for each pair in this formulae
the prover has only one choice of bit to reveal and there is 50 % chance of the
revealed bits having even parity.

In the example shown above, it is very easy to work out a witness. For
more complicated satisfiability problems it is possible to design a similar proof
where, if there is no solution, then a large fraction of the verifier’s checks will
fail [KP98,Gro10a]. By increasing the size of blocks, and imposing further con-
ditions, the prover can only succeed with negligible probability in the case where
the statement is an unsatisfiable set of formulae.

3.6 Boneh-Goh-Nissim Encryption

Many public-key cryptosystems have homomorphic properties, but only recently
have we seen the emergence of encryption schemes that are homomorphic with
respect to both addition and multiplication. Partial progress was made by Boneh
et al. [BGN05], who designed a public-key encryption scheme based on pairings,
which are bilinear maps arising from the study of algebraic geometry and elliptic
curves. This cryptosystem allows arbitrary additions on the encrypted plaintexts,
but only allows a single multiplication.

The BGN encryption scheme, described in Fig. 11, uses a group with an
element g of order n, where n is a product of two primes p and q, and an
efficiently computable pairing. Let G be the group of order n generated by g.
Let h be a random, non-trivial element of order p. The message space is chosen
to be small so that it is easy to take discrete logarithms and find the message m,
given the element gpm. For example, we could use {0, 1, . . . , t} with t sufficiently
small.

Let e : G × G → GT be the bilinear pairing map.
The public key of the scheme is G, n, g, h, and the secret key is p.
A message m is encrypted with randomness r ← Zn as the ciphertext c =

Enc(m; r) = gmhr.
Decryption is performed by raising the ciphertext to the power of the secret

key, p. Since h has order p, this removes the randomness from the ciphertext.
We have cp = gmphrp = gpm. Then, since the message space is small, it is easy
to take discrete logarithms and recover m.

It is easy to see that the scheme is homomorphic with respect to addition:

Enc(m1; r1)Enc(m2; r2) = (gm1hr1)·(gm2hr2) = gm1+m2hr1+r2 = Enc(m1+m2; r1+r2)

To do a multiplication of encrypted plaintexts, we apply the bilinear map to
two ciphertexts. Let e(g, g) = G, which has order n, and let e(h, h) = H, which
has order p. The elements e(g, h) and e(h, g) turn out to be powers of H by
properties of the pairing map. This means that

e (gm1hr1 , gm2hr2) = e(g, g)m1m2e(g, h)m1r2e(h, g)r1m2e(h, h)r1r2 = Gm1m2Hr′
,

which is an encryption of m1m2 in GT with some randomness r′.

Efficient Zero-Knowledge Proof Systems 25

KeyGen(1λ) → (pk, sk) Enc(pk, m) → c Dec(sk, c) → m

· p, q ← {0, 1}λ s.t. p, q are prime · If m /∈ {0, . . . , t} · If c /∈ G return m = ⊥
· G,GT of order n = pq · return c = ⊥ · For m ∈ {0, 1, . . . , t}
· e : G × G → GT , bilinear · r ← Zn · If cp = (gp)m return m
· g, u ← G s.t. 〈g〉 = 〈u〉 = G · Return c = gmhr · Return m = ⊥
· h = uq

· t = poly(λ)
· pk := (n,G,GT , e, g, h, t)
· sk := p

Fig. 11. The BGN cryptosystem.

3.7 NIZK Proof for Circuit Satisfiability

By using the homomorphic properties of the BGN cryptosystem, we can obtain
a zero-knowledge proof of satisfiability for a Boolean circuit. Let C be a boolean
circuit, with W wires.

The prover begins by encrypting the values of the wires for the circuit to
produce |W| BGN ciphertexts. To show that the encrypted wire values satisfy the
circuit, each wire value must be either 0 or 1, and the output of each NAND gate
must be correct with respect to the two inputs. Figure 12 provides an example.

Let c = gmhr be a ciphertext. Then m is a bit if and only if m(m − 1) = 0.
We get an encryption of m − 1 by computing cg−1, and then an encryption
of m(m − 1) by computing e(c, cg−1), which should be an encryption of 0.

w8 = 1

w7w6

w4
w3

w5

w2w1

c1 = Enc(w1; r1) π1 π′
1,2,5

...
...

...
c7 = Enc(w7; r7) π7 π′

6,7,8

Fig. 12. A simple Boolean circuit. To demonstrate satisfiability using the BGN cryp-
tosystem, the prover encrypts each wi, and produces an additional group element to
prove that they are bits. A further group element per gate used to prove that the wire
values respect the logic gates.

26 J. Bootle et al.

The prover sends π = (g2m−1hr)r ∈ G as part of the proof. The verifier then
checks that e(c, cg−1) = e(π, h). As shown in [GOS12], this demonstrates that
e(c, cg−1) has order p, which means that it must be an encryption of 0. There
are |W| extra group elements which must be added to the proof.

Finally, the prover must demonstrate that the wire values are correct with
respect to each NAND gate. For values m1,m2,m3 ∈ {0, 1}, we have that m1 =
¬(m2 ∧ m3) if and only if 2m1 + m2 + m3 − 2 ∈ {0, 1}. The prover uses the
homomorphic property of the commitment scheme again to form an encryption
of 2m1 + m2 + m3 − 2. Then, the prover uses the same technique as for the wire
values to show that this value is a bit. This adds another |C| group elements to
the proof.

The total communication of the proof is therefore 2|W|+ |C| group elements.
The proof has perfect completeness and perfect soundness. It has computational
zero-knowledge relying on the semantic security of the BGN encryption scheme.

Boolean circuit satisfiability is an NP-complete language. Therefore, this
example shows that every language in NP has a non-interactive zero-knowledge
proof.

3.8 Succinct Non-interactive Arguments and Applications

Having seen a few examples of techniques for constructing NIZK proofs, it is
natural to ask how efficient they can be. Micali [Mic00] introduced the notion of
computationally sound proofs, which can be much smaller than the statement.
Motivated by applications such as verifiable computation, there has recently been
a lot of research on reducing the size of the proofs and making the verification
process very efficient.

A succinct non-interactive argument (SNARG) is a non-interactive argument
system that satisfies an additional succinctness property. SNARGs which are also
arguments of knowledge are referred to as SNARKs.

Definition 11 (Succinctness). A non-interactive argument system is succinct
if all proofs π satisfy

|π| = poly(λ) polylog (|u| + |w|)

The development of SNARGs has culminated in pairing-based construc-
tions [Gro10b,Lip12,BCCT12,PHGR13,BCCT13,GGPR13,BSCTV14] which
use only a constant number of group elements and are extremely efficient to
verify. All arguments rely on very strong assumptions, but there is some evi-
dence that this may be unavoidable [GW11].

Applications of Succinct Arguments. SNARGs and SNARKs are extremely
useful in practical applications due to their high efficiency, and in theoretical
constructions which use the succinctness property in a crucial way.

Efficient Zero-Knowledge Proof Systems 27

Verifiable Computation. Verifiable computation is a practical application which
benefits from SNARKs. In a verifiable computation scheme, a client with a small
amount of computing power would like to outsource a task involving heavy
computation to a worker, who has a large amount of computing power. However,
the client would like some assurance that the worker performed the task correctly
and delivered the correct result. The assurance takes the form of a non-interactive
proof produced by the worker to convince the client. The security of a verifiable
computation scheme was first formalised by Gennaro et al. [GGP10].

If it was feasible for the client to perform a large computation to verify a non-
interactive proof, then they might already have enough resources to perform the
task by themselves, leaving no need to use a verifiable computation scheme in
the first place. Therefore, in a verifiable computation scheme, it is essential that
the computational cost of verifying a proof should be significantly lower than
the cost of completing the task. SNARKs fulfill this requirement.

Pinocchio [PHGR13] is a practical implementation of a verifiable computation
scheme. Using Pinnocchio, one can produce schemes to convince the client that a
C code was outsourced correctly. Pinocchio takes a program written in C, com-
putes conditions for correct execution in the quadratic arithmetic program model
of [GGPR13], and outputs a SNARK which can then be used to verify compu-
tation. The system has been tested in applications such as image matching, gas
simulations, and computing SHA-1 hashes to provide benchmarking data.

Composition of Arguments. The succinctness property means that SNARKs are
well suited for composition. A simple example of composition of SNARKs is as
follows. Given a statement and a witness, we can apply a SNARK and obtain
a proof that we know a witness for the statement. We can then apply a second
SNARK to the proof. This produces a proof, that we know a proof, that we know
a witness for the statement! This idea is developed further in [CT10,BCCT13],
where the process is repeated recursively, leading to the concept of proof-carrying
data systems.

For some non-interactive argument systems, the size of a proof is bigger than
the original statement. This makes composition inefficient, because the size of a
proof grows after each composition. However, SNARKs are succinct, with proofs
that can be much smaller than the original statement.

Composition allows for the construction of multi-party computation schemes
with extremely low communication between different parties. The basic idea is
that at each stage in the computation, a single party sends on the results of
their computation, and attaches a proof that everything was done correctly, as
well as forwarding the proofs that were sent by previous parties. The number of
proofs grows at each step in the computation. As soon as the size of the message
passes a certain point, a SNARK is applied, giving a proof that the party has
seen all of the previous proofs. This proof is much shorter than the message that
would have been sent, due to the succinctness of SNARKs. Further, by applying
composition cleverly, [BCCT13] constructs a non-interactive argument system
where the size of the CRS does not depend on the size of the statement to be
proved.

28 J. Bootle et al.

3.9 Efficiency

We compare the efficiency of some different NIZK proofs and arguments for
circuit satisfiability.

NIZK Proofs. By definition, NIZK proofs have perfect or statistical soundness,
which means that they are secure against even a computationally unbounded
prover. Table 1 shows the efficiency of some NIZK proofs for circuit satisfiability.

Let λ be the security parameter. Define kT = poly(λ) to be the size of a
trapdoor permutation, kG ≈ λ3 to be the size of a suitable group element, and
|C| = poly(λ) to be the size of the circuit. Let |w| ≤ |C| be the size of the witness
for satisfiability of the circuit.

All the essential details of the proof from [GOS12] were presented earlier
in Sect. 3.7. This proof uses the BGN cryptosystem. The proofs from [Gro10a]
using techniques from the hidden bits model, implemented using either trapdoor
permutations or the Naccache-Stern cryptosystem.

The proof of [GGI+14] assumes the existence of a fully homomorphic encryp-
tion scheme. Fully homomorphic encryption allows for the multiplication and
addition of ciphertexts to produce encrypted multiplications and additions of
the plaintexts within. At a high level, the idea of this proof is to simply encrypt
the witness, and evaluate the circuit on the witness in encrypted form. The
prover then gives an NIZK proof that the resulting ciphertext contains a 1.

NIZK Arguments. By definition, NIZK arguments have computational sound-
ness, which means that they are secure assuming a computationally bounded
prover. Table 2 shows the efficiency of some NIZK arguments for circuit satisfi-
ability.

Table 1. Performance comparison of NIZK proofs for circuit SAT

CRS in bits Proof in bits Assumption

[GOS12] O(kG) O (|C|kG) Pairing-based

[Gro10a] |C|kT poly log(λ) |C|kT poly log(λ) Trapdoor Permutations

[Gro10a] |C|poly log(λ) |C|poly log(λ) Naccache-Stern

[GGI+14] poly(λ) |w| + poly(λ) FHE and NIZK

Table 2. Performance comparison of NIZK arguments for circuit SAT

CRS in group elements Argument in group elements

[Gro10b] O
(|C|2) O(1)

[Lip12] O
(
|C|1+o(1)

)
O(1)

[GGPR13] O (|C| log |C|) O(1)

[BCCT13] O(1) O(1)

Efficient Zero-Knowledge Proof Systems 29

All of the arguments in the table are SNARKs that rely on strong assump-
tions and bilinear pairings. In each case, the size of the argument is a con-
stant number of elements in a suitable bilinear group. The final entry, due
to [BCCT13], results in arguments where a constant-sized CRS suffices for all
polynomial-sized statements. This work makes use of SNARKs which have been
composed repeatedly.

References

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference (2012)

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Proceedings
of the 45th Annual ACM Symposium on Theory of Computing - STOC
2013, p. 111 (2013)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive Zero Knowledge and
Its Applications (Extended Abstract), pp. 103–112. MIT (1988)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on cipher-
texts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower
the error in computationally sound protocols? In: Proceedings of 38th
Annual Symposium on Foundations of Computer Science, pp. 374–383.
IEEE (1997)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, 1–21 November 1993

[BSCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)

[BY96] Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-
knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166
(1996)

[CD98] Cramer, R., Damg̊ard, I.B.: Zero-knowledge proofs for finite field arith-
metic or: can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

[CDS94] Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

[CGH00] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology.
Revisited, p. 31 (2000)

[Cha88] Chaum, D.: The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

[CT10] Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from
signature cards. In: ICS, vol. 10, pp. 310–331 (2010)

[Dam90] Damg̊ard, I.B.: On the existence of bit commitment schemes and zero-
knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435,
pp. 17–27. Springer, Heidelberg (1990)

30 J. Bootle et al.

[Dam00] Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
418–430. Springer, Heidelberg (2000)

[DGOW95] Damg̊ard, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier
vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg
(1995)

[EG85] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[GGI+14] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. J. Cryptol. 28(4), 1–22 (2015)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013)

[GK96] Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof
systems. SIAM J. Comput. 25(1), 169–192 (1996)

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir para-
digm. In: Proceedings of 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003 (2003)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, pp. 291–304. ACM (1985)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
J. ACM (JACM) 38(3), 690–728 (1991)

[GMY06] Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge
protocols using signatures. J. Cryptol. 19(2), 169–209 (2006)

[GO14] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryp-
tol. 27(3), 506–543 (2014)

[Gol01] Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol.
1. Cambridge University Press, Cambridge (2001)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM (JACM) 59, 11 (2012)

[Gro09] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009)

[Gro10a] Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg
(2010)

[Gro10b] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010)

Efficient Zero-Knowledge Proof Systems 31

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing (2011)

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. J. Cryptol. 11, 1–27 (1998)

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[Ped91] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: 2013 IEEE Symposium on Security and
Privacy, pp. 238–252, May 2013

JavaScript Sandboxing: Isolating and Restricting
Client-Side JavaScript

Steven Van Acker(B) and Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden
acker@chalmers.se

Abstract. Today’s web applications rely on the same-origin policy, the
primary security policy of the Web, to isolate their web origin from
malicious client-side JavaScript.

When an attacker can somehow breach the same-origin policy and
execute JavaScript code inside a web application’s origin, he gains full
control over all available functionality and data in that web origin.

In the JavaScript sandboxing field, we assume that an attacker has the
ability to execute JavaScript code in a web application’s origin. The goal
of JavaScript sandboxing is to isolate the execution of certain JavaScript
code and restrict what functionality and data is available to it.

In this paper we discuss proposed JavaScript sandboxing systems
divided into three categories: JavaScript sandboxing through JavaScript
subsets and rewriting systems, JavaScript sandboxing using browser
modifications and JavaScript sandboxing without browser modifications.

1 Introduction

The Web today is unthinkable without JavaScript. Studies [96] show that close
to 90 % of the top 10 million websites of the Web use JavaScript.

JavaScript can turn the Web into a lively, dynamic and interactive end-
user experience. For this purpose, today’s browsers have an arsenal of powerful
JavaScript functionality at their disposal which all becomes available to Web
applications running JavaScript. Examples of this powerful functionality include
access to audio and video recording devices, real-time communication (RTC)
channels than can pierce firewalls, the ability to store data on the client-side, 3D
graphics rendering facilities and more.

Giving all this power to unfamiliar web applications is not necessarily a
good idea. With great power comes great responsibility, a trait not commonly
found in web applications because they often include third-party JavaScript from
untrusted sources [70]. In the wrong hands, this powerful JavaScript functionality
can be abused to e.g. access and steal sensitive information.

A typical scenario illustrating third-party JavaScript inclusion can be found
in online advertising. A recent security-related event in this setting equally illus-
trates the threat associated with third-party JavaScript inclusions. In July 2015,
the website of renowned security expert Troy Hunt experienced [89] a Cross-
Site Scripting attack launched through a script used for online advertising.
c© Springer International Publishing Switzerland 2016
A. Aldini et al. (Eds.): FOSAD VIII, LNCS 9808, pp. 32–86, 2016.
DOI: 10.1007/978-3-319-43005-8 2

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 33

The attack was obvious and visible because the attacker seemingly set out to
create a proof-of-concept to display a JavaScript prompt window. However, this
attack could have caused a lot more damage while at the same time remain
invisible if the attacker has chosen to do so instead.

This scenario is a good case for restricting JavaScript functionality, otherwise
known as JavaScript sandboxing. Had the advertisement run in a JavaScript
sandbox with restricted functionality, then a successful attack would not be able
to abuse the full power of a browser’s JavaScript APIs.

In this paper, we discuss the current state-of-the-art research in JavaScript
sandboxing on the client-side, and in the browser in particular. JavaScript can
be used elsewhere on the client-side, for instance as an embedded scripting in
browser extensions [29,66], OpenOffice [9], MongoDB [63], etc. JavaScript can
also be used on the server-side, e.g. Node.JS [4], and there are even microcon-
trollers that understand JavaScript [21,87]. We consider these use cases out of
scope and only focus on JavaScript as used in web pages visited by web browsers.

Based on the typical web scenario and attacker model, we divide the
JavaScript sandboxing literature in three categories: JavaScript sandboxing
through JavaScript subsets and rewriting systems, JavaScript sandboxing using
browser modifications and JavaScript sandboxing without browser modifications.

The remainder of this paper is organized as follows. Section 2 draws the con-
text and introduces background material. Section 3 discusses JavaScript sand-
boxing systems involving JavaScript subsets and rewriting systems. Section 4
discusses browser modifications to achieve JavaScript sandboxing. Section 5 dis-
cusses JavaScript sandboxing systems which do not require any browser mod-
ifications. Section 6 highlights two well-known JavaScript sandboxing systems
and details their usage in the real world. Section 7 concludes this work with a
brief discussion of the advantages and disadvantages of the three categories of
JavaScript sandboxing systems.

2 Background – Setting the Context

In this section we set the context for the remainder of this paper.
First, we look at a reference browser architecture, the JavaScript language

and the different JavaScript APIs available to web developers in Sects. 2.1 to 2.3.
We note that a browser is composed of several reusable subsystems such as the
JavaScript engine and that the JavaScript engine is disconnected from the rest
of the browser, forming a good interception point for enforcing security policies.

Next, we take a brief look at web applications as a combination of web tech-
nologies in Sect. 2.4, followed by the same origin policy in Sect. 2.5, a cornerstone
of web security, which makes sure that web applications remain separated from
each other inside the browser.

A typical web scenario with its actors and interactions, together with the
attacker model we use in this paper, is described in Sect. 2.6.

Third party script inclusion is an integral part of web applications today, at
the cost of having to trust the third party. This trust is not always deserved,

34 S. Van Acker and A. Sabelfeld

leading to security problems. The threat posed by third party script inclusions
is motivated in Sect. 2.7.

Finally, in Sect. 2.8, we describe the concept of JavaScript sandboxing as a
means to restrict available functionality inside the JavaScript environment, and
three main ways in which this can be accomplished.

2.1 Browser Architecture

Simply put, a web browser is a computer program used to retrieve content from
the Web, interact with it and display it on a screen, either directly or through
helper applications. More concretely, a web browser is a complex piece of software
comprised of multiple subcomponents, each with its own task, that work together
to allow a user to visit the Web.

Fig. 1. The eight subsystems of the reference architecture of a web browser, from [31].

The reference architecture of a web browser consists of eight interconnected
subsystems [31], shown in Fig. 1:

User Interface. The part of the browser that interacts directly with the user,
displaying windows and toolbars.

Browser Engine. Handles Uniform Resource Identifier (URI a more generic
form of URL) loading, and implements browser actions such as the forward
and backward button behavior. The browser engine provides a high-level
interface to the rendering engine.

Rendering Engine. The subsystem responsible for displaying content on the
screen. It can display HTML and XML, styled with Cascading Style Sheets
(CSS) and embedding images. It also includes the HTML parser, turning
HTML content into the Document Object Model (DOM), a structured form
more suitable for other components. For the sake of compatibility with older
browsers, many HTML parsers also have a quirks mode [5] next to a standards
mode. In standards mode, the HTML parser strictly complies to W3C and
IETF standards and rejects any malformed HTML. In quirks mode however,

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 35

the HTML parser is more lenient and quietly repairs broken HTML instead
of rejecting it.

Networking Subsystem. The part of the browser responsible for communi-
cating with the network over protocols such as HTTP, loading content from
other web servers, caching data and converting data between different char-
acter sets.

JavaScript Interpreter. Also known as the JavaScript engine, this subsystem
parses and executes JavaScript code. JavaScript itself is an object-oriented
programming language that can evaluate expressions, but does not define
ways to influence the rest of the world. To interact with the outside, such as
the other browser components, the user or the network, the JavaScript engine
must communicate with other subsystems.

XML Parser. Parses XML documents into a DOM structure. This component
is different from the HTML parser and is a generic, reusable component. The
HTML parser on the other hand, is optimized for performance and tightly
coupled with the rendering engine.

Display Backend. This component provides an interface to the underlying
operating system to draw windowing primitives and fonts.

Data Persistence. Stores and retrieves data such as browsing history, book-
marks, cookies and browser settings.

The modular subsystems are often reused between different browser vendors.
For instance, the Gecko [64] browser engine is used by Mozilla Firefox, Netscape
Navigator, Galeon [1] and others. Google Chrome uses the Blink [11] browser
engine, also used by Opera [71] and the Android browser [97]. Microsoft Inter-
net Explorer uses the Trident [54] layout engine, also used by the Maxthon [49]
browser. Browser components are not only reused by web browsers. Mozilla
Firefox’s JavaScript engine, SpiderMonkey [80], is also used in the GNOME3
desktop environment [27], and can be used as a standalone JavaScript inter-
preter. Google Chrome’s JavaScript engine, V8 [28], also powers node.js [4], a
server-side JavaScript runtime environment.

Many of these subsystems are used by the browser during routine operations
such as loading and rendering a webpage. When a user points a browser to a
webpage and the browser has downloaded an HTML document, the rendering
pipeline is started that will eventually display the webpage and allow the user
to interact with it.

The rendering pipeline generally consists of 3 steps: parsing, layouting and
rendering:

– During the parsing step, the downloaded HTML document is parsed into a
data structure known as the Document Object Model (DOM) tree. Each node
in this tree comprises an HTML element, with links to the parent element
and sub-elements.

– In the layouting step, rectangular representations of the nodes in the DOM
are arranged according to the styling rules dictated by the webpages and its
Cascading Style Sheets (CSS) information.

36 S. Van Acker and A. Sabelfeld

– Finally, in the rendering step, a graphical representation of each HTML ele-
ment in the DOM is painted in its respective rectangular representation, and
finally drawn onto the user’s screen.

This rendering pipeline is a gradual process that is re-iterated while a browser
loads all the needed resources.

2.2 JavaScript

In 1995, Netscape management told Brendan Eich to create a programming lan-
guage to run in the web browser that “looked like Java.” He created JavaScript
in only 10 days [15]. In addition to browser plugins, JavaScript was another
novel feature of Netscape Navigator 2.0 that supported Netscape’s vision of
the Web as a distributed operating system. In contrast with Java, which was
considered a heavyweight object-oriented language and used to create Java
applets, JavaScript would be Java’s “silly little brother” [3], aimed towards non-
professional programmers who would not need to learn and compile Java applets.

Listing 1.1 shows a simple example of JavaScript. When executed, the code
will prompt for the user’s name and birth-year. It will then calculate the user’s
age based on the current year and display it with a greeting using a pop-up.
This JavaScript example makes use of the prompt() function, the Date object
and the alert() function.

When an HTML document is about to be loaded, and before the rendering
pipeline starts, the browser initializes an instance of the JavaScript engine and
ties it uniquely to the webpage about to be loaded.

The webpage’s developer can use JavaScript to interact with this rendering
pipeline by including JavaScript in several ways. JavaScript can be executed
while the pages is loading, using HTML <script> tags. These script tags can
cause the browser to load external JavaScript and execute them inside the web-
page’s JavaScript execution environment. Script tags can also contain inline
JavaScript, which will equally be loaded and executed. HTML provides a way
to register JavaScript event handlers with HTML elements, which will be called
when e.g. an image has loaded, or the user hovers the mousepointer over a hyper-
link. In addition, JavaScript can register these event handlers itself by querying
and manipulating the DOM tree. Events are not only driven by the user, but
can also be driven programmatically. For instance, JavaScript has the ability

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 37

to use a built-in timer to execute a piece of JavaScript at a certain point in the
future. Likewise, the XMLHttpRequest functionality available in the JavaScript
engine allows a web developer to retrieve Internet resources in the background,
and execute a specified piece of JavaScript code when they are loaded. Lastly,
JavaScript has the ability to execute dynamically generated code through the
eval() function.

2.3 JavaScript APIs

JavaScript’s capabilities inside a web page are limited to the APIs that are offered
to it. Typical functionality available to JavaScript in a web page includes manip-
ulating the DOM, navigating the browser and accessing resources on remote
servers.

Fig. 2. Synthesized model of the emerging HTML5 APIs, from [91].

In the new HTML 5 and ECMAScript 5 specifications, JavaScript gains
access to more and powerful APIs. Figure 2 [17] shows a model of some of these
new HTML 5 APIs, which are further explained below.

Inter-frame communication. Facilitates communication between windows
(e.g. between mashup components). This includes window navigation, as well
as Web Messaging (postMessage).

Client-side storage. Enables applications to temporarily or persistently store
data. This can be achieved via Web Storage, IndexedDB or the File API.

External communication. Features such as CORS, UMP, XMLHttpRequest
level 1 and 2, WebSockets, raw sockets and Web RTC (real-time communica-
tion) allow an application to communicate with remote websites.

Device access. Allows the web application to retrieve contextual data (e.g.
geolocation) as well as system information such as battery level, CPU infor-
mation, ambient sensors and high-resolution timers.

38 S. Van Acker and A. Sabelfeld

Media. Enable a web application to play audio and video fragments, capture
audio and video via a microphone or webcam and manage telephone calls
through the Web Telephony API.

The UI and rendering. Allow subscription to clipboard and drag-and-drop
events, issuing desktop notifications, allow an application to go fullscreen,
populating the history via the History API and create new widgets with Web
Components API and Shadow DOM.

2.4 Web Applications

A web application combines HTML code, JavaScript and other resources from
several web servers, into a functional application that runs in the browser. Unlike
typical desktop applications which need to be installed on a computer’s hard
disk, web applications are accessible through the web browser from anywhere
and do not need to be installed.

A key component in today’s web application, is JavaScript. JavaScript code
in a web application executes in the browser and can communicate with a web
server, which typically also executes code for the web application.

Consider a website wishing to display the latest tweets from a Twitter feed.
Such a widget can be embedded into a web page, as shown in Fig. 3. Without
a client-side programming language such as JavaScript, the web server from
which this web page is retrieved, could gather and insert the latest tweets at
the moment the web page was requested, and insert them into the web page as
HTML-formatted text. When rendered, the visitor would see the latest tweets,
but they would not update themselves in the following minutes because the web
page is static.

Fig. 3. Example of an embedded live Twitter feed (indicated by the rectangle on the
bottom right), from [90].

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 39

Another option is to use JavaScript on the client-side. When the web page is
requested, the web server can insert JavaScript that regularly requests the latest
tweets from the feed and updates the web page to display them. The result is
an active web page that always displays the latest information.

This example consists of only one HTML page and requests information
from one source. Today’s web has many web applications combining a multitude
of third-party resources. Examples are Facebook, YouTube, Google Maps and
more.

2.5 The Same-Origin Policy

If web applications were allowed complete access to a browser, they would be
able to interfere in the operation of other web applications running in the same
browser. Given the powerful APIs briefly discussed in the previous section, a
web application would be able to access another web application’s DOM, local
storage and data stored on remote servers.

To prevent this, web applications are executed in their own little universe
inside the web browser, without knowledge of each other. The boundaries
between these universes are drawn based on the Same-Origin Policy (SOP) [92].

When the root HTML document of web application is loaded from a certain
URL, the origin of that web application is said to be a combination of the scheme,
hostname and port-number of that URL. For instance, a web application loaded
from https://www.example.com has scheme https, hostname www.example.com
and, in this case implicit, port number 443. The origin for this web application
is thus (https,www.example.com,443) or https://www.example.com:443.

The Same-Origin Policy (SOP) dictates that any code executing inside this
origin only has access to resources from that same origin, unless explicitly
allowed otherwise by e.g. a Cross-Origin Resource Sharing (CORS) [94] pol-
icy. In the previous example, the web application from https://www.example.
com:443 cannot retrieve the address book from a webmail application with dif-
ferent origin https://mail.example.com:443 running in the same browser, unless
the latter explicitly allows it.

The same-origin policy is part of the foundation of web security and is imple-
mented in every modern browser. In this text we only consider the restrictions
imposed by the SOP on the execution of JavaScript.

Insecurely written web applications may allow attackers to breach the same-
origin policy by executing their JavaScript code in that web application’s origin.
Once arbitrary JavaScript code can be injected into a web application, it can
take over control and access all available resources in that web application’s
origin.

Consider a typical webmail application, such as Gmail, allowing an authen-
ticated user to access his emails and contact list. The webmail application offers
a user interface in the browser and can send requests to the webmail server to
send and retrieve emails, and manipulate the contact list.

An attacker may manage to lure an authenticated user of this webmail appli-
cation onto a specially crafted website. This website could try to contact the

https://www.example.com
https://www.example.com:443
https://www.example.com:443
https://www.example.com:443
https://mail.example.com:443

40 S. Van Acker and A. Sabelfeld

Fig. 4. A typical web application with third-party JavaScript inclusion. The web appli-
cation running in the browser combines HTML and JavaScript from a trusted source,
with JavaScript from an untrusted source.

webmail server to send and retrieve emails and contact information, just as
the web application would. However, the webmail application’s origin is e.g.
https://webmail.com:443, while the attacker’s website is https://attacker.com:
443. Because of the SOP, JavaScript running on the attacker’s website has no
access to resources of the webmail’s origin.

Now consider what would happen if the webmail application is written inse-
curely, so that an attacker can execute JavaScript in its origin: https://webmail.
com:443. Because the attacker’s code runs inside the same origin as the webmail
application, it has access to the same resources and can also read and retrieve
emails and contact information. Because of the power of JavaScript, an attacker
can do much more. Specially crafted JavaScript can compose spam email mes-
sages and send them out using the victim’s email account, or it could erase the
contact list. It could even download all emails in the mailbox and upload them
to another server.

An attacker with the ability to execute JavaScript in a web application’s
origin can take full control of that web application. In the typical web application
scenario, untrusted JavaScript can be executed in two ways: by including it
legitimately from a third party, or by having it injected through a Cross-Site
Scripting vulnerability in the web application or an installed browser plugin or
extension.

2.6 The Typical Web Scenario and Attacker Model

When discussing Web security, it is important to keep in mind a typical web
application with third-party JavaScript and the actors involved in it. Figure 4
shows such a typical web application where HTML and JavaScript from a trusted

https://webmail.com:443
https://attacker.com:443
https://attacker.com:443
https://webmail.com:443
https://webmail.com:443

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 41

source are combined with JavaScript from an untrusted source. Remember that
all JavaScript, trusted or untrusted, running in a web application’s origin has
access to all available resources.

There are three actors involved in this scenario: The developer of the trusted
web application and the server it is hosted on, the developer of the third-party
JavaScript and the server it is hosted on, and the client’s browser.

Both the client and the trusted web application have a clear motive to keep
untrusted JavaScript from accessing the web application’s resources. The client
will wish to protect his own account and data. The trusted web application has
its reputation to consider and will protect a user’s account and data as well.
Furthermore, the client does not need to steal information from himself and
can use any of his browser’s functionality without needing to use a remote web
application. Likewise, the web application developer owns the origin in which
the web application runs. Stealing data from his own users through JavaScript
is not necessary.

It may be the case that the client has modified his browser and installed
a browser plugin or extension. Such a plugin or extension may be designed to
make the interaction with the web application easier or automated, potentially
circumventing certain defensive measures put in place by the developer of the
web application. In this scenario, the client is still motivated to protect his
account and data, but may be exposing himself to additional threats through
the installed browser plugins or extensions that form additional attack surface.

The third-party script provider however, does not necessarily share the same
desire to protect a user’s data. Even with the best of intentions, a third-party
script provider may be compromised and serving malicious JavaScript without
its knowledge. It may be the case that the script provider has an intrusion-
detection system in place that will detect when it is serving malware, but this
would be wishful thinking. In the worst case, the third-party script provider is
acting maliciously on its own for whatever sinister reason. In any case, the client
and trusted web application cannot trust a third-party script provider with their
secrets.

The attacker model best associated with this actor is the gadget attacker [10].
A gadget attacker is a malicious actor who owns one or more machines on the
Internet, but can neither passively not actively intercept network traffic between
the client’s browser and the trusted web application. Instead, the gadget attacker
has the ability to have the trusted web application’s developer integrate a gadget
chosen by the attacker.

2.7 Third-Party Script Inclusion

Web applications are built from several components that are often included from
third-party content providers. JavaScript libraries like jQuery or the Google
Maps API are often directly loaded into a web application’s JavaScript environ-
ment from third-party script providers.

In a large-scale study of the Web in 2012 [70], Nikiforakis et al. found that
88.45 % of the top 10,000 web sites on the Web, include JavaScript from a

42 S. Van Acker and A. Sabelfeld

Fig. 5. Relative frequency distribution of the percentage of top Alexa websites and the
number of unique remote hosts from which they request JavaScript code, from [70].

third-party script provider. Figure 5 shows the distribution of the number of
third-party script providers each web site includes. While about a third include
JavaScript from at most 5 remote hosts, there are also web sites that include
JavaScript from more than 295 different remote hosts.

Including JavaScript from remote hosts implicitly trusts these hosts not to
serve malicious JavaScript. If these third-party script providers are untrustwor-
thy, or if they have been compromised, a web application may end up executing
untrusted JavaScript code.

As an example, consider jQuery, a popular multi-purpose JavaScript library
used on 60 % of the top million websites on the Web [12]. The host distributing
jQuery was compromised in September 2014 [40], giving the attackers the ability
to modify the library and possibly infect many websites that include the library
directly from http://jquery.com. Fortunately, the attackers did not modify the
jQuery library itself, but used the compromised server to spread malware instead.
Although the JavaScript library itself was not tampered with, the jQuery com-
promise indicates the inherent security threat that third-party script inclusions
can pose.

2.8 JavaScript Sandbox

The gadget attacker, as defined in Sect. 2.6, has the ability to integrate a mali-
cious gadget into a trusted web application. This allows the attacker to execute
any chosen JavaScript code in the JavaScript execution environment of this
trusted web application’s origin and access its sensitive resources.

Given this attacker model, we cannot stop the attacker from presenting a
web application user’s browser with chosen JavaScript. In this paper we are not
concerned with cross-site scripting or other injection attacks and assume that the

http://jquery.com

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 43

attacker already has the ability to execute JavaScript in the JavaScript environ-
ment, no matter through which means this was accomplished. In this scenario,
it would be helpful to have a mechanism to restrict the available functionality
inside the JavaScript environment, according to the least-privilege principle. The
impact of executing (potentially malicious) JavaScript in such an environment
would then be limited to the available functionality. Such an environment, in
which we can isolate JavaScript and restrict its access to certain resources and
functionality, is called a JavaScript sandbox.

From the typical web scenario architecture from Sect. 2.6, keeping in mind
our attacker model, there are only two possible locations that can be considered
to deploy a JavaScript sandboxing mechanism: the trusted web application and
the client’s browser. The third-party script provider is considered untrustworthy.

The developer of the web application and the server hosting it, are trusted
according to the attacker model. This server then offers a possible location to
facilitate JavaScript sandboxing. Before serving the untrusted JavaScript from
the third-party script provider to the client, the code can be reviewed and option-
ally rewritten to make sure it does not abuse the web application’s available
resources.

The client’s browser provides a second location to sandbox JavaScript,
because it is also considered trusted. With direct access to the JavaScript exe-
cution context, a JavaScript sandboxing system located at the client-side has
better means to restrict access to resources and functionality.

JavaScript sandboxing can be achieved by restricting the used JavaScript
language to a subset that can then be verified to be safe, or even rewrite the
JavaScript code into a version which is safe. Such a solution involves a JavaScript
subset and a rewriting mechanism which will be discussed in Sect. 3.

Without restricting or rewriting JavaScript code, JavaScript sandboxing can
be achieved by modifying the environment in which JavaScript executes. Such
a JavaScript sandboxing mechanism can be implemented by modifying the
JavaScript engine in the browser and build in machinery to enforce a certain
policy. This type of JavaScript sandboxing which uses a browser modification
will be discussed in Sect. 4.

Finally, it is also possible to sandbox JavaScript without any language-level
restrictions, rewriting or browser modifications, by repurposing JavaScript func-
tionality to isolate and restrict JavaScript. Such JavaScript sandboxing systems
which do not require browser modifications, are discussed in Sect. 5.

2.9 Conclusion

This section introduced important Web technologies required to understand the
remainder of this text.

Web browsers are used to browse the Web and consist of many different
cooperating subsystems, such as the HTML parser and the JavaScript engine.
Web applications are a combination of HTML pages, JavaScript code and other
resources retrieved from multiple sources running in the browser. Each web
application is isolated and protected in its own origin by the same-origin policy.

44 S. Van Acker and A. Sabelfeld

Web applications often include JavaScript code from third-party script providers,
placing often undeserved trust on third parties, who can then execute unre-
stricted JavaScript code in the web application’s origin.

JavaScript sandboxing can limit the functionality available in a JavaScript
environment and we consider three categories which we will discuss in the next
sections: JavaScript subsets and rewriting systems in Sect. 3, JavaScript sand-
boxing using browser modifications in Sect. 4 and JavaScript sandboxing without
browser modifications in Sect. 5.

3 JavaScript Subsets and Rewriting

JavaScript is a very flexible and expressive programming language which
gives web-developers a powerful tool to build web-applications. However, this
same powerful tool is also available to attackers wishing to execute malicious
JavaScript code in a website visitor’s browser.

