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Abstract Bilevel optimization involves two levels of optimization where one
optimization level acts as a constraint to another optimization level. There are enor-
mous applications that are bilevel in nature; however, given the difficulties associated
with solving this difficult class of problem, the area still lacks efficient solutionmeth-
ods capable of handling complex application problems.Most of the available solution
methods can either be applied to highly restrictive class of problems, or are compu-
tationally very expensive such that they do not scale for large scale bilevel problems.
The difficulties in bilevel programming arise primarily from the nested structure of
the problem. Evolutionary algorithms have been able to demonstrate its potential
in solving single-level optimization problems. In this chapter, we provide an intro-
duction to the progress made by the evolutionary computation community towards
handling bilevel problems. The chapter highlights past research and future research
directions both on single as well as multiobjective bilevel programming. Some of
the immediate application areas of bilevel programming have also been highlighted.
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1 Introduction

Bilevel optimization is characterized as a mathematical program with two levels of
optimization. The outer optimization problem is commonly referred to as the upper
level optimization problem and the inner optimization problem is commonly referred
to as the lower level optimization problem. The origin of bilevel optimization can be
traced to two roots: these problems were first realized by Stackelberg [1] in the area
of game theory and came to be known as Stackelberg games; later these problems
were realized in the area of mathematical programming by Bracken and McGill [2]
as a constrained optimization task, where the lower level optimization problem acts
as a constraint to the upper level optimization problem. These problems are known to
be difficult due to its nested structure; therefore, it has received most attention from
the mathematical community towards simple cases where the objective functions
and constraints are linear [3, 4], quadratic [5–7] or convex [8]. The nested structure
in bilevel introduces difficulties such as non-convexity and disconnectedness even
for simpler instances of bilevel optimization like bilevel linear programming prob-
lems. Bilevel linear programming is known to be strongly NP-hard [9], and it has
been proven that merely evaluating a solution for optimality is also a NP-hard task
[10]. This gives us an idea about the kind of challenges offered by bilevel problems
with complex (non-linear, non-convex, discontinuous etc.) objective and constraint
functions.

An interest in bilevel programming has been driven by a number of new appli-
cations arising in different fields of optimization. For instance, in the context of
homeland security [11–13], bilevel and even trilevel optimization models are com-
mon. In game theoretic settings, bilevel programs have been used in the context
of optimal tax policies [14–16]; model production processes [17]; investigation of
strategic behavior in deregulated markets [18] and optimization of retail channel
structures [19], among others. Bilevel optimization applications are ubiquitous and
arise in many other disciplines, like in transportation [20–22], management [23, 24],
facility location [23, 25, 26], chemical engineering [27, 28], structural optimization
[29, 30], and optimal control [31, 32] problems.

Evolutionary computation [33] techniques have been successfully applied to han-
dle mathematical programming problems and applications that do not adhere to reg-
ularities like continuity, differentiability or convexities. Due to these properties of
evolutionary algorithms, attempts have beenmade to solve bilevel optimization prob-
lems using these methods, as even simple (linear or quadratic) bilevel optimization
problems are intrinsically non-convex, non-differentiable and disconnected at times.
However, the advantages come with a trade-off. Most of the evolutionary bilevel
techniques are nested where an outer algorithm handles the upper level optimization
task and an inner algorithm handles the lower level optimization task, thereby mak-
ing the overall bilevel optimization computationally very intensive. To address these
problems attempts have been made to reduce the computational expense of evolu-
tionary bilevel optimization algorithms by utilizing metamodeling-based principles.
Multiobjective bilevel programming is a natural extension of bilevel optimization
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problems with single objectives. However, multiple objectives in bilevel optimiza-
tion, alongwith computational challenges, brings in intricacies related to hierarchical
decision making.

In this chapter, we highlight some of the past, and recent studies and results
in the area of evolutionary bilevel optimization. The chapter begins with a survey
on single objective bilevel optimization in Sect. 2. This is followed by single-level
formulations of bilevel optimization in Sect. 3. Thereafter, in Sect. 4 we discuss and
compare some recent solution methods for bilevel optimization. Section5 introduces
multiobjective bilevel optimization and provides a survey on the topic. In Sect. 6 we
discuss the decision making issues in multiobjective bilevel optimization. Finally,
we conclude in Sect. 7 with some ideas on future research directions.

2 A Survey on Evolutionary Bilevel Optimization

Most of the evolutionary approaches proposed to handle bilevel optimization prob-
lems are nested in nature. As the name suggests, these approaches rely on two opti-
mization algorithms, where one algorithm is executed within the other. Based on
the complexity of the optimization tasks at each level, researchers have chosen to
use either evolutionary algorithms at both levels or evolutionary algorithm at one
level and classical optimization algorithm at the other level. One of the earliest
evolutionary algorithms for solving bilevel optimization problems was proposed in
the early 1990s by Mathieu et al. [34] who used a nested approach with genetic
algorithm at the upper level, and linear programming at the lower level. Later, Yin
[35] used genetic algorithm at the upper level and Frank–Wolfe algorithm (reduced
gradient method) at the lower level. In both these approaches a lower level opti-
mization task was executed for every upper level member that emphasizes the nested
structure of these approaches. Along similar lines, nested procedures were used in
[36–39]. Approaches with evolutionary algorithms at both levels are also common;
for instance, in [40] authors used differential evolution at both levels, and in [41]
authors nested differential evolution within an ant colony optimization.

In a number of studies, where lower level problem adhered to certain regularity
conditions, researchers have used the KKT conditions for the lower level problem
to reduce the bilevel problem into a single-level problem. The reduced single-level
problem is then solvedwith an evolutionary algorithm. For instance,Hejazi et al. [42],
reduced the linear bilevel problem to single-level and then used a genetic algorithm,
where chromosomes emulate the vertex points, to solve the problem. Wang et al.
[43] used KKT conditions to reduce the bilevel problem into single-level, and then
utilized a constraint handling scheme to successfully solve a number of standard
test problems. A later study by Wang et al. [44] introduced an improved algorithm
that performed better than the previous approach [43]. Recently, Jiang et al. [45]
reduced the bilevel optimization problem into a non-linear optimization problem
with complementarity constraints, which is sequentially smoothed and solved with
a PSO algorithm. Other studies using similar ideas are [46, 47].
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It is noteworthy that utilization of KKT conditions restricts the algorithm’s
applicability to only a special class of bilevel problems. To overcome this drawback,
researchers are looking into metamodeling based approaches where the lower level
optimal reaction set is approximated over generations of the evolutionary algorithm.
Studies in this direction are [48, 49]. Along similar lines, attempts have been made to
metamodel the lower level optimal value function [50] to solve bilevel optimization
problems. Approximating the lower level optimal value function may offer a few
advantages over approximating the lower level reaction set that has been highlighted
in this chapter.

