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Abstract Accurate automatic detection and segmentation of abdominal organs from
CT images is important for quantitative and qualitative organ tissue analysis, detec-
tion of pathologies, surgical assistance as well as computer-aided diagnosis (CAD).
In general, the large variability of organ locations, the spatial interaction between
organs that appear similar in medical scans and orientation and size variations are
among the major challenges of organ segmentation. The pancreas poses these chal-
lenges in addition to its flexibility which allows for the shape of the tissue to vastly
change. In this chapter, we present a fully automated bottom-up approach for pan-
creas segmentation in abdominal computed tomography (CT) scans. The method is a
four-stage systembased on a hierarchical cascade of information propagation by clas-
sifying image patches at different resolutions and cascading (segments) superpixels.
System components consist of the following: (1) decomposing CT slice images as a
set of disjoint boundary-preserving superpixels; (2) computing pancreas class prob-
ability maps via dense patch labeling; (3) classifying superpixels by pooling both
intensity and probability features to form empirical statistics in cascaded random
forest frameworks; and (4) simple connectivity based post-processing. Evaluation of
the approach is conducted on a database of 80 manually segmented CT volumes in
sixfold cross validation. Our achieved results are comparable, or better to the state-
of-the-art methods (evaluated by “leave-one-patient-out”), with a Dice coefficient of
70.7% and Jaccard Index of 57.9%. The computational efficiency of the proposed
approach is drastically improved in the order of 6–8min, compared to other methods
of ≥10 hours per testing case.
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16.1 Introduction

Image segmentation is a key step in image understanding that aims at separating
objects within an image into classes, based on object characteristics and a prior
information about the surroundings. This also applies to medical image analysis
in various imaging modalities. The segmentation of abdominal organs such as the
spleen, liver, and pancreas in abdominal computed tomography (CT) scans can be
an important input to computer-aided diagnosis (CAD) systems, for quantitative and
qualitative analysis and for surgical assistance. In the instance of quantitative imaging
analysis of diabetic patients, a requisite critical step for the development of suchCAD
systems is segmentation specifically of the pancreas. Pancreas segmentation is also
a necessary input for subsequent methodologies for pancreatic cancer detection. The
literature is rich in methods of automatic segmentation on CT with high accuracies
(e.g., Dice coefficients >90%), of other organs such as the kidneys [1], lungs [2],
heart [3], and liver [4]. Yet, high accuracy in automatic segmentation of the pancreas
remains a challenge. The literature is not as abundant in either single- or multi-organ
segmentation setups.

The pancreas is a highly anatomically variable organ in terms of shape and size
and the location within the abdominal cavity shifts from patient to patient. The
boundary contrast can vary greatly by the amount of visceral fat in the proximity
of the pancreas. These factors and others make segmentation of the pancreas very
challenging. Figure16.1 depicts several manually segmented 3D volumes of various
patient pancreases to better illustrate the variations and challenges mentioned. From
the above observations, we argue that the automated pancreas segmentation problem

Fig. 16.1 3D manually segmented volumes of six pancreases from six patients. Notice the shape
and size variations
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should be treated differently, apart from the current organ segmentation literature
where statistical shape models are generally used.

In this chapter, a new fully bottom-up approach using image and (deep) patch-level
labeling confidences for pancreas segmentation is proposed using 80 single-phase
CT patient data volumes. The approach is motivated to improve the segmentation
accuracy of highly deformable organs, like the pancreas, by leveraging middle-level
representation of image segments. First, over segmentation of all 2D slices of an input
patient abdominal CT scan is obtained as a semi-structured representation known as
superpixels. Second, classifying superpixels into two semantic classes of pancreas
and non-pancreas is conducted as a multistage feature extraction and random forest
(RF) classification process, on the image and (deep) patch-level confidence maps,
pooled at the superpixel level. Two cascaded random forest superpixel classification
frameworks are presented and compared. Figure16.2 depicts the overall proposed
first framework. Figure16.9 illustrates the modularized flow charts of both frame-
works. Our experimental results are carried out in a sixfold cross-validation manner.

Fig. 16.2 Overall pancreas segmentation framework via dense image patch labeling
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Our system runs at about two orders of magnitude more computationally efficiently
to process a new testing case than the atlas registration based approaches [5–10]. The
obtained results are comparable, or better than the state-of-the-art methods (evalu-
ated by “leave-one-patient-out”), with a Dice coefficient of 70.7% and Jaccard Index
of 57.9%. Under the same sixfold cross validation, our bottom-up segmentation
method significantly outperforms its “multi-atlas registration and joint label fusion”
(MALF) counterpart (based on our implementation using [11, 12]): Dice coefficients
70.7 ± 13.0% versus 52.51 ± 20.84%. Additionally, another bottom-up supervoxel
based multi-organ segmentation without registration in 3D abdominal CT images
is also investigated [13] in a similar spirit, for demonstrating this methodological
synergy.

16.2 Previous Literature

The organ segmentation literature can be divided into two broad categories: top-
down and bottom-up approaches. In top-down approaches, a priori knowledge such
as atlas(es) and/or shape models of the organ are generated and incorporated into
the framework via learning based shape model fitting [3, 4] or volumetric image
registration [7, 8, 10]. For bottom-up approaches segmentation is performed by
local image similarity grouping and growing or pixel, superpixel/supervoxel-based
labeling [14, 15] since direct representations of the organ is not incorporated. Gener-
ally speaking, top-down methods are targeted for organs which can be modeled well
by statistical shape models [3] whereas bottom-up representations are more effective
for highly non-Gaussian shaped [14, 15] or pathological organs.

Previous literature on pancreas segmentation from CT images have been domi-
nated by top-down approaches which rely on atlas-based approaches or statistical
shape modeling or both [5–10].

