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Preface

This book surveys the recent advances in the field of evolutionary multi-objective
optimization. In fact, most real problems are multi-objective in nature, i.e. they
involve multiple conflicting objectives to be minimized or maximized simultane-
ously in limited resources. The resolution of such type of problems gives rise to a
set of non-dominated solutions forming the Pareto front. Evolutionary algorithms
have been recognized to be well-suited to solve multi-objective problems, thanks to
their ability in providing the decision-maker with a set of trade-off solutions in a
single run in addition to their insensitivity to the geometrical features of the
objective space. However, real-world applications usually have one or several
aspects that need further efforts to be tackled. In this book, we survey recent
achievements in handling five aspects. The first aspect is dynamicity where the
objective functions and/or the constraints may change over time. In this case, the
optimization algorithm should track the Pareto front after the occurrence of any
change. The second aspect is the presence of hierarchy between the objectives. This
kind of problems is called bi-level where an upper level problem has a lower level
one in its constraints. The main difficulty in bi-level programming is that the
evaluation of an upper level solution requires finding the optimal lower level one,
which is computationally expensive. The third aspect is the objective space high
dimensionality. This aspect means solving many-objective problems involving
more than three objectives. The main difficulty in dealing with such type of
problems is that most solutions become equivalent to each others; therefore making
the algorithm behaving like random search. The fourth aspect is the emerging
notion of evolutionary multitasking which is inspired by the cognitive ability to
multitask. Shown to be a natural extension of population-based search algorithms,
multitasking encourages multiple heterogeneous search spaces belonging to distinct
tasks to be unified and searched concurrently. The resultant knowledge exchange
provides the scope for improved convergence characteristics across multiple tasks
at once, thereby facilitating enhanced productivity in decision-making processes.
The fifth aspect is the presence of constraints where the evolutionary algorithm
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should search for solutions in the decision space while respecting a set of predefined
constraints so that it outputs a set of feasible non-dominated solutions.

This book provides both methodological treatments and real-world insights
gained by experience, all contributed by specialized researchers. As such, it is a
comprehensive reference for researchers, practitioners, and advanced-level students
interested in both the theory and the practice of using evolutionary algorithms in
tackling real-world applications involving multiple objectives. The book provides a
comprehensive treatment of the field by offering chapters whose topics are disjoint
or having minimal overlaps, each tackling a single multi-objective aspect.
Moreover, the last chapter highlights a number of practical applications showing the
usability of multi-objective evolutionary algorithms in practice; thereby motivating
researchers and engineers to use evolutionary approaches in solving their
encountered problems.

Tunis, Tunisia Slim Bechikh
Daejeon, Republic of Korea Rituparna Datta
Singapore, Singapore Abhishek Gupta
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Multi-objective Optimization: Classical
and Evolutionary Approaches

Maha Elarbi, Slim Bechikh, Lamjed Ben Said and Rituparna Datta

Abstract Problems involvingmultiple conflicting objectives arise inmost realworld
optimization problems. Evolutionary Algorithms (EAs) have gained a wide interest
and success in solving problems of this nature for two main reasons: (1) EAs allow
finding several members of the Pareto optimal set in a single run of the algorithm and
(2) EAs are less susceptible to the shape of the Pareto front. Thus, Multi-objective
EAs (MOEAs) have often been used to solveMulti-objective Problems (MOPs). This
chapter aims to summarize the efforts of various researchers algorithmic processes
for MOEAs in an attempt to provide a review of the use and the evolution of the field.
Hence, some basic concepts and a summary of the main MOEAs are provided. We
also propose a classification of the existingMOEAs in order to encourage researchers
to continue shaping the field. Furthermore, we suggest a classification of the most
popular performance indicators that have been used to evaluate the performance of
MOEAs.
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1 Introduction

Most real world optimization problems involve the optimization of two or more con-
flicting objectives simultaneously. In order to solve a MOP, there are three goals
to pursue: (1) convergence, (2) diversity, and (3) solution distribution uniformity.
In fact, the obtained non-dominated solutions should be as close as possible to the
Pareto optimal front of the optimization problem. This goal is similar to the demand
of convergence to the global optimum in single-objective optimization. Often, there
exist an infinite number of Pareto optimal solutions. Naturally, only a finite number
of solutions can be generated during an optimization process. Furthermore, the num-
ber of generated solutions must be limited otherwise the computational cost would
become too large. Nevertheless, the largest possible freedom of choice should be
offered to the Decision Maker (DM). Therefore, a well-distributed approximation
set is demanded which is a goal that consists itself of two requirements: (1) an extent
that is as large as possible and (2) a distribution that is as evenly spaced as possi-
ble. Pareto optimal fronts may be disconnected, so in that case an exactly uniform
distribution of solutions is not possible. Nevertheless, the non-dominated solutions
should cover all regions of the Pareto-optimal front and reproduce the curvature of the
underlying Pareto optimal front as correctly as possible. These demands do not have
a counterpart in single-objective optimization since in that case only one solution is
generated.

A MOP consists in minimizing or maximizing an objective function vector under
some constraints. The general form of a MOP is as follows [1]:

⎧
⎪⎪⎨

⎪⎪⎩

Min f (x) = [ f1(x), f2(x), . . . , fM(x)]T
g j (x) ≥ 0 j = 1, . . . , P
hk(x) = 0 k = 1, . . . , Q
xL
i ≤ xi ≤ xUi i = 1, . . . , n

(1)

where M is the number of objective functions, P is the number of inequality con-
straints, Q is the number of equality constraints, x L

i and xUi correspond respectively
to the lower and upper bounds of the variable (This notation is assumed throughout
the overall chapter). A solution xi satisfying the (P+Q) constraints is said feasible
and the set of all feasible solutions defines the feasible search space denoted byΩ . In
this formulation, we consider a minimizationMOP since maximization can be easily
turned to minimization based on the duality principle by multiplying each objective
function by −1 and transforming constraints based on the duality rules.

The resolution of a MOP yields a set of trade-off solutions, called Pareto optimal
solutions or non-dominated solutions, and the image of this set in the objective space
is called the Pareto front. Hence, the resolution of a MOP consists in approximating
the whole Pareto front. In the following, we give some background definitions related
to multi-objective optimization:

Definition 1 (Pareto optimality) A solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω

and I = {1, . . . , M} either ∀m ∈ I we have fm(x) = fm(x∗) or there is at least one
m ∈ I such that fm(x) > fm(x∗). The definition of Pareto optimality states that x∗
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is Pareto optimal if no feasible vector x exists which would improve some objectives
without causing a simultaneous worsening in at least another one.

Definition 2 (Pareto dominance) A solution u = (u1, u2, . . . , un) is said to domi-
nate another solution v = (v1, v2, . . . , vn) (denoted by f (u) ≺ f (v)) if and only if
f(u) is partially less than f(v). In other words, ∀m ∈ {1, . . . , M} we have
fm(u) ≤ fm(v) and ∃m ∈ {1, . . . , M} where fm(u) < fm(v).

Definition 3 (Pareto optimal set) For a given MOP f (x), the Pareto optimal set is
P∗ = {

x ∈ Ω|¬∃ x
′ ∈ Ω, f (x

′
) 
 f (x)

}
.

Definition 4 (Pareto optimal front) For a given MOP f (x) and its Pareto optimal
set P∗, the Pareto front is PF∗ = { f (x), x ∈ P∗}.
Definition 5 (Ideal point) The ideal point Z I = (Z I

1 , . . . , Z
I
M) is the vector com-

posed by the best objective values over the search space Ω . Analytically, the ideal
objective vector is expressed by:

Z I
m = Minx∈Ω fm(x),m ∈ {1, . . . , M} (2)

Definition 6 (Nadir point) The nadir point ZN = (ZN
1 , . . . , ZN

M) is the vector com-
posed by the worst objective values over the Pareto optimal set. Analytically, the
nadir objective vector is expressed by:

ZN
m = Maxx∈P∗ fm(x),m ∈ {1, . . . , M} (3)

Definition 7 (ε-dominance) A solution u is said to epsilon-dominate a solution v

(u 
ε+ v)1 if and only if ∀m ∈ {1, . . . , M} : um ≤ vm + ε for a given ε > 0, where
um/vm is the m-th objective value of solution u/v.

2 Resolution Methods

2.1 Aggregative Methods

Traditional multi-objective optimization methods aggregate the different objective
functions into a single one. In order to generate a representative approximation of
the whole Pareto front, the user must perform several runs with different parameter
settings. Some representatives of this class of methods are the weighted sum method
[2], the ε-constraintmethod [2], the goal programming [3], the referencepointmethod
[4], the reference direction method [5], and the light beam search method [6] which
are briefly discussed in this subsection.

1We present the additive version of the ε-dominance. The multiplicative epsilon dominance is
defined as follows: A solution u is said to epsilon-dominate a solution v (u 
ε v) if and only if
∀m ∈ {1, . . . , M} : um ≤ vm(1 + ε).
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• The weighted sum method

This method converts the MOP to a single-objective optimization problem (SOP) by
forming a linear aggregation of the objectives as follows:

{
Min f (x) = w1 f1(x), w2 f2(x), . . . , wM fM(x)
x ∈ Ω

(4)

where wm corresponds to the weighting coefficient of the m-th objective such that∑M
m=1 wm = 1 and wm ≥ 0 ∀m ∈ {1, . . . , M}. Solving (4) with different weighting

coefficients sets yields a set of solutions. Under the condition that an exact opti-
mization algorithm is used and all weighting coefficients are positive, it is easy to
show that this method will only generate Pareto optimal solutions. Assuming that a
feasible decision vector u minimizes f for a given weight combination and is not
Pareto optimal, then there is a solution v which dominates u, i.e., ∀m ∈ {1, . . . , M}
we have fm(v) ≤ fm(u) and ∃m ∈ {1, . . . , M} where fm(v) < fm(u). Therefore,
f (v) < f (u), which is a contradiction to the assumption that f (u) is minimum.
The main disadvantage of this technique is that it cannot generate all Pareto

optimal solutions with non-convex trade-off surfaces. This is illustrated in Fig. 1a.
For fixed weights w1 and w2, solution x is sought to minimize y = w1 f1(x) +
w2 f2(x). This equation can be formulated as f2(x) = −(w1/w2) f1(x) + (y/w2),
which defines the line L (solid line in Fig. 1a) with a slope of −(w1/w2) and an
intercept of (y/w2) in the objective space. Graphically, the optimization process
corresponds to moving this solid line downwards until no feasible objective vector
is above it and at least one feasible objective vector (here A andD) is on it. However,
the points B and C will never minimize y. In fact, if the slope is increased (upper
dashed line), D achieves a lesser value of y than B and C. Besides, if the slope is
decreased (lower dashed line), A has a lesser y value than B and C.

Fig. 1 Graphical interpretation of: a the weighted sum method and b the ε-constraint method
(inspired by [7])
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• The ε-constraint method

This method converts the MOP into a SOP by optimizing individually a selected
objective while keeping the remaining (M − 1) objectives’ values less than or equal
to some user-specified thresholds as follows:

⎧
⎨

⎩

Min f (x) = fh(x) h ∈ {1, . . . , M}
fm(x) ≤ εm m ∈ {1, . . . , M},m �= h;
x ∈ Ω

(5)

The upper bounds εm are the parameters to be varied in each run in order to obtain
multiple Pareto optimal solutions. As depicted in Fig. 1b, the ε-constraint method is
able to find solutions associated with non-convex parts of the Pareto front. Setting
h = 1 and ε2 = r (solid line in Fig. 1b) makes solution D infeasible while solution
C minimizes f1. Figure1b also shows a problem with this technique. In fact, if the
lower bounds are not chosen appropriately (ε2 = r

′
), the obtained feasible set may

be empty, i.e., there is no solution to the obtained SOP. In order to avoid this problem,
a suitable range of values for the εm quantities has to be known beforehand.

• The goal-programming method

For each objective function, the user provides a goal Gi to be achieved. The goal
programming method transforms the MOP into a SOP by minimizing individually
the weighted sum of deviations from goals as follows:

{
Min f (x) = ∑M

m=1 wm | fm(x) − Gm |
x ∈ Ω

(6)

where wm corresponds to the weighting coefficient of the m-th objective such that∑M
m=1 wm = 1 and wm ≥ 0 ∀m ∈ {1, . . . , M}.
As discussed by [8], if the optimal objective function value of the goal program-

ming method equals zero, then some caution is in order since the obtained solution
may not be Pareto optimal. In fact, if all settled goals are feasible, then the value
zero for all the deviational variables gives the minimal value (zero) for the goal
programming objective function. Hence, the solution is equal to the reference point
(the vector composed with all user-specified goals) and normally there exist many
feasible solutions that are non Pareto optimal. If the solutions are intended to be
Pareto optimal independently of the selection of goals, then if the goals are feasible,
the function f is to be maximized; else if the goals are infeasible the function f is to
be minimized.

• The reference point method

The classical Reference PointMethod (RPM)was proposed by [4]. A reference point
g for a particular MOP consists of an aspiration level vector. Aspiration levels repre-
sent the DM’s desired values for each objective. This method projects the reference
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point onto the Pareto optimal region via the minimization of an Achievement Scalar-
izing Function (ASF). Among the most commonly known forms of an ASF is the
following:

Min s( f (x), g) = Max
m=1,...,M

[wm( fm(x) − gm)] (7)

where gm is them-th component of the reference point andwm is theweight associated
with the m-th objective.

As shown in Fig. 2, the reference point could be feasible belonging to the Pareto
front (a), feasible not belonging to the Pareto front (b) or infeasible (c). For a chosen
reference point, the RPM tries to find the closest Pareto optimal solution. The main
drawback of this method is that it provides only one solution in a single run. Hence, if
the DM is dissatisfied with the obtained solution and/or he/she would like to obtain a
small sample of Pareto optimal solutions near each reference point then he/she must
perform several runs of the algorithm. It should be noted that the DM could obtain
a sample of near reference point solutions by perturbing the reference point and/or
the weights and performing several runs of this method. Besides, in order to make
this method interactive,Wierzbicki [4] suggested a procedure to update the reference
point automatically which facilitates the DM’s task. When using the reference point
approach in practice, the DM is asked to supply a reference point and a weight vector
at a time. The reference point guides the search towards the desired region while the
weight vector provides more detailed information about which Pareto optimal point
to converge to.

Fig. 2 The reference point
method
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• The reference direction method

Korhonen and Laakso [5] suggested a reference direction-based approach for multi-
criterion optimization using the principle of solving ASFs repeatedly. This method
is described as follows:

• Step 1: Choose an initial arbitrary point q0 in the objective space and let K ← 1;
• Step 2: Specify another vector gk and determine the reference direction
dk = gk − qk−1;

• Step 3: Determine a set Qk of efficient solutions q which solves the following
ASF:

{
Min( f (x), r, w) = Max

wm>0,m=1,...,M
[( fm(x) − rm(t))/wm]

r(t) = qk−1 + tdk
(8)

where t is an integer parameter increased from zero to infinity, w is a weighting
vector, and rm(t) is the m-th component of r(t);

• Step 4: Find the most preferred solution qk in Qk using a particular utility function
or by other mean;

• Step 5: If qk−1 �= qk , set k ← k + 1 and go to Step 2. Otherwise, check for opti-
mality conditions (Kuhn-Tucker conditions [8] or other optimality conditions [5])
of the solution qk . If qk is optimal then terminate the optimization run. Otherwise,
increment k, determine a new reference direction and go to Step 3.

