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Abstract Multi-objective Evolutionary Algorithms (MOEAs) have proven their
effectiveness and efficiency in solving complex problems with two or three objec-
tives. However, recent studies have shown that the performance of the classical
MOEAs is deteriorated when tackling problems involving a larger number of con-
flicting objectives. Since most individuals become non-dominated with respect to
each others, the MOEAs’ behavior becomes similar to a random walk in the search
space. Motivated by the fact that a wide range of real world applications involves
the optimization of more than three objectives, several Many-objective Evolution-
ary Algorithms (MaOEAs) have been proposed in the literature. In this chapter, we
highlight in the introduction the difficulties encountered by MOEAs when handling
Many-objective Optimization Problems (MaOPs). Moreover, a classification of the
most prominent MaOEAs is provided in an attempt to review and describe the evo-
lution of the field. In addition, a summary of the most commonly used test problems,
statistical tests, and performance indicators is presented. Finally, we outline some
possible future research directions in this research area.
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1 Introduction

Since the implementation of the firstMOEA, different algorithms have been proposed
to deal with Multi-objective Optimization Problems (MOPs) [1]. MOEAs have been
widely used to solve problems with two or three objectives. In fact, most of the pro-
posed MOEAs use the Pareto-dominance relation to compare solutions of the pop-
ulation. Specially, the population members are ranked using the Pareto-dominance
relation and the recombination operator is performed to the best individuals in order
to generate solutions that are closer to the Pareto set. However, recent studies on
MOEAs have shown that Pareto-basedMOEAs struggle to solve problemswithmore
than three objectives. Thus, although the classical MOEAs such as NSGA-II [2] and
SPEA2 [3] have been successfully applied to solve many real-world problems with
a small number of objectives, they are not well-suited when dealing with problems
involving a high number of objectives. This limitation seems to affect only Pareto-
based MOEAs but some difficulties are common to most existing multi-objective
optimizer. For this reason, motivated by the fact that a wide range of real world
applications in industrial [4] and engineering [5] designs involves the optimization
of more than three objectives, a wide variety of proposals have been proposed to deal
with the difficulties encountered by the current state of the art MOEAs.

In summary, the challenges encountered by the state of the art MOEAs in finding
a representative set of Pareto optimal solutions when handling MaOPs can be briefly
discussed as follows:

• Increase of the number of non-dominated solutions: When the dimensionality
of the objective space increases, the proportion of Pareto-non dominated solutions
in the population grows which deteriorates the search process ability to converge
towards the Pareto front. Thus, the MOEA behavior becomes similar to a random
search one. Figure1 shows how the proportion of non-dominated solutions in
the population behaves with respect to the number of objectives. We can see
that after a few generations, the population becomes completely non-dominated.

Fig. 1 Proportion of Pareto-non-dominated solutions. From Ref. [6]. a DTLZ1. b DTLZ6
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Table 1 Bounds for the number of points required to represent a Pareto front with resolution r = 25

M Points

2 50

4 62 500

5 1 953 125

7 1 708 984 375

From Ref. [7]

As a consequence, new promising search directions become very hard to find.
Another reason is the increment of the number of dominance resistant solutions
in the population when we deal with many-objective. In fact, dominance resistant
solutions are non-dominated solutions but they are far from the True Pareto Front.

• Ineffectiveness of crossover and mutation operators: In a high dimensional
space, the population members are likely to be widely distant from each other.
Thereby, two distant parent solutions will produce two distant children that are not
similar to their parents. In such a case, the effect of the recombination operation
becomes inefficient in producing promising offspring individuals.

• Difficulty to represent the trade-off surface: Due to the high dimensionality,
more points are needed to represent the trade-off surface. In fact, the number of
points to represent a Pareto front withM objectives and r resolution is bounded by
O(MrM−1). This expression is derived assuming that each solution is contained
in a hypercube. Thus, the resolution r represents the number of hypercubes per
dimension. Table1 shows the bound of points required to represent a Pareto front
for different number of objectives using a resolution r = 25. We note that for 5
objectives the number of points required to represent the Pareto front is about 2
million points.

• High computational cost of the diversity measure estimation: In order to deter-
mine the extent of crowding of a solution in a population, the identification of
neighboring solutions in a population becomes computationally very expensive in
high dimensional spaces. For this reason, the use of any approximation in diversity
to reduce the computational cost may cause an unacceptable distribution of the
solutions.

• Difficulty of visualization: It is not a matter that is directly related to optimiza-
tion. The visualization of a higher dimensional trade-off front becomes difficult.
Hence, it is difficult for the Decision Maker (DM) to choose a preferred solution.
Several methodswere proposed to ease decisionmaking inMaOPs such as Parallel
coordinates and self-organizing maps.

2 A Taxonomy of Many-objective Solution Approaches

In this section, a classification of the most relevant approaches to deal with MaOPs
is presented.
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2.1 Preference Ordering Relation-Based Approaches

• Expansion Relation

The Expansion preference relation (ER) was proposed by Sato et al. [8] to control
the dominance area of solutions using a user-defined parameter S. This preference
ordering relation was proposed in order to induce an appropriate ranking of solutions
and to enhance the selection mechanism, so that the performance of MOEAs on
combinatorial optimization problems with a variety of objectives is improved. The
basic idea consists of expanding and contracting the dominance area by replacing
the objective function fi (x) using the vector S as follows:

f
′
i (x) = r sin(ωi + Si Π)

sin (Si Π)
∀i ∈ {1, 2, . . . ,m} (1)

where r is the norm of f (x), fi (x) is the fitness value of the i-th objective, and ωi

is the angle between f (x) and fi (x). Figure2 illustrates the fitness modification to
change the covered area of dominance when Si < 0.5 and φi = Si Π . One can notice
that the i-th fitness value fi (x) is increased to f

′
i (x) > fi (x). Thus, if Si < 0.5 amore

finer grained ranking of solutions is produced and the dominance area is expanded
which strengthen the selection. However, if Si > 0.5 a coarser ranking of solutions
is produced and the dominance area is contracted which would weaken the selection.
While if Si = 0.5, the usual dominance relation is used. Since in a MaOP we search
to produce a finer grained ranking of solutions, the parameter Si should be less than
0.5. In fact, the main characteristic of this preference relation is that it emphasizes
the solutions in the middle region of the Pareto front. The authors used the multi-
objective 0/1Knapsack problem [9] on two up to five objectives and integrated the ER
relation into NSGA-II. The experimental results show that contracting or expending
the dominance area is better thanusing conventional dominance in termsof the quality
of the obtained solutions. However, the ER was assessed only on problems involving
up to five objectives. Hence further experiments with higher dimension problems are

Fig. 2 Fitness modification
to change the covered area of
dominance for Si < 0.5.
From Ref. [8]



Many-objective Optimization Using Evolutionary Algorithms: A Survey 109

required for validation. Moreover, since the expansion relation can improve either
convergence or diversity, the authors concluded that it would be better to combine it
with other methods.

• k-Optimality Relation

Farina and Amato [10] proposed the k-optimality relation. This preference relation is
based on the number of improved objectives between two solutions. The k-optimality
employs three quantities. Assuming that we have two solutions x and y, the first
quantity nb represents the number of objectives where x is better than y. The second
one ne denotes the number of objectives where x is equal to y and the final one nw

where x is worse. Thus, given M objectives the following inequalities holds true:

nb + nw + ne = M (2)

0 < nb, nw, ne < M (3)

In fact, by employing these quantities the concepts of (1-k)-dominance and k-
optimality can be defined.