• Shimizu et al. [5] utilize three-phase contrast enhanced CT data which are first reg-
istered together for a particular patient and then registered to a reference patient by
landmark-based deformable registration. The spatial support area of the abdom-
inal cavity is reduced by segmenting the liver, spleen, and three main vessels
associated with location interpretation of the pancreas (i.e., splenic, portal, and
superior mesenteric veins). Coarse-to-fine pancreas segmentation is performed by
using generated patient-specific probabilistic atlas guided segmentation followed
by intensity-based classification and post-processing. Validation of the approach
was conducted on 20 multi-phase datasets resulting in a Jaccard of 57.9%.

• Okada et al. [6] perform multi-organ segmentation by combining inter-organ
spatial interrelations with probabilistic atlases. The approach incorporated var-
ious a priori knowledge into the model that includes shape representations of
seven organs. Experimental validation was conducted on 28 abdominal contrast-
enhanced CT datasets obtaining an overall volume overlap of Dice index 46.6%
for the pancreas.
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• Chu et al. [8] present an automated multi-organ segmentation method based on
spatially divided probabilistic atlases. The algorithm consists of image-space divi-
sion and a multi-scale weighting scheme to deal with the large differences among
patients in organ shape and position in local areas. Their experimental results show
that the liver, spleen, pancreas, and kidneys can be segmented with Dice similarity
indices of 95.1, 91.4, 69.1, and 90.1%, respectively, using 100 annotated abdominal
CT volumes.

• Wolz et al. [7]may be considered the state-of-the-art result thus far for single-phase
pancreas segmentation. The approach is a multi-organ segmentation approach
that combines hierarchical weighted subject-specific atlas-based registration and
patch-based segmentation. Post-processing is in the form of optimized graph-cuts
with a learned intensity model. Their results in terms of a Dice overlap for the
pancreas is 69.6% on 150 patients and 58.2% on a subpopulation of 50 patients.

• RecentworkbyWanget al. [10] proposes a patch-based label propagation approach
that uses relative geodesic distances. The approach can be considered a start to
developing some bottom-up component for segmentation,where affine registration
between dataset and atlases were conducted followed by refinement using the
patch-based segmentation to reducemisregistrations and instances of high anatomy
variability. The approachwas evaluated on 100 abdominal CT scanswith an overall
Dice of 65.5% for the pancreas segmentation.

The default experimental setting in many of the atlas-based approaches [5–10]
is conducted in a “leave-one-patient-out” or “leave-one-out” (LOO) criterion for
up to N = 150 patients. In the clinical setting, leave-one-out based dense volume
registration (from all other N-1 patients as atlas templates) and label fusion process
may be computationally impractical (10+ hours per testing case). More importantly,
it does not scale up easily when large-scale datasets are present. On the other hand,
efficient cascade classifiers have been studied in both computer vision and medical
image analysis problems [16–18], with promising results.

16.3 Methods

In this section, the components of our overall algorithm flow (shown in Fig. 16.2)
are first addressed (Sects. 16.3.1 and 16.3.2). The method extensions on exploiting
sliding-window CNN-based dense image patch labeling and framework variations
are described in Sects. 16.3.3 and 16.3.4.

16.3.1 Boundary-Preserving Over-segmentation

Over-segmentation occurs when images (or more generally grid graphs) are seg-
mented or decomposed into smaller perceptually meaningful regions, “superpixels”.
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Within a superpixel, pixels carry similarities in color, texture, intensity, etc., and
generally align with image edges rather than rectangular patches (i.e., superpix-
els can be irregular in shape and size). In the computer vision literature, numerous
approaches have been proposed for superpixel segmentation [19–23]. Each approach
has its drawbacks and advantages but three main properties are generally examined
when deciding the appropriate method for an application as discussed in [20]: (1)
adherence to image boundaries; (2) computationally fast, ease of usage and memory
efficient; especially when computational complexity reduction is of importance and
(3) improvement on both quality and speed of the final segmentation.

Superpixelmethods fall under twomain broad categories: graph-based (e.g., SLIC
[19], entropy rate [21] and [22]) and gradient ascent methods (e.g., watershed [23]
and mean shift [24]). In terms of computational complexity, [22, 23] are relatively
fast in O(MlogM) complexity where M is the number of pixels or voxels in the
image or grid graph. Mean shift [24] and normalized cut [25] are O(M2), or O(M

3
2 ),

respectively. Simple linear iterative clustering (SLIC) [19] is both fast and memory
efficient. In our work, evaluation and comparison among three graph-based super-
pixel algorithms (i.e., SLIC [19, 20], efficient graph-based [22] andEntropy rate [21])
and one gradient ascent method (i.e., watershed [23]) are conducted, considering the
three criterion in [20]. Figure16.3 shows sample superpixel results using the SLIC
approach. The original CT slices and cropped zoomed-in pancreas superpixel regions
are demonstrated. The boundary recall, a typical measurement used in the literature,
to indicate how many “true” edge pixels of the ground-truth object segmentation
are within a pixel range from the superpixels (i.e., object-level edges are recalled
by superpixel boundaries). High boundary recall indicates minimal true edges were
neglected. Figure16.4 shows sample quantitative results. Based on Fig. 16.3, high
boundary recalls, within the distance ranges between 1 and 6 pixels from the semantic
pancreas ground-truth boundary annotation are obtained using the SLIC approach.
The watershed approach provided the least promising results for usage in the pan-
creas, due to the lack of conditions in the approach, to utilize boundary information in
conjunction with intensity information as implemented in graph-based approaches.
The superpixel number range per axial image is constrained ∈ [100, 200] to make a
good trade-off on superpixel dimensions or sizes.

