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Abstract. Sparse subspace clustering is a well-known algorithm, and it
is widely used in many research field nowadays, and a lot effort has been
contributed to improve it. In this paper, we propose a novel approach
to obtain the coefficient matrix. Compared with traditional sparse sub-
space clustering (SSC) approaches, the key advantage of our approach
is that it provides a new perspective of the self-expressive property. We
call it rigidly self-expressive (RSE) property. This new formulation cap-
tures the rigidly self-expressive property of the data points in the same
subspace, and provides a new formulation for sparse subspace clustering.
Extensions to traditional SSC could also be cooperating with this new
formulation. We present a first-order algorithm to solve the nonconvex
optimization, and further prove that it converges to a KKT point of
the nonconvex problem under certain standard assumptions. Extensive
experiments on the Extended Yale B dataset, the USPS digital images
dataset, and the Columbia Object Image Library shows that for images
with up to 30 % missing pixels the clustering quality achieved by our
approach outperforms the original SSC.

Keywords: Sparse subspace clustering · Rigidly self-expressive ·
Optimization method

1 Introduction

Subspace clustering naturally arises with the emergence of high-dimensional data.
It refers to the problem of finding multiple low-dimensional subspaces underlying
a collection of data points sampled from a high-dimensional space and simulta-
neously partitioning these data into subspaces. Making use of the low intrinsic
dimension of input data and the assumption of data lying in a union of linear
or affine subspaces, subspace clustering assigns each data point to a subspace, in
which data points residing in the same subspace belong to the same cluster. Sub-
space clustering has been applied to various areas such as computer vision [11],
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signal processing [16], and bioinformatics [13]. In the past two decades, numer-
ous algorithms to subspace clustering have been proposed, including K-plane [3],
GPCA [24], Spectral Curvature Clustering [4], Low Rank Representation (LRR)
[15], Sparse Subspace Clustering (SSC) [7], etc. Among these algorithms, the
recent work of Sparse Subspace Clustering (SSC) has been recognized to enjoy
promising empirical performance.

In this paper, we propose a novel approach beyond SSC to obtain the coeffi-
cient matrix. Compared with the approaches mentioned above, the key advantage
of our approach is that it provides a new perspective of the self-expressive prop-
erty. We call it rigidly self-expressive (RSE) property. The model that we build
for subspace clustering incorporates rigidly self-expressive property to obtain the
coefficient matrix. This formulation generalizes traditional SSC, and captures
the expressive property of the data points in the same subspace. We present
a first-order algorithm to solve the nonconvex optimization, and further prove
that it converges to a KKT point of the nonconvex problem under certain stan-
dard assumptions. Extensive experiments on the Extended Yale B dataset [14],
the USPS digital images dataset [12], and the Columbia Object Image Library
(COIL20) [17] show that for images with up to 30 % missing pixels the clustering
quality achieved by our approach outperforms the original SSC.

2 Sparse Subspace Clustering

Assume there are N data points yi ∈ R
di , i = 1, · · · , N lying in the union of

the linear or affine subspaces Si, i = 1, ..., n, each of dimension di ≤ M for
i = 1, · · · , n. The observed data is reshaped as an matrix with each data point
as one column in it

Y = [y1 · · · yN ] = [Y1 · · · YN ]Γ (1)

where Y ∈ R
M×N with each data point as one column of the matrix and Γ ∈

R
N×N is an unknown permutation matrix. The subspace clustering focus on the

number of subspaces and the membership of each data point to its corresponding
subspace.

The SSC algorithm [8] assumes the data can be sparsely represented by
the data in a union of subspaces, which is called self-expressive. Based on the
observation, we can write each data point as

yi = Y ci, cii = 0, (2)

where ci = [ci1 ci2 · · · ciN ] and the constraint cii = 0 eliminates the trivial
solution of writing a point as a linear combination of itself. When the data points
are well distributed inside each subspace, the relationship among the data points
is theoretically analyzed in [9], which formulate the problem as

min
C

‖C‖1
s.t. Y = Y C, diag(C) = 0.

