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Abstract Recently, deep learning has demonstrated great success in computer vision
with the capability to learn powerful image features from a large training set. How-
ever, most of the published work has been confined to solving 2D problems, with a
few limited exceptions that treated the 3D space as a composition of 2D orthogonal
planes. The challenge of 3D deep learning is due to a much larger input vector, com-
pared to 2D, which dramatically increases the computation time and the chance of
over-fitting, especially when combined with limited training samples (hundreds to
thousands), typical for medical imaging applications. To address this challenge, we
propose an efficient and robust deep learning algorithm capable of full 3D detection
in volumetric data. A two-step approach is exploited for efficient detection. A shallow
network (with one hidden layer) is used for the initial testing of all voxels to obtain
a small number of promising candidates, followed by more accurate classification
with a deep network. In addition, we propose two approaches, i.e., separable filter
decomposition and network sparsification, to speed up the evaluation of a network.
To mitigate the over-fitting issue, thereby increasing detection robustness, we extract
small 3D patches from a multi-resolution image pyramid. The deeply learned image
features are further combined with Haar wavelet-like features to increase the detec-
tion accuracy. The proposed method has been quantitatively evaluated for carotid
artery bifurcation detection on a head-neck CT dataset from 455 patients. Compared
to the state of the art, the mean error is reduced by more than half, from 5.97mm to
2.64mm, with a detection speed of less than 1s/volume.

4.1 Introduction

An anatomical landmark is a biologically meaningful point on an organism, which
can be easily distinguished from surrounding tissues. Normally, it is consistently
present across different instances of the same organism so that it can be used to
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establish anatomical correspondence within the population. There are many appli-
cations of automatic anatomical landmark detection in medical image analysis. For
example, landmarks can be used to align an input volume to a canonical plane on
which physicians routinely perform diagnosis and quantification [1, 2]. A detected
vascular landmark provides a seed point for automatic vessel centerline extraction
and lumen segmentation [3, 4]. For a nonrigid object with large variation, a holistic
detection may not be robust. Aggregation of the detection results of multiple land-
marks on the object may provide a more robust solution [5]. In some applications,
the landmarks themselves provide important measurements for disease quantifica-
tion and surgical planning (e.g., the distance from coronary ostia to the aortic hinge
plane is a critical indicator whether the patient is a good candidate for transcatheter
aortic valve replacement [6]).

Various landmark detection methods have been proposed in the literature. Most
of the state-of-the-art algorithms [1–6] apply machine learning (e.g., support vector
machines, random forests, or boosting algorithms) on a set of handcrafted image
features (e.g., SIFT features or Haar wavelet-like features). However, in practice, we
found some landmark detection problems (e.g., carotid artery bifurcation landmarks
in this work) are still too challenging to be solved with the current technology.

Deep learning [7] has demonstrated great success in computer vision with the
capability to learn powerful image features (either supervised or unsupervised) from
a large training set. Recently, deep learning has been applied in many medical image
analysis problems, including body region recognition [8], cell detection [9], lymph
node detection [10], organ detection/segmentation [11, 12], cross-modality regis-
tration [13], and 2D/3D registration [14]. On all these applications, deep learning
outperforms the state of the art.

However, several challenges are still present in applying deep learning to 3D
landmark detection. Normally, the input to a neural network classifier is an image
patch, which increases dramatically in size from 2D to 3D. For example, a patch of
32 × 32 pixels generates an input of 1024 dimensions to the classifier. However, a
32 × 32 × 323Dpatch contains 32,768voxels. Such abig input feature vector creates
several challenges. First, the computation time of a deep neural network is often too
slow for a real clinical application. The most widely used and robust approach for
object detection is the sliding window based approach, in which the trained classifier
is tested on each voxel in the volume. Evaluating a deep network on a large volume
may take several minutes. Second, as a rule of thumb, a network with a bigger
input vector requires more training data. With enough training samples (e.g., over 10
million in ImageNet), deep learning has demonstrated impressive performance gain
over other methods. However, the medical imaging community is often struggling
with limited training samples (often in hundreds or thousands) due to the difficulty to
generate and share images. Several approaches can tackle or at leastmitigate the issue
of limited training samples. One approach is to reduce the patch size. For example, if
we reduce the patch size from 32 × 32 × 32 voxels to 16 × 16 × 16, we can reduce
the input dimension by a factor of eight. However, a small patch may not contain
enough information for classification. Alternatively, instead of sampling a 3D patch,
we can sample on three orthogonal planes [15] or even a 2D patch with a random
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Fig. 4.1 Training procedure of the proposed deep network based 3D landmark detection method

orientation [10]. Although they can effectively reduce the input dimension, there is
a concern on how much 3D information is contained in 2D planes.