The overlapping ratio r of the superpixel versus the ground-truth pancreas anno-
tation mask is defined as the percentage of pixels/voxels inside each superpixel
that are annotated as pancreas. By thresholding on r, say if r > τ the superpixel
will be labeled as pancreas and otherwise as background, we can obtain the pan-
creas segmentation results. When τ = 0.50, the achieved mean Dice coefficient is
81.2 ± 3.3%which is referred as the “Oracle” segmentation accuracy since comput-
ing r would require to know the ground-truth segmentation. This is also the upper
bound segmentation accuracy for our superpixel labeling or classification frame-
work. 81.2 ± 3.3% is significantly higher and numerically more stable (in standard
deviation) than previous state-of-the-art methods [5, 7–10], to provide considerable
improvement space of our work. Note that both the choices of SLIC and τ = 0.50
are calibrated using a subset of 20 scans. We find there is no need to evaluate differ-
ent superpixel generation methods/parameters and τs as “model selection” using the
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Fig. 16.3 Sample superpixel generation results from the SLIC method [19]. First column depicts
different slices from different patient scans with the ground-truth pancreas segmentation in yellow
(a, d and g). The second column depicts the over segmentation results with the pancreas contours
superimposed on the image (b, e and h). Last, (c) (f) and (i) show zoomed-in areas of the pancreas
superpixel results from b, e and h

Fig. 16.4 Superpixels
boundary recall results
evaluated on 20 patient scans
(Distance in millimeters).
The watershed method [23]
is shown in red, efficient
graph [22] in blue while the
SLIC [19] and the Entropy
rate [21] based methods are
depicted in cyan and green,
respectively. The red line
represents the 90% marker
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training folds in each round of sixfold cross validation. This superpixel calibration
procedure is generalized well to all our datasets. Voxel-level pancreas segmenta-
tion can be propagated from superpixel-level classification and further improved by
efficient narrow-band level-set based curve evolution [26], or the learned intensity
model based graph-cut [7].

16.3.2 Patch-Level Visual Feature Extraction
and Classification: PRF

Feature extraction is a form of object representation that aims at capturing the impor-
tant shape, texture, and other salient features that allow distinctions between the
desired object (i.e., pancreas) and the surrounding to be made. In this work a total of
46 patch-level image features to depict the pancreas and its surroundings are imple-
mented. The overall 3D abdominal body region per patient is first segmented and
identified using a standard table-removal procedurewhere all voxels outside the body
are removed.

(1) To describe the texture information, we adopt the Dense Scale-Invariant Fea-
ture transform (dSIFT) approach [27] which is derived from the SIFT descriptor
[28] with several technical extensions. The publicly available VLFeat implementa-
tion of the dSIFT is employed [27]. Figure16.5 depicts the process implemented
on a sample image slice. The descriptors are densely and uniformly extracted from

Fig. 16.5 Sample slice with center positions superimposed as green dots. The 25× 25 image patch
and corresponding D-SIFT descriptors are shown to the right of the original image
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image grids with inter-distances of 3 pixels. The patch center position are shown as
the green points superimposed on the original image slice. Once the positions are
known, the dSIFT is computed with the geometry of [2 × 2] bins and bin size of 6
pixels, which results in a 32 dimensional texture descriptor for each image patch.
The image patch size in this work is fixed at 25 × 25 which is a trade-off between
computational efficiency and description power. Empirical evaluation of the image
patch size is conducted for the size range of 15–35 pixels using a small subsam-
pled dataset for classification, as described later. Stable performance statistics are
observed and quantitative experimental results using the default patch size of 25 ×
25 pixels are reported.

(2)A second feature group using the voxel intensity histograms of the ground-truth
pancreas and the surrounding CT scans is built in the class-conditional probability
density function (PDF) space. A kernel density estimator (KDE1) is created using
the voxel intensities from a subset of randomly selected patient CT scans. The KDE
represents theCT intensity distributions of the positive

{
X+}

and negative class
{
X−}

of pancreas and non-pancreas voxels CT image information. All voxels containing
pancreas information are considered in the positive sample set, yet, since negative
voxels far outnumber the positive only 5% of the total number from each CT scan
(by random resampling) is considered. Let,

{
X+} = (

h+
1 , h+

2 , . . . , h+
n

)
and

{
X−} =(

h−
1 , h−

2 , . . . , h−
m

)
where h+

n and h−
m represent the intensity values for the positive

and negative pixel samples for all 26 patient CT scans over the entire abdominal CT
Hounsfield range. The kernel density estimators f +(X+) = 1

n

∑n
i=1 K

(
X+ − X+

i

)

and f −(X−) = 1
m

∑m
j=1 K

(
X− − X−

j

)
are computed where K() is assumed to be a

Gaussian kernel with optimal computed bandwidth, for this data, of 3.039. Kernel
sizes or bandwidthmay be selected automatically using 1DLikelihood-based search,
as provided by the used KDE toolkit. The normalized likelihood ratio is calculated
which becomes a probability value as a function of intensity in the range of H =
[0 : 1 : 4095]. Thus, the probability of being considered pancreas is formulated as
y+ = (f +(X+))

(f +(X+)+f −(X−))
. This function is converted as a precomputed lookup table over

H = [0 : 1 : 4095], which allows very efficient O(1) access time.
(3) Utilizing first the KDE probability response maps above and the superpixel

CT masks described in Sect. 16.3.1, as underlying supporting masks to each image
patch, the same KDE response statistics within the intersected subregions, P’ of P,
are extracted. The idea is that an image patch, P, may be divided into more than one
superpixel. This set of statistics is calculated with respect to the most representative
superpixel (that covers the patch center pixel). In this manner, object boundary-
preserving intensity features are obtained.

(4) The final two features for each axial slice (in the patient volumes) are the
normalized relative x-axis and y-axis positions ε[0, 1], computed at each image patch

1http://www.ics.uci.edu/~ihler/code/kde.html.

http://www.ics.uci.edu/~ihler/code/kde.html
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Fig. 16.6 Two sample slices from different patients are shown in a and e. The corresponding super-
pixels segmentation (b, f), KDE probability response maps (c, g) and RF patch-level probability
response maps (d, h) are shown. In c, g and d, h, red represents highest probabilities. In d, h the
purple color represents areas where probabilities are so small and can be deemed insignificant areas
of interest

center against the segmented body region (self-normalized2 to patients with different
body masses to some extent). Once all of the features are concatenated, a total
of 46 image patch-level features per superpixel are used to train a random forest
(RF) classifier Cp. Image patch labels are obtained by directly borrowing the class
information of their patch center pixels, based on the manual segmentation.