Figure3 shows a sketch of Step 3 of the above optimization procedure. For each
point (say point C) marked on the reference direction (from q0 towards g1), a Pareto
optimal solution (point A) is found by solving the ASF given in Eq. (8). Step 3 of
the above procedure involves multiple application of a single-objective optimization
for different values of t, thereby finding a range of efficient solutions (A till E). The
idea of finding an efficient solution corresponding to a point on a reference direction
is similar to the reference point approach of Wierzbicki [4]. Although the original
study of the reference direction approach and subsequent studies of Korhonen and his
co-authors [10, 11] concentrated on parametric solutions for multiple points on the
reference direction, the principle can be used by forming multiple ASFs and solving
them by a single-objective optimizer independently. An analytical hierarchy process
was also used to determine the reference direction [12]. Interestingly, the reference
direction approach corresponds to the process of projecting the reference direction
on the Pareto optimal frontier.

• The light beam search method

The Light Beam Search (LBS), as described in [13], combines the reference point
idea and tools of Multi-Attribute Decision Analysis (MADA). It enables an inter-
active analysis of MOPs thanks to the presentation of samples of a large set of
non-dominated points to the DM in each iteration. An aspiration point and a reserva-
tion one should be supplied by the DM. These two points define the direction of the
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Fig. 3 The reference
direction method [9]

search in a particular iteration. If these two points are not suggested, the ideal point
and the nadir point (or a worse point than the nadir one) can be assumed as aspiration
and reservation points respectively. Initially a non-dominated middle point is deter-
mined by projecting the aspiration point on to the non-dominated front by using an
augmented version of Wierzbickis ASF. Thereafter, a local preference model in the
form of an outranking relation S is used to obtain neighboring solutions of the current
non-dominated point, or the middle point. It is said that a outranks b (or a S b), if a
is considered to be at least as good as b. To define an outranking relation, the DM
has to specify three preference thresholds for each objective: (1) indifference thresh-
old, (2) preference threshold, and (3) veto threshold. In the LBS procedure, they are
considered to provide only local information, thus they are assumed to be constants.
The extreme points or characteristic neighbors are found one for each objective by
considering the maximum allowed improvement in a particular objective in relation
to themiddle point. TheDMcan control the search by either modifying the aspiration
and/or reservation points, or by shifting the middle point to selected better point from
its neighborhood or bymodifying the preference threshold values. Figure4 illustrates
the LBS method mechanism. The LBS procedure is as follows:

• Step 1: Ask the DM to specify starting aspiration and reservation points;
• Step 2: Compute the starting middle point on the Pareto optimal front;
• Step 3: Ask DM to specify the local preferential information used to build an
outranking relation;

• Step 4: Present the middle point to the DM;
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Fig. 4 The light beam
search method

• Step 5: Calculate the characteristic neighbors of themiddle point and present them
to the DM;

• Step 6: If DM is satisfied, terminate the procedure; else ask the DM to: (1) choose
one of the neighboring points to be the newmiddle point, (2) update the preferential
information, or (3) define a newaspiration point and/or a new reservation point. The
algorithm proceeds by moving to Step 5 for the case (1) and to Step 4 otherwise.

2.2 Evolutionary Methods

• Non Pareto-based evolutionary methods

– VEGA: Vector Evaluated Genetic Algorithm

Schaffer [13] proposed one of the first alternatives to adapt EAs to handle MOPs
called VEGA. The basic idea is to divide the population into M subpopulations of
equal sizes. Then, in each one of them, the selection operates by taking into account
only the unique corresponding objective. Once the selection mechanism was per-
formed, the population is mixed to apply the rest of the evolutionary operators. All
this process is repeated in each generation. An evident VEGA problem is that it does
not promote the survival of good trade-off solutions, but it prefers the best solutions
of each objective separately. This problem is known as speciation (by its analogy
in genetics). This problem was identified and attacked by Schaffer, using mating
restrictions (i.e., not allowing recombination between individuals of the same sub-
population) as well as other heuristic rules applied during the selection mechanism.
In another work [14], it was also demonstrated that, if proportional selection is used,
VEGAs scheme is equivalent to a linear combination of objective functions which
means that it has limitations regarding non-convex Pareto fronts.
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– VOES: Vector Optimized Evolutionary Strategy

Few years after the VEGA studies, Kursawe [15] proposed the Vector Optimized
Evolutionary Strategy for multi-objective optimization (VOES). The VOES fitness
assignment mechanism is similar to VEGA one, but Kursawe used other genetic
aspects from nature. In VOES, a solution is represented by a diploid chromosome,
each having a dominant string and recessive one. Two different solution vectors (each
with a decision variable x and the corresponding strategy vector σ) are used as an
individual in a population. Hence, a solution x is evaluated by calculating: (1) f d

based on the dominant genotype and (2) f r based on the recessive genotype. In the
following, we present the evaluation and the selection mechanisms. The selection
process is performed inM steps. For each step, a user-supplied probability vector is
used to choose an objective. This vector can be fixed or varied across generations.
Assuming them-th objective is selected, the fitness of certain solution x is computed
as the weighted sum of the dominant objective value and the recessive one as follows:

f (x) = 2

3
f dm (x) + 1

3
f rm(x) (9)

For each selection step, the population is sorted based on each objective function and
(M−1

M )th portion of the population is selected as parents. This procedure is repeated
M times, every time using the survived population from the previous sorting. Thus,
the relation between the number of parents μ and the number of children λ can be
expressed as follows:

μ =
(
M − 1

M

)M

λ (10)

For example, for the bi-objective case, we obtain μ = 0.25λ. All new μ solutions are
copied into an external archive which stores the non-dominated individuals found
since the beginning of the simulation run. After adding such solutions to this archive,
a non-domination check is performed and only new non-dominated solutions are
retained. If the size of the external archive exceeds the archive size, a niching mech-
anism is used to eliminate crowded solutions in order to promote diversity.

VOES uses non-domination check to ensure convergence and niching to encour-
age diversity. These features are essential to design a good MOEA. Unfortunately,
Kursawe assessed the performance of his algorithm on a single test problem and no
further experimental assessments were pursued since Kursawe’s original study.

– WBGA: Weight-Based Genetic Algorithm

WBGA, also called HLGA (Hajela and Lin Genetic Algorithm), was introduced by
[16]. For each objective function, a weighting coefficient is assigned. Unlike the
classical weighted sum method, each individual from the population has its own
weighting coefficient vector which is coded in its string concatenated to its decision
variables. This fact makes the WBGA able to find multiple non-dominated solutions
in a single run. The key issue in this algorithm is how to maintain the diversity
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of weighting coefficients among the population individuals. Tow approaches were
suggested for this sake. In the first approach, a niching mechanism is used on the
substring representing theweight coefficient vector. In the second approach, carefully
chosen subpopulations are evaluated for different pre-defined weight vectors in a
similar way to VEGA. Unfortunately, WBGA is a weight-based approach; hence it
fails in finding Pareto optimal solutions residing in the non-convex parts of the front.

• Pareto-based evolutionary methods

– Non elitist methods

MOGA: Multi-objective Genetic Algorithm

MOGA [17] is the first MOEA which explicitly used Pareto-based ranking and
niching techniques together to encourage the search towards the true Pareto front
while maintaining diversity in the population. In fact, each individual is assigned a
rank which is expressed as a function of the number of individuals dominating it.
Assuming Ndomt to be the number of solutions dominating a certain solution x at a
generation t, the rank at t of x is given by:

rankt (x) = 1 + Ndomt (11)

With such ranking mechanism, non-dominated solutions have a rank of 1 (cf. Fig. 5).
The fitness assignment method used in MOGA takes into account the rank of the
population member and the average fitness value of the population. The process for
computing the fitness values is as follows. Firstly, the population is sorted by rank.
Then, a fitness value is assigned to each individual based on an interpolation of the

Fig. 5 MOGA ranking
process
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best rank to the worst rank according to some specified function. Finally, individu-
als assigned the same rank receive an averaged fitness value. This ensures that all
population members of the same rank are sampled with an identical frequency. This
information is used tomaintain constant global population fitnesswith an appropriate
amount of selective pressure. Additionally,MOGA implements the concept of fitness
sharing (also referred to as crowding or niching) and uses a σshare parameter called
the niche radius whichmust be carefully specified. The nichingmechanism is applied
in the objective space in order to obtain a uniform distribution of the Pareto front
approximation. Figure6 illustrates the fitness sharing mechanism. In fact, solutions
residing inside the niching radius are penalized in their fitness values. Although in
MOGA fitness assignment is explicitly based on Pareto dominance, solutions having
the same rank may not have the same assigned fitness. This may cause an unwanted
bias towards a certain zone of the search space. Particularly, MOGAmay be sensitive
to the geometry of the Pareto front in addition to the density of solutions over the
search space. Besides, the fitness sharingmechanism favors solutionswith poor ranks
over solutions with higher ranks if these latter are more crowded, thereby worsening
the converging.

NPGA: Niched Pareto Genetic Algorithm

Horn and Nafpliotis [18] proposed NPGA which differs from the previously dis-
cussed MOEAs in the selection operator. This algorithm uses the binary tournament
selection instead of proportionate selection methods used in VEGA and MOGA.
During the tournament selection, two solutions x and y are picked randomly from
the parent population P. Then, these two solutions are compared based on Pareto
dominance to each individual of a randomly selected subpopulation T of size tdom
(where tdom 
 |P|). If one of the two solutions is non-dominated with respect to

Fig. 6 Fitness sharing
strategy



Multi-objective Optimization: Classical and Evolutionary Approaches 13

all the subpopulation individuals and the other one is dominated by at least one indi-
vidual, the non-dominated solution is retained. In the cases where neither or both
members are dominated by the subpopulation members, a niching mechanism is
implemented to select the least crowded solution among x and y.

NPGA is found to be sensitive to the σshare value in addition to the tdom one.
The numerical results reported in [18] suggest that tdom should be an order of
magnitude smaller than the population size. On one hand, if tdom is too small, the
non-domination check would be so noisy which may not emphasize non-dominated
solutions sufficiently. On the other hand, if is too large, non-dominated solutions will
be well-emphasized but the computational complexity will increase. Additionally,
tdom depends on the number of objectives to optimize.

NSGA: Non-dominated Sorting Genetic Algorithm

NSGA [19] is based on the non-dominated sorting strategy (cf. Fig. 7). This strategy
classifies the population members into several fronts. The non-dominated sorting
algorithm begins by identifying the non-dominated individuals from all population
members. These individuals have the rank of one and are assigned a large dummy
fitness value. After that, the first front members are discarded temporary from the
population and the non-dominated individuals from the truncated population are
identified and assigned the rank of 2 (eventually assigned a dummy fitness value
smaller than the one of the first front). This process continues until classifying all
population members. The diversity maintenance is achieved in NSGA by applying
the fitness sharing front-wise in the decision space (instead of the objective space) in
order to degrade the fitness values based on a user-defined niche radius value σshare.
The sharing in each front is achieved by calculating a sharing function value between
two individuals i and j in the same front as follows:

Fig. 7 Non-dominated
sorting strategy
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{
Shdi j = 1 − (

di j
σshare

)2 if di j < σshare

0 otherwise
(12)

where di j is the Euclidean distance separating i and j. After that, a parameter niche
count is calculated by adding the above sharing function values for all individuals in
the current front. Finally, the shared fitness value of each individual is computed by
dividing its dummy fitness value by its niche count. The best individuals are always
preferred over other solutions, thereby favoring the generation of new individuals
near the non-dominated solutions. The fitness sharingmechanismhelps the algorithm
to distribute the non-dominated solutions along the Pareto front. However, the high
sensitivity to the σshare parameter yields to a less efficient performance of NSGA.

– Elitist methods

Elitism means that elite individuals cannot be excluded from the archive gene pool
of the population in favour of worse individuals [20]. In the following, we review
the most representative elitist MOEAs [21].

SPEA/SPEA2: Strength Pareto Evolutionary Algorithm

Zitzler and Thiele [22] proposed the strength Pareto approach which uses two popu-
lations: (1) a main population P and (2) an archive population A which contains the
non-dominated individuals found so far during the evolutionary process. Initially, the
population P is generated randomly and the archive A is empty. Then, A is filled with
non-dominated members from P. After that, solutions from A which are dominated
by any other member from A are deleted. Besides, if the number of externally stored
non-dominated solutions exceeds the archive size |A|, then A is pruned by means
of a clustering procedure which will be discussed next. Once all population and
archive members are each assigned a fitness value, binary tournament selection with
replacement is applied to fulfill the mating pool. After applying genetic operators, a
new population P is generated. If a stopping condition is met then the evolutionary
process is stopped, else non-dominated vectors from P are copied to the archive A
as usual and the overall process is repeated.

The fitness assignment in SPEA is a two-stage process. First, the non-dominated
individuals from the archive A are ranked. Then, the population P members are
evaluated. In fact, every solution i from the archive A is assigned a strength value si ∈
[0, 1[ which is proportional to the number of individuals in P which are dominated
by i. The strength si is given by:

si = nd

|P| + 1
(13)

where nd denotes the number of individuals in P that are covered by i and |P| is
the main population size. The fitness of population individual j ∈ P is obtained by
summing the strengths of all non-dominated solutions i ∈ A that dominates j. The
obtained sum is raised by 1 in order to guarantee that archive members have better
performance than P members. This fitness is to be minimized and is given by:
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f j = 1 +
∑

i,i
 j

si (14)

The clusteringmechanism is applied to reduce the size of the archivewhile keeping its
characteristics. The general idea is to partition the archive intoC groupings (clusters),
whereC< |A| and all individuals of the same grouping have the same characteristics.
The clustering procedure begins bymaking each element of the initial non-dominated
archive a cluster. Following this, two clusters are chosen via a distance measurement
to be combined into one cluster. The distance is calculated as average Euclidean
distance between pairs of individuals across the clusters. At the completion of the
clustering process, the new non-dominated archive consists of the centroid members
of each cluster. The authors show favorable results compared to other MOEAs.

In another study [23] have identified three weaknesses for SPEA. Firstly, for
the fitness assignment strategy, individuals that are dominated by the same archive
members have identical fitness values. Hence, in the case when the archive contains
only a single individual, all population members have the same rank independently
of whether they dominate each other or not. Consequently, the selection pressure
is decreased substantially and in this particular case SPEA behaves like a random
search algorithm. Secondly, for the density estimation, if many individuals of the cur-
rent generation are Pareto equivalent, none or very little information can be obtained
on the basis of the partial order defined by the dominance relation. In this situation,
which is very likely to occur when the number of objectives exceeds two, density
information has to be used in order to guide the search more effectively. Clustering
makes use of this information, but only with regard to the archive and not to the
main population. Thirdly, for the archive truncation strategy, although the clustering
mechanism used in SPEA is able to reduce the non-dominated set without destroying
its characteristics, it may lose extreme (outer) solutions. However, these solutions
should be kept in the archive in order to obtain a good spread of non-dominated
solutions. In response to the above mentioned SPEA weaknesses, Zitzler et al. [23]
have proposed an improved version of SPEA, called SPEA2. In contrast to SPEA,
SPEA2 uses a fine-grained fitness assignment strategy which incorporates density
information. Furthermore, the archive size is fixed, i.e., whenever the number of non-
dominated individuals is less than the predefined archive size, the archive is filled
up by dominated individuals; with SPEA, the archive size may vary over time. In
addition, the clustering technique, which is invoked when the non-dominated front
exceeds the archive limit, has been replaced by an alternative truncation method
which has similar features but preserves boundary solutions. Finally, another differ-
ence to SPEA is that in SPEA2 only members of the archive participate in the mating
selection process.