Definition 1 (1-k)-dominance
A solution x (1-k)-dominates a solution y if and only if:

{
ne < M
nb ≥ M−ne

1+k 0 ≤ k ≤ 1
(4)

From the above definition, one can notice that the 1-dominance (i.e., k = 0) represents
the Pareto dominance. The parameter k can assume any value in [0,1], but because
nb has to be a natural number, the smallest integer greater than the quantity M−ne

1+k
need to be considered. After defining the (1-k)-dominance, the following definition
of the k-optimality can be given:

Definition 2 k-optimality
A solution x∗ is k-optimum if and only if there is no x ∈ � such that x k-dominates
x∗.

Therefore, the k-optimality represents a strong version of the Pareto-optimality
(0-optimality). The authors extended the (1-k) dominance relation by incorporating
fuzzy arithmetic techniques.

• Average and Maximum Ranking Relations

Bentley and Wakefield [11] proposed the average ranking (AR) and maximum rank-
ing (MR) preference ordering relations. The AR relation begins by sorting the solu-
tions based on their fitness. Then, a set of different ranking for every solution is
obtained for each objective. After that, the average ranking value of each solution is
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computed by summing their ranks on each objective. Hence, based on the obtained
average ranking values, the solutions can be sorted into order of best average rank.
Thus, a solution x dominates a solution y with respect to the AR relation (denoted
by x ≺avg y) if and only if Ravg(x) < Ravg(y)where Ravg(x) = ∑

1≤i≤M fi (x). The
AR distinguishes the non-dominated solutions based on their obtained ranks on dif-
ferent objectives. This preference ordering relation is simple and range-independent
[12]. However, Corne and Knowles [13] have reported that the obtained solution
set may only concentrate in a subregion of the Pareto front. Thus, it has a lack of
diversity maintenance mechanism.

Differently, the MR relation considers the best rank as the global rank of each
solution. Therefore, a solution x dominates a solution y with respect to the MR
relation (denoted by x ≺max y) if and only if Rmax (x) < Rmax (y) where Rmax (x) =
min1≤i≤M {rank fi (x)}. The main drawback of this method is that it emphasizes
solutions with high performance in some objectives, while they have a poor overall
performance (i.e., extreme solutions).

• Favour Relation

In order to refine the ranking of solutions inMaOPs,Drechsler et al. [14] proposed the
favour relation. In their work, the authors used the favour relation and amethod called
Satisfiability Class Ordering (SCO) where the former is used to compare solutions
to each others, while the latter is used to sort solutions. This preference ordering
relation can be defined as follows:

Definition 3 Favour relation
A solution x dominates a solution y with respect to the favour relation (denoted by
x ≺ f y) if and only if:

| {i : fi (x) < fi (y), 1 ≤ i ≤ M} | < | { j : f j (y) < f j (x), 1 ≤ j ≤ M
} | (5)

The main idea behind the favour relation is that the solution x is favoured to y
if and only if the number of objectives in which x outperforms y is superior to the
number of objectives in which y outperforms x. For example given two solutions x1
(4, 2, 1), and x2 (1, 1, 2) thenwe have that x2 ≺ f x1 since it has better objective values
than x1 with respect to the first two objectives. This preference ordering relation was
used in an algorithm proposed by Drechsler et al. [15]. In fact, it was demonstrated
that the favour relation does not create a partial order since it is not transitive but it
is able to create a finer grained ranking of solutions than that created by the Pareto
dominance when solving MaOPs. However, the main disadvantage of this relation
is that it emphasizes extreme solutions.

• Other Preference Ordering Relation-Based Approaches

Preference ordering relation-based approaches have been proposed to deal with
the first challenge which is the increase of the number of Pareto non-dominated
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solutions in the population in a high dimensional space. Therefore, preference order-
ing relation-based approaches aim mainly to provide a finer ranking of solutions
when solving MaOPs. Various methods based on preference ordering relations have
been proposed to deal with MaOPs. The preference order ranking was introduced
by Di Pierro et al. [16]. The basic idea of this preference relation is to discard the
objectives in order to compare the solutions. It is based on the concept of efficiency
of order proposed by Das [17]. However, the main drawback of this relation is its
high computational cost. Sülflow et al. [4] proposed the ε-preferred relation which
is based on the favour relation [14]. In the ε-preferred relation, two solutions are
compared based on the number of objectives in which one solution exceeds the other
using a predefined threshold. Moreover, the favour relation is used to determine
which solution is better in case of a tie. The authors replaced the favour relation in
the algorithmic framework used in [14] with the ε-preferred relation. The ε-preferred
relation has demonstrated good results on the nurse rostering problem [18] with 25
objectives. A summary of some existing preference ordering relations for solving
MaOPs is presented in Table2.

Table 2 Summary of preference ordering relations: MaxObjs means maximum number of objec-
tives

Relations References Basic idea MaxObj Test problems

ER Sato et al. [8] Control the dominance area
of solutions using a user
defined parameter S

5 MKP

k-Optimality Farina and Amato [10] Compare two solutions
based on the number of
improved objectives
between them

12 Test case

AR Garza-Fabre et al. [6] Sort the solutions based on
their average ranking
values

50 DTLZ

MR Garza-Fabre et al. [6] Compare the solutions
based on their best
obtained rank

50 DTLZ

Favour Drechsler et al. [14] Favour the solution that
outperforms the other one
in more objectives

7 5 benchmarks
problems

Preference
order ranking

Di Pierro et al. [16] Compare two solutions by
discarding objectives

8 DTLZ

ε-Preferred Sülflow et al. [4] Compare two solutions
based on the number of
objectives in which a
solution exceeds the other
one by using a predefined
threshold

25 NRP
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2.2 Objective Reduction-Based Approaches

• PCA-NSGA-II: Principal Component Analysis-NSGA-II

In thiswork,Deb andSaxena [19] proposed the Principal ComponentAnalysis-Nsga-
II algorithm called PCA-NSGA-II. This latter combines a reduction technique with
NSGA-II to deal with MaOPs with redundant objectives. In fact, many real world
problems haveM objectives, while the true Pareto front is less thanM-dimensional.
Hence, some of the objectives are redundant. Thus, in order to determine the true
Pareto optimal front, the authors suggested to use the PCA procedure. This reduction
technique was used to reduce the dimensionality of a data set with a large number
of interrelated variables. The PCA-NSGA-II starts with an initial set of objectives
Π0 = {1, 2, . . . , M}. Then, NSGA-II is executed for a given number of iterations to
obtain a population Pt where t represents the current generation. Next, the population
Pt is used by the PCA reduction method to get a new set of objectives Πt ⊂ Π0 to
be used in the next iterations of NSGA-II. The PCA procedure can be summarized
by the following four basic steps:

• Step 1: Store the objective values of the population Pt in an initial data matrix
D of size M × N, where M is the number of objectives and N is the size of the
population;

• Step 2: Obtain the standardized matrix X by subtracting the mean from each
objective value in matrix D;

• Step 3: Compute the covariance matrix V and the correlation matrix R using the
standardized matrix X;

• Step 4: Compute eigenvalues of the correlation matrix R and eigenvectors that are
considered as the PCs;

We note that the most negative and the most positive elements for a given PC are con-
sidered as the two most important conflicting objectives. In addition, PCA-NSGA-II
approach uses an additional procedure that selects the most negative and most pos-
itive elements for the first PC. The experimental results on a modified version of
DTLZ5 test problem [19] have demonstrated the ability of PCA-NSGA-II to solve
high dimensional problems with redundant objectives. However, the proposed algo-
rithm shows some vulnerability when the task involves finding a large Pareto optimal
front due to the difficulties encountered to find the correct combination of objectives
in MaOPs with non-redundant objectives.