3 Bilevel Formulation and Single-Level Reductions

In this section, we provide a general formulation for bilevel optimization, and differ-
ent ways people have used to reduce bilevel optimization problems to single-level
problems. Bilevel problems contain two levels, upper and lower, where lower level
is nested within the upper level problem. The two levels have their own objectives,
constraints and variables. In the context of game theory, the two problems are also
referred to as the leader’s (upper) and follower’s problems (lower). The lower level
optimization problem is a parametric optimization problem that is solvedwith respect
to the lower level variables while the upper level variables act as parameters. The
difficulty in bilevel optimization arises from the fact that only lower level optimal
solutions can be considered as feasible members, if they also satisfy the upper level
constraints. Below we provide a general bilevel formulation:

Definition 1 For the upper-level objective function F : Rn × R
m → R and lower-

level objective function f : Rn × R
m → R, the bilevel optimization problem is

given by

“min”
xu∈XU ,xl∈XL

F(xu, xl) subject to

xl ∈ argmin
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J }

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : XU × XL → R, k = 1, . . . , K denotes the upper level constraints, and
g j : XU × XL → R represents the lower level constraints, respectively.

3.1 Optimistic Versus Pessimistic

Quotes have been used while specifying the upper level minimization problem in
Definition 1 because the problem is ill-posed for cases where the lower level has
multiple optimal solutions. For instance, Fig. 1 shows the case where the lower level
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Fig. 1 A scenario where there is a single lower level optimal solution corresponding to an upper
level decision vector. The bilevel optimization problem in Definition 1 is clearly defined for this
case

problem has a single optimal solution corresponding to an upper level decision.
Therefore, it is clear that for the upper level decision, the only rational lower level
decision would be the single optimal solution at the lower level. However, there is
lack of clarity in the situation shown in Fig. 2, as it is not clear that, out of multiple
lower level optimal solutions, which solution will actually be chosen by the lower
level decision maker. If the selection of the lower level decision maker is unknown,
the bilevel formulation remains ill-defined. It is common to assume either of the
two positions, i.e., optimistic or pessimistic, to sort out this ambiguity. In optimistic
position some form of cooperation is assumed between the leader and the follower.
For any given leader’s decision vector that has multiple optimal solutions for the
follower, the follower is expected to choose that optimal solution that leads to the
best objective functionvalue for the leader.On theother hand, in a pessimistic position
the leader optimizes for the worst case, i.e. the follower may choose that solution
from the optimal set which leads to the worst objective function value for the leader.
Optimistic position being more tractable is commonly studied in the literature, and
we also consider the optimistic position in this chapter.



76 A. Sinha et al.

Multiple Lower Level
Optimal Solution

Upper-level decision space 

Lower-level decision space 

Lo
w

er
 L

ev
el

 F
un

ct
io

n

Upper Level
Decision Vector

Bilevel formulation is ill-defined
until an optimistic or a
pessmistic position is assumed

Fig. 2 A scenario where there is a multiple lower level optimal solution corresponding to an upper
level decision vector. The bilevel optimization problem in Definition 1 is ill-defined for this case if
the lower level’s selection is not known or assumed

3.2 KKT Reduction

When the lower level problem in Definition 1 adheres to certain convexity and reg-
ularity conditions, it is possible to replace the lower level optimization task with its
KKT conditions.

Definition 2 The KKT conditions appear as Lagrangian and complementarity con-
straints in the single-level formulation provide below:

min
xu∈XU ,xl∈XL ,λ

F(xu, xl)

subject to

Gk(xu, xl) ≤ 0, k = 1, . . . , K ,

g j (xu, xl) ≤ 0, j = 1, . . . , J,

λ jg j (xu, xl) = 0, j = 1, . . . , J,

λ j ≥ 0, j = 1, . . . , J,

∇xl L(xu, xl ,λ) = 0,
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where

L(xu, xl ,λ) = f (xu, xl) +
J∑

j=1

λ jg j (xu, xl).

The above formulation might not be simple to handle, as the Lagrangian constraints
often lead to non-convexities, and the complementarity condition being combina-
torial, make the overall problem a mixed integer problem. In case of linear bilevel
optimization problems, the Lagrangian constraint is also linear. Therefore, the single-
level reduced problem becomes a mixed integer linear program. Approaches based
on vertex enumeration [51–53], as well as branch-and-bound [54, 55] have been
proposed to solve these problems.

3.3 Reaction Set Mapping

An equivalent formulation of the problem given in Definition 1 can be stated in terms
of set-valued mappings as follows:

Definition 3 Let Ψ : Rn ⇒ R
m be the reaction set mapping,

Ψ (xu) = argmin
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents the constraint defined by the lower-level optimization problem,
i.e. Ψ (xu) ⊂ XL for every xu ∈ XU . Then the bilevel optimization problem can be
expressed as a constrained optimization problem as follows:

min
xu∈XU ,xl∈XL

F(xu, xl)

subject to

xl ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

Note that if the Ψ -mapping can somehow be determined, the problem reduces to a
single level constrained optimization task. However, that is rarely the case. Evolu-
tionary computation studies that rely on iteratively mapping this set to avoid frequent
lower level optimization are [48, 49]. The idea behind the algorithm has been shown
through Figs. 3 and 4. To begin with, the lower level problem is completely solved for
a few upper level decision vectors. For example, in Fig. 3 the lower level decisions
corresponding to upper level decisions a, b, c, d, e and f are determined by solving
a lower level problem completely. The lower level decisions for these members cor-
respond to the actual Ψ -mapping (unknown). These member are then used to find
an approximate Ψ -mapping locally as shown in Fig. 4. For every new upper level
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Fig. 3 Solving the lower level optimization problem completely for random upper level members
like a, b, c, d, e and f provides the corresponding lower level optimal solutions represented by
Ψ (a), Ψ (b), Ψ (c), Ψ (d), Ψ (e) and Ψ ( f ). The Ψ -mapping is assumed to be single valued