The SPEA2 fitness assignment for a certain solution i takes into account the num-
ber of individuals dominating i in addition to the number of individuals dominated
by i. Each solution i from the population P and the archive A is assigned a strength
value si representing the number of individuals dominated by i:

si = | j | j ∈ P ∪ A ∧ i 
 j | (15)
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Fig. 8 Comparison of fitness assignment mechanisms: a SPEA versus b SPEA2 (from [23])

After that, the raw fitness Ri is computed as flows:

Ri =
∑

j∈P+A, j
i

s j (16)

This raw fitness is determined by the strengths of its dominators in both archive
and population, as opposed to SPEA where only archive members are considered in
this context. It is important to note that fitness is to be minimized here, i.e., Ri = 0
corresponds to a non-dominated individual, while a high Ri value means that i is
dominated by many individuals (which in turn dominate many individuals). This
scheme is illustrated in Fig. 8b.

The raw fitness assignment strategy supplies a sort of niching based on the Pareto
dominance concept. However, this strategy becomes inefficient when most individu-
als are non-dominatedwith each other. For this reason, additional density information
is incorporated to discriminate between individuals having identical raw fitness val-
ues. The density estimation technique used in SPEA2 is an adaptation of the k-th
nearest neighbormethodwhere the density at any point is a decreasing function of the
distance to the k-th nearest points. The density estimate corresponds to the inverse of
the distance to the k-th nearest neighbor. In fact, for each individual i, the distances
in objective space to all individuals j from P ∪ A are computed then stored in a list
in an increasing order. After that, the k-th nearest neighbor gives the sought distance
denoted by σk

i . The k parameter value is usually set to
√|P| + |A|. The density Di

of solution i is:

Di = 1

σk
i + 2

(17)



Multi-objective Optimization: Classical and Evolutionary Approaches 17

In the denominator, two is added to ensure that its value is greater than zero and that
Di < 1 Finally, the fitness of a certain solution i is obtained by summing the raw
fitness and the density information as follows:

Fi = Ri + Di (18)

The SPEA2 environmental selection mechanism differs from SPEA one by pre-
serving the boundary solutions and by the fact that the number of stored external
solutions is constant over time.

NSGA-II: Non-dominated sorting Genetic Algorithm II

NSGA-II is the improved version of NSGA [24, 25]. NSGA-II is one of the most
cited MOEAs. The most prominent features of NSGA-II are its low computational
complexity, elitist approach and a method for diversity that does not need additional
parameters. The general principle of NSGA-II is as follows. The NSGA-II algorithm
begins by creating an offspring population Q0 by applying genetic operators to a
randomly generated parent population P0. From the first generation award, the basic
iteration ofNSGA-II is different. First, the twopopulations Pt and Qt are combined to
form a population Rt of size 2N (|Pt | = |qt | = N ). Second, a non-dominated sorting
is performed to classify the entire population Rt . Once, the non-dominated sorting is
over, the population Rt becomes subdivided in several categories in the samemanner
of NSGA. After that, the new parent population Pt+1 is filled with individuals of the
best non-dominated fronts, one at a time. Since the overall population size is 2N ,
not all fronts may be accommodated in N slots available in the new population Pt+1.
When the last allowed front is being considered, it may contain more solutions then
the remaining available slots in Pt+1. Instead of discarding arbitrary some elements
from the last front, NSGA-II uses a niching strategy to choose individuals from
the last front which reside in the least crowded regions in this front. In fact, for
each ranking level, a crowding distance is estimated by calculating the sum of the
Euclidean distances between the two neighboring solutions from either side of the
solution along each of the objectives as demonstrated by Fig. 9. In order to preserve
boundary solutions, these latter are each assigned an infinite crowding distance. The
crowding distance assignment procedure can be summarized by the three following
steps:

• Step 1: For each solution i from the considered front F, initialize its crowding
distance CDi to zero: CDi ← 0;

• Step 2: For each objective function, sort the front members in a decreasing order
of fm , and find the sorted indices vector: I m = sort ( fm,>);

• Step 3: Form = 1, . . . , M , assign an infinite crowing distance to extreme solutions
(CDI1 = CDIF = ∞) and for the other solutions j = 2, . . . , |F | − 1, assign:

CDImj = CDImj + f
Imj+1
m − f

Imj−1
m

f max
m − f min

m

(19)
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Fig. 9 Crowding distance

where I mj corresponds to the index of the j-th member in the list sorted based
on the m-th objective function. NSGA-II is demonstrated to be one of the most
competitive MOEAs through the specialized literature. The main weakness of
NSGA-II was reported in [1]. In fact, when the cardinality of the first front from
the combined population Rt exceeds the population size |P|, some closely packed
Pareto optimal solutions may give their places to some non-dominated yet non
Pareto optimal solutions since the replacement becomes based only on the crowd-
ing distance criterion.

PAES/PESA: Pareto Archived Evolutionary Strategy/Pareto Envelope-
based Selection Algorithm

Knowles and Corne [26, 27] proposed a (1 + 1)-Evolutionary Strategy ((1 + 1)-ES),
named PAES, to approximate the whole Pareto front. This work was motivated by
the success of (1+1)-ES in resolving mono-objective problems. For this reason the
authors have adapted such search method for the multi-objective case. PAES begins
by producing a child c0 from a randomly generated parent p0. In each generation t,
non-dominated solutions found are stored in an archive with a pre-specified size. The
two individuals pt and ct are firstly compared. If one solution dominates the other,
the dominated individual is discarded and the dominant one is retained as parent
for the next generation. In the case where pt and ct are non-dominated, the new
candidate solution is compared with a reference population of previously archived
non-dominated solutions, i.e., archive members. If comparison to the population in
the archive fails to favor one solution over the other, the tie is split to favor the solution
which resides in the least crowded region of the search space. The archive has a user-
specified maximum size which reflects the desired number of final solutions. Each
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child ct which is not dominated by its parent pt is compared with each member of the
archive. Candidates which dominate the archive members are always accepted (as
parents) and archived. Candidates which are dominated by the archive members are
always rejected, while those which are non-dominated are accepted and/or archived
based on the degree of crowding in their grid location. The major feature of PAES is
its strategy for promoting diversity in the approximation set. PAES uses an adaptive
hyper-gridding system in the objective space to divide it into d non-overlapping
hyper-boxes. The belonging of a certain solution to a certain region in the hyper-box
is determined by the objectives’ values which define the solution’s coordinates. In
the case where an offspring solution is non-dominated with respect to the archive
members, a crowding measure based on the number of solutions residing in a certain
hyper-box is applied to determine whether the offspring solution is accepted or not.

The major advantage of this diversity maintenance technique is that it does not
require any additional parameters such as the niche size parameter σshare. However,
the main crux of PAES is the sensitivity of the performance of such algorithm to the
d parameter of the hyper-gridding system (cf. Fig. 10).

The same authors [28] have proposed PESAwhich is a modified version of PAES.
PESA has the same archiving and diversity preserving mechanisms of PAES. In
PESA, like SPEA2, only archive members participate in genetic operations. PESA
begins by randomly generating a small internal population IP. PESA uses also a large
external population EP which is initially empty. After that, the archive EP is updated
with elite solutions in the same manner as PAES. If the stopping criterion is met then
the algorithm returns EP, else IP is fulfilled with new individuals by the following
operations. With probability pc, two parents are selected from EP. A single child
is subsequently created by crossover. This child is then mutated. With probability

Fig. 10 PAES
hyper-gridding system with
d = 6
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(1 − pc), a selected parent from EP is mutated. After that, the archive EP is updated
and the overall process is repeated.

As PAES, PESA necessitates the tuning of the archive size and the d parameter of
the gridding system. We note that the number of hyper-boxes changes exponentially
with the modification of d value which influences the final population distribution.
An improved version of PESA, called PESA-II, was proposed by Corne et al. [29]
where selection is region-based and the subject of selection is now a hyper-box not
only an individual (i.e., first selecting a hyper-box, then an individual is chosen from
the selected hyper-box). The motivation behind PESA is to reduce the computational
cost of Pareto ranking.

IBEA: Indicator-Based Evolutionary Algorithm

Zitzler and Künzli [30] proposed a MOEA where selection is based on solution
contribution to a certain quality indicator. Indicator-based MOEAs can, therefore,
be seen as a third generation of MOEAs. IBEA begins by randomly generating a
population P. After that, for each solution i from P, the algorithm computes the
fitness of i corresponding to the loss in quality if i is removed from the popula-
tion P. The solution with the lowest fitness is removed from the population and
then the population members’fitness values are recomputed since the population is
truncated. This selection strategy is used in creating the mating pool and in envi-
ronmental selection. The main crux of IBEA is its sensitivity to the κ parameter
which is used to scale the fitness function values since the algorithm performance
largely depends on this parameter which is reported to depend of the considered
MOP. Another indicator-based selection algorithm is the S Metric Selection-based
Evolutionary Multi-objective Algorithm (SMS-EMOA) [31] which combines non-
dominated sorting with indicator-based selection mechanism. IBEAs can be seen as
the last generation ofMOEAs. Themain critical point in this type of algorithms is the
important required computational effort for computing the quality indicator values
for a certain non-dominated solution set [32].

MOEA/D: Multi-objective Evolutionary Algorithm Based on Decomposi-
tion

Zhang and Li [33] proposed one of themost popular decomposition-based algorithm.
The basic idea of MOEA/D is to decompose the MOP into N sub-problems (N is
the population size). These sub-problems are optimized simultaneously. MOEA/D
requires the use of a set of weight vectors λ j that are generated so that they are
well-distributed with the goal to cover the whole Pareto front. In their approach, the
Euclidean distance among the weight vectors is used in order to determine a neigh-
borhood of T weight vectors for each vector λ j . After that, each population member
is assigned a weight vector and optimizes its related sub-problem based on a scalar-
izing function. Thereafter, two solutions from neighboring weight vectors are mated
and an offspring solution is created. The offspring solution is then evaluated using
a scalarizing function. This generated new solution can also replace several current
solutions of its neighboring sub-problems when it outperforms them. Three versions
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of scalarizing functions are adopted for MOEA/D: (1) weighted sum approach, (2)
weighted Tchebycheff approach, and (3) boundary intersection approach. The diver-
sity inMOEA/D is managed based on similarity between individuals weight vectors,
i.e., based on a corresponding neighborhood of solutions.MOEA/D is good in finding
a small number of uniformly distributed Pareto solutions at low computational cost.
Moreover, MOEA/D has demonstrated very interesting results on several problems
with a high number of objectives. However, its main shortcoming is the degrada-
tion of diversity and solution distribution when tackling badly-scaled problems (i.e.,
problems where the objective functions do not have the same scale).

3 Performance Assessment of MOEAs

3.1 Test Functions

Several test functions are proposed to challenge MOEA capabilities in approximat-
ing the Pareto front. The most cited test function suites are: (1) the bi-objective ZDT
(Zitzler-Deb-Thiele) suite [34] and (2) the scalable DTLZ (Deb-Thiele-Laumans-
Zitzler) suite [35]where the Pareto optimal front can be determined analytically. Such
test functions encapsulate several characteristics such as non-convexity, multimodal-
ity, non-uniformity of the search space, and discontinuity which cause difficulties to
a MOEA. These test functions do not reflect necessarily the main features of real
world MOPs. It is true that some of these functions contain important characteristics
that make them particularly difficult to solve. Thus, if a MOEA can resolve such test
functions, it should also be able to tackle real world MOPs; following a well-defined
adaptation step. Tables1 and 2 present the ZDT and DTLZ test functions character-
istics respectively. We notice that for DTLZ test problems, the parameters can be
modified in order to increase or decrease the problems difficulties (e.g., modifying
the number of local optimal Pareto fronts).

Table 1 Bi-objective ZDT test problems’ characteristics

Name Features

ZDT1 The Pareto front is convex

ZDT2 The Pareto front is concave

ZDT3 The Pareto front is formed by several disjoint convex parts

ZDT4 There are 219 local fronts

ZDT5 The Pareto front is convex. ZDT5 is a discrete problem with a deceptive landscape

ZDT6 The Pareto front is concave. This problem is characterized by the non-uniformity
not only of the search space but also of the solution distribution along the Pareto
front
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Table 2 Scalable DTLZ test problems’ characteristics

Name Features

DTLZ1 The Pareto front is linear (Hyper-plane). There are (11k − 1) local optimal fronts
where k is a user-specified parameter

DTLZ2 For M > 3, the Pareto optimal solutions lie inside the first quadrant of the unit
sphere in a three-objective plot with fM as one of the axes

DTLZ3 There are (3K − 1) local fronts that are parallel to the global Pareto front where k
is a user-specified parameter

DTLZ4 The Pareto optimal solutions are non-uniformly distributed along the Pareto front

DTLZ5 The front is a curve and the Pareto optimal solutions are non-uniformly
distributed along the Pareto front

DTLZ6 The front is a curve and the solution density gets thinner towards the Pareto front

DTLZ7 The Pareto front is formed by 2M−1 disjoint regions in the objective space

DTLZ8 The Pareto front is a combination of a straight line and a hyper-plane. The
straight line is the intersection of the first (M − 1) constraints with
f1 = f2 = · · · = fM−1 and the hyper-plane is represented by another constraint
gM

DTLZ9 The Pareto front is a curve with f1 = f2 = · · · = fM−1. The solution density
gets thinner towards the Pareto front

3.2 Performance Indicators

When evaluating the performance of a MOEA, there are two main goals to pursue:
(1) closeness of the provided non-dominated solution set to the Pareto optimal front
and (2) diversity of the obtained solution set (with a good distribution) along the
Pareto optimal front. Several performance measures are proposed in the EMO lit-
erature to evaluate one or both of these goals [36]. Table3 presents a classification
of selected representative performance measures. The classification criteria are the
following:

• unary which indicates if it is a unary performance indicator (i.e., performance
measure which assigns a single value to each non-dominated solution set);

• binary which indicates if it is a binary performance indicator (i.e., performance
measure which assigns a single value to a pair of non-dominated solution sets);

• convergence which indicates that the performance indicator assigns a single value
corresponding to the convergence of the non-dominated solution set;

• diversity which indicates that the performance indicator assigns a single value
corresponding to the diversity of the non-dominated solution set;

• reqPFtrue which indicates if the performance measure requires the true Pareto
optimal front PFtrue to assign a single value to the non-dominated solution set;

• bestvaluewhich indicates the best value that can be obtained from the performance
indicator;

• Pareto compliant which indicates whether the performance measure is Pareto
dominance compliant.Before defining the notion of Pareto dominance compliance,
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Table 3 Main features of performance indicators

Performance
indicators

Unary Binary Convergence Diversity reqPFtrue Best
value

Pareto
compliant

EC X X X 0 X

SC X X 1 X

Iε+ X X - X

GD X X X 0

IGD X X X 0

Δ X X 0

HV X X X 1 X

S X X 0

R2 X X X 0 X

χ2-like devia-
tion

X X X 0

we give the definitions of compatibility and completeness. The definitions are
derived from the study of Zitzler et al. [36]:

Definition 8 (Compatibility and Completeness) Assuming W and Z two approxi-
mation sets, a quality indicator I : Ω → R (assuming higher values of the indicator
mean better performance) is said to be compatiblewith the Pareto dominance relation
if and only if:

I (W ) > I (Z) ⇒ W 
 Z (20)

The quality indicator I is said to be complete if and only if:

W 
 Z ⇒ I (W ) > I (Z) (21)

Definition 9 (Compliance) A quality indicator I is said to be Pareto dominance
compliant if I is both compatible and complete with the Pareto dominance relation.