Sixfold cross validation for RF training is carried out. Response maps are com-
puted for the image patch-level classification and dense labeling. Figure16.6d, h
show sample illustrative slices from different patients. High probability correspond-
ing to the pancreas is represented by the red color regions (the background is blue).
The responsemaps (denoted asPRF) allow several observations to bemade. Themost
interesting is that the relative x and y positions as features allow for clearer spatial
separation of positive and negative regions, via internal RF feature thresholding tests
on them. The trained RF classifier is able to recognize the negative class patches
residing in the background, such as liver, vertebrae and muscle using spatial location
cues. In Fig. 16.6d, h implicit vertical and horizontal decision boundary lines can
be seen in comparison to Fig. 16.6c, g. This demonstrates the superior descriptive
and discriminative power of the feature descriptor on image patches (P and P’) than
single pixel intensities. Organs with similar CT values are significantly depressed in
the patch-level response maps.

In summary, SIFT and its variations, e.g., D-SIFT have shown to be informative,
especially through spatial pooling or packing [29]. A wide range of pixel-level cor-
relations and visual information per image patch is also captured by the rest of 14

2The axial reconstruction CT scans in our study have largely varying ranges or extends in the
z-axis. If some anatomical landmarks, such as the bottom plane of liver, the center of kidneys, can
be provided automatically, the anatomically normalized z-coordinate positions for superpixels can
be computed and used as an additional spatial feature for RF classification.
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Fig. 16.7 The proposedCNNmodel architecture is composed of five convolutional layers withmax
pooling and two fully connected layers with DropOut [30] connections. A final two-way softmax
layer gives a probability p(x) of “pancreas” and “non-pancreas” per data sample (or image patch).
The number and model parameters of convolutional filters and neural network connections for each
layer are as shown

defined features. Both good classification specificity and recall have been obtained in
cross validation using Random Forest implementation of 50 trees and the minimum
leaf size set as 150 (i.e., using the treebagger(•) function in Matlab).

16.3.3 Patch-Level Labeling via Deep Convolutional Neural
Network: PCNN

In this work, we use Convolutional Neural Network (CNN, or ConvNet) with a stan-
dard architecture for binary image patch classification. Five layers of convolutional
filters first compute, aggregate, and assemble the low level image features to more
complex ones, in a layer-by-layer fashion. Other CNN layers perform max-pooling
operations or consist of fully connected neural network layers. The CNN model we
adopted ends with a final two-way softmax classification layer for “pancreas” and
“non-pancreas” classes (refer to Fig. 16.7). The fully connected layers are constrained
using “DropOut” in order to avoid over-fitting in training where each neuron or node
has a probability of 0.5 to be reset with a 0-valued activation. DropOut is a method
that behaves as a co-adaption regularizer when training the CNN [30]. In testing,
no DropOut operation is needed. Modern GPU acceleration allows efficient training
and run-time testing of the deep CNN models. We use the publicly available code
base of cuda-convnet2.3

To extract dense image patch response maps, we use a straight-forward sliding-
window approach that extracts 2.5D image patches composed of axial, coronal, and
sagittal planes at any image positions (see Fig. 16.8). Deep CNN architecture can
encode large-scale image patches (even the whole 224 × 224 pixel images [31, 32])
very efficiently and no hard crafted image features are required any more. In this
work, the dimension of image patches for training CNN is 64 × 64 pixels which is

3https://code.google.com/p/cuda-convnet2.

https://code.google.com/p/cuda-convnet2
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Fig. 16.8 Axial CT slice of a manual (gold standard) segmentation of the pancreas. From Left to
Right, there are the ground-truth segmentation contours (in red); RF-based coarse segmentation
{SRF}; a 2.5D input image patch to CNN and the deep patch labeling result using CNN

significantly larger than 25 × 25 in Sect. 16.3.2. The larger spatial scale or context
is generally expected to achieve more accurate patch labeling quality. For efficiency
reasons, we extract patches every � voxels for CNN feedforward evaluation and then
apply nearest neighbor interpolation to estimate the values at skipped voxels. In our
empirical testing, simple nearest neighbor interpolation seems sufficient due to the
high quality of deep CNN probability predictions. Three examples of dense CNN
based image patch labeling are demonstrated in Fig. 16.10. We denote the CNN
model generated probability maps as PCNN .

The computational expense of deep CNN patch labeling per patch (in a sliding-
window manner) is still higher than Sect. 16.3.2. In practice, dense patch labeling by
PRF runs exhaustively at 3 pixel interval butPCNN are only evaluated at pixel locations
that pass the first stage of a cascaded random forest superpixel classification frame-
work. This process is detailed in Sect. 16.3.4 where C1

SP is operated at a high recall
(close to 100%) and low specificity mode to minimize the false negative rate (FNR)
as the initial layer of cascade. The other important reason for doing so is to largely
alleviate the training unbalance issue for PCNN in C3

SP. After this initial pruning, the
number ratio of non-pancreas versus pancreas superpixels changes from>100 to∼5.
The similar treatment is employed in our recent work [33] where all “Regional CNN”
(R-CNN) based algorithmic variations [34] for pancreas segmentation is performed
after a superpixel cascading.