Moreover, the powerful nature of JavaScript is problematic because it hinders
code verification efforts which could prove safety properties for a given piece of
JavaScript code.

Example: eval(). Consider for instance the JavaScript fragment in Listing 1.2.
When executed in a browser, this code will prompt a user to input a line of text.
The one-way hashing algorithm MD5 is then used to compute a hash of this
line of text. If the hash matches "3b022ec21226e862450f2155ef836827", the
MD5 hash for "alert(‘hello’)", then the line of text is passed to the eval()
function and executed as JavaScript code.

Given that the MD5 hashing algorithm cannot easily be reversed, it is prac-
tically impossible for a code verification tool to automatically determine the
effect of this code, prior to its execution. The eval() function illustrates a fea-
ture of JavaScript which makes code verification difficult because of its dynamic
nature. For this reason, eval() is considered evil [77] and should be used with
the greatest care, or not be used at all.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 45

Example: Strange Semantics and Scoping Rules. As another example,
the JavaScript fragment in Listing 1.3 illustrates some strange semantic rules
in JavaScript, including the with construct. This particular example showcases
some non-intuitive scoping rules associated with the scope chain. The scope
chain consists of an ordered list of JavaScript objects which are consulted when
unqualified names are looked up at runtime.

Before continuing, the reader is advised to read the code and try to predict
what it will output. The actual output of the code in this example, is listed in
Listing 1.4.

From the output, it appears that both f and x are already defined before
they are even declared, but x has undefined as value. Using with, the user-
defined object o is pushed to the front of the scope chain. The new function f()
is declared, but the subsequent console.log() call seemingly is not aware it.
Instead, the value of f is retrieved from the first object in the scope chain (o),
resulting in 2. Then, a variable var x is declared and assigned 3. The following
console.log() call is aware of this declaration and outputs the correct value.

46 S. Van Acker and A. Sabelfeld

Outside the with loop, the object o has changed to reflect the new value of o.x,
but did not record any change to o.f.

The strange behavior in this example indicates that variable and function
declarations have different semantics in JavaScript. The discrepancy between
variable and function declarations can be explained by a process called “variable
hoisting.” Variable hoisting examines the JavaScript code to be executed and
performs all declarations before any code is actually run.

Fig. 6. The scope chain during execution of the example in Listing 1.3. In this depiction,
the scope chain grows down so that newly pushed objects are at the bottom.

A graphical representation of the scope chain during the execution of this
example is shown in Fig. 6 and can be used as a visual aid during the explanation.

Depicted in Fig. 6a is the result of the variable hoisting before any code is
run. The function f() and the variable x are declared on the global object. While
the variable x has value undefined, the function f() is declared and is assigned
its value immediately.

Next, the object o is pushed to the front of the scope chain. The scope chain
right after this push and right before the start of the with construct, is shown
in Fig. 6b. Any unqualified names are now looked up in the variable o.

The third image shown in Fig. 6c, depicts the state of the scope chain at
the end of the with body. Here, the value of the property x of the object o has
changed to 3 because of the assignment. Also note that the value of f has not
changed because variable hoisting declares and initializes a function in a single
step before the code is run, and so outside of the with body.

Finally, in Fig. 6d, the scope chain is restored because the with body ended.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 47

The strange scoping rules and semantics of with are difficult to reason
about for uninitiated programmers. Widely-acknowledged as being a “JavaScript
wart” [33], it is often recommended to not use the with construct because it may
lead to confusing bugs and compatibility issues [68].

JavaScript Subsets: Verification and Rewriting. The goal of JavaScript
code verification and rewriting is to inspect JavaScript code before it is executed
in a browser, and ensure that it is not harmful.

In the light of the previous examples, it can be desirable to eliminate those
constructs from the JavaScript language that hinder code verification efforts or
cause confusion in general. At the same time, it is also desirable to maintain as
much of the language as possible so that JavaScript is still useful. Such a reduced
version of JavaScript, with e.g. eval() and with construct missing, is called a
JavaScript subset.

The usage of a JavaScript subset must be accompanied by a mechanism which
verifies that a given piece of code adheres to the subset. A deviation from the
subset’s specification can be handled in two ways: rejection and rewriting.

Rejection is the simpler of both options, treating a deviation from the subset
as a hard error and refusing to execute the given piece of code.

Rewriting is a softer alternative, transforming the deviating piece of code into
code which conforms to the subset. Such a rewriting phase can also introduce
extra instrumentation in the code to ensure that the code behaves in a safe way
at runtime.

Interception in a Middlebox. Both the JavaScript subset verification and
rewriting steps necessitate the processing of raw third-party JavaScript code
before it reaches the client’s browser. These steps are to be performed in a
middlebox, a network device that sits on the network path between a client and
a server. Such a middlebox may consist of a physical device unrelated to either
client or server, but it may just as well be collocated with either client or server.

From the attacker model discussed in Sect. 2.6, we can eliminate the third-
party script provider’s site as a possible location to verify and rewrite JavaScript.
We are left with two possible locations for these tasks: the site of the trusted
web application and the client’s site.

A middlebox at the site of the web application, as shown in Fig. 7a,
can equally be implemented as part of a separate network device such as a
load-balancer, reverse proxy or firewall, or can be integrated to be part of the
web-application.

A middlebox at the client’s site, as shown in Fig. 7b, can either be a imple-
mented as a proxy performing the required verification and translation steps, or
as a browser plugin or extension, implementing the proxy’s behavior as part of
the browser.

48 S. Van Acker and A. Sabelfeld

Fig. 7. Architectural overview of a setup where a middlebox is used for code verification
and transformation, at the web application site and at the client site.

ECMAScript 5 Strict Mode. ECMAScript 5 strict mode [65], or JavaScript
strict, is a standardized subset of JavaScript with intentionally different seman-
tics than normal JavaScript.

To use strict mode, a JavaScript developer must only place "use strict";
at the top of a script of function body, as shown in Listing 1.5. Strict mode will
then be enforced for that entire script, or only in the scope of that function.
JavaScript strict mode can be mixed with and function together with normal
JavaScript.

Strict mode removes silent failures and turns them into hard errors that throw
exceptions and halt JavaScript execution. For instance, accidentally creating a
global variable by mistyping a variable name, will throw an error. Likewise,
overwriting a non-writable global variable like NaN or defining an object with a
duplicate key, causes strict mode to throw errors.

Strict mode simplifies variable names and allows better JavaScript engine
optimization by removing the with construct. Through this construct, JavaScript

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 49

engine optimizations may be confused about the actual memory location of a
variable. In addition, strict mode changes the semantics of eval() so that it can
no longer create variable in the surrounding scope.

Strict mode also introduces some fixes with regard to security. It is no longer
possible to access the global object through the this keyword, preventing unfore-
seen runtime leaks. It is also no longer possible to abuse certain variables to walk
the stack or access the caller from within a function.

Finally, strict mode forbids the use of some keywords that will be used in future
ECMAScript versions, such as private, public, protected, interface, . . .

Research in the area of JavaScript subsets and rewriting systems includes
BrowserShield [76], CoreScript [99], ADsafe [16], Facebook JavaScript [88],
Caja [60], Jacaranda [36], Microsoft Live Websandbox [58], Jigsaw [53],
Gatekeeper [32], Blancura [25], Dojo Secure [42], . . . The remainder of this section
discusses a selection of work on JavaScript subsets and rewriting systems.

3.1 BrowserShield

Reis et al. have developed BrowserShield, a dynamic instrumentation system for
JavaScript. BrowserShield parses and rewrites HTML and JavaScript in a mid-
dlebox, rewriting all function calls, property accesses, constructors and control
structures to be relayed through specialized methods of the bshield object. A
client-side JavaScript library then inserts this bshield object, which mediates
access to DOM methods and properties according to a policy, into the JavaScript
execution environment before any scripts run.

BrowserShield aims at preventing the exploitation of browser vulnerabili-
ties, such as MS04-40 [56], a buffer overflow in the Microsoft Internet Explorer
browser caused by overly long src and name attributes in certain HTML ele-
ments. To shield the browser from attacks against these vulnerabilities, Browser-
Shield rewrites both HTML and JavaScript, transforming them to filter out any
detected attacks. BrowserShield does not use a JavaScript subset, because it
needs to be able to rewrite any HTML and JavaScript found on the Internet to
be effective.

Although sandboxing is not the main goal of BrowserShield, its rewriting
mechanism provides all the necessary machinery to accomplish this goal by
tuning the policy. For instance, BrowserShield could have a policy in place
to mediate access to the sensitive eval() function. Listing 1.6 shows the out-
put of BrowserShield’s rewriting mechanism on a JavaScript example using the

50 S. Van Acker and A. Sabelfeld

eval() function. After the rewriting step, any call to eval() in the original code
is relayed through the bshield object, which can mediate access at runtime.

A prototype of BrowserShield was implemented as a Microsoft ISA Server
2004 [55] plugin for evaluation. The plugin in this server-side middlebox is
responsible for rewriting HTML and script elements, and injecting the Browser-
Shield client-side JavaScript library which implements the bshield object
and redirects all JavaScript functionality through it. BrowserShield worked as
expected during evaluation. The performance evaluation indicated a maximum
slowdown of 136x on micro-benchmarks, and on average 2.7x slowdown on ren-
dering a webpage.

3.2 ADsafe

The ADsafe subset, developed by Douglas Crockford, is a JavaScript subset
designed to allow direct placement of advertisements on webpages in a safe way,
while enforcing good coding practices. It removes a number of unsafe JavaScript
features and does not allow uncontrolled access to unsafe browser components.

Examples of the removed unsafe JavaScript features are: the use of global
variables, the use of this, eval(), with, using dangerous object properties like
caller and prototype. ADsafe also does not allow the use of the subscript
operator, except when it can be verified that the subscript is numerical, e.g. a[i]
is not allowed but a[+i] is allowed because +i will always produce a number.
In addition, ADsafe removes all sources of non-determinism such as Date and
Math.random().

To make use of ADsafe, widgets must be loaded and executed via the
ADSAFE.go() method. These widgets must adhere to the ADsafe subset,
although there is no verification built into ADsafe. Instead, it is recommended
to verify subset adherence in any stage of the deployment pipeline with e.g.
JSLint [2], a JavaScript code quality verification tool.

ADsafe does not allow JavaScript code to make use of the DOM directly.
Instead, ADsafe makes a dom object available which provides and mediates access
to the DOM.

No performance evaluation has been published about ADsafe by its author,
who claim that ADsafe “will not make scripts bigger or slower or alter their
behavior” [16]. This claim applies if advertisement scripts are written in the
ADsafe subset directly, and not translated from full JavaScript.

Research on ADsafe has revealed several problems and vulnerabilities, which
allow leaking the document object [83], launch a XSS attack [25], allow the guest
to access properties on the host page’s global object [75], prototype poisoning [47]
and more.

3.3 Facebook JavaScript

Facebook JavaScript (FBJS) is a subset of JavaScript and part of the Facebook
Markup Language (FBML) which was used to publish third-party Facebook

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 51

applications on the Facebook servers. FBJS was designed to allow web applica-
tion developers as much flexibility as possible while at the same time protecting
site integrity and the privacy of Facebook’s users.

The FBJS subset excludes some of JavaScript’s dangerous constructs such as
eval(), with, parent , constructor and valueOf(). A preprocessor rewrites
FBJS code so that all top-level identifiers in the code are prefixed with an
application-specific prefix, thus isolating the code in its own namespace.

Special care is also taken with e.g. the use of this and object indexing
to retrieve properties, making sure that a Facebook application cannot break
out of its namespace. The semantics of ithis are dependent on the way and
location that it is used. A code fragment such as the one listed in Listing 1.7
can return the global object, allowing FBJS code to break out of its namespace.
To remedy this problem, the FBJS rewriter encloses all references to this with
the function ref(), e.g. ref(this). This ref() function verifies the way in
which it is called at runtime, and prevent FBJS code from breaking out of its
namespace. Similarly, the FBJS rewriter also encloses object indices such as
property in object["property"] with idx("property") to also prevent that
this is bound to the global object.

Research on FBJS has revealed some vulnerabilities [46,47], which were
addressed by the Facebook team.

Maffeis et al. [47] discovered that a specially crafted function can retrieve
the current scope object through JavaScript’s exception handling mechanism,
allowing the ref() and idx() functions to be redefined. This redefinition in turn
allows a FBJS code to break out of its namespace and take over the webpage.

After Facebook fixed the previous issues, Maffeis et al. [46] discovered another
vulnerability which allows the global object to be returned on some browsers,
by tricking the fixed idx() function to return an otherwise hidden property,
through a time-of-check-time-of-use vulnerability [62].

3.4 Caja

Google’s Caja, short for Capabilities Attenuate JavaScript Authority, is a
JavaScript subset and rewriting system using a server-side middlebox. Caja rep-
resents an object-capability safe subset of JavaScript, meaning that any code
conforming to this subset can only cause effects outside itself if it is given ref-
erences to other objects. In Caja, objects have no powerful references to other

52 S. Van Acker and A. Sabelfeld

objects by default and can only be granted new references from the outside. The
capability of affecting the outside world is thus reflected by holding a reference
to an object in that outside world.

The Caja subset removes some dangerous features from the JavaScript lan-
guage, such as with and eval(). Furthermore, Caja does not allow variables
or properties with names ending in “ ” (double-underscore), while at the same
time marking variables and properties with names ending in “ ” as private.

Caja’s rewriting mechanism, known as the “cajoler,” examines the guest code
to determine any free variables and wraps the guest code into a function without
free variables. Listing 1.8 shows some example code and its cajoled form is shown
in Listing 1.9 (the cajoledcode variable). In addition, Caja adds inline checks
to make sure that Caja’s invariants are not broken and that no object references
are leaked. The output of the cajoler is cajoled code, which is sent to a client’s
browser.

On the client-side, objects from the host webpage are “tamed” so that they
only expose desired properties before being passed to the cajoled guest code.
These tamed objects with carefully exposed properties are the only references
that cajoled code obtains to the host page. In this way, all accesses to the DOM
can be mediated by taming the global object before passing it to cajoled code.
Listing 1.9 shows how the window object is tamed and passed to the cajoled
form of Listing 1.8.

3.5 Discussion

The JavaScript language makes static code verification difficult, because of its
dynamic nature (e.g. eval()) and strange semantics (e.g. the with construct).
JavaScript subsets eliminate some of JavaScript’s language constructs so that
code may be more easily verified. When required, JavaScript rewriting systems
can transform the code so that policies can also be enforced at runtime.

This section discussed four JavaScript subsets and rewriting mechanisms:
BrowserShield, ADsafe, Facebook JavaScript and Caja. Some of their features
are summarized in Table 1.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 53

T
a
b
le

1
.
C

o
m

p
a
ri

so
n

b
et

w
ee

n
p
ro

m
in

en
t

J
av

a
S
cr

ip
t

sa
n
d
b
ox

in
g

sy
st

em
s

u
si

n
g

su
b
se

ts
a
n
d

re
w

ri
ti

n
g

sy
st

em
s.

S
y
st

em
T
a
rg

et
R

ew
ri

te
s

U
se

s
su

b
se

t
R

em
ov

ed
fe

a
tu

re
s

P
er

fo
rm

a
n
ce

K
n
ow

n

a
p
p
li
ca

ti
o
n

w
ea

k
n
es

se
s

B
ro

w
se

rS
h
ie

ld
P

re
v
en

ti
n
g

b
ro

w
se

r
ex

p
lo

it
a
ti

o
n

Y
N

n
/
a

m
a
x
.
1
3
6
x

sl
ow

d
ow

n
o
n

m
ic

ro
-b

en
ch

m
a
rk

s,
av

g
.

2
.7

x
sl

ow
d
ow

n
o
n

u
se

r
ex

p
er

ie
n
ce

A
D

sa
fe

A
d
v
er

ti
si

n
g

N
Y

e
v
a
l
(
)
,
w
i
t
h
,
t
h
i
s
,

g
lo

b
a
l
va

rs
,
..

.

n
o

sl
ow

d
ow

n
[8

3
]
[2

5
]

[7
5
]
[4

7
]

F
B

J
S

T
h
ir

d
-p

a
rt

y
w

id
g
et

s
Y

Y
e
v
a
l
(
)
,
w
i
t
h
,
..

.
n
o

d
a
ta

[4
7
]
[4

6
]

C
a
ja

T
h
ir

d
-p

a
rt

y
w

id
g
et

s
Y

Y
e
v
a
l
(
)
,
w
i
t
h
,
..

.
n
o

d
a
ta

54 S. Van Acker and A. Sabelfeld

It is noteworthy that all three JavaScript subsets remove with and eval()
from the language, which is in line with the standardized JavaScript strict
mode subset. The only available performance benchmarks are for BrowserShield,
which rewrites code written in full JavaScript, and indicate a heavy perfor-
mance penalty when rewriting JavaScript in a middlebox. Furthermore, the list
of known weaknesses suggest that creating a secure JavaScript subset, although
possible, is not an easy task.

JavaScript subsets and code rewriting have been used in real world web
applications and have proved to be effective in restricting available functional-
ity to selected pieces of JavaScript code. However, restricting the integration of
third-party JavaScript code which conforms to a specific JavaScript subset, puts
limitations on third-party JavaScript library developers which they are unlikely
to follow without incentive. Even if these developers are willing to limit them-
selves to a JavaScript subset, they would need to create a version of their code
for every subset that they need to conform too. For instance, the jQuery devel-
opers would need to create a specific version for use with FBJS, Caja, ADsafe
etc. This is an unrealistic expectation.

The standardization of a JavaScript subset, such as e.g. strict mode, helps
eliminate this disadvantage for third-party JavaScript providers. But even with
a standardized JavaScript subset to aid with code verification, this verification
step itself must still happen in a middlebox located at either the server-side or
the client-side.

Opting for a middlebox on a server-side has the disadvantage that it changes
the architecture of the Internet. From the browser’s perspective, JavaScript code
would need to be requested from the middlebox instead of directly downloading it
from the third-party script provider. Although this poses no problem for generic
JavaScript libraries such as jQuery, it does pose a problem for JavaScript code
which is generated dynamically depending on the user’s credentials, as is the
case with e.g. JSONP. In the latter case the third-party script provider might
require session information to prove a user’s identity, which will not be provided
by the browser when requesting said script from a server-side middlebox.

A client-side middlebox on the other hand, does not suffer from this par-
ticular problem because it has the option of letting the browser connect to it
transparently, e.g. in case of a web proxy. With a client-side middlebox, the web
application developers lose control over the rewriting process. Users of the web
application should setup the middlebox on the client-side in order to make use
of this web application. But requiring users to install a middlebox next to their
browser for a single web application, hurts usability and puts a burden on users
which they might not like to carry.

From a usability viewpoint, it makes more sense to require only a single
middlebox which can be reused for multiple web applications and to integrate
this client-side middlebox into the browser somehow.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 55

4 JavaScript Sandboxing Using Browser Modifications

The previous section showed that JavaScript contains several language con-
structs that cannot easily be verified to be harmless before executing JavaScript
code. Instead of verifying the code beforehand, another approach is to control
the execution of JavaScript at runtime and monitor the effect of the executing
JavaScript to make sure no harm is done.

In a typical modular browser architecture of a browser, as explained in
Sect. 2.1, the JavaScript environment is disconnected from other browser com-
ponents. These other components, such as the DOM, the network layer, the ren-
dering pipeline or HTML parser are not directly accessible to JavaScript code
running in the JavaScript environment. Without these components, JavaScript
is effectively side-effect free and is unable to affect the outside world.

The connection layer between the JavaScript engine and the different browser
components, is an excellent location to mediate access to the powerful function-
ality that these components can provide. In order to enforce a policy at this
location, the browser must be modified with a mechanism that can intercept,
modify and block messages between the JavaScript engine and the different com-
ponents.

Example: Allowing only Function Object Parameters for setTimeout().
Consider the example in Listing 1.10. In this example, the DOM API func-
tion setTimeout() is called with a parameter x. The specification for the
setTimeout() function in the Web application API standard [98] lists two ver-
sions: a version where x must be a Function object, and a version that allows it
to be a String. Passing a string to the setTimeout() function is regarded as a
bad coding practice and considered as evil as using eval() [41]. Because of the
inherent difficulty in verifying JavaScript code before runtime, it can be desir-
able to enforce a policy at runtime which rejects calls to setTimeout() when a
string is passed as an argument.

The setTimeout() function is provided by a browser component which
implements timer functionality. To access this function, the JavaScript engine
must send a message to this component to invoke the timer functionality, as
shown in Fig. 8. At this point, a browser modified with a suitable policy enforce-
ment mechanism can intercept the message, and reject it if the given parameter
is not a Function object.

Forms of Browser Modifications. Browser modifications can take many
forms, but they can generally be split into three groups: browser plugins, browser
extensions and browser core modifications.

56 S. Van Acker and A. Sabelfeld

Fig. 8. Executing the setTimeout() function will send a message from the JavaScript
environment to the component implementing timer functionality, which can be inter-
cepted, modified or rejected by a policy enforcement mechanism in a modified browser.

Browser plugins and browser extensions can add extra functionality to the
browser that can be used to enforce a JavaScript sandboxing technique. They are
however limited in the modifications they can make in the browser environment.

For more advanced modifications to the browser, such as e.g. the JavaScript
engine or the HTML parser, it is typically the case that neither plugins nor
extensions are suitable. Therefor, modifying the browser core itself is required.

Research on JavaScript sandboxing through some form of browser mod-
ification, includes BEEP [38], ConScript [51], WebJail [91], Contego [45],
AdSentry [19], JCShadow [72], Escudo [37], JAMScript [39], . . .

4.1 Browser-Enforced Embedded Policies (BEEP)

Jim et al. introduce Browser-Enforced Embedded Policies, a browser modi-
fication that introduces a callback mechanism, called every time JavaScript
is about to be executed. The callback mechanism provides a hook named
afterParseHook inside the JavaScript environment, which can be overridden
by the web developer.

Every time a piece of JavaScript is to be executed, the browser calls the
afterParseHook callback to determine whether the piece of JavaScript is allowed
to execute or not. To be effective, BEEP must be the first JavaScript code to
load in the JavaScript environment, in order to set up the afterParseHook
callback.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 57

The authors experimented with two types of policies: whitelisting and DOM
sandboxing.

In the whitelisting policy approach, illustrated in Listing 1.11, the
afterParseHook callback function receives the script to be executed, and hashes
is with the SHA-1 hashing algorithm. This hash is then compared with a list
of hashes for allowed scripts. If the hash is found among this whitelist, the
afterParseHook callback returns true and the script is executed.

In the DOM sandboxing policy approach, illustrated in Listing 1.12, HTML
elements in the web page are clearly marked with a noexecute attribute if they

58 S. Van Acker and A. Sabelfeld

can potentially contain untrusted content such as third-party advertising. When
a script is about to be executed, the afterParseHook callback function receives
both the script and the DOM element from which the execution request came.
The afterParseHook callback function then walks the DOM tree, starting from
the given DOM element and following the references to parent nodes. For each
DOM node found in this walk, the callback function checks for the presence of a
noexecute attribute. If such an attribute is found, the afterParseHook callback
function returns false, rejecting script execution.

The authors report two problems with this last approach. First, in an attack
to which the authors refer to as “node-splitting,” an attacker may write HTML
code into the webpage, allowing him to break out of the enclosing DOM element
on which a noexecute attribute is placed. Shown in Listing 1.13, an attacker
could easily break out of the DOM sandboxing policy by closing and opening the
enclosing <div> tag which has the noexecute attribute set, hereby escaping its
associated policy of rejecting untrusted scripts. Second, an attacker can introduce
an HTML frame, which creates a child document. The afterParseHook callback
function inside this child document would not be easily able to walk up the
parent’s DOM tree to check for noexecute attributes.

BEEP was implemented in the Konqueror and Safari browsers, and partially
in Opera and Firefox. Performance evaluation indicates an average of 8.3 % and
25.7 % overhead on the loadtime of typical webpages for a whitelist policy and
DOM sandboxing policy respectively.

4.2 ConScript

Meyerovich et al. present ConScript, a client-side advice implementation for
Microsoft Internet Explorer 8. ConScript allows a web developer to wrap a func-
tion with an advice function using around advice. The advice function is regis-
tered in the JavaScript engine as deep advice so that it cannot be altered by an
attacker.

As with BEEP, ConScript’s policy enforcement mechanism must be config-
ured before any untrusted code gains access to the JavaScript execution envi-
ronment. ConScript introduces a new attribute policy to the HTML <script>
tag, in which a web developer can store a policy to be enforced in the current
JavaScript environment. When the web page is loaded, ConScript parses this
policy attribute and registers the contained policy.

Unlike shallow advice, which is within reach of attackers and must be secured
in order to prevent tampering by an attacker, ConScript registers the advice
function as “deep advice” inside the browser core, out of reach of any potential
attacker.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 59

Listing 1.14 shows a ConScript policy being defined in the head of a web
page. The policy in this particular example enforces the usage of “HttpOnly” [57]
cookies, a version of HTTP cookies which cannot be accessed by JavaScript. To
achieve this goal, the policy defines a function HttpOnly which simply throws
an exception, and registers this function as “around” advice on the getter and
setter of the cookie property of the document object, from which regular cookies
are accessible in JavaScript.

Using around advice as an advice function allows a policy writer full freedom
to block or allow a call to an advised function, possibly basing the decision on
arguments passed to the advised function at runtime.

ConScript uses a ML-like subset of JavaScript with labeled types and formal
inference rules as its policy language, which can be statically verified for common
security holes. To showcase the power of ConScript and its policy language, the
authors define 17 example policies addressing a variety of observed bugs and
anti-patterns, such as: disallowing inline scripts, restricting XMLHttpRequests
to encrypted connections, disallowing cookies to be leaked through hyperlinks,
limiting popups and more.

ConScript was implemented in Microsoft Internet Explorer 8 and its perfor-
mance evaluated. On average, ConScript introduces a slowdown during micro-
benchmarks of 3.42x and 1.24x after optimizations. The macro-benchmarks are
reported to have negligible overhead.

4.3 WebJail

Van Acker et al. propose WebJail, a JavaScript sandboxing mechanism which
uses deep advice functions like ConScript.

In WebJail, HTML iframe elements are used as the basis for a sandbox. A
new policy attribute for an iframe element allows a web developer to specify
the URL of a WebJail policy, separating concerns between web developers and
policy makers.

The authors argue that an expressive policy language such as ConScript’s
can cause confusion with the integrators who need to write the policy, thus
slowing the adoption rate of a sandboxing mechanism. In addition, they warn
for a scenario dubbed “inverse sandbox,” in which the policy language is so
expressive that an attacker may use it to attack a target web application by

60 S. Van Acker and A. Sabelfeld

sandboxing it with a well-crafted policy. For instance, if the policy language is
the JavaScript language, an attacker may define a policy on an iframe to inter-
cept any cookie-access and transmit these cookies to an attacker-controlled host.
A target web-application could then be loaded into this iframe and would, upon
accessing its own cookies, trigger the policy mechanism which leaks the cookies
to the attacker.

To avoid this scenario, WebJail abstracts away from an overly expressive
policy language and defines its own secure composition policy language. Based
on an analysis of sensitive JavaScript APIs in the HTML5 specifications, the
authors divided the APIs into nine categories. The policy consists of a file writ-
ten in JSON, describing access rights for each of these categories. Access to
a category of sensitive JavaScript APIs in WebJail can be granted or rejected
with "yes" or "no", or determined based on a whitelist of allowed parameters.
Listing 1.15 shows an example WebJail policy which allows inter-frame communi-
cation ("framecomm": "yes"), external communication to Google and YouTube
("extcomm": ["google.com", "youtube.com"]), but disallowing access to the
Device API ("device": "no").

WebJail’s architecture, depicted in Fig. 9 consists of three layers to process
an integrator’s policy and turn it into deep advice. The policy layer reads an
iframe’s policy and combines with the policies of any enclosing iframes. Policy
composition is an essential step to ensure that an attacker cannot easily escape
the sandbox by creating a child document without a policy defined on it. The
advice construction layer processes the composed policy and creates advice func-
tions for all functions in the specified JavaScript APIs. Finally, the deep aspect
weaving layer combines the advice functions with the API functions, turning
them into deep advice and locking them safely inside the JavaScript engine.

WebJail was implemented in Mozilla Firefox 4.0b10pre for evaluation. The
performance evaluation indicated an average of between 6.4 % and 27 % for
micro-benchmarks and an average of 6 ms loadtime overhead for macro-
benchmarks.

4.4 Contego

Luo et al. design and implement Contego, a capability-based access control sys-
tem for browsers.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 61

Fig. 9. The WebJail architecture consists of three layers: the policy layer, the advice
construction layer and the deep aspect weaving layer, from [91].

In a capability-based access control model, the ability of a principal to per-
form an action is called a capability. Without the required capability, the prin-
cipal cannot perform the associated action.

Contego’s authors identified a list of capabilities in browsers, among which:
performing Ajax requests, using cookies, making HTTP GET requests, click-
ing on hyperlinks, They list three types of actions that can be associated
with those capabilities, based on where they originate: HTML-induced actions,
JavaScript-induced actions and event-driven actions.

Contego allows a web developer to assign capabilities to <div> elements
in the DOM tree, by assigning a bit-string to the cap attribute. Each bit in
the bit-string indicates whether a certain capability should be enabled ("1") or
disabled ("0") for all DOM elements enclosed by the <div> element on which
the capabilities apply. The meaning of each bit in the bit-string is shown in
Listing 1.16, which also shows an example policy disabling access to cookies.

62 S. Van Acker and A. Sabelfeld

The authors warn about a node-splitting attack when an attacker is allowed
to insert content into a <div> element. Just as with BEEP’s DOM sandboxing
policy, care should be taken to avoid that an attacker can insert a closing tag
and escape the policy. In addition, Contego has measures in place to ensure
that an attacker cannot override capability restrictions by e.g. setting a new cap
attribute either in HTML or in JavaScript. Cases where principals with different
capabilities interact are handled by restricting the actions to the conjunction of
the capability sets.

To implement Contego in the Google Chrome browser, the authors extended
the browser with two new components: the binding system and the enforcement
system. The binding system assigns and tracks individual principal’s capabilities
within a webpage. The enforcement system then uses the information from the
binding system to allow or deny actions at runtime.

The performance evaluation shows an average overhead of about 3 % on
macro-benchmarks.

4.5 AdSentry

Dong et al. propose AdSentry, a confinement solution for JavaScript-based adver-
tisements, which executes the advertisements in a special-purpose JavaScript
engine.

An architectural overview of AdSentry is shown in Fig. 10. Next to the regular
JavaScript engine, AdSentry implements an additional JavaScript engine, called
the shadow JavaScript engine, as a browser plugin. The browser plugin is built
on top of the Native Client (NaCl) [30] sandbox, which protects the browser

Fig. 10. The AdSentry architecture: advertisements are executed in a shadow
JavaScript engine which communicates with the Page Agent via the policy enforcer,
from [19].

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 63

and the rest of the operating system from drive-by-download attacks occurring
inside the sandbox.

Advertisements can either be explicitly marked for use with AdSentry, or
they can be automatically detected by AdBlock Plus. When an advertisement is
detected in a webpage, AdSentry assigns it a unique identifier and communicates
with the shadow JavaScript engine to request that the code be executed there.
The shadow JavaScript engine then creates a new JavaScript context with its
own global object and virtual DOM and executes the advertisement.

The virtual DOM inside the shadow JavaScript context has no access to the
real webpage on which the advertisement is supposed to be rendered. Instead,
the methods of the virtual DOM are stubs which trigger the shadow JavaScript
engine to communicate with a Page Agent in the real JavaScript engine, request-
ing access on behalf of the advertisement. The communication between the Page
Agent and the shadow JavaScript engine is facilitated with a data exchange pro-
tocol, shown in Listing 1.17. This communication channel is also where AdSen-
try’s enforcement mechanism operates, granting or blocking access to the real
webpage’s DOM according to a user-specified policy. No information is given on
how this policy can be specified.

AdSentry was implemented in Google Chrome, and uses a standalone ver-
sion of SpiderMonkey, Mozilla’s JavaScript engine, as the shadow JavaScript
engine. The performance evaluation indicates an average overhead of 590x on
micro-benchmarks when traversing the boundary between the shadow JavaScript
engine and the Page Agent, and an around 3 % to 5 % overall loadtime overhead
on macro-benchmarks.

4.6 Discussion

This section discussed five browser modifications that aim to isolate and restrict
JavaScript code in the web browser: BEEP, ConScript, WebJail, Contego and
AdSentry. Some of their features are summarized in Table 2.

JavaScript sandboxing through a browser modification allows the integration
of third-party scripts written in the full JavaScript language. Web applications
can be built with a much richer set of JavaScript libraries, since those JavaScript
libraries are not confined to a subset of JavaScript.

In addition, a browser modification can control the execution of JavaScript
inside the browser, allowing the construction of efficient custom-built machinery
to enforce a sandboxing policy, ensuring low overhead.

64 S. Van Acker and A. Sabelfeld

T
a
b
le

2
.
C

o
m

p
a
ri

so
n

b
et

w
ee

n
p
ro

m
in

en
t

J
av

a
S
cr

ip
t

sa
n
d
b
ox

in
g

sy
st

em
s

u
si

n
g

a
b
ro

w
se

r
m

o
d
ifi

ca
ti

o
n
.

S
y
st
e
m

T
a
rg

e
t

Is
o
la
ti
o
n

R
e
st
ri
c
ts

P
o
li
c
y

D
e
p
lo
y
m
e
n
t

B
ro
w
se
r

P
e
rf
o
rm

a
n
c
e

K
n
o
w
n

a
p
p
li
c
a
ti
o
n

u
n
it

e
x
p
re
ss
iv
e
n
e
ss

w
e
a
k
n
e
ss
e
s

B
E
E
P

re
st
ri
c
t
sc
ri
p
ts

e
n
ti
re

J
S

e
n
v
ir
o
n
m
e
n
t

e
x
e
c
u
ti
o
n

o
f

J
S

sc
ri
p
ts

fu
ll

J
a
v
a
S
c
ri
p
t

to
in
d
ic
a
te

“
a
c
c
e
p
t”

o
r

“
re
je
c
t”

a
f
t
e
r
P
a
r
s
e
H
o
o
k

im
p
le
m
e
n
ta

ti
o
n

b
y
in
te
g
ra

to
r

K
o
n
q
u
e
ro

r,

S
a
fa
ri
,

p
a
rt
ia
ll
y

O
p
e
ra

,

p
a
rt
ia
ll
y

F
ir
e
fo
x

8
.3

%
to

2
5
.7

%

m
a
c
ro

n
o
d
e
-s
p
li
tt
in
g

C
o
n
S
c
ri
p
t

sa
n
d
b
o
x
in
g

e
n
ti
re

J
S

e
n
v
ir
o
n
m
e
n
t

?
?
?
a
n
y
th

in
g

h
ig
h
:
o
w
n

J
S

su
b
se
t

p
o
l
i
c
y
a
tt
ri
b
u
te

o
n

sc
ri
p
t
e
le
m
e
n
t

M
S
IE

1
.2
4
x
to

3
.4
2
x

m
ic
ro

,

n
e
g
li
g
ib
le

m
a
c
ro

W
e
b
J
a
il

sa
n
d
b
o
x
in
g

e
n
ti
re

J
S

e
n
v
ir
o
n
m
e
n
t

+
su

b
fr
a
m
e
s

a
c
c
e
ss

to

se
n
si
ti
v
e

A
P
Is

y
e
s/

n
o
/
w
h
it
e
li
st

p
o
l
i
c
y
a
tt
ri
b
u
te

o
n

if
ra

m
e
e
le
m
e
n
t

F
ir
e
fo
x

6
.4

%
to

2
7
%

m
ic
ro

,
6
m
s

m
a
c
ro

C
o
n
te
g
o

re
st
ri
c
t

c
a
p
a
b
il
it
ie
s

<
d
i
v
>
e
le
m
e
n
t

c
a
p
a
b
il
it
ie
s

b
it
st
ri
n
g

c
a
p
a
tt
ri
b
u
te

o
n

d
iv

e
le
m
e
n
t

C
h
ro

m
e

3
%

m
a
c
ro

A
d
S
e
n
tr
y

a
d
v
e
rt
is
e
m
e
n
t

sh
a
d
o
w

J
a
v
a
S
c
ri
p
t

e
n
g
in
e

a
c
c
e
ss

to
th

e

D
O
M

?
?
?

?
?
?

C
h
ro

m
e

5
9
0
x
m
ic
ro

,
3
%

to
5
%

m
a
c
ro

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 65

However, modified browsers pose a problem with regard to dissemination of
the software and compatibility with browsers and browser versions. End-users
must take extra steps in order to enjoy the protection of this type of JavaScript
sandboxing systems.

Because end-users do not all use the same browser, it becomes impossible to
assure that all end-users can keep using their own favorite browser. In the most
fortunate case, the developers of this browser core modification may find a way
to port their sandboxing system to all browsers. Even if this is the case, a browser
core modification is a fork in a browser’s code base and must be maintained to
keep up with changes in the main code base, which can be a significant time
investment.

Likewise, a browser plugin or extension implementing a certain JavaScript
sandboxing system, must also be created for all browser vendors and versions, to
enable a wide range of users to make use of it. Such a plugin or extension must
equally be maintained for future releases of browsers, which can also require a
significant time investment.

All in all, modifying a browser through a fork of browser code, a browser
plugin or a browser extension in order to implement a JavaScript sandboxing
system, is acceptable for a prototype, but proves difficult in a production envi-
ronment.

An alternative approach is to convince major browser vendors to implement
the browser modification as part of their main code base, or even better, pass it
through the standardization process so that all browser vendors will implement
it. This approach will ensure that the sandboxing technique ends up in a user’s
favorite browser automatically and that the code base is maintained by the
browser vendors themselves.

Unfortunately, getting a proposal accepted by the standardization commit-
tees is not a straightforward task, partly because no solution is widely accepted
as being “The Solution.”

In recent years, the standardization process has yielded new and power-
ful functionality that could be used to build a JavaScript sandboxing system.
Through this approach, a JavaScript sandboxing system would not need any
browser modification at all and work out of the box on all browsers that support
the latest Web standards.