(3)
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where C = [c1 c2 · · · cN ] ∈ R
N×N is the matrix whose i-th column corresponds

to the sparse representation of yi, ci, and diag(C) ∈ R
N is the vector of the

diagonal elements of C.
Considering there are outliers and noise in real world data, the model is

extended as a more practical one

Y = Y C + E + Z,
diag(C) = 0. (4)

where E denotes the matrix form of outlying entries which has only a few large
non-zero elements, and Z denotes the matrix form of noise,the formulation (3)
is extended to handle the real-world problems with considering

min
(C,E,Z)

‖C‖1 + λe‖E‖1 + λz

2 ‖Z‖2F
s.t. Y = Y C + E + Z,

diag(C) = 0.
(5)

In the formulation, Y ∈ RM×N is the original data set without any noise and
outliers, Z and E correspond to noise and sparse outliers respectively, λe > 0,
λz > 0 are two trade-off parameters balancing the three terms in the objective
function, and the diag(C) is a vector whose elements are the diagonal entries of
the matrix C.

For the case that the data corrupted by outliers, Candes et al. [22,23] give
geometric insights which show that the method would succeed when the dataset
is corrupted with possibly overwhelmingly many outliers. For the case that the
data is corrupted by noise Z Wang and Xu [25] show that when the amount of
noise is small enough, the subspaces are sufficiently separated, and the data are
well distributed, the matrix of coefficients gives the correct clustering with high
probability.

3 Rigidly Self-Expressive SSC

The sparse subspace clustering algorithm mainly takes advantage of the self-
expressiveness property of the data. Specifically speaking, each data point in a
union of subspaces can be efficiently expressed as a combination of other points
in the same dataset.

However, in many real-world problems, data are always corrupted by noise
and sparse outlying entries at the same time due to measurement noise or data
collection techniques. For instance, in clustering of human faces, images can be
corrupted by errors due to speculation, cast shadow, and occlusion [26]. Sim-
ilarly, in the motion segmentation problem, because of the malfunctioning of
the tracker, feature trajectories can be corrupted by noise or can have entries
with large errors [28]. In such cases, the data do not lie perfectly in a union of
subspaces, which means that the noise and outlier free data Ŷ does not exactly
lie in the union of the subspaces of observed data Y , and the observed data
points Y lie in a space contaminated with outlier E and noise Z. Considering
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the self-expressiveness in the formulation (5), it is not appropriate to use the
linear combination Y C to represent the data points Ŷ .

In this paper we improve the SSC formulation in [9], and present a rigidly self-
expressive formulation, named Rigidly Self-Expressive Sparse Subspace Cluster-
ing (RSE-SSC), using a sparse linear combination Ŷ C of the original subspaces to
represent the original data points Ŷ without noise and outliers, and the observed
data set is expressed as the sum of the original data set and noise and outliers.
Here we consider the optimization problem with the same objective value func-
tion with the original SSC, but totally different constraints on data points. Let-
ting Ŷ the data points lie in the original subspaces without outliers nor noise,
and the constraints

Y = Ŷ + E + Z,

Ŷ = Ŷ C,
diag(C) = 0.

(6)

are used to express the sparse representation. The observed data Y is naturally
expressed as the sum of the exactly original data set and noise and outliers. And
the appropriate sparse subspace clustering (RSE-SSC) is formulated as (7)

min
(Ŷ ,C,E,Z)

‖C‖1 + λe‖E‖1 + λz

2 ‖Z‖2F
s.t. Y = Ŷ + E + Z,

Ŷ = Ŷ C,
diag(C) = 0.

(7)

In the formulation, Ŷ ∈ RM×N is the original data set without any noise and
outliers, Z and E correspond to noise and sparse outliers respectively, λe > 0,
λz > 0 are two trade-off parameters balancing the three terms in the objective
function, and the diag(C) is a vector whose elements are the diagonal entries of
the matrix C.

The sparse coefficients again encode information about memberships of data
to subspaces, which are used in a spectral clustering framework, as before. The
algorithm for RSE-SSC is shown in the following section.

4 Solving the Sparse Optimization Problem

The proposed convex programs can be solved via generic convex solvers. How-
ever, the computational costs of generic solvers typically is high and these solvers
do not scale well with the dimension and the number of data points. In this
section, we study efficient implementations of the proposed sparse optimizations
using an Alternating Direction Method of Multipliers (ADMM) method [1,2].
We first consider the most general optimization problem

min
(Ŷ ,C,E,Z)

‖C‖1 + λe‖E‖1 + λz

2 ‖Z‖2F
s.t. Ŷ = Ŷ C,

Y = Ŷ + E + Z,
diag(C) = 0.