• Error Ratio (ER):

This indicator is proposed by Van Veldhuizen and Lamont [37]. It corresponds to
the ratio of the number of solutions that are not members of the true Pareto optimal
front PFtrue by the cardinality of the obtained solution set. Mathematically, ER is
expressed as follows:

ER =
∑N

i=1 ei
N

(22)

where N is the number of non-dominated solutions provided by the MOEA and
ei = 1 if solution i is dominated by any member from PFtrue and ei = 0 otherwise.
ER = 1 means that no solution belongs to the true front PFtrue and ER = 0 when
all solutions are in the true front.
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• Set Coverage (SC):

This indicator can be termed relative coverage of two solution sets [34]. SC is defined
as the mapping of the pair (W, Z) to the interval [0,1] as follows:

SC(W, Z) = | {z ∈ Z; ∃w ∈ W : z 
 w} |
|Z | (23)

SC(W,Z) expresses the percentage of solutions from Z that dominates solutions inW.
SC(W,Z)=1 means that each solution in Z dominates at least one solution from W ;
while SC(W,Z)=0 means the opposite (i.e., there is no solution from Z dominating
solutions from W ).

• Binary additive epsilon indicator:

This metric takes a pair of non-dominated solution setsW and Z as inputs and returns
a pair of numbers as outputs (IW , IZ ) such that [36]:

IW = Iε+(W, Z) = I n f
ε∈R

{∀z ∈ Z; ∃w ∈ W : w 
ε+ z} (24)

IZ = Iε+(Z ,W ) = I n f
ε∈R

{∀w ∈ W ; ∃z ∈ Z : z 
ε+ w} (25)

Iε+(W, Z) expresses the minimum quantity ε by which each solution from W must
be translated in the objective space so that each solution from Z becomes dominated
by (or equal to) at least one member from W. A pair of numbers (IW ≤ 0, IZ > 0)
indicates that W is strictly better than Z, while a pair of numbers (IW > 0, IZ > 0)
means that W and Z are incomparable. Nevertheless, if IW is less than IZ , then in a
weaker sense, we can say thatW is better thanZ because theminimum ε value needed
so thatW ε-dominates Z is smaller than the ε value needed so that Z ε-dominatesW.

• Generational distance (GD):

This indicator estimates how far are the elements in the Pareto front produced by
the MOEA from those in the true Pareto front of the problem (i.e.,PFtrue) [37]. It is
given by the following equation:

GD =

√
N∑

i=1
d2
i

|PFtrue| (26)

where N is number of non-dominated solutions provided by the MOEA and di is
the distance between each of these solutions to its nearest member from PFtrue.
A variant of this indicator is the Inverted Generational Distance (IGD) in which a
reference true Pareto front is used and its elements are compared with respect to the
approximation produced by the MOEA.
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• Spread (Δ):

The metricΔmeasures the deviation among consecutive solutions in the Pareto front
PF furnished by the MOEA [1]. Analytically, Δ is stated as follows:

Δ =
|PF |∑

i=1

|disti − dist |
|PF | (27)

where disti the Euclidean distance between two consecutive solutions in PF and
dist is the average of these distances. In order to ensure that this calculation takes
into account the spread of solutions in the entire region of the true front, the boundary
solutions in the non-dominated front are included. For a perfect distribution, Δ = 0
which means that disti is constant for all i.

• HyperVolume (HV):

This indicator, called also S metric, estimates the hypervolume of the portion of the
objective space which is dominated by an approximation set [22]. The larger HV
value is, the better the result is. This metric assesses both convergence and diversity.
The HV indicator can be expressed as follows:

HV = ∪
i

voli | i ∈ PF (28)

where voli corresponds to hyperarea bounded by a pre-specified reference point and
a solution i. The HV metric is compatible and complete with the Pareto dominance
relation; thereby HV is said to be Pareto compliant which is an important feature for
this indicator.

• Spacing (S):

This metric assesses the solution distribution along the Pareto front and it is given
by:

S =
√
√
√
√ 1

|PF | − 1

|PF |∑

i=1

(disi − dis)2 (29)

where disi = min
j∈PF

∑k
m=1 | f im − f j

m | and dis is the mean of these distances. The

distance measure is the minimum value of the sum of the absolute differences in
objective function values between solution i and any other solution in the Pareto
optimal set. S = 0 means that all solutions are equally distributed along the Pareto
front.

• Unary R2 indicator:

This indicator uses a set of utility functions to assess an approximation set. The unary
R2 indicator can be defined as follows [38]:
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R2(A,U ) = 1

|U |
∑

u∈U
mina∈Au(a) (30)

where A is an approximation set and U is a set of utility functions. Different util-
ity functions can be used such as the weighted sum and the weighted Tchebycheff
function. This indicator evaluates both convergence and diversity. It is also recom-
mended to use the R2 indicator for many-objective problems because it requires a
lower computational cost in comparison to the HV indicator.

• Chi-square-like deviation measure (χ2-like deviation):

Proposed by Srinivas and Deb [19], this indicator evaluates the diversity of the
obtained solution set PF. PF solutions are compared with respect to a uniformly
distributed set of PFtrue called F. For each i ∈ {1, 2, . . . , |F |}, we denote by ni the
number of solutions inPF whose distance from i is less than a user-specified quantity
ω. Then, the measure is computed as follows:

χ =
√
√
√
√

|F |+1∑

i=1

(
ni − ni

σi
)2 (31)

The ideal distribution is achieved when all the neighborhoods of points in F have the
same cardinality, i.e., if for each solution i in F there is ni = |PF |

|F | points whose

distance from i is less than ω, then χ = 0. The variance σ2
i is proposed to be

σ2
i = ni (1 − ni

|PF | ) for all i ∈ {1, 2, . . . , |F |}. The lower the χ value is, the better
the distribution is.

4 Conclusion

Through this chapter, we have provided a comprehensive review of the EMO research
field.We classifiedMOEAs based on twomain criteria: (1) the use of the Pareto dom-
inance as a selection criterion and (2) the elitism. Figure11 illustrates a cartography
of the different discussed MOEAs. Non-Elitist approaches are seen as a first gen-
eration of MOEAs while the second generation corresponds to the elitist methods.
Both the use of scalarizing functions to decompose the original MOP into a collec-
tion of sub-problems and the use of a performance indicator as a selection criterion
can be considered as the third generation of MOEAs. In the literature, several stud-
ies are recently conducted in those two directions. We have presented how MOEA
output can be assessed by means of quality metrics and difficult test functions with
predefined Pareto optimal fronts each having some geometrical features presenting
challenges to every search method. As discussed through this chapter, most of the
describedMOEAs have shown their effectiveness and efficiency in ensuring not only
convergence towards the Pareto front but also diversity between the final obtained
solutions. However, this fact does not resolve the problem of decision making since
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Fig. 11 MOEA cartopgraphy
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the DM has to choose a single solution from a huge set of non-dominated ones
[39–41]. Hence, it will be interesting to incorporate the DMs preferences in MOEAs
since the DM is not interested in discovering the whole Pareto front but rather finding
only the portion of the front that matches at most his/her preferences [42, 43].
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Dynamic Multi-objective Optimization Using
Evolutionary Algorithms: A Survey

Radhia Azzouz, Slim Bechikh and Lamjed Ben Said

Abstract Dynamic Multi-objective Optimization is a challenging research topic
since the objective functions, constraints, and problem parameters may change over
time. Although dynamic optimization and multi-objective optimization have sepa-
rately obtained a great interest among many researchers, there are only few studies
that have been developed to solve Dynamic Multi-objective Optimisation Problems
(DMOPs). Moreover, applying Evolutionary Algorithms (EAs) to solve this cate-
gory of problems is not yet highly explored although this kind of problems is of
significant importance in practice. This paper is devoted to briefly survey EAs that
were proposed in the literature to handle DMOPs. In addition, an overview of the
most commonly used test functions, performance measures and statistical tests is
presented. Actual challenges and future research directions are also discussed.

Keywords Dynamic optimization · Multi-objective optimization · Evolutionary
algorithms ·Survey ·Realworld applications ·Test functions ·Performancemetrics ·
Statistical Tests

1 Introduction

In addition to the need for simultaneously optimizing several competing objectives,
many real-world problems are also dynamic in nature. These problems are called
DMOPs and they are characterized by time-varying objective functions and/or con-
straints. Thus, the optimization goal is not only to evolve a near-optimal PF, but also
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to continually and rapidly discover the desired one before the next change occurs.
Applying EAs to solve dynamic optimization problems has obtained great atten-
tion among many researchers. However, most of existing works are restricted to the
single-objective case. To the best of our knowledge, the earliest application of EAs
to dynamic environments dates back to 1966 [1]. However, it was not until the late
1980s that the subject becomes a research topic. Although many other optimiza-
tion techniques have been adapted to dynamic environments such as the particle
swarm optimization [2] and the artificial immune systems [3, 4], the EA area is
still the largest one. When dealing with DMOPs, the EA should be able not only to
evolve a near-optimal and diverse PF, but also to continually track time-changing
environment. In fact, two ways exist to react to a change of the environment: (1)
to consider each change as the arrival of a new optimization problem that has to be
solved from scratch or (2) to use knowledge about the previous search in order to
accelerate optimization after a change. The first approach is not always applicable
due to a time limit [5]. In the second case, the optimization algorithm has to ensure
adaptability since convergence during the run may cause a lack of diversity. Such
goal of adaptability and track of the optimal PF implies a conflicting requirement
of convergence and diversity. There are few works handling DMOPs which include
diversity introduction-based approaches [6, 7], change prediction-based approaches
[8, 9], memory-based approaches [10], and parallel approaches [11].

The topic of dynamic optimization was reviewed in the past but this has mainly
covered dynamic single-objective optimization [5, 12, 13]. The research field of
dynamic multi-objective optimization is an emerging area in evolutionary computa-
tion ant it attracts more and more researchers. This is why, it becomes primordial to
have a look on what has been done in the past and what could be done in the future.
Only a few number of works reviewing dynamic multi-objective optimization topic
exist in the literature like [2, 14, 15]. This paper is proposed as a step towards fulfill-
ing this gap. It ismainly devoted to briefly survey EAs proposed for handlingDMOPs
and to present a repository about the most commonly used dynamic multi-objective
benchmark functions and performance measures.

Section2 highlights the most important definitions related to this area. In Sect. 3, a
number of classifications of dynamic environments are presented. Section4 provides
an overview of the most important works that deal with the problematic of the use
of EAs to handle DMOPs. Advantages and shortcomings of different approaches are
outlined. Section5 presents the most commonly used test problems on assessing the
performance of dynamic EAs while Sect. 6 explains the performance metrics and
statistical tests used when comparing different dynamic approaches. A discussion
part is presented in Sect. 7. Finally, Sect. 8 concludes this paper and gives some
suggestions for future research.
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2 Definitions

Definition 1 Dynamic Multi-objective Optimization Problem.

ADMOP can be defined as the problem of finding a vector of decision variables x(t),
that satisfies a restriction set and optimizes a function vector whose scalar values
represent objectives that change over time. Considering a minimization problem, the
DMOP can be formally defined as follows:

Min F(x, t) = { f1(x, t), f2(x, t), . . ., fM(x, t)}\x∈Xn

s.t. g(x, t) > 0, h(x, t) = 0 (1)

where x is the vector of decision variables; f is the set of objectives to be minimized
with respect to time. The functions of g and h represent respectively the set of
inequality and equality constraints while t represents the time or the dynamic nature
of the problem and M represents the number of objectives to be minimized.

Definition 2 Dynamic Pareto Optimal solution.

A decision vector x∗(i, t) is said to be a Pareto optimal solution if there is not any
other feasible decision vector, x ( j, t) such that

f ( j, t) ≺ f (i, t)∗\ f ( j, t) ∈ FM

Where ≺ represents the Pareto dominance relation.

Definition 3 Dynamic Optimal Pareto Front.

The optimal PF at time t , denoted as PF(t)∗, is the set of Pareto optimal solutions
with respect to the objective space at time t such that

PF(t)∗ = { f (i, t)∗| � f ( j, t) ≺ f (i, t)∗, f ( j, t) ∈ FM}

Definition 4 Dynamic Pareto Optimal Set.

The Pareto-optimal set at time t , denoted as PS(t)∗, is the set of Pareto optimal
solutions with respect to the decision space such that

PS(t)∗ = {x∗
i | � f (x j , t) ≺ f (x∗

i , t)
∗, f (x j , t) ∈ FM}

Definition 5 Change Severity.

The change severity signifies how fundamental the changes are in terms of their
magnitude. It measures the relative strength of the landscape change by comparing
the landscape before and after a change [16].
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Definition 6 Change Frequency.

The change frequency determines how often the environment changes. Usually it is
measured as the number of generations or the number of fitness functions evaluations
from one landscape change to the next [16].

3 Classifications of DMOPs

A number of classifications have been proposed in the literature based on the fre-
quency, severity, and predictability of changes.

• Frequency-based classification: When the change frequency increases, the time
dedicated for adaptation becomes shorter which makes the problemmore difficult.

• Severity-based classification: The change severity (rate) defines its degree. There
can be a large change in the problem or there can be a small change. It is easier for
the algorithm in the second case to converge to the optimal PF since information
gained from the previous environment can be exploited and reused to accelerate
the convergence speed. If the change severity is large, each instance of the problem
may be completely unrelated to the next one. Thus, it may be useful to completely
re-start the algorithm.

• Predictability-based classification: The change predictability indicates its regular-
ity. A change is random when it is independent of the previous one while it is
considered non-random or predictable when it is deterministic. This class could
be divided into cyclic changes (changes are periodic) or acyclic ones.