In this work we tackle the above challenges in the application of deep learning
for 3D anatomical structure detection (focusing on landmarks). Our approach sig-
nificantly accelerates the detection speed, resulting in an efficient method that can
detect a landmark in less than one second. We apply a two-stage classification strat-
egy (as shown in Fig. 4.1). In the first stage, we train a shallow network with only
one small hidden layer (e.g., with 64 hidden nodes). This network is applied to test
all voxels in the volume in a sliding window process to generate 2000 candidates
for the second-stage classification. The second network is much bigger with three
hidden layers (each has 2000 nodes) to obtain more discriminative power. Such a
cascaded classification approach has been widely used in object detection to improve
detection efficiency and robustness.

In this work we propose two techniques to further accelerate the detection speed:
separable filter approximation for the first-stage classifier and network sparsification
for the second-stage classifier. Theweights of a node in the first hidden layer are often
treated as a filter (3D in this case). The response of the first hidden layer over the
volume can be calculated as a convolution with the filter. Here, a neighboring patch
is shifted by only one voxel; however, the response needs to be recalculated from
scratch. In this work we approximate the weights as separable filters using tensor
decomposition. Therefore, a direct 3D convolution is decomposed as three one-
dimensional convolutions along the x , y, and z axis, respectively. Previously, such
approximation has been exploited for 2D classification problems [16, 17]. However,
in 3D, the trained filters are more difficult to be approximated as separable filters. We
propose a new training cost function to enforce smoothness of the filters so that they
can be approximated with high accuracy. The second big network only applies on a
small number of candidates that have little correlation. Separable filter approximation
does not help to accelerate classification. However, many weights in a big network
are close to zero. We propose to add L1-norm regularization to the cost function to
drive majority of the weights (e.g., 90%) to zero, resulting in a sparse network with
increased classification efficiency without deteriorating accuracy.

The power of deep learning is on the automatic learning of a hierarchical image
representation (i.e., image features). Instead of using the trained network as a clas-
sifier, we can use the responses at each layer (including the input layer, all hidden
layers, and the output layer) as features and feed them into other state-of-the-art clas-
sifiers (e.g., boosting). After years of feature engineering, some handcrafted features
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have considerable discriminative power for some applications and they may be com-
plimentary to deeply learned features. In this work we demonstrate that combining
deeply learned features and Haar wavelet-like features, we can reduce the detection
failures.

The remainder of this chapter is organized as follows. In Sect. 4.2 we present a
new method to train a shallow network with separable filters, which are efficient in a
slidingwindowbased detection scheme to prune the landmark candidates. Section4.3
describes a sparse network that can effectively accelerate the evaluation of a deep
network, which is used to further test the preserved landmark candidates. We present
a feature fusion approach in Sect. 4.4 to combine Haar wavelet-like features and
deeply learned features to improve the landmark detection accuracy. Experiments on
a large dataset in Sect. 4.5 demonstrate the robustness and efficiency of the proposed
method. This chapter concludes with Sect. 4.6. Please note, an early version of this
work was published in [18].

4.2 Training Shallow Network with Separable Filters

A fully connected multilayer perceptron (MLP) neural network is a layered architec-
ture. Suppose the input is a n0-dimensional vector [X0

1, X
0
2, . . . , X

0
n0 ]. The response

of a node X1
j of the first hidden layer is

X1
j = g

(
n0∑
i=1

W 0
i, j X

0
i + b0j

)
, (4.1)

for j = 1, 2, . . . , n1 (n1 is the number of nodes in the first hidden layer). Here, W 0
i, j

is a weight; b0j is a bias term; And, g(.) is a nonlinear function, which can be sigmoid,
hypo-tangent, restricted linear unit (ReLU), or other forms. In this work we use the
sigmoid function

g(x) = 1

1 + e−x
, (4.2)

which is themost popular nonlinear function. If we denoteX0 = [X0
1, . . . , X

0
n0 ]T and

W0
j = [W 0

1, j , . . . ,W
0
n0, j

]T , Eq. (4.1) can be rewritten as X1
j = g

(
(W0

j )
TX0 + b0j

)
.