5 JavaScript Sandboxing Without Browser Modifications

The previous section showed that a sandboxing mechanism implemented as a
browser modification, can be used to restrict JavaScript functionality available
to untrusted code at runtime. A browser modification is useful for proof-of-
concept evaluation of a sandboxing mechanism, but proves problematic in a
production environment. Not only must a browser modification be maintained
with new releases of the browser on which it is based, but end-users must also
be convinced to install the modified browser, plugin or extension.

66 S. Van Acker and A. Sabelfeld

Given the powerful nature of JavaScript, it is possible to isolate and restrict
untrusted JavaScript code at runtime, without the need for a browser modifi-
cation. This approach is challenging because the enforcement mechanism will
execute in the same execution environment as the untrusted code it is trying to
restrict. Special care must be taken to ensure that the untrusted code cannot
interfere with the enforcement mechanism, and this without any added function-
ality to protect itself from the untrusted code.

Isolation Unit and Communication Channel. Following the same rationale
as in the previous section, a good approach is to create an isolated unit (or
sandbox) which is completely cut off from any sensitive functionality, reducing
it to a side-effect free execution environment. Figure 11 sketches the relationship
between a sandbox and the real JavaScript environment.

Fig. 11. Relationship between the real JavaScript environment and a sandbox. The
sandbox can only interact with a Virtual DOM, which forwards it via the policy enforcer
to the real DOM.

Any untrusted code executed in the sandbox, will not be able to affect the
outside world, except through a virtual DOM introduced into this sandbox.
To access the outside world, the isolated code must make use of the virtual
DOM, which will forward the access request over a communication channel to
an enforcement mechanism. If the access is allowed, the enforcement mechanism
again forwards the access request to the real JavaScript environment.

New and Powerful ECMAScript 5 Functionality. The rise of Web 2.0
resulted in the standardization of ECMAScript 5, which brought new and pow-
erful functionality to mainstream browsers. This new functionality can help with
the isolation and restriction of untrusted JavaScript code.

An example of such functionality is the WebWorker API, or WebWorkers [93].
WebWorkers allow web developers to spawn background workers to run in par-
allel with a web page. These workers are intended to perform long-running com-

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 67

putational tasks in the background, while keeping web pages responsive to user
interaction.

WebWorkers have a very restricted API available to them, which only allows
them to do very basic tasks such as set timers, perform XMLHttpRequests
or communicate through postMessage(). In particular, WebWorkers have no
access to the DOM. Communication between WebWorkers and a web page is
achieved through the postMessage API.

Having new ECMAScript 5 functionality in place in browsers today,
opens new options for JavaScript sandboxing mechanisms which previously
required browser modifications or code verification/transformation in a separate
middlebox.

For instance, because WebWorkers restrict JavaScript code from accessing
the DOM and other sensitive JavaScript functionality, they can be used as the
isolation unit for a JavaScript sandboxing mechanism. TreeHouse, discussed far-
ther in this section, uses WebWorkers as its isolation unit.

Research on JavaScript sandboxing without browser modification includes
Self-protecting JavaScript [48,74], AdJail [84], Object Views [50], JSand [6],
TreeHouse [35], Privilege-separated JavaScript [7], SafeScript [85], Pivot [52],
IceShield [34], SafeJS [14], Two-tier sandbox [73], Virtual Browser [13], . . . A
selection of this work is discussed in the following sections.

5.1 Self-Protecting JavaScript

Phung et al. propose a solution where DOM API functions are replaced by wrap-
pers which can optionally call the original functions, to which the wrapper has
unique access. The wrappers can be used to enforce a policy and, with the abil-
ity to store state inside the wrapper function’s scope, allow the enforcement of
very expressive policies. Access to sensitive DOM properties can also be limited
by defining a getter and setter method on them which implements a restricting
policy.

68 S. Van Acker and A. Sabelfeld

An example of how a DOM function is replaced with a wrapper, is shown
in Listing 1.18. In this example, a wrapper for the function alert() is created
with a built-in policy to only allow the function to be called twice. A reference
to the original native implementation of alert() is kept inside the wrapper’s
scope chain, making it only accessible by the wrapper itself. Finally, the original
alert() function is replaced by the wrapper.

It is vital that the wrappers are created and put in place of the original DOM
functions before any other JavaScript runs inside the JavaScript environment,
to achieve full mediation. If any untrusted JavaScript code is run before the
wrappers are in place, an attacker may keep copies of the original DOM functions
around, thus bypassing any policies that are placed on them later.

The authors warn that references to DOM functions can also be retrieved
through the contentWindow property of newly created child documents. To pre-
vent this, access to the contentWindow property is denied.

A bug in the delete operator of older Firefox browsers also allows overwritten
DOM functions to be restored to references to their original native implementa-
tions, by simply deleting the wrappers.

A performance evaluation of Self-protecting JavaScript revealed a average of
6.33x slowdown on micro-benchmarks, and a 5.37 % average overhead for macro-
benchmarks.

Magazinius et al. [48] analyzed Self-protecting JavaScript and uncovered sev-
eral weaknesses and vulnerabilities that allow the sandboxing mechanism to be
bypassed by an attacker.

They note that the original implementation does not remove all references to
DOM functions from the JavaScript environment, leaving them open to abuse
from attackers. The alert() function for instance, has several aliases (such as
window. proto .alert()), which must all be replaced with a wrapper for Self-
protecting JavaScript to be effective.

Equally, simply denying access to the contentWindow property is not suffi-
cient to prevent references to DOM functions from being retrieved from child
documents. These references can also be access from child documents through
the frames property of the window object, or from the parent document through
the parent property of the window object.

They also point out that Self-protecting JavaScript is vulnerable to several
types of prototype poisoning attacks, allowing an attacker to get access to the
original, unwrapped DOM functions as well as the internal state of a policy
wrapper.

Lastly, they remind that an attacker could abuse the caller chain during a
wrapper’s execution, by gaining access to the non-standard caller property
available in functions, allowing an attacker to gain access to the unwrapped
DOM functions.

Finally, Magazinius et al. offer solutions to remedy these vulnerabilities
by making sure any functions and objects used inside a wrapper are discon-
nected from the prototype chain to prevent prototype poisoning, and coercing

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 69

parameters of functions inside wrappers to their expected types in order to fur-
ther reduce the attack surface.

5.2 AdJail

Ter Louw et al. propose AdJail, an advertising framework which enforces
JavaScript sandboxing on advertisements.

AdJail allows a web developer to restrict what parts of the web page an
advertisement has access to, by marking HTML elements in that web page with
the policy attribute. This policy attribute contains the AdJail policy that is
in effect for a certain HTML element and its sub-elements.

The AdJail policy language allows the specification of what HTML elements
can be read or written to, and whether that access extends to its sub-elements.
The web developer can also define a policy to enable or disable images, Flash or
iframes, restrict the size of an advertisement to a certain height and width and
allow clicked hyperlinks to open web pages in a new window.

By default, an advertisement is positioned in the “default ad zone,” an HTML
<div> element that aids the web developer in positioning the advertisement in
the web page. The default policy is set to “deny all.”

An overview of AdJail is shown in Fig. 12. The advertisement is executed in
a “shadow page,” which is a hidden iframe with a different origin, so that it is
isolated from the real web page. Those parts of the real web page’s DOM that
are marked as readable by the advertisement, are replicated inside the shadow
page before the advertisement executes.

Changes made by the advertisement inside the shadow page, are detected
by hooking into the DOM of the shadow page, and communicated to the real
page through a tunnel script. The changes are replicated on the real page if

Fig. 12. Overview of AdJail, showing the real page, the shadow page and the tunnel
scripts through which they communicate and on which the policy is enforced, from [84].

70 S. Van Acker and A. Sabelfeld

allowed by the policy. Likewise, events generated by the user on the real page,
are communicated to the shadow page so that the advertisement can react to
them.

Because AdJail is aimed at sandboxing advertisements, special care must be
taken to ensure that the advertisement provider’s revenue stream is not tampered
with. In particular, AdJail takes special precautions to ensure that content is
only downloaded once, to avoid duplicate registration of “ad impressions” on
the advertisement network. Furthermore, AdJail leverages techniques used by
BLUEPRINT [86] to ensure that an advertisement does not inject scripts into
the real webpage.

Performance benchmarks indicate that AdJail has an average overhead of
29.7 % on ad rendering, increasing the rendering time from an average of 374 ms
to 532 ms. Further analysis showed that AdJail has an average overhead of 25 %
on the entire page loadtime, increasing it from 489 ms to 652 ms.

5.3 Object Views

Meyerovich et al. introduce Object Views, a fine grained access control mecha-
nism over shared JavaScript objects.

An “Object View” is a wrapper around an object that only exposes a subset
of the wrapped object’s properties to the outside world. The wrapper consists
of a proxy between the wrapped object and the outside world, and a policy that
determines what properties should be made available through the proxy.

Sketched in Listing 1.19, an Object View contains a getter and setter
method for each property on the wrapped object, and a proxy function for each

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 71

function object. Writing a value to a property on an Object View, triggers the
setter function which may eventually write the value to the wrapped object’s
respective property. The getter function works in a similar way for reading prop-
erties. Using a property of an Object View as a function and calling it, triggers
the proxy function. Object Views are applied recursively to a proxy function’s
return value.

Creating two Object Views that wrap the same object, poses a problem with
regard to reference equality. Although comparing the underlying objects of both
object views would result in an equality, this would not be the case for the
two wrapping Object Views. This inconsistent view can be prevented by only
wrapping an object with an Object View once, and returning that same Object
View every time a new Object View for the underlying object is requested.

Object views offer a basis for fine-grained access control through an aspect
system. Each getter, setter and proxy function on an Object View can be com-
bined with an “around” advice function, allowing the enforcement of an expres-
sive policy.

Because of its size and complexity, manually wrapping the entire DOM with
object views would be a difficult and error-prone process. Instead, the authors
advocate a declarative policy system which is translated into advice for the
Object Views.

The declarative policy is specified by a set of rules consisting of an XPath [95]
selector to specify a set of DOM nodes and an Enabled flag to indicate that
the selected nodes may be accessed. Optionally, each rule can be extended
with default and specific rules for each field of a DOM element. An example
rule, shown in Listing 1.20, specifies that all DOM elements of class example
and its subtree can be accessed (enabled = true) and is by default read-only
(defaultFieldActions). A specific rule for a field called shake allows that field
to be read and invoked as a method.

The authors discuss using Object Views in two scenarios: a scenario where
JavaScript is rewritten1 to make use of Object Views for same-origin usage, and
a scenario where Object Views are used in cross-origin communication between
frames.
1 This work could also be listed under Sect. 3, but since the published paper mostly

focuses on the cross-origin communication which does not require browser modifica-
tions, it is listed in this section instead.

72 S. Van Acker and A. Sabelfeld

In the latter scenario, each frame provides an Object View around its
enclosed document to only expose the view required by the other. Communi-
cation between the frames is handled by marshaling requests for the other side
to a string and transmitting it with postMessage(). Because each Object View
has its own built-in policy, the communication channel does not need to enforce
a separate policy.

The performance of Object Views was evaluated on a scenario where several
objects are wrapped in a view, but where the communication between Object
Views is not marshaled and transmitted with postMessage(). For this scenario,
the average overhead is between 15 % and 236 % on micro-benchmarks.

5.4 JSand

Agten et al. propose JSand, a JavaScript sandboxing mechanism based on Secure
ECMAScript (SES).

Secure ECMAScript (SES) is a subset of ECMAScript 5 strict which forms a
true object-capability language, guaranteeing that references to objects can only
be obtained if they were explicitly passed to an object-capability environment.

Without a reference to the DOM, JavaScript code running in a SES environ-
ment cannot affect the outside world. JSand wraps the global object using the
Proxy API [20] and passes a reference to this proxied global object to the SES
environment. Any access to the global object from inside the SES environment,
will traverse the proxy wrapper on which a policy can be enforced.

Without additional care, JavaScript inside the SES environment with access
to this proxied global object, can invoke methods that return unwrapped
JavaScript objects. Such an oversight can cause a reference to the real JavaScript
to leak into the SES environment, making JSand ineffective. To avoid this, JSand
wraps return values recursively, according to the Membrane Pattern [61]. In
addition, JSand preserves pointer equality between wrappers around the same
objects, by storing created wrappers in a cache and returning an existing wrap-
per if one already exists.

Using the Membrane pattern, any access to the outside world from inside
the SES environment, can be intercepted and subjected to a policy enforcement
mechanism. The authors do not specify a specific policy implementation, but
point out that JSand’s architecture allows for expressive fine-grained and stateful
policies.

There are two important incompatibilities between the SES subset and
ECMAScript 5 code, which makes legacy JavaScript incompatible with JSand.

The first is the mirroring of global variables with properties on the global
object and vice versa. When a global variable is created under ECMAScript
5, a property with the same name is created on the global object. Similarly, a
property created on the global object results in the creation of a global variable
of the same name. This ECMAScript 5 behavior is not present in SES and can
cause legacy scripts who depend on that behavior, to break.

Second, because SES is a subset of ECMAScript 5 strict, it does not support
the with construct, does not bind this to the global object in a function call and

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 73

does not create new variables during eval() invocations. Legacy scripts making
use of this behavior will also break in SES.

To be backwards compatible with legacy JavaScript that does not conform to
SES, JSand applies a client-side JavaScript rewriting step where needed before
sandboxing the guest JavaScript code. The UglifyJS [59] JavaScript parser is
used to parse JavaScript into an Abstract Syntax Tree (AST). This tree is then
inspected and modified for legacy ECMAScript 5 constructs that will break in
SES. In particular, JSand rewrites guest code so that the mirroring of global
variables and properties of the global object in ECMAScript 5, is replicated
explicitly. JSand also finds all occurrences to the this keyword and replaces it
with an expression that replaces it with window if its value is undefined, thus
also replicating ECMAScript 5 behavior.

JSand’s performance evaluation indicates an average 9x slowdown for
function-calls than traverse the membrane wrapper, resulting in an average of
31.2 % overhead in user experience when interacting with a realistic web appli-
cation. The load-time of a web application is increased on average by 365 % for
legacy web applications using ECMAScript 5 code which requires the rewriting
step. The authors expect that this rewriting step will not be needed in the future,
so that the average load-time overhead will drop to 203 %.

5.5 TreeHouse

Ingram et al. propose TreeHouse, a JavaScript sandboxing mechanism built
on WebWorkers. As explained previously, WebWorkers are parallel JavaScript
execution environments without a usual DOM, which can only communicate
through postMessage().

An overview of TreeHouse’s architecture is shown in Fig. 13. TreeHouse loads
guest JavaScript code into a WebWorker to isolate it from the rest of a web page.
WebWorkers do not have a regular DOM, so TreeHouse installs a broker with a
virtual DOM inside the WebWorker that emulates the DOM of a real webpage.

Fig. 13. TreeHouse architectural overview. Sandboxes consist of WebWorkers with a
virtual DOM. Access to this virtual DOM is mediated by broker according to a policy.
If access is allowed, the request is forwarded to the real page’s monitor, from [35].

74 S. Van Acker and A. Sabelfeld

When this virtual DOM is accessed, the broker first consults the policy to deter-
mine whether access is allowed. If access is allowed, the broker then forwards
the access request to the real page’s “TreeHouse Monitor” using postMessage(),
which handles the access to the real page’s DOM.

TreeHouse offers two deployment options to web developers wishing to use
its sandboxing mechanism. One option is to create a sandbox with a policy and
load JavaScript in it manually using the TreeHouse API. Another option, is more
user-friendly and allows a web developer to specify guest code to be sandboxed,
in actual <script> elements. These <script> elements should have their type
attribute set to "text/x-treehouse-javascript" to prevent them from being
executed by the JavaScript engine in the host page. The special script type is
also automatically detected by the TreeHouse Monitor, which will create sand-
boxes and load the script inside them.

An example use of TreeHouse is shown in Listing 1.21. Here, the first
<script> element shows how a sandbox is created called "worker1", with access
to the DOM element with id "#tetris" and its subtree. The "tetris.js" script
is then loaded inside the sandbox and executed. The second <script> tag ref-
erences the sandbox "worker1" and indicates through the "data-treehouse-
sandbox-policy" attribute that the script "tetris-policy.js" should be
interpreted as a policy instead of guest JavaScript code.

A TreeHouse policy consists of a mapping between DOM elements and rules.
There are three types of rules: a rule can be expressed by a boolean, a function
returning a boolean, or a regular expression. If the rule has a boolean value of
true, access to the associated DOM element is allowed. If the rule is a function,
that function is invoked at policy enforcement time by the broker, and access is
allowed if the return value is true. Finally, if the rule is a regular expression, it
refers to a property. If the regular expression matches a property’s name, then
the guest code is allowed to set a value to that property.

Because WebWorkers are concurrent by design, they present a problem when
multiple TreeHouse sandboxes try to access to same DOM element in a real page.
Such simultaneous access would cause a race condition and result in undefined

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 75

behavior. To prevent such a race condition, TreeHouse allows a DOM element
to only be accessed by one sandbox.

Another concurrency problem arises when the guest code makes use of a
synchronous method such as window.alert(). The guest code will expect the
JavaScript execution to block, waiting for the end-user to click away the pop-up
window. In reality, TreeHouse’s communication channel between the host page
and the WebWorkers is asynchronous because postMessage() is asynchronous.
When calling window.alert() in the guest code, the broker would send an
asynchronous message to the host page, and let code execution in the sandbox
resume immediately. This conflicts with the guest code’s expected behavior. The
authors chose not to handle this case and raise a runtime exception when guest
code calls synchronous methods.

The performance benchmarks for TreeHouse show an average slowdown of
15x to 176x for macro-benchmarks, and an average of 7x to 8000x slowdown on
micro-benchmarks for method invocations on the DOM.

5.6 SafeScript

Ter Louw et al. propose SafeScript, a client-side JavaScript transformation tech-
nique to isolate JavaScript code in namespaces.

SafeScript makes use of Narcissus [67], a JavaScript meta-interpreter, to
rewrite JavaScript code on the client-side and instrument the code so that it can
interpose on the property resolution mechanism. Narcissus is a full JavaScript
interpreter and can correctly handle all of JavaScript’s strange semantics, its
scoping, prototype chains and thus also the property resolution mechanism.

Through this rewriting step, SafeScript can separate JavaScript code in
namespaces by manipulating the property resolution mechanism for each sand-
boxed script so that it ultimately resolves to its own isolated global object.
Because property resolution is under SafeScript’s control, it can effectively medi-
ate access to the real DOM when sandboxed JavaScript guest code requests
access to it.

76 S. Van Acker and A. Sabelfeld

Listing 1.22 shows how SafeScript can be used to sandbox a given JavaScript.
In this example, the "rewriter.js" script contains SafeScript’s transformation
code and "interface0.js" contains an API implementation for a “namespace
0.” After creating the namespace with $ sm[0](), the guest code is loaded from
a third-party host, transformed so that the property resolution mechanism is
locked to “namespace 0”, and then executed.

SafeScript ensures that any dynamically generated JavaScript code is also
transformed and isolated in a namespace. In order to do so, SafeScript traps
methods such as eval(), setTimeout(), which can inject JavaScript code into
the execution environment directly. To capture JavaScript code that is indirectly
injected, SafeScript monitors methods such as document.write() and proper-
ties like innerHTML. HTML written through these injection points must first be
parsed and have its JavaScript code extracted before it can be transformed by
SafeScript.

Despite its many optimizations, SafeScript’s performance benchmarks indi-
cate an average slowdown of 6.43x on basic operations such a variable incre-
mentation, because SafeScript rewrites every variable statement. The macro-
benchmark reveals an average slowdown of 64x.

5.7 Discussion

This section discussed six JavaScript sandboxing mechanisms that do not require
any browser modifications: Self-protecting JavaScript, AdJail, Object Views,
JSand, TreeHouse and SafeScript. Some of their features are summarized in
Table 3.

Besides Self-protecting JavaScript, which protects all access-routes to the
DOM API through enumeration, all solutions isolate untrusted JavaScript in an
isolation unit. The isolated JavaScript cannot access the DOM directly, but must
communicate with the real web page and request access, which is then mediated
by a policy enforcement mechanism.

JavaScript sandboxing systems that do not require browser modifications
leverage existing standardized powerful functionality that is available in browsers
today. The advantage of this approach is that standardized functionality is, or
in the near future will be, available in all browsers and thus the sandbox works
out of the box for all Internet users.

Much of the new browser functionality incorporated in the previously dis-
cussed JavaScript sandboxing systems, was not designed for sandboxing and
may not perform well enough for a seamless user experience.

In the future that may change, because browser vendors optimize their code
for speed to compete with other browser vendors. When new browser function-
ality becomes more popular, it will undoubtedly also be optimized for speed,
automatically increasing the performance of the JavaScript sandboxing systems
making use of it.

Web standards keep evolving, so that we can expect more advanced browser
functionality in the future. This new functionality can then be used to design and
implement yet more powerful JavaScript sandboxing systems. Ideally, this new

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 77

T
a
b
le

3
.
C

o
m

p
a
ri

so
n

b
et

w
ee

n
p
ro

m
in

en
t

J
av

a
S
cr

ip
t

sa
n
d
b
ox

in
g

sy
st

em
s

n
o
t

re
q
u
ir

in
g

b
ro

w
se

r
m

o
d
ifi

ca
ti

o
n
s.

S
y
st
e
m

T
a
rg

e
t

Is
o
la
ti
o
n

C
o
m
m
u
n
ic
a
ti
o
n

P
o
li
c
y

D
e
p
lo
y
m
e
n
t

P
e
rf
o
rm

a
n
c
e

K
n
o
w
n

a
p
p
li
c
a
ti
o
n

u
n
it

e
x
p
re
ss
iv
e
n
e
ss

w
e
a
k
n
e
ss
e
s

S
e
lf
- p
ro

te
c
ti
n
g

J
a
v
a
S
c
ri
p
t

sa
n
d
b
o
x
in
g

J
a
v
a
S
c
ri
p
t

e
n
v
ir
o
n
m
e
n
t

n
/
a

h
ig
h

li
b
ra

ry
6
.3
3
x
m
ic
ro

,
5
.3
7
%

m
a
c
ro

[4
8
]

A
d
J
a
il

a
d
v
e
rt
is
e
m
e
n
ts

sh
a
d
o
w

p
a
g
e

p
o
s
t
M
e
s
s
a
g
e

re
a
d
/
w
ri
te

e
le
m
e
n
ts

+
e
n
a
b
le
/
d
is
a
b
le

im
a
g
e
s/

o
th

e
r

p
o
l
i
c
y
a
tt
ri
b
u
te

2
5
%

m
a
c
ro

O
b
je
c
t
V
ie
w
s

sa
n
d
b
o
x
in
g

if
ra

m
e

p
o
s
t
M
e
s
s
a
g
e

g
e
t/

se
t/

c
a
ll

d
e
c
la
ra

ti
v
e
p
o
li
c
y

w
it
h

X
P
a
th

1
5
%

to
2
3
6
%

m
ic
ro

J
S
a
n
d

sa
n
d
b
o
x
in
g

S
E
S

e
n
v
ir
o
n
m
e
n
t

M
e
m
b
ra

n
e
/
P
ro
x
y

A
P
I

h
ig
h

V
D
O
M

im
p
le
m
e
n
ta

ti
o
n

9
x
m
ic
ro

,
2
0
3
%

to

3
6
5
%

m
a
c
ro

o
n

lo
a
d
ti
m
e
,
3
1
.2

%

m
a
c
ro

o
n

u
se
r

e
x
p
e
ri
e
n
c
e

T
re
e
H
o
u
se

sa
n
d
b
o
x
in
g

W
e
b
W

o
rk

e
r

p
o
s
t
M
e
s
s
a
g
e

h
ig
h

sc
ri
p
t
e
le
m
e
n
ts

w
it
h

c
u
st
o
m

ty
p
e

7
x
to

8
0
0
0
x
m
ic
ro

,

1
5
x
to

1
7
6
x
m
a
c
ro

S
a
fe
S
c
ri
p
t

sa
n
d
b
o
x
in
g

n
a
m
e
sp

a
c
e

V
D
O
M

im
p
le
m
e
n
ta

ti
o
n

h
ig
h
?

V
D
O
M

im
p
le
m
e
n
ta

ti
o
n

6
.4
3
x
m
ic
ro

,
6
4
x

m
a
c
ro

78 S. Van Acker and A. Sabelfeld

functionality will also bring APIs dedicated to JavaScript sandboxing, providing
purpose-built mechanisms to isolate code in a sandbox and communicate with
that sandbox.

When such specialized JavaScript APIs are adopted and implemented, future
JavaScript sandboxing mechanisms will no longer need to rely on repurposed
functionality, making them simpler and faster.

6 In Practice – Application Examples

Previous sections discussed several JavaScript sandboxing mechanisms that work
well in theory. In reality, JavaScript sandboxing solutions have apparently not
seen wide-spread adoption.

The reasons for this low adoption rate are not clear. Perhaps JavaScript
sandboxing has not attained enough critical mass to be “obviously” needed by
web developers. Maybe web developers are waiting for a one-size-fits-all solution,
are not confident enough that the JavaScript sandboxing mechanisms work as
securely as advertised, or are scared away because the sandboxes are too difficult
to deploy.

In this section, we highlight two technologies that have emerged from the
JavaScript sandboxing research and have been used in production systems.

6.1 Facebook JavaScript

Facebook Platform launched in May 2007 [24] as a framework to allow Facebook
application developers to deeply integrate with Facebook and interact with core
Facebook features. Facebook application developers could use Facebook Markup
Language (FBML) to customize the look and feel of their applications as ren-
dered on Facebook. This application frontend written in FBML was hosted by
Facebook itself and consisted of HTML, CSS and Facebook JavaScript (FBJS),
a subset of JavaScript discussed in Sect. 3.

Facebook JavaScript allowed Facebook application developers to include
JavaScript in their application, but in a controlled environment. Because applica-
tions written in FBML are hosted by Facebook, they execute inside Facebook’s
Web origin. If Facebook had allowed the applications to make use of a fully
functional JavaScript environment, they could have easily exfiltrated Facebook
session information and compromise the Facebook accounts and privacy of all
users of that Facebook application. Unlike other platforms who isolate with
iframes, Facebook has opted to sandbox third-party applications by rewriting
HTML, CSS and JavaScript code using a middlebox located on Facebook’s site.

Roughly one year after its introduction, in July 2008, FBML was used by
about 33,000 applications [8] built by about 400,000 developers [22].

According to some developers, FBML was “increasingly less reliable, which
leads to confusion and frustration” and “FBML always seemed like a pretty
buggy and unsustainable approach to Facebook coding.” Because Facebook

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 79

restricted applications to FBML, developers felt they had to stray away from
standard Web coding practices.

In addition to practicality and usability issues, FBML suffered from several
security problems. As discussed in Sect. 3, at least two vulnerabilities [46,47] were
discovered in FBJS, which allowed attackers to break out of FBJS’s JavaScript
sandbox and thus escape isolation into Facebook’s Web origin.

In August 2010, Facebook announced the deprecation of FBML in favor of
iframe isolation for its applications [69], stating that this would eliminate the
technical difference between developing an application on and off Facebook.

In December 2010, Facebook announced that new FBML applications would
still be allowed until Q1 2011 because the implementation of the iframe isolation
was not yet finished [79].

In January 2011, Several old and infrequently used FBML tags and API
methods were eliminated [26].

In March 2011, Facebook stopped accepting new FBML applications but still
allowed existing FBML applications to be updated. Switching to iframes instead
of FBML was recommended [23].

In January 2012, Facebook discontinued support for FBML by no longer fix-
ing bugs for FBML. Security and privacy-related bugs were still being addressed.

In June 2012, an “FBML Removal” migration appeared for all apps, enabled
by default. This migration tool allowed application developers to disable the
migration, extending their usage of FBML for another month.

In July 2012, Facebook also removed the “FBML Removal” migration tool
and the FBML endpoints.

In December 2012, Facebook removed the “Static FBML Page app,” which
could no longer render FBML but still had the ability to display HTML, final-
izing the complete removal of FBML from Facebook.

Facebook now isolates applications in iframes, requiring the webpages to be
hosted outside of Facebook. The applications can make use of Facebook’s Graph
API to interact with the social graph.

6.2 Caja

As discussed in Sect. 3, Google’s Caja rewrites HTML, CSS and JavaScript on
the server-side to secure JavaScript in applications on the client-side. Caja was
developed with ECMAScript 3 as a starting point. ES3 is a “very leaky lan-
guage” [18] with numerous strange scoping rules, making it a nightmare to
secure. The lessons learned from working on Caja were applied to the design
of ECMAScript 5, making it a version of JavaScript which, as opposed to ES3,
is fairly easy to secure through its “strict mode”. Contained in ECMAScript 5
is a subset called Secure ECMAScript (SES), which is object-capability safe.

Caja is used, or has been used in several Google products [18,81,82] to allow
embedding of third-party JavaScript: Google Labs (retired in 2011), iGoogle
(retired in 2012), Orkut (retired in 2014), Google Sites, Google Apps Script,
Blogspot, . . .

80 S. Van Acker and A. Sabelfeld

Yahoo used Caja in its Yahoo! Application Platform [78], MySpace for its
MySpace Developer Platform [44] and PayPal for PayPal Apps [43]. All three
stopped using Caja (although PayPal’s case is unconfirmed), but it is unclear
why. A popular opinion seems to be that Caja is too restrictive for developers,
who expect to be able to use full JavaScript.

Because Caja is an open-source project, it can be freely used and modified by
others. Besides the very visible use-cases, Caja can also be used by less prominent
websites. Apache Shindig is a container for the OpenSocial specification, which
defines a component hosting environment and a set of common APIs for web-
based applications. Shindig uses Caja for JavaScript rewriting, which means that
less prominent web applications which make use of Shindig may also be using
Caja in the background.

To this day, Caja is still actively developed. Used by Google itself and with
its developers involved in workgroups on Web standards and the ECMAScript
committee, the work on Caja has contributed to the development of the Web
and will probably not go away anytime soon.

7 Conclusion

This work gave an overview of the JavaScript sandboxing research field and the
different approaches taken to isolate and restrict JavaScript to a chosen set of
resources and functionality.

The JavaScript sandboxing research can be divided into three categories:
JavaScript subsets and rewriting systems, JavaScript sandboxing through
browser modifications and JavaScript sandboxing without browser modifications.

JavaScript subsets and rewriting systems can restrict untrusted JavaScript
if it adheres to a JavaScript subset, but a middlebox needs to verify that this is
the case, possibly rewriting the code. These middleboxes break the architecture
of the Web when implemented on the server-side, and put an extra burden on
the user if implemented on the client-side.

Browser modifications are powerful and can sandbox JavaScript efficiently,
because of their prime access to the JavaScript execution environment. Unfortu-
nately, the software modifications are difficult to distribute and maintain in the
long run unless they are adopted by mainstream browser vendors.

JavaScript sandboxing mechanisms without browser modifications leverage
existing browser functionality to isolate and restrict JavaScript. This approach
can be slower but requires no redistribution and maintenance of browser code.
When implemented correctly, it automatically works on all modern browsers.

Acknowledgments. This work was funded by the European Community under the
ProSecuToR and WebSand projects, the Swedish research agencies SSF and VR.

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 81

References

1. Galeon. http://galeon.sourceforge.net/
2. JSLint, The JavaScript Code Quality Tool. http://www.jslint.com/
3. Netscape 2.0 reviewed. http://www.antipope.org/charlie/old/journo/netscape.

html
4. node.js. http://nodejs.org/
5. QuirksMode - for all your browser quirks. http://www.quirksmode.org/
6. Agten, P., Van Acker, S., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.:

JSand: complete client-side sandboxing of third-party JavaScript without browser
modifications. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 1–10. ACM (2012)

7. Akhawe, D., Saxena, P., Song, D.: Privilege separation in HTML5 applica-
tions. In: Kohno, T. (ed.) Proceedings of the 21th USENIX Security Sympo-
sium, Bellevue, WA, USA, August 8–10, 2012, pp. 429–444. USENIX Association
(2012). https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/akhawe

8. Ustinova, A.: Developers compete at Facebook conference, 23 July 2008.
http://www.sfgate.com/business/article/Developers-compete-at-Facebook-
conference-3203144.php

9. Apache OpenOffice: Writing Office Scripts in JavaScript. https://www.openoffice.
org/framework/scripting/release-0.2/javascript-devguide.html

10. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers.
Commun. ACM 52(6), 83–91 (2009). http://doi.acm.org/10.1145/1516046.
1516066

11. Blink: Blink. http://www.chromium.org/blink
12. BuiltWith: jQuery Usage Statistics. http://trends.builtwith.com/javascript/jQuery
13. Cao, Y., Li, Z., Rastogi, V., Chen, Y., Wen, X.: Virtual browser: a virtualized

browser to sandbox third-party JavaScripts with enhanced security. In: Youm,
H.Y., Won, Y. (eds.) 7th ACM Symposium on Information, Compuer and Com-
munications Security, ASIACCS 2012, Seoul, Korea, May 2–4, 2012, pp. 8–9. ACM
(2012). http://doi.acm.org/10.1145/2414456.2414460

14. Cassou, D., Ducasse, S., Petton, N.: SafeJS: Hermetic Sandboxing for JavaScript
(2013)

15. Charles Severance: JavaScript: Designing a Language in 10 Days. http://www.
computer.org/csdl/mags/co/2012/02/mco2012020007.html

16. Crockford, D.: ADsafe - making JavaScript safe for advertising. http://adsafe.org/
17. De Ryck, P., Desmet, L., Philippaerts, P., Piessens, F.: A security analysis of next

generation web standards. Technical report. In: Hogben, G., Dekker, M. (eds.)
European Network and Information Security Agency (ENISA), July 2011. https://
lirias.kuleuven.be/handle/123456789/317385

18. Dio Synodinos: ECMAScript 5, Caja and Retrofitting Security, with Mark S.
Miller. http://www.infoq.com/interviews/ecmascript-5-caja-retrofitting-security

19. Dong, X., Tran, M., Liang, Z., Jiang, X.: AdSentry: comprehensive and flexible
confinement of javascript-based advertisements. In: Proceedings of the 27th Annual
Computer Security Applications Conference, ACSAC 2011, pp. 297–306. ACM,
New York (2011). http://doi.acm.org/10.1145/2076732.2076774

20. ECMAScript: Harmony Direct Proxies. http://wiki.ecmascript.org/doku.php?
id=harmony:direct proxies

http://galeon.sourceforge.net/
http://www.jslint.com/
http://www.antipope.org/charlie/old/journo/netscape.html
http://www.antipope.org/charlie/old/journo/netscape.html
http://nodejs.org/
http://www.quirksmode.org/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/akhawe
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/akhawe
http://www.sfgate.com/business/article/Developers-compete-at-Facebook-conference-3203144.php
http://www.sfgate.com/business/article/Developers-compete-at-Facebook-conference-3203144.php
https://www.openoffice.org/framework/scripting/release-0.2/javascript-devguide.html
https://www.openoffice.org/framework/scripting/release-0.2/javascript-devguide.html
http://doi.acm.org/10.1145/1516046.1516066
http://doi.acm.org/10.1145/1516046.1516066
http://www.chromium.org/blink
http://trends.builtwith.com/javascript/jQuery
http://doi.acm.org/10.1145/2414456.2414460
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.html
http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.html
http://adsafe.org/
https://lirias.kuleuven.be/handle/123456789/317385
https://lirias.kuleuven.be/handle/123456789/317385
http://www.infoq.com/interviews/ecmascript-5-caja-retrofitting-security
http://doi.acm.org/10.1145/2076732.2076774
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies
http://wiki.ecmascript.org/doku.php?id=harmony:direct_proxies

82 S. Van Acker and A. Sabelfeld

21. Espruino: Espruino - JavaScript for Microcontrollers. http://www.espruino.com/
22. Facebook: Facebook Expands Power of Platform Across the Web and Around the

World, 23 July 2008. http://newsroom.fb.com/news/2008/07/facebook-expands-
power-of-platform-across-the-web-and-around-the-world/

23. Facebook: Facebook Platform Migrations (Older). https://developers.facebook.
com/docs/apps/migrations/completed-changes

24. Facebook: Facebook Unveils Platform for Developers of Social Applications,
24 May 2007. http://newsroom.fb.com/news/2007/05/facebook-unveils-platform-
for-developers-of-social-applications/

25. Finifter, M., Weinberger, J., Barth, A.: Preventing capability leaks in secure
javascript subsets. In: Proceedings of the Network and Distributed System Secu-
rity Symposium, NDSS 2010, San Diego, California, USA, 28th February - 3rd
March 2010. The Internet Society (2010). http://www.isoc.org/isoc/conferences/
ndss/10/pdf/21.pdf

26. Fran Larkin: Platform Updates: Change Log, Third Party IDs and More,
18 December 2010. https://developers.facebook.com/blog/post/441

27. GNOME: Gjs: JavaScript Bindings for GNOME. https://wiki.gnome.org/action/
show/Projects/Gjs?action=show&redirect=Gjs

28. Google: V8 JavaScript Engine. https://code.google.com/p/v8/
29. Google Chrome Developers: Chrome - What are extensions? https://developer.

chrome.com/extensions
30. Google Chrome Developers: Native Client. https://developer.chrome.com/native-

client
31. Grosskurth, A., Godfrey, M.W.: A case study in architectural analysis: The evolu-

tion of the modern web browser. EMSE (2007)
32. Guarnieri, S., Livshits, V.B.: GATEKEEPER: mostly static enforcement of secu-

rity and reliability policies for javascript code. In: Monrose, F. (ed.) 18th USENIX
Security Symposium, Montreal, Canada, August 10–14, 2009, Proceedings, pp.
151–168. USENIX Association (2009). http://www.usenix.org/events/sec09/tech/
full papers/guarnieri.pdf

33. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of javascript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
http://dx.doi.org/10.1007/978-3-642-14107-2 7

34. Heiderich, M., Frosch, T., Holz, T.: IceShield: detection and mitigation of mali-
cious websites with a frozen DOM. In: Sommer, R., Balzarotti, D., Maier, G.
(eds.) RAID 2011. LNCS, vol. 6961, pp. 281–300. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-23644-0 15