• Classification based on the relation between the optimal PF and the optimal PS:
Farina et al. [17] identified four different types of DMOPs according to changes
affecting the optimal PF and the optimal PS as follows:

– type I, where the optimal PS (PS∗) changeswhile the optimal PF (PF∗) remains
invariant;

– type II, where both PS∗ and PF∗ change;
– type III, where PF∗ changes while PS∗ remains invariant; and
– type IV, where both PS∗ and PF∗ remain invariant.
Farina et al. noted that, even if PS∗ and PF∗ remain unchanged in Type IV
problems, other regions of the fitness landscape can be changing. It is the case
when for example only the local optima vary over time. These four types are
summarised in Table1.

Table 1 Dynamic
multi-objective optimization
environment types

PF(t)∗ PS(t)∗

No change Change

No change Type VI Type I

Change Type III Type II
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4 Dynamic Multi-objective Optimization Using EAs

Dynamic optimization problems include Dynamic Single-objective Optimization
Problems (DSOPs) and DMOPs. EAs were first applied to DSOPs. In fact, the opti-
mization algorithm has to ensure adaptability since convergence during the run may
cause a lack of diversity. Thus, the algorithm loses its ability to flexibly react to
changes. For this reason, several additionalmechanismswere proposed to keep diver-
sity in the population. Diversity can be either maintained throughout the run [18, 19],
or increased after a change detection by taking explicit actions such as reinitialization
or hypermutation [20, 21]. Also, many other approaches have been proposed such as
memory-based approaches [22, 23], multipopulation approaches [24, 25], predictive
approaches [26, 27], etc. A number of interesting surveys of these approaches exist
in the literature. Interested readers may refer to [5].

The main difficulty in the multi-objective case is that the PF of a DMOP may
change when the environment changes which makes the task of optimization more
difficult. Contrarily to the single-objective case, there are few works dealing with
DMOPs.Aswell, the number of papers presenting anoverviewof existing approaches
is very limited. This is why, we devote this chapter to briefly survey EAs for handling
DMOPs for which we propose the following classification.

4.1 Diversity-Based Approaches

4.1.1 The Dynamic Non-dominated Sorting Genetic Algorithm II
(D-NSGA-II)

A conflicting requirement of convergence and diversity is imposed when dealing
with DMOPs since convergence during the run may cause a lack of diversity which
may cause that the algorithm loses its ability to adapt and flexibly react to changes.
One way to deal with this issue is to increase diversity after detecting a change.
Another way is to try to maintain a good level of diversity all over the search process.
One important work belonging to this category of approaches is Dynamic NSGA-II
(DNSGA-II) proposed in 2006 [6] where Deb et al. extended NSGA-II to handle
DMOPs by introducing diversity at each change detection. In fact in each genera-
tion, few solutions are randomly selected and re-evaluated. If there is a change in the
objectives or constraint violation values, the problem is considered to be changed.
Then, all outdated solutions (i.e., parent solutions) are re-evaluated. This process
allows both offspring and parent solutions to be evaluated using the changed objec-
tives and constraints functions. Two versions of the proposed dynamic NSGA-II
were suggested. Diversity is introduced in the first version (DNSGA-II-A) through
the replacement of ζ% of the new population with new randomly created solutions.
In the second version (DNSGA-II-B), diversity is ensured by replacing ζ% of the
new population with mutated solutions. Authors also suggest a decision-making aid
to help identify one dynamic single optimal solution on-line. One of the merits of
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this work is that it can also solve constrained DMOPs. This work has been evaluated
on a modified version of the FDA2 test problem and a real world optimization of a
hydro-thermal power scheduling problem involving two conflicting objectives. The
dynamicity of this problem is due to the change in demand in power with time [6].
The first version based on random initialization has demonstrated better performance
on problems subjected to a large change while, the second version performs well on
problems undergoing a small change in the problem. Nevertheless, both versions are
sensitive to the choice of the population ratio ζ and the change frequency.

4.1.2 The Dynamic Constrained NSGA-II (DC-NSGA-II)

In [7], authors proposed an adaptation of DNSGA-II 1 to deal with dynamic con-
straints by replacing the used constraint-handling mechanism by a more elaborated
and self-adaptive penalty function. The resulting algorithm is called Dynamic Con-
strainedNSGA-II (DC-NSGA-II).Moreover, to fill the gap of the lack of benchmarks
that simultaneously take into account the dynamicity of objective functions and con-
straints, authors also proposed a set of test problems that extend the CTPs suite
of static constrained multi-objective problems [28]. The new dynamic constrained
MOPs denoted as Dynamic CTPs (i.e., DCTPs) present different challenges to the
optimization algorithm since the PF, the PS and the constraints change simultane-
ously over time. In fact, DNSGA-II uses the constraint dominance principle used
in NSGA-II to deal with constraints. However, since this principle prefers feasible
solutions over infeasible ones, it often results in a premature convergence due to
the loss of diversity over time. This is why, authors proposed to replace the domi-
nance principle used to handle constraints by the penalty function proposed in [29].
They supposed that the constraint-handling technique should be able to find feasible
individuals and to maintain some infeasible solutions allowing to avoid premature
convergence; while the dynamic EA would be able to ensure the diversity in the
population and to track changing PFs. Furthermore, the diversity introduction mech-
anism was ameliorated. A feasibility condition was added before incorporating any
random or mutated solution into the population, since accepting infeasible solutions
may slow down convergence. This work has been evaluated on the proposed DCTPs
problems where it was able to handle dynamic environments and to track changing
PFs with time-varying constraints. Moreover, the obtained results have demonstrated
the advantages of this algorithm over the original DNSGA-II versions on both aspects
of convergence and diversity. However, this approach faces difficulties when dealing
with problems having many local optimal PFs.

4.1.3 Individual Diversity Multi-objective Optimization EA (IDMOEA)

Chen et al. [30] proposed to explicitly maintain genetic diversity by considering it
as an additional objective in the optimization process. They presented the individual
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Table 2 Diversity-based dynamic EAs

Algorithm Compared to Used benchmarks Used performance metrics

D-NSGA-II [6] – A modified version of
FDA2 [6] and the
hydro-thermal power
scheduling problem [6]

HyperVolume (HV) ratio
[31]

DC-NSGA-II [7] D-NSGA-II [6] DCTPs test problems [7] Inverted Generational
Distance (IGD) [32], HV
ratio [31], and MS [10]

IDMOEA [30] – FDA1 and FDA5 [17] GD [33] and entropy [30]

diversity multi-objective optimization EA (IDMOEA) that uses a new diversity pre-
serving evaluation method which is called Individual Diversity EvolutionaryMethod
(IDEM). The goal of IDEM is to add a useful selection pressure addressed towards
both the optimal PS and the maintenance of diversity [30]. The average of individ-
ual’s entropy is used as a diversity measure. The first step of IDMOEA is to verify
if there is a change in the environment. If an environmental change takes place, a
new population is created using the best individuals of the current population and
the archive. Otherwise, the new population is created as a copy of the current pop-
ulation. Then, binary tournament selection is executed to select parents on which
the crossover will be performed. Mutation is applied on the produced offsprings
and the population and archive update are performed to maintain elite solutions.
The archive is updated by adding non-dominated individuals of the population to it.
If the archive attends its maxsize, individuals with better diversity are maintained.
The performance of IDMOEA was evaluated on FDA1 and FDA5 [17]. The results
showed that the algorithm is effective at converging towards the optimal PS and to
track changing PFs while maintaining a diverse set of solutions.

Table2 summarizes the algorithms discussed in this section, and the algorithms
that theywere confronted to, as well as the benchmark functions and the performance
measures that they were evaluated on.

4.2 Change Prediction-Based Approaches

To exploit past information and anticipate the location of the new optimal solutions,
a prediction model may be used when the behavior of the dynamic problem follows
a certain trend. In fact, these approaches are used to reduce the number of functions
evaluations while reserving the quality of optimized solutions. This is by predicting
the location of the new optimal PF or the new optimal PS based on informations
about previous environments.
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4.2.1 Dynamic Queuing Multi-objective Optimizer (D-QMOO)

Hatzakis andWallace [8] proposed a forecasting technique called Feed-forward Pre-
diction Strategy (FPS) in order to estimate the location of the optimal PS. Then an
anticipatory population called a prediction set is placed in the neighborhood of the
forecast in order to accelerate the discovery of the next PS. Since this work deals
with only bi-objective optimization problems, this set is formed by selecting two
anchor points (i.e., the extreme solutions in the obtained PF: min ( f1) and min ( f2))
as vertices and tracking and predicting them as next-step optima. In fact, for each
point, the sequence of the past optimal locations is used as input to a forecasting
model, which produces an estimate for the next location. As soon as the next time
step arrives and the objective functions change, the prediction set is inserted into the
population. If the prediction is successful, the predicted individuals will accelerate
the convergence of the rest of the population and help the discovery of the next PS.
Since the prediction might be unsuccessful, or the temporal change pattern might not
be identifiable by the forecasting method, the use of the prediction strategy can not
be sufficient to tackle with the dynamicity of the problem. Authors suggested the use
of a convergence/diversity balance technique. It consists in composing the total pop-
ulation at the beginning of the optimization of three parts: (1) the prediction set, (2)
the non-dominated front and (3) the cruft (i.e., the dominated set) whose function is
to preserve diversity and to handle any unpredictable change. The FPSwas combined
with the EA developed by Leyland based on the Queuing Multi-objective Optimizer
(QMOO) [8]. The resulting algorithm is called Dynamic QMOO (D-QMOO). The
main advantage of this algorithm is that instead of re-introducing past optimal solu-
tions into the evolving population, information is exploited to predict future behavior
of the dynamic problem, aiming at a faster convergence to the new PF. Neverthe-
less, only one dynamic test problem, which is the FDA1 problem [17], is considered
to examine its performance, while the precision of the prediction should be further
improved.

4.2.2 The Work of Hatzakis and Wallace (2006)

This work presents an extension to the FPS proposed in [8] where authors have
studied the influence of the size and the distribution of the anticipatory population
on the search performance. Since the prediction almost have an amount of error due
to the accuracy of the optimal solution’s history and the accuracy of the forecasting
model, it is important to populate the forecast neighborhood instead of only placing a
single individual on the forecasted coordinates. To deal with this issue, authors have
proposed to create prediction sets in the form of a hypercube around the forecast
coordinates, dimensioned in proportion to the expected forecast error. An individual
is placed at the center and at each hypercube corner. The main disadvantage of a
hypercube topology is its computational cost whenever the dimension of the design
vector increases. Thus, authors have proposed to use a two-level Latin hypercube
with 3 individuals per prediction point: the centre point and the two LH points. On
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the other hand, since in [8], only the two anchor points were selected to be tracked
and forecasted, this approach leaves a large portion of the PS uncovered mostly when
its shape is non-linear and complex. In this work, an intermediate point defined as the
non-dominated solution closest to the ideal point and called CTI (Closest-To-Ideal)
is proposed to be selected together with the extremities of the PF. The proposed
topologies of populating the neighborhood of the forecast were tested on the FDA1
test problem [17]. Results have shown that the hypercube has the best accuracy
(least error) for low dimension design vectors, while, the Latin hypercube has the
best accuracy with 6 decision variables. Moreover, initial experiments show that
including the CTI point in the prediction set improves performance mostly with a
high change frequency. Nevertheless, selecting the CTI point may be difficult when
the front is very concave and large parts of it have almost the same distance to the
ideal point.

4.2.3 The Dynamic Multi-objective EA with Predicted Re-Initialization
(DMEA/PRI)

Unlike the extended FPS where only three points of the PS (the two anchor points
and the CTI point) are tracked and predicted, Zhou et al. [34] proposed to predict
the new locations of a number of Pareto solutions in the decision space once a
change is detected. Then, individuals in the re-initialized population are generated
around these predicted points. Two strategies for population re-initialization were
introduced. The first strategy is to predict the new individuals’ locations from the
previous locations changes. The population is then partially or completely replaced
by the new individuals generated based on prediction. The second strategy is to add to
the population a “predicted” Gaussian noise whose variance is estimated according
to previous changes. A framework of the dynamic multi-objective EAwith predicted
re-initialization called (DMEA/PRI) and based on predicted re-initialization strate-
gies was presented. Moreover, four methods for re-initialization have been studied
and compared: (1) random re-initialization method (RND) such that initial popula-
tions are randomly generated, (2) variation method (VAR) using the variation with
a predicted noise strategy, (3) prediction method (PRE) where the new individuals
are generated around the predicted locations and (4) a hybrid method (V&P) where
half of population is generated by method 2 and half is created by method 3. The
performance of the proposed methods was assessed on two test problems: FDA1
[17] and ZJZ which is a modified version of FDA1 using the method proposed in
[35] in order to take into account a linear linkage between decision variables. The
empirical results have shown that for the FDA1 test problem, the RND method does
not work at all. The VAR method does not perform well while the V&P method
and the PRE method are comparable and perform better than the RND and VAR
strategies. For the ZJZ problem, when the time window increases, the V&P and PRE
methods outperform other ones.
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4.2.4 The Work of Roy and Mehnen (2008)

In [36], Roy and Mehnen introduced a dynamic multi-objective EA using forecast-
ing and desirability functions. In fact, the proposed algorithm is an adaptation of
DNSGA-II [6] where diversity is no more introduced when a change occurs by
adding some random or mutated solutions. Instead, parent population is discarded
and only offspring individuals are re-evaluated before that the algorithm restart. The
objective functions are transformed using desirability functions to guide the search
towards the most interesting parts of the optimal PF according to an expert or deci-
sion maker’s preferences. Moreover, a forecasting is incorporated into the algorithm.
It consists on segmenting the objective space into a grid of hyper-cubes. Each cube
of the grid represents a section of the PF for a certain time t . At each time t , rep-
resentative points of each cube are determined and a two dimensional time series
is assigned to each one. Then for each objective, a state space model is used for
modelling the multi-variate timeseries. The proposed dynamic NSGA-II uses after
a predefined number of generations a k forecasted values for k iterations. During
these k iterations no function evaluations are performed. The algorithm was tested
on a real-world problem of machining of material with continuously varying prop-
erties, also known as the gradient material problem. The results indicated that the
use of desirability functions strongly reduce the number of obtained non-dominated
solutions. Moreover, authors claimed that the multivariate analysis of more than four
time series at a time resulted in forecasts with poor confidence intervals.