(8)
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Utilizing the equality constraint Y = Ŷ +E+Z, we can eliminate Z from the
optimization problem (7) to generate a concise formulation without Z which is
equivalent to solve the original optimization problem. The optimization problem
is formulated as

min
(Ŷ ,C,E)

‖C‖1 + λe‖E‖1 + λz

2 ‖Y − Ŷ − E‖2F
s.t. Ŷ = Ŷ C,

diag(C) = 0.

(9)

where Z is eliminated from the optimization program, and there are fewer vari-
ables and this will cut down the computational cost in each iteration as each
variable shall be updates in each iteration of ADMM.

However there is no simple way to update C in each iteration, in order to
obtain efficient updates on the optimization variables, we introduce an auxiliary
matrix A ∈ R

N×N , and equivalently transform the optimization problem (9) to
the optimization problem

min
(Ŷ ,C,E,A)

‖C‖1 + λe‖E‖1 + λz

2 ‖Y − Ŷ − E‖2F
s.t. Ŷ = Ŷ A,

A = C − diag(C).

(10)

It should be noted that the solution (Ŷ ;C;E) of optimization problem (10)
concides with the solution of optimization problem (9), also concides with the
solution of optimization problem (7). As shown in the Algorithm 1, the updating
of variable C is much simpler in each iteration. Following the ADMM framework,
we add those two constraints Ŷ = Ŷ A and A = C − diag(C) of (10) as two
penalty terms with parameter ρ > 0 to the objective function, and also introduce
Lagrange multipliers for the two equality constraints, then we can write the
augmented Lagrangian function of (10) as

L(Ŷ , C,E,A;Δ1,Δ2)
:= ‖C‖1 + λe‖E‖1 + λz

2 ‖Y − Ŷ − E‖2F
+

ρ

2
‖Ŷ A − Ŷ ‖2F +

ρ

2
‖A − C + diag(C)‖2F

+tr(Δ�
1 (Ŷ A − Y )) + tr(Δ�

2 (A − C + diag(C))).

(11)

where the matrix Δ1,Δ2 ∈ R
N×N is the Lagrange multipliers for the two equal-

ity constraints in (10), tr(·) denotes the trace operator of a given matrix. The
algorithm then iteratively updates the variables A,C,E, Ŷ and the Lagrange
multipliers Δ1,Δ2.

In the k-th iteration, we denote the variables by Ak, Ck, Ek, Ŷ k, and the
Lagrange multipliers by Δk

1 , Δk
2 . Given Ak, Ck, Ek, Ŷ k,Δk

1 , Δk
2 , ADMM iterates

as follows
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Algorithm 1. ADMM algorithm for solving program (10)

Input: Ŷ 0,A0,C0, E0,Δ0
1,Δ

0
2

Output: Ŷ ,A,C,E,Δ1,Δ2

1: Initialization:Set maxIter = 104, k = 0, Terminate = False
2: while(Terminate == False) do
3: Update Ak+1 by solving the following system of linear equations

ρ((Ŷ k)�Ŷ k + I)A = ρ((Ŷ k)�Ŷ k + Ck) + ρdiag(Ck) + (Ŷ k)�Δk
1 − Δk

2 ,

4: Update Ck+1 as Ck+1 = Jk+1 − diag(Jk+1), where Jk+1 = T 1
ρ
(Ak+1 + Δk

2/ρ),

5: Update Ek+1 as Ek+1 = T λe
λz

(Ŷ k − Y ),

6: Update Ŷ k+1 by the solving system of linear equations

Ŷ (λzI + ρ(Ak+1 − I)(Ak+1 − I)�) = λz(Y − Ek+1) − Δ1(A
k+1 − I)�,

7: Update Δk+1
1 as Δk+1

1 := Δk
1 + ρ(Ŷ k+1Ak+1 − Ŷ k + 1),

8: Update Δk+1
2 as Δk+1

2 := Δk
2 + ρ(Ak+1 − Ck+1),

9: k = k + 1,
10: if k ≥ maxIter or ‖Ŷ Ak − Ŷ ‖2

F ≤ ε or ‖Ak − Ck‖2
F ≤ ε or ‖Ak − Ak−1‖ ≤ ε or

‖Ck − Ck−1‖ ≤ ε or ‖Ek − Ek−1‖ ≤ ε or ‖Ŷ k − Ŷ k−1‖ ≤ ε
then

Terminate = True
11: end if
12: end while

Ŷ k+1 := argmin
Ŷ

L(Ŷ , Ak+1, Ck+1, Ek+1;Δk
1 ,Δ

k
2), (12a)