35. Ingram, L., Walfish, M.: Treehouse: javascript sandboxes to help web developers
help themselves. In: Heiser, G., Hsieh, W.C. (eds.) 2012 USENIX Annual Tech-
nical Conference, Boston, MA, USA, June 13–15, 2012, pp. 153–164. USENIX
Association (2012). https://www.usenix.org/conference/atc12/technical-sessions/
presentation/ingram

36. Jacaranda: Jacaranda. http://jacaranda.org
37. Jayaraman, K., Du, W., Rajagopalan, B., Chapin, S.J.: ESCUDO: a fine-grained

protection model for web browsers. In: 2010 International Conference on Dis-
tributed Computing Systems, ICDCS 2010, Genova, Italy, June 21–25, 2010,
pp. 231–240. IEEE Computer Society (2010). http://doi.ieeecomputersociety.org/
10.1109/ICDCS.2010.71

http://www.espruino.com/
http://newsroom.fb.com/news/2008/07/facebook-expands-power-of-platform-across-the-web-and-around-the-world/
http://newsroom.fb.com/news/2008/07/facebook-expands-power-of-platform-across-the-web-and-around-the-world/
https://developers.facebook.com/docs/apps/migrations/completed-changes
https://developers.facebook.com/docs/apps/migrations/completed-changes
http://newsroom.fb.com/news/2007/05/facebook-unveils-platform-for-developers-of-social-applications/
http://newsroom.fb.com/news/2007/05/facebook-unveils-platform-for-developers-of-social-applications/
http://www.isoc.org/isoc/conferences/ndss/10/pdf/21.pdf
http://www.isoc.org/isoc/conferences/ndss/10/pdf/21.pdf
https://developers.facebook.com/blog/post/441
https://wiki.gnome.org/action/show/Projects/Gjs?action=show&redirect=Gjs
https://wiki.gnome.org/action/show/Projects/Gjs?action=show&redirect=Gjs
https://code.google.com/p/v8/
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
http://www.usenix.org/events/sec09/tech/full_papers/guarnieri.pdf
http://www.usenix.org/events/sec09/tech/full_papers/guarnieri.pdf
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1007/978-3-642-23644-0_15
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ingram
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ingram
http://jacaranda.org
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2010.71
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2010.71

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 83

38. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-
enforced embedded policies. In: WWW 2007: Proceedings of the 16th International
Conference on World Wide Web, pp. 601–610. ACM, New York (2007). http://dx.
doi.org/10.1145/1242572.1242654

39. Joiner, R., Reps, T.W., Jha, S., Dhawan, M., Ganapathy, V.: Efficient runtime-
enforcement techniques for policy weaving. In: Cheung, S., Orso, A., Storey, M.D.
(eds.) Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, (FSE-22), Hong Kong, China, November 16–22,
2014, pp. 224–234. ACM (2014). http://doi.acm.org/10.1145/2635868.2635907

40. jQuery: Update on jQuery.com Compromises. http://blog.jquery.com/2014/09/
24/update-on-jquery-com-compromises/

41. JSLint Error Explanations: Implied eval is evil. Pass a function instead of a string.
http://jslinterrors.com/implied-eval-is-evil-pass-a-function-instead-of-a-string

42. Zyp, K.: Secure Mashups with dojox.secure. http://www.sitepen.com/blog/2008/
08/01/secure-mashups-with-dojoxsecure/

43. Dignan, L.: Developing a PayPal App, 20 February 2011. https://web.archive.org/
web/20110220013816/https://www.x.com/docs/DOC-3082

44. Dignan, L.: MySpace: Caja JavaScript scrubbing ready for prime time.
http://www.zdnet.com/article/myspace-caja-javascript-scrubbing-ready-for-
prime-time/

45. Luo, T., Du, W.: Contego: capability-based access control for web browsers - (short
paper). In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A.,
Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 231–238. Springer, Heidelberg
(2011). http://dx.doi.org/10.1007/978-3-642-21599-5 17

46. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating javascript with filters, rewriting, and
wrappers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 505–
522. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-04444-1 31

47. Maffeis, S., Taly, A.: Language-based isolation of untrusted javascript. In: Proceed-
ings of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, July 8–10, 2009, pp. 77–91. IEEE Computer Society
(2009). http://doi.ieeecomputersociety.org/10.1109/CSF.2009.11

48. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self
protecting javascript. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 239–255. Springer, Heidelberg (2012). http://dx.doi.org/
10.1007/978-3-642-27937-9 17

49. Maxthon: Maxthon Cloud Browser. http://www.maxthon.com/
50. Meyerovich, L.A., Felt, A.P., Miller, M.S.: Object views: fine-grained sharing in

browsers (2010). http://doi.acm.org/10.1145/1772690.1772764
51. Meyerovich, L.A., Livshits, V.B.: ConScript: specifying and enforcing fine-grained

security policies for javascript in the browser. In: 31st IEEE Symposium on Secu-
rity and Privacy, S&P 2010, 16–19 May 2010, Berleley/Oakland, California, USA,
pp. 481–496. IEEE Computer Society (2010). http://doi.ieeecomputersociety.org/
10.1109/SP.2010.36

52. Mickens, J.: Pivot: fast, synchronous mashup isolation using generator chains. In:
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18–21, 2014. pp. 261–275. IEEE Computer Society (2014). http://dx.doi.org/10.
1109/SP.2014.24

53. Mickens, J., Finifter, M.: Jigsaw: rfficient, low-effort mashup isolation. In: Pre-
sented as part of the 3rd USENIX Conference on Web Application Development
(WebApps 2012), pp. 13–25. USENIX, Boston (2012). https://www.usenix.org/
conference/webapps12/technical-sessions/presentation/mickens

http://dx.doi.org/10.1145/1242572.1242654
http://dx.doi.org/10.1145/1242572.1242654
http://doi.acm.org/10.1145/2635868.2635907
http://blog.jquery.com/2014/09/24/update-on-jquery-com-compromises/
http://blog.jquery.com/2014/09/24/update-on-jquery-com-compromises/
http://jslinterrors.com/implied-eval-is-evil-pass-a-function-instead-of-a-string
http://www.sitepen.com/blog/2008/08/01/secure-mashups-with-dojoxsecure/
http://www.sitepen.com/blog/2008/08/01/secure-mashups-with-dojoxsecure/
https://web.archive.org/web/20110220013816/https://www.x.com/docs/DOC-3082
https://web.archive.org/web/20110220013816/https://www.x.com/docs/DOC-3082
http://www.zdnet.com/article/myspace-caja-javascript-scrubbing-ready-for-prime-time/
http://www.zdnet.com/article/myspace-caja-javascript-scrubbing-ready-for-prime-time/
http://dx.doi.org/10.1007/978-3-642-21599-5_17
http://dx.doi.org/10.1007/978-3-642-04444-1_31
http://doi.ieeecomputersociety.org/10.1109/CSF.2009.11
http://dx.doi.org/10.1007/978-3-642-27937-9_17
http://dx.doi.org/10.1007/978-3-642-27937-9_17
http://www.maxthon.com/
http://doi.acm.org/10.1145/1772690.1772764
http://doi.ieeecomputersociety.org/10.1109/SP.2010.36
http://doi.ieeecomputersociety.org/10.1109/SP.2010.36
http://dx.doi.org/10.1109/SP.2014.24
http://dx.doi.org/10.1109/SP.2014.24
https://www.usenix.org/conference/webapps12/technical-sessions/presentation/mickens
https://www.usenix.org/conference/webapps12/technical-sessions/presentation/mickens

84 S. Van Acker and A. Sabelfeld

54. Microsoft: Internet Explorer Architecture. http://msdn.microsoft.com/en-us/
library/aa741312(v=vs.85).aspx

55. Microsoft: Microsoft Internet Security and Acceleration (ISA) Server 2004. http://
technet.microsoft.com/en-us/library/cc302436.aspx

56. Microsoft: Microsoft Security Bulletin MS04-040 - Critical. https://technet.
microsoft.com/en-us/library/security/ms04-040.aspx

57. Microsoft: Mitigating Cross-site Scripting With HTTP-only Cookies. http://msdn.
microsoft.com/en-us/library/ms533046(VS.85).aspx

58. Microsoft Live Labs: Live Labs Websandbox. http://websandbox.org
59. Mihai Bazon: UglifyJS. https://github.com/mishoo/UglifyJS/
60. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja - safe active content

in sanitized JavaScript. Technical report, Google Inc., June 2008
61. Miller, M.S.: Robust composition: towards a unified approach to access control and

concurrency control. Ph.D. thesis, Johns Hopkins University, Baltimore, MD, USA
(2006). aAI3245526

62. MITRE: CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition.
http://cwe.mitre.org/data/definitions/367.html

63. MongoDB, Inc.: MongoDB. http://www.mongodb.org/
64. Mozilla: Gecko. https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
65. Mozilla: JavaScript Strict Mode Reference. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Strict mode
66. Mozilla: MDN - Building an extension. https://developer.mozilla.org/en/docs/

Building an Extension
67. Mozilla The Narcissus meta-circular JavaScript interpreter. https://github.com/

mozilla/narcissus
68. Mozilla: The “with” statement. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Statements/with
69. Namita Gupta: Facebook Platform Roadmap Update, 19 August 2010. https://

developers.facebook.com/blog/post/402
70. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,

C., Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of
remote JavaScript inclusions. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the
ACM Conference on Computer and Communications Security, CCS 2012, Raleigh,
NC, USA, October 16–18, 2012, pp. 736–747. ACM (2012). http://doi.acm.org/
10.1145/2382196.2382274

71. Opera: Opera Browser. http://www.opera.com
72. Patil, K., Dong, X., Li, X., Liang, Z., Jiang, X.: Towards fine-grained access control

in javascript contexts. In: 2011 International Conference on Distributed Computing
Systems, ICDCS 2011, Minneapolis, Minnesota, USA, June 20–24, 2011, pp. 720–
729. IEEE Computer Society (2011). http://dx.doi.org/10.1109/ICDCS.2011.87

73. Phung, P.H., Desmet, L.: A two-tier sandbox architecture for untrusted JavaScript.
In: JSTools 2012, Proceedings of the Workshop on JavaScript Tools, Beijing, 13
June 2012, pp. 1–10 (2012)

74. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting JavaScript. In:
Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, ASIACCS 2009, pp. 47–60. ACM, New York (2009).
http://doi.acm.org/10.1145/1533057.1533067

75. Politz, J.G., Eliopoulos, S.A., Guha, A., Krishnamurthi, S.: ADsafety: type-based
verification of javascript sandboxing. In: 20th USENIX Security Symposium, San
Francisco, CA, USA, August 8–12, 2011, Proceedings. USENIX Association (2011).
http://static.usenix.org/events/sec11/tech/full papers/Politz.pdf

http://msdn.microsoft.com/en-us/library/aa741312(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa741312(v=vs.85).aspx
http://technet.microsoft.com/en-us/library/cc302436.aspx
http://technet.microsoft.com/en-us/library/cc302436.aspx
https://technet.microsoft.com/en-us/library/security/ms04-040.aspx
https://technet.microsoft.com/en-us/library/security/ms04-040.aspx
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533046(VS.85).aspx
http://websandbox.org
https://github.com/mishoo/UglifyJS/
http://cwe.mitre.org/data/definitions/367.html
http://www.mongodb.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en/docs/Building_an_Extension
https://developer.mozilla.org/en/docs/Building_an_Extension
https://github.com/mozilla/narcissus
https://github.com/mozilla/narcissus
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developers.facebook.com/blog/post/402
https://developers.facebook.com/blog/post/402
http://doi.acm.org/10.1145/2382196.2382274
http://doi.acm.org/10.1145/2382196.2382274
http://www.opera.com
http://dx.doi.org/10.1109/ICDCS.2011.87
http://doi.acm.org/10.1145/1533057.1533067
http://static.usenix.org/events/sec11/tech/full_papers/Politz.pdf

JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript 85

76. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShield:
vulnerability-driven filtering of dynamic HTML. In: OSDI 2006: Proceedings of
the 7th symposium on Operating Systems Design and Implementation, pp. 61–
74. USENIX Association, Berkeley (2006). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.85.1661

77. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do: large-scale
study of the use of eval in javascript applications. In: Mezini, M. (ed.) ECOOP
2011. LNCS, vol. 6813, pp. 52–78. Springer, Heidelberg (2011). http://dx.doi.org/
10.1007/978-3-642-22655-7 4

78. Sam Pullara: Introducing Y!OS 1.0 - live today! 28 October 2008. https://
web.archive.org/web/20081029191209/http://developer.yahoo.net/blog/archives/
2008/10/yos 10 launch.html

79. Sandra Liu Huang: Platform Updates: Promotion Policies, Facepile and
More, 4 December 2010. https://developers.facebook.com/blog/post/2010/12/03/
platform-updates--promotion-policies--facepile-and-more/

80. Mozilla SpiderMonkey. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey

81. Stack Exchange (Jasvir Nagra): Why hasn’t Caja been popular? http://
programmers.stackexchange.com/a/147014

82. Stack Overflow (Kevin Reid): Uses of Google Caja. http://stackoverflow.com/
questions/16054597/uses-of-google-caja

83. Taly, A., Erlingsson, U., Mitchell, J.C., Miller, M.S., Nagra, J.: Automated analysis
of security-critical javascript APIs. In: IEEE Symposium on Security and Privacy,
pp. 363–378 (2011)

84. Ter Louw, M., Ganesh, K.T., Venkatakrishnan, V.N.: Adjail: practical enforcement
of confidentiality and integrity policies on web advertisements. In: 19th USENIX
Security Symposium, Washington, DC, USA, August 11–13, 2010, Proceedings,
pp. 371–388. USENIX Association (2010). http://www.usenix.org/events/sec10/
tech/full papers/TerLouw.pdf

85. Ter Louw, M., Phung, P.H., Krishnamurti, R., Venkatakrishnan, V.N.: Safe-
Script: javascript transformation for policy enforcement. In: Riis Nielson, H.,
Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 67–83. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-41488-6 5

86. Ter Louw, M., Venkatakrishnan, V.N.: Blueprint: Robust prevention of cross-site
scripting attacks for existing browsers (2009). http://dx.doi.org/10.1109/SP.2009.33

87. Tessel: Tessel 2. https://tessel.io
88. The FaceBook Team: FBJS. http://wiki.developers.facebook.com/index.php/

FBJS
89. Troy Hunt: How I got XSS’d by my ad network. http://www.troyhunt.com/2015/

07/how-i-got-xssd-by-my-ad-network.html
90. Twitter: How to embed Twitter timelines on your website. https://blog.twitter.

com/2012/embedded-timelines-howto
91. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: least-

privilege integration of third-party components in web mashups. In: Zakon, R.H.,
McDermott, J.P., Locasto, M.E. (eds.) Twenty-Seventh Annual Computer Security
Applications Conference, ACSAC 2011, Orlando, FL, USA, 5–9 December 2011,
pp. 307–316. ACM (2011). http://doi.acm.org/10.1145/2076732.2076775

92. W3C: Same Origin Policy - Web Security. http://www.w3.org/Security/wiki/
Same Origin Policy

93. W3C: W3C - Web Workers. http://www.w3.org/TR/workers/

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.1661
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.1661
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1007/978-3-642-22655-7_4
https://web.archive.org/web/20081029191209/http://developer.yahoo.net/blog/archives/2008/10/yos_10_launch.html
https://web.archive.org/web/20081029191209/http://developer.yahoo.net/blog/archives/2008/10/yos_10_launch.html
https://web.archive.org/web/20081029191209/http://developer.yahoo.net/blog/archives/2008/10/yos_10_launch.html
https://developers.facebook.com/blog/post/2010/12/03/platform-updates--promotion-policies--facepile-and-more/
https://developers.facebook.com/blog/post/2010/12/03/platform-updates--promotion-policies--facepile-and-more/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
http://programmers.stackexchange.com/a/147014
http://programmers.stackexchange.com/a/147014
http://stackoverflow.com/questions/16054597/uses-of-google-caja
http://stackoverflow.com/questions/16054597/uses-of-google-caja
http://www.usenix.org/events/sec10/tech/full_papers/TerLouw.pdf
http://www.usenix.org/events/sec10/tech/full_papers/TerLouw.pdf
http://dx.doi.org/10.1007/978-3-642-41488-6_5
http://dx.doi.org/10.1109/SP.2009.33
https://tessel.io
http://wiki.developers.facebook.com/index.php/FBJS
http://wiki.developers.facebook.com/index.php/FBJS
http://www.troyhunt.com/2015/07/how-i-got-xssd-by-my-ad-network.html
http://www.troyhunt.com/2015/07/how-i-got-xssd-by-my-ad-network.html
https://blog.twitter.com/2012/embedded-timelines-howto
https://blog.twitter.com/2012/embedded-timelines-howto
http://doi.acm.org/10.1145/2076732.2076775
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/TR/workers/

86 S. Van Acker and A. Sabelfeld

94. W3C: W3C Standards and drafts - Cross-Origin Resource Sharing. http://www.
w3.org/TR/cors/

95. W3C: XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/
96. W3Techs: Usage of JavaScript for websites. http://w3techs.com/technologies/

details/cp-javascript/all/all
97. Webkit Blog - David Carson: Android uses WebKit. https://www.webkit.org/blog/

142/android-uses-webkit/
98. WHATWG: HTML Living Standard - Timers. https://html.spec.whatwg.org/

multipage/webappapis.html#timers
99. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser

security. In: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2007, pp. 237–249. ACM, New
York (2007). http://doi.acm.org/10.1145/1190216.1190252

http://www.w3.org/TR/cors/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/xpath20/
http://w3techs.com/technologies/details/cp-javascript/all/all
http://w3techs.com/technologies/details/cp-javascript/all/all
https://www.webkit.org/blog/142/android-uses-webkit/
https://www.webkit.org/blog/142/android-uses-webkit/
https://html.spec.whatwg.org/multipage/webappapis.html#timers
https://html.spec.whatwg.org/multipage/webappapis.html#timers
http://doi.acm.org/10.1145/1190216.1190252

From Zoos to Safaris—From Closed-World
Enforcement to Open-World Assessment

of Privacy

Michael Backes1,2, Pascal Berrang1, and Praveen Manoharan1(B)

1 Saarland Informatics Campus, CISPA, Saarland University,
Saarbrücken, Germany

{backes,berrang,manoharan}@cs.uni-saarland.de
2 Saarland Informatics Campus, MPI-SWS, Saarbrücken, Germany

Abstract. In this paper, we develop a user-centric privacy framework
for quantitatively assessing the exposure of personal information in open
settings. Our formalization addresses key-challenges posed by such open
settings, such as the necessity of user- and context-dependent privacy
requirements. As a sanity check, we show that hard non-disclosure guar-
antees are impossible to achieve in open settings.

In the second part, we provide an instantiation of our framework to
address the identity disclosure problem, leading to the novel notion of
d-convergence to assess the linkability of identities across online commu-
nities. Since user-generated text content plays a major role in linking
identities between Online Social Networks, we further extend this linka-
bility model to assess the effectiveness of countermeasures against linking
authors of text content by their writing style.

We experimentally evaluate both of these instantiations by applying
them to suitable data sets: we provide a large-scale evaluation of the
linkability model on a collection of 15 million comments collected from
the Online Social Network Reddit, and evaluate the effectiveness of four
semantics-retaining countermeasures and their combinations on the Ext-
ended-Brennan-Greenstadt Adversarial Corpus. Through these evalua-
tions we validate the notion of d-convergence for assessing the linkability
of entities in our Reddit data set and explore the practical impact of
countermeasures on the importance of standard writing style features on
identifying authors.

1 Introduction

The Internet has undergone dramatic changes in the last two decades, evolving
from a mere communication network to a global multimedia platform in which
billions of users not only actively exchange information, but increasingly con-
duct sizable parts of their daily lives. While this transformation has brought
tremendous benefits to society, it has also created new threats to online privacy
that existing technology is failing to keep pace with. Users tend to reveal per-
sonal information without considering the widespread, easy accessibility, poten-
tial linkage and permanent nature of online data. Many cases reported in the
c© Springer International Publishing Switzerland 2016
A. Aldini et al. (Eds.): FOSAD VIII, LNCS 9808, pp. 87–138, 2016.
DOI: 10.1007/978-3-319-43005-8 3

88 M. Backes et al.

press show the resulting risks, which range from public embarrassment and loss
of prospective opportunities (e.g., when applying for jobs or insurance), to per-
sonal safety and property risks (e.g., when sexual offenders or burglars learn
users’ whereabouts online). The resulting privacy awareness and privacy con-
cerns of Internet users have been further amplified by the advent of the Big-
Data paradigm and the aligned business models of personalized tracking and
monetizing personal information in an unprecedented manner.

Developing a suitable methodology to reason about the privacy of users in
such a large-scale, open web setting, as well as corresponding tool support in
the next step, requires at its core a formal privacy model that lives up to the
now increasingly dynamic dissemination of unstructured, heterogeneous user
content on the Internet: While users traditionally shared information mostly
using public profiles with static information about themselves, nowadays they
disseminate personal information in an unstructured, highly dynamic manner,
through content they create and share (such as blog entries, user comments,
a “Like” on Facebook), or through the people they befriend or follow. Fur-
thermore, ubiquitously available background knowledge about a dedicated user
needs to be appropriately reflected within the model and its reasoning tasks, as
it can decrease a user’s privacy by inferring further sensitive information. As an
example, Machine Learning and other Information Retrieval techniques provide
comprehensive approaches for profiling a user’s actions across multiple Online
Social Networks, up to a unique identification of a given user’s profiles for each
such network.

Prior research on privacy has traditionally focused on closed database
settings – characterized by a complete view on structured data and a clear dis-
tinction of key- and sensitive attributes – and has aimed for strong privacy
guarantees using global data sanitization. These approaches, however, are inher-
ently inadequate if such closed settings are replaced by open settings as described
above, where unstructured and heterogeneous data is being disseminated, where
individuals have a partial view of the available information, and where global
data sanitization is impossible and hence strong guarantees have to be replaced
by probabilistic privacy assessments.

As of now, even the basic methodology is missing for offering users technical
means to comprehensively assess the privacy risks incurred by their data dis-
semination, and their daily online activities in general. Existing privacy models
such as k-anonymity [54], l-diversity [40], t-closeness [39] and the currently most
popular notion of Differential Privacy [22] follow a database-centric approach
that is inadequate to meet the requirements outlined above. We refer the reader
to Sect. 3.3 for further discussions on existing privacy models.

1.1 Contribution

In this paper, we present a rigorous methodology for quantitatively assessing the
exposure of personal information in open settings. Concretely, the paper makes
the following three tangible contributions: (1) a formal framework for reasoning
about the disclosure of personal information in open settings, (2) an instantiation

From Zoos to Safaris 89

of the framework for reasoning about the identity disclosure problem, and
(3) an evaluation of the framework on a collection of 15 million comments col-
lected from the Online Social Network Reddit.

A Formal Framework for Privacy in Open Settings. We propose a novel frame-
work for addressing the essential challenges of privacy in open settings, such as
providing a data model that is suited for dealing with unstructured dissemina-
tion of heterogeneous information through various different sources and a flexible
definition of user-specific privacy requirements that allow for the specification of
context-dependent privacy goals. In contrast to most existing approaches, our
framework strives to assess the degree of exposure individuals face, in contrast to
trying to enforce an individual’s privacy requirements. Moreover, our framework
technically does not differentiate between non-sensitive and sensitive attributes
a-priori, but rather starts from the assumption that all data is equally important
and can lead to privacy risks. More specifically, our model captures the fact that
the sensitivity of attributes is highly user- and context-dependent by deriving
information sensitivity from each user’s privacy requirements. As a sanity check
we prove that hard non-disclosure guarantees cannot be provided for the open
setting in general, providing incentive for novel approaches for assessing privacy
risks in the open settings.

Reasoning about Identity Disclosure in Open Settings. We then instantiate our
general privacy framework for the specific use case of identity disclosure. Our
framework defines and assesses identity disclosure (i.e., identifiability and link-
ability of identities) by utilizing entity similarity, i.e., an entity is private in a
collection of entities if it is sufficiently similar to its peers. At the technical core
of our model is the new notion of d-convergence, which quantifies the similar-
ity of entities within a larger group of entities. It hence provides the formal
grounds to assess the ability of any single entity to blend into the crowd, i.e., to
hide amongst peers. The d-convergence model is furthermore capable of assess-
ing identity disclosure risks specifically for single entities. To this end, we extend
the notion of d-convergence to the novel notion of (k, d)-anonymity, which allows
for entity-centric identity disclosure risk assessments by requiring d-convergence
in the local neighborhood of a given entity. Intuitively, this new notion provides
a generalization of k-anonymity that is not bound to matching identities based
on pre-defined key-identifiers.

Empirical Evaluation on Reddit. Third, we perform an instantiation of our iden-
tity disclosure model for the important use case of analyzing user-generated text
content in order to characterize specific user profiles. We use unigram frequencies
extracted from user-generated content as user attributes, and we subsequently
demonstrate that the resulting unigram model can indeed be used for quantify-
ing the degree of anonymity of – and ultimately, for differentiating – individual
entities. For the sake of exposition, we apply this unigram model to a collec-
tion of 15 million comments collected from the Online Social Network Reddit.
The computations were performed on two Dell PowerEdge R820 with 64 virtual

90 M. Backes et al.

cores each at 2.60 GHz over the course of six weeks. Our evaluation shows that
(k, d)-anonymity suitably assesses an identity’s anonymity and provides deeper
insights into the data set’s structure.

Assessing the Effectiveness of Countermeasures Against Authorship Recognition.
Fourth, by extending the linkability model model introduced in the second step,
we develop a novel measure for assessing the importance of stylometric features
for the identifiability of authors. We adapt and extend the user models intro-
duced in the general framework to fit our use case of authorship recognition,
effectively defining a model for writing style that allows us to capture a com-
prehensive list of stylometric features, as introduced by Abbasi and Chen [3].
Overall, we develop a model of the authorship recognition problem that allows
us to formally reason about authorship recognition in the open setting of the
Internet.

By using these writing-style models, we then derive how we can identify
important stylometric features that significantly contribute to the identification
of the correct author from the context in which text is published. We employ
standard regression and classification techniques to determine the importance
of each type of stylometric feature. From this importance assessment we then
further derive the gain measure for the effectiveness of countermeasures against
authorship identification by measuring how well they reduce the importance of
stylometric features.

Countermeasure Evaluation. Finally, we apply this measure to assess the effec-
tiveness of four automatic countermeasures, namely synonym substitution, spell
checking, special character modification and adding/removing misspellings. In
this evaluation, we follow a general and comprehensive methodology that struc-
tures the evaluation process and is easily extensible for future evaluation.

We perform our experiments on the Extended-Brennan-Greenstadt Adver-
sarial Corpus consisting of texts written by 45 different authors. Each author
contributed at least 6500 words to the corpus [11].

1.2 Outline

We begin by discussing related work in Sect. 2 and explain why existing pri-
vacy notions are inadequate for reasoning about privacy in open web settings in
Sect. 3. We then define our privacy framework in Sect. 4 and instantiate it for
reasoning about identity disclosure in Sect. 5. In Sect. 6 we perform a basic eval-
uation of the identity disclosure model on the Reddit Online Social Network. We
extend the identity disclosure model to a model for assessing the effectiveness
of countermeasures against authorship recognition in Sect. 7, which we then also
evaluate on Reddit in Sect. 8. We summarize our findings Sect. 9.

2 Related Work

In this section, we give an overview over other relevant related work that has
not yet been considered in the previous subsection.

From Zoos to Safaris 91

Privacy in Closed-World Settings. The notion of privacy has been exhaus-
tively discussed for specific settings such as statistical databases, as well as for
more general settings. Since we already discussed the notions of k-anonymity [54],
l-diversity [40] t-closeness [39] and Differential Privacy [22] in Sect. 3.3 in great
detail, we will now discuss further such notions.

A major point of criticism of Differential Privacy, but also the other existing
privacy notions, found in the literature [9,35] is the (often unclear) trade-off
between utility and privacy that is incurred by applying database sanitation
techniques to achieve privacy. Several works have shown that protection against
attribute disclosure cannot be provided in settings that consider an adversary
with arbitrary auxiliary information [21,23,24]. We later show, as sanity check,
that in our formalization of privacy in open settings, general non-disclosure
guarantees are indeed impossible to achieve. By providing the necessary formal
groundwork in this paper, we hope to stimulate research on assessing privacy
risks in open settings, against explicitly spelled-out adversary models.

Kasiviswanathan and Smith [34] define the notion of ε-semantic privacy to
capture general non-disclosure guarantees. We define our adversary model in a
similar fashion as in their formalization and we use ε-semantic privacy to show
that general non-disclosure guarantees cannot be meaningfully provided in open
settings.

Several extensions of the above privacy notions have been proposed in the
literature to provide privacy guarantees in use cases that differ from traditional
database privacy [7,15,16,30,59,61]. These works aim at suitably transforming
different settings into a database-like setting that can be analyzed using differen-
tial privacy. Such a transformation, however, often abstracts away from essential
components of these settings, and as a result achieve impractical privacy guar-
antees. As explained in Sect. 3.3, the open web setting is particularly ill-suited
for such transformations.

Specifically for the use case in Online Social Networks (in short, OSNs),
many works [16,30,37,59,61] apply the existing database privacy notions for
reasoning about attribute disclosure in OSN data. These works generally impose
a specific structure on OSN data, such as a social link graph, and reason about
the disclosure of private attributes through this structure. Zhaleva et al. [59] show
that mixed public and private profiles do not necessarily protect the private
part of a profile since they can be inferred from the public part. Heatherly
et al. [30] show how machine learning techniques can be used to infer private
information from publicly available information. Kosinksi et al. [37] moreover
show that machine learning techniques can indeed be used to predict personality
traits of users and their online behavior. Zhou et al. [61] apply the notions of k-
anonymity and l-diversity to data protection in OSNs and discuss the complexity
of finding private subsets. Their approach does however suffer from the same
problems these techniques have in traditional statistical data disclosure, where
an adversary with auxiliary information can easily infer information about any
specific user. Chen et al. [16] provide a variation of differential privacy which
allows for privacy and protection against edge-disclosure attacks in the correlated

92 M. Backes et al.

setting of OSNs. The setting, however, remains static, and it is assumed that the
data can be globally sanitized in order to provide protection against attribute
disclosure. Again, as discussed in Sect. 3.3, this does not apply to the open web
setting with its highly unstructured dissemination of data.

Privacy in Online Social Networks. A growing body of research shows that
commonly used machine learning and information retrieval techniques can be
used to match a user’s profiles across different OSNs [13,19] or to identify the
unique profile of a given user [8,17,53]. Scerri et al., in particular, present the
digital.me framework [51,52] which attempts to unify a user’s social sphere across
different OSNs by, e.g., matching the profiles of the same user across these OSNs.
While their approach is limited to the closed environment they consider, their
work provides interesting insights into identity disclosure in more open settings.

Several works in the literature (e.g., [38,41]) have focused on the protection
of so-called Personally Identifiable Information (PII) introduced in privacy and
data-protection legislation [2], which constitute a fixed set of entity attributes
that even in isolation supposedly lead to the unique identification of entities.
Narayanan and Shmatikov, however, show that the differentiation between key
attributes that identify entities, and sensitive attributes that need to be pro-
tected, is not appropriate for privacy in pervasive online settings such as the
Internet [47,48]. Technical methods for identifying and matching entities do not
rely on the socially perceived sensitivity of attributes for matching, but rather
any combination of attributes can lead to successful correlation of corresponding
profiles. Our privacy model treats every type of entity attribute as equally impor-
tant for privacy and allows for the identification of context-dependent, sensitive
attributes.

Authorship Recognition. The field of linguistic stylometry is a is a widely
explored topic in the literature [3,36,43,57]. This starts from pre-computer
approaches to identifying text-authors based on simple text features such as
word-length [43] to the, nowadays, machine-learning centered approaches that
try to include a plethora of statistical features to correctly identify the author
of a given text [3,36,57].

Stylometry has successfully been utilized in various areas: as an assisting tool
in historical research [31,49], allowing for the correct attribution of text with pre-
viously unknown origin, or providing evidence in criminal investigations [12,14].

With the rise of the Internet as a large-scale communication platform for
end-users, however, stylometry now also poses a significant threat to user pri-
vacy. As shown by Narayanan et al. [46], it is entirely feasible to identify the
authors of, e.g., blog-posts on a scale as large as the Internet. Afroz et al. [5] also
show that authors of private messages in underground forums can effectively be
de-anonymized by stylometry.

Adversarial Stylometry. Several works have shown that hiding an author’s
identity is indeed possible by means of obfuscation and imitation [10,42].

From Zoos to Safaris 93

In particular, Brennan et al. [10] show that, for text corpora with at least 6500
words per author, applying methods such as asking the authors to rewrite their
texts or doubly translating with machine translation can indeed reduce the accu-
racy of state-of-the-art stylometric methods. They also provide an implementa-
tion of their ideas in Anonymouth [6], a semi-automatic tool, assisting users in
anonymizing their writing style by identifying critical text features and asking
them to rewrite corresponding text passages. This work, however, only provides
results for text corpora with large amounts of text per author and is based on
the same dataset as ours.

Authorship obfuscation can also be detected, as shown by various work in
the literature [4,33,50]. However, these works again require text corpora with
large amounts of text per author. It would be interesting to see the effectiveness
of these obfuscation-detection methods in the online setting with much less text
per author.

3 Privacy in Open Settings

Before we delve into the technical parts of this paper, we give an informal
overview over privacy in the Internet of the future. To this end, we first pro-
vide an example that illustrates some of the aspects of privacy in the Internet,
and then in detail discuss the challenges of privacy in the Internet and why
existing privacy notions are not applicable to this setting.

3.1 Example

Consider the following example: Employer Alice receives an application by poten-
tial employee Bob which contains personal information about Bob. Before she
makes the decision on the employment of Bob, however, she searches the internet
and tries to learn even more about her potential employee. A prime source of
information are, for example, Online Social Networks (OSNs) which Alice can
browse through. If she manages to identify Bob’s profile in such an OSN she can
then learn more about Bob by examining the publicly available information of
this profile.

In order to correctly identify Bob’s profile in an OSN, Alice takes the following
approach: based on the information found in Bob’s application, she constructs
a model θB that contains all attributes, such as name, education or job history,
extracted from Bob’s application. She then compares this model θB to the profiles
P1, . . . , Pn found in the OSNs and ranks them by similarity to the model θB.
Profiles that show sufficient similarity to the model θB are then chosen by Alice
as belonging to Bob. After identifying the (for Alice) correctly matching profiles
P ∗
1 , . . . , P ∗

i of Bob, Alice can finally merge their models θ∗
1 , . . . , θ

∗
i with θB to

increase her knowledge about Bob.
Bob now faces the problem that Alice could learn information about him

that he does not want her to learn. He basically has two options: he either does
not share this critical information at all, or makes sure that his profile is not

94 M. Backes et al.

identifiable as his. In OSNs such as Facebook, where users are required to identify
themselves, Bob can only use the first option. In anonymous or pseudonymous
OSNs such as Reddit or Twitter, however, he can make use of the second option.
He then has to make sure that he does not share enough information on his
pseudonymous profiles that would allow Alice to link his pseudonymous profile
to him personally.

Privacy in the open web is mostly concerned with the second option: we
cannot protect an entity ε against sharing personal information through a profile
which is already uniquely identified with the entity ε. We can, however, estimate
how well an pseudonymous account of ε can be linked to ε, and through this
link, learn personal information about ε. As the example above shows, we can
essentially measure privacy in terms of similarity of an entity ε in a collection of
entities E .

The identifiability of ε then substantially depends on the attributes ε exhibits
in the context of E and does not necessarily follow the concept of personally iden-
tifiable information (PII) as known in the more common understanding of pri-
vacy and in privacy and data-protection legislation [2]: here, privacy protection
only goes as far as protecting this so-called personally identifiable information,
which often is either not exactly defined, or restricted to an a-priori-defined set
of attributes such as name, Social Security number, etc. We, along with other
authors in the literature [47,48], find however that the set of critical attributes
that need to be protected differ from entity to entity, and from community to
community. For example, in a community in which all entities have the name
“Bob”, exposing your name does not expose any information about yourself. In
a different community, however, where everyone has a different name, exposing
your name exposes a lot of information about yourself.

In terms of the privacy taxonomy formulated by Zheleva and Getoor [60],
the problem we face corresponds to the identity disclosure problem, where one
tries to identify whether and how an identity is represented in an OSN. We
think that this is one of the main concerns of users of frequently used OSNs,
in particular those that allow for pseudonymous interactions: users are able to
freely express their opinions in these environments, assuming that their opinions
cannot be connected to their real identity. However, any piece of information
they share in their interactions can leak personal information that can lead to
identity disclosure, defeating the purpose of such pseudonymous services.

To successfully reason about the potential disclosure of sensitive information
in such open settings, we first have to consider various challenges that have not
been considered in traditional privacy research. After presenting these challenges,
we discuss the implications of these challenges on some of the existing privacy
notions, before we consider other relevant related work in the field.

3.2 Challenges of Privacy in Open Settings

In this subsection, we introduce the challenges induced by talking about privacy
in open settings:

From Zoos to Safaris 95

(C1) Modeling Heterogeneous Information. We require an information model
that allows for modeling various types of information and that reflects the het-
erogeneous information shared throughout the Internet. This models needs to
adequately represent personal information that can be inferred from various
sources, such as static profile information or from user-generated content, and
should allow statistical assessments about the user, as is usually provided by
knowledge inference engines. We propose a solution to this challenge in Sect. 4.1.

(C2) User-Specified Privacy Requirements. We have to be able to formalize
user-specified privacy requirements. This formalization should use the previously
mentioned information model to be able to cope with heterogeneous information,
and specify which information should be protected from being publicly dissemi-
nated. We present a formalization of user privacy requirements in Sect. 4.4.

(C3) Information Sensitivity. In open settings, information sensitivity is a func-
tion of user expectations and context: we therefore need to provide new defini-
tions for sensitive information that takes user privacy requirements into account.
We present context- and user-specific definitions of information sensitivity in
Sect. 4.5.