• PCSEA: Pareto Corner Search Evolutionary Algorithm

Singh et al. [20] introduced the Pareto Corner Search Evolutionary Algorithm
(PCSEA). The authors proposed a new approach that identifies a reduced set of
objectives instead of dealing with the true dimensionality of the true MaOP. More-
over, PCSEA does not approximate the whole Pareto front but it searched for a
specific set of non-dominated solutions. More specifically, the authors suggested to
use boundaries of the Pareto front called corner solutions in order to predict the
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dimensionality of the true Pareto front. In fact, for a two-dimensional optimization
problem, a corner solution corresponds to the minimum value of each objective.
However, the number of corner solutions increases exponentially with the number
of objectives (i.e., 2M − 1 possible corners to aM-objective optimization problem),
but in reality, test problems such as DTLZ [21] and WFG [22] have M corner solu-
tions for M-objective problems. The proposed approach can be summarized by the
following two steps: (1) find the corner solutions, and (2) use the corner solutions
to reduce the set of objectives. PCSEA uses the same crossover and mutation opera-
tors used in NSGA-II. However, differently to NSGA-II which uses non-dominated
sorting and crowding distance-based ranking, PCSEA uses a corner-sort ranking.
Details of this method can be found in [20]. After identifying the corner solutions, a
heuristic technique is performed to determine the relevant objectives and to eliminate
the redundant ones. The reduction process can be described as follows. First, a set F
containing the non-dominated solutions produced by PCSEA is formed where only
unique solutions are considered in the set F. Second, in order to quantify the change
in the number of non-dominated solutions a parameter R was used. The parameter R
is defined as follows:

R = NFR− fm/NF (6)

where NF is the number of non-dominated solutions in the set F and NFR− fm is the
number of non-dominated solutions corresponding to the objective set obtained after
omitting fm from the set of relevant objectives FR . If the value of R is high for a
particular objective fm , it means that this objective can be omitted from the set of
relevant objectives. PCSEAdoes not suffer from the lack of the selection pressure and
it has a low computational complexity which makes it suitable for solving MaOPs.
However, it should be noted that a large population size is not required when dealing
with many objectives for the reason that PCSEA does not approximate the entire
Pareto front.

• Objective Reduction Using a Feature Selection Technique

In this work, López Jaimes et al. [23] proposed to integrate an unsupervised feature
selection technique that was originally introduced by Mitra et al. [24] in NSGA-II.
This reduction method is similar to the one used by [19] for the reason that both of
them use a correlation matrix to measure the conflict between each pair of objectives
and to determine the most conflicting objectives in order to eliminate the redundant
ones. Two algorithms have been introduced in this work. The first algorithm finds
the minimum subset of non-redundant objectives with the minimum possible error,
while the second algorithm finds the minimum set of k-non-redundant objectives that
yield to the minimum possible error. The authors described the main steps of their
reduction technique by the following three steps:

• Step 1: Define the conflict between objectives as distance and divide the objective
set into homogeneous neighborhoods of size q around each objective;
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• Step 2: Select the most compact neighborhood where the most compact neighbors
is the neighborhood with the minimum distance to its qth neighbor;

• Step 3: Retain the center of the neighborhood and discard q neighbors with least
conflict in the current set. The distance to the qth neighbor is considered as the
error committed by removing the q objectives;

The reduction techniques used in this work iterated Step 2 and Step 3 until the
number of desired objectives does not reach the predefined k value or until there are
not more considered neighborhoods. The experimental study has mentioned good
results in solving: a variation of DTLZ5 [21] with 3, 5, and 10 objectives, a variation
of the DTLZ2 [21], and the 0/1 knapsack problem [9] with 10 and 20 objectives. The
experiment results show that the proposed methods are competitive compared to the
PCA-based reduction method and the reduction method of Brockhoff et al. [25].

• Other Objective Reduction-Based Approaches

Objective reduction-based approaches aim to tackle MaOPs with redundant objec-
tives. In fact, there are two different timing of incorporating the dimensionality into
a MOEA, thus we can identify two classes [28]: (1) offline dimensionality reduc-
tion where the dimensionality reduction method is performed after obtaining a set
of Pareto optimal solutions or (2) online dimensionality reduction where the num-
ber of objectives is introduced gradually by iteratively obtaining solution sets and
invoking the dimensionality reduction method during the search process. In fact, the
first class can be further divided into three sub-classes: Correlation-based methods,
dominance structure-based methods, and feature-based methods. Correlation-based
methods consist in examining the correlation among the objectives. In this sub-class,
we find the work of Saxena et al. [26] in which they proposed L-PCA and NL-MVU-
PCA algorithms based on the PCA method and Maximum Variance Unfolding for
linear and nonlinear objective reduction, respectively. The authors investigated the
performance of the two algorithms on a wide range of redundant and non-redundant
test problems and on two real world problems. Dominance structure-based methods
consider the dominance relationships among the solutions obtained by a MOEA.
Brockhoff and Zitzler [27] proposed a new notion of conflict and they introduced
a quantification δ for measuring the change in the dominance structure based on ε-
dominance. In their studies, an exact and a greedy algorithm were proposed to solve
the δ-MOSS and the k-EMOSS problems, where the δ-MOSS consists in finding
the minimum objective subset corresponding to a given error, while k-EMOSS con-
sists in finding an objective subset of size k with the minimum possible error. The
experimental results demonstrated that the exact algorithm yields smaller objective
subsets than the greedy algorithm, while the high complexity of the exact method
limits its usage. In the third sub-class, we find the work of López Jaimes et al. [23].
Concerning the online dimensionality reduction algorithms, many approaches have
been proposed in the literature. PCA-NSGA-II is considered as an online dimen-
sional reduction algorithm since it iteratively obtains solution sets and reduces the
objectives using information of correlations among the objectives. Table3 presents a
comparison of the objective reduction-based approaches studied in this subsection.
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Table 3 Comparison of objective reduction-based approaches: OnDRA means online dimen-
sionality reduction approach, OfDRA means offline dimensionality reduction approach, C means
correlation-based methods, DS means dominance structure-based methods, F means feature-based
methods, and MObj means maximum number of objectives

Algorithms References Characteristics MObj Test
problemsOnDRA OfDRA

C DS F Other

PCA-NSGA-
II

Deb and Saxena
[19]

X – – – – 30 DTLZ5(I,M)

5 DTLZ2

PCSEA Singh et al. [20] – – – – X 100 DTLZ5(I,M)

20 DTLZ2

– López Jaimes
et al. [23]

– – – X – 20 MKP

20 DTLZ2BZ
10 DTLZ5(I,M)

L-PCA Saxena
et al. [26]

– X – – – 25 DTLZ

25 WFG

50 DTLZ5(I,M)

NL-MVU-
PCA

Saxena et al.
[26]

– X – – – 25 DTLZ

25 WFG

50 DTLZ5(I,M)

Exact-δ-
MOSS/k-
EMOSS

Brockhoff and
Zitzler [27]

– – X – – – –

Greedy-δ-
MOSS/k-
EMOSS

Brockhoff and
Zitzler [27]

– – X – – 25 DTLZ

25 MKP

2.3 Preference Incorporation-Based Approaches

• R-NSGA-II: Reference Point-Based NSGA-II

Deb et al. [29] introduced a modified version of NSGA-II that prefers solutions
closer to a user-provided reference point set and that de-emphasizes solutionswithin a
ε-neighborhood of a reference point. In fact, the parameter ε controls the extent of the
distribution of solutions near the closest Pareto-optimal solution and the reference
points are used to guide the search toward the preferred parts of the Pareto front.
In this work, the crowding distance used in NSGA-II is modified as follows. For
each reference point, the normalized Euclidean distance of each solution of the last
considered front is calculated and based on this distance the solutions are sorted in
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ascending order.Hence, the closest solution to the reference point is assigned a rank of
one. The second closest solution to the reference point is assigned a rank of two and so
on.After that, theminimumof the assigned ranks is assigned as the crowding distance
to a solution. Thus, the smallest crowding distance of one is assigned to the closest
solutions to all reference points. The solutions having next-to-smallest Euclidean
distance to all reference points are assigned the next-to-smallest crowding distance of
two, and so on. Thereafter, solutions with a smaller crowding distance are preferred.
The authors proposed to control the extent of obtained solutions by grouping all
solutions having a sum of normalized difference in objective values of ε or less.
A randomly picked solution from each group is retained and the rest of all group
members are assigned a large crowding distance in order to discourage them to remain
in the race. The proposed procedure allows finding multiple ROIs simultaneously in
a single simulation run. R-NSGA-II has demonstrated good results on two to five
objective test problems but it faces difficulties when using a single reference point
since diversity is not well maintained. Moreover, the ε clearing parameter setting is
not trivial.