16.3.4 Superpixel-Level Feature Extraction, Cascaded
Classification, and Pancreas Segmentation

In this section, we trained three different superpixel-level random forest classifiers of
CSP 1, CSP 2, and CSP 3. These three classifier components further formed two cas-
caded RF classification frameworks (F-1, F-2), as shown in Fig. 16.9. The superpixel
labels are inferred from the overlapping ratio r (defined in Sect. 16.3.1) between the
superpixel label map and the ground-truth pancreas mask. If r ≥ 0.5, the superpixel
is positive while if r ≤ 0.2, the superpixel is assigned as negative. For the rest of
superpixels that fall within 0.2 < r < 0.5 (a relatively very small portion/subset of
all superpixels), they are considered ambiguous and not assigned a label and as such
not used in training.
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Fig. 16.9 Theflowchart of input channels and component classifiers to form the overall frameworks
1 (F-1) and 2 (F-2). ICT indicates the original CT image channel; PRF represents the probability
response map by RF-based patch labeling in Sect. 16.3.2 and PCNN from deep CNN patch classi-
fication in Sect. 16.3.3, respectively. Superpixel level random forest classifier C1

SP is trained with
all positive and negative superpixels in ICT and PRF channels; C2

SP and C3
SP are learned using only

“hard negatives” and all positives, in the ICT
⋃

PRF or ICT
⋃

PCNN channels, respectively. Forming
C1
SP �→ C2

SP , or C
1
SP �→ C3

SP into two overall cascaded models results in frameworks F-1 and F-2

Training C1
SP utilizes both the original CT image slices (ICT in Fig. 16.9) and the

probability response maps (PRF) via the handcrafted feature based patch-level clas-
sification (i.e., Sect. 16.3.2). The 2D superpixel supporting maps (i.e., Sect. 16.3.1)
are used for feature pooling and extraction on a superpixel level. The CT pixel inten-
sity/attenuation numbers and the per-pixel pancreas class probability response values
(from dense patch labeling ofPPF orPCNN later) within each superpixel are treated as
two empirical unordered distributions. Thus our superpixel classification problem is
converted as modeling the difference between empirical distributions of positive and
negative classes. We compute (1) simple statistical features of the first–fourth order
statistics such as mean, std, skewness, kurtosis [35] and (2) histogram-type features
of eight percentiles (20, 30, . . . , 90%), per distribution in intensity or PRF channel,
respectively. Once concatenated, the resulted 24 features for each superpixel instance
is fed to train random forest classifiers.
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Due to the highly unbalanced quantities between foreground (pancreas) super-
pixels and background (the rest of CT volume) superpixels, a two-tiered cascade of
random forests is exploited to address this type of rare event detection problem [36].
In a cascaded classification, C1

SP once trained is applied exhaustively on scanning
all superpixels in an input CT volume. Based on the receiver operating characteris-
tic (ROC) curves for C1

SP, we can safely reject or prune 97% negative superpixels
while maintaining nearly ∼100% recall or sensitivity. The remained 3% negatives,
often referred as “hard negatives” [36], along with all positives are employed to train
the second C2

SP in the same feature space. Combining C1
SP and C2

SP is referred to as
Framework 1 (F-1) in the subsequent sections.

Similarly, we can train a random forest classifier C3
SP by replacing C2

SP’s feature
extraction dependency on the PRF probability response maps, with the deep CNN
patch classification maps of PCNN . The same 24 statistical moments and percentile
features per superpixel, from two information channels ICT and PCNN , are extracted
to train C3

SP. Note that the CNN model that produces PCNN is trained with the image
patches sampled from only “hard negative” and positive superpixels (aligned with
the second-tier RF classifiers C2

SP and C3
SP). For simplicity, PRF is only trained once

with all positive and negative image patches. This will be referred to as Framework
2 (F-2) in the subsequent sections. F-1 only use PRF whereas F-2 depends on both
PRF and PCNN (with a little extra computational cost).

The flow chart of frameworks 1 (F-1) and 2 (F-2) is illustrated in Fig. 16.9. The
two-level cascaded random forest classification hierarchy is found empirically to be
sufficient (although a deeper cascade is possible) and implemented to obtain F-1:C1

SP
andC2

SP, or F-2:C
1
SP andC

3
SP. The binary 3D pancreas volumetricmask is obtained by

stacking the binary superpixel labeling outcomes (after C2
SP in F-1 or C3

SP in F-2) for
each 2D axial slice, followed by 3D connected component analysis implemented in
the end. By assuming the overall pancreas connectivity of its 3D shape, the largest 3D
connected component is kept as the final segmentation. The binarization thresholds
of random forest classifiers in C2

SP and C3
SP are calibrated using data in the training

folds in sixfold cross validation, via a simple grid search. In [33], standalone Patch-
ConvNet dense probability maps (without any post-processing) are processed for
pancreas segmentation after using (F-1) as an initial cascade. The corresponding
pancreas segmentation performance is not as accuracy as (F-1) or (F-2).

16.4 Data and Experimental Results

16.4.1 Imaging Data

80 3D abdominal portal-venous contrast-enhanced CT scans (∼70s after intravenous
contrast injection) acquired from53male and 27 female subjects are used in our study
for evaluation. Seventeen of the subjects are from a kidney donor transplant list of
healthy patients that have abdominal CT scans prior to nephrectomy. The remaining
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63 patients are randomly selected by a radiologist from the Picture Archiving and
Communications System (PACS) on the population that has neither major abdominal
pathologies nor pancreatic cancer lesions.TheCTdatasets are obtained fromNational
Institutes of Health Clinical Center. Subjects range in the age from 18 to 76 years
with a mean age of 46.8 ± 16.7. Scan resolution has 512× 512 pixels (varying pixel
sizes) with slice thickness ranging from 1.5 to 2.5mmon Philips and SiemensMDCT
scanners. The tube voltage is 120kVp. Manual ground-truth segmentation masks of
the pancreas for all 80 cases are provided by a medical student and verified/modified
by a radiologist.

16.4.2 Experiments

Experimental results are assessed using sixfold cross validation, as described in
Sects. 16.3.2 and 16.3.4. Several metrics to evaluate the accuracy and robustness of
the methods are computed. The Dice similarity index which interprets the overlap
between two sample sets, SI = 2(|A ∩ B|)/(|A| + |B|) where A and B refer to the
algorithm output and manual ground-truth 3D pancreas segmentation, respectively.
The Jaccard index (JI) is another statistic used to compute similarities between the
segmentation result against the reference standard, JI = (|A ∩ B|)/(|A ∪ B|), called
“intersection over union” in the PASCAL VOC challenges [37, 38]. The volumetric
recall (i.e. sensitivity) and precision values are also reported (Fig. 16.10).