Upper-level decision space 

Lower-level decision space 

f

c

Ψ (c)

a

Ψ (a)

d

Ψ (d)

e

Ψ (e) Ψ (b)Ψ (f)

b

Actual

Approximate

Fig. 4 An approximate mapping for the lower level reaction set estimated using the actual val-
ues Ψ (a), Ψ (b), Ψ (c), Ψ (d), Ψ (e) and Ψ ( f ). Local approximations are preferable over a global
approximation of the Ψ -mapping

member, the local approximation is used to identify the lower level decision instead
of solving the lower level optimization problem. The idea is used iteratively until
convergence. The idea works well when the Ψ -mapping is single valued.
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3.4 Lower Level Optimal Value Function

Another equivalent definition of the problem in Definition 1 can be given in terms
of the lower level optimal value function that is defined below [56]:

Definition 4 Let ϕ : XU → R be the lower level optimal value function mapping,

ϕ(xu) = min
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents theminimum lower level function value corresponding to any upper
level decision vector. Then the bilevel optimization problem can be expressed as
follows:

min
xu∈XU ,xl∈XL

F(xu, xl)

subject to

f (xu, xl) ≤ ϕ(xu)

g j (xu, xl) ≤ 0, j = 1, . . . , J

Gk(xu, xl) ≤ 0, k = 1, . . . , K .

The ϕ-mapping can be approximated iteratively during the generations of the evolu-
tionary algorithm, and a reduced problem described in Definition 4 can be frequently
solved to converge towards the bilevel optimum. An evolutionary algorithm relying
on this idea can be found in [50]. Approximating the optimal value function map-
ping offers an advantage over approximating reaction set mapping, as the optimal
value function mapping is not set valued. Moreover, it returns a scalar for any given
upper level decision vector. Figure5 shows an example where the lower level prob-
lem has multiple optimal solutions for some upper level decisions and single optimal
solutions for others. In all situations, the ϕ-mapping remains single valued scalar.
Though there are advantages associated with estimating the ϕ-mapping, it is also
interesting to note in Definition 4 that the reduced single level problem has to be

Fig. 5 Anexample showingϕ-mapping and how it depends on the lower level optimization problem
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solved with respect to both upper and lower level variables, while in Definition 7,
the lower level variables are directly available from theΨ -mapping. Therefore, there
exists a trade-off.

4 Comparison of Metamodeling Based Evolutionary
Approaches for Bilevel Optimization

In this section, we provide the steps of two different evolutionary bilevel algorithms,
where one utilizes iterative approximation of theΨ -mapping, while the other utilizes
iterative approximation of the ϕ-mapping in the intermediate steps. The steps of the
algorithms are provided through a flowchart in Fig. 6. For brevity, we do not discuss
the steps of the evolutionary algorithm, as any scheme can be utilized in the provided
framework to handle bilevel optimization problems. For further information about
the implementation of the approaches the readers are referred to [50].

The intermediate steps of the above algorithms utilizes quadratic approximation
for approximating the Ψ and the ϕ mappings. Both the ideas were tested on a set
of 8 test problems given in Tables1 and 2. To assess the savings achieved by the
two approximation approaches, we compare them against a nested approach where
the approximation idea is not incorporated, but the same evolutionary algorithm

Fig. 6 Flowchart for incorporating approximated ϕ-mapping in an evolutionary algorithm
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Table 1 Standard test problems TP1–TP5

Problem Formulation Best Known
Sol.

TP1

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2,

s.t.

y ∈ argmin
(y)

{
f (x, y) = (x1 − y1)2 + (x2 − y2)2

0 ≤ yi ≤ 10, i = 1, 2

}
,

x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15

F = 225.0

f = 100.0

TP2

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t.

y ∈ argmin
(y)

⎧
⎪⎨

⎪⎩

f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2

x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10

−10 ≥ yi ≥ 20, i = 1, 2

⎫
⎪⎬

⎪⎭
,

x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.

F = 0.0

f = 100.0

TP3

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = −(x1)2 − 3(x2)2 − 4y1 + (y2)2,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x, y) = 2(x1)2 + (y1)2 − 5y2
(x1)2 − 2x1 + (x2)2 − 2y1 + y2 ≥ −3

x2 + 3y1 − 4y2 ≥ 4

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(x1)2 + 2x2 ≤ 4,

0 ≤ xi , i = 1, 2

F = −18.6787

f = −1.0156

TP4

n = 2,
m = 3

Minimize
(x,y)

F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x, y) = x1 + 2x2 + y1 + y2 + 2y3
y2 + y3 − y1 ≤ 1

2x1 − y1 + 2y2 − 0.5y3 ≤ 1

2x2 + 2y1 − y2 − 0.5y3 ≤ 1

0 ≤ yi , i = 1, 2, 3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

0 ≤ xi , i = 1, 2

F = −29.2

f = 3.2

(Note that x = xu and y = xl )

described in Fig. 6 is used at the upper level and a lower level optimization prob-
lem is solved for every upper level member. Hereafter, we refer this benchmark as
a no-approximation approach. Whenever lower level optimization is required, we
rely on sequential quadratic programming to solve the problem for all cases. Table3
provides the median function evaluations (31 runs) at the upper and lower level
required by each of the three cases, i.e., ϕ-approximation, Ψ -approximation and
no-approximation. Detailed results from multiple runs are presented through Figs. 7
and 8. Interestingly, both the approximation ideas perform significantly well on all
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Table 2 Standard test problems TP6–TP8

Problem Formulation Best Known Sol.