(C4) Adversarial Knowledge Estimation. To adequately reason about disclosure
risks in open settings we also require a parameterized adversary model that
we can instantiate with various assumptions on the adversary’s knowledge: this
knowledge should include the information disseminated by the user, as well as
background knowledge to infer additional information about the user. In Sect. 4,
we define our adversary model based on statistical inference.

In the following sections, we provide a rigorous formalization for these
requirements, leading to a formal framework for privacy in open settings. We
will instantiate this framework in Sect. 5.3 to reason about the identity disclo-
sure in particular.

We begin by discussing why existing privacy notions are not suited for rea-
soning about privacy in open settings. Afterwards, we provide an overview over
further related work.

3.3 Inadequacy of Existing Models

Common existing privacy notions such as k-anonymity [54], l-diversity [40], t-
closeness [39] and the currently most popular notion of Differential Privacy [22]
provide the technical means for privacy-friendly data-publishing in a closed-
world setting: They target scenarios in which all data is available from the
beginning, from a single data source, remains static and is globally sanitized
in order to provide rigorous privacy guarantees. In what follows, we describe
how these notions fail to adequately address the challenges of privacy in open
settings discussed above.

96 M. Backes et al.

(a) Absence of Structure and Classification of Data. All the aforementioned
privacy models require an a-priori structure and classification of the data under
consideration. Any information gathered about an individual thus has to be
embedded in this structure, or it cannot be seamlessly integrated in these models.

(b) No Differentiation of Attributes. All of these models except for Differential
Privacy require an additional differentiation between key attributes that iden-
tify an individual record, and sensitive attributes that a users seeks to protect.
This again contradicts the absence of an a-priori, static structure in our setting.
Moreover, as pointed out above and in the literature [48], such a differentiation
cannot be made a-priori in general, and it would be highly context-sensitive in
the open web setting.

(c) Ubiquitously Available Background Knowledge. All of these models, except
for Differential Privacy, do not take into account adversaries that utilize ubiq-
uitously available background knowledge about a target user to infer additional
sensitive information. A common example of background knowledge is openly
available statistical information that allows the adversary to infer additional
information about an identity.

(d) Privacy for Individual Users. All these models provide privacy for the whole
dataset, which clearly implies privacy of every single user. One of the major
challenges in open settings such as the Internet, however, is that accessing and
sanitizing all available data is impossible. This leads to the requirement to design
a local privacy notion that provides a lower privacy bound for every individual
user, even if we only have partial access to the available data.

The notion of Differential Privacy only fails to address some of the aforemen-
tioned requirements (parts a and d), but it comes with the additional assump-
tion that the adversary knows almost everything about the data set in question
(everything except for the information in one database entry). This assump-
tion enables Differential Privacy to avoid differentiation between key attributes
and sensitive attributes. This strong adversarial model, however, implies that
privacy guarantees are only achievable if the considered data is globally per-
turbed [21,23,24], which is not possible in open web settings.

The conceptual reason for the inadequacy of existing models for reasoning
about privacy in open web settings is mostly their design goal: Privacy mod-
els have thus far mainly been concerned with the problem of attribute disclo-
sure within a single data source: protection against identity disclosure was then
attempted by preventing the disclosure of any (sensitive) attributes of a user to
the public. In contrast to static settings such as private data publishing, where
we can decide which information will be disclosed to the adversary, protection
against any attribute disclosure in open settings creates a very different set of
challenges which we will address in the following sections.

From Zoos to Safaris 97

4 A Framework for Privacy in Open Settings

In this section, we first develop a user model that is suited for dealing with the
information dissemination behavior commonly observed on the Internet. We then
formalize our adversary model and show, as a sanity check, that hard privacy
guarantees cannot be achieved in open settings. We conclude by defining privacy
goals in open settings through user-specified privacy requirements from which
we then derive a new definition of information sensitivity suited to open settings.

4.1 Modeling Information in Open Settings

We first define the notion of entity models and restricted entity models. These
models capture the behavior of these entities and in particular describe which
attributes an entity exhibits publicly.

Definition 1 (Entity Model). Let A be the set of all attributes. The entity
model θε of an entity ε provides for all attributes α ∈ A an attribute value
θε(α) ∈ dom(α) ∪ {NULL} where dom(α) is the domain over which the attribute
αi is defined.

The domain dom(θ) of an entity model θ is the set of all attributes α ∈ A
with value θ(α) �= NULL.

An entity model thus corresponds to the information an entity can publicly
disseminate. With the specific null value NULL we can also capture those cases
where the entity does not have any value for that specific attribute.

In case the adversary has access to the full entity model, a set of entity models
basically corresponds to a database with each attribute α ∈ A as its columns. In
the open setting, however, an entity typically does not disseminate all attribute
values, but instead only a small part of them. We capture this with the notion
of restricted entity models.

Definition 2 (Restricted Entity Model). The restricted entity model θA′
ε

is the entity model of εrestricted to the non empty attribute set A′ �= ∅, i.e.,

θA′
ε (α) =

{
θε(α), if α ∈ A′

NULL, otherwise

In the online setting, each of the entities above corresponds to an online profile.
A user u usually uses more than one online service, each with different profiles
Pu
1 , . . . , Pu

l . We thus define a user model as the collection of the entity models
describing each of these profiles.

Definition 3 (User Model / Profile Model). The user model θu = {θPu
1 ,,

. . . , θPu
1
} of a user u is a set of the entity models θPu

1 ,, . . . , θPu
1 ,, which we also

call profile models.

With a user model that separates the information disseminated under different
profiles, we will be able to formulate privacy requirements for each of these
profiles separately. We will investigate this in Sect. 4.4.

98 M. Backes et al.

4.2 Adversary Model

In the following we formalize the adversary we consider for privacy in open
settings. In our formalization, we follow the definitions of a semantic, Bayesian
adversary introduced by Kasiviswanathan and Smith [34].

For any profile P , we are interested in what the adversary Adv learns about
P observing publicly available information from P . We formalize this learning
process through beliefs on the models of each profile.

Definition 4 (Belief). Let P be the set of all profiles and let DA be the set
of all distributions over profile models. A belief b = {bP |P ∈ P} is a set of
distributions bP ∈ DA.

We can now define our privacy adversary in open settings using the notion of
belief above.

Definition 5 (Adversary). An adversary Adv is a pair of prior belief b and
world knowledge κ, i.e., Adv = (b, κ).

The adversary Adv’s prior belief b represents his belief in each profile’s profile
model before makes any observations. This prior belief can, in particular, also
include background knowledge about each profile P . The world knowledge κ of
the adversary represents a set of inference rules that allow him to infer additional
attribute values about each profile from his observations.

We next define the publicly observations based on which the adversary learns
additional information about each profile.

Definition 6 (Publication Function). A publication function G is a ran-
domized function that maps each profile model θP to a restricted profile model
G(θP) = θA′

P such that there is at least one attribute α ∈ A′ with θP (α) =
G(θP)(α).

The publication function G reflects which attributes are disseminated publicly by
the user through his profile P . G can, in particular, also include local sanitization
where some attribute values are perturbed. However, we do require that at least
one attribute value remains correct to capture utility requirements faced in open
settings.

A public observation now is the collection of all restricted profile models
generated by a publication function.

Definition 7 (Public Observation). Let P be the set of all profiles, and let
G be a publication function. The public observation O is the set of all restricted
profile models generated by G, i.e., O = {G(θP)|P ∈ P}.
The public observation O essentially captures all publicly disseminated attribute
values that can be observed by the adversary. Given such an observation O,
we can now determine what the adversary Adv learns about each profile by
determining his a-posteriori belief.

From Zoos to Safaris 99

Definition 8 (A-Posteriori Belief). Let P be the set of all profiles. Given an
adversary Adv = (b, κ) and a public observation O, the adversary’s a-posteriori
belief b = {bP ∈ DA|P ∈ P} is determined by applying the Bayesian inference
rule, i.e.,

bP [θ|O, κ] =
Pr[O|κ, θ] · bP [θ]∑
θ′ Pr[O|κ, θ′] · bP [θ′]

.

Here, the conditional probability Pr[O|κ, θ] describes the likelihood that the
observational O is created by the specific entity model θ.

We will utilize the a-posteriori belief of the adversary to reason about the
violation of the user specified privacy requirements in Sect. 4.4.

4.3 Inapplicability of Statistical Privacy Notions

In the following, we formally show that traditional non-disclosure guarantees,
e.g., in the style of Differential Privacy, are not possible in open settings.

Kasiviswanathan and Smith [34] provide a general definition of non-disclosure
they call ε-privacy. In their definition, they compare the adversary Adv’s a-
posteriori beliefs after observing the transcript t generated from a database san-
itazitaion mechanism F applied on two adjacent databases with n rows: first on
the database x, leading to the belief b0[.|t], and secondly on the database x−i,
where a value in the ith row in x is replaced by a default value, leading to the
belief bi[.|t].
Definition 9 (ε-semantic Privacy [34]). Let ε ∈ [0, 1]. A randomized algo-
rithm F is ε-semantically private if for all belief distributions b on Dn, for all
possible transcripts, and for all i = 1 . . . n:

SD(b0[.|t], bi[.|t]) ≤ ε.

Here, SD is the total variation distance of two probability distributions.

Definition 10. Let X and Y be two probability distributions over the sample
space D. The total variation distance SD of X and Y is

SD(X,Y) = maxS⊂D [Pr[X ∈ S] − Pr[Y ∈ S]] .

Kasiviswanathan and Smith [34] show that ε-differential privacy is essentially
equivalent to ε-semantic privacy.

In our formalization of privacy in open settings, varying a single database
entry corresponds to changing the value of a single attribute α in the profile
model θP of a profile P to a default value. We denote this modified entity
model with θα

P , and the thereby produced a-posteriori belief by b
α

P . A profile
P would then be ε-semantically private if for any modified profile model θα

P , the
a-posteriori belief of adversary Adv does not change by more than ε.

100 M. Backes et al.

Definition 11 (ε-semantic Privacy in Open Settings). Let ε ∈ [0, 1].
A profile P is ε-semantically private in open settings if for any attribute α,

SD(bP [.|O], b
α

P [.|O]) ≤ ε

where bP and b
α

P are the a-posteriori beliefs of the adversary after observing the
public output of θP and θα

P respectively.

As expected, we can show that ε-semantic privacy can only hold for ε = 1 in
open settings.

Theorem 1. For any profile model θP and any attribute α, there is an adversary
Adv such that

SD(b[.|O], b
α
[.|O]) ≥ 1.

Proof. Let Adv have a uniform prior belief, i.e., all possible profile models have
the same probability, and empty world knowledge κ. Let αbe the one attribute
that remains the same after applying the publication function G. Let x be the
original value of this attribute α and let x∗ be the default value that replaces x.

Observing the restricted profile model θP [A′] without any additional world
knowledge will lead to an a-posteriori belief, where the probability of the entity
model θ with θ[A′] = θP [A′] and NULL everywhere else, is set to 1.

Conversely, the modified setting will result in an a-posteriori belief that sets
the probability for the entity model θ∗ to one, where θ∗ is constructed for the
modified setting as θ above. Thus b[θ|O] = 1, whereas b

α
[θ|O] = 0, and hence

SD(b[.|O], b
α
[.|O]) = 1. �	

Intuitively, the adversary can easily distinguish differing profile models because
(a) he can directly observe the profiles publicly available information, (b) he
chooses which attributes he considers for his inference and (c) only restricted, local
sanitization is available to the profile. Since these are elementary properties of pri-
vacy in open settings, we can conclude that hard security guarantees in the style
of differential privacy are impossible to achieve in open settings.

However, we can provide an assessment of the disclosure risks by explicitly
fixing the a-priori knowledge and the attribute set considered by the adversary.
While we no longer all-quantify over all possible adversaries, and therefore lose
the full generality of traditional non-disclosure guarantees, we might still provide
meaningful privacy assessments in practice. We further discuss this approach in
Sect. 4.5, and follow this approach in our instantiation of the general model for
assessing the likelihood of identity disclosure in Sect. 5.

4.4 User-Specified Privacy Requirements

In the following we introduce user-specified privacy requirements that allow us
to formulate privacy goals that are user- and context-dependent. These can then
lead to restricted privacy assessments instead of general privacy guarantees that
we have shown to be impossible in open setting in the previous section.

From Zoos to Safaris 101

We define a user’s privacy requirements on a per-profile basis, stating which
attribute values should not be inferred by adversary after seeing a public obser-
vations O.

Definition 12 (Privacy Policy). A privacy policy R is a set of privacy
requirements r = (P, {αi = xi}) which require that profile P should never expose
the attribute values xi for the attributes αi ∈ A.

By setting privacy requirements in a per-profile basis we capture an important
property of information dissemination in open settings: users utilize different
profiles for different context (e.g., different online services) assuming these pro-
files remain separate and specific information is only disseminated under specific
circumstances.

Given the definition of privacy policies, we now define the violation of a policy
by considering the adversary’s a-posterior belief b, as introduced in Sect. 4.2.

Definition 13 (Privacy Policy Satisfaction / Violation). Let Adv = (b, κ)
be an adversary with a-posteriori belief b, and let θ[α = x] be the set of all entity
models that have the value x for the attribute α. A profile Pu

i σ-satisfies a user’s
privacy requirement ru

j = (P, {αi = xi}), written Pu
i |=σ ru

j , if

– P = Pu
i

– ∀αi :
∑

θ∈θ[αi=xi]
bP [θ|O, κ] ≤ σ

and σ-violates the user’s privacy requirement otherwise.
A user model θu σ-satisfies a user u’s privacy policy Ru, written θu |=σ Ru,

if all profile models θPu
i

σ-satisfy their corresponding privacy requirements, and
σ-violates the privacy policy otherwise.

The above attributes can also take the form of “P belongs to the same user as
P ′”, effectively restricting which profiles should be linked to each other. We will
investigate this profile linkability problem specifically in Sect. 5.

4.5 Sensitive Information

In contrast to the closed-world setting, with its predefined set of sensitive
attributes that automatically defines the privacy requirements, a suitable defini-
tion of information sensitivity in the open setting is still missing. In the following,
we derive the notion of sensitive information from the user privacy requirements
we defined in Sect. 4.4.

Definition 14 (Sensitive Attributes). A set of attributes A∗ is sensitive for
a user u in the context of her profile Pu

i if u’s privacy policy Ru contains a
privacy requirement r = (Pu

i ,A′ = X) where A∗ ⊆ A′.

Here, we use the notation A = X as vector representation for ∀αi ∈ A : αi = xi.
Sensitive attributes, as defined above, are not the only type of attributes

that are worth to protect: In practice, an adversary can additionally infer sensi-
tive attributes from other attributes through statistical inference using a-priori
knowledge. We call such attributes that allow for the inference of sensitive
attributes critical attributes.

102 M. Backes et al.

Definition 15 (Critical Attributes). Given a set of attributes A∗, let P be
a profile with dom(θP) ⊇ A, and let P ′ be the profile with the restricted profile
model θP ′ = θA′

P , where A′ = dom(θP) \ A∗.
The set of attributes A∗ is σ-critical for the user u that owns the profile P

and an adversary with prior belief bP and world knowledge κ, if u’s privacy policy
Ru contains a privacy requirement r such that P σ-violates r but P ′ does not.

Critical information require the same amount of protection as sensitive informa-
tion, the difference however being that critical information is only protected for
the sake of protecting sensitive information.

As a direct consequence of the definition above, sensitive attributes are also
critical.

Corollary 1. Let A be a set of sensitive attributes. Then A is also 0-critical.

Another consequence we can draw is that privacy requirements will always be
satisfied if no critical attributes are disseminated.

Corollary 2. Let O be a public observations that does not include any critical
attributes for a user u and an adversary Adv. Then u’s privacy policy Ru is
σ-satisfied against Adv.

The corollary above implies that, while we cannot provide general non-disclosure
guarantees in open settings, we can provide privacy assessments for specific pri-
vacy requirements, given an accurate estimate of the adversary’s prior beliefs.

While privacy assessments alone are not satisfactory from a computer security
perspective, where we usually require hard security guarantees quantified over
all possible adversaries, the fact remains that we are faced with privacy issues
in open settings that are to this day unanswered for due to the impossibility
of hard guarantees in such settings. Pragmatically thinking, we are convinced
that we should move from impossible hard guarantees to more practical privacy
assessments instead. This makes particularly sense in settings where users are
not victims of targeted attacks, but instead fear attribute disclosure to data-
collecting third parties.

5 Linkability in Open Settings

In the following we instantiate the general privacy model introduced in the
last section to reason about the likelihood that two profiles of the same user
are linked by the adversary in open settings. We introduce the novel notion of
(k, d)-anonymity with which we assess anonymity and linkability based on the
similarity of profiles within an online community.

To simplify the notation we introduce in this section, we will, in the following,
talk about matching entities ε and ε′ the adversary wants to link, instead of
profiles P1 and P2 that belong to the same user u. All definitions introduced in
the general framework above naturally carry over to entities as well.

From Zoos to Safaris 103

5.1 Model Instantiation for Linkability

In the linkability problem, we are interested in assessing the likelihood that
two matching entities ε and ε′ can be linked, potentially across different online
platforms. The corresponding privacy requirements, as introduced in Sect. 4.4,
are r1 = (ε, αL) and r2 = (ε′, αL), where αL is the attribute that ε and ε′ belong
to the same user. Consequently, we say that these entities are unlinkable if they
satisfy the aforementioned privacy requirements.

Definition 16 (Unlinkability). Two entities ε and ε′ are σ-unlinkable if
{θε, θε′} |=σ {r1, r2}.

5.2 Anonymity

To assess the identity disclosure risk of an entity ε within a collection of entities
E , we use the following intuition: ε is anonymous in E if there is a subset E ′ ⊆ E
to which ε is very similar. The collection E ’ then is an anonymous subset of E
for ε.

To assess the similarity of entities within a collection of entities, we will use
a distance measure dist on the entity models of these entities. We will require
that this measure provides all properties of a metric.

A collection of entities in which the distance of all entities to ε is small (i.e.,
≤ a constant d) is called d-convergent for ε.

Definition 17. A collection of entities E is d-convergent for ε if dist(θε, θε′) ≤ d
for all ε′ ∈ E.

Convergence measures the similarity of a collection of individuals. Anonymity
is achieved if an entity can find a collection of entities that are all similar to
this entity. This leads us to the definition of (k, d)-anonymity, which requires a
subset of similar entities of size k.

Definition 18. An entity ε is (k, d)-anonymous in a collection of entities E if
there exists a subset of entities E ′ ⊆ E with the properties that ε ∈ E, that |E ′| ≥ k
and that E ′ is d-convergent.

An important feature of this anonymity definition is that it provides anonymity
guarantees that can be derived from a subset of all available data, but continue
to hold once we consider a larger part of the dataset.

Corollary 3. If an entity is (k, d)-anonymous in a collection of entities E, then
it is also (k, d)-anonymous in the collection of entities E ′ ⊃ E.

Intuitively, (k, d)-anonymity is a generalization of the classical notions of k-
anonymity to open settings without pre-defined quasi-identifiers. We schemati-
cally illustrate such anonymous subsets in Fig. 1.

104 M. Backes et al.

Fig. 1. Anonymity in crowdsourcing systems. (Color figure online)

5.3 Entity Matching

We define the notion of matching identities. As before, we use the distance
measure dist to assess the similarity of two entities.

Definition 19. An entity ε c-matches an entity ε′ if dist(θε, θε′) ≤ c.

Similarly, we can also define the notion of one entity matching a collection of
entities.

Definition 20. A collection of entities E c-matches an entity ε′ if all entities
ε ∈ E c-match ε′.

Assuming the adversary only has access to the similarity of entities, the best
he can do is comparing the distance of all entities ε ∈ E to ε′ and make a
probabilistic choice proportional to their relative distance values.

Now, if the matching identity ε∗ is d-convergent in E the, all entities in E will
have a comparatively similar distance to ε′.

Lemma 1. Let E be d-convergent for ε∗. If ε∗ c-matches ε′, then E (c + d)-
matches ε′.

Proof. Since E is d-convergent for ε∗, ∀ε′ ∈ E : dist(ε∗, ε′) ≤ d. Using the triangle
inequality, and the fact that ε∗ c-matches the entity ε′, we can bound the distance
of all entities ε ∈ E to ε′ by ∀ε′′ ∈ E : dist(ε, ε′) ≤ c+d. Hence E (c+d)-matches
the entity ε′. �	
Hence, the matching entity ε∗ does not c-match ε′ for a small value of c, the
adversary Adv he will have a number of possibly matching entities that are
similarly likely to match ε′.

We get the same result if not the whole collection E is convergent, but if there
exists a subset of convergent entities that allows the target to remain anonymous.

From Zoos to Safaris 105

Corollary 4. Let ε’ be (k, d)-anonymous in E. If ε’ c-matches an entity εthen
there is a subset E ′ ⊆ E of size at least k which (c + d)-matches ε.

5.4 Identity Disclosure

We assume that the adversary uses the similarity of the candidate entities to his
target entity ε′ to make his decision. The likelihood that the adversary chooses
a specific entity ε∗ then is the relative magnitude of dist(ε∗, ε), i.e.

Pr[Adv chooses ε∗] = 1 − dist(ε∗, ε′)∑
ε∈E dist(ε, ε′)

.

We can now bound the likelihood with which a specific entity ε∗ would be chosen
by the adversary if ε∗ is (k, d)-anonymous.

Theorem 2. Let the matching entity ε∗ of the entity ε′ in the collection E =
{ε1, . . . , εn} be (k, d)-anonymous in E. Furthermore let ε∗ c-match ε′. Then an
adversary Adv = (b, ∅) with uniform prior belief b and with empty world knowl-
edge that only observes the similarity of entities links the entity ε∗ to ε′ with a
likelihood of at most t ≤ 1 − c

c+(k−1)(c+d) .

Proof. Let E∗ be the (k, d) anonymous subset of ε∗ in E . Let t∗ be the likelihood
of identifying ε∗ from E∗. Then clearly t < t∗ since we remove all possible, but
wrong candidates in E \ E∗.

Since ε∗ c-matches ε′, by Lemma 1, we can upper bound the distance of each
entity in E∗ to ε′, i.e.,

∀ε ∈ E∗ : dist(ε, ε′) ≤ c + d

We can now bound t∗ as follows:

t∗ = Pr[Adv chooses ε]

= 1 − c

c + (k − 1)(
∑

ε∈E∗\{ε∗}
dist(ε, ε′))

≤ 1 − c

c + (k − 1)(c + d)

�	
Theorem 2 shows that, as long as entities remain anonymous in a suitably large
anonymous subset of a collection of entities, an adversary will have difficulty
identifying them with high likelihood. Recalling our unlinkability definition from
the beginning of the section, this result also implies that ε∗ is σ-unlinkable for
σ = t.

Corollary 5. Let the matching entity ε∗ of the entity ε′ in the collection E =
{ε1, . . . , εn} be (k, d)-anonymous in E. Then ε∗ and ε′ are σ-unlinkable for σ =
1 − c

c+(k−1)(c+d) against an adversary Adv = (b, ∅) with uniform prior belief and
empty world knowledge that only observes entity similarity.

In Sect. 6.5 we present experiments that evaluate the anonymity and linkability
of individuals in the Online Social Network Reddit, and measure how well they
can be identified from among their peers.

106 M. Backes et al.

5.5 Limitations

The quality of the assessment provided by the d-convergence model largely
depends on adversarial prior belief we assume: in our results above, we assume
an adversary without any prior knowledge. In practice, however, the adversary
might have access to prior beliefs that can help him in his decision making. There-
fore, turning such assessments into meaningful estimates in practice requires a
careful estimation of prior knowledge by, e.g., producing a more accurate pro-
file model: the problem of comprehensive profile building for entities in an open
setting is an open question that has been examined somewhat in the litera-
ture [8,13,17,19,53], but on the whole still leaves a lot of space for future work.

This concludes the formal definitions of our d-convergence model. In the
next sections, we instantiate it for identity disclosure risk analyses based on
user-generated text-content and apply this instantiation to the OSN Reddit.

6 Linkability Evaluation on Reddit

While the main focus of this paper is to present the actual privacy model as such,
the following experiments are meant to provide first insights into the application
of our framework, without taking overly complex adversarial capabilities into
account. The evaluation can easily be extended to a more refined model of an
adversary without conceptual difficulties.

We first articulate the goals of this evaluation, and then, secondly, describe
the data collection process, followed by defining the instantiation of the general
framework we use for our evaluation in the third step. Fourth, we introduce the
necessary processing steps on our dataset, before we finally discuss the results
of our evaluation.

6.1 Goals

In our evaluation, we aim at validating our model by conducting two basic exper-
iments. First, we want to empirically show that, our model instantiation yields a
suitable abstraction of real users for reasoning about their privacy. To this end,
profiles of the same user should be more similar to each other (less distant) than
profiles from different users.

Second, we want to empirically show that a larger anonymous subset makes
it more difficult for an adversary to correctly link the profile. Thereby, we inspect
whether anonymous subsets provide a practical estimate of a profile’s anonymity.

Given profiles with anonymous subsets of similar size, we determine the per-
centage of profiles which the adversary can match within the top k results, i.e.,
given a source profile, the adversary computes the top k most similar (less dis-
tant) profiles in the other subreddit. We denote this percentage by precision@k
and correlate it to the size of the anonymous subsets.

We fix the convergence of the anonymous subsets to be equal to the matching
distance between two corresponding profiles. Our intuition is that, this way, the
anonymous subset captures most of the profiles an adversary could potentially
consider matching.

From Zoos to Safaris 107

6.2 Data-Collection

For the empirical evaluation of our privacy model, we use the online social net-
work Reddit [1] that was founded in 2005 and constitutes one of the largest
discussion and information sharing platforms in use today. On Reddit, users
share and discuss topics in a vast array of topical subreddits that collect all
topics belonging to one general area; e.g. there are subreddits for world news, tv
series, sports, food, gaming and many others. Each subreddit contains so-called
submissions, i.e., user-generated content that can be commented on by other
users.

To have a ground truth for our evaluation, we require profiles of the same
user same user across different OSNs to be linked. Fortunately, Reddit’s struc-
ture provides an inherent mechanism to deal with this requirement. Instead of
considering Reddit as a single OSN, we treat each subreddit as its own OSN.
Since users are identified through the same pseudonym in all of those subreddits,
they remain linkable across the subreddits’ boundaries. Hence our analysis has
the required ground truth. The adversary we simulate, however, is only provided
with the information available in the context of each subreddit and thus can only
try to match profiles across subreddits. Ground truth in the end allows us to
verify the correctness of his match.

To build up our dataset, we built a crawler using Reddit’s API to collect com-
ments. Recall that subreddits contain submissions that, in turn, are commented
by the users. For our crawler, we focused on the large amount of comments
because they contain a lot of text and thus are best suitable for computing the
unigram models.

Our crawler operates in two steps that are repeatedly executed over time.
During the whole crawling process, it maintains a list of already processed users.
In the first step, our crawler collects a list of the overall newest comments on
Reddit from Reddit’s API and inserts these comments into our dataset. In the
second step, for each author of these comments who has not been processed yet,
the crawler also collects and inserts her latest 1, 000 comments into our dataset.
Then, it updates the list of processed users. The number of 1, 000 comments per
user, is a restriction of Reddit’s API.

In total, during the whole September 2014, we collected more than 40 million
comments from over 44, 000 subreddits. The comments were written by about
81, 000 different users which results in more than 2.75 million different profiles.

The whole dataset is stored in an anonymized form in a MySQL database
and is available upon request.

6.3 Model Instantiation

On Reddit, users only interact with each other by by posting comments to text
of link submissions. Reddit therefore does not allow us to exploit features found
in other social networks, such as friend links or other static data about each
user. On the other hand, this provides us with the opportunity to evaluate the

108 M. Backes et al.

linkability model introduced in Sect. 5 based dynamic, user-generated content,
in this case user-generated text content.

Since we only consider text content, we instantiate the general model from
the previous sections with an unigram model, where each attribute is a word
unigram, an its value is the frequency with which the unigram appears in the
profiles comments. Such unigram models have succesfully been used in the past
to characterize the information within text content and to correlate users across
different online platforms [28,45].

Definition 21 (Unigram Model). Let V be a finite vocabulary. The unigram
model θP = pi of a profile is a set of frequencies pi ∈ [0, . . . , 1] with which each
unigram wi ∈ V appears in the profile P . Each frequency pi is determined by

pi =
count(wi, P)∑

w∈V count(w,P)

Since the unigram model essentially constitutes a probability distribution, we
instantiate our distance metric dist with the Jensen-Shannon divergence [25].
The Jensen-Shannon divergence is a symmetric extension of the Kullback-Leiber
divergence has been shown to be successful in many related information retrieval
scenarios.

Definition 22. Let P and Q be two statistical models over a discrete space Ω.
The Jensen-Shannon divergence is defined by

DJS =
1
2
DKL(P ||M) +

1
2
DKL(Q||M)

where DKL is the Kullback-Leibler divergence

DKL(P ||Q) =
∑
ω∈Ω

log

(
P (ω)
Q(ω)

)
P (ω)

and M is the averaged distribution M = 1
2 (P + Q).

In the following, we will use the square-root of the Jensen-Shannon divergence,
constituting a metric, as our distance measure, i.e., dist =

√
DJS.

6.4 Data-Processing

The evaluation on our dataset is divided into sequentially performed computa-
tion steps, which include the normalization of all comments, the computation
of unigram models for each profile, a filtering of our dataset to keep the eval-
uation tractable, the computation of profile distances and the computation of
(k, d)-anonymous subsets.

From Zoos to Safaris 109

Normalizing Comments. Unstructured, heterogeneous data, as in our case,
may contain a variety of valuable information about a user’s behavior, e.g.,
including formatting and punctuation. Although we could transform these into
attributes, we do not consider them here for the sake of simplicity.

In order to get a clean representation to apply the unigram model on, we
apply various normalization steps, including transformation to lower case, the
removal of Reddit formatting and punctuation except for smilies. Moreover, we
apply a encoding specific normalization, replace URLs by their hostnames and
shorten repeated characters in words like cooool to a maximum of three. Finally,
we also filter out a list of 597 stopwords from the comments. Therefore, we
perform six different preprocessing steps on the data, which we describe in more
detail in the following.

1. Convert to lower case letters: In our statistical language models, we do
not want to differentiate between capitalized and lowercased occurrences of
words. Therefore, we convert the whole comment into lower case.

2. Remove Reddit formatting: Reddit allows users to use a wide range of
formatting modifiers that we divide into two basic categories: formatting mod-
ifiers that influence the typography and the layout of the comment, and for-
matting modifiers that include external resources into a comment. The first
kind of modifier, named layout modifiers, is stripped off the comment, while
leaving the plain text. The second kind of modifier, called embedding modi-
fiers, is removed from the comment completely.
One example for a layout modifier is the asterisk: When placing an asterisk
both in front and behind some text, e.g., *text*, this text will be displayed
in italics, e.g., text . Our implementation removes these enclosing asterisks,
because they are not valuable for computing statistical language models for
n-grams and only affect the layout. Similarly, we also remove other layout
modifiers such as table layouts, list layouts and URL formatting in a way
that only the important information remains.
A simple example for embedding modifiers are inline code blocks: Users can
embed arbitrary code snippets into their comments using the ‘ modifier. Since
these code blocks do not belong to the natural language part of the comment
and only embed a kind of external resource, we remove them completely. In
addition to code blocks, the category of embedding modifiers also includes
quotes of other comments.

3. Remove stacked diacritics: In our dataset, we have seen that diacritics are
often misused. Since Reddit uses Unicode as its character encoding, users can
create their own characters by arbitrarily stacking diacritics on top of them.
To avoid this kind of unwanted characters, we first normalize the comment
by utilizing the unicode character composition, which tries to combine each
letter and its diacritics into a single precombined character. Secondly, we
remove all remaining diacritic symbols from the comment. While this process
preserves most of the normal use of diacritics, it is able to remove all unwanted
diacritics.

110 M. Backes et al.

4. Replace URLs by their hostname: Generally, a URL is very specific and
a user often does not include the exact same URL in different comments.
However, it is much more common that a user includes different URLs that
all belong to the same hostname, e.g., www.mypage.com. Since our statistical
language models should represent the expected behavior of a user in terms of
used words (including URLs), we restrict all URLs to their hostnames.

5. Remove punctuation: Most of the punctuation belongs to the sentence
structure and, thus, should not a part of our statistical language models.
Therefore, we remove all punctuation except for the punctuation inside URLs
and smilies. We do not remove the smilies, because people are using them in
a similar role as words to enrich their sentences: Every person has her own
subset of smilies that she typically uses. To keep the smilies in the comment,
we maintain a list of 153 different smilies that will not be removed from the
comment.

6. Remove duplicated characters: In the internet, people often duplicate
characters in a word to add emotional nuances to their writing, e.g., cooooo-
oooool. But sometimes the number of reduplicated characters varies, even
if the same emotion should be expressed. Thus, we reduce the number of
duplicated characters to a maximum of 3, e.g., coool. In practice, this trun-
cation allows us to differentiate between the standard use of a word and the
emotional variation of it, while it does not depend on the actual number of
duplicated characters.

Computing Unigram Models. From the normalized data, we compute the
unigram frequencies for each comment. Recall that our dataset consists of many
subreddits that each form their own OSN. Thus, we aggregate the correspond-
ing unigram frequencies per profile, per subreddit, and for Reddit as a whole.
Using this data, we compute the word unigram frequencies for each comment as
described in Sect. 6.3.

Since a subreddit collects submissions and comments to a single topic, we
expect the unigrams to reflect its topic specific language. Indeed, the 20 most
frequently used unigrams of a subreddit demonstrate that the language adapts
to the topic. As an example, we show the top 20 unigrams (excluding stopwords)
of Reddit and two sample subreddits Lost and TipOfMyTongue in Table 1. As
expected, there are subreddit specific unigrams that occur more often in the
context of one subreddit than in the context of any other subreddit. For example,
the subreddit Lost deals with a TV series that is about the survivors of a plane
crash and its aftermath on an island. Unsurprisingly, the word island is the top
unigram in this subreddit. In contrast, the subreddit TipOfMyTongue deals with
the failure to remember a word from memory and, thus, has the word remember
in the list of its top three unigrams.

Filtering the Dataset. To reduce the required amount of computations we
restrict ourselves to interesting profiles. We define an interesting profile as one
that contains at least 100 comments and that belongs to a subreddit with at

www.mypage.com

From Zoos to Safaris 111

Table 1. Top 20 unigrams of Reddit and two sample subreddits Lost and TipOfMy-
Tongue.

Top Reddit Subreddit: Lost Subreddit: TipOfMyTongue

Unigram Frequency Unigram Frequency Unigram Frequency

1 people 4,127,820 island 832 www.youtube.com 3663

2 time 2,814,841 show 750 song 1, 542

3 good 2,710,665 lost 653 remember 1, 261

4 gt 2,444,240 time 580 en.wikipedia.org 1, 100

5 game 1,958,850 people 527 sounds 1, 007

6 pretty 1,422,640 locke 494 solved 924

7 2 1,413,118 season 431 movie 918

8 lot 1,385,167 jacob 429 find 829

9 work 1,352,292 mib 372 :) 786

10 1 1,184,029 jack 310 game 725

11 3 1,124,503 episode 280 time 678

12 great 1,070,299 ben 255 thinking 633

13 point 1,063,239 good 250 good 633

14 play 1,060,985 monster 237 www.imdb.com 584

15 years 1,032,270 lot 220 video 583

16 bad 1,008,607 gt 182 pretty 570

17 day 989,180 character 165 youtu.be 569

18 love 988,567 walt 163 mark 548

19 find 987,171 man 162 edit 540

20 shit 976,928 dharma 162 post 519

least 100 profiles. Additionally, we dropped the three largest subreddits from
our dataset to speed up the computation.

In conclusion, this filtering results in 58, 091 different profiles that belong to
37, 935 different users in 1, 930 different subreddits.

Distances Within and Across Subreddits. Next, we compute the pairwise
distance within and across subreddits using our model instantiation. Excluding
the distance of profiles to themselves, the minimal, maximal and average distance
of two profiles within subreddits in our dataset are approximately 0.12, 1 and
0.79 respectively. Across subreddits, the minimal, maximal and average distance
of two profiles are approximately 0.1, 1 and 0.85 respectively.

Anonymous Subsets. Utilizing the distances within subreddits, we can deter-
mine the anonymous subsets for each profile in a subreddit. More precisely, we
compute the anonymous subset for each pair of profiles from the same user.

www.youtube.com
www.imdb.com

112 M. Backes et al.

Fig. 2. The average distance between a profile in subreddit s and all profiles in s′

versus the matching distance between the profile and its correspondence in s′. (Color
figure online)

We set the convergence d to the matching distance between both profiles and
determine the size of the resulting anonymous subset.

6.5 Evaluation and Discussion

In this subsection, we inspect and interpret the results of our experiments with
regard to our aforementioned goals. Therefore, we first start by giving evidence
that our approach indeed provides a suitable abstraction of real users for rea-
soning about their privacy.

To this end, we compare the distance of matching profiles to the average
distance of non-matching profiles. In particular, for each pair of profiles from
the same user in subreddits s and s′, we plot the average distance from the
profile in s to the non-matching profiles in s′ in relation to the distance to
the matching profile in s′ in Fig. 2. The red line denotes the function y = x
and divides the figure into two parts: if a point lies below the line through the
origin, the corresponding profiles match better than the average of the remaining
profiles. Since the vast majority of datapoints is located below the line, we can
conclude that profiles of the same user match better than profiles of different
users.

Our second goal aimed at showing that anonymous subsets indeed can be
used to reason about the users’ privacy. Therefore, we investigate the chances
of an adversary to find a profile of the same user within the top k matches and
relate its chance to the size of the profile’s anonymous subset. More precisely,
given multiple target profiles with similar anonymous subset sizes, we determine
the, so called, precision@k, i.e., the ratio of target profiles that occur in the top
k ranked matches (by ascending distance from the source profiles). We relate
this precision@k to the anonymous subset sizes with a convergence d set to the

From Zoos to Safaris 113

Fig. 3. The anonymous subset size correlated to the precision an adversary has if
considering the top 5 profiles as matching. (Color figure online)

distance between the source and target profiles, and we group the anonymous
subset sizes in bins of size 10.