Multiple layers can be stacked together using Eq. (4.1) as a building block. For a
binary classification problem as this work, the output of the network can be a single
node X̂ . Suppose there are L hidden layers, the output of the neural network is
X̂ = g

(
(WL)TXL + bL

)
. During network training, we require the output to match

the class label Y (with 1 for the positive class and 0 for negative) by minimizing the
squared error E = ||Y − X̂ ||2.

In object detection using a sliding window based approach, for each position
hypothesis, we crop an image patch (with a predefined size) centered at the position
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hypothesis.We then serialize the patch intensities into a vector as the input to calculate
response X̂ . After testing a patch, we shift the patch by one voxel (e.g., to the right)
and repeat the above process again. Such a naive implementation is time consuming.
Coming back to Eq. (4.1), we can treat the weights of a node in the first hidden
layer as a filter. The first term of the response is a dot-product of the filter and
the image patch intensities. Shifting the patch over the whole volume is equivalent
to convolution using the filter. Therefore, alternatively, we can perform convolution
using each filterW0

j for j = 1, 2, . . . , n1 and cache the responsemaps. During object
detection, we can use the cached maps to retrieve the response of the first hidden
layer.

Although such an alternative approach does not save computation time, it gives
us a hint for speedup. With a bit abuse of symbols, supposeWx,y,z is a 3D filter with
size nx × ny × nz . Let us further assume that Wx,y,z is separable, which means we
can find three one-dimensional vectors, Wx ,Wy,Wz , such that

Wx,y,z(i, j, k) = Wx (i).Wy( j).Wz(k) (4.3)

for any i ∈ [1, nx ], j ∈ [1, ny], and k ∈ [1, nz]. The convolution of the volume with
Wx,y,z is equivalent to three sequential convolutions with Wx , Wy , and Wz along
its corresponding axis. Sequential convolution with one-dimensional filters is much
more efficient than direct convolution with a 3D filter, especially for a large filter.
However, in reality, Eq. (4.3) is just an approximation of filters learned by a neural
network and such a rank-1 approximation is poor in general. In this work we search
for S sets of separable filters to approximate the original filter as

Wx,y,z ≈
S∑

s=1

Ws
x .W

s
y .W

s
z . (4.4)

Please note, with a sufficient number of separable filters (e.g., S ≥ min{nx , ny, nz}),
we can reconstruct the original filter perfectly.

To achieve detection efficiency, we need to cache n1 × S filtered response maps.
If the input volume is big (the size of a typical CT scan in our dataset is about
300 MB) and n1 is relatively large (e.g., 64 or more), the cached response maps
consume a lot of memory. Fortunately, the learned filters W0

1, . . . ,W
0
n1 often have

strong correlation (i.e., a filter can be reconstructed by a linear combination of other
filters). We do not need to maintain a different filter bank for eachW0

i . The separable
filters in reconstruction can be drawn from the same bank,

W0
i ≈

S∑
s=1

ci,s .Ws
x .W

s
y .W

s
z . (4.5)
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Here, ci,s is the combination coefficient,which is specific for eachfilterW0
i . However,

Ws
x , W

s
y , and Ws

z are shared by all filters. Equation (4.5) is a rank-S decomposition
of a 4D tensor [W0

1,W
0
2, . . . ,W

0
n1 ], which can be solved using [19].

Using 4D tensor decomposition, we only need to convolve the volume S times
(instead of n1.S times using 3D tensor decomposition) and cache S response maps.
Suppose the input volume has Nx × Ny × Nz voxels. For each voxel, we need to do
nxnynz multiplications using the original sliding window based approach. To calcu-
late the response of a hidden layer with n1 nodes, the total number of multiplications
is n1nxnynzNx NyNz . Using the proposed approach, to perform convolution with S
set of separable filters, we need do S(nx + ny + nz)Nx NyNz multiplications. To cal-
culate the response of n1 hidden layer nodes, we need to combine the S responses
using Eq. (4.5), resulting in n1SNx NyNz multiplications. The total number of multi-
plications is S(nx + ny + nz + n1)Nx NyNz . Suppose S = 32, n1 = 64, the speedup
is 62 times for a 15 × 15 × 15 patch.