TP5

n = 2, m = 2

Minimize
(x,y)

F(x, y) = r t (x)x − 3y1 − 4y2 + 0.5t (y)y,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x, y) = 0.5t (y)hy − t (b(x))y

−0.333y1 + y2 − 2 ≤ 0

y1 − 0.333y2 − 2 ≤ 0

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

where

h =
(
1 3

3 10

)
, b(x) =

(
−1 2

3 −3

)
x, r = 0.1

t (·) denotes transpose of a vector

F = −3.6

f = −2.0

TP6

n = 1, m = 2

Minimize
(x,y)

F(x, y) = (x1 − 1)2 + 2y1 − 2x1,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, y) = (2y1 − 4)2+
(2y2 − 1)2 + x1y1
4x1 + 5y1 + 4y2 ≤ 12

4y2 − 4x1 − 5y1 ≤ −4

4x1 − 4y1 + 5y2 ≤ 4

4y1 − 4x1 + 5y2 ≤ 4

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

0 ≤ x1

F = −1.2091

f = 7.6145

TP7

n = 2, m = 2

Minimize
(x,y)

F(x, y) = − (x1+y1)(x2+y2)
1+x1 y1+x2 y2

,

s.t.

y ∈ argmin
(y)

{
f (x, y) = (x1+y1)(x2+y2)

1+x1 y1+x2 y2
0 ≤ yi ≤ xi , i = 1, 2

}
,

(x1)2 + (x2)2 ≤ 100

x1 − x2 ≤ 0

0 ≤ xi , i = 1, 2

F = −1.96

f = 1.96

TP8

n = 2, m = 2

Minimize
(x,y)

F(x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,
s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x, y) = (y1 − x1 + 20)2+
(y2 − x2 + 20)2

2y1 − x1 + 10 ≤ 0

2y2 − x2 + 10 ≤ 0

−10 ≤ yi ≤ 20, i = 1, 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

x1 + x2 + y1 − 2y2 ≤ 40

0 ≤ xi ≤ 50, i = 1, 2

F = 0.0

f = 100.0

(Note that x = xu and y = xl )
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Table 3 Median function evaluations for the upper level (UL) and the lower level (LL) from 31
runs of different algorithms

UL func. evals. LL func. evals. Savings

ϕ-appx
Med

Ψ -appx
Med

No-appx
Med

ϕ-appx
Med

Ψ -appx
Med

No-appx
Med

ϕ Ψ

TP1 134 150 – 1438 2061 – Large Large

TP2 148 193 436 1498 2852 5686 73% 50%

TP3 187 137 633 2478 1422 6867 64% 79%

TP4 299 426 1755 3288 6256 19764 83% 69%

TP5 175 270 576 2591 2880 6558 61% 56%

TP6 110 94 144 1489 1155 1984 25% 41%

TP7 166 133 193 2171 1481 2870 24% 47%

TP8 212 343 403 2366 5035 7996 69% 36%

The savings represent the proportion of total function evaluations (LL+UL) saved because of using
the approximation when compared with no-approximation approach

Fig. 7 Box plot (31
runs/samples) for the upper
level function evaluations
required for test problems
1–8

the problems as compared to the no-approximation approach. The savings column
in the table shows the proportion of function evaluations savings that can be directly
attributed to ϕ and Ψ approximations. Slight difference in performance between
the two approximation strategies can be attributed to the quality of approximations
achieved for specific test problems. To provide the readers an idea about the extent
of savings in function evaluations obtained from using metamodeling based strate-
gies, we also provide comparisons with earlier evolutionary approaches [43, 44] in
Table4. These approaches are based on single-level reduction using lower level KKT
conditions. A significantly poor performance of these methods emphasizes the fact
that even when it is possible to write the KKT constraints for the lower level problem,
a single level reduction might not necessarily make the problem easy to solve.
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Fig. 8 Box plot (31 runs/samples) for the lower level function evaluations required for test problems
1–8

Table 4 Mean of the sum of upper level (UL) and lower level (LL) function evaluations for different
approaches

Mean func. evals. (UL+LL)

ϕ-appx. Ψ -appx. No-appx. WJL [43] WLD [44]

TP1 1595 2381 35896 85499 86067

TP2 1716 3284 5832 256227 171346

TP3 2902 1489 7469 92526 95851

TP4 3773 6806 21745 291817 211937

TP5 2941 3451 7559 77302 69471

TP6 1689 1162 1485 163701 65942

TP7 2126 1597 2389 1074742 944105

TP8 2699 4892 5215 213522 182121

It is noteworthy that the Ψ -mapping in a bilevel optimization problem could be a
set-valuedmapping as shown in Fig. 9, i.e. for some or all upper level decision vectors
in the search space, the lower level optimization problem may have multiple optimal
solutions. Such a situation offers dual challenges; first, finding the Ψ -set is difficult;
second, approximating the set is also difficult. In such cases approximating the Ψ -
mapping will not help. To test this hypothesis, we modified all the 8 test problems by
adding two additional lower level variables (yp and yq ) that makes the Ψ -mapping
in all the test problems as set-valued for the entire domain of Ψ . The modification
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Upper-level decision space 

Lower-level decision space 

b

d

Ψ(d)

c

Ψ(c)

a

Ψ(b)

Ψ(a)

Fig. 9 A scenario where the Ψ -mapping is set-valued in some regions and single-valued in other
regions

does not change the original bilevel solution. This was achieved by modifying the
upper and lower level functions for all the test problems as follows:

Fnew(x, y) = F(x, y) + y2p + y2q

f new(x, y) = f (x, y) + (yp − yq)
2

yp, yq ∈ [−1, 1]

Note that the above modification necessarily makes the lower level problem have
multiple optimal solutions corresponding to all x , as the added term gets minimized
at yp = yq which has infinitelymany solutions. Out of the infinitelymany lower level
optimal solutions, the upper level prefers yp = yq = 0.With this simplemodification,
we execute our algorithm with ϕ-approximation and Ψ -approximation on all test
problems, the results for which are presented through Tables5 and 6. For all the
problems, the Ψ -approximation idea fails. The ϕ-approximation idea continues to
work effectively as before. The slight increase in function evaluations for the Ψ -
approximation approach comes from the fact that there are additional variables in
the problem.

To conclude, the Ψ -mapping offers the advantage that if it can be approximated
accurately, it readily gives the optimal lower level variables. However, in cases when
this mapping is set-valued, approximatingΨ can be very difficult. On the other hand,
the ϕ-mapping is always single-valued, approximating which is much easier, and is
therefore more preferred over the Ψ -mapping. The results shown in this section
clearly demonstrate that even a simple modification that leads to multiple lower level
optimal solutions, makes the Ψ -approximation strategy fail because of poor quality
of approximation. To our best knowledge, most of the studies utilizingmetamodeling
techniques to solve bilevel optimization problems have mostly relied on approximat-
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Table 5 Minimum, median and maximum function evaluations at the upper level (UL) from 31
runs of the ϕ-approximation algorithm on the modified test problems (m-TP)

ϕ-appx. Ψ -appx. No-appx.