• PBEA: Preference-Based Evolutionary Algorithm

In this work, Thiele et al. [30] proposed a new algorithm called PBEA that combines
IBEAwith the reference point method. In fact, in IBEA, the fitness value of a solution
x in a population P can be expressed as follows:

F(x) =
∑

y∈P{x}
(−e−I (y,x)/κ) (7)

where κ is a scaling factor. In IBEA, the additive epsilon indicator is used which is
a Pareto compliant indicator and it is defined as follows:

Iε+(x, y) = minε { fm(x) − ε ≤ fm(y) ∀m = 1, 2, . . . , M} (8)

In order to take the preference information into account, the authors defined a new
preference-based quality indicator described as follows:

Ip(x, y) = Iε+(x, y)/s(g, f (x), δ) (9)

where x and y are two solutions, Iε+ is the additive epsilon indicator, s is a function
used to normalize the set of points, and δ is a positive parameter used to specify the
minimal value of the normalized function, it allows the DM to control the spread of
the obtained Region of Interest (ROI). PBEA was also used in an interactive fashion
to offer many possibilities to the DM in directing the search into a preferred part of
the Pareto optimal set. The main motivation behind PBEA is that it gives reliable
information on the solutions to the DM. Moreover, the used binary quality indicator
Ip is Pareto dominance preserving. In addition, the experimental results show that it
is suitable to solve MaOPs due to the use of the achievement function. However, the
authors noted that adjusting the δ parameter is not an easy task.
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• r-NSGA-II: Reference Solution-Based NSGA-II

BenSaid et al. [31] proposed anewdominance relation called r-dominance (reference-
solution-based dominance) that creates a strict partial order among Pareto equivalent
solutions and that has the ability to differentiate between non-dominated solutions in
a partial manner based on a user-supplied aspiration level vector. The r-dominance
relation represents a hybridization between the Pareto dominance relation and the
reference point method (i.e., DM’ s preferences). In fact, the key feature of this
preference-based dominance relation is to prefer solutions that are closer to the ref-
erence point, while preserving the order induced by the Pareto dominance. Thus, in
order to determine the closeness of a solution to the reference point, the authors used
the weighted Euclidean distance employed by Deb et al. [30] which is expressed as
follows:

dist (x, g) =
√√√√ M∑

i=1

wi

(
( fi (x) − fi (g))

( f max
i − f min

i )

)2

wi ∈]0, 1[
M∑
i=1

wi = 1 (10)

where x is a solution, g is a reference point, f max
i and f min

i represent the upper and
the lower bounds of the i-th objective, respectively, and wi is the weight associated
to each objective. The r-dominance is defined as follows:

Definition 4 r-dominance
Assuming a population of individuals P, a reference vector g, and a weight vector
w, a solution x is said to r-dominate a solution y (denoted by x ≺r y) if one of the
following statements holds true:

1. x dominates y in the Pareto sense,
2. x and y are Pareto-equivalent and D(x, y, g) < −δ, where δ ∈ [0, 1] and:

d(x, y, g) = dist (x, g) − dist (y, g)

distmax − distmin
(11)

distmax = Maxz∈P dist (z, g) (12)

distmin = Minz∈P dist (z, g) (13)

δ is termed as the non-r-dominance threshold.

After substituting the Pareto dominance with the r-dominance in the NSGA-II
algorithm with an adaptive management of the δ parameter, the performance of
the resulting preference-based MOEA, named r-NSGA-II, has been assessed on
several test problems where the number of objectives is varying between two and
ten objectives. The experimental results show that r-NSGA-II outperforms several
recent reference point approaches. Moreover, the r-dominance was able to guide the
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search using the DM’ s preferences and to control the spread of the region of interest.
However, r-NSGA-II algorithm has faced difficulties in solving highly multi-modal
problems such as ZDT4 [32].

• PICEA-g: Preference-Inspired Co-Evolutionary Algorithm-Goals

PICEA-g was introduced by Wang et al. [33]. PICEA-g is a posteriori preference-
based algorithm where the intervention of the DMs is performed after obtaining a
solution set which approximates the real Pareto front. Themain idea of this algorithm
is to provide DMs with both a proximal and a diverse representation of the entire
Pareto front before the elicitation and the application of their preferences. As the
search progress, PICEA-g coevolves a family of DM’ preferences together with a
population of candidate solutions. Thus, the solutions would gain fitness by perform-
ing well against the preferences and the preferences would gain fitness by offering
comparability between solutions. The general principle of PICEA-g is as follows.
The PICEA-g begins by initializing a population of candidate solutions S and pref-
erence sets G of fixed size N and NGoal, respectively. In each generation t, genetic
variation operators are applied to the parents S(t) in order to produce N offspring
Sc(t). Simultaneously, NGoal new preference sets Gc(t), are randomly regenerated
based on the initial bounds. Thereafter, S(t) and Sc(t) and both G(t) and Gc(t) are
then pooled, respectively. After that, the obtained populations are sorted based on
the fitness. Finally, a truncation selection is applied to select N solutions to form the
new parent population S(t+1) and NGoal solutions as new preference populationG(t
+ 1). The method to calculate the fitness Fs , of a candidate solution s is defined as
follows:

Fs = 0 +
∑

g∈G
Gc|s�g

1

ng
(14)

where ng is the number of solutions that satisfy preference g. It should be noted that
if s does not satisfy any g, then Fs is equal to zero. The fitness Fg of a preference g
can be expressed as follows:

Fg = 1

1 + α
(15)

where

α =
{
1 if ng = 0
ng−1
2N−1 otherwise

(16)

where N is the candidate solution population size. After calculating fitness values,
the non-dominated solutions in S ∪ Sc are identified. Then, based on the fitness, the
best N non-dominated solutions are selected to constitute the new parent S(t + 1).
The authors reported that PICEA-g outperforms several state-of-the-art methods in
terms of convergence and spread when compared on WFG test problems with up to
10 objectives.
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• Other Preference Incorporation-Based Approaches

In the context of incorporating preference information in EMO, many studies have
been made [34, 35]. A key point in preference-based approaches is the timing of
integrating the preference information into the optimizing process. In fact, the DM
can provide his/her preferences before (a priori), after (a posteriori), or during (inter-
actively) the MOEA run [36–38]. Since the search direction is biased towards the
area of the Pareto front onwhich theDMwould like to focus (i.e., ROI), the priori and
interactive algorithms can reduce the computational load during the search. However,
the posteriori preference-based algorithms are inferior to the abovementioned classes
since they might obtain a large number of solutions that the DM is not interested in
[28]. Deb and Kumar [40] proposed the reference direction-based NSGA-II (RD-
NSGA-II). In each iteration, the DM supplies a reference direction in the objective
space. Thereafter, the solutions are ranked using an achievement scalarizing function
and the crowding distance value. RD-NSGA-II has demonstrated good results when
tested onDTLZ functions with up to 10 objectives. However, the population diversity
degradation that can be yielded when using a single reference direction remains a
significant matter. Preference-inspired co-evolutionary algorithms (PICEAs) rep-
resent an example of a posteriori preference-based algorithm that tries to avoid
the intervention of the DM before or during the optimization process. In PICEAs
preferences are modeled as a set of solutions which co-evolve with the population
[41, 42]. In [41, 42], the authors tested a-PICEA-g and PICEA-w on the WFG
test problems with up to 7 objectives. Table4 presents a comparison of the studied
preference incorporation-based approaches that are classified into threemain classes:
(1) Priori preference-based approaches, (2) Interactive preference-based approaches,
and (3) Posteriori preference-based approaches.