To achieve significant speedup and save memory footprint, we need to reduce
S as much as possible. However, we found, with a small S (e.g., 32), it was more
difficult to approximate 3D filters than 2D filters [16, 17]. Nonlinear functions g(.)
are exploited in neural networks to bound the response to a certain range (e.g., [0, 1]
using the sigmoid function). Many nodes are saturated (with an output close to 0
or 1) and once a node is saturated, its response is not sensitive to the change of
the weights. Therefore, a weight can take an extremely large value, resulting in a
non-smooth filter. Here, we propose to modify the objective function to encourage
the network to generate smooth filters

E = ||Y − X̂ ||2 + α

n1∑
i=1

||W0
i − W0

i ||2. (4.6)

Here,W0
i is the mean value of the weights of filterW0

i . So, the second termmeasures
the variance of the filter weights. Parameter α (often takes a small value, e.g., 0.001)
keeps a balance between two terms in the objective function. The proposed smooth
regularization term is different to the widely used L2-norm regularization, which is
as follows

E = ||Y − X̂ ||2 + α

L∑
j=1

n j∑
i=1

||W0
i ||2. (4.7)

The L2-norm regularization applies to all weights, while our regularization applies
only to the first hidden layer. Furthermore, L2-norm regularization encourages small
weights, therefore shrinks the capacity of the network; while our regularization
encourages small variance of the weights.

The training of the initial shallow network detector is as follows (as shown in the
left dashed box of Fig. 4.1). (1) Train a network using Eq. (4.6). (2) Approximate the
learned filters using a filter bank with S (S = 32 in our experiments) sets of separable
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filters to minimize the error of Eq. (4.5). The above process may be iterated a few
times (e.g., three times). In the first iteration, the network weights and filter bank are
initialized with random values. However, in the following iterations, they are both
initialized with the optimal values from the previous iteration.

Previously, separable filter approximation has been exploited for 2D classification
problems [16, 17]. We found 3D filters were more difficult to be approximated
well with a small filter bank; therefore, we propose a new objective function to
encourage the network to generate smoothfilters for higher separability. Furthermore,
unlike [17], we also iteratively retrain the network to compensate the loss of accuracy
due to approximation.

4.3 Training Sparse Deep Network

Using a shallow network, we can efficiently test all voxels in the volume and assign
a detection score to each voxel. After that, we preserve 2000 candidates with the
largest detection scores. The number of preserved candidates is tuned to have a
high probability to include the correct detection (e.g., hypotheses within one-voxel
distance to the ground truth). However, most of the preserved candidates are still
false positives. In the next step, we train a deep network to further reduce the false
positives. The classification problem is now much tougher and a shallow network
does not work well. In this work we use a big network with three hidden layers, each
with 2000 nodes.

Even though we only need to classify a small number of candidates, the com-
putation may still take some time since the network is now much bigger. Since
the preserved candidates are often scattered over the whole volume, separable filter
decomposition as used in the initial detection stage does not help to accelerate the
classification. After checking the values of the learned weights of this deep network,
we found most of weights were very small, close to zero. That means many con-
nections in the network can be removed without sacrificing classification accuracy.
Here, we apply L1-norm regularization to enforce sparse connection

E = ||Y − X̂ ||2 + β

L∑
j=1

n j∑
i=1

||W j
i ||. (4.8)

Parameterβ can be used to tune the number of zeroweights. The higherβ is, themore
weights converge to zero.With a sufficient number of training epochs, part of weights
converges exactly to zero. In practice, to speed up the training, we periodically check
the magnitude of weights. The weights with a magnitude smaller than a threshold are
set to zero and the network is refined again. In our experiments, we find that 90% of
the weights can be set to zero after training, without deteriorating the classification
accuracy. Thus, we can speed up the classification by roughly ten times.
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The proposed acceleration technologies can be applied to different neural network
architectures, e.g., amultilayer perceptron (MLP) and a convolutional neural network
(CNN). In this workwe use theMLP.While the shallow network is trainedwith back-
propagation to directlyminimize the objective function in Eq. (4.6), the deep network
is pretrained using the denoising auto-encoder criterion [7] and then fine-tuned to
minimize Eq. (4.8). The right dashed box of Fig. 4.1 shows the training procedure of
the sparse deep network.