In our evaluation, we considered k ∈ {1, 5, 10, 20}, which all yield very similar
results. Exemplarily, we correlate the aforementioned measures for k = 5 in
Fig. 3, clearly showing that an increasing anonymous subset size correlates with
an increasing uncertainty – i.e., decreasing precision – for the adversary.

7 Assessing the Effectiveness of Countermeasures
Against Authorship Recognition

In this section, we explore another application of the linkability model we intro-
duced in Sect. 5: we develop a method to assess the effectiveness of various coun-
termeasures against authorship recognition, i.e. the process of linking text con-
tent that were authored by the same user based on stylometric features exhibited
by the content.

7.1 Theoretical Foundation

We first develop the formal foundation for our evaluation of authorship recog-
nition countermeasures. We derive our definitions from those in the previous
sections and adapt them to capture information about writing style.

Threat Model. In our threat model, we assume multiple collections of entities
Ei, also called communities. An entity ε ∈ Ei is characterized by its writing style
and corresponds to a pseudonymous author of a collection of texts. Two entities
ε1 and ε2 are called matching, if both belong to the same author.

114 M. Backes et al.

The adversary’s goal is now to identify matching entities across several com-
munities by analyzing their writing style. Figure 4 (see Sect. 7.1) shows two exem-
plary communities including the links between matching entities.

For the application of countermeasures, we assume that a community E
already exists, together with all text passages published by the entities in E ,
and a test author applies a countermeasure on his text passage before it is pub-
lished into E . We simulate this by simply choosing a subset of test authors from
E for which we evaluate the countermeasures.

Statistical Models of Writing-Style. For authorship attribution, we extend
the definition of entity models from Definition 1 in Sect. 4 to include different
types of attributes that each will represent one feature type of the writing style
feature set (e.g., as presented in [3]).

Definition 23 (Attribute Types). An attribute type class T is a collection
of attribute types τ ∈ T . We denote with Aτ the set of all attributes α ∈ Aτ

that realize the attribute type τ .

Intuitively, an attribute type corresponds to a feature or class of features, e.g., the
sentence length or word unigrams. A possible realization for the sentence length
would be 5, whereas house is a possible realization for a word unigram. Statistical
models now associate with each attribute and attribute type a probability, or
relevance estimation, of this attribute for the specific entity.

Definition 24 (Extended Statistical Model). The entity model θε = (θτ1
ε ,

. . . , θτn
ε) of an entity ε consists of the statistical models of its attribute types τi ∈

T , 1 ≤ i ≤ n.
Each statistical model θτi

ε determines the probability Pr[α | θτi
ε] that the entity

ε exhibits the attribute α ∈ Aτi .

In the easiest case, the probability of exhibiting a specific attribute (i.e., a
specific feature realization) will be proportional to its frequency in a user’s text.
Additionally, in our experimental evaluation, we also explore the possibility to
set the probability proportional to the popular term frequency inverse document
frequency to better capture the relevance of an attribute in a user’s text given
the context in which it is published.

Entity Similarity. In the following, we will use these entity models together
with a similarity measure on these models to evaluate the similarity of entities
with regard to their writing style. We follow the intuition that a higher similarity
between two entities in different communities implies a higher likelihood that
they both correspond to the same author.

Since we characterize each author in terms of statistical models, determining
their similarity boils down to measuring the similarity of probability distribu-
tions. As proposed in Sect. 6.3, we utilize the Jensen-Shannon divergence [25] to

From Zoos to Safaris 115

determine the similarity of our statistical models. The Jensen-Shannon diver-
gence is a symmetric variant of the popular Kullback-Leibler divergence, and
fulfills all properties of a metric distance measure.

We extend this similarity measure to fit our notion of statistical models
with attribute types, resulting in a linear combination of the similarities of each
attribute type.

Definition 25 (Similarity of Entities). Given two entities ε1, ε2 ∈ E, the
similarity of ε1 and ε2 is the linear combination of the similarities of their
statistical models. Let sim(θε1 , θε2) = (sim(θτ1

ε1 , θτ1
ε2), . . . , sim(θτn

ε1 , θτn
ε2)) and λ =

(λτ1 , . . . , λτn). Then,

sim(θε1 , θε2) = λ · sim(θε1 , θε2) + ρ,

where ρ denotes an optional constant.

When applying this theory to an actual dataset, λ and ρ can be learned using
established regression and classification techniques.

Average Entity in a Collection. Next, we further extend statistical models to
a collection of entities E , which gives us the probability that a randomly chosen
entity from the collection exhibits an attribute. While the former part of this
section introduced the formal ground for attributing authorship by similarities,
the definitions in this and the next paragraph will be used for powering some of
our countermeasures.

Definition 26 (Stat. Models for Collections). Given a set of attribute types
T , the statistical model θE of a collection of entities Eis defined as (θτ1

E , . . . , θτn
E),

where each θτi
E determines the probability Pr[α | θτi

E] that an entity ε ∈ E, chosen
uniformly at random, exhibits an attribute α ∈ Aτi .

We can compute each statistical model θτi
E of a collection E by

Pr[α | θτi
E] =

∑
ε∈E Pr[α | θτi

ε]
|E|

for each attribute α ∈ Aτi .

The statistical model for a collection corresponds to the average entity in that
collection.
(k, d)-anonymity. As described in Sect. 5.2 (cf. Definition 18), we assess
anonymity of an entity by identifying anonymous subsets within a community
that allow an entity to hide amongst her peers: The (k, d)-anonymous subset
of an entity ε ∈ E is a subset of entities A ⊆ E of size k, each of which are at
least d-similar to ε. For a fixed value of k, the anonymous subset’s convergence
is a good indicator for how close the nearest k entities are. We will utilize these
anonymous subsets to improve the automatic countermeasures we propose in
Sect. 7.2 by not changing the text towards the average author from the whole
community, but rather an existing author within an anonymous subset of the
community.

116 M. Backes et al.

Countermeasure Formalization. Finally, we formally define countermea-
sures in the context of statistical models and then define our novel notion of
gain provided by a countermeasure.

Definition 27 (Countermeasure). A countermeasure C is a function that
changes the statistical model θε to C(θε).

The optimal weights λ = λτ1 , . . . , λτn obtained from the regression or trained
classifier can be used to determine the importance of each attribute type for
the stylometric similarity. Since their values might also be negative, the actual
importance is defined as (λτi)

2, similar to an approach by Guyon et al. [29].

Definition 28 (Feature Importance). Given λ and an attribute type τ , τ ’s
importance is defined as (λτ)2. The vector I is defined as the element-wise mul-
tiplication λ � λ and contains each attribute type’s importance.

In an ideal, private world no attribute type reliably contributes to the match-
ing of corresponding authors, and hence no attribute type is particularly impor-
tant. We capture this ideal scenario through ideal importances Î that we aim to
achieve through the application of countermeasures. In our case, if no attribute
type is particularly important, we set Î = 0. Motivated by this intuition, we
define a countermeasure’s gain as the improvement towards the ideal scenario.

Definition 29 (Gain). Let I be attribute type importances before the applica-
tion of a countermeasure and I ′ be attribute type importances after the applica-
tion. Then the improvement potential towards the ideal scenario Î is defined as
I − Î.

A countermeasure C’s gain gainτ
C with respect to a specific attribute type τ is

the actual improvement towards the ideal scenario, while the countermeasure’s
overall gain gainC is defined as the sum over the gains for all attribute types.

gainτ
C = |Iτ − Îτ | − |I ′

τ − Îτ |

gainC =
∑
τ∈T

gainτ
C

In the case that the ideal importances are 0, this simplifies to gainτ
C = Iτ −I ′

τ .

Comparison to Other Measures. We compare our approach of computing
the gain of countermeasures to other approaches that can be used to capture
the effectiveness of countermeasures. Namely, we consider both (1) classifier-
dependent measures such as precision, recall, accuracy, and (2) the classifier-
independent measure of information gain.

By comparing such measures before and after the countermeasure’s appli-
cation, a similar measure to our gain is achieved. In contrast to our approach,
however, both of the above approaches lead to drawbacks we will elaborate in
the following.

From Zoos to Safaris 117

Classifier-Dependent Measures. In general, a comparison of precision, recall
and accuracy before and after a countermeasure’s application only gives a global
view on the effectiveness of a countermeasure, i.e., the global loss in those mea-
sures after the countermeasure’s application. Such an approach fails in giving
precise results on a feature-class level, since the underlying measures describe
the total outcome of the classification.

Classifier-Independent Measures. While information gain is capable of
both, providing a feature-level assessment of importance as well as being
classifier-independent, it still fails to match our needs: Intuitively, a feature’s
information gain is higher if it is more discriminating. However, in its compu-
tation, information gain does not take into account which authors are actually
matching.

Narayanan et al. [46] define information gain as IG(Fi) = H(B) − H(B |
Fi) = H(B)+H(Fi)−H(B,Fi) where H is the Shannon entropy, B is the random
variable corresponding to a set identifier (in their case, the blog number), and
Fi is the random variable corresponding to feature i. Adopting this definition
let us define the notions of a feature’s information gain for authors IGA(Fi) and
for entities IGε(Fi).

Unfortunately, knowing which features distinguish authors is not necessarily
the same as knowing which features help matching authors. For example, con-
sider the two communities in Fig. 4, where matching entities are highlighted in
the same color and are connected by a line. In this scenario, IGA(Fi) tells us to
which extent Fi helps distinguishing the authors in general. However, without
considering the boundaries between both communities, it is possible that Fi is
only well discriminating in C1, but not in C2, and is in particular not very helpful
in matching from C1 to C2.

Using IGε(Fi) instead respects the boundaries of the communities, but in
fact does not help us in matching the entities across both communities, since
IGε(Fi) only tells us which features can be used to distinguish between all entities
within one community. The same feature might very well be completely useless
in discriminating entities in the other community.

Fig. 4. Two different communities with matching authors. (Color figure online)

118 M. Backes et al.

Gain. In contrast to the previous methods, gain is directly defined in terms
of the optimal matching and values each feature class in their importance for
achieving this matching. In the rest of the paper, we will not only show the
validity of our approach by correlating the countermeasures’ gain to classifier-
dependent performance measures, but we will also demonstrate the usefulness
of our methodology in a detailed analysis of several countermeasures.

7.2 Experimental SetUp

This section provides an overview over our experimental setup. In particular,
we provide a detailed explanation of our dataset, the stylometric features we
consider and the countermeasures we evaluate, including a description of each
countermeasures’ implementation.

Dataset. For our experimental evaluation, we leverage the Extended-Brennan-
Greenstadt corpus [10,11], which provides a decent collection of writing samples
from 45 different authors. The corpus contains writing samples of at least 6500
words for each author, which are split into approximately 500-word passages.
Each writing sample is from a formal source, e.g., school essays, reports or other
types of professional or academic correspondence, which was manually validated
by the creators of the corpus.

We do not use the (1) obfuscation and (2) imitiation part of the corpus, in
which the authors were requested to write passages on a specific topic while
(1) trying to hide their writing style and (2) trying to imitate the writing style
of another author, namely Cormac McCarthy. The methodology we develop is
intended for evaluating the effect of countermeasures changing a given text, while
both the obfuscation and imitation part of the corpus are already obfuscated
texts that do not correspond to the original writing samples.

In order to evaluate authorship attribution between different communities,
we artifically distribute all text passages of an author into three distinct com-
munities. This way, our dataset consists of 3 communities, each containing 233
text passages of 45 authors (between 4 to 8 text passages per author in one
community).

Feature Set. For our evaluation, we take the Writeprints extended feature
set [3] as a basis that we further extend with additional features. However, we
remove word trigrams to make our evaluation computationally more tractable.
In total, we include 33 different stylometric features into our model, some of
which we adjust to fit the structure of our dataset.

In correspondence with the model presented in Sect. 7.1, a feature class, such
as, e.g., letter bigrams, corresponds to an attribute type, whereas each instance
of a feature, e.g., the actual letter bigram “aa”, corresponds to an attribute
within this attribute type. During the evaluation, we store the frequency of
each attribute and construct the statistical model from this observation. The
quantity of a feature class describes the maximum number of features in that
feature class, which we observed in our unmodified dataset. As mentioned in

From Zoos to Safaris 119

Table 2. List of features.

120 M. Backes et al.

Sect. 7.1, we also evaluate the use of term frequency inverse document frequency
instead of frequency to instantiate our statistical models in Sect. 8.

A full list of the feature classes and their quantities can be found in Table 2.
We will use the identifiers F1 to F33 for each feature class introduced in this
table throughout the rest of the paper. The table’s last five columns will be
formally introduced throughout the next sections.

In general, we group our features into three different categories depending
on the actual implementation:

1. Character-based feature classes, for which we represent an author’s text-
passage as a list of characters and compute the corresponding attribute
frequencies on that list.

2. POS-tagger-based feature classes rely on the output of the Stanford POS
tagger [55,56] used with a twitter model [20] in order to use enhanced infor-
mation about the current sentence and word in a text passage (e.g., a word’s
POS tag).

3. Word-based feature classes leverage a Java break iterator to efficiently iterate
over the words of an authors text passages.

Additional resources from which we construct feature classes include a syllable
counter that first tries to determine a word’s syllable count from the dictionary
CMUDict [18] by counting the number of vowels in the pronunciation. In case of
failure, it determines an approximate syllable count based on an algorithm written
by Greg Fast [26], counting the number of vowel groups in the word and adjust-
ing the number for certain special cases. Moreover, we use a list of 512 function
words as well as a list of common misspellings taken from Wikipedia [58] and the
Anonymouth framework [42] to construct feature classes (e.g., F28 and F29).

Countermeasures. In this section, we discuss the countermeasures whose
impact we aim to evaluate. We detail their implementation and also argue why
these countermeasures preserve the semantics of the text. Finally, we present a
list of features affected by each countermeasure.

Generally, we distinguish between two types of countermeasures: simple coun-
termeasures and optimizing countermeasures. Simple countermeasures apply the
first possible action to a given text, independent of its context, whereas optimiz-
ing countermeasures rank each available action and apply the most promising
one. We first introduce all countermeasures in general before we discuss their
optimizing variants in Sect. 7.2.

In total, our experiments incorporate four different countermeasures, which
we will not only apply individually, but also in meaningful combinations. For
referencing purposes, we name our countermeasures and present the affected
features per countermeasure in Table 2 (some of which can be affected indirectly
by, e.g., causing the POS tagger to fail).

Spell Checking (spell). Since we are interested in assessing the impact of
a standard text rewriting tool on the anonymity of text authors, we start with

From Zoos to Safaris 121

the arguably most common such tool: a spell checker. Spell checkers constitute
a simple, but widely used example for tools that modify a text.

Our implementation of this countermeasure employs the open source Java
spell checker LanguageTool [32] that is even able to detect grammar problems.
Each text-passage that gets fed into this countermeasure will be corrected by
the spell checker, always choosing the first suggestion. Due to the usual field
of application of spell checkers, we consider this countermeasure to be mostly
semantics-retaining.

Synonym Substitution (syn). Our technically most sophisticated counter-
measure replaces words by synonyms. Considering the highly flexible and chang-
ing nature of language, this task introduces several challenges:

1. Most often in natural language, words do not occur in its root form but rather
in an inflected grammatical form. Thus, it is essential to get the canonical
root form of a word.

2. Given such a root form, we have to maintain a dictionary of synonyms for
each word. The dictionary should contain synonyms for at least nouns, verbs
and adjectives – possibly also adverbs.

3. We need to be able to examine the inflection of the original word in order to
replace it by a synonym in exactly the same grammatical form.

4. Finally, if we know the desired form, we have to inflect the synonym.

Fortunately, 1. and 2. can both be handled by leveraging WordNet [27,44], which
is a large lexical database providing so called synsets for nouns, verbs, adjectives
and adverbs. It can also be queried using non-root forms, which renders the first
challenge irrelevant.

Since English as a language is only weakly inflected, a few hints for 3. suffice
to generate the correct inflection of the synonym. More concretely, the output
of the Stanford POS Tagger [55,56] used with a twitter model [20] is enough to
infer the lexical category as well as attributes like tense, plural and person that
allow us to determine the correct grammatical form.

Finally, we use simplenlg, a natural language generation API for Java, to
realize the correct form of our synonym.

Repeating this for all potential synonyms, we select the optimal replacement
according to our optimization strategy. Consequently, this countermeasure is
optimizing. Also, substituting words by synonyms should preserve the initial
semantics of a text.

Adding/Removing Misspellings (mis). Another optimizing countermea-
sure that we implement makes use of misspellings, e.g., for cases where the
misspelled word is more common than its correct form. Thus, this countermea-
sure first looks up the correct or misspelled variants of a word from a dictionary
and then evaluates which form to use.

To accomplish this task, we adapt a list of common misspellings from Wikipe-
dia [58] and generate a dictionary, providing a set of possibly misspelled and

122 M. Backes et al.

corrected substitutions for every word in the list. Although a misspelled word
can potentially create confusion, this kind of substitutions should not drasti-
cally change the semantics of a text, because the correct word is nearly always
recognizable from the context.

Special Characters Modification (spch). Our last countermeasure seeks
for the replacement of potentially identifying special characters. Since special
characters (excluding punctuation) generally occur only infrequently in natural
language, their usage is more likely to be unique and, consequently, can lead
to an easy author identification. In order to counter this problem, we created a
list of the most common special characters in our dataset and mapped them to
their textual meanings. One example for such a mapping is c© ↔ copyright ↔
(C), where each of the three alternatives could be substituted by another if the
optimization yields a higher result.

Obviously, if the special characters are used with their usual meaning, this
countermeasure preserves the semantics of a text.

Combinations. Instead of only evaluating the presented countermeasures indi-
vidually, we also examine the impact of multiple countermeasures applied in a
sequential manner. However, we exclude any combination that involves both
spell and mis as the two countermeasures are very similar to each other and
potentially could cancel each other out. To further narrow down the number
of possible combinations, we also only apply countermeasures in a meaningful
order. For example, it makes sense to apply spell checking first, because it is not
optimizing and thus could influence the result of previous countermeasures in a
negative way. Synonym substitution should also precede the addition/removal of
misspellings, since our synonym substitution will not be capable of substituting
misspelled words. Only spch is essentially independent of the other counter-
measures and therefore could be placed at any point in the ordering.

In conclusion, we end up with seven different combinations of our
countermeasures: spell syn, spell spch, syn mis, syn spch, mis spch,
spell syn spch and syn mis spch.

Optimizing Countermeasures. For optimizing countermeasures, we try to
make the affected entity more similar to a pre-chosen target entity. We consider
two different methods for choosing a suitable target, and introduce them in the
following.

Optimizing to the Average: The first method simply chooses the average entity
of the community as the target, thus trying to align the current entity’s feature
distribution with the community’s overall feature distribution (cf. Definition 26).

Optimizing using Anonymous Subsets. The second method makes use of the
(k, d)-anonymous subsets to find a (possibly) more suitable target entity: intu-
itively, this method tries to find an (actually existing) entity close by that has

From Zoos to Safaris 123

Fig. 5. Optimizing countermeasure using anonymous subsets. (Color figure online)

many other entities within its near environment. Figure 5 illustrates the follow-
ing, more formal definition of this method: First, we compute the entity ε’s
(k, d)-anonymous subset Aε for a given k, such that d is minimal (indicated by
the purple, dashed circle). Then, we compute the (k, d′)-anonymous subset for
every ε′ ∈ Aε for the same k and choose that entity ε′ as the target, which has
the smallest d. In our illustration, ε2’s anonymous subset (the red, dotted circle)
has the smallest convergence and, thus, would be chosen as the countermeasure’s
target for ε.

Given a target ε′, consider a optimizing countermeasure C that could replace
the current word house by its synonym domicile. Then, C would first estimate
the similarity to the target for both actions – keeping house and replacing it
by domicile – and choose that action that provides the highest similarity (no
matter if ε′ is the average entity or an actually existing entity like ε2).

7.3 Methodology

On a higher level, our evaluation consists of four parts, which are depicted in
Fig. 6:

(1) A-Priori Weight Determination: Both, authorship attribution as well as
assessing the effectiveness of our countermeasures, require training a classifier to
obtain the weights λ and the intercept ρ to determine the similarity of entities
(cf. Definition 25). Thus, we first determine optimal weights λF1, . . . , λF33 for
our dataset by extracting the features from each text passage and computing

124 M. Backes et al.

Fig. 6. This flowchart represents our actual set-up and methodology.

the similarity per feature. Ideally, we then compare the weights returned by
multiple different optimization techniques to obtain the best performing set of
weights. In the context of this paper, however, we simply consider the weights
produced by training a linear support vector machine (SVM) using 10-fold cross
validation, as exemplified in [3], with the features F1 to F33, since this approach
has proven to be well-performing for the task of author-attribution.

(2) Preparation Phase: We assume that from the set of all authors, only one
actually deploys countermeasures at any given time: this simulates the scenario
where the community, together with all related text passages, already exists,
and a chosen test author wants to privately publish a new text passage into this
community. To capture this scenario, we select a set of test authors for which we
evaluate the application of countermeasures before the text passage is published.

For our optimizing countermeasures, we pre-compute the (k, d)-anonymous
subsets for the target selection performed by these countermeasures. A detailed
description of this part is presented in Sect. 7.3.

(3) Application of Countermeasures and A-Posteriori Weight Determination: In
this part, we generate the test authors’ text-passages after the application of the
countermeasures introduced in Sect. 7.2. We then calculate the new feature dis-
tributions and the resulting similarities for every countermeasure application to
derive the a-posteriori weights λ′ as well as the intercept ρ′. A detailed descrip-
tion of this part is presented in Sect. 7.3.

(4) Results: This last part finally computes the gain for each countermeasure
given the a-priori and a-posteriori weights and will be discussed in Sect. 8.

From Zoos to Safaris 125

Figure 6 depicts the overall methodology behind our experiments to the point
of each single computation step. While the gray boxes represent the structure
given above, we also numbered each step for reference purposes.

A-Priori Weight Determination

Step (1a,b). The goal of the first part is to determine the weights λF1, . . . , λF33

as well as the intercept ρ as required in Definitions 25 and 28. To this end, we first
determine the feature frequencies (1a) and compute the resulting similarities per
feature (1b).

The similarities are not only computed between entities across communities,
but also between entities within the same community. While only the first kind
of similarities is needed for the training (resulting in 12,150 pairs of entities)
and the authorship attribution, the second kind of similarities is needed for the
determination of (k, d)-anonymous subsets within the communities.

Step (1c). Next, we apply regression or classification algorithms to determine
the weights λF1, . . . , λF33 and the intercept ρ in such a way that matching enti-
ties, i.e. entities that belong to the same author, receive a high similarity score,
whereas non-matching entities receive a low one.

Conceptually, we could apply various methods, such as simple linear regres-
sion, regularized linear regression etc., compare their output and choose the best
performing weights. Due to space restrictions, however, we directly choose the
classification via linear support vector machines (SVMs) using 10-fold cross val-
idation, since SVMs have already shown promising results in previous work on
authorship attribution [3,10]. The resulting weights for each feature are depicted
in the fifth column of Table 2 and are directly obtained from the decision function
D(x) = λ · x + ρ of linear SVMs.

Step (1d): In this final a-priori steps we then take the output of the classifier
above and determine the importance (cf. Definition 28) of each feature class
in discriminating the different authors’ writing styles. We will later compare
this a-prior importance value of each feature with their importance determined
after applying a countermeasure to determine the countermeasure’s gain (cf.
Definition 29).

Preparation Phase. The purpose of the preparation phase is to generate a list
of test authors and to prepare further data necessary for the countermeasures
to be applied.

Step (2a). The set of test authors is randomly chosen from the whole range of
available authors in our dataset. We choose a representative set of least 20 % of
the available authors as test authors, which resulted in 10 authors for our test
set.

Step (2b). For applying optimizing countermeasures using the (k, d)-
anonymous subset technique, we also have to compute the anonymous subsets
within each community. For this task, we fixed k = 5, which corresponds to

126 M. Backes et al.

Table 3. Total gains and matching accuracy at top k.

Countermeasure Gain Top 1 Top 5 Top 10 Top 15 Top 20

Before countermeasures - 0.9821 0.98613 0.96025 0.93395 0.9065

spell syn 0.00948 0.98062 0.98062 0.95556 0.92893 0.90189

spell syn spch 0.00934 0.98053 0.98029 0.95498 0.92844 0.90156

syn 0.00879 0.98053 0.98119 0.9558 0.92951 0.90247

syn spch 0.00876 0.98045 0.98095 0.95572 0.92901 0.90214

syn mis 0.00363 0.98053 0.98078 0.95564 0.92885 0.9023

syn mis spch 0.00357 0.98045 0.98053 0.95539 0.92847 0.90206

spell spch 0.00069 0.982181 0.98638 0.960576 0.93403 0.90658

spell 0.00062 0.98193 0.98564 0.95967 0.93337 0.90593

spch −0.00042 0.98235 0.98695 0.96107 0.93453 0.90716

mis −0.0018 0.98202 0.98613 0.96058 0.93362 0.90593

mis spch −0.00227 0.98226 0.9863 0.96132 0.93428 0.90658

approximately 10 % of the entities in a community in our dataset. This way, the
(5, d)-anonymous subset tells us how similar the closest 10 % of the community
is at least.

Application of Countermeasures and A-Posteriori Weight Determi-
nation. This section deals with the actual application of the countermeasures
on our dataset (3a) and the a-posteriori weight and importance determination
(3b–3d).

Step (3a). We apply each countermeasure C separately to the original text-
passages mi of our test authors, yielding modified text-passages C(mi) for every
countermeasure. Afterwards, we yield further modified messages by following
the countermeasure combinations presented in Sect. 7.2, each modified message
recorded separately.

Step (3b,c). The next step on the way towards the countermeasures’ gains
is the computation of the new feature distributions and, thereafter, the corre-
sponding similarities. This time, we only need to compute the similarities across
communities, resulting in a total of 12,150 pairs of entities together with their
corresponding similarity, forming the base for the following a-posteriori weight
determination.

Step (3d). For the a-posteriori weight determination, we follow the same app-
roach as in step (1c): For every application of countermeasures, we compute the
optimal weights λ and the intercept ρ, and therefrom derive the corresponding
importance for each feature class.

From Zoos to Safaris 127

8 Evaluation of Countermeasures

Before reviewing the actual results of our countermeasures, we first examine the
use of the term frequency inverse document frequency (tf-idf) for our statistical
models and analyze the impact of the optimization strategy of our countermea-
sures.

0.0e+00
2.5e−05
5.0e−05
7.5e−05

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure

g
ai
n

(a) Gain regarding F1

−0.00075
−0.00050
−0.00025
0.00000

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure

g
ai
n

(b) Gain regarding F2

−0.0015
−0.0010
−0.0005
0.0000

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure

g
ai
n

(c) Gain regarding F3

0.00000
0.00004
0.00008
0.00012

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure

g
ai
n

(d) Gain regarding F7

−0.00015
−0.00010
−0.00005
0.00000

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure

g
ai
n

(e) Gain regarding F8

−2e−05
0e+00
2e−05
4e−05
6e−05

_m
is

_m
is
_s

pc
h

_s
pc

h

_s
pe

ll

_s
pe

ll_
sp

ch

_s
pe

ll_
sy

n

_s
pe

ll_
sy

n_
sp

ch

_s
yn

_s
yn

_m
is

_s
yn

_m
is
_s

pc
h

_s
yn

_s
pc

h

countermeasure
g
ai
n

(f) Gain regarding F9

Fig. 7. Gain regarding different feature classes plotted for each countermeasure.

TF-IDF. At least regarding our dataset, the use of the tf-idf for our statistical
models does not substantially improve the matching accuracy. When considering
only that entity with the highest similarity to a given target entity as matching,
the number of true positives increases only by 1 when using tf-idf. When consid-
ering the top 15 as matching, the accuracy with the usage of tf-idf is even worse
than without. In total, as the use of tf-idf would only increase the complexity
of our methodology without providing substantial benefit, we decided to rely
on the features’ frequencies only and did not consider tf-idf any further in our
evaluation.

Optimizing Countermeasures. When comparing both optimization strate-
gies for our countermeasures, optimization to the average and optimization using
anonymous subsets, the second one provided the better results for our evalua-
tion. In some cases the optimization to the average results in larger changes
to the accuracy (with a maximum change of 0.00634 for syn mis in the top
20 accuracy), because the artificial target might be very dissimilar to the entity
applying the countermeasure and, thus, more likely results in substantial changes
to the features.

128 M. Backes et al.

However, it frequently happens that the averaged entity of a community is
not the best target for our countermeasures: Consider a community with only
three entities, two of which are far away from each other. Then placing the third
entity in the middle of the others yields a higher identifiability compared to
placing it beneath one of the others. In the latter case, two entities are nearly
indistinguishable, while in the first case all entities are clearly distinguishable. We
therefore focus on the optimization using anonymous subsets in our discussion.

8.1 Observations

We now present the results obtained by following the methodology presented in
the last section. In Figs. 7 and 8 we illustrate the gain for some of the feature
classes individually (cf. Definition 29). A global comparison of all countermea-
sures and their gains with respect to each feature can be found in Fig. 9 in the
Apppendix.

Some of the observed gains are negative: in these cases, the countermeasure
caused an increase in the importance of the corresponding feature class. For
example, applying countermeasure mis (Misspellings) results in a significant
increase of feature F30’s (word unigrams) weight, i.e., making it more significant
in the authorship recognition task.

The overall gain scored by each countermeasure is illustrated in Table 3: the
gains are given in absolute values, summing all feature specific gains. Moreover,
we show also the matching accuracy when considering the top k entities regard-
ing their similarity to our target entity as matching. Note that we trained our
classifier on the whole data set using 10-fold cross validation. We therefore get a
very high accuracy rating, and the countermeasures have a rather low absolute
gain overall. We only use the presented values for a relative comparison of the
gains achieved by each countermeasure. A practical, absolute assessment would
require us to make additional assumptions on how an adversary trains his clas-
sifier, and the presented results can be seen as a worst-case estimation at best.

Interestingly, most of our countermeasures have a positive total gain, with
the only exceptions being mis, spch and mis spch. While mis seems to gen-
erally replace almost all words by their misspelling and thereby facilitates the
matching of those entities, spch performs better, but nevertheless is not optimal
in its decisions. In contrast, the best countermeasures are those involving syn
and spell: Although spell alone does not seem powerful enough to change a
lot (also due to the small amount of spelling mistakes in our dataset), its combi-
nation with syn seems to help the synonym replacement, which is able to shift
the weights into the desired direction.

We can also see that, in almost all cases, a higher total gain also implies a
decreased matching accuracy. Figure 8f depicts this relation exemplary for the
top 1 accuracy.

From Zoos to Safaris 129

Furthermore, Fig. 9 in the appendix clearly shows that only those weights
change for which we expect a modification by our countermeasures (if the weights
do not change, the gain is 0 according to our definition). A more detailed and in
depth explanation for some of the feature classes will be presented in the next
subsection.

8.2 Discussion

We now discuss the results observed in the last section and provide in depth
explanations for the gains achieved for the most interesting feature classes.
Notice, however, that we use different scales on the y-axes in the Figs. 7 and 8
for better readability. For a more comprehensive comparison of each counter-
measure’s gain per feature class please refer to Fig. 9.

Letter Unigrams, Bigrams and Trigrams. While all of our countermeasures
have a very small positive gain for letter unigrams (F1), this is certainly not true
for letter bigrams (F2) and trigrams (F3), which both have negative gains for
most countermeasures and especially those involving syn. To further investigate
this, we start by looking at the letter bigrams (F2) for the syn countermeasure
and trace back the reason for the negative gain:

Letter Bigrams. One frequent action by our synonym replacer is to replace
adjectives by participles (e.g., afraid → frightened), which results in an increased

Fig. 8. Gain regarding different feature classes plotted for each countermeasure and
comparison of total gain.

130 M. Backes et al.

use of the bigram ed for our test authors. In fact, the frequency of ed increased
by approximately 100 usages for every test author.

Another frequent action by the synonym replacer is caused by the natural
language generation tool having problems with some adjectives and adverbs:
often, it replaces most by mostest and thereby increases the use of es in a
similar magnitude as of ed.

Letter Trigrams. Next, we also explore syn’s changes with respect to letter
trigrams (F3). Here, the most interesting change is the increased frequency of
ive, which is caused by frequent replacements of have with give and forms of to
be with live.

Letter Unigrams. In general, all of the aforementioned changes in fact facili-
tate the matching of our test authors and thus provide a negative gain. However,
although the changes also affect the letter unigrams, we can observe a small pos-
itive gain for this feature class. While we especially notice an increased usage of
e, this letter is frequent in our dataset anyway (and in English in general) and
thus does not contribute to a facilitated matching as much as the combinations
in letter bigrams and trigrams.

Punctuation and Special Characters. Since the gains are very different
among all four feature classes (F7-F10), we directly discuss their results individ-
ually. However, it is important to note that the gain of both special character
feature classes is nearly zero when compared with others in Fig. 9.

Unicode Punctuation. The unicode punctuation feature class (F7) reveals an
interesting phenomenon: while the mis countermeasure provides almost no gain
and the syn countermeasure provides a positive gain, the combination of both
countermeasures further increases the positive gain.

A careful examination shows that the mis countermeasure only changes this
feature very little by introducing misspelled variants with ’ in it, e.g., countries
→ countrie’s. The syn countermeasure primarily replaces words like double
with compound words as two-fold, changing the feature distribution more sub-
stantially. In combination, the application of the mis countermeasure after syn
yields much more added ’ than without the combination and, thus, is able to
further improve the gain.

Writeprints Punctuation. Regarding the writeprints punctuation feature
class (F8), all of our countermeasures provide either a gain close to 0 or a neg-
ative gain. While the gain close to 0 can be observed for those feature classes,

From Zoos to Safaris 131

which have no real impact on the punctuation, the negative gain clearly is caused
by the syn feature class as it is present in all those countermeasures.

The reason for the negative impact of the syn countermeasure is that it
introduces new punctuation for our test authors when replacing a(n) by one’s.
Since our dataset contains more formal writing, this punctuation character has
not been used very frequently (159 times for our test authors) before the coun-
termeasure’s application, such that the increased usage (341 times for our test
authors) helps in identifying them.

Unicode Special Characters. Interestingly, the gain of our dedicated spch
countermeasure is negative regarding the Unicode special characters (F9), while
other countermeasures can achieve a positive gain here. When inspecting the
reason for that, however, it becomes clear that for example the syn counter-
measure does not change the unicode special characters at all and the very small
gain is only caused by the SVM. This shows that it is very hard to reason about
gains close to 0 and it is better to focus on the substantial gains.

Nevertheless, it is worth noting that our spch countermeasure succeeds in
removing special characters from the test author’s writing, but thereby facilitates
the identification of other authors.

Writeprints Special Characters. Finally, we also take a look at the
Writeprints special characters (F10), for which the gains have approximately
the same small magnitude compared to the Unicode Special Characters. Again,
we can observe the phenomenon that very small gains can be caused by the SVM
without changes in the actual features in case of the mis countermeasure.

The most notable, but nevertheless small change in the actual features is
due to the syn countermeasure, which increases the frequency of - because of
compound words like two-fold (cf. Unicode Punctuation).

Hapax Legomena. Hapax Legomena (F27) are of difficult nature, as the same
action can increase or decrease their frequency only depending on the surround-
ing text. Fortunately, both mis and syn countermeasures achieve a positive
gain for this feature class.

Our mis countermeasure mainly creates new hapax legomena by replacing
all occurrences except for one by a misspelled variant, e.g., for words like from
(→ fomr), who often appear as hapax legomena in other text passages. Unfor-
tunately, it cannot eliminate hapax legomena, because replacing such a word by
a misspelled variant only yields a new, uniquely appearing word.

The syn countermeasure often eliminates hapax legomena by replacing those
with compound words whose components are more frequent within the text, e.g.,
are → make up.

132 M. Backes et al.

This way, both optimizing countermeasures are able to harden the matching
in our dataset, at least concerning the hapax legomena.

Misspelled Words. Since we have a dedicated countermeasure for misspelled
words (F28), we also explore the very small, but negative gain caused by our
mis countermeasure.

Clearly, misspelled words were nearly unimportant for the matching before
the countermeasures’ applications (there were only 853 words identified as mis-
spelled in the whole dataset). However, after the application of the mis coun-
termeasure, 13,212 misspellings can be found in the dataset, naturally resulting
in a larger importance during the matching.

Word Unigrams and Bigrams. The last two features, which we will examine
in more detail, are word unigrams (F30) and word bigrams (F31). Especially
word unigrams appear to be the most important feature class in our dataset, so
that we will conclude its analysis with possible reasons for the countermeasures
total gains.

Word Unigrams. When examining the gains of our countermeasures regarding
word unigrams (F30), it becomes visible that syn and mis have the most impact
on our test authors. While syn provides a positive gain, mainly by blending
into the vocabulary and word frequencies of other authors, mis provides only a
negative gain, because it introduces a lot of misspelled words, thereby facilitating
the matching. Moreover, as already mentioned for the hapax legomena, the mis
countermeasure often replaces all occurrences except for one by a misspelling,
which on the one hand influences the hapax legomena in a positive way, but on
the other hand has a negative impact on the word unigrams.

Word Bigrams. Similar to word unigrams, here, the syn countermeasure also
is able to adapt word bigram (F31) frequencies of our test authors to those that
are present in our dataset anyway. Interestingly, the mis countermeasure pro-
duces a positive gain for word bigrams, although the gain for word unigrams
was negative. While, in contrast to the other feature classes, we did not find
a compelling reason for that during our examination, we believe that this hap-
pens because of the strong correlation between word unigrams and bigrams: As
the importance of word unigrams increases, the importance of word bigrams
decreases.

9 Conclusion and Future Work

We presented a user-centric privacy framework for reasoning about privacy in
open web settings. In our formalization, we address the essential challenges of

From Zoos to Safaris 133

privacy in open settings: we defined a comprehensive data model that can
deal with the unstructured dissemination of heterogeneous information, and we
derived the sensitivity of information from user-specified and context-sensitive
privacy requirements. We showed that, in this formalization of privacy in open
settings, hard security guarantees in the sense of Differential Privacy are impos-
sible to achieve. We then instantiated the general framework to reason about the
identity disclosure problem. The technical core of our identity disclosure model is
the new notion of (k, d)-anonymity that assesses the anonymity of entities based
on their similarity to other entities within the same community. We applied this
instantiation to a dataset of 15 million user-generated text entries collected from
the Online Social Network Reddit and showed that our framework is suited for
the assessment of linkablity threats in Online Social Networks.