4.2.5 The Dynamic Multi-objective Evolutionary Gradient Search
(Dynamic MO-EGS)

A new prediction strategy called dynamic predictive gradient strategy is proposed in
[9] to predict the good search direction and the magnitude of changes in the decision
space. Besides, a new memory technique requiring few evaluations is introduced to
exploit any periodicity in the dynamic problem. Then, both techniques are incor-
porated into a dynamic variant of the Multi-objective Evolutionary Gradient Search
(MO-EGS). The dynamic predictive gradient strategy consists in defining a set of
vectors called predictive gradients relating the obtained solutions for the previous
landscapes and describing the direction and the magnitude of the next change in the
location of the optimal PS. The predictive gradient is used to update some individ-
uals of the population which will guide the rest of the population towards the new
optimal PS. MO-EGS is a memetic MOEA that extends the concept of Evolution-
ary Gradient Search for MO optimization. In order to preserve elitism, MO-EGS
maintains an external archive to store the non-dominated solutions found. The gra-
dient information of each solution needed for the estimation of the global gradient
is represented by the fitness of the solution which is calculated using an aggregation
function that combines the objective values of the solution into a scalar value. An
implementation to adapt MO-EGS for dynamicMO optimization, called dMO-EGS,
was proposed based on the dynamic predictive gradient strategy and a new selec-
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tive memory technique. This technique is based on storing the outdated archive by
storing only its geometric centroid and centroid variance. Moreover, to detect envi-
ronment changes, few solutions are randomly selected and re-evaluated. If there is a
change in the objective values, the problem is considered to be changed. To assess
the performance of this algorithm, two sets of experiments were conducted on sta-
tic and dynamic environments. When resolving static test problems, the proposed
approach was compared to NSGA-II, SPEA2 and PAES. The results have shown
that all algorithms have similar performance. On the other hand, the performance
of dMO-EGS was compared to two dynamic MOEAs (i.e., dCCEA and dPAES: the
dynamic version of PAES) where the same dynamic handling techniques used in
dMO-EGS were implemented in dCCEA and dPAES. The results indicated that the
prediction strategy is able to improve performance on all used test problems.

4.2.6 The Dynamic Multi-objective EA with Core Estimation
of Distribution

In [37], Liu has proposed a Dynamic Multi-objective EA with Core Estimation of
Distribution (CDDMEA) that incorporates a core estimation of distribution model
to predict the location of Pareto optimal solutions of the next environment. In fact,
the core of the different optimal PSs at different time steps is calculated as the
average solution of each one using the mean value of each variable space dimension.
Then, when a change occurs, the re-initialized population is obtained by adding the
difference between the core solutions at time t − 1 and time t − 2 to each solution
at time t to obtain the new solution at time t + 1. The performance of CDDMEA
was evaluated on a test problem defined in [38] and the FDA2 test function [17]
and it was compared to DNSGA-II-A [6]. Visual comparisons of the plots of the
obtained PFs were performed in addition to the evaluation of the U-measure to
evaluate the diversity of the obtained solutions. The authors claimed that CDDMEA
is better than DNSGA-II-A but more experiments on different benchmark functions
and using different performance measures still are needed. Moreover, as noted in
[39], this prediction approach is based on the Pareto optimal solutions which may
induce that errors in previously found optimal PS may cause the algorithm to lose
track of the changing optimal solutions.

4.2.7 The Population Prediction Strategy (PPS)

More recently in 2014, Zhou et al. [40] proposed to predict a whole population
rather than predicting some isolated points for continuous DMOPs. This approach,
called Population Prediction Strategy (PPS) consists in dividing the PS into two
parts: a center point and a manifold. When a change is detected, the next center
point is predicted using a sequence of center points maintained all over the search
progress, and the previous manifolds are used to estimate the next manifold. Then,
PPS initializes the whole population by combining the predicted center and the
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estimatedmanifold. The center points x0, x1, . . . , xt form a time series. A univariate
autoregression (AR)modelwas applied to forecast the locationof thenext center xt+1.
For the approximation of the PS manifold C at time t + 1, PPS records the last two
approximatedmanifoldsCt andCt−1. In fact, each point xt ∈ Ct is used to estimate a
newpoint xt+1. The performance of PPSwas evaluated by confronting three instances
of RM-MEDA [27]: (1) RM-MEDA including PPS, (2) RM-MEDA including a
random initialization strategy and (3) RM-MEDA including FPS. These comparisons
were done on a variety of DMOPs: FDA1 [17], FDA4 [17], dMOP1 [10], dMOP2
[10] and 4 newly proposed test functions [40]. Statistical results have demonstrated
the effectiveness of this approach. Moreover, authors studied the influences of some
problem parameters, the influences of different MOEA optimizers and the influences
of several time series predictors. Results have shown that PPS is more suitable to
linear models than nonlinear ones. Compared to the FPS, PPS has the advantages
to predict a whole population instead of some isolated points with a better time and
space complexities.

4.2.8 Dynamic Multiobjective EA with ADLM Model
(DMOEA/ADLM)

In 2014, a new prediction model [41] has been defined to solve DMOPs with Trans-
lational optimal PS (DMOP-TPS). DMOP-TPS is a specific kind of DMOPs where
the PS translates regularly over time.

Definition 7 DMOP-TPS
Let PS(t) and PS(t + 1) be two consecutive optimal PSs at time t and t + 1 respec-
tively, A(t) = (a1(t), a2(t), . . . , an(t)) a n-dimensional vector, a DMOP is called
a DMOP-TPS if and only if for any decision variable Xt = (xt1, x

t
2, . . . , x

t
n) ∈

PS(t), there must be a decision variable Xt+1 = (xt+1
1 , xt+1

2 , . . . , xt+1
n ) ∈ PS(t +

1) which satisfies the constraints {xt+1
1 = xt1 + a1(t), x

t+1
2 = xt2 + a2(t), . . . ,

xt+1
n = xtn + an(t)}.
When an environmental change is detected using the strategy proposed by Deb
et al. [6], the population is re-initialized according to the nature of the DMOP.
In fact, some new predicted individuals are generated and inserted into the cur-
rent population. Taking into account the mathematical properties of a DMOP-TPS,
ADLM which is a linear model inspired by the prediction strategies described in
[8, 34] is designed and adopted to predict the location of these solutions. ADLM is
then integrated into a basic Dynamic Multi-objective EA (DMOEA). The resulting
algorithm, called DMOEA/ADLM was compared against three traditional predic-
tion models which are MM, VARM and PREM. Experiments were conducted on six
DMOP-TPS test problems (FDA1 and FDA5 and their extensions FDA1E, FDA1L,
FDA5E and FDA5L) [41]. Simulation results have shown the superiority of the pro-
posed model over the rest of the prediction models on both aspects of convergence
and time complexity.
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4.2.9 The Kalman Filter Assisted MOEA/D-DE Algorithm
(MOEA/D-KF)

Muruganantham et al. [42] proposed a dynamic multi-objective EA that uses a
Kalman Filter-based prediction model. Whenever a change is detected, Kalman Fil-
ter is applied to the whole population to direct the search towards the new Pareto
optimal solutions in the decision space. The proposed algorithm is based on theMul-
tiobjective EA with Decomposition based on Differential Evolution (MOEA/D-DE)
and is called Kalman Filter prediction based DMOEA (MOEA/D-KF). This work
was tested on the IEEE CEC 2015 benchmark problems set and it was compared
with a baseline of random immigrants strategy denoted by RND. The effects of
change severity and change frequency on the performance of both algorithms were
also studied. The experimental results have shown thatMOEA/D-KF performs better
than RND for type I DMOPs and presents competitive results on type II DMOPs

Table 3 Change prediction-based dynamic EAs

Algorithm Compared to Used benchmarks Used performance
metrics

D-QMOO [8] – FDA1 [17] The objective error
[17] and the design
error [17]

The work of Hatzakis
and Wallace [43]

– FDA1 [17] The objective error
[17] and the design
error [17]

DMEA/PRI [34] – FDA1 [17] and ZJZ
[34]

The distance-based
indicator [27] and HV
Difference [34]

Dynamic MO-EGS [9] dCCEA [44] and
dPAES [45]

FDA1 [17], FDA3
[17], DIMP1 [9] and
DIMP2 [9]

Variable Distance
(VD) [10] and MS [10]

CDDMEA [37] D-NSGA-II [6] A test problem defined
in [38] and FDA2 [17]

U-measure [46]

The work of Roy and
Mehnen [36]

– The gradient material
problem [36]

–

RM-MEDA with PPS
[40]

RM-MEDA with
random initialization
strategy and
RM-MEDA with FPS

FDA1 [17], FDA4
[17], dMOP1 [10],
dMOP2 [10] and
F5-F8 [40]

IGD [32]

DMOEA/ADLM [41] MM [6], VARM [8]
and PREM [8]

FDA1 [17], FDA1E
[41], FDA1L [41],
FDA5 [17], FDA5E
[41] and FDA5L [41]

The distance-based
indicator [27]

MOEA/D-KF [42] RND [42] IEEE CEC 2015
Dynamic Benchmark
Problems

IGD [32]
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while RND performsmarginally better on type III test problems. It was also observed
that MOEA/D-KF faces many difficulties when solving problems with high change
severity, isolated and deceptive fronts.

Since the prediction may not be always successful, there is a need to combine
predictive-based approaches with a maintaining diversity mechanism. Moreover,
these approaches are suitable only to dynamic environments presenting a behavior
that follows a certain trend. Table3 summarizes the algorithms discussed in this
section.

4.3 Memory-Based Approaches

Memory-based approaches employ an extra memory that implicitly or explicitly
stores the useful information from past generations to guide the future search. This
technique is useful when optimal solutions repeatedly return to previous locations
or when the environment slightly changes from one time step to another.

4.3.1 The Dynamic Competitive Cooperative CO-EA (dCOEA)

In [10], authors have presented a co-evolutionary multi-objective algorithm based on
competitive and cooperative mechanisms to solve DMOPs. In order to overcome the
difficulties of problem decomposition and subcomponent interdependencies arising
in co-EAs, the proposed model addresses such an issue through emergent problem
decomposition. In fact, the problem is decomposed into several subcomponents along
the decision variables. These subcomponents are optimized by different species sub-
populations through an iterative process of competition and cooperation. The opti-
mization of each subcomponent is no longer restricted to one species but at each
cycle, different subpopulations (i.e., competing species) solve a single component as
a collective unit which permits the discovery of interdependencies among the species.
The proposed competitive-cooperative CO-EA (COEA) is able to handle both static
and dynamic multi-objective problems. In order to adapt COEA to DMOPs, authors
have proposed to: (1) introduce diversity via stochastic competitors and (2) handle
outdated archived solutions using an additional external population in addition to the
archive. The proposed diversity scheme consists in starting the competitive mecha-
nism, whenever a change is detected, independently of its fixed schedule in order to
evaluate the adaptability of existing information within the various subpopulations
with the new environment. Moreover, a set of stochastic competitors are introduced
in addition to the competitors from the other subpopulations. If the winner is the sto-
chastic competitor, the particular subpopulation is reinitialized in the region that the
winner is sampled from. The external population denoted as the temporal memory
is used in addition to the archive in order to store the potentially useful information
about past PF since that the archived solutions will be discarded at the presence of
an environmental change. The performance of COEA in static environments was
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tested against various multi-objective EAs (CCEA, NSGAII, and SPEA2) on differ-
ent benchmark problems (FON,KUR, andDTLZ3). The obtained results have shown
that COEAovercomes the othersMOEAs in discovering near-optimal andwell diver-
sified PFs even for problems with severe parameter interdependencies. On the other
hand, dCOEAwas tested on four dynamicmulti-objective test functions (FDA1 [17],
dMOP1 [10], dMOP2 [10] and dMOP3 [10]) against two different dynamic MOEAs
based on a basicMOEA andCCEA, respectively. The experiments were conducted at
different change severity and frequency levels. The results have shown that dCOEA
outperforms dMOEA and dCCEA in both aspects of tracking and finding a diverse
PF. Nevertheless, the main drawback of dCOEA is its computational cost.

4.3.2 The Multi-strategy Ensemble MOEA (MS-MOEA)

Wang and Li [47] proposed new dynamic multi-objective test problems and a new
Multi-strategy ensembleMOEA (MS-MOEA)where the convergence speed is accel-
erated using a new offspring generation mechanism based on adaptive genetic and
differential operators. The proposed algorithmuses aGaussianmutation operator and
a memory-like strategy to handle population reinitialization when a change occurs.
The basic process of the proposed algorithm is as follows. A set of sentry individu-
als are chosen randomly and their fitness values are re-evaluated. If the new values
are different from the old ones, the population P(t) and the archive A(t) are re-
initialized using the memory like strategy. In fact, the new generated populations
are formed by two parts: (1) solutions randomly generated within the bounds of the
search space and (2) solutions generated by the Gaussian local search operator. The
proportion of these solutions is controlled by a probability pl . Then, a number of
parent solutions are selected from P(t) and A(t) in order to create only two off-
spring solutions c1 and c2. The proposed offspring creating strategy (i.e., GDM),
uses simultaneously Genetic Algorithm (GA) and Differential Evolution (DE) in
order to take advantages of both strategies. Finally, the population and the archive
are updated by c1 and c2. The archive update is performed using the Fast Hypervol-
ume (FH) strategy which consists in introducing the new solution in the archive only
if it dominates an existing solution. This algorithm was compared against: (1) FH-
MOEA, (2) MS-MOEADE which is similar to MS-MOEA but without the memory
like re-initialization strategy and (3) the Improved NSGA-II (INSGA-II). INSGA-
II is obtained by adding an archive population to maintain a set of non-dominated
solutions found previously and by using a strategy of updating the archive that is
an improved non-dominated selection based on crowding distances [47]. Two sets
of experiments were conducted: experiments on static multi-objective problems and
experiments on dynamic multi-objective problems including the FDA suite [17] and
the proposed DMZDTs and WYL test problems [47]. The first set of experiments
reveals the importance of cooperating the GDM strategy and the DE operators while
the second set of experiments reveals the advantages of the multi-strategy ensemble.
Nevertheless, the proposed approach is not suitable to problems with a low rate of
change since it does not exploit any past information.
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4.3.3 The Work of Wang and Li (2009)

Several memory-based dynamic environment handling schemes have been proposed
in [48] to effectively reuse the useful past information to conduct the new population
when the environment changes. These different schemes, including restart, explicit
memory, local-search memory and hybrid memory schemes are based on the stored
archive solutions. In fact, authors have proposed a DMOEA framework based on
an improved version of the static MOEA NSGA-II [49]. The Improved NSGA-II
algorithm, denoted as INSGA-II, is obtained by adding an archive population to
maintain a set of non-dominated solutions found previously. The strategy of updat-
ing the archive is an improved non-dominated selection proposed in [27] and based on
crowding distances. INSGA-II is used to conduct the selection, crossover, mutation
and elite maintenance of the framework. Then, when a change occurs, the new pop-
ulation is composed by: (1) random solutions in addition to memory ones using the
explicit memory scheme, (2) random solutions and solutions obtained by perform-
ing a Gaussian local search using the local-search memory scheme or (3) random
solutions, memory solutions and solutions generated by application of a local search
using the hybrid memory scheme. The comparative experiments were done using six
dynamic multi-objective EAs conducted under the framework of dynamic INSGA-II
by modifying the dynamic environment handling strategy and including the GA-
DE strategy proposed in [47]. The test problems used were FDA1 [17], DMZDT1,
DMZDT2, DMZDT3, DMZDT4, andWYL [47]. Two sets of experiments were con-
ducted: (1) experiments on instances with small change rate and (2) experiments on
instances with large change rate. The empirical results have shown that the proposed
memory schemes improve the performance of the algorithm compared with restart
scheme. Nevertheless, the higher the change degree is, the smaller the effectiveness
of memory schemes is except the localsearch memory scheme which is much more
robust since it puts less attention in past optimal solutions. Moreover, the hybrid
memory scheme was not demonstrated to be efficient which can be explained by the
fact that the merits of separate schemes are lost by their demerits.