2.4 Indicator-Based Approaches

• IBEA: Indicator-Based Evolutionary Algorithm

IBEA was introduced by Zitzler and Künzli [43]. They proposed a general IBEA
where they used a binary performance indicator in the selection process. Initially,
IBEA begins by generating an initial populationP. Then, the algorithm calculates the
fitness value of each solution x in P. In fact, the fitness value is a measure for the loss
in quality if a solution x is removed from P. After computing all the fitness values of
all individuals in the population, the worst individual is removed from the population
and the fitness values of the residual population must be updated. In the following,
the selection step is used in creating the mating pool P

′
. When we compare IBEA

with the use of two binary performance indicators the additive ε-indicator and the
IHD-indicator to Pareto-based MOEAs such as SPEA2 and NSGA-II, we note that
IBEA can greatly improve the quality of the generated Pareto set approximation. In
addition, IBEA outperforms NSGA-II and SPEA2 in term of convergence. However,
the parameter κ which is a scaling factor of the fitness function values should be
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Table 4 Comparison of preference incorporation-based approaches for MaOPs: MObjs means
maximum number of objectives (inspired by [28, 31])

Classes Algorithms References MObjs Test problems Preference
information

Priori
preference-
based
approaches

PBEA Thiele et al. [30] 5 LPMS Reference
points

SBGA Gong et al. [39] 20 DTLZ Preferred
regions

Interactive
preference-
based
approaches

R-NSGA-II Deb et al. [29] 10 DTLZ Reference
points

r-NSGA-II Ben Said et al.
[31]

10 DTLZ Reference
points

RD-NSGA-II Deb and Kumar
[40]

10 DTLZ Reference
directions

Posteriori
preference-
based
approaches

PICEA-g Wang et al. [33] 10 WFG Weight vectors

a-PICEA-g Wang et al. [41] 7 WFG Goal vectors

PICEA-w Wang et al. [42] 7 WFG Weight vectors

appropriately chosen. The main weakness of IBEA is the computational cost of the
quality indicator value. Several variants of IBEAs have been proposed such as the
work of Basseur and Bruke [44] in which they extended IBEA and proposed a multi-
objective local search algorithm called IBMOLS that uses a local search operator
and the work of Wagner et al. [45] that reported good results for MaOPs. Since,
IBEAs do not use Pareto dominance, their search ability is not severely deteriorated
by the increase of the number of objectives. It should be noted that most of the
existing variants use the hypervolume as an indicator but one difficulty arises in
using the hypervolume when dealing with a large number of objectives which is the
high computational cost of the hypervolume calculation.

• SMS-EMOA: S Metric Selection-Based Evolutionary Multi-objective
Algorithm

Oneof themost successfully used indicator-basedMOEAs, is theS-Metric-Selection-
EMOA (SMS-EMOA) proposed by Emmerich et al. [46]. The SMS-EMOA invokes
firstly the non-dominated sorting that is used as a ranking criterion. Secondly, it
uses the hypervolume indicator as a selection mechanism to discard the individual
that contributes the least hypervolume to the worst-ranked front. The SMS-EMOA
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algorithm starts with generating a new population P with μ individuals. In each
iteration, there is a new individual that is generated by the application of random
variation operators. An individual becomes a member of the population if it replaces
dominated individuals and contributes to a higher quality of the population. Thus, the
selection criterion ensures that the non-dominated individuals could not be replaced
by the dominated ones. Then, the algorithm applied the fast-non-dominated-sort-
algorithm used in NSGA-II to compute the Pareto fronts. After that, an individual
is rejected from the worst ranked front RI if it contains more than one individual.
Thus, the individual n ∈ RI that minimizes the following equation is discarded:

ΔS(n, RI ) = S(RI ) − S(RI {n) (17)

where the ΔS(n, RI ) represents the contribution of n to the S metric value of its
appropriate front. The application of this algorithm to several standards benchmark
shows that it is suitable for Pareto optimization with two and three objectives. Rather
than that, SMS-EMOA outperforms a number of Pareto-based algorithms in term
of convergence. It is also shown that it provides solutions that are well distributed
on the Pareto Front. The main disadvantage of this indicator based-MOEA is the
high computational coast of the S-metric values with problems evolving more than
three objectives. Moreover, SMS-EMOA is well-suited for real-world applications
with a limited number of function evaluations. Wagner and Neumann [47] have
compared SMS-EMOA to a number of Pareto-based algorithms and indicator-based
algorithms on MaOPs. The results show that SMS-EMOA is unable to find the front
of the high-dimensional DTLZ1 and DTLZ3 test problems.

• AGE: Approximation-Guided Evolutionary

AGE was proposed by Bringmann et al. [48]. AGE uses the additive approximation.
In fact, the additive approximation of the set B with respect to the set A is expressed
as follows:

α(A, B) = max
a∈A

min
b∈B max

1≤i≤N
(ai − bi ) (18)

It could also use the multiplicative approximation which is similar to the additive
approximation by just replacing ai − bi with

ai
bi
. The goal is to minimize the additive

approximation that measures the approximation quality of the population B with
respect to the archive A. The archive A contains all non-dominated solutions seen so
far. However, the additive approximation is not locally sensitive to the changes of the
output population. AGE uses another sensitive indicator that should be minimized
which is defined as follows:

Sα(A, B) = (α1, . . . ,α|A|) (19)

where Sα(A, B) is the result of sorting decreasingly the set α({a} , B)|a ∈ A. The
algorithm begins by generating a population P of μ individuals. In each iteration, we
obtainλnewoffspring by selecting randomly two individuals from the population and
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applying the crossover and themutation operators. Thoseλ new offspring individuals
are added to P and a new population Q is obtained. After that, only non dominated
solutions obtained from Q are added to A. In addition, there are two criteria to add
a solution S to A: (1) S is not dominated by any existing individual in A and (2)
individuals that dominate S are removed. In each generation, the individual p with
lexicographically worst approximation is removed from Q. AGE was compared to
several MOEAs and as a result it was proved that AGE outperforms them in term
of the quality of the approximation set obtained especially when dealing with many
objectives and the covered hypervolume. Wagner and Neumann [47] extended AGE
and presented a new version called AGE-II where they control the size of the archive
by storing the additive ε-approximation of the non-dominated solutions and they
propose a new strategy for the parent selection.

• MOMBI: Many-objective Meta-Heuristic Based on the R2 Indicator

MOMBI was introduced by Gomez and Coello Coello [49]. The MOMBI algorithm
is based on the R2 indicator which is defined as:

R2(A, V, Z∗) = 1

|V |
∑
v∈V

min
a∈A

{
max
1≤ j≤m

v j |Z∗
j − a j |

}
(20)

where A is an individual set, V is a set of weight vectors, and Z∗ is used as a reference
point which is never dominated by any feasible solution. This algorithm produces
a non-dominated sorting scheme based on the utility functions. The main idea is to
group solutions that optimize the set of utility functions and gives them the first rank.
Then, those solutionswill be removed and a second rankwill be identified in the same
manner. The process will continue until all the population members will be ranked.
We notice that MOMBI uses the non-dominated sorting scheme without using the
usual Pareto dominance. The MOMBI algorithm is described as follows. MOMBI
begins by generating a populationP randomly. Then,we obtain the objective function
values, the ideal and the nadir point, and the R2-ranking of all P members. After
that, a binary tournament selection using the rank of the solutions and the mutation
and crossover operators are performed to create an offspring populationQ. Next, the
reference points are updated with the minimum and maximum objective function
values and the population Rwhich is the union of both P andQ populations is ranked
using the R2 indicator. In order to reduce the population, MOMBI selects the best
N individuals according to their ranks. The experimental results show that MOMBI
outperformsMOEA/D [50] inmost cases. This algorithmperformswellwhendealing
with many-objective. However, its main weakness is its high computational cost.