Ak+1 := argmin
A

L(Ŷ k, A,Ck, Ek;Δk
1 ,Δ

k
2), (12b)

Ck+1 := argmin
C

L(Ŷ k, Ak+1, C,Ek;Δk
1 ,Δ

k
2), (12c)

Ek+1 := argmin
E

L(Ŷ k, Ak+1, Ck+1, E;Δk
1 ,Δ

k
2), (12d)

Δk+1
1 := Δk

1 + ρ(Ŷ A − Ŷ ), (12e)

Δk+1
2 := Δk

2 + ρ(A − C). (12f)

Then we show how to solve the six subproblems in (12a), (12b), (12c), (12d),
(12e) and (12f) in the ADMM algorithm. After all these subproblems solved, we
will give the framework of the algorithm that summarize our ADMM algorithm
for solving (10) in Algorithm 1.

These three steps are repeated until convergence is achieved or the number of
iterations exceeds a maximum iteration number. The algorithm will stop when
these conditions satisfied ‖Ŷ Ak − Ŷ ‖2F ≤ ε,‖Ak − Ck‖2F ≤ ε,‖Ak − Ak−1‖ ≤
ε,‖Ck − Ck−1‖ ≤ ε,‖Ek − Ek−1‖ ≤ ε,‖Ŷ k − Ŷ k−1‖ ≤ ε, where ε denotes the
error tolerance for the primal and dual residuals. In practice, the choice of = 104

works well in real experiments. In summary, Algorithm 1 shows the updates for
the ADMM implementation of the optimization problem (10).
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5 Convergence Analysis

Similar to [21,27], in this section, we provide a convergence analysis for the
proposed ADMM algorithm showing that under certain standard conditions,
any limit point of the iteration sequence generated by Algorithm1 is a KKT
point of (10).

Theorem 1. Let X := (Ŷ , C,W,E) and {Xk}∞
k=1 be generated by Algorithm1.

Assume that {Xk}∞
k=1 is bounded and limk→∞(Xk+1 − Xk) = 0. Then any

accumulation point of {Xk}∞
k=1 is a KKT point of problem (10).

For ease of presentation, we define S1 := {C|diag(C) = 0}, and use PS(·)
to denote the projection operator onto set S. It is easy to verify that the KKT
conditions for (10) are:

∂LY (Ŷ , A,C,E;Δ1,Δ2) = 0, (13a)

∂LA(Ŷ , A,C,E;Δ1,Δ2) = 0, (13b)

∂LC(Ŷ , A,C,E;Δ1,Δ2) = 0, (13c)

∂LE(Ŷ , A,C,E;Δ1,Δ2) = 0, (13d)

Ŷ − Ŷ A = 0, (13e)
PS(A) = A, (13f)

where ∂f(x) is the subdifferential of function f at x.

Proof. Assume X̂ := (Ŷ , Ĉ, Ŵ , Ê) is a limit point of {Xk}∞
k=1. We will show that

X̂ satisfies the KKT conditions in (13). As (12a) and (12b) are guaranteed by
the algorithm construction, it directly implies that X̂ satisfies (13a) and (13b).