4.3.4 The Adaptive Population Management-Based Dynamic NSGA-II
(A-Dy-NSGA-II)

When the change degree is small, information gained from the previous run can be
exploited and reused to accelerate the convergence speed. However, when changes
are large, there is a small correlation between the optimal solutions after a change
and those before the change. Thereby, random restart would be a suitable strategy.
Based on this observation, Azzouz et al. [50] proposed an adaptive hybrid population
management strategy using memory, Local Search (LS), and random strategies to
effectively handle environment dynamicity for DMOPs. The proposed strategy is
based on a new technique that measures the change severity, according to which,
it adjusts the number of memory, LS, and random solutions to be used. Moreover,
they proposed a dynamic version ofNSGA-II, calledDy-NSGA-II,withinwhich they
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Table 4 Memory-based dynamic EAs

Algorithm Compared to Used benchmarks Used performance
metrics

d-COEA [10] dMOEA [10] and
dynamic CCEA [44]

FDA1 [17], dMOP1
[10], dMOP2 [10] and
dMOP3 [10]

V D [10] and
Maximum Spread
(MS) [10]

MS-MOEA [47] FH-MOEA [47],
MS-MOEADE [47]
and INSGA-II [48]

FDA1 [17], FDA2
[17], FDA3 [17],
WYL [47] and
DMZDT test functions
[47]

IGD [32] and HV [51]

The work of Wang and
Li [48]

– FDA1 [17], WYL [47]
and DMZDT test
functions [47]

IGD [32]

A-Dy-NSGA-II [50] The work of Wang and
Li [48]

FDA1 [17], FDA2
[17], DMZDT test
functions [47] and
WYL [47]

IGD [32], HV ratio
[31] and MS [10]

integrated the abovementioned strategies. The novelty of this work lies in combining
several strategies while using them adaptively based on problem characteristics that
are mainly: (1) the change frequency and (2) the change severity. The performance of
the proposed strategies was assessed on the FDA benchmark suite [17] and DMZDT
test problems [47]. It has been shown that the M-strategy-based Dy-NSGA-II (M-
Dy-NSGA-II) needs to be accompanied by a diversity maintenance/introduction
mechanism. The LS-strategy-based Dy-NSGA-II (LS-Dy-NSGA-II) gives a better
performance due to its exploration aspect. Contrarily to memory strategies, the R-
Strategy is useful when changes are large but it loses its effectiveness when changes
are of a small degree. The AH-strategy-based Dy-NSGA-II (A-Dy-NSGA-II) is the
only algorithm that was able to outperform most other algorithms in problems with
both small and high change severities. When compared to memory-based algorithms
proposed in the work of Wang and Li [48], A-Dy-NSGA-II algorithm outperformed
all other algorithms on both instances with small change severity and with large one.

The main drawback of memory-based approaches is that memory is very depen-
dent on diversity and should, thus, be used in combination with diversity-preserving
techniques. Table4 summarizes the algorithms discussed in this section.

4.4 Parallel Approaches

When dealing with DMOPs, the EA should be able to converge as fast as possible to
the optimal PF before the next change appears. Parallel EAs are used in this context
since they are considered as efficient algorithms with an execution time much less
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important than EAs with a sequential implementation. Parallel EAs use several sub-
populations that evolve simultaneously on different processors while communicating
some informations in a structured network [52]. EAs are very easy to parallelize.
There is a variety of ways to implement parallel EAs such as the master-slave model,
the independent runs model, the island model, cellular EAs, etc. [52].

4.4.1 The Dynamic Multi-objective Optimization EA (DMOEA)

In [53], Zheng proposed a Dynamic Multi-objective Optimization EA (DMOEA)
where the population is divided into m + 1 multiple subpopulations where m is the
number of objectives. Each subpopulation evolves according to one single objective
using a cellular genetic algorithm while the last subpopulation optimizes the average
value of all the objectives. Them + 1 subpopulations are supposed to converge to the
extreme points of the PF and one point having the minimal average value of different
objectives. Moreover, this algorithm utilizes hyper-mutation operator to deal with
environment changes. In fact, when a change is detected, hyper-mutation is used to
copy a certain number of elite solutions from the archive to the population, while
the rest of the individuals are replaced by random individuals. To update the archive,
DMOEA used a geometrical Pareto-selection algorithm. This approach sets an auxil-
iary point that is far away from the approximated PF. Then, each solution in the PF is
lined to the auxiliary point, which permits to identify them by slopes.When inserting
a new individual in the archive, it is compared only to the solutions that are located
in the same slope region. The solution furthest away from the auxiliary point will
be kept in the archive. DMOEA was evaluated on FDA1 [17], modified FDA2 [53]
and modified FDA3 [53] with a change frequency equals to 2000 generations and on
FDA4 [17] and FDA5 [17] with a change frequency equals to 5000 generations. The
experimental results have shown that this algorithm is able to converge to changing
PFs with well distributed points.

4.4.2 The Dynamic Version of Parallel Single Front Genetic Algorithm

Camara et al. [11] have proposed a procedure for the adaptation of the Parallel
Single Front Genetic Algorithm (PSFGA) to dynamic environments. PSFGA is a
parallel algorithm for multi-objective optimization that uses a master-worker archi-
tecture where the sequential algorithm is decomposed into several tasks that are
run on different data distributed between several processors. PSFGA uses an island
model where not only objective functions evaluations but also variation operators are
concurrently done by every worker process. In fact, the population is divided into
subpopulations of equal size distributed between different worker processes. On each
subpopulation, the SFGA algorithm is executed for a fixed number of generations
genpar and only the non dominated solutions are kept. Then, all workers send their
affected sub-populations to the master process who joins all the solutions into a new
population. Then, it runs an instance of the SFGA algorithm (along genser iterations)
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over the whole population. After performing a crowding mechanism for keeping the
diversity, it sends new subpopulations again to the worker processes. This process is
repeated until a stopping criteria is met. This algorithm has been evaluated on FDA1
and FDA2 test problems [17]. The empirical results have shown that the quality of
the solutions worsens slightly as the number of workers used to solve the problem
increases. Moreover, this approach is sensitive to the data decomposition which must
be done on a balanced way to permit the speedup of convergence.

4.4.3 The Work of Camara et al. (2008)

In [54], a generic parallel procedure for dynamic problems using EAs was presented
and used to compare the parallel processing of several multi-objective optimization
EAs (i.e., SFGA, SFGA2, SPEA2, and NSGA-II). The proposed parallel procedure
is based on an island model together with a master process that divides the popu-
lation into several subpopulations of the same size to send to each worker process.
Every worker uses the chosen multi-objective EA to search the optimal solutions in
its subpopulation. After a fixed number of iterations (i.e., genpar), the workers send
the non dominated solutions found to the master, who after grouping all the solutions
into a new population, runs an instance of the samemulti-objective EA (along genser
iterations) over the whole population. Finally, the master sends again the new sub-
populations to the worker processes. The different algorithms were evaluated using
the FDA1 test function [17] in addition to proposed modified versions of the FDA2
and FDA3 test functions. It has been demonstrated the ability of the proposed pro-
cedure to reach PSs near to the optimal PSs in addition to the considerable reduction
in the convergence speedup compared to the sequential algorithms.

Parallel approaches are effective methods to locate and track optimal PFs in
dynamic environments. However, the main problem of these approaches consists
in the difficulty of finding the most interesting decomposition. Table5 summarizes
the algorithms discussed in this section.

Table 5 Parallel dynamic EAs

Algorithm Compared to Used benchmarks Used performance
metrics

DMOEA [53] – FDA1 [17], modified
FDA2 [53], modified
FDA3 [53], FDA4 [17]
and FDA5 [17]

Running time and HV
[51] and the size of
non-dominated set

Dynamic PSFGA [11] – FDA1 [17] and FDA2
[17]

HV [51], accuracy [11]
and stability [11]

The work of Camara
et al. [54]

– FDA1 [17], modified
FDA2 [54] and modified
FDA3 [54]

HV [51], the execution
time and the size of
non-dominated set
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4.5 Approaches that Convert the DMOP into Multiple Static
MOPs

4.5.1 The Work of Wang and Dang (2008)

When the environment changes are gradual and continuous, it is very difficult to
an optimization algorithm to rapidly react to changes and to continually converge
to optimal solutions relatively to each change. This is why, Wang and Dang [55]
proposed to obtain Pareto optimal solutions at some representative time instants
instead of low quality solutions at all the time. To do so, they proposed to convert
the DMOP into multiple static MOPs by dividing the time period of the DMOP into
several smaller time intervals. For each time interval, the original DMOP is seen
as a static Multi-objective Optimization Problem (MOP) with objective functions
and constraints remaining unchanged over time. Thus the DMOP is approximated
by a series of static MOPs. Moreover, each static MOP is transformed into a bi-
objective optimization problem. The first objective is related to population diversity
and the distribution of solutions using a defined U-measure. The second objective is
to increase the quality of the found non-dominated solutions using a non-domination
ranking.Anewuniformcrossover operator is used to avoid crossover between parents
that are too close to each other during the beginning of the algorithm run. As well, a
new selection scheme is proposed to find Pareto optimal solutions in different regions
and for the different time periods. The proposed algorithm was evaluated on FDA1,
FDA2 and FDA3 test problems [17] and it was confronted to static NSGA-II [49].
The experimental results have shown that the proposed EA is able to effectively track
time changing PFs and it has a better performance than NSGA-II with respect to the
coverage metric and the uniformity measure.

4.5.2 The Dynamic Multi-objective EA (DMEA)

Liu and Wang [56] presented a new dynamic EA called DMEA where the time
period of the DMOP is divided into multiple smaller equal subperiods where each
one is seen as a fixed environment. In each subperiod, the DMOP is optimized as a
static MOP using an EA. The same as in [55], the static MOP is converted into a bi-
objective optimization problem with one objective is the static rank variance and the
second one is the density variance. Moreover, a new environment changing feedback
operator is defined to check out environment variations. The performance of DMEA
was evaluated only on two DMOPs: (1) G1 test function which was proposed in this
work and (2) G2 which was developed in [38]. Only PF plots were presented and no
performance measures were used but authors noted that according to the presented
plots, the algorithm was able to track changing PFs. DMEA was more evaluated in
[57] on four test problems which are G1 [56], G2 [38], G3 (i.e., FDA2 [17]) and G4
(i.e., FDA3 [17]). No performance measures were used in this study as well and only
plots of the obtained PFs were presented. Helbig et al. [56] noted that although the
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Table 6 Dynamic EAs that convert the DMOP into multiple static MOPs

Algorithm Compared to Used benchmarks Used performance
metrics

The work of Wang and
Dang [55]

NSGA-II [49] FDA1 [17], FDA2
[17] and FDA3 [17]

C-metric [59] and
U-measure [46]

DMEA [56] – G1 [56] and G2 [38] –

DMEA [57] – G1 [56], G2 [38],
FDA2 [17] and FDA3
[17]

–

DSG [58] DEG [60] and DFA
[61]

DMT1-DMT4 [58] C-metric [59] and HV
[51]

authors of DMEA claimed that, with respect to the presented plots, their algorithm
is able to converge to optimal PFs, this is not the case. Helbig et al. noted that the
algorithm lost track of the changing PF for FDA2 test problem.

The same idea of DMEA was borrowed in [58] to be adapted to constrained
optimization where a new fitness selection operator was proposed. It permits to
select individuals that will participate in the next generation according to the number
of feasible solutions in the population. If this number is greater than the maximum
population size, infeasible solutions are discarded and only feasible one are ranked
based on a dynamicmean rank variance. Otherwise, feasible solutions aremaintained
and the rest of the population is formed by infeasible solutions ranked based on their
density. Although this algorithm called DSG, is developed to handle constrained
DMOPs, it was evaluated on unconstrained test functions which are extensions of
FDA1 [17], FDA2 [17], FDA3 [17] and a test function proposed in [38]. Table6
summarizes the algorithms discussed in this section.

4.6 Other Approaches

4.6.1 The ALife-Inspired Algorithm for DMOPs

Amato andFarina [62] have proposed an artificial life-inspiredEA for dynamicmulti-
objective optimization in the case of unpredictable parameters changes. Contrarily to
classical EAs where the Darwinian evolution is considered as a type of intelligence,
the proposed method considers that life and interactions among individuals in a
population in a changing environment is itself a type of intelligence to be exploited.
The proposed algorithm considers the coded strings as individuals interacting in a
population rather than simple individuals genotypes. Thereby, the artificial operators
imitate interactions between individuals such as meeting, fight and reproduction
[62]. It is noting that in this approach there is not a selection operator. Then, all
individuals have a similar probability to survive. At each generation, an individual
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is considered. He can meet or not another individual according to a probability pm .
When meeting occurs, either bisexual reproduction or competition (fight) may take
place. If bisexual reproduction has occurred, two new individuals are then added to
the population. Otherwise, fight is performed between the two selected individuals.
In this case, the objective functions are evaluated for both individuals. Then, only the
Pareto dominating individual survives. If nobody dominates the other, the individual
in the more crowded region is eliminated in order to preserve diversity. Then, the
population size is reduced by one. If meeting does not occur, asexual reproduction
may be performed with probability par equal to pbr , which adds a new individual to
the population. Authors have noted that the proposed algorithm is supposed to run for
an indeterminate time following environment change, without definitely converging
towards a final optimum unless a static system is considered. For test problems a
fictitious maximum iteration or generation number is imposed [62]. The proposed
algorithm was tested on the FDA1 test problem [17]. The results have shown that the
algorithm converges slowly especially after a sudden change where the convergence
to the new optimal set was much more slower than the previous one. This was
explained by the absence of a fitness based selection.

4.6.2 The Dynamic Orthogonal Multi-objective EA (DOMOEA)

In [63] authors developed a Dynamic Orthogonal MOEA called DOMOEA, which
presents a generalization of the Orthogonal MOEA (i.e., OMOEA-II) to dynamic
environments. It deals with problems having continuous decision variables, where
the objective functions change with time while the number of objective functions and
the number of decision variables are static. The process of the proposed algorithm
is as follows. After the population initialization, the crossover operator is performed
on the population Pt giving rise to the population of offspring solutions Qt with
the cardinality Np. Two types of crossover operations are used: (1) the orthogonal
crossover executed with the probability p and (2) the linear crossover executed with
the probability 1 − p. After the crossover operation, Pt and Qt are combined in the
population Rt , on which the selection operator is performed in order to get the next
population Pt+1. This operator is based on the sorting method used on NSGA-II and
the clustering technique of SPEA2 to maintain diversity. Finally, if an environmental
change has been detected, Pt is defined as the current approximated optimal PS and
all parameters are reinitialized; otherwise, the above described process is repeated.
The proposed algorithm was tested on the FDA test suite [17]. However, only the
results of the first three dynamic problems with two objectives were presented. The
obtained results have shown the ability of the algorithm to track and find a diverse
PF. One of the disadvantages of this approach is that the statistical method used
(i.e., the orthogonal design method) has been proven to be optimal for only additive
and quadratic models. Moreover, since DOMOEA uses the current population, as an
initial population when a change is detected, it may be sensitive to problems with
high change’s degree. Thus, the performance of the proposed approach has to be
tested with different environmental change severities.
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4.6.3 The Work of Deb (2011)

More recently, Deb [64] presented two different approaches that are usually used
when resolving dynamic single-objective as well as multi-objective optimization
problems. The first approach consists in developing a set of optimal knowledge base
to be used as guiding rules for handling changing problems on-line. This approach
is useful for problems with frequent changes and it is computationally expensive
for any optimization algorithm to be applied on-line. The second one is an on-
line optimization approach in which an off-line study is used to find a minimal
time window within which the problem will be considered and treated as a static
problem. This approach is more appropriate for slow changing problems. Moreover,
an automated decision-making approach based on the utility function concept has
been proposed since a solution should be chosen and implemented as quickly as
the PF is found, and before the next change appears. An utility function was used
to provide different weights to different objectives. Then, the chosen solution is the
middle point in the trade-off frontier providing a solution equidistant from individual
optimal solutions. Thefirst approachwas applied to a robot navigation problemwhich
consists in finding an obstacle-free path which takes a robot from a point A to a point
B withminimum time. Since the imprecise definition of the deviation in this problem,
a genetic-fuzzy approach was proposed based on a genetic algorithm which is used
to create the knowledge base composed of fuzzy rules for navigating a robot off-line.
Then, for on-line application, the robot uses its optimal knowledge base to find an
obstacle-free path relatively to a given input of parameters that represents the state
of moving obstacles and the state of the robot. The second approach was applied to a
bi-objective hydro-thermal power scheduling problem using a previously proposed
modifiedNSGA-II procedurewhich has identified aminimum timewindowof 30min
in which the power demand can be considered stationary.