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 130 172 338 – –

m-TP2 116 217 – – –

m-TP3 129 233 787 – –

m-TP4 198 564 2831 – –

m-TP5 160 218 953 – –

m-TP6 167 174 529 – –

m-TP7 114 214 473 – –

m-TP8 150 466 2459 – –

The other two approaches fail on all the test problems

Table 6 Minimum, median and maximum function evaluations at the lower level (LL) from 31
runs of the ϕ-approximation algorithm on the modified test problems (m-TP)

ϕ-appx. Ψ -appx. No-appx.

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 2096 2680 8629 – –

m-TP2 2574 4360 – – –

m-TP3 1394 3280 13031 – –

m-TP4 1978 5792 28687 – –

m-TP5 3206 4360 17407 – –

m-TP6 2617 3520 8698 – –

m-TP7 1514 5590 11811 – –

m-TP8 2521 6240 35993 – –

The other two approaches fail on all the test problems

ing the Ψ -mapping. Given the ease and reliability offered by the ϕ-approximation
overΨ -approximation, we believe that future research on metamodeling-based tech-
niques should closely look at the benefits of the ϕ-approximation.

5 Multiobjective Bilevel Optimization

A substantial body of research exists on single-objective bilevel optimization, but
relatively few papers have considered bilevel problems with multiple objectives on
both levels. Even less research has been done to understand the impacts of decision-
interaction and uncertainty that arise in multiobjective bilevel problems. One of the
reasons for little research in the area is that the problembecomes bothmathematically
and computationally intractable even with simplifying assumptions like continuity,
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differentiability, convexity etc. However, given that multiobjective bilevel problems
exist in practice, researchers have tried to explore ideas to handle these problems.

Some of the studies on multiobjective bilevel optimization that exist are mostly
directed towards development of techniques for solving optimistic formulation of
the problem, where the decision-makers are assumed to co-operate and the leader
can freely choose any Pareto-optimal lower-level solution. Studies by Eichfelder
[57, 58] utilize classical techniques to solve simple multiobjective bilevel problems.
The lower level problems are handled using a numerical optimization technique,
and the upper level problem is handled using an adaptive exhaustive search method.
This makes the solution procedure computationally demanding and non-scalable to
large-scale problems. The method is close to a nested strategy, where each of the
lower level optimization problems is solved to Pareto-optimality. Shi and Xia [59]
use the ε-constraint method at both levels of a multiobjective bilevel problem to
convert the problem into an ε-constraint bilevel problem. The ε-parameter is elicited
from the decision maker, and the problem is solved by replacing the lower level
constrained optimization problem with its KKT conditions. The problem is solved
for different ε-parameters, until a satisfactory solution is found.

With the surge in computation power, a number of nested evolutionary algo-
rithms have also been proposed, which solve the lower level problem completely
for every upper level vector to arrive at the problem optima. One of the first stud-
ies, utilizing an evolutionary approach for bilevel multiobjective algorithms was in
[35]. The study involved multiple objectives at the upper level, and a single objec-
tive at the lower level. The study suggested a nested genetic algorithm, and applied
it on a transportation planning and management problem. Later [60] used a par-
ticle swarm optimization (PSO)-based nested strategy to solve a multi-component
chemical system. The lower level problem in their application problem was linear
for which they used a specialized linear multiobjective PSO approach. Recently, a
hybrid bilevel evolutionary multiobjective optimization algorithm approach coupled
with local search was proposed in [61]. In the paper, the authors handled nonlinear
as well as discrete bilevel problems with a relatively large number of variables. The
study also provided a suite of test problems for bilevel multiobjective optimization.
An extension to this study [62] attempted to solve bilevel multiobjective optimization
with fewer function evaluations by interacting with the leader. The idea in this study
was to interact with the upper level decision maker only to model her preferences
and find the most preferred Pareto-optimal point instead of the entire frontier. The
study borrowed ideas from the area of preference-based evolutionary algorithms.

Until recently, the focus has been primarily on algorithms for handling determin-
istic problems. Less emphasis has been paid to the decision-making intricacies that
arise in practical multiobjective bilevel problems. The first concern is the reliance on
the assumption that transfers decision-making power to the leader by allowing her
to freely choose any Pareto-optimal solution from the lower-level optimal frontier.
In practical problems, the preferences of the lower-level decision maker may not be
aligned with the leader. Although a leader can anticipate the follower’s actions and
optimize her strategy accordingly, it is unrealistic to assume that she can decidewhich
trade-off the follower should choose. To solve hierarchical problems with conflicting
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decision-makers, a few studies have proposed a line of interactive fuzzy program-
ming models [63, 64]. The methods have been successfully used to handle decen-
tralized bilevel problems that have more than one lower level decision maker [65].
However, the assumption of mutual co-operation and repeated interactions between
decision-makers is not necessarily feasible; e.g., in homeland security applications
and competitive business decisions. The second concern is the decision-uncertainty.
The strategy chosen by the follower may well deviate from what is expected by the
leader, which thus gives rise to uncertainty about the realized outcome. It is worth-
while to note that the notion of decision-uncertainty that emanates from not knowing
the follower’s preferences exactly is different from the uncertainty that follows from
non-preference related factors such as stochastic model parameters.

6 Multiobjective Bilevel Optimization and Decision Making

In this section, we provide three different formulations for a multiobjective bilevel
optimization problem. First, we consider the standard formulation, where there is no
decision making involved at the lower level and all the lower level Pareto-optimal
solutions are considered at the upper level (see Fig. 10). Second, we consider a
formulation, where the decision maker acts at the lower level and chooses a solution
to her liking. The preference structure of the follower is known to the leader and can
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obj 1

Leader Follower’s 
problem for 
different xu

Optimistic frontier

Pareto-op mal points 
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Fig. 10 Optimistic bilevel multiobjective optimization
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Fig. 11 Bilevel multiobjective optimization with deterministic lower level decisions

be modeled as a value function (see Fig. 11). Finally, we discuss a problem, where
the lower level decision maker’s preferences are not known with certainty and the
upper level decision maker needs to take this decision-uncertainty into account when
choosing her optimal strategy (see Fig. 12).

6.1 Multiobjective Bilevel Optimization: The Optimistic
Formulation

Bilevel multiobjective optimization is a nested optimization problem involving two
levels of multiobjective optimization tasks. The structure of a bilevel multiobjective
problem demands that only the Pareto-optimal solutions to the lower level optimiza-
tion problemmay be considered as feasible solutions for the upper level optimization
problem.There are two classes of variables in a bilevel optimization problem; namely,
the upper level variables xu ∈ XU ⊂ R

n , and the lower level variables xl ∈ XL ⊂ R
m .