Next, the pancreas segmentation performance evaluation is conducted in respect
to the total number of patient scans used for the training and testing phases. Using
our framework F1 on 40, 60 and 80 (i.e., 50, 75, and 100% of the total 80 datasets)
patient scans, the Dice, JI, Precision, and Recall are computed under sixfold cross
validation. Table16.1 shows the computed results using image patch-level features
and multi-level classification (i.e., performing C1

SP and C
2
SP on I

CT and PRF) and how
performance changes with the additions of more patients data. Steady improvements
of∼4% in the Dice coefficient and∼5% for the Jaccard index are observed, from 40
to 60, and 60–80. Figure16.11 illustrates some sample final pancreas segmentation
results from the 80 patient execution for two different patients. The results are divided
into three categories: good, fair, and poor. The good category refers to the computed
Dice coefficient above 90% (of 15 patients), fair result as 50% ≤ Dice ≥ 90% (49
patients) and poor for Dice <50% (16 patients).

Then, we evaluate the difference of the proposed F-1 versus F-2 on 80 patients,
using the same four metrics (i.e., Dice, JI, precision, and recall). Table16.1 shows
the comparison results. The same sixfold cross-validation criterion is employed so
that direct comparisons can be made. From the table, it can be seen that about 2%
increase in the Dice coefficient was obtained by using F-2, but the main improve-
ment can be noticed in the minimum values (i.e., the lower performance bound) for
each of the metrics. Usage of deep patch labeling prevents the case of no pancreas
segmentation while keeping slightly higher mean precision and recall values. The
standard deviations also dropped nearly 50% comparing F-1 to F-2 (from 25.6 to
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Fig. 16.10 Three examples of deep CNN-based image patch labeling probability response maps
per row.Red color shows stronger pancreas class response and blue presents weaker response. From
Left, Center to Right are the original CT image, CT image with annotated pancreas contour in red,
and CNN response map overlaid CT image

Table 16.1 Examination of varying number of patient datasets using framework 1, in four metrics
of Dice, JI, precision, and recall. Mean, standard deviation, lower and upper performance ranges are
reported. Comparison of the presented framework 1 (F-1) versus framework 2 (F-2) in 80 patients
is also presented

N SI (%) JI (%) Precision (%) Recall (%)

F-1 40 60.4 ± 22.3 46.7 ± 22.8 55.6 ± 29.8 80.8 ± 21.2

F-1 60 64.9 ± 22.6 51.7 ± 22.6 70.3 ± 29.0 69.1 ± 25.7

F-1 80 68.8 ± 25.6 57.2 ± 25.4 71.5 ± 30.0 72.5 ± 27.2

F-2 80 70.7 ± 13.0 57.9 ± 13.6 71.6 ± 10.5 74.4 ± 15.1

13.0% in Dice; and 25.4–13.6% in JI). Note that F-1 has the similar standard devia-
tion ranges with the previous methods [5, 7–10] and F-2 significantly improves upon
all of them. From Figs. 16.1 and 16.6 it can be inferred that using the relative x-axis
and y-axis positions as features aided in reducing the overall false negative rates.
Based on Table16.1, we observe that F-2 provides consistent performance improve-
ments over F-1, which implies that CNN based dense patch labeling shows more
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Fig. 16.11 Pancreas segmentation results with the computed Dice coefficients for one good (Top
Row) and two fair (Middle, Bottom Rows) segmentation examples. Sample original CT slices for
both patients are shown in (Left Column) and the corresponding ground-truth manual segmentation
in (Middle Column) are in yellow. Final computed segmentation regions are shown in red in (Right
Column) with Dice coefficients for the volume above each slice. The zoomed-in areas of the slice
segmentation in the orange boxes are shown to the right of the image

promising results (Sect. 16.3.3) than the conventional had-crafted image features
and random forest patch classification alone (Sect. 16.3.2). Figure16.12 depicts an
example patient where F-2 Dice score is improved by 18.6% over F-1 (from 63.9 to
82.5%). In this particular case, the close proximity of the stomach and duodenum to
the pancreas head in particular proves challenging for F-1 without the CNN counter-
part to distinguish. The surface-to-surface overlays illustrates how both frameworks
compare to the ground-truth manual segmentation.

F-1 performs comparably to the state-of-the-art pancreas segmentation methods
while F-2 slightly but consistently outperformothers, even under sixfold cross valida-
tion (CV) instead of the “leave-one-patient-out” (LOO) used in [5–10]. Note that our
results are not directly or strictly comparable with [5–10] since different datasets are
used for evaluation. If under the same sixfold cross validation, our bottom-up segmen-
tation method can significantly outperform an implemented version of “multi-atlas
and label fusion” (MALF) based on [11, 12], on the pancreas segmentation dataset
studied in this work. Details are provided later in this section. Table16.2 reflects the
comparison of Dice, JI, precision and recall results, between our methods of F-1, F-2
and other approaches, in multi-atlas registration and label fusion based multi-organ
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Fig. 16.12 Examples of pancreas segmentation results using F-1 and F-2 with the computed Dice
coefficients for one patient. Original CT slices for the patient are shown in Column a and the
corresponding ground-truth manual segmentation in Column b are in yellow. Final computed
segmentation using F-2 and F-1 are shown in red in Columns c, d with Dice coefficients for the
volume above first slice. The zoomed-in areas of the slice segmentation in the orange boxes are
shown to the right of the images. Their surface-to-surface distancemap overlaid on the ground-truth
mask is demonstrated in Columns c, d Bottom and the corresponding ground-truth segmentation
mask in Column b Bottom are in red. The red color illustrates higher difference and green for
smaller distance