We rewrite the updating rules 12e and 12f in Algorithm 1 as

Ek+1 − Ek = T λe
λz

(Ŷ k − Y ) − T λe
λz

(Ŷ k−1 − Y ) (14a)

Ck+1 − Ck = Jk+1 − diag(Jk+1) − (Jk − diag(Jk)) (14b)

Δk+1
1 − Δk

1 = ρ(Ŷ A − Ŷ ), (14c)

Δk+1
2 − Δk

2 = ρ(A − C). (14d)

The assumption limk→∞(Xk+1 − Xk) = 0 implies that the left hand sides in
(15) all go to zero. Therefore,

ρ(Ŷ A − Ŷ ) → 0 (15a)
ρ(A − C) → 0 (15b)

Hence, we only need to verify that X̂ satisfies the other two conditions in (13).
For convenience, let us first ignore the projection in (13e). Then for τ2 > 0,

(13e) is equivalent to

τ2ρY T (Y − Y C) + C ∈ τ2∂‖C‖1 + C � Qτ2(C) (16)
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with the scalar function Qτ2(t) := τ2∂(|t|1) + t applied element-wise to C. It is
easy to verify that Qτ2(t) is monotone and Q−1

τ2 (t) = shrink1(t, τ2). By applying
Q−1

τ2 (·) to both sides of (16), we get

C = shrink1(τ2ρY T (Y − Y C) + C, τ2). (17)

By invoking the definition of gk
C leads to

Ĉ = PS2(shrink1(τ2ρŶ T (Ŷ − Ŷ Ĉ) + Ĉ, τ2)),

which implies that X̂ satisfies (13c) and (13d) when the projection function is
considered.

In summary, X̂ satisfies the KKT conditions (13). Thus, any accumulation
point of {Xk}∞

k=1 is a KKT point of problem (10).

6 Experiments

In this section, we apply our RSE-SSC approach to three different data sets.
We will mainly focus on the comparison of our approach with SSC proposed in
[9]. The MATLAB codes of SSC were downloaded from http://www.cis.jhu.edu/
∼ehsan/code.htme.

6.1 The Dataset

We applied our Algorithm2 to three public datasets: the Extended Yale B
dataset1, the USPS digital images dataset2, and the COIL20 dataset3.

The Extended Yale B dataset is a well-known dataset for face clustering,
which consists of images taken from 38 human subjects, and 64 frontal images
for each subject were acquired under different illumination conditions and a
fixed pose. To reduce the computational cost and memory requirements of the
algorithms, we downsample the raw images into the size of 48 × 42. Thus, each
image is in dimension of 2, 016.

The USPS dataset is relatively difficult to handle, in which there are 7, 291
labeled observations and each observation is a digit of 16 × 16 grayscale image
and of different orientations. The number of each digit varies from 542 to 1, 194.
To reduce the time and memory cost of the expriement, we randomly chose 100
images of each digit in our experiment.

The COIL20 dataset is a database consisting of 1, 440 grayscale images of 20
objects. Images of the 20 objects were taken to pose intervals of 5 degrees, which
results in 72 images per object. All 1, 440 normalized images of 20 objects are
used in our experiment.

1
http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html.

2
http://statweb.stanford.edu/∼tibs/ElemStatLearn/data.html.

3
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

http://www.cis.jhu.edu/~ehsan/code.htme
http://www.cis.jhu.edu/~ehsan/code.htme
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Algorithm 2. Algorithm for RSE-SSC
Input: A set of points {Mi}N

i=1 (with missing entries and outlying entries) lying in a
union of L linear subspaces {S�}L

�=1

Output: Clustering results of the data points
1: Normalization: normalize the data points.
2: RSE-SSC solve the RSE-SSC optimization problem (7) by algorithm introduced in

Sect. 4.
3: Post-processing: for each Ci, keep its largest T coefficients in absolute magnitude,

and set the remaining coefficients to zeros.
4: Similarity graph: form a similarity graph with N nodes representing the data points,

and set the weights of the edges between the nodes by W = |C| + |C|T .
5: Clustering: apply the normalized spectral clustering approach in [18] to the simi-

larity graph.

6.2 Post-Processing and Spectral Clustering

After solving optimization problem (7), we obtain the clustered images and the
sparse coefficient matrix C. Similar to [6], we perform some post-processing
procedure on C. For each coefficient vector Ci, we keep its largest T coefficients
in absolute magnitude and set the remaining coefficients to zeros. The affinity
matrix W associated with the weighted graph G is then constructed as W =
|C|+|C|T . To obtain the final clustering result, we apply the normalized spectral
clustering approach proposed by Ng et al. [18]. Thus, the whole procedure of our
RSE-SSC based clustering approach can be described as in Algorithm2.

For SSC [7], we find that it performs better without the normalization of
data and post-processing of the coefficient matrix C. As a result, we ran the
codes provided by the authors directly. Note that the same spectral clustering
algorithm was applied to the coefficient matrix obtained by SSC.