4.4 Robust Detection by Combining Multiple Features

To train a robust neural network based landmark detector on limited training samples,
we have to control the patch size. The optimal patch sizewas searched andwe found a
size of 15 × 15 × 15 achieved agood trade-off betweendetection speed and accuracy.
However, a small patch has a limited field-of-view, thereby may not capture enough
information for classification. In this work we extract patches on an image pyramid
with multiple resolutions. A small patch in a low-resolution volume has a much
larger field-of-view at the original resolution. To be specific, we build an image
pyramid with three resolutions (1mm, 2mm, and 4-mm resolution, respectively).
The intensities of patches from multiple resolutions are concatenated into a long
vector to feed the network. As demonstrated in Sect. 4.5, a multi-resolution patch
can improve the landmark detection accuracy.

Deep learning automatically learns a hierarchical representation of the input data.
Representation at different hierarchical levels may provide complementary infor-
mation for classification. Furthermore, through years’ of feature engineering, some
handcrafted image features can achieve quite reasonable performance on a certain
task. Combining effective handcrafted image features with deeply learned hierarchi-
cal features may achieve even better performance than using them separately.

In this work we propose to use probabilistic boosting-tree (PBT) [20] to combine
all features. A PBT is a combination of a decision tree and AdaBoost, by replacing a
weak classification node in the decision tree with a strong AdaBoost classifier [21].
Our feature pool is composed of two types of features: Haar wavelet-like features
(h1, h2, . . . , hm) and neural network features r j

i (where r j
i is the response of node i

at layer j). If j = 0, r0i is an input node, representing the image intensity of a voxel
in the patch. The last neural network feature is actually the response of the output
node, which is the classification score by the network. This feature is the strongest
feature and it is always the first selected feature by the AdaBoost algorithm.

Given 2000 landmark candidates generated by the first detection stage (Sect. 4.2),
we evaluate them using the bootstrapped classifier presented in this section. We
preserve 250 candidates with the highest classification score and then aggregate
them into a single detection as follows. For each candidate we define a neighborhood,
which is a 8 × 8 × 8mm3 box centered on the candidate. We calculate the total vote
of each candidate as the summation of the classification score of all neighboring
candidates. (The score of the current candidate is also counted since it is neighboring
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to itself.) The candidate with the largest vote is picked and the final landmark position
is the weighted average (according to the classification score) of all candidates in its
neighborhood.

4.5 Experiments

In this section we validate the proposed method on carotid artery bifurcation detec-
tion. The carotid artery is themain vessel supplying oxygenated blood to the head and
neck. The common carotid artery originates from the aortic arch and runs up toward
the head before bifurcating to the external carotid artery (supplying blood to face)
and internal carotid artery (supplying blood to brain). Examination of the carotid
artery helps to assess the stroke risk of a patient. Automatic detection of this bifurca-
tion landmark provides a seed point for centerline tracing and lumen segmentation,
thereby making automatic examination possible. However, as shown in Fig. 4.2a, the
internal/external carotid arteries further bifurcate to many branches and there are
other vessels (e.g., vertebral arteries and jugular veins) present nearby, which may
cause confusion to an automatic detection algorithm.

We collected a head-neck CT dataset from 455 patients. Each image slice has
512 × 512 pixels and a volume contains a variable number of slices (from 46 to
1181 slices). The volume resolution varies too, with a typical voxel size of 0.46 ×
0.46 × 0.50mm3. To achieve a consistent resolution, we resample all input volumes
to 1.0mm.A fourfold cross validation is performed to evaluate the detection accuracy
and determine the hyper parameters, e.g., the network size, smoothness constraint
α in Eq. (4.6), sparsity constraint β in Eq. (4.8). There are two carotid arteries (left
versus right) as shown in Fig. 4.2. Here, we report the bifurcation detection accuracy
of the right carotid artery (as shown in Table4.1) with different approaches. The
detection accuracy of the left carotid artery bifurcation is similar.