• Other Indicator-Based Approaches

Indicator-based approaches are yet another direct way to solve MaOPs [51]. In
fact, in an indicator-based algorithm, an indicator is not only used to evaluate the
obtained approximation set according to the indicator but also indicator values are
used to guide the search process. Although, an emerging trend is the use of a qual-
ity indicator to solve a MaOP. We identify two indicators that have been applied
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Table 5 Comparisonof indicator-based approaches forMaOPs:MaxObjsmeansmaximumnumber
of objectives

Classes Algorithms References MaxObjs Test problems

Hypervolume-
based
approaches

IBEA Zitzler and Künzli [43] 4 EXPO

SMS-EMOA Wagner and Neumann [47] 20 DTLZ

WFG

LZ

HypE Bader and Zitzler [52] 50 DTLZ

WFG

MKP

R2 indicator-
based
approaches

AGE Bringmann et al. [48] 20 DTLZ

AGE-II Wagner and Neumann [47] 20 DTLZ

MOMBI Gomez and Coello Coello [49] 8 DTLZ

WFG

R2-MOGA Manriquez et al. [54] 10 DTLZ

R2MODE Manriquez et al. [54] 10 DTLZ

by most indicator-based approaches for MaOPs: Hypervolume indicator and R2
indicator (cf. Table5). In fact, tow main issues arise when using the hypervolume
indicator to solve MaOPs. First, the computational cost of the hypervolume value is
high. Second, the hypervolume might not be appropriate when the DM aims to find
a uniform spread optimal set.

In order to deal with the high computational cost of computing the exact hypervol-
ume values, Bader and Zitzler [52] introduced the Hypervolume Estimation Algo-
rithm (HypE) where they used a Monte Carlo algorithm [53] in order to approximate
the exact hypervolume values. In this algorithm, the non-dominated solutions are
compared according to their hypervolume-based fitness values. Specifically, HypE
uses an environmental selection to create a new population from the best solutions in
the union set of the parent and offspring populations and estimate the hypervolume
value by sampling solutions in different fronts. The experimental results showed that
HypE achieved competitive performance in terms of the average hypervolume on a
number of test problems with up to 50 objectives. Manriquez et al. [54] proposed
two R2-indicator-based approaches which are: R2-MOGA and R2MODE. Those
latter present a modified version of Goldberg’s non-dominated sorting method. The
obtained results on DTLZ with up to 10 objectives indicate that these algorithms can
outperform SMS-EMOA in term of computational time.
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2.5 Decomposition-Based Approaches

• MOGLS: Multi-objective Genetic Local Search

MOGLS was first proposed by Ishibuchi and Murata [55] and improved by
Jaszkiewicz [56]. In fact, the Genetic Local Search (GLS) is a metaheuristic that
hybridizes recombination operators with local search or with other local improve-
ment heuristics. The basic idea of MOGLS is to transform the original MaOP into
a simultaneous optimization of a collection of weighted Tchebycheff functions or
weighted sum functions. At each iteration, the algorithm generates a random weight
vector to evaluate the current population and uses an external population to store the
non-dominated solutions. The Jaszkiewicz’s MOGLS can be described as follows:

• Step 1: An initialization step is performed to initialize a set of current solutionsCS
with S solutions, a vector z = (z1, z2, . . . , zm)T where zi is the largest value found
so far for the objective fi , and an external populationEP to store the non-dominated
solutions of CS;

• Step 2: Then, the external population EP is updated as follows:

1. A randomly weight vectorw is generated, k (i.e., the size of temporary elite pop-
ulation) best solutions with regard to the used scalarizing function are selected
to form a temporary elite population T, and a new solution y is generated by
applying the genetic operators to two randomly chosen solutions from T ;

2. A solution y′ is generated by applying a local improvement heuristic to y;
3. The vector z is updated: For each j = 1, . . . ,m, if z j < f j (y′), then set z j =

f j (y′). This step is performed only in the case where the Tchebycheff approach
is used, this step is removed otherwise;

4. The solution y′ is added to CS, if y′ is better than the worst solution in T with
regard to the used scalarizing function and different from the solutions in T with
regard to the m real-valued objective functions. In the case where the size of CS
is larger than K × S the oldest solution is deleted from CS.

5. All the solutions in EP that are dominated by y′ are removed and y′ is added to
EP if there is no solutions that dominate it.

The above described steps are repeated until a stopping criterion is satisfied. The
experimental results have shown that MOGLS may work well on MaOPs. However,
the use of the recombination operator and the appropriate selection of the solutions
for recombination influence the performance of MOGLS. Moreover, as reported in
[50], the upper bound of the size of CS which is equal to K × S influences the space
complexity of MOGLS.

• MOEA/D: Multi-objective Evolutionary Algorithm Based on Decomposition

MOEA/D is one of the most popular decomposition-based algorithm proposed by
Zhang and Li [50]. MOEA/D decomposes the MaOP into N sub-problems (N is the
population size) that are optimized simultaneously. It uses a set of well-distributed
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weight vectors λ j to cover the whole Pareto front. The algorithm begins by deter-
mining a neighborhood of T weight vectors for each λ j . After that, the population
members are assigned to the weight vectors. Thereafter, two solutions from neigh-
boring weight vectors are mated and an offspring solution is created. The offspring
solution is then evaluated using a scalarizing function. This generated new solution
can also replace several current solutions of its neighboring sub-problems when it
outperforms them. Three versions of scalarizing functions are adopted forMOEA/D:
(1) weighted sum approach [57], (2) weighted Tchebycheff approach [57], and (3)
boundary intersection approach [58, 59]. Ishibuchi et al. [60] studied the relation
between the neighborhood size and the performance of MOEA/D in solving many-
objective problems. In this work, it was proved that a large replacement neighbor-
hood improves the search ability of MOEA/D in the objective space. However, a
small replacement and mating neighborhood are beneficial to maintain the diversity.
MOEA/D has demonstrated very interesting results on several MaOPs. However,
its main shortcoming is the degradation of diversity and solution distribution when
tackling scaled problems.

• NSGA-III: Non-dominated Sorting Genetic Algorithm III

Deb and Jain [61] proposed NSGA-III which remains similar to the NSGA-II algo-
rithm with some changes in its selection mechanism. The general principle of this
MaOEA can be described as follows. Differently to MOEA/D, NSGA-III makes the
decomposition based on a set of well-distributed reference points. Afterwords, a ran-
domly parent population Pt with N individuals is generated. The following steps are
iterated until the termination criterion is satisfied. The algorithm begins by creating
an offspring population Qt with N individuals obtained by applying genetic oper-
ators to Pt . Thereafter, the two populations Pt and Qt are merged with each other
to form a new population Rt of size 2N . After that, the combined population Rt is
sorted into several fronts using the non-dominated sorting as done in NSGA-II. Then,
a new population St is constructed starting from the first front F1 until the size of the
population St becomes equal to N or for the first time greater than N. Let us suppose
that the last accepted level is the lth level. Therefore, all solutions from level (l + 1)
onwards are rejected. In most cases, the last front F1 is accepted partially. NSGA-II
uses a niching strategy to choose individuals from the last front which are situated in
the least crowding regions in F1. However, the crowding distance is not well-suited
for MaOPs. For this reason, the selection mechanism was modified in NSGA-III.
Figure3 illustrates the two mechanisms used in (a) NSGA-II and (b) NSGA-III to
maintain diversity among solutions. The principle of the selection mechanism is as
follows. It begins by normalizing the population members and the supplied reference
points. Then, it calculates the perpendicular distance between a solution in St and
each of the reference lines that join the ideal point with the reference points. So
that, each individual in St is associated with the reference point having the minimum
perpendicular distance. Thereafter, a niche preservation operation is performed and
it can be summarized by this two following steps:
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Fig. 3 Illustration of working principles of a NSGA-II versus b NSGA-III (inspired by [62])

• Step 1: Count the number of individuals from Pt+1 = St/Fl that are associated
with each reference point;

• Step 2: Define a reference point set that contains the reference points having the
minimum niche count ρ. If this set contains more than one point, we choose one
of them at random.