Table 16.2 Comparison of F-1 and F-2 in sixfold cross validation to the recent state-of-the-art
methods [5–10] in LOO and our implementation of “multi-atlas and label fusion” (MALF) using
publicly available C++ code bases [11, 12] under the same sixfold cross validation. The proposed
bottom-up pancreas segmentation methods of F-1 and F-2 significantly outperform their MALF
counterpart: 68.8 ± 25.6% (F-1), 70.7 ± 13.0% (F-2) versus 52.51 ± 20.84% in Dice coefficients
(mean±std)

Reference N SI (%) JI (%) Precision (%) Recall (%)

[5] 20 – 57.9 – –

[6] 28 – 46.6 – –

[7] 150 69.6 ± 16.7 55.5 ± 17.1 67.9 ± 18.2 74.1 ± 17.1

[7] 50 58.2 ± 20.0 43.5 ± 17.8 – –

[9] 100 65.5 49.6 70.7 62.9

[10] 100 65.5 ± 18.6 – – –

[8] 100 69.1 ± 15.3 54.6 – –

Framework 1 80 68.8 ± 25.6 57.2 ± 25.4 71.5 ± 30.0 72.5 ± 27.2

Framework 2 80 70.7 ± 13.0 57.9 ± 13.6 71.6 ± 10.5 74.4 ± 15.1

MALF 80 52.5 ± 20.8 38.1 ± 18.3 – –

segmentation [6–10] and multi-phase single organ (i.e., pancreas) segmentation [5].
Previous numerical results are found from the publications [5–10]. We choose the
best result out of different parameter configurations in [8].
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We exploit two variations of pancreas segmentation in a perspective of bottom-
up information propagation from image patches to (segments) superpixels. Both
frameworks are carried out in a sixfold cross-validation (CV) manner. Our protocol
is arguably harder than the “leave-one-out” (LOO) criterion in [5, 7–10] since less
patient datasets are used in training and more separate patient scans for testing. In
fact, [7] does demonstrate a notable performance drop from using 149 patients in
trainingversus 49patients underLOO, i.e., themeanDice coefficients decreased from
69.6 ± 16.7% to 58.2 ± 20.0%. This indicates that the multi-atlas fusion approaches
[5–10] may actually achieve lower segmentation accuracies than reported, if under
the sixfold cross-validation protocol. At 40 patients, our result using framework 1 is
2.2% better than the reported results by [7] using 50 patients (Dice coefficients of
60.4% vs. 58.2%). Comparing to the usage of N − 1 patient datasets directly in the
memory formulti-atlas registrationmethods, our learnedmodels aremore compactly
encoded into a series of patch- and superpixel-level random forest classifiers and
the CNN classifier for patch labeling. The computational efficiency also has been
drastically improved in the order of 6–8min per testing case (using a mix of Matlab
and C implementation, ∼50% time for superpixel generation), compared to others
requiring 10 hours or more. The segmentation framework (F-2) using deep patch
labeling confidences is also more numerically stable, with no complete failure case
and noticeable lower standard deviations.

Comparison to R-CNN and its variations [33, 39]: The conventional approach for
classifying superpixels or image segments in computer vision is “bag-of-words”
[40, 41]. “Bag-of-words” methods compute dense SIFT, HOG, and LBP image
descriptors, embed these descriptors through various feature encoding schemes and
pool the features inside each superpixel for classification. Bothmodel complexity and
computational expense [40, 41] are very high, comparing with ours (Sect. 16.3.4).
Recently, a “Regional CNN” (R-CNN) [34, 42] method is proposed and shows sub-
stantial performance gains in PASCAL VOC object detection and semantic segmen-
tation benchmarks [37], compared to previous “Bag-of-words” models. A simple
R-CNN implementation on pancreas segmentation has been explored in our previ-
ous work [39] which reports evidently worse result (Dice coefficient 62.9 ± 16.1%)
than our F-2 framework (Dice 70.7 ± 13.0%) that spatially pools the CNN patch
classification confidences per superpixel. Note that R-CNN [34, 42] is not an “end-
to-end” trainable deep learning system: R-CNNfirst uses the pretrained or fine-tuned
CNNs as image feature extractors for superpixels and then the computed deep image
features are classified by support vector machine models.

Our recent work [33] is an extended version of pancreas segmentation from the
region-based convolutional neural networks (R-CNN) for semantic image segmenta-
tion [37, 42]. In [33], (1) we exploit multi-level deep convolutional networks which
sample a set of bounding boxes covering each image superpixel at multiple spa-
tial scales in a zoom-out fashion [43]; (2) the best performing model in [33] is a
stacked R2-ConvNet which operates in the joint space of CT intensities and the
Patch-ConvNet dense probability maps, similar to F-2. With the above two method
extensions, [33] reports the Dice coefficient of 71.8 ± 10.7% in fourfold cross val-
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idation (which is slightly better than 70.7 ± 13.0% of F-2 using the same dataset).
However, [33] cannot be directly trained and tested on the raw CT scans as in this
work, due to the data high-imbalance issue between pancreas and non-pancreas
superpixels. There are overwhelmingly more negative instances than positive ones
if training the CNN models directly on all image superpixels from abdominal CT
scans. Therefore, given an input abdomen CT, an initial set of superpixel regions
is first generated or filtered by a coarse cascading process of operating the random
forests based pancreas segmentation [44] (similar to F-1), at low or conservative clas-
sification thresholds. Over 96% original volumetric abdominal CT scan space has
been rejected for the next step. For pancreas segmentation, these pre-labeled super-
pixels serve as regional candidates with high sensitivity (>97%) but low precision
(generally called Candidate Generation or CG process). The resulting initial DSC is
27% on average. Then [33] evaluates several variations of CNNs for segmentation
refinement (or pruning). F-2 performs comparably to the extended R-CNN version
for pancreas segmentation [33] and is able to run without using F-1 to generate
pre-selected superpixel candidates (which nevertheless is required by [33, 39]). As
discussed above, we would argue that these hybrid approaches combining or inte-
grating deep and non-deep learning components (like this work and [33, 34, 39,
42, 45]) will co-exist with the other fully “end-to-end” trainable CNN systems [46,
47] that may produce comparable or even inferior segmentation accuracy levels. For
example, [45] is a two-staged method of deep CNN image labeling followed by
fully connected Conditional Random Field (CRF) post-optimization [48], achieving
71.6% intersection-over-union value versus 62.2% in [47], on PASCAL VOC 2012
test set for semantic segmentation task [37].