The rough location of the carotid artery bifurcation can be predicted by other
landmarks using a landmark network [22]. However, due to the challenge of the
task, the prediction is not always accurate. We have to crop a box as large as 50 ×
50 × 100mm3 around the predicted position to make sure the correct position of
the carotid artery bifurcation is covered. To have a fair comparison with [4], in
the following experiments, the landmark detection is constrained to this box for all
compared methods.

For each approach reported in Table4.1, we follow a two-step process by apply-
ing the first detector to reduce the number of candidates to 2000, followed by a
bootstrapped detection to further reduce the number of candidates to 250. The final
detection is picked from the candidate with the largest vote from other candidates.

The value of a CT voxel represents the attenuation coefficient of the underlying
tissue to X-ray, which is often represented as a Hounsfield unit. The Hounsfield unit
has a wide range from −1000 for air to 3000 for bones/metals and it is normally
represented with a 12-bit precision. A carotid artery filled with contrasted agent
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Fig. 4.2 Carotid artery bifurcation landmark detection in head-neck CT scans. a 3D visualization
of carotid arteries with white arrows pointing to the left and right bifurcations (image courtesy of
http://blog.remakehealth.com/).b–dAfewexamples of the right carotid artery bifurcation detection
results with the ground truth labeled as blue dots and detected landmarks in red

Table 4.1 Quantitative evaluation of carotid artery bifurcation detection accuracy on 455 CT scans
based on a fourfold cross validation. The errors are reported in millimeters

Mean Std Median 80th Percentile

Haar + PBT 5.97 6.99 3.64 7.84

Neural network (Single resolution) 4.13 9.39 1.24 2.35

Neural network (Multi-resolution) 3.69 6.71 1.62 3.25

Network features + PBT 3.54 8.40 1.25 2.31

Haar + network + PBT 2.64 4.98 1.21 2.39

http://blog.remakehealth.com/
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occupies only a small portion of the full Hounsfield unit range. Standard normaliza-
tion methods of neural network training (e.g., linear normalization to [0, 1] using
the minimum and maximum value of the input, or normalizing to zero-mean and
unit-variance) do not work well for this application. In this work we use a window
based normalization. Intensities inside the window of [−24, 576] Hounsfield unit
is linearly transformed to [0, 1]; Intensities less than −24 are truncated to 0; And,
intensities higher than 576 are truncated to 1.

Previously, Liu et al. [4] used Haar wavelet-like features + boosting to detect
vascular landmarks and achieved promising results. Applying this approach on our
dataset, we achieve a mean error of 5.97mm and the large mean error is caused by
too many detection outliers. The neural network based approach can significantly
improve the detection accuracy with a mean error of 4.13mm using a 15 × 15 × 15
patch extracted from a single resolution (1mm). Using patches extracted from an
image pyramid with three resolutions, we can further reduce the mean detection
error to 3.69mm. If we combine features from all layers of the network using the
PBT, we achieve slightly better mean accuracy of 3.54mm. Combining the deeply
learned features and Haar wavelet-like features, we achieve the best detection accu-
racy with a mean error of 2.64mm. We suspect that the improvement comes from
the complementary information of the Haar wavelet-like features and neural network
features. Figure4.2 shows the detection results on a few typical datasets.

The proposed method is computationally efficient. Using the speedup technolo-
gies presented in Sects. 4.2 and 4.3, it takes 0.92 s to detect a landmark on a computer
with a six-core 2.6GHzCPU (without using GPU). For comparison, the computation
time increases to 18.0 s if we turn off the proposed acceleration technologies (namely,
separable filter approximation and network sparsification). The whole training pro-
cedure takes about 6h and the sparse deep network consumes majority of the training
time.

4.6 Conclusions

In thisworkweproposed 3Ddeep learning for efficient and robust landmark detection
in volumetric data. We proposed two technologies to speed up the detection using
neural networks, namely, separable filter decomposition and network sparsification.
To improve the detection robustness,we exploit deeply learned image features trained
on a multi-resolution image pyramid. Furthermore, we use the boosting technology
to incorporate deeply learned hierarchical features and Haar wavelet-like features to
further improve the detection accuracy. The proposed method is generic and can be
retrained to detect other 3D landmarks or the center of organs.
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