Hence, four scenarios are identified which are detailed in [61]. After that, we update
the different niche counts. It should be noted that this procedure is repeated until the
population size of Pt+1 becomes equal to N. NSGA-III has demonstrated very good
results on problems involving up to 15 objectives. The major advantage of NSGA-III
is its ability to findwell-converged andwell-diversified solutions. Another advantage
is that it does not require any additional parameters to be set such in MOEA/D.

• DBEA-Eps: Decomposition Based Evolutionary Algorithm for Many-
objective Optimization with Systematic Sampling and Adaptive Epsilon
Control

Asafuddoula et al. [63] proposed a decomposition-based algorithm that generates a
structured set of reference points, that uses an adaptive epsilon comparison tomanage
the balance between the convergence and the diversity, and that adopts an adaptive
epsilon formulation to deal with constraints. DBEA-Eps begins with a generation
of a set of reference points using the normal boundary intersection method (NBI).
Thereafter, the neighborhood of each reference point (i.e., T closest reference points
computed based on a Euclidean distance amongst them) is determined. Similarly
to NSGA-III, DBEA-Eps normalizes the population based on intercepts calculated
usingM extreme points of the non-dominated set and computes the same two distance
measures d1 and d2 used in NSGA-III to control diversity and convergence of the
algorithm. Figure4 illustrates the two distancemeasures d1 and d2 in a two objectives
minimization problem. It also uses a mating partner selection to select a parent from
the neighborhood of the current solution Pi with a given mating probability δ and a
method of recombination using information fromneighboring sub-problems. In order
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Fig. 4 Illustration of the
distance measures d1 and d2
with respect to a reference
direction. From Ref. [63]

to manage the balance between convergence and diversity, the authors proposed to
use an adaptive epsilon comparison, where a child solution replaces a single parent
based on the following equation:

(d1, d2) < εCD(d1, d2) ⇒
⎧⎨
⎩
d1 < d2, if d2, d2 < εCD

d1 < d2, if d2 = d2
d1 < d2, otherwise

(21)

where d2i is the d2 measure of the i-th individual, W is the number of reference
points, and the average deviation εCD is defined as follows:

εCD ==
∑W

i=1 d2i
W

(22)

In this work, an epsilon level comparison is used to compare the solutions. The
DBEA-Eps has demonstrated its outperformance on the DTLZ1 and DTLZ2 prob-
lems and on the three constrained engineering design optimization problems with
three to seven constraints (car side impact [64], water resource management [65],
and a general aviation aircraft design problem [66]). Thus, it is able to deal with
unconstrained and constrained MaOPs. However, the performance is dependent on
the choice of a number of parameters and several adaptive rules.

The same authors [67] have proposed the improved decomposition based evo-
lutionary algorithm (I-DBEA) which is a modified version of DBEA-Eps. I-DBEA
eliminates the use of the neighborhood size T and the mating probability δ such that
the entire population is considered as a neighborhood and a first encounter replace-
ment strategy has been adopted. Comparisons between solutions were based on an
adaptive epsilon level of d2. However, in I-DBEA, a simple precedence rule is used,
where d2 has a precedence over d1. In the proposed algorithm, a corner-sort is used to
identifyM extreme points that are used to create the hyperplane and to compute the
intercepts. The experimental results indicate that I-DBEA is able to deal with uncon-
strained and constrained MaOPs. However, as noted by the authors, this approach
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is not suitable to solve problems evolving a large number of reference directions
(i.e., a large population is not practical).

• Other Decomposition-Based Approaches

Inspired by Preference based approaches, the researchers have proposed to direct
the search towards multiple well-distributed ROIs in order to cover the whole Pareto
front for MaOPs. In fact, decomposition-based approaches decompose the original
MOP into a collection of sub-problems that will be simultaneously optimized. Sev-
eral scalarizing functions have been used to convert the problem of approximation
of the PF into a number of scalar optimization sub-problems such as the weighted
summethod, the Tchebycheff method, and the boundary intersection method. Those
scalarizing functions have been used to decompose the problem into single objec-
tive sub-problems which are defined with the help of weight vectors (Miettinen and
Mäkelä [68]). Li et al. [69] proposed MOEA/DD which presents a unified paradigm
that combines dominance and decomposition-based approaches for many-objective
optimization to balance between convergence and diversity. MOEA/DD uses an
update procedure that depends on Pareto dominance, local density estimation, and
scalarizing functions, sequentially. The authors have also proposed a modified ver-
sion of MOEA/DD called C-MOEA/DD to solve constrained problems. The perfor-
mance of the two algorithms was investigated on a set of unconstrained benchmark
problems with up to fifteen objectives and on a number of constrained optimization
problems. The obtained results have demonstrated the outperformance of both algo-
rithms in solving problems with a high number of objectives. However, MOEA/DD
is sensitive to the two parameters T and δ which represent the neighborhood size and
the probability of selecting mating parents from neighboring sub-regions, respec-
tively. Different MOEA/D variants have been proposed in the literature to tackle
MaOPs such as MOEA/D-DRA (Zhang et al. [70]) and UMOEA/D (Tan et al.
[71]). Yuan et al. [72] proposed the θ-NSGA-III witch is an improved version of
NSGA-III, but the main difference between the two algorithms is that the θ-NSGA-
III replaces the Pareto dominance used in NSGA-III with a new dominance relation
which is called the θ-dominance. θ-NSGA-III outperforms MOEA/D and NSGA-III
in terms of convergence. However, it was proved that this algorithm is insensitive to
the parameter θ. Elarbi et al. [73] proposed a new dominance relation called TSD-
dominance to deal withMaOPs. The TSD-NSGA-II represents a newmany-objective
version of NSGA-II where the Pareto dominance is replaced by the TSD-dominance.
TSD-NSGA-II was found to be highly competitive in dealing with constrained and
unconstrained problems. However, MaOPs involving the characteristics of DTLZ6-
7 represent the limits of TSD-NSGA-II. Table6 provides a comparison of some of
the most prominent decomposition-based approaches for MaOPs. From the different
discussed works in this chapter, we remark that the choice of a specific scalarizing
function to use influences the performance of the decomposition-based algorithm
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Table 6 Comparison of decomposition-based approaches for MaOPs: MaxObjs means maximum
number of objectives, CP means constrained problems, UP means unconstrained problems, WV
means weight vectors, RP means reference points

Algorithms References MaxObjs CP UP WV RP

MOGLS Jaszkiewicz [56] 4 X – X –

MOEA/D Zhang and Li [50] 4 X X X –

NSGA-III Deb and Jain [61] 15 – X – X

DBEA-Eps Asafuddoula et al. [63] 15 X X – X

I-DBEA Asafuddoula et al. [67] 15 X X – X

MOEA/DD Li et al. [69] 15 X X X –

MOEA/D-DRA Zhang et al. [70] 5 – X X –

UMOEA/D Tan et al. [71] 5 X X X –

θ-NSGA-III Yuan et al. [72] 20 – X – X

TSD-NSGA-II Elarbi et al. [73] 20 – X – X

[74]. Moreover, different methods have been used to generate a set of weight vec-
tors (i.e., reference points) such as the systematic approach [58] and the on-the-fly
weighting vector generating method [75]. However, how to configure the weight
vectors is still a big challenge for decomposition-based algorithms, since those latter
dramatically affect the diversity performance.