In a second step, we extended the linkability model we derived from general
privacy framework, and provided the foundations for comprehensively assess-
ing the effectiveness of countermeasures against authorship recognition. Central
to this formalization is the notion of gain with which we quantify how well a
countermeasure achieves reduces the significance of identifying writing style fea-
tures. We evaluate this formalization on the Extended-Brennan-Greenstadt cor-
pus [10,11]. In our evaluation we follow a comprehensive experimental method-
ology we also introduce in this work, structuring the evaluation process and
allowing for an easy extension. We then evaluate four different countermeasures,
one simple and three optimizing, and their combinations and discuss the reduc-
tion regarding feature importance they achieved.

As far as future work is concerned, many directions are highly promising.
First, our general framework only provides a static view on privacy in open
settings. Information dissemination on the Internet, however, is, in particular,
characterized by its highly dynamic nature. Extending the model presented in
this paper with a suitable transition system to capture user actions might lead
to powerful system for monitoring privacy risks in dynamically changing, open
settings. Second, information presented in Online Social Networks is often highly
time-sensitive, e.g., shared information is often only valid for a certain period of
time, and personal facts can change over time. Explicitly including timing infor-
mation in our entity model will hence further increase the accuracy of the entity
models derived from empirical evidence. Finally, our privacy model is well-suited
for the evaluation of protection mechanisms for very specific privacy require-
ments, and new such mechanisms with provable guarantees against restricted
adversaries can be developed. On the long run, we pursue the vision of provid-
ing the formal foundations for comprehensive, trustworthy privacy assessments
and, ultimately, for developing user-friendly privacy assessment tools.

134 M. Backes et al.

A Countermeasure Gain

0.005

0.000

0.005

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
10

F
11

F
12

F
13

F
14

F
15

F
16

F
17

F
18

F
19

F
20

F
21

F
22

F
23

F
24

F
25

F
26

F
27

F
28

F
29

F
30

F
31

F
32

F
33

featurenam
e

gain

co
u
n
term

easu
re

_m
is

_m
is_spch

_spch

_spell

_spell_spch

_spell_syn

_spell_syn_spch

_syn

_syn_m
is

_syn_m
is_spch

_syn_spch

Fig. 9. All gains in a global comparison.

From Zoos to Safaris 135

References

1. The online social network reddit. http://www.reddit.com. Accessed Sept 2015
2. Directive 95/46/EC of the European Parliament and of the Council on the Pro-

tection of Individuals with Regard to the Processing of Personal Data and on the
Free Movement of Such Data (1996)

3. Abbasi, A., Chen, H.: Writeprints: a stylometric approach to identity-level iden-
tification and similarity detection in cyberspace. ACM Trans. Inf. Syst. (TOIS)
26(2), 1–29 (2008)

4. Afroz, S., Brennan, M., Greenstadt, R.: Detecting hoaxes, frauds, and deception
in writing style online. In: Proceedings of the 33rd IEEE Symposium on Security
and Privacy (S&P), pp. 461–475 (2012)

5. Afroz, S., Islam, A.C., Stolerman, A., Greenstadt, R., McCoy, D.: Doppelgänger
finder: taking stylometry to the underground. In: Proceedings of the 35th IEEE
Symposium on Security and Privacy(S&P), pp. 212–226 (2014)

6. Anonymouth. https://www.cs.drexel.edu/∼pv42/thebiz/
7. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: AnoA: a frame-

work for analyzing anonymous communication protocols. In: Proceedings of the
26th IEEE Computer Security Foundations Symposium (CSF), pp. 163–178 (2013)

8. Balduzzi, M., Platzer, C., Holz, T., Kirda, E., Balzarotti, D., Kruegel, C.: Abusing
social networks for automated user profiling. In: Jha, S., Sommer, R., Kreibich, C.
(eds.) RAID 2010. LNCS, vol. 6307, pp. 422–441. Springer, Heidelberg (2010)

9. Bambauer, J., Muralidhar, K., Sarathy, R.: Fool’s gold! An illustrated critique
of differential privacy. Vanderbilt J. Entertainment Technol. Law 16(4), 701–755
(2014)

10. Brennan, M.R., Afroz, S., Greenstadt, R., Stylometry, A.: Circumventing author-
ship recognition to preserve privacy and anonymity. ACM Trans. Inf. Syst. Secur.
(TISSEC) 15(3), 12:1–12:22 (2012)

11. Brennan, M.R., Greenstadt, R.: Practical attacks against authorship recognition
techniques. In: Proceedings of the 21st Annual Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI) (2009)

12. Bromby, M.: Security against crime: technologies for detecting and preventing
crime. Int. Rev. Law 20(1–2), 1–6 (2007)

13. Cal̀ı, A., Calvanese, D., Colucci, S., Di Noia, T., Donini, F.M.: A logic-based app-
roach for matching user profiles. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.)
KES 2004. LNCS (LNAI), vol. 3215, pp. 187–195. Springer, Heidelberg (2004)

14. Chaski, C.E.: Who’s at the keyboard? Authorship attribution in digital evidence
investigations. Int. J. Digit. Evid. 4(1), 1–13 (2005)

15. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening
the scope of differential privacy using metrics. In: De Cristofaro, E., Wright, M.
(eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)

16. Chen, R., Fung, B.C.M., Philip, S.Y., Desai, B.C.: Correlated network data pub-
lication via differential privacy. VLDB J. 23(4), 653–676 (2014)

17. Chen, T., Kaafar, M.A., Friedman, A., Boreli, R.: Is more always merrier? A deep
dive into online social footprints. In: Proceedings of the 2012 ACM Workshop on
Online Social Networks (WOSN), pp. 67–72 (2012)

18. The cmu pronouncing dictionary (version 0.7b). http://www.speech.cs.cmu.edu/
cgi-bin/cmudict. Accessed Feb 2015

19. Cortis, K., Scerri, S., Rivera, I., Handschuh, S.: Discovering semantic equivalence
of people behind online profiles. In: Proceedings of the 5th International Workshop
on Resource Discovery (RED), pp. 104–118 (2012)

http://www.reddit.com
https://www.cs.drexel.edu/~pv42/thebiz/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

136 M. Backes et al.

20. Derczynski, L., Ritter, A., Clark, S., Bontcheva, K.: Twitter part-of-speech tagging
for all: overcoming sparse and noisy data. In: Proceedings of RANLP, pp. 198–206
(2013)

21. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceed-
ings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS), pp. 202–210 (2003)

22. Dwork, C.: Differential privacy: a survey of results. In: Proceedings of the 5th
International Conference on Theory and Applications of Models of Computation,
pp. 1–19 (2008)

23. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, our-
selves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

24. Dwork, C., Naor, M.: On the difficulties of disclosure prevention in statistical data-
bases or the case for differential privacy. J. Priv. Confidentiality 2(1), 8 (2008)

25. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE
Trans. Inf. Theor. 49(7), 1858–1860 (2003)

26. Fast, G.: Syllable counter. http://search.cpan.org/∼gregfast/
Lingua-EN-Syllable-0.251/Syllable.pm. Accessed Feb 2015

27. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Massa-
chusetts (1998)

28. Goga, O., Lei, H., Parthasarathi, S.H.K., Friedland, G., Sommer, R., Teixeira, R.:
Exploiting innocuous activity for correlating users across sites. In: WWW (2013)

29. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

30. Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: Preventing private informa-
tion inference attacks on social networks. IEEE Trans. Knowl. Data Eng. 25(8),
1849–1862 (2013)

31. Holmes, D.I.: The evolution of stylometry in humanities scholarship. Literary Lin-
guist. Comput. 13(3), 111–117 (1998)

32. Languagetool spell checker. https://languagetool.org. Accessed Feb 2015
33. Juola, P.: Detecting stylistic deception. In: Proceedings of the 2012 EACL Work-

shop on Computational Approaches to Deception Detection, pp. 91–96 (2012)
34. Kasivisiwanathan, S.P., Smith, A.: On the ‘Semantics’ of differential privacy: a

Bayesian formulation. J. Priv. Confidentiality 6(1), 1–16 (2014)
35. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of

the 2011 ACM SIGMOD International Conference on Management of Data, pp.
193–204 (2011)

36. Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attri-
bution. J. Am. Soc. Inf. Sci. Technol. 60(1), 9–26 (2009)

37. Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., Graepel, T.: Manifestations of
user personality in website choice and behaviour on online social networks. Mach.
Learn. 95(3), 357–380 (2014)

38. Krishnamurthy, B., Wills, C.E.: On the leakage of personally identifiable infor-
mation via online social networks. In: Proceedings of the 2nd ACM Workshop on
Online Social Networks (WSON), pp. 7–12 (2009)

39. Li, N., Li, T.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceed-
ings of the 23rd International Conference on Data Engineering (ICDE) 2007

40. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007)

http://search.cpan.org/~gregfast/Lingua-EN-Syllable-0.251/Syllable.pm
http://search.cpan.org/~gregfast/Lingua-EN-Syllable-0.251/Syllable.pm
https://languagetool.org

From Zoos to Safaris 137

41. McCallister, E., Grance, T., Scarfone, K.A.: Sp 800–122. Guide to Protecting
the Confidentiality of Personally Identifiable Information (PII). Technical report
(2010)

42. McDonald, A.W.E., Afroz, S., Caliskan, A., Stolerman, A., Greenstadt, R.: Use
fewer instances of the letter “i”: toward writing style anonymization. In: Fischer-
Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 299–318. Springer,
Heidelberg (2012)

43. Mendenhall, T.C.: The characteristic curves of composition. Science 9, 237–249
(1887)

44. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

45. Almishari, M., Tsudik, G.: Exploring linkability of user reviews. In: Foresti, S.,
Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 307–324.
Springer, Heidelberg (2012)

46. Narayanan, A., Paskov, H., Gong, N.Z., Bethencourt, J., Stefanov, E., Shin, E.C.R.,
Song, D.: On the feasibility of internet-scale author identification. In: Proceedings
of the 33rd IEEE Symposium on Security and Privacy (S&P), pp. 300–314 (2012)

47. Narayanan, A., Shmatikov, V.: Myths, fallacies of “Personally Identifiable Infor-
mation”. Commun. ACM 53(6), 24–26 (2010)

48. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proceedings
of the 30th IEEE Symposium on Security and Privacy (S&P), pp. 173–187 (2009)

49. Oakes, M.P.: Ant colony optimisation for stylometry: the federalist papers. In:
Proceedings of the 5th International Conference on Recent Advances in Soft Com-
puting, pp. 86–91 (2004)

50. Pearl, L., Steyvers, M.: Detecting authorship deception: a supervised machine
learning approach using author writeprints. Literary Linguist. Comput. 27(2), 183–
196 (2012)

51. Scerri, S., Cortis, K., Rivera, I., Handschuh, S.: Knowledge discovery in distributed
social web sharing activities. In: Proceedings of the 3rd International Workshop on
Modeling Social Media: Collective Intelligence in Social Media (MSM) (2012)

52. Scerri, S., Gimenez, R., Herman, F., Bourimi, M., Thiel, S.: digital.me-towards an
integrated Personal Information Sphere. In: Federated Social Web Summit Europe
(2011)

53. Sharma, N.K., Ghosh, S., Benevenuto, F., Ganguly, N., Gummadi, K.: Inferring
who-is-who in the twitter social network. In: Proceedings of the 2012 ACM Work-
shop on Workshop on Online Social Networks (WSON), pp. 55–60 (2012)

54. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

55. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology, pp. 173–180 (2003)

56. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a max-
imum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT
conference on Empirical Methods in Natural Language Processing and Very Large
Corpora, pp. 63–70 (2000)

57. Uzuner, Ö., Katz, B.: A comparative study of language models for book and author
recognition. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005.
LNCS (LNAI), vol. 3651, pp. 969–980. Springer, Heidelberg (2005)

138 M. Backes et al.

58. Wikipedia. Lists of common misspellings/for machines. http://en.wikipedia.
org/w/index.php?title=Wikipedia:Lists of common misspellings/For machines&
oldid=640791958. Accessed Feb 2015

59. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of the 18th
International Conference on World Wide Web (WWW), pp. 531–540 (2009)

60. Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Aggarwal, C.C.
(ed.) Social Network Data Analytics, pp. 277–306. Springer, New York (2011)

61. Zhou, B., Pei, J.: The k-anonymity and l-diversity approaches for privacy preser-
vation in social networks against neighborhood attacks. Knowl. Inf. Syst. 28(1),
47–77 (2011)

http://en.wikipedia.org/w/index.php?title=Wikipedia:Lists_of_common_misspellings/For_machines&oldid=640791958
http://en.wikipedia.org/w/index.php?title=Wikipedia:Lists_of_common_misspellings/For_machines&oldid=640791958
http://en.wikipedia.org/w/index.php?title=Wikipedia:Lists_of_common_misspellings/For_machines&oldid=640791958

Distributed Authorization in Vanadium

Ankur Taly(B) and Asim Shankar

Google Inc., Mountain View, USA
ataly@google.com, ashankar@google.com

Abstract. In this tutorial, we present an authorization model for dis-
tributed systems that operate with limited internet connectivity. Reliable
internet access remains a luxury for a majority of the world’s population.
Even for those who can afford it, a dependence on internet connectivity
may lead to sub-optimal user experiences. With a focus on decentral-
ized deployment, we present an authorization model that is suitable for
scenarios where devices right next to each other (such as a sensor or
a friend’s phone) should be able to communicate securely in a peer-to-
peer manner. The model has been deployed as part of an open-source
distributed application framework called Vanadium. As part of this tuto-
rial, we survey some of the key ideas and techniques used in distributed
authorization, and explain how they are combined in the design of our
model.

1 Introduction

Authorization is a fundamental problem in computer security that deals with
whether a request to access a resource must be granted. The decision is made
by a reference monitor guarding the resource. Authorization is fairly straightfor-
ward in closed systems where all resources of interest are held on a small set of
devices, and reference monitors have pre-existing relationships with all autho-
rized principals. In these systems, authorizing a request involves identifying the
principal making the request, and then verifying that this identity is allowed by
the resource’s access control policy. The former is called authentication, and the
latter is called access control.

Authorization in distributed systems is significantly more complex as the
resources are spread across a network of devices under different administrative
domains [22]. Moreover, not all devices and principals in the system may know
each other beforehand, making even authentication complicated. For instance,
consider the fairly common scenario of a user Alice trying to play a movie from
her internet video service on her television (TV). It involves the TV authorizing
the request from Alice to play a movie, and the video service authorizing the
request from the TV to access Alice’s account. The video service may recognize
only Alice, and not her TV. The TV must convince the video service that it is
acting on Alice’s behalf.

With the advent of the Internet of Things (IoT), various physical devices that
we commonly interact with in our daily lives are controllable over the network,
c© Springer International Publishing Switzerland 2016
A. Aldini et al. (Eds.): FOSAD VIII, LNCS 9808, pp. 139–162, 2016.
DOI: 10.1007/978-3-319-43005-8 4

140 A. Taly and A. Shankar

and are thus part of a large distributed system. These devices range from tiny
embedded devices, to wearables, to large home appliances, and automobiles. The
promise of IoT lies in multiple devices interacting with each other to accomplish
complex tasks for the user. For instance, a home security system may interact
with security cameras and locks around the house to ensure that the house is
protected from intruders at all times, and all suspicious activity is logged on the
user’s storage server. Securely accomplishing such tasks involves making several
authorization decisions. Some of the key questions that arise are how do devices
identify each other during any interaction?, how do users authorize devices to
act on their behalf?, how are access control policies defined?

Distributed authorization is a long-standing area of research, and several
mechanisms have been designed for a variety of settings. However, most IoT
devices still rely on rudimentary and fragile mechanisms based on passwords
and unguessable IP addresses [19,26]. Indeed, over the last few months, there
have been several vulnerabilities and attacks reported on various “smart”
devices [1,2,4,5]. A study [19] conducted by HP on the security of several exist-
ing IoT devices reported “insufficient authorization” as one of the top security
concerns. Besides this, the study found that many devices rely on a service in the
cloud for authorization. We stress that proper authorization is paramount in the
IoT setting as authorization breaches can impact physical security and safety.
At the same time, dependence on internet connectivity can sometimes render
“smart” devices unusable. Imagine the consequences of unauthorized access to
an embedded heart rate monitor, or being unable to unlock the door right in
front of you due to lack of internet access.

This tutorial explores the design of an authorization model for large, open
distributed systems such as IoT. The primary guiding principles behind the
design of the model are decentralized deployment and peer-to-peer communica-
tion. The model does not rely on any special global authorities for brokering
interactions between devices that have a network path to each other. The justi-
fication for these principles is manyfold. First, a centralized model assumes all
entities implicitly trust the default global authorities. This assumption fails for
the enterprise and IoT settings where it is desirable to carve out isolated and
fully autonomous administrative domains for devices. For instance, a user may
want to be the sole authority on all devices in her home. Similarly, an enter-
prise may want to maintain full control of its devices with no dependence on any
external authority. Second, the central nodes in the system become an attractive
target for compromise to attackers. Given the frequent security breaches at well-
reputed organizations, users are justifiably weary of having third-party services
store more personal data than strictly necessary. Besides this, protecting per-
sonal user data from external and internal threats is quite burdensome for the
organizations as well. Finally, a centralized model requires that all devices main-
tain connectivity to external global services, which is infeasible for many IoT
devices, including ones that communicate only over Bluetooth, or ones present
in public spaces such as shopping malls, buses, and trains, where internet access
is unreliable. Moreover, reliable internet access remains a luxury for a major-
ity of the world’s population, where routing most interactions through a cloud
service can be expensive or simply not possible.

Distributed Authorization in Vanadium 141

The authorization model presented in this tutorial is fully decentralized,
and is based on a distributed public-key infrastructure similar to SDSI [27].
The model supports peer-to-peer delegation of authority under fine-grained
caveats [10]. Access control policies are based on human-readable names, and
have support for negative clauses and group-based checks. This general purpose
model is applicable in various distributed system settings, including, peer-to-
peer computing environments, IoT, cloud, and enterprise. The model has been
deployed as part of an open-source application framework called Vanadium [6],
and is thus referred to as the Vanadium authorization model. As part of this
tutorial, we survey a number of key ideas and techniques from previous work on
distributed authorization, including SPKI/SDSI [18,27], Macaroons [10], and the
vast body of work on trust management [12]. We explain how these techniques
are combined by the Vanadium authorization model.

Organization. The rest of this tutorial is organized as follows. Section 2
describes the features we desire, and Sect. 3 surveys key technical ideas involved
in the design of our model. Section 4 describes our model in detail, followed by an
application of our model to a physical lock device in Sect. 5. Section 6 concludes.

2 Desired Features

In this section, we describe features we seek from our authorization model. Many
of these features have been considered by prior work on distributed authorization.
We use the term “principal” informally to refer to an entity in our system,
including, users, devices, processes, and objects, and leave the formal definition
to Sect. 4.

Decentralization. As discussed in the introduction, decentralized deployment
and peer-to-peer communication by default are the central guiding principles
behind this work. The model must not force dependence on special global author-
ities such as x.509 certification authorities, default identity providers, and proxies
that mediate interactions between principals. Instead, we seek egalitarian sys-
tems where any principal can be an authority for some set of other principals.
For instance, a user Alice may become an authority on the identities and access
controls on all her home devices. The devices may be configured to specifically
trust only Alice’s credentials. In general, devices must be able to securely com-
municate with each other as long as there is a direct communication channel
between them. We seek a model that minimizes interaction with globally acces-
sible services, and maximizes what can be achieved with direct peer-to-peer
communication.

Mutual Authentication and Authorization. We require all interactions
between principals to be mutually authenticated and authorized. The princi-
pal at each end of a communication channel must identify the principal at the
other end (authentication), and verify that it is valid in the context of the com-
munication (authorization). Mutual authentication is essential for both ends to

142 A. Taly and A. Shankar

audit all access; we discuss the benefit of auditing later in this section. Mutual
authorization is essential whenever the communicating principals are mutually
suspicious. Unidirectional authorization often opens the door to rogue entities,
leading to security and privacy attacks. For example, when Bob tries to unlock
the lock on Alice’s front door, the lock must be convinced that it is communi-
cating with Bob, and that Bob is authorized to unlock the door. At the same
time, Bob must be convinced that it is indeed sending the request to Alice’s
front door, and not an imposter device that is tracking Bob’s behavior.

Compound Identities. We live in a world today where all users and devices
carry multiple identities. For instance, a user may have an identity from social
media sites (e.g., Facebook identity), an identity from her work place, an identity
from the government (e.g., passport, driver’s license), and so on. Similarly, a
device would have an identity from the manufacturer (e.g., Samsung TV model
123), and an identity from the device owner (e.g., Alice’s TV). A principal must
be able to act under one or more identities associated with it, and different
identities may grant different authorizations to the principal. The authorization
model must seamlessly capture this compound nature of a principal’s identity.

Fine-Grained Delegation. The strength of distributed systems lies in mul-
tiple computing agents coming together to accomplish complex tasks. This is
indeed the promise of IoT. For example, Bob would like to play a movie from his
internet video service on Alice’s TV and speaker system. In order to enable such
interactions, the authorization model must support flexible sharing and delega-
tion.1 Alice must be able to delegate access to her TV to Bob, and Bob must
be able to delegate access to his internet video service to Alice’s TV for playing
a particular movie. The model must also support delegations across multiple
hops. For instance, Bob must be able to easily delegate access to Alice’s TV
to his friend Carol. Moreover, in light of the decentralization requirement, we
would like delegations to work peer-to-peer rather than be mediated by a central
authority.

In practice, delegation of authority is seldom unconditional, and thus the
delegation mechanism must support constraints on the scope of the delegation.
For instance, Bob may want Alice’s TV to have access to his internet video
service only for playing a particular movie, and only while Bob is present in
Alice’s house. The TV must loose access as soon as Bob leaves the house. Alice
may want the same for Bob’s access to her TV.

We emphasize that the delegation mechanism must be flexible and convenient
to use. Inflexibilities or inconveniences in the mechanism not only affect the user
experience but are also detrimental to security as they push users to look for

1 Some systems choose to distinguish the concepts of “sharing” an “delegation” with
the former being a mechanism for a principal to allow another principal to access an
object while the latter being a mechanism for allowing another principal to act on
its behalf. In this tutorial, we do not make this distinction, and treat “delegation”
more broadly as a mechanism for one principal to delegate some of its authority to
another principal.

Distributed Authorization in Vanadium 143

insecure workarounds. For instance, in the absence of a convenient mechanism
to share access to an internet video service, Bob may end up sharing his account
password with the TV, and as a result give away access to all his account data
(e.g., viewing history, purchases) instead of just access to a particular movie.

Auditable Access. In a system with delegation, users should be able to audit
the use of delegated access over time. For instance, a user must be able to
determine who has access to her devices and who has exercised that access.
Delegations are ultimately tied to the intention of the human end-user, and
software must acknowledge that it is impossible to codify all possible human
intentions. This is particularly true when users themselves may be unable to
clearly articulate their intentions at the time of delegation. An accurate audit
trail is a requirement to detect mismatches between user intentions and their
codification. For example, Alice might give Charlie access to her home to come
by and walk her dog once a day. Alice’s intent is for Charlie to be a dog walker
but she cannot possibly know apriori what time Charlie will come by in all
future days. Auditing Charlie’s use of the authority granted to her by Alice is
necessary to detect a violation of the contract between the two. Moreover, this
auditing must be fine grained—if Charlie was tricked into running a malicious
application on her phone, Alice must be able to pinpoint the exact application
that was improperly using the authority she granted to Charlie.

Revocation. Users make mistakes, devices get stolen/compromised, and rela-
tionships break. As a result an authorization model must support revocation. For
instance, Alice must be able revoke Dave’s access to all her home devices when
they have a falling out. Similarly, she should be able to revoke all delegations
that she made to her tablet when her tablet gets stolen.

Ease of Use. Usability is a key determining factor in the effectiveness of security
systems [14,30]. Systems with complex interfaces and mechanisms often have
degraded security, as users tend to look for insecure workarounds when dealing
with them. Thus we strive to design an authorization model that can be easily
understood and configured by system developers, and lends itself well to simple
and clear user interfaces.

3 Background

Distributed authorization is a very mature field with decades of prior research.
The Vanadium authorization model is a result of combining various known tech-
niques in order to meet the requirements stated in the previous section. In this
section, we provide some background on distributed authorization, and discuss
the key ideas involved in the design of the Vanadium authorization model.

In essence, most authorization mechanisms involve a requester presenting a
set of credentials (possibly obtained from multiple parties) to a reference mon-
itor guarding a resource which then authorizes the request after validating the
credentials [29]. A common paradigm is for the requester to present credentials

144 A. Taly and A. Shankar

that establish its identity, which is then checked against an access control policy
(e.g., an access control list (ACL)) by the reference monitor. Various mechanisms
differ in the type of credentials involved. In mechanisms such as OAuth2 [21],
OpenID [3], Macaroons [10], and many others [20,25], the credentials are essen-
tially tokens constructed using symmetric-key cryptography by an issuer (e.g., an
identity provider in the case of OAuth2). These mechanisms are simple, efficient,
easy to deploy, and are widely in use (particularly OAuth2) for client authoriza-
tion on the Web. The downside is that the credentials can be validated and
interpreted only by the credential issuer. As a result, the credential issuer must
be invoked for validating credentials during each request2. This is undesirable in
our setting.

In contrast, mechanisms based on public-key certificates [9,11–13,23,27,32]
do not suffer from this downside. In these mechanisms, principals possess digi-
tal signature public and secret key pairs along with signed certificates binding
authorizations to their public key. A principal makes requests by signing state-
ments using its secret key and presenting one or more of its certificates. These
certificates can be validated and interpreted by any principal as long as it knows
the public key of the certificate issuer. Such a mechanism is used for authenti-
cating HTTPS [17] servers on the Web.

Certificate-based mechanisms rely on a public-key infrastructure (PKI) for
distributing certificates to various principals. Traditional x509 PKI [28], such as
the one used on the Web, is centralized with a hierarchical network of certifica-
tion authorities responsible for issuing certificates. In light of the downsides of
centralization, several decentralized PKI [11,12,18,27,32] have been proposed in
the literature. A prominent model among these is the simple distributed security
infrastructure (SDSI) [27] of Rivest and Lampson. The SDSI model was subse-
quently merged with the simple public key infrastructure (SPKI) effort [18], and
the resulting model is commonly referred to as SPKI/SDSI. In what follows,
we briefly summarize some of the key ideas in SPKI/SDSI, while referring the
reader to [18,27] for a more comprehensive description.

SPKI/SDSI. This is a decentralized PKI based on the idea of local names.
Each principal in this model is represented by a digital signature public key, and
manages a local name for referring to other principals. For instance, a principal
Alice may use the name friend to refer to her friend Bob’s public key and
doctor to refer to her family doctor Frank’s public key. These bindings are local
to Alice, and other principals may chose to bind different names to these keys.
However, another principal, say Alice’s TV, who names Alice’s public key as
Alice may refer to Bob’s public key as Alice’s friend. Thus names in different
namespaces can be linked using the ’s operator. Local name to key bindings
are represented by name-definition certificates signed by the issuing principal.
Linked names are thus realized by certificate chains. The model also supports
authorization certificates wherein an issuing principal delegates permissions to
another principal.

2 An alternative is for each resource owner to become a credential issuer but that leads
to a proliferation of credentials at the requester’s end.

Distributed Authorization in Vanadium 145

Access control policies in SPKI/SDSI specify a list of authorized principals
using local names in the owner’s namespace. A request is allowed by the policy
if the requesting principal is directly authorized by the policy or has a dele-
gation (via authorization certificate) from a directly authorized principal. For
instance, Alice’s TV may have an access control policy allowing the local name
Alice’s friend, and therefore Bob (who has the name Alice’s friend in the
TV’s namespace) and any principal delegated by Bob will have access. Autho-
rizing requests involves assembling a chain of certificates (from a repository of
certificates) that proves that the requesting principal satisfies the access control
policy [16]. The responsibility of assembling the right certificate chain may be
placed on the reference monitor or the requester, and various deployments may
differ in this choice. The key idea from SPKI/SDSI used in the Vanadium autho-
rization model is that of delegating access to principals by assigning them local
names, and basing access control policies on these names.

Caveats on Delegation. There are several mechanisms in the literature on
restricting the scope of delegations. These range from simple, coarse-grained
mechanisms of adding a purpose and expiration time to delegation certificates,
to complex, fine-grained mechanisms of extending delegation certificates with S-
expressions capturing application-specific permissions [18], or program code [13]
defining how access must be proxied to the resource. Recently, Birgisson et al.,
proposed a mechanism for restricting delegations using caveats [10], which aims
at striking a balance between simplicity and expressiveness.

Caveats are essentially predicates that restrict the context in which the del-
egated credential may be used. They are attached to the credential in a tamper-
proof manner, each time the credential is delegated. Caveats are of two types—
first-party and third-party. First-party caveats are predicates on the context in
which a credential may be used. For e.g., first-party caveats impose restrictions
on the time of request (e.g., only between 6 PM to 9 PM), the permitted opera-
tion (e.g., only Read requests), the requester’s IP address (e.g., the IP address
must not be blacklisted), etc. These restrictions are validated by the reference
monitor in the context of an incoming request, and the credential is considered
invalid if any caveat present on it is invalid.

Third-party caveats are restrictions wherein the burden of validation is
pushed to a third-party, i.e., neither the party that wields the credential nor
the party that is authorizing it. A credential with a third-party caveat is con-
sidered valid only when accompanied by a discharge (proof of validity) issued
by the specific third party mentioned in the caveat. This discharge must be
obtained by the holder of the credential before using the credential as part of a
request. A reference monitor making authorization decisions simply checks that
valid discharges are provided for all third-party caveats on the credential.

A third-party caveat can be used for implementing revocation checks by
having the discharge service issue discharges only if the credential has not been
revoked. The discharge may be short-lived, and thus the holder of the creden-
tial would be obligated to periodically obtain fresh discharges from the service.
Although this mechanism seems similar to the online certificate status protocol

146 A. Taly and A. Shankar

(OCSP) [24], the key difference is that unlike an OCSP response, fetching a dis-
charge is the responsibility of the principal making the request rather than the
one authorizing it. Other examples of third-party caveats would be restrictions
pointed at a social networking service (e.g., discharged by checking membership
in the “work” circle), or an auditing service (e.g., discharged by adding an entry
to the audit log). Discharges may themselves carry first-party and third-party
caveats thereby making the overall mechanism highly expressive. For instance,
a parental-control caveat on a credential handed to a kid may initially point to
a service on dad’s phone who in some cases may issue a discharge with a third-
party caveat pointed at mom’s phone. While caveats were originally designed in
the context of Macaroons [10], in this work we use them to restrict the scope of
delegation certificates in Vanadium.

4 Vanadium Authorization Model

In this section, we describe the authorization model of the Vanadium frame-
work [6]. Vanadium is a set of tools, libraries, and services for developing secure
distributed applications that can run over a network of devices. At the core of the
framework is a remote procedure call (RPC) system that enables applications
to expose services over the network. The framework offers an interface definition
language (IDL) for defining services, a federated naming system for addressing
them, and an API for discovering accessible services. The authorization model
is responsible for controlling access to RPC services, and ensuring that all RPCs
are end-to-end encrypted, mutually authenticated, and mutually authorized.

Preliminaries. The model makes use of a digital signature scheme (e.g.,
ECDSA P-256). In particular, we assume public and secret key pairs (pk , sk),
and algorithms sign and verify for signing messages and verifying signatures
respectively. sign(sk ,msg) uses a secret key sk to produce a signature over
a message msg , and verify(pk ,msg , sig) verifies a signature sig over a mes-
sage msg using a public key pk . For any public and secret key pairs pk , sk ,
∀msg : verify(pk ,msg , sign(sk ,msg)) holds. We also assume a cryptographically
secure hash function (e.g., SHA256), denoted by hash. For convenience, we
assume that hash takes an arbitrary number of arguments of arbitrary type, and
internally encodes all arguments into a byte array using some lossless encoding
technique.

4.1 Principals and Blessings

A principal is any entity that can interact in the Vanadium framework. Specifi-
cally, processes, applications, and services that include a Vanadium runtime are
all principals. Each principal is associated with a public and secret key pair,
with the secret key never being shared over the network. Each principal has one
or more hierarchical human-readable names associated with it called blessings.

Distributed Authorization in Vanadium 147

For instance, a television set (TV) owned by a user Alice3 may have a blessing
Alice / TV. Principals can have multiple blessings, and thus the same TV may
also have a blessing PopularCorp / TV123 from its manufacturer.

Principals are authenticated and authorized during requests based on the
blessing names bound to them. The public key of the principal does not matter
as long as the principal can prove that it has a blessing name satisfying the
other end’s access control policy. We believe that this choice makes it easier
and more natural for users and system administrators to define access control
policies and inspect audit trails as they have to reason only in terms of human-
readable names. Concretely, a blessing is represented via a chain of certificates.
The formal definition of certificates and blessings is given in Fig. 1. We use 〈. . .〉
to define tuples, colon as a binary operator for forming lists, and empty for the
empty list. n ranges over ordinary names not containing /. Certificates, denoted
by C , contain exactly four fields—a name, a public key, a (possibly empty) list
of caveats, and a digital signature. We discuss the definition of caveats a bit
later; for now they can be thought of as restrictions (e.g., expiration time) on
the validity of the certificate. We use the dot notation to refer to fields of a tuple,
and thus C .n is the name of a certificate C . Notice that our certificate format
is much simpler in contrast to x509 certificates [28].

n ::= ordinary names not containing / names
C ::= c〈n, pk , clist , sig〉 certificates
B ::= C blessings

| B:C
clist ::= empty list of caveats

| clist:c

c ::= fc | tc caveats
fc ::= timeCaveat first-party caveats

| targetCaveat
| . . .

tc ::= t〈nonce, pk , fc, loc〉 third-party caveats
d ::= d〈clist , sig〉 discharges

Fig. 1. Certificates, blessings and caveats

Blessings (denoted by B) are non-empty lists of certificates with each certifi-
cate capturing a component of the blessing name. The list of certificates is meant
to form a chain such that signature of each certificate except the first one can
be verified using the public key of the previous certificate. The first certificate
is self-signed, that is, its signature can be verified by its own public key. The
public key listed in the final certificate is the public key of the principal to which

3 For ease of discussion, we refer to users and devices as principals; strictly speaking,
we are referring to processes controlled by them.

148 A. Taly and A. Shankar

the blessing is bound. This public key is denoted by pk(B) for a blessing B .
The name of a blessing is obtained by concatenating all names appearing in the
blessing’s certificate chain using /. This name is denoted by nm(B).

As an example, the blessing PopularCorp / TV123 is bound to the television’s
public key pkTV by a chain of two certificates—(1) a certificate with name
PopularCorp and public key pkPopularCorp, signed by skPopularCorp, and (2)
a certificate with name TV123 and public key pkTV , signed by skPopularCorp.
The validity of the certificate chain of a blessing B is defined by the predicate
IsValidChain(B).

IsValidChain(B) ::=
case B of

C : verify(C .pk , hash(C .n,C .pk ,C .clist),C .sig)
| B :C : IsValidChain(B) ∧ verify(pk(B), hash(B ,C .n,C .pk ,C .clist),C .sig)

The signature in each certificate of the chain is not just over the certificate’s con-
tents but also the chain leading up to the certificate. This means that each cer-
tificate is cryptographically integrated into the blessing, and cannot be extracted
and used in another blessing. This property does not hold for SPKI/SDSI and
many other certificate-based systems, where certificates can be chained together
in arbitrary ways. As a result, Vanadium does not face the certificate chain
discovery problem [16] that involves assembling the right chain of certificates
(from a repository) to prove that certain credentials are associated with a public
key. A Vanadium blessing is a tightly bound certificate chain containing all the
certificates required to prove that a certain name is bound to a public key.

4.2 Delegation and Caveats

Blessings can be delegated from one principal to another by extending them with
additional names. For instance, Alice may extend her blessing Alice to her TV as
Alice / TV. The TV may in turn extend this blessing to the Youtube application
running on it as Alice / TV /Youtube. Since principals possess authority by virtue
of their blessing names, delegating a blessing amounts to delegation of author-
ity. For instance, delegation of the blessing Alice / TV allows the TV to access all
resources protected by an ACL of the form Allow Alice / TV.

Concretely, a delegation is carried out by the operation Bless(pk , sk ,B ,
n, clist) which takes the public key pkd of the delegate, the secret key sk of
the delegator, the blessing B that must be extended, the name n used for the
extension, and the list of caveats clist on the delegation. It extends the bless-
ing’s certificate chain with a certificate containing name n, public key pkd, list
of caveats clist , and signed by the secret key sk .

Bless(pkd, sk ,B , n, clist) ::=B :c〈n, pkd, clist , sign(sk , hash(B , n, pk , clist))〉
It is easy to see that if the blessing B is valid, and the secret key sk corre-
sponds to the public key pk(B), then the blessing Bless(pkd, sk ,B , n, clist) is
valid. Each blessing delegation involves the blesser choosing an extension (e.g.,

Distributed Authorization in Vanadium 149

TV) for the blessing. The extension may itself have multiple components (e.g.,
home / bedroom / TV), and a blesser may choose the same or a different extension
across multiple delegations. The role of the extension is to namespace the delega-
tion, similar to local names in SDSI [27].

The role of the caveat list (clist) supplied to the Bless operation is to restrict
the conditions under which the resulting blessing can be used. For example, Alice
can bless her TV as Alice / TV but with the caveats that the blessing can be used
only between 6 PM and 9 PM, and only to make requests to her video service (and
not her bank!). Thus, the resulting blessing makes the assertion:

The name Alice:TV is bound to pkTV

as long as the TIME is between 6 PM and 9 PM, and
as long as target of the request matches SomeCorp / VideoService

When the TV uses this blessing to make a request to the video service, the
service will grant the request only if the current time is within the permitted
range, and its own blessing name matches SomeCorp / VideoService.