6.3 Implementation Details

Considering that the number of subspaces affects the clustering and recovery
performance of algorithms, we applied algorithms under cases of L = 3, 5, 8,
where L denotes the number of subspaces, i.e., the number of different subjects.
To shorten the testing time, L subjects were chosen in the following way. In
the Extended Yale B dataset, all the 38 subjects were divided into four groups,
where the four groups correspond to subjects 1 to 10, 11 to 20, 21 to 30, and 31
to 38, respectively. L subjects were chosen from the same group. For example,
when L = 5, the number of possible 5 subjects is 3

(
10
5

)
+

(
8
5

)
= 812. Among

these 812 possible choices, 20 trials were randomly chosen to test the proposed
algorithms under the condition of L subspaces. To study the effect of the fraction
of missing entries in clustering and recovery performance of algorithms, we arti-
ficially corrupted images into 3 missing rate levels 10 %, 20 % to 30 %. To make
the comparison of different algorithms as fair as possible, we randomly gener-
ated the missing images first, and then all algorithms were applied to the same
randomly corrupted images to cluster the images and recover the missing pixels.



110 L. Qiao et al.

Cluster labeled #1,and the majority is original class #5 with TP=100.0% and FP=0.0%

Cluster labeled #2,and the majority is original class #4 with TP=100.0% and FP=0.0%

Cluster labeled #3,and the majority is original class #3 with TP=98.5% and FP=1.5%

Cluster labeled #4,and the majority is original class #1 with TP=100.0% and FP=0.0%

Cluster labeled #5,and the majority is original class #2 with TP=98.5% and FP=1.5%

(a) Clustered images from Extended Yale

Cluster labeled #1,and the majority is original class #4 with TP=100.0% and FP=0.0%

Cluster labeled #2,and the majority is original class #3 with TP=97.3% and FP=2.7%

Cluster labeled #3,and the majority is original class #2 with TP=100.0% and FP=0.0%

Cluster labeled #4,and the majority is original class #1 with TP=100.0% and FP=0.0%

Cluster labeled #5,and the majority is original class #5 with TP=100.0% and FP=0.0%

(b) Clustered images from Columbia objects

Fig. 1. Clustered images from Extended Yale B face images and Columbia objects
images within 5 subspaces with 10 % entries missing

To generate corrupted images with a specified missing fraction range from, we
randomly removed squares whose size is no larger than 10 × 10, repeatedly until
the total fraction of missing pixels is no less than the specified fraction.

In Algorithm 2 (RSE-SSC), we initialise Y by filling in each missing pixel
with the average value of corresponding pixels in other images with known pixel
value. We implement SSC proposed in [7] in two different ways. In Algorithm
“SSC-AVE”, we fill in the missing entries in the same way as “RSE-SSC”, and
in Algorithm “SSC-0”, we fill in the missing entries by 0. We use the subspace
clustering error (SCE), which is defined as

SCE := (# of misclassified images)/(total # of images),

to demonstrate the clustering quality. For each set of L with different percentage
of missing pixels, the averaged SCE over 20 random trials are calculated.

In Algorithm 1, we choose λe = λz = 5 × 10−2, total loss threshold tol =
5 × 10−6, maximum iterations maxIter = 5 × 103 in all experiments. We set
ρ = 1000/μ, where μ := min

i
max
j �=i

|Y T
i Yj | to avoid trivial solutions. It should be

noted that ρ actually changes in each iteration, because matrix Y is updated
in each iteration. To accelerate the convergence of Algorithm 1, we adopt the
following stopping criterion to terminate the algorithm ‖Ŷ Ak − Ŷ ‖2F + ‖Ak −
Ck‖2F + ‖Ak − Ak−1‖ + ‖Ck − Ck−1‖ + ‖Ek − Ek−1‖ + ‖Ŷ k − Ŷ k−1‖ < tol or
the iteration number exceeds the maxIter.
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Table 1. SCE-Mean of RSE-SSC and SSC with different fraction of missing entries for
different datasets