3 Performance Assessment of MaOEAs

3.1 Test Problems and Statistical Analysis

Several test problems have been used to investigate MaOEAs capabilities in approx-
imating the Pareto front. In the literature, among the most used test function suites
we find: (1) the scalable DTLZ (Deb-Thiele-Laumans- Zitzler) suite and the scal-
able WFG (Walking Fish Group) Toolkit. MaOEAs have also been used in some
combinatorial problems such as knapsack problems. Recently, a number of scalable
constrained test problems having three up to 15 objectives have been introduced
[64]. Those latter are characterized with various types of difficulties to an algorithm.
Table7 summarizes the above mentioned test problems in this chapter.

Many existing works use the median and the interquartile range values obtained
by a specific performance metric in order to compare the performance of differ-
ent algorithms. However, each algorithm can behave differently from one run to
another. Hence, the use of a statistical testing approach is necessary. Firstly, we
should check whether the obtained results are normally distributed or not using the
Kolmogorov–Smirnov test. If data follow a normal distribution, we can use the t-
test when comparing between two algorithms and the ANOVA one if the comparison
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Table 7 Summary of the mentioned test problems (inspired by [28])

Test problems References Remarks

DTLZ Deb et al. [21] Scalable problem

WFG Huband et al. [22] Scalable problem

MKP Zitzler et al. [9] Multi-objective 0/1 Knapsack
Problem

NRP Burke et al. [18] Nurse Restoring Problem

DTLZ5(I,M) Deb et al. [19] Scalable problem

DTLZ2BZ Brockhoff et al. [77] Modified version of DTLZ2

LPMS Miettinen et al. [78] Locating a pollution
monitoring station

EXPO Thiele et al. [79] A network processor
application comprising
problem

LZ Li et al. [80] Continuous test problems

Car side impact Jain and Deb [64] Engineering constrained
problem

Water resource management Ray et al. [65] Engineering constrained
problem

General aviation aircraft
design

Hadka et al. [66] Engineering constrained
problem

involvesmore than two algorithms. To avoid verifying data normality, we can directly
use the Wilcoxon test and the Kruskal-Wallis as non-parametric alternatives of the
t-test and the ANOVA one respectively. For more details about statistical testing in
evolutionary computation, the reader could refer to [76].

3.2 Performance Metrics

In the literature, fewer are the performancemetrics that have been used to evaluate the
performance ofMaOEAs.Themost commonused performancemetrics are described
in this subsection.

• The Inverted Generational Distance (IGD)

The IGD is a performance metric that measures the distance between the true Pareto
front and the closest individual in an approximation set. It is expressed as follows
[81]:

IIGD = (
∑PF∗

i=1 dq
i )

1
q

PF∗ (23)
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where dq
i is the Euclidean distance between an individual from the Pareto front PF∗

to its nearest individual in the approximation set and q = 2. In fact, the lower are
the IIGD values, the better are the obtained sets. Moreover, the IGD can measure
both convergence and diversity. The IGD metric requires a reference true Pareto
front in the calculation. However, it is difficult to determine the reference true Pareto
front of MaOPs. Thus, an exact method to generate a set of uniformly well-spread
points over the true Pareto front has been proposed for the DTLZ1-DTLZ4 test
problems [69]. This method locates exactly the intersecting points of the reference
points generated by the algorithm and the Pareto-optimal surface since the exact
Pareto-optimal surfaces of DTLZ1 to DTLZ4 are known a priori. For DTLZ1, given
a reference point r = (r1, . . . , rM)T , the i-th objective function of a Pareto-optimal
solution x∗ is computed as follows:

fi (x
∗) = 0.5 × ri∑M

j=1 r j
(24)

As for DTLZ2 to DTLZ4, given a reference point r = (r1, . . . , rM)T , the i-th objec-
tive function of a Pareto-optimal solution x∗ is computed as follows:

fi (x
∗) = ri√∑M

j=1 r
2
j

(25)

• The Generational Distance (GD)

The GD metric evaluates an average distance of an approximation set P from the
true Pareto front PF∗ [82]. It is defined as follows:

IGD =
√∑P

i=1d
2
i

|P| (26)

where di is theEuclidean distance between the solution i ∈ P and the nearestmember
of PF∗. A value of IGD = 0 indicates that all the individuals of the approximation
set P are in the true Pareto front PF∗. This metric evaluate only the convergence of
an algorithm.

• The Hypervolume (HV)

The HV indicator is a unary indicator that calculates the volume of the hypercube
dominated by an approximation set. This indicator can be expressed as follows:

IHV = ∪
i
S(i)|i ∈ PF∗ (27)

where S(i) is the hypercube bounded by a solution i and a reference point. In fact,
the choice of the reference point is important because it influences the outcome of
this metric. The reference point can be constructed by the worst objective function
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values. This measure captures both convergence and diversity. A large value of the
HV metric is desirable.The main drawback of this metric is the high computational
cost needed to compute the exact HV [53].

• The Spread (Δ)

The Δ metric measures the deviation among neighboring solutions in the non-
dominated solution set P furnished by the MOEA [83]. Analytically, it is stated
as follows:

IΔ =
|P|∑
i=1

|di − d|
|P| (28)

where di is the Euclidean distance between two neighbor solutions in P and d is the
average of these distances. In fact, a smaller value of Δ indicates that the algorithm
is able to find a diverse set of non-dominated solutions.

4 Conclusion and Future Research Paths

In this chapter, we have first described the related issues that MOEAs encounter
when the dimensionality of the objective space increases. Then, we have sur-
veyed the most prominent MaOEAs. We have proposed to classify the existing
MaOEAs into five classes: Preference ordering relation-based approaches, objective
reduction-based approaches, preference incorporation-based approaches, indicator-
based approaches, and decomposition-based approaches.

The preference ordering relation-based approach aims to propose a preference
relation that induce a finer order than that induced by the Pareto dominance rela-
tion. Hence, the non-dominated solutions are further ranked using this relation. This
method has the ability to increase the selection pressure towards the Pareto front.
However, it decreases the diversity of the solutions. Thus, it will be interesting to
propose newflexible selectionmethods and new diversitymechanisms for preference
ordering relation-based approaches.

The objective reduction-based approach finds the relevant objectives and elimi-
nates the redundant objectives that are not essential to describe the Pareto optimal
front. In other words, it identifies the non-conflicting objectives and discards them to
reduce the number of objectives of theMaOPs during the search process. Two reduc-
tion methods can be identified: (1) the offline dimensionality reduction method and
(2) the online dimensionality reductionmethod. Themain advantage of this approach
is that it reduces the computational cost of the MaOEAs. However, for MaOps with
non-redundant objectives this approach may fail to reduce the number of objectives.

The preference incorporation-based approach exploits the DM preferences in
order to differentiate between Pareto equivalent solutions. It focuses the search
process on a specific region of the Pareto front. Preference incorporation-based
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methods can be classified into the three following subclasses: (1) priori preference-
based approaches, (2) interactive preference-based approaches, and (3) posteriori
preference-based approaches. In fact, one of the issues that arises when using the a
posteriori preference-based approach is that it may obtain a high number of solutions
that the DM is not interested in [28].

The indicator-based approach transforms the MaOP into the problem of optimiz-
ing an indicator by evaluating the solutions using a performance metric. The high
computational cost of the hypervolume calculation represents a difficulty for this
approach when dealing with high dimensional objective space. Hence, it will be
interesting to propose new indicators that are well-adapted for MaOPs.

The decomposition-based approach decomposes the problem into several sub-
problems thatwill be simultaneously optimized using scalarizing functions.Actually,
decomposition is the most successful approach to solveMaOPs. Both the scalarizing
function and the method used to generate a structured set of reference points (or
weight vectors) influence the performance of a decomposition-based algorithm. For
this reason,more future research are neededonproposing newmethods for generating
weight vectors.
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