The caveats in the above example are all first-party caveats as they are
validated by the reference monitor at the target service when the blessing is
presented during a request. As discussed in Sect. 3 and [10], first-party caveats
are validated in the context of an incoming request based on information such as
the time of request, the blessing presented, the method invoked, etc. We use C
to denote request contexts, and assume a function IsValidFCav(fc, C) that checks
if a first-party caveat fc is valid in the context C.

While the Vanadium framework implements IsValidFCav on some standard
first-party caveats (e.g., expiry, method and peer restriction), services may also
define their own first-party caveats. For instance, a video streaming service may
define a “PG-13” caveat so that blessings carrying this caveat would be autho-
rized to stream only PG-13 movies.

4.3 Third-Party Caveats

Vanadium blessings may also carry third-party caveats [10] wherein the burden
of validating the caveat is pushed to a third-party. For example, Alice can bless
Bob as Alice / Houseguest / Bob but with the caveat that the blessing is valid
only if Bob is within 20 feet of Alice as determined by a proximity service running
on Alice’s phone (third-party). Before making a request with this blessing, Bob
must obtain a discharge (proof) from the proximity service on Alice’s phone.
This discharge must be sent along with the blessing in a request. Thus, the
blessing makes the assertion:

The name Alice / Houseguest / Bob is bound to pkBob

as long as a proximity service on Alice’s phone issues a discharge after
validating that Bob is “within 20 feet” of it.

The structure of a third-party caveat and discharge is defined in Fig. 1. Every
third-party caveat includes a nonce (for uniqueness), a public key controlled by

150 A. Taly and A. Shankar

the third-party service, a first-party caveat specifying the check that must carried
out before issuing the discharge, and the location of the third-party service. A
discharge contains a signature and possibly additional caveats. It is considered
valid if its signature can be verified by the public key listed in the third-party
caveat, and any additional caveats listed on it are valid.

The operation MintDischarge(sk tp, tc, clist , C) uses a secret key sk tp (owned
by the third-party) to produce a discharge for a third-party caveat tc if the
check specified in tc is valid in the context C. The returned discharge contains
the provided list of caveats clist .

MintDischarge(sk tp, tc, clist , C) ::=
case IsValidFCav(tc.fc, C) of

true : error
| false : d〈clist , sign(sk tp , hash(tc, clist))〉

The purpose of the additional caveats on the discharge is to limit its validity. For
instance, in the proximity caveat example, Alice’s phone may issue a discharge
that expires in 5 min thereby requiring Bob to fetch a new discharge periodically.
This ensures that Bob cannot cheat by fetching a discharge when near Alice’s
phone, and then using it later from a different location.

4.4 Blessing Roots

Since blessing names are the basis of authorization, it is important for them to
be unforgeable. Simply verifying the signatures in a certificate chain does not
protect against forgery because the first certificate in the chain is self-signed, and
thus can be constructed by any principal. For instance, an attacker with public
and secret keys pka, ska can bind the name Alice to her public key using the
blessing c〈Alice, pka, empty, sign(ska, hash(Alice, pka, empty))〉. She may then
extend this blessing with any extension of her choosing using the Bless operation.

In order to defend against such forgery, all Vanadium principals have a set
of recognized roots. The root of a blessing is the public key and name of the
first certificate in the blessing’s certificate chain. A blessing is recognized by
a principal only if the blessing’s root is recognized. For instance, all of Alice’s
devices may recognize her public key pkAlice and name Alice as a root. Any
blessing prefixed with Alice would be recognized only if it has pkAlice as the root
public key. Similarly all devices manufactured by PopularCorp may recognize the
public key pkPopularCorp and name PopularCorp as a root. Devices from another
manufacturer may not recognize this root, and would simply discard blessings
from PopularCorp.

We use the term identity provider for a principal that acts as a blessing root
and hands blessings to other principals. For instance, both Alice and Popular-
Corp would be considered as identity providers by Alice’s TV. Any principal
can become an identity provider. In general, we anticipate well-known compa-
nies, schools, and public agencies to become identity providers, and different
principals may recognize different subsets of these.

Distributed Authorization in Vanadium 151

4.5 Authentication and Authorization

Client and servers in a remote procedure call (RPC) authenticate each other by
presenting blessings bound to their public keys. The Vanadium authentication
protocol [7] is based on the well-known SIGMA-I protocol [15]. It ensures that
each end learns the other end’s blessing, and is convinced that the other end
possesses the corresponding secret key. At the end of the protocol, an encrypted
channel (based on a shared key) is established between the client and server for
further communication. Since the protocol is fairly standard, we do not discuss
it here and refer the reader to [7] for a detailed description.

Once authentication completes, each end checks that the other end’s blessing
is authorized for the RPC. Authorization is mutual. For example, Alice (client)
may invoke a method on her TV (server) only if the TV presents a blessing
matching Alice / TV, and the TV may authorize Alice’s request only if she
presents a blessing prefixed with Alice. Authorization checks involve two key
steps—(1) validating the blessing presented by the other end, followed by (2)
matching the blessing name against an access control policy.

A blessing is always validated in the context of a given request. Blessing
validation involves —(1) verifying the signatures on the blessing’s certificate
chain, (2) verifying that the blessing root is recognized, and (3) validating all
caveats on the blessing in the context of the request.

IsValidBlessing(B , R, C), defined below, determines if a blessing B is valid for
a given request context C and a set of recognized roots R. The context is assumed
to contain all parameters of the request, including any discharges sent by the
other end. Specifically, dis(C) denotes the discharges contained in the context
C, root(B) is the root of the blessing B and cavs(B) is the set of all caveats
appearing on certificates of the blessing B . A first-party caveat is validated by
invoking the function IsValidFCav, and a third-party caveat is validated by finding
a matching discharge in the request context, i.e., a discharge whose signature can
be verified using the public key specified in the third-party caveat. Additionally,
any caveats listed on the discharge are also (recursively) validated.

IsValidBlessing(B , R, C) ::=
IsValidChain(B) ∧ IsRecognized(B , R) ∧ IsValidCavs(cavs(B), C)

IsRecognized(B , R) ::=∃r ∈ R : root(B) = r

IsValidCavs(clist , C) ::=
∀c ∈ clist :
case c of

fc : IsValidFCav(fc, C)
| tc : ∃d ∈ dis(C) :

verify(tc.pk , hash(tc, d .clist), d .sig)) ∧ IsValidCavs(d .clist , C)

Once the remote end’s blessing is validated, the name of the blessing is
checked against an access control policy. Access is granted only if the check
is successful. We discuss the structure of these policies next.

152 A. Taly and A. Shankar

4.6 Access Control Policies

The syntax and semantics of access control policies in Vanadium has been defined
rigorously in [8]. We give a brief overview of the design in this subsection. Policies
in Vanadium are specified using access control lists (ACLs) that resolve to the set
of permitted blessing names. In order to allow policies to be short and simple,
Vanadium allows ACLs to indirect through groups. For example, Alice may
create a group AliceFriendsG containing the blessing names of all her friends
and add it to all relevant ACLs. This saves her from enumerating the list of
blessing names of family members within each ACL, and also provides a central
place to manage multiple policies. Furthermore, group definitions may be nested.
For instance, the definition of the group AliceFriendsG may contain the group
DaveFriendsG containing the friends of Alice’s flatmate Dave. Typically, the
definition of a group would be held at a remote server, which would be contacted
during ACL resolution. The ACL resolver may cache information about groups
in order to combat unreliable network connectivity and avoid expensive network
roundtrips.

bn ::= n blessing names
| n / bn

p ::= n blessing patterns
| g
| n / p
| g / p

P ::= empty list of blessing patterns
| P:p

A ::= Allow P Deny P ACL

Fig. 2. Access control policies

ACLs may also contain blessing names where one of the components is a
group name. Such names are called blessing patterns, and are meant to capture a
derived set of blessing names. For example, the pattern AliceFriendsG / Phone
defines the set of blessing names of phones of Alice’s friends. In particular, if
the group AliceFriendsG contains the blessing name Bob, then the pattern
AliceFriendsG / Phone would be matched by the blessing name Bob / Phone.

Definitions. The formal definition of blessing patterns and ACLs is given in
Fig. 2. As before, n ranges over ordinary names not including /. g ranges over
group names (i.e., name with the subscript “G”), and bn ranges over blessing
names. A blessing pattern is a non-empty sequence of ordinary names or group
names separated by /. An ACL is a pair of Allow and Deny clauses, each containing
a list of blessing patterns.4 Deny clauses make it convenient to encode blacklists.
For instance, the ACL Allow AliceDevicesG Deny AliceWorkDevicesG allows
access to all of Alice’s devices except her work devices.
4 The model described in [8] is more general and allows multiple Allow and Deny clauses

in ACLs.

Distributed Authorization in Vanadium 153

Group definitions are of the form g =def P , and thus equate a group name
with a list of blessing patterns. For example, the group AliceFriendsG may have
a definition of the form

AliceFriendsG =def Bob, Carol, DaveFriendsG

A given blessing name satisfies an ACL if there is at least one blessing pattern in
the Allow clause that is matched by the blessing name, and no blessing pattern
in the Deny clause is matched by the blessing name. For example, when Bob is in
the group AliceFriendsG, the ACL Allow AliceFriendsG will permit access
with the blessing name Bob but the ACL Allow AliceFriendsG Deny Bob will
deny it. The default is to deny access, so for example the ACL Allow Bob will
deny access to Carol.

The semantics of ACL checks makes use of the prefix relation on blessing
names. Given two blessing names bn1 and bn2, we write bn1 � bn2 if the sequence
of names in bn1 (separated by /) is a prefix of the sequence of names in bn2,
for e.g., Alice � Alice / TV holds but Ali � Alice / TV does not.

In order to formalize the ACL checking procedure, we first define a function
Meaningρ that maps a blessing pattern to a set of blessing names. It is parametric
on a semantics of group names, which is a function ρ that maps a group name
to a set of members of the group. We discuss how ρ is obtained later.

Meaningρ(p) ::=
case p of

n : {n}
| g : ρ(g)
| n / p : {n / s | s ∈ Meaningρ(p)}
| g / p : {s / s ′ | s ∈ Meaningρ(g), s ′ ∈ Meaningρ(p)}

Meaningρ can be naturally extended to a list of blessing patterns by defining it
as the union of the sets obtained by applying Meaningρ to each element of the
list, with Meaningρ(empty) defined as ∅. Using the function Meaningρ, we define
the function IsAuthorized(bn,A) that decides whether a given blessing name bn
(seen during a request) satisfies an ACL A.

IsAuthorized(bn,A) ::=
case A of

Allow PA Deny PD : (∃bn ′ ∈ Meaningρ(PA).bn ′ � bn)
∧(¬∃bn ′ ∈ Meaningρ(PD).bn ′ � bn)

The function checks that the blessing name bn matches an allowed blessing
pattern and does not match any denied blessing pattern. Matching is defined
using prefixes (instead of exact equality) for both allowed and denied clauses;
the reasons however are different.

For Allow clauses, the use of the relation � is a matter of convenience. We
believe that often when a service grant access to a principal (e.g., with blessing
name Alice) it may be fine if the access is exercised by delegates of the principal

154 A. Taly and A. Shankar

(e.g., with blessing name Alice / Phone). Thus a pattern in an Allow clause
is considered matched as long as some prefix of the provided blessing name
matches it. Alternatively, services that want to force exact matching for allowed
patterns—perhaps to prevent the granted access from naturally flowing over to
delegates—may use the special reserved name eob at the end of the pattern.
For e.g., the pattern Allow Alice / eob is matched only by the blessing name
Alice.

For Deny clauses, ensuring that no prefix of the blessing name matches a
denied pattern is crucial for security. A principal with blessing name bn can
always extend it (using the Bless operation) and bind it to itself. Thus, from a
security perspective it is important that if bn is denied access, then all extensions
of bn are also denied access.

Semantics of groups (ρ). We now discuss how the map ρ from group names to
members of the group is defined. In Vanadium, groups may also be distributed,
in that, different group definitions may be held at different servers. Given this,
defining the map ρ becomes complicated for several reasons. Firstly, due to
network partitions some group servers may be unreachable during ACL checking
and thus their definitions may be unavailable. The definition of a group may
depend on other groups, and there may be no overseeing authority ensuring
absence of dependency cycles. Finally, group server checks need to be secure and
private. For instance, group servers under different administrative domains may
be unwilling to reveal their complete membership lists to each other, and may
offer only an interface for membership lookups. We refer the reader to [8] for
a complete treatment of how these issues are tackled, and explain only the key
ideas below.

When group servers are unreachable during ACL checking, we conservatively
approximate the definition of ρ for those groups. The approximation depends on
whether the group is being resolved in the context of an Allow clause or a
Deny clause. While matching an allowed pattern, unreachable groups are under-
approximated by the empty set. On the other hand, while matching a denied
pattern, unreachable groups are over-approximated by the set of all blessings.
Thus effectively we define two maps ρ⇓ and ρ⇑—the map ρ⇓ is used while defining
Meaningρ for allowed patterns, and the map ρ⇑ is used while defining Meaningρ

for denied patterns. The maps ρ⇓ and ρ⇑ coincide when all group definitions are
available.

ρ⇓ and ρ⇑ can be constructed by considering the list of available group def-
initions as a set of productions inducing a formal language. Ordinary names
and / are terminals, and group names are non-terminals. For instance, the
group definition

g1 =def Alice / Phone, g2 / Phone

can be viewed as two productions

g1 → Alice / Phone
g1 → g2 / Phone

Distributed Authorization in Vanadium 155

For ρ⇓, no production is associated with a group name whose definition is
unavailable. On the other hand for ρ⇑, such group names are associated with
productions inducing the set of all blessings. Once the set of productions are
defined, for any group name g, ρ⇓(g) and ρ⇑(g) are defined as the set of blessing
names generated from g by the corresponding set of productions.

While constructing ρ⇓ and ρ⇑ in the aforesaid manner is infeasible in practice
as it requires knowledge of all the group definitions, the key observation here is
that checking group membership can be reduced to checking membership in
an induced formal language. In [8], this observation and techniques from top-
down parsing are used to develop a distributed algorithm for checking whether
a blessing name belongs to a group.

4.7 Life of an RPC

We now explain how the various parts of the authorization model come together
during the course of an RPC. Consider Alice’s house guest Bob who wants
to invoke a method on Alice’s TV. Suppose Bob has the blessing BBob with
name Alice / Houseguest / Bob, and the TV has the blessing BTV with name
Alice / TV. Additionally, suppose that Bob’s blessing has a third-party caveat to
a proximity service running on Alice’s phone. Bob has the access control policy
Allow Alice / TV that allows only Alice’s TV, and the TV has the access control
policy Allow Alice:Alice / Houseguest that allows only Alice and her house
guests. In what follows, we describe the steps involved in the RPC from Bob’s
phone to Alice’s TV. We focus on the authentication and access-control aspects,
and do not discuss how various network connections are established.

– Bob uses the Vanadium authentication protocol to initiate a connection to
Alice’s TV.

– As part of the exchange, the TV first sends its blessing BTV to Bob. Bob
invokes IsValidBlessing(BTV , RBob, CBob) to verify that the blessing BTV is
valid for the current context from Bob’s perspective and the set of bless-
ing roots recognized by Bob (RBob). If this step succeeds, then Bob verifies
that the name of the blessing (Alice / TV) satisfies his access control policy
(Allow Alice / TV). The connection is aborted if any of these checks fail.

– After authorizing the TV’s blessing, Bob selects his blessing BBob (from Alice)
to present to the TV. Since the blessing carries a third-party caveat, Bob
first connects to the third-party service listed on the caveat to obtain a dis-
charge. The service performs the necessary checks, and if those succeed, it
issues a discharge to Bob. Bob (recursively) performs the above procedure
for any third-party caveats on the discharge, and once all discharges have
been obtained, he presents all of them with the blessing BBob to the TV.

– The TV invokes IsValidBlessing(BBob, RTV , CTV) to verify that the blessing
BBob is valid for the current context from the TV’s perpspective (CTV) and
the set of blessing roots recognized by the TV (RTV). If this step succeeds,
the TV verifies that the name of the blessing (Alice / Houseguest / Bob)
satisfies its access control policy (Allow Alice:Alice / Houseguest). The
connection is aborted if any of these checks fail.

156 A. Taly and A. Shankar

– After authorization succeeds at the TV’s end, the protocol is complete and
an encrypted channel is established between Bob and the TV. Application
data pertaining to the RPC is then exchanged on this channel.

4.8 Practical Considerations

We now discuss some considerations involved in deploying the authorization
model in practice.

Managing Blessings. Authorization in Vanadium is based on blessings. A
principal may acquire multiple blessings over time, each providing access to
some set of services under some contextual restrictions. Consequently, managing
these blessings may become quite onerous. The first problem is storing all these
blessings while keeping track of the meta-data about where they were obtained
from and under what constraints. Another problem is selecting which blessing to
present when authenticating to a peer. While presenting all blessings and letting
the peer choose the relevant one is convenient, it has the downside of leaking
sensitive information, for e.g., a blessing may reveal that Bob is a house guest
of Alice. Instead, Vanadium provides a means to selectively share blessings with
appropriate peers. Blessing are stored by Vanadium principals using a mechanism
similar to cookie jars in Web browsers. All blessings are stored with a blessing
pattern identifying the peer to whom they should be presented. This pattern may
be set based on information provided by the blessing granter. For example, Bob
can add the blessing Alice / Houseguest / Bob with the peer pattern Alice.
Thus, Bob will present this blessing only when communicating with services
that have a blessing name matching this pattern. Any other service that Bob
communicates with will not know that he has this blessing from Alice.

Blessing vs. Adding to an ACL. The careful reader may have noticed that
Vanadium offers two mechanisms for granting access to a resource. For instance,
consider Alice’s TV with an ACL Allow Alice which means all principals with
the blessing name Alice or an extension of it have access. Alice can grant access
to her TV to another principal by either extending her Alice blessing to the
other principal or by adding the other principal’s blessing name to the ACL. The
question then is how does one decide which method is appropriate in a given use-
case. Granting a blessing is akin to handing out a capability, and thus in a way
this question is that of deciding between granting a capability versus modifying
an ACL. We recommend the following approach for making the choice.

The constraints on the access being delegated must be taken into considera-
tion. If the access is meant to be long-lived and unconstrained then modifying
the ACL is preferable as it allows the service administrator to audit and revoke
access at any time. For instance, Alice may share access to her TV with her
flatmate Dave by adding the pattern Dave to the TV’s ACL. Later when Alice
moves out, she can revoke Dave’s access by removing this pattern. On the other
hand, when the access is constrained then blessing with caveats is a more appro-
priate choice. For instance, Alice may delegate temporary access to her TV to
her house guest Bob by blessing him under a short-lived time caveat.

Distributed Authorization in Vanadium 157

The choice of how access is granted also affects the subsequent auditability
of the delegated access. For instance, when Dave accesses Alice’ TV he would
use his own blessing (assuming Alice’s TV trusts Dave as a blessing root) and
his access would be recorded as Dave. However, when Bob accesses the TV he
would use his blessing from Alice, and thus his access would be recorded as
Alice / Houseguest / Bob. Finally, we note that the option to change an ACL
may not always be available. When Bob wants to grant access to Alice’s TV to
his friend Carol, extending his blessing to Carol may be his only option as he
may not have the authority to modify the TV’s ACL.

Revocation. We now discuss mechanisms for revoking access. Revocation is
easy when access is granted by adding to an ACL or a group, as it amounts to
simply removing the added entry. It is more challenging when access is granted
via blessing. One approach is to always constrain blessings with short-lived time
caveats, thereby invalidating them automatically after a certain time. Principals
would then have to periodically reach out to their blessing granters for a fresh
blessing. This idea is similar to “reconfirmation” in SDSI [27]. Using a third-
party caveat pointed at a revocation service offers a more systematic way of
realizing this idea. The revocation service would issue a short-lived discharge for
the caveat only if the blessing has not been revoked.

While such third-party caveats elegantly encode revocation restrictions, they
suffer from the downside of requiring blessing holders to periodically connect to
a revocation service. Specifically, they introduce a trade-off between how swiftly
a blessing may be revoked, and how long things may operate when disconnected.
This trade-off may be ameliorated to some extent if devices can recognize when
they are offline and use different revocation timeouts in that case. Furthermore,
in the home setting, a discharge service may be run on a WiFi access point,
thereby requiring devices to maintain connectivity only to the local WiFi net-
work.

5 Application: Physical Lock

In this section, we explain how the Vanadium authorization model may be
applied to a physical lock. The application highlights the flexibility and decen-
tralization aspects of the model. A network controlled lock is a common device
found in many modern homes today. It allows a user to lock and unlock a door
from their phone, and share access to it with visitors. Today, there are a number
of manufacturers building locks for homes, garages, factory floors etc.

The authorization model for most existing products involves a global ser-
vice service in the cloud, often controlled by the lock manufacturer, that is an
authority on all credentials used to access the lock. Typically, the service must be
accessed during setup and whenever access is delegated. As discussed in Sect. 2,
this is undesirable as communicating with global services requires internet access,
which may not be perfectly reliable. It can be quite frustrating for a user to be
unable to share access to a lock due to lack of internet connectivity at the time
sharing is initiated. Furthermore, compromising the manufacturer owned service

158 A. Taly and A. Shankar

may allow attacker to unlock all locks managed by the manufacturer. In what
follows, we present an authorization model for locks that is fully decentralized,
and does not depend on access to an external service or identity provider.

Overview. The key idea is to have the lock be its own identity provider. When
the lock is set up by its owner, it creates a self-signed blessing for itself, and
extends this blessing to the owner. The blessing granted to the owner is effectively
the key to the lock. All subsequent access to the lock is restricted to clients that
can wield this blessing or extensions of it. Delegation of access is simply carried
out by extending the key blessing.

5.1 Authorization Details

Consider a user Alice who just bought a brand new lock for the front door of her
house. We walk through the steps of setting up identity and access control for
the lock. We assume that Alice is interacting with the lock using another device,
say her phone.

Claiming a New Lock. We assume that an out-of-box lock device comes with
a pre-installed public and secret key pair, and a blessing from its manufacturer of
the form <manufacturer> / <serial no>. The first step in setting up the lock
is for Alice to name the lock and obtain a blessing for subsequently interacting
with it. This is accomplished by invoking the Claim method on the lock that
returns a blessing bound to the invoker’s (Alice’s) public key.

The invocation is through a Vanadium remote procedure call. The invoker
authorizes the lock by verifying that it presents a blessing from the manufacturer
with the expected serial number. An unconfigured lock authorizes any principal
to invoke the Claim method on it, after which it considers the setup process
complete and no longer allows invocation of that method.

After the Claim invocation is authorized, the lock creates a self-signed bless-
ing with a name provided by the caller. This blessing is presented by the lock
to authenticate to clients during all subsequent invocations. The lock then acts
as an identity provider and extends this blessing to the invoker’s public key
(learned during authentication). This granted blessing is called the key blessing
of the lock. The invoker saves this blessing for subsequent interactions with the
lock and also recognizes its root as an identity provider. For instance, Alice may
claim the lock on her front door with the name AliceFrontDoor. The lock will
subsequently authenticate to others as AliceFrontDoor, and would grant the
blessing AliceFrontDoor / Key to Alice (here Key is the blessing extension used
by the lock).

Locking and Unlocking. Once a lock has been claimed, the Claim method
is disabled and the lock instead exposes the Lock and Unlock methods. The
methods are protected by an ACL that allows access only to clients that wield
a blessing from the lock’s identity provider. In the above example, the ACL
would be Allow AliceFrontDoor, which would be matched by the blessing
AliceFrontDoor / Key.

Distributed Authorization in Vanadium 159

Delegating Access. Any extension of the key blessing also matches the ACL for
the lock’s methods, and thus access to the lock can be delegated by extending
this blessing. As usual, caveats can be added to the extension to restrict its
scope. For instance, Alice can extend her blessing AliceFrontDoor / Key to her
house cleaner as AliceFrontDoor / Key /Cleaner under a time caveat that is
valid only on Mondays between 8AM to 10AM.

Auditing Access. The lock can keep track of the blessings used to access it,
even ones that have invalid caveats. Thus, Alice can inspect the log on the lock
for auditing access attempts made by her house cleaner. In particular, Alice can
detect if the cleaner tried to access the lock outside of the agreed upon time
(8AM to 10AM on Mondays) or if there is access by someone who has received
a delegated blessing from the cleaner.

5.2 Discussion

We highlight three distinguishing aspects of the authorization model presented
in this section.

Decentralized. Each lock is an authority on the secrets and credentials that
can be used to access it. No external entity, including the lock manufacturer, can
mint credentials to access a claimed lock device. The credentials for accessing
one lock are completely independent from those for accessing another. Thus,
attackers have no single point of attack to unlock multiple instances.

No Internet Connectivity Required. The authorization model does not
require the lock or the device interacting with it to have internet access at any
point, including during setup. The model does not rely on any third-party service
or identity provider.

Audited. The lock can keep track of when it was accessed, by whom (represented
by the blessings). Since blessings inherently capture a delegation trail, the access
log also conveys how the invoker obtained access.

Having highlighted the above advantages, we note that decentralization
comes at a cost. For instance, the lack of an authoritative source in the cloud
makes it hard to recover from loss or theft of blessings and secret keys. Further-
more, users are responsible for managing multiple blessings and keeping track of
various delegations they make. We believe that carefully designed user-interfaces
and appropriate reset modes for the lock device can help address some of these
concerns.

6 Conclusion

This tutorial presents the authorization model of the Vanadium framework [6].
In this model, each principal has a digital signature public and secret key pair,
and a set of hierarchical human-readable names bound to its public key via

160 A. Taly and A. Shankar

certificate chains called blessings. All authorizations associated with a principal
are based on its blessing names. In particular, a principal makes a request to
a service by presenting one of its blessings (using the Vanadium authentication
protocol [7]), and the request is authorized if the blessing name satisfies the
service’s access control policy.

A notable feature of the model is its support for decentralization and fine-
grained delegation. The model does not require the existence of special identity
providers that are trusted by all principals by default. Instead, any principal
may choose to become an identity provider and create blessings for itself and
other principals. Each principal has a choice over which other principals it recog-
nizes as identity providers. Only blessings from recognized identity providers are
considered valid. In practice, we anticipate that there will be a small set of large-
scale identity providers that most people will commonly use in interactions with
the wider world.

Principals can delegate access by extending one or more of their blessings
to other principals. The scope of delegations can be constrained very finely by
adding caveats [10] to the delegated blessing. In particular, blessings support
third-party caveats which allow predicating delegations on consent by specific
third-parties. Such caveats elegantly support revocation, proximity-based restric-
tions, and audit requirements.

Access control policies in Vanadium may indirect through groups whose defin-
ition may be distributed across multiple servers, possibly under different admin-
istrative domains. While several access control mechanisms support groups, a
distinguishing aspect of our design is using groups to construct compound names.
For instance, the pattern AliceFriendsG / Phone, with AliceFriendsG being a
group of blessing names of Alice’s friends, defines the set of blessing names of
phones of Alice’s friends. Such compound names coupled with negative clauses in
ACLs make the problem of checking group membership fairly complex, especially
when the group server may be unreachable. The Vanadium authorization model
mitigates some of the difficulties by making simplifying choices. For instance,
group definitions cannot contain negative clauses, and ACLs cannot be reused
for defining groups or other ACLs. This tutorial provides a brief overview of our
solution, with a more comprehensive description available in [8].

Future Directions. There are several future directions for this line of work.
The first and perhaps the most important direction is on making the model and
its primitives easily usable by end users. This is paramount to the adoption of
the model. Mechanisms for making the model more usable may include design-
ing intuitive user-interfaces for visualizing, granting and revoking blessings, and
conventions on blessing names that help write intelligible access-control policies.

Another direction is that of enabling mutual privacy in the Vanadium authen-
tication protocol. Currently, the protocol involves the server presenting its bless-
ing before the client. While this is beneficial to the client, as it may choose to
not reveal its blessing after seeing the server’s blessing, it is disadvantageous to
the server. The server’s blessing is effectively revealed to anyone who connects
to it, including active network attackers. In fact, this lack of mutual privacy

Distributed Authorization in Vanadium 161

is common to many other mutual authentication protocols (such as TLS [17],
SIGMA-I [15]) wherein one of the parties must reveal its identity first. In the sce-
narios considered in this work, the participants may be personal end-user devices
neither of which is inclined to reveal its identity before learning the identity of
its peer. In ongoing work [31], we are designing a private mutual authentication
protocol that allows each end to learn its peer’s blessing only if it satisfies the
peer’s authorization policy.

Finally, one may consider designing mechanisms for securely leveraging exter-
nal cloud-based services when internet access is available. For instance, a Cloud-
based service may be used as a transparent proxy for RPCs, as a revocation and
auditing service for blessing delegations, or as a readonly backup for data. In all
cases, the goal would be to leverage external Cloud-based services for various
tasks while granting them the minimal authority necessary for the task.

Acknowledgments. This work is a result of a joint effort by several members of the
Vanadium team at Google. We would like to thank Mart́ın Abadi, Mike Burrows, Ryan
Brown, Bogdan Caprita, Thai Duong, Cosmos Nicolaou, Himabindu Pucha, David
Presotto, Adam Sadovsky, Suharsh Sivakumar, Gautham Thambidorai, Robin Thel-
lend for their contributions to designing and implementing the Vanadium authorization
model. We are grateful to Mart́ın Abadi and Mike Burrows for helpful comments on
drafts of this tutorial.

References

1. Fridge sends spam emails as attack hits smart gadgets. http://www.bbc.com/
news/technology-25780908

2. Hackers remotely kill a jeep on the highway? with me in it. https://www.wired.
com/2015/07/hackers-remotely-kill-jeep-highway/

3. Openid. http://openid.net/
4. Smart meters can be hacked to cut power bills. http://www.bbc.com/news/

technology-29643276
5. The Internet of Things is wildly insecure? and often unpatchable. https://www.

schneier.com/essays/archives/2014/01/the internet of thin.html
6. Vanadium. http://vanadium.github.io/
7. Vanadium Authentication Protocol. https://vanadium.github.io/designdocs/

authentication.html
8. Abadi, M., Burrows, M., Pucha, H., Sadovsky, A., Shankar, A., Taly, A.: Distrib-

uted authorization with distributed grammars. In: Bodei, C., Ferrari, G.-L., Pri-
ami, C. (eds.) Programming Languages with Applications to Biology and Security.
LNCS, vol. 9465, pp. 10–26. Springer, Heidelberg (2015)

9. Appel, A., Felten, E.: Proof-carrying authentication. In: CCS, pp. 52–62 (1999)
10. Birgisson, A., Politz, J.G., Erlingsson, U., Taly, A., Vrable, M., Lentczner, M.:

Macaroons: Cookies with contextual caveats for decentralized authorization in the
cloud. In: NDSS (2014)

11. Blaze, M., Feigenbaum, J., Ioannidis, J.: The KeyNote Trust-Management System
Version 2. RFC 2704 (Proposed Standard), September 1999

12. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
Symposium on Security and Privacy, pp. 164–173 (1996)

http://www.bbc.com/news/technology-25780908
http://www.bbc.com/news/technology-25780908
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://openid.net/
http://www.bbc.com/news/technology-29643276
http://www.bbc.com/news/technology-29643276
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
http://vanadium.github.io/
https://vanadium.github.io/designdocs/authentication.html
https://vanadium.github.io/designdocs/authentication.html

162 A. Taly and A. Shankar

13. Borisov, N., Brewer, E.: Active certificates: a framework for delegation. In: NDSS,
pp. 30–40 (2002)

14. Braz, C., Robert, J.: Security and usability: the case of the user authentication
methods. In: Conference on L’Interaction Homme-Machine, pp. 199–203 (2006)

15. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (2002)

16. Clarke, D., Elien, J., Ellison, C., Fredette, M., Morcos, A., Rivest, R.: Certificate
chain discovery in SPKI/SDSI. J. Comput. Secur. 9, 285–322 (2001)

17. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008

18. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
Certificate Theory. RFC 2693 (Proposed Standard), September 1999

19. Hewlett Packard Enterprise: Internet of things research study. http://www8.hp.
com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf

20. Gong, L.: A secure identity-based capability system. In: IEEE Symposium on Secu-
rity and Privacy, pp. 56–63 (1989)

21. Hardt, E.: The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard), October 2012

22. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: theory and practice. In: SOSP, pp. 165–182 (1991)

23. Li, N., Feigenbaum, J., Grosof, B.N.: A logic-based knowledge representation for
authorization with delegation. In: CSFW, pp. 162–174 (1999)

24. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 2560
(Proposed Standard), June 1999

25. Neuman, B.C.: Proxy-based authorization and accounting for distributed systems.
In: ICDCS, pp. 283–291 (1993)

26. Rapid7. Hacking IoT: A case study on baby monitor exposures and vulnerabilities.
https://www.rapid7.com/resources/iot/baby-monitors.jsp

27. Rivest, R.L., Lampson, B.: SDSI - a simple distributed security infrastructure.
Technical report (1996). http://people.csail.mit.edu/rivest/sdsi11

28. Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard), May 2008

29. Schneider, F.B.: Untitled textbook on cybersecurity. Chap. 9: Credentials-
based authorization (2013). http://www.cs.cornell.edu/fbs/publications/chptr.
CredsBased.pdf

30. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: USENIX Security Symposium, pp. 169–183 (1999)

31. Wu, D.J., Taly, A., Shankar, A., Boneh, D.: Privacy, discovery, and authentication
for the internet of things (2016). https://arxiv.org/abs/1604.06959

32. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press, Cambridge (1995)

http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-4759ENW.pdf
https://www.rapid7.com/resources/iot/baby-monitors.jsp
http://people.csail.mit.edu/rivest/sdsi11
http://www.cs.cornell.edu/fbs/publications/chptr.CredsBased.pdf
http://www.cs.cornell.edu/fbs/publications/chptr.CredsBased.pdf
https://arxiv.org/abs/1604.06959

Author Index

Backes, Michael 87
Berrang, Pascal 87
Bootle, Jonathan 1

Cerulli, Andrea 1
Chaidos, Pyrros 1

Groth, Jens 1

Manoharan, Praveen 87

Sabelfeld, Andrei 32
Shankar, Asim 139

Taly, Ankur 139

Van Acker, Steven 32

	Preface
	Contents
	Efficient Zero-Knowledge Proof Systems
	1 Introduction
	1.1 Motivation
	1.2 Example: A Zero-Knowledge Proof for Graph Isomorphism
	1.3 Security and Performance Parameters
	1.4 Notation

	2 -Protocols
	2.1 Definitions
	2.2 -Protocol for the Equivalence of Discrete Logarithm
	2.3 Commitment Schemes
	2.4 Two Useful Examples of -Protocols
	2.5 Composition of -Protocols
	2.6 Arithmetic Circuits
	2.7 Batching

	3 Non-interactive Zero-Knowledge Proofs
	3.1 Formal Definitions
	3.2 The Common Reference String
	3.3 Public and Private Verifiability
	3.4 The Fiat-Shamir Heuristic
	3.5 The Hidden Bits Model
	3.6 Boneh-Goh-Nissim Encryption
	3.7 NIZK Proof for Circuit Satisfiability
	3.8 Succinct Non-interactive Arguments and Applications
	3.9 Efficiency

	References

	JavaScript Sandboxing: Isolating and Restricting Client-Side JavaScript
	1 Introduction
	2 Background -- Setting the Context
	2.1 Browser Architecture
	2.2 JavaScript
	2.3 JavaScript APIs
	2.4 Web Applications
	2.5 The Same-Origin Policy
	2.6 The Typical Web Scenario and Attacker Model
	2.7 Third-Party Script Inclusion
	2.8 JavaScript Sandbox
	2.9 Conclusion

	3 JavaScript Subsets and Rewriting
	3.1 BrowserShield
	3.2 ADsafe
	3.3 Facebook JavaScript
	3.4 Caja
	3.5 Discussion

	4 JavaScript Sandboxing Using Browser Modifications
	4.1 Browser-Enforced Embedded Policies (BEEP)
	4.2 ConScript
	4.3 WebJail
	4.4 Contego
	4.5 AdSentry
	4.6 Discussion

	5 JavaScript Sandboxing Without Browser Modifications
	5.1 Self-Protecting JavaScript
	5.2 AdJail
	5.3 Object Views
	5.4 JSand
	5.5 TreeHouse
	5.6 SafeScript
	5.7 Discussion

	6 In Practice -- Application Examples
	6.1 Facebook JavaScript
	6.2 Caja

	7 Conclusion
	References

	From Zoos to Safaris---From Closed-World Enforcement to Open-World Assessment of Privacy
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Related Work
	3 Privacy in Open Settings
	3.1 Example
	3.2 Challenges of Privacy in Open Settings
	3.3 Inadequacy of Existing Models

	4 A Framework for Privacy in Open Settings
	4.1 Modeling Information in Open Settings
	4.2 Adversary Model
	4.3 Inapplicability of Statistical Privacy Notions
	4.4 User-Specified Privacy Requirements
	4.5 Sensitive Information

	5 Linkability in Open Settings
	5.1 Model Instantiation for Linkability
	5.2 Anonymity
	5.3 Entity Matching
	5.4 Identity Disclosure
	5.5 Limitations

	6 Linkability Evaluation on Reddit
	6.1 Goals
	6.2 Data-Collection
	6.3 Model Instantiation
	6.4 Data-Processing
	6.5 Evaluation and Discussion

	7 Assessing the Effectiveness of Countermeasures Against Authorship Recognition
	7.1 Theoretical Foundation
	7.2 Experimental SetUp
	7.3 Methodology

	8 Evaluation of Countermeasures
	8.1 Observations
	8.2 Discussion

	9 Conclusion and Future Work
	A Countermeasure Gain
	References

	Distributed Authorization in Vanadium
	1 Introduction
	2 Desired Features
	3 Background
	4 Vanadium Authorization Model
	4.1 Principals and Blessings
	4.2 Delegation and Caveats
	4.3 Third-Party Caveats
	4.4 Blessing Roots
	4.5 Authentication and Authorization
	4.6 Access Control Policies
	4.7 Life of an RPC
	4.8 Practical Considerations

	5 Application: Physical Lock
	5.1 Authorization Details
	5.2 Discussion

	6 Conclusion
	References

	Author Index