Missing rate=10% Missing rate=20% Missing rate=30%

SSC-0 SSC-AVE RSE-SSC SSC-0 SSC-AVE RSE-SSC SSC-0 SSC-AVE RSE-SSC

Yale B dataset: 3 subjects

5.83 5.20 3.78 27.00 7.57 6.12 51.84 14.68 8.24

Yale B dataset: 5 subjects

5.62 4.76 5.25 40.32 17.23 8.29 54.28 32.23 13.75

Yale B dataset: 8 subjects

7.81 6.45 5.72 42.18 40.37 15.42 60.62 46.57 18.19

USPS dataset: 3 subjects

0.07 0.07 0.07 9.07 9.33 7.43 10.52 9.97 8.34

USPS dataset: 5 subjects

8.76 7.68 3.74 23.51 21.69 18.54 24.55 21.06 20.74

USPS dataset: 8 subjects

12.50 10.11 7.86 36.81 34.59 21.35 46.93 29.08 26.53

COIL20 dataset: 3 subjects

6.99 6.74 5.87 38.47 19.75 7.63 45.74 19.72 8.94

COIL20 dataset: 5 subjects

7.79 9.17 7.13 41.76 18.60 9.36 46.74 26.36 11.82

COIL20 dataset: 8 subjects

11.55 9.44 9.56 41.94 28.32 15.27 48.51 35.54 18.62

6.4 Results

We report the experimental results in Table 1. It shows the SCE of three algo-
rithms, where “SCE-mean” represent the mean of the SCE in percentage over 20
random trials. From Table 1, we can see that when the images are incomplete,
for example when L = 3, the mean of SCE is usually smaller than 7 %. This
means that the percentage of misclassified images is smaller than 7 %. It can
been seen that our Algorithm 2 gives better results on clustering errors in most
situations. Especially, when spa = 20% and 30%, the mean clustering errors are
much smaller than the ones given by SSC-AVE and SSC-0, this phenomena is
more obvious with the increase of number of subjects. These comparison results
show that our RSE-SSC model can cluster images very robustly and greatly
outperforms SSC.

The subfigures (a) and (b) of Fig. 1 show the clustering results of one instance
of L = 5 using Algorithm 2 for the Extended Yale B dataset and the COIL
dataset. After applying our algorithm, each image is labled with a class ID, and
comparing to the original class ID we could calculate the True Positive Rate
and False Positive Rate of each original individual. The misclassified images in
each cluster are labeled with colored rectangles and the true positive rate (TP)
and false positive rate are also given as the title of the subfigures. Most of the
misclassified images, as we can see, are not in good illumination conditions and
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they are thus difficult to be classified. Removing these illumination conditions
will improve the experimental results a lot. We only show the results of one
instance of L = 5 for the Extended Yale B dataset and the COIL20 dataset. The
results on all datasets will be fully displayed in a longer version.

It should be noted that, due to the limited space, we just present results on
the Extended Yale B dataset and the COIL dataset with 10 % entries missing,
the other two missing rate level will be provided in a longer version or in the
form of supplementary material. In the supplementary material, Fig. 1, Fig. 2
and Fig. 3 show the results for the Extended Yale B dataset, the COIL dataset
and the USPS dataset with L = 5 using Algorithm 2. Figure 4, Fig. 5 and Fig. 6
show the accordingly clustering results of L = 8 using Algorithm 2 for these
datasets.

7 Conclusions

Sparse subspace clustering is a well-known algorithm, and it is widely used in
many research field nowadays, and a lot effort has been contributed to improve
it. In this paper, we propose a novel approach to obtain the coefficient matrix.
Compared with traditional sparse subspace clustering (SSC) approaches, the
key advantage of our approach is that it provides a new perspective of the self-
expressive property. We call it rigidly self-expressive (RSE) property. This new
formulation captures the rigidly self-expressive property of the data points in the
same subspace, and provides a new formulation for sparse subspace clustering.
Extensions to traditional SSC could also be cooperate with this new formulation,
and this could lead to a serial of approaches based on rigidly self-expressive
property. We present a first-order algorithm to solve the nonconvex optimization,
and further prove that it converges to a KKT point of the nonconvex problem
under certain standard assumptions. Extensive experiments on the Extended
Yale B dataset, the USPS digital images dataset, and the Columbia Object
Image Library show that for images with up to 30 % missing pixels the clustering
quality achieved by our approach outperforms the original SSC.
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