The lower level multiobjective problem is solved with respect to the lower level vari-
ables, xl , and the upper level variables, xu act as parameters to the optimization
problem. Each xu corresponds to a different lower level optimization problem, lead-
ing to a different Pareto-optimal front. The upper level problem is optimized with
respect to both classes of variables, x = (xu, xl).
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Definition 5 For the upper-level objective function F : Rn × R
m → R

p and lower-
level objective function f : Rn × R

m → R
q , the bilevel problem is given by

min
xu∈XU ,xl∈XL

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to

xl ∈ argmin
xl

{ f (xu, xl) = ( f1(xu, xl), . . . , fq(xu, xl)) :
g j (xu, xl) ≤ 0, j = 1, . . . , J }

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : XU × XL → R, k = 1, . . . , K denote the upper level constraints, and
g j : XU × XL → R represent the lower level constraints, respectively. Equality con-
straints may also exist that have been avoided for brevity.

An equivalent formulation of the above problem can be stated in terms of set-
valued mappings as follows:

Definition 6 Let Ψ : Rn ⇒ R
m be a set-valued mapping,

Ψ (xu) = argmin
xl

{ f (xu, xl) = ( f1(xu, xl), . . . , f2(xu, xl)) :
g j (xu, xl) ≤ 0, j = 1, . . . , J },
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which represents the constraint defined by the lower-level optimization problem,
i.e. Ψ (xu) ⊂ XL for every xu ∈ XU . Then the bilevel multiobjective optimization
problem can be expressed as a constrained multiobjective optimization problem:

min
xu∈XU ,xl∈XL

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Ψ can be interpreted as a parameterized range-constraint for the lower-level
decision vector xl .

In the above two formulations, the lower level decision maker is assumed to coop-
erate with the upper level decision maker, such that she provides all Pareto-optimal
points to the upper level decision maker who then chooses the best point according
to the upper level objectives. The assumption effectively reduces the influence of
the follower and transfers the decision-making power to the leader. Alternatively,
one can say that the lower-level decision maker is assumed to be indifferent to all
lower-level Pareto-optimal solutions. Though this formulation has been studied in
the past, it is a highly unrealistic formulation where decision making aspects at the
lower level are not taken into account.

Next, we demonstrate the optimistic formulation through a simple multiobjective
bilevel optimization problem taken from [58].

Example 1 The problem has a single upper level and two lower level variables; such
that xu = (x) and xl = (y1, y2)T . The formulation of the problem is given below:

Minimize F(x, y1, y2) =
(
y1 − x
y2

)
,

subject to (y1, y2) ∈ argmin
(y1,y2)

{
f (x, y1, y2) =

(
y1
y2

) ∣∣∣∣g1(x) = x2 − y21 − y22 ≥ 0

}
,

G1(x) = 1 + y1 + y2 ≥ 0,
−1 ≤ y1, y2 ≤ 1, 0 ≤ x ≤ 1.

(1)

The Pareto-optimal set for the lower level optimization task for a given x is the
bottom-left quarter of the circle: {(y1, y2) ∈ R

2 | y21 + y22 = x2, y1 ≤ 0, y2 ≤ 0}.
Lower level frontiers corresponding to different x are shown in Fig. 13. As observed
from the figure, the linear constraint at the upper level does not allow the entire quarter
circle to be feasible for some x . Therefore, at most two points from the quarter circle
belong to the upper level Pareto-optimal set of the bilevel problem that is shown in
Fig. 14. The lower level frontiers for different x are also plotted in the upper level
objective space. Figures13 and 14 also show three points A, B and C for x = 0.9,
where points A and B participate in the upper level frontier while point C is rendered
infeasible because of the upper level constraint. The analytical Pareto-optimal set for
this problem is given as:

{
(x, y1, y2) ∈ R

3
∣∣ x ∈

[
1√
2
, 1

]
, y1 = −1 − y2, y2 = −1

2
± 1

4

√
8x2 − 4

}
. (2)
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Fig. 13 Lower level
Pareto-optimal fronts for
different xu in lower level
objective space

Lower level
PO fronts

Constraints
Lower level

Constraint
Upper level

x = 0.5 1.00.8

B

A

C

f1

 0

 0
−1

−1  1

 1

f 2

Fig. 14 Upper level
Pareto-optimal front and
lower level fronts in upper
level objective space

PO fronts

B

A

C

Lower level
PO front
Upper level

0.50.60.80.9x=1 0.7071

−1
−2 −1.8−1.6−1.4−1.2 −1 −0.8−0.6

−1

−0.8

−0.6

−0.4

 0

 0.2

 0.4

−2 −1.8−1.6−1.4−1.2 −1 −0.8−0.6

−0.2

F1

F 2

This problem demonstrates that leader takes all the lower level Pareto-optimal solu-
tions and then based on her constraints and non-domination criterion decides the
solutions to be kept. Once thismultiobjective bilevel problem is given, the upper level
Pareto-frontier can be identified without considering any decision making aspects.

Some of the studies that attempted to handle the optimistic formulation are [57,
58] in the area of mathematical optimization and [61, 66] in the area of evolutionary
computation. In [61], authors utilize a hierarchical evolutionary multiobjective opti-
mization approach to solve a number of difficult multiobjective bilevel problems.
Though the approach retains a nested structure, a number of intelligent schemes
were employed that led to savings, when compared to a brute force nested algo-
rithm. Some of the ideas utilized include; adjusting the number of subpopulations
and their sizes for lower level search adaptively, solving the lower level problemwith
an evolutionary algorithm for a few generations and then employing local search on
members that are likely to participate in upper level non-dominated frontier, utiliz-
ing a hypervolume-based termination criterion at both levels, and using archive that
keeps those solutions that are feasible (with respect to constraints and lower level
problem) and non-dominated at the upper level.
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Table 7 Ratio of median function evaluations required by Algorithm-1 [61] against Algorithm-3
[66] and Algorithm-2 (purely nested) against Algorithm-3 [66]

Pr. No. Algori thm−1
Algori thm−3

Algori thm−2
Algori thm−3

Total LL FE Total UL FE Total LL FE Total UL FE

DS1 1.54 1.23 17.51 13.58

DS2 1.33 1.11 17.07 11.33

DS3 1.43 1.19 18.03 11.21

DS4 1.28 1.25 16.06 13.59

DS5 1.32 1.21 19.89 12.27

Table 8 Function evaluations (FE) required by Algorithm-3 for the upper level (UL ) and lower
level (LL)

Pr. No.
(var.)