Comparison toMALF (under sixfoldCV): For the ease of comparison to the previ-
ously well studied “multi-atlas and label fusion” (MALF) approaches, we implement
a MALF solution for pancreas segmentation using the publicly available C++ code
bases [11, 12]. The performance evaluation criterion is the same sixfoldpatient splits
for cross validation, not the “leave-one-patient-out” (LOO) in [5–10]. Specifically,
each atlas in the training folds is registered to every target CT image in the testing
fold, by the fast free-form deformation algorithm developed in NiftyReg [11]. Cubic
B-Splines are used to deform a source image to optimize an objective function based
on the normalizedmutual information and a bending energy term. Grid spacing along
three axes are set as 5mm. The weight of the bending energy term is 0.005 and the
normalized mutual information with 64 bins are used. The optimization is performed
in three coarse-to-fine levels and the maximal number of iterations per level is 300.
More details can be found in [11]. The registrations are used to warp the pancreas in
the atlas set (66, or 67 atlases) to the target image. Nearest neighbor interpolation is
employed since the labels are binary images. For each voxel in the target image, each
atlas provided an opinion about the label. The probability of pancreas at any voxel x
in the targetU was determined by L̂(x) = ∑n

i=1 ωi(x)Li(x)where Li(x) is the warped
i-th pancreas atlas and ωi(x) is a weight assigned to the i-th atlas at location x with∑n

i=1 ωi(x) = 1; and n is the number of atlases. In our sixfold cross validation exper-
iments n = 66 or 67. We adopt the joint label fusion algorithm [12], which estimates
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voting weights ωi(x) by simultaneously considering the pairwise atlas correlations
and local image appearance similarities at x. More details about how to capture the
probability that different atlases produce the same label error at location x via a
formulation of dependency matrix can be found in [12]. The final binary pancreas
segmentation label or map L(x) in target can be computed by thresholding on L̂(x).
The resulted MALF segmentation accuracy in Dice coefficients are 52.51 ± 20.84%
in the range of [0, 80.56%]. This pancreas segmentation accuracy is noticeably lower
than the mean Dice scores of 58.2–69.6% reported in [5–10] under the protocol of
“leave-one-patient-out” (LOO) for MALF methods. This observation may indicate
the performance deterioration of MALF from LOO (equivalent to 80-fold CV) to
sixfold CVwhich is consistent with the finding that the segmentation accuracy drops
from 69.6 to 58.2% when only 49 atlases are available instead of 149 [7].

Furthermore, we take about 33.5 days to fully conduct the sixfold MALF cross-
validation experiments using a Windows server; whereas the proposed bottom-up
superpixel cascade approach finishes in ∼9h for 80 cases (6.7min per patient scan
on average). In summary, using the same dataset and under sixfold cross validation,
our bottom-up segmentation method significantly outperforms its MALF counter-
part: 70.7 ± 13.0% versus 52.51 ± 20.84% inDice coefficients, while being approx-
imately 90 times faster. Converting our Matlab/C++ implementation into pure C++
should expect further 2–3 times speed-up.

16.5 Conclusion and Discussion

In this chapter, we present a fully-automated bottom-up approach for pancreas seg-
mentation in abdominal computed tomography (CT) scans. The proposed method
is based on a hierarchical cascade of information propagation by classifying image
patches at different resolutions and multi-channel feature information pooling at
(segments) superpixels. Our algorithm flow is a sequential process of decomposing
CT slice images as a set of disjoint boundary-preserving superpixels; computing
pancreas class probability maps via dense patch labeling; classifying superpixels via
aggregating both intensity and probability information to form image features that
are fed into the cascaded random forests; and enforcing a simple spatial connectivity
based post-processing. The dense image patch labeling can be realized by efficient
random forest classifier on handcrafted image histogram, location and texture fea-
tures; or deep convolutional neural network classification on larger image windows
(i.e., with more spatial contexts).

The main component of our method is to classify superpixels into either pancreas
or non-pancreas class. Cascaded random forest classifiers are formulated for this
task and performed on the pooled superpixel statistical features from intensity values
and supervisedly learned class probabilities (PRF and/or PCNN ). The learned class
probability maps (e.g., PRF and PCNN ) are treated as the supervised semantic class
image embeddings which can be implemented, via an open framework by various
methods, to learn the per-pixel class probability response.
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To overcome the low image boundary contrast issue in superpixel generation,
which is however common in medical imaging, we suggest that efficient supervised
edge learning techniques may be utilized to artificially “enhance” the strength of
semantic object-level boundary curves in 2D or surface in 3D. For example, one of
the future directions is to couple or integrate the structured random forests based
edge detection [49] into a new image segmentation framework (MCG: Multiscale
Combinatorial Grouping) [50] which permits a user-customized image gradient map.
This new approach may be capable to generate image superpixels that can preserve
even very weak semantic object boundaries well (in the image gradient sense) and
subsequently prevent segmentation leakage.

Finally, voxel-level pancreas segmentation masks can be propagated from the
stacked superpixel-level classifications and further improved by an efficient boundary
refinement post-processing, such as the narrow-band level-set based curve/surface
evolution [26], or the learned intensity model based graph-cut [7]. Further exami-
nation into the sub-connectivity processes for the pancreas segmentation framework
that considers the spatial relationships of splenic, portal, and superior mesenteric
veins with pancreas may be needed for future work.
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