Best Median Worst

Total LL FE Total UL FE Total LL FE Total UL FE Total LL FE Total UL FE

DS1 (20) 1946496 72334 2215966 74502 2430513 86697

DS2 (20) 3728378 93015 3728256 110006 4584177 126416

DS3 (20) 2540181 90754 3295798 100015 3733238 104025

DS4 (10) 904806 33804 1118631 42986 1339842 50686

DS5 (10) 1187359 38477 1356863 47071 1684170 59325

Best, median and worst values have been computed from 21 runs of the algorithm on each test
problem. The lower level function evaluations include the evaluations of local search as well

Recently, along the lines of Ψ -mapping approximation, a multi-fiber approach
has been proposed in [66]. In this approach the authors attempt to approximate the
Ψ -mapping using multiple discrete fibers. The Ψ -mapping is more likely to be a
(moving) set in the context of multiobjective bilevel optimization; therefore, ideas
that can approximate sets have to be employed. This is one of the approaches the tries
to exploit the structure and properties of the problem to solve it. The scheme can not
be termed nested, but still requires solving some instances of the lower level problem
to construct an approximation of the Ψ -mapping. In Table7 we provide the results
for three algorithms; algorithm 1 [61], algorithm 2 (purely nested) and algorithm 3
[66]; on a set of 5 test problems [61, 67]. The numbers in the table represent the
ratio of function evaluations required by algorithm 1 and algorithm 2 with respect to
algorithm 3. The function evaluations for algorithm 3 can be found in Table8.

Before concluding the discussion on the optimistic formulations and solution pro-
cedures for multiobjective bilevel optimization, we would like to highlight that it is
possible to write this formulation with multiple objectives at upper level and single
objective at lower level. However, this comes at the cost of increased variables at the
upper level. The following formulation has been known in mathematical optimiza-
tion, but one of the first studies in the context of evolutionary optimization can be
found in [68].
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Definition 7 For a scalarizing function S : Rp × R
p → R with weight vector w ∈

W ⊂ R
p

min
xu∈XU ,xl∈XL ,w∈W F(xu, xl)

subject to xl ∈ argmin
xl∈XL

{S( f (xu, xl), w)

subject to g j (xu, xl) ≤ 0, j = 1, . . . , J }
Gk(xu, xl) ≤ 0, k = 1, . . . , K ,

where w acts as an upper level vector along with xu .

It is important in the above formulation that the scalarizing function is able to
span the entire lower level Pareto-optimal set through different values ofw. The idea
behind the formulation is that by changingw, one can select different Pareto-optimal
solutions from the lower level corresponding to each upper level decision vector.

6.2 Multiobjective Bilevel Optimization with Deterministic
Decisions at Lower Level

Considering the decision-making situations that arise in practice, a departure from
the assumption of an indifferent lower level decision maker is necessary. Rather
than providing all Pareto-optimal points to the leader, the follower is likely to act
according to her own interests and choose the most preferred lower level solution
herself. As a result, the allowance of lower level decision making has a substantial
impact on the formulation of multiobjective bilevel optimization problems. First,
the lower level problem can no longer be viewed as a range-constraint that depends
only on lower-level objectives. Instead it is better interpreted as a selection function
that maps a given upper level decision to a corresponding Pareto-optimal lower level
solution that is most preferred by the follower. Second, in order to solve the bilevel
problem, the upper level decision maker now needs to model the follower’s behavior
by anticipating her preferences towards different objectives. Naturally, these changes
lead to a number of intricacies thatwere not encountered in the previous formulations.
This formulation assumes perfect information to the leader about the follower’s
preference structure. Using the preference structure information it is possible to
reduce the lower level problem into a single objective optimization problem [69].

Definition 8 Let ξ ∈ Ξ denote a vector of parameters describing the follower’s pref-
erences. If the upper level decision maker has complete knowledge of the follower’s
preferences, the follower’s actions can then be modeled via selection mapping

σ : XU × Ξ → XL , σ(xu, ξ) ∈ Ψ (xu), (3)
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where Ψ is the set-valued mapping given by Definition 2. The resulting bilevel
problem can be rewritten as follows:

min
xu∈XU

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl)) (4)

subject to xl = σ(xu, ξ) ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

To illustrate the definition, consider Fig. 15, where the shaded region

gphΨ = {(xu, xl) : xl ∈ Ψ (xu)} (5)

represents the follower’s Pareto-optimal solutionsΨ (xu) for any given leader’s deci-
sion xu . These are the rational reactions, which the follower may choose depending
on her preferences. If the leader is aware of the follower’s objectives, she will be able
to identify the shaded region completely by solving the follower’s multiobjective
optimization problem for all xu . However, if the follower is able to act according
to her own preferences, she will choose only one preferred solution σ(xu, ξ) for
every upper level decision xu . When the preferences of the follower are perfectly
known, the leader can identify σ(·, ξ) that characterizes follower’s rational reactions
for different xu , and solve the hierarchical optimization task completely.

6.3 Multiobjective Bilevel Optimization with Lower Level
Decision Uncertainty

The assumption that the follower’s preferences are perfectly known to the leader
itself might be an inaccurate description of real life scenarios. Most practitioners
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would find it hard to accept this even when constructing approximations. A natural
path towards a more realistic framework would be to relax the axiom of perfect
information by assuming that the leader is only partially aware of the follower’s
preferences. This lack of information leads to the notion of lower level decision
uncertainty that is experienced by the leader while solving the bilevel optimization
task [70].

For illustration, consider Fig. 16, where the expected behavior of the follower is
shown as the graph of the selection mapping σ(·, ξ̄), where ξ̄ represents the expected
preference known to the leader. The narrow dark shaded band shows the region of
uncertainty in which the follower makes her decisions. For different preferences ξ,
σ(·, ξ) represents the corresponding decisions of the follower. If the leader is aware
of the follower’s objectives, the uncertainty region identified by a random ξ is always
bounded by gphΨ because σ(xu, ξ) ∈ Ψ (xu) for all xu ∈ XU and ξ ∈ Ξ . However,
it is noteworthy that this band is not directly available to the leader but needs to
be modeled. In a situation, where the leader cannot elicit follower’s preferences by
interacting with the follower, a feasible strategy is to utilize the prior information
she has about the follower and incorporate it in a tractable stochastic model that
characterizes the follower’s behavior.

To accommodate the decision uncertainty, we assume that the follower’s prefer-
ences are described by a random variable ξ ∼ Dξ , which takes values in a set Ξ of
R

q . The probability distribution Dξ reflects the leader’s uncertainty and prior infor-
mation about follower’s expected behavior. In this framework, the assumption of
preference uncertainty is equivalent to saying that the lower level decision is a ran-
dom variable with a distribution that is parametrized by a given upper level decision
xu , i.e. xl ∼ Dσ(xu). This means that the lower level decision uncertainty experi-
enced by the leader will vary point-wise depending on the follower’s objectives and
the leader’s own decision.

For demonstration of the uncertainty aspects in the objective spaces of the leader
and the follower, consider Figs. 17 and 18 that show two different scenarios. In
the first scenario, we assume a deterministic situation where the follower’s prefer-
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Fig. 17 Insets: follower’s problem for different xu . Al , Bl andCl represent the follower’s decisions
for x (1)

u , x (2)
u and x (3)

u respectively. Au , Bu and Cu are the corresponding points for the leader in the
leader’s objective space

ences and actions are known with certainty. Both leader and follower are assumed
to have two objectives, i.e., p = q = 2. In this case, the leader solves the bilevel
problem in Definition 8 under perfect information. Therefore, each point on the
leader’s Pareto-frontier corresponds to one of the points on the follower’s Pareto-
frontier. If ξ̄ is the given vector of follower’s preferences, then for any leader’s
choice x (i)

u the corresponding lower level decision is given by x (i)
l = σ(x (i)

u , ξ̄).
This is shown in Fig. 17, where the upper level points Au = F(x (1)

u ,σ(x (1)
u , ξ̄)),

Bu = F(x (2)
u ,σ(x (2)

u , ξ̄)), and Cu = F(x (3)
u ,σ(x (3)

u , ξ̄)) are paired with the points
Al = f (x (1)

u ,σ(x (1)
u , ξ̄)), Bl = f (x (2)

u ,σ(x (2)
u , ξ̄)) and Cl = f (x (3)

u ,σ(x (3)
u , ξ̄)) that

lie on the follower’s Pareto-front for x (1)
u , x (2)

u , and x (3)
u , respectively.

The situation can be contrasted from another scenario shown in Fig. 18, where
the follower’s preferences are uncertain. The leader is still assumed to be fully aware
of the form of σ, but she no longer knows the true value of ξ. By assuming a prior
information ξ ∼ Dξ , the leader can attempt to solve the bilevel problem based on
the expected preferences of the follower, i.e.
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Fig. 18 Insets: follower’s problem for different xu . Al , Bl and Cl are the expected decisions of the
follower. A

′
l , B

′
l and C

′
l are the actual decisions that the follower takes. The corresponding points

for the leader are shown in the leader’s objective space

min
xu∈XU

F(xu, x̄l) (6)

subject to x̄l = σ(xu, E[ξ]) ∈ Ψ (xu), ξ ∼ Dξ

Gk(xu, x̄l) ≤ 0, k = 1, . . . , K .

For convenience of the example, we assume that the expected actions are the same
as the actions in Fig. 17, i.e., σ(xu, E[ξ])] = σ(xu, ξ̄) for all xu . As a result, the
leader obtains a Pareto-frontier corresponding to the follower’s expected value func-
tion (POF-EVF). However, when she begins to implement the given strategies, the
follower’s realized actions may deviate from the expected strategies obtained by
solving (6). Since ξ is uncertain from the leader’s perspective, the follower’s true
preferences ξ can differ from ξ̄ that was expected based on prior information. As
shown in the figure, for any strategy x (1)

u , x (2)
u or x (3)

u chosen by the leader, the fol-
lower may prefer to choose A

′
l , B

′
l orC

′
l instead of Al , Bl orCl expected by the leader.

It is found that because of the follower’s deviation from the expected actions, the
leader no longer operates on the POF-EVF. In the objective space, the uncertainty
experienced by the leader is reflected in the probability and size of deviations away
from the POF-EVF. The follower, on the other hand, does not experience similar
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uncertainty, because she can always observe the action taken by the leader before
making her own decision.

Depending on the problem, uncertainty of the lower level decision maker’s pref-
erences may lead to significant losses at the upper level. Therefore, the leader would
like to solve the bilevel problem taking the uncertainties into account. While making
a decision, the leader might prefer those regions on its frontier, which are less sen-
sitive to lower level uncertainties and at the same time offer an acceptable trade-off
between the objectives. For instance, in the context of the above example, we observe
that the expected variation in the objective space is considerably less at the region
corresponding to x (2)

u than at x (1)
u or x (3)

u . If the leader chooses this point, she knows
that the realized upper level objective values are only little affected by the actions of
the lower level decision maker. From the perspective of practical decision making,
it is valuable for the leader to be aware of the level of uncertainty associated with
different strategies.

7 Future Research Directions

In this chapter, we have tried to provide an introduction to the work done in the
area of bilevel optimization using evolutionary algorithms. The main topics covered
include;

1. Single objective bilevel optimization and promising ideas that might be useful in
solving complex bilevel problems.

2. Multiobjective bilevel optimization methods and decision making intricacies.

While the above two topics themselves offer significant opportunity of future
research, there also exist other areas within bilevel optimization that are less explored
and offer potential for future research. For instance, there can be other forms of
uncertainties in bilevel optimization, like, variable and parameter uncertainties. Some
preliminarywork on these topics can be found in [71, 72].With an increase in compu-
tational power, there is an enormous scope of development of distributed computing
methods that can solve bilevel problems with large number of variables or objectives
in a short time. However, at this point it is worth mentioning that in the last decade
a number of evolutionary algorithms have been developed that are computationally
very expensive and purely nested. Future research ideas on evolutionary computation
should rely also on exploiting the structure and properties of bilevel problems, which
will ensure better scalability of the procedures. To conclude, almost every other dis-
cipline faces application problems that are bilevel in nature. This offers application
oriented research opportunities both from modeling and solution perspectives.
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