4.6.4 The Dynamic Multi-objective Optimization Algorithm Inspired
by P Systems (DMOAP)

In [65], authors designed several special test functions in addition to a dynamic
MOEA inspired by P systems called DMOAP. This latter is based on membrane
computing where the global system is composed of m + 1 subsystems: m subsys-
tems are single-objective optimization subsystems that only optimize a corresponding
objective while an additional subsystem is relative to the true multi-objective opti-
mization subsystem that optimizes all objectives simultaneously. Each subsystem
contains several membranes. The membrane has its own subpopulation and works
like a single EA. These membranes are contained within two special membranes that
collect the resulting chromosomes from subsystems and in which the chromosomes
will not evolve. Furthermore, in this paper DMOPs were classified into two types:
slow-change problems and fast change problems. Slow change problems are char-
acterized by a long static state. Thus, the dynamic problem can be divided into n
Static MOPs (SMOPs) and the optimal PS of the DMOP can be approximated by
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the superimposition of the optimal solutions of each SMOP on different instants.
However, if the time period needed by the EA to improve its candidate solutions
is more important than the time period during which the objectives are assumed to
be stationary, the problem is considered to be a fast-change problem that will be
transformed to a slow-change problem. This transformation concerns the objective
functions. The proposed membrane control strategy has been applied to the optimal
control of a time-varying unstable plant that has been presented as a dynamic multi-
objective optimization problem. Simulation results demonstrated that the proposed
strategy has an excellent performance in terms of stability, real-time performance
and reliability although the proposed model is executed on a serial computer. The
best model is that all membranes evolve in parallel [65].

4.6.5 The Multiple Reference Point-Based MOEA (MRP-MOEA)

Multiple Reference Point-based MOEA (MRP-MOEA) [66] deals with dynamic
problemswith undetectable changes. This algorithm does not need to detect changes.
It uses a new reference point-based dominance relation ensuring the guidance of the
search towards the optimal PF. The main idea behind MRP-MOEA is to define
multiple targeted search directions (also known as goals) and to seek simultaneously
the location of the optimal solutions along these different directions, rather than
searching in the whole search space. Since several optimal points can be found
relatively to different Reference Points (RPs) generated in a structured manner and
covering the entire search space, the algorithm may be able to converge quickly to
the desired PF without needing to detect changes. To generate this set of uniformly
distributed RPs, authors used Das and Dennis’s method. It generates K points on
a normalized hyperplane with a uniform spacing δ in each axis, for any number of
objectives M . The framework of the proposed algorithm is based on NSGA-II with
significant changes in the non-domination sortmechanism and some other extensions
such as the use of a LS technique at the beginning of each generation. The goal of
the LS is to ameliorate existing solutions and to detect the new search directions
whenever a change appears. Moreover, in order to provide well-distributed solutions
along the PF, an archive update strategy was designed to maintain representatives
of all prominent RPs. The proposed algorithm was tested on the FDA test suite [17]
and the dMOP test problems [10]. Simulation results have shown that MRP-MOEA
permits not only to track the PF but also to maintain diversity over time albeit the
changes are undetectable. The algorithms discussed in this section are summarized
in Table7.
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Table 7 Non classified dynamic EAs

Algorithm Compared to Used Benchmarks Used Performance
metrics

The ALife inspired
algorithm [62]

– FDA1 [17] –

DOMOEA [63] – FDA1 [17], FDA2
[17] and FDA3 [17]

GD [33] and Spread
[49]

The work of Deb [64] – Robot navigation
problem and
hydro-thermal power
scheduling problem

HV ratio [31]

DMOAP [65] – Optimal control of a
time-varying unstable
plant problem

–

MRP-MOEA [66] d-COEA [10], dCCEA
[44] and dMOEA [10]

FDA1 [17], dMOP1
and dMOP2

VD [10], IGD [32],
HV ratio [31] and MS
[10]

5 Test Functions for Dynamic Multi-objective Optimization

5.1 Synthetic Test Functions

Benchmark test problems are functions with specific challenging characteristics that
permit to evaluate the ability of an algorithm to solve DMOPs and to efficiently
overcome different difficulties that can occur in real-world problems.

In [38], Jin and Sendhoff proposed an approach for constructing dynamic multi-
objective test problems by aggregating objective functions of existing stationary test
problems through dynamically changing weights. This approach has been used by
several other researchers [56, 67, 68].

Farina et al. have proposed in [17] the first suite of dynamic multi-objective test
problems, called FDA benchmark functions, by adding time-varying terms to the
objectives in stationary multi-objective test problems (ZDT and DTLZ). The FDA
test functions are of type I, II and III while the number of decision variables, the
number of objectives and constraints boundaries keep fixed. Also, the optimal PF
may be convex, concave or changing from convex to concave over time. One of the
advantages of the FDA functions is that they are easy to construct, and the number
of decision variables are easily scalable [39]. Therefore as noted in [39], the FDA
test suite exhibits the characteristics, defined by Deb [28], that benchmark func-
tions should have. This is why, this test suite was used by several researchers who
developed different extensions of these functions. A generalization of the FDA test
functions was proposed in 2006 [33] where several parameters such as the number of
disconnected optimal PFs and the spread of solutions can be simply specified. Sim-
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ilar to the FDA test suite [17], Tang et al. [69] also proposed to construct dynamic
test functions on the basis of the ZDT functions [28]. Moreover, they presents an
additional explanation of how to calculate the POF. In 2007, Zhou et al. [34] pro-
posed a modified version of FDA1 where they incorporated nonlinear dependencies
between the decision variables. The modified FDA1 function is called ZJZ. ZJZ is
a Type III test problem. As well, in 2009, Goh and Tan [10] have proposed three
dynamic multi-objective test problems called dMOP1, dMOP2 and dMOP3 based
on the FDA ones. dMOP1 is a Type III test problem while dMOP2 is a Type II one
and they both have a POF that changes from convex to concave over time. In contrast
to the FDA2 problem where the POF changes from a convex to a concave shape only
for specific values of the decision variables, dMOP1 and dMOP2 have the advantage
of not being sensitive to this problem.

In 2005,Guan et al. have proposed to create dynamicmulti-objective test functions
by replacing some objectives with new objectives during evolution [60]. In this
approach, the objective functions should be selected carefully in order to permit to
evaluate the performance of EAs in different ways. Avdagic et al. [70] proposed
an adaptation of the DTLZ problems to dynamic environments. They developed the
following types of test functions: (1) type IDMOPwhere the POS changes coherently
over timebut thePOF remains invariant; (2) type IIDMOPwhere the shapeof thePOS
continuously changes and the POF changes over time; and (3) type II DMOP where
the number of objective functions changes over time [70]. Koo et al. have proposed
two new benchmark functions called DIMP1 and DIMP2 in 2010 [9] where unlike
FDA and dMOP test problems, each decision variable has its own rate of change.
Wang andLi have also proposed new type IDMOPs based on the ZDT functions [47].
Motivated by the observation that all previous dynamic multi-objective test problems
assume that the current optimal PS or optimal PF does not affect the future one,Huang
et al. have proposed four dynamicmulti-objective test problems called T1, T2, T3 and
T4 in [65]. Since the FDA and dMOP suites contain only DMOPs with continuous
optimal PFs, Helbig and Engelbrecht [71] developed two DMOPs named HE1 and
HE2 that are based on the ZDT3 test function with a discontinuous POF. Recently,
they proposed in [72] three new dynamicmulti-objective test functions with complex
POSswhere the POS is different for each decision variable. In 2014, a comprehensive
overview of existing dynamic multi-objective benchmark functions was provided
in [39] while highlighting their shortcomings. Moreover, to address the identified
problems, authors proposed new benchmark functions with complicated POSs, and
approaches to develop DMOPs with either an isolated or deceptive POF. As well,
Biswas et al. [73] proposed some general techniques to design DMOPswith dynamic
PS and PF through shifting, shape variation, slope variation, curvature variation, etc.
They proposed 9 benchmark functions derived from the benchmark suite used for
the 2009 IEEE Congress on Evolutionary Computation competition on static bound-
constrainedmulti-objective optimization algorithms.These test functions are denoted
as UDF1-UDF9.

Although there is a number of dynamic multi-objective test functions that were
proposed, there is a lack of those taking into account simultaneously time-dependent
objective functions and constraints. In 2015, Azzouz et al. [7] proposed a set of
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benchmark functions, called Dynamic CTPs (DCTPs), that extend the CTP suite
of static constrained MOPs where the PF, the PS and the constraints are simulta-
neously time-dependent. These characteristics make the task of optimization much
more difficult than dynamic unconstrained problems. In addition, these test functions
present two kinds of tunable difficulties in a multi-objective optimization EA: (1)
difficulty in the vicinity of the optimal PF where constraints do not make a major
portion of the search space infeasible except near the optimal PF (the case of DCTP1
to DCTP5), and (2) difficulty in the entire search space where constraints produce
different disconnected regions of feasible objective space (the case of DCTP6 to
DCTP8).

5.2 Real-World Applications

Several real-world dynamic multi-objective optimization applications exist in the
literature. Helbig and Engelbreght [14] grouped and classify the main important
areas of these applications as follows:

• Control problems: including the controller design for a time-varying unstable
plant [17, 65], the regulation of a lake-river system [74], the optimization of indoor
heating [75], and the control of a greenhouse system for crops [76].

• Scheduling problems: such as the hydro-thermal power scheduling problem [6],
and the job-shop scheduling problem [77, 78].

• Resource management problems: such as war resource allocation optimization
[79] and the management of hospital resources [80].

• Routing problems: several real world applications belong to this category such
as route optimization according to real-time traffic [81], the routing problem in
mobile ad hoc networks [82], the dynamic vehicle routing problem [83, 84], the
robot navigation problem [64] and the optimization of supply chain networks
[85, 86].

• Mechanical design problems: such as the machining of gradient material [36]
and design optimization of wind turbine structures [87].

Table8 presents a summary of the most used dynamic test functions and real world
problems and their references.

6 Performance Assessment of Dynamic MOEAs

6.1 Performance Metrics

When solving an optimization problem, there is a need to assess and measure the
performance of different algorithms and to evaluate the quality of their obtained
solutions. This is to compare and rank their effectiveness with respect to different
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Table 8 Table of most used dynamic test functions and real world problems

Category Problem Referenced in

Synthetic
problems

FDA test suite [17] [6, 8–11, 17, 34, 37, 40, 41, 43, 47,
48, 50, 53–55, 57, 62, 63, 66]

Three problems proposed in [60] [60]

DSW suite and DTF [33] [33]

dMOP test suite [10] [10, 40, 66]

DIMP1 and DIMP2 [9] [9]

DMZDT test suite and WYL [47] [47, 48, 50]

T1, T2, T3 and T4 [65] [65]

Four test problems proposed in [40] [40]

DCTP test suite [7] [7]

Real world
problems

Control problems [17, 65, 74–76]

Scheduling problems [6, 64]

Routing problems [64, 81, 82, 85, 86]

Resource management problems [79, 80]

Mechanical design problems [36, 87]

requirements such as convergence, diversity, spread of solutions, etc. This is why,
the choice of appropriate measures and statistical tests is very important to produce
a fair comparison.

When dealing with static problems it is generally often enough to just evaluate
the final population that the algorithm converges to at the end of the search process.
However, in a dynamic context the performance metrics should not only assess the
quality of the final population but also evaluate the robustness of the resolution
algorithm facing changing environments. This includes how well the algorithm is
able to detect problem changes and to discover the new promoting search areas and
to track optimal solutions as they move in the search space. Using just the population
quality at one time point is not fair enough since it may be possible that one algorithm
has a good population at one time step but it loses optimal solutions in the rest of
the optimization process while another algorithm has a worser final population but
it have keeped tracking optimal solutions all over changing environments.

Several performance metrics were proposed in the literature to evaluate the per-
formance of dynamic multi-objective optimization algorithms. In the following, we
will survey the most commonly used ones.

6.1.1 Accuracy Performance Measures

• The Generational Distance measure (GD): The Generational Distance (GD) is a
metric developed for stationary multiobjective optimization which measures the
distance between the optimized optimal PF and the true one. In [33], Menhen et
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al. have proposed to calculate the GD metric in the decision space since some
DMOPs have optimal PSs that dynamically change over time. The new metric
called Gτ approximates the distance between the current optimal PS and the true
one. Goh and Tan [10] also adopted the calculation of theGDmetric in the decision
space. The proposed performance measure, named the variable space generational
distancemetric (VD),measures the closeness of the approximatedPF to the optimal
one. The VD metric is calculated as follows:

V Dof f line = 1

τ

τ∑

t=1

V D ∗ I (t) (2)

V D =
√| PF | ∑

v∈PF d(v, PF∗)2

| PF | (3)

I (t) =
{
1, i f (t%τT ) = 0

0, otherwise
(4)

where t is the current iteration number, τT is the change frequency, % is the modulus
operator, PF is the obtained PF and PF∗ is the true optimal PF.

Several other works have been proposed in this topic such as the rGD(t) metric
proposed in [67].

• The Inverted Generational Distance metric (IGD): The IGD metric proposed by
Sierra and Coello [32] gives an indication of the distance between the optimal
PF and the evolved PF. In addition to the convergence, the IGD can measure the
diversity of the obtained PF. Mathematically it is defined as follows:

IGD(PF, PF∗) =

∑

v∈PF∗
d(v, PF)

|PF∗| (5)

where PF is the obtained PF, P∗ is a set of uniformly distributed points along the
optimal PF in the objective space and d(v, PF) is the minimum Euclidean distance
between v and the points in PF . The smaller the IGD value is, the closer PF
is to the optimal PF. In [48], Wang and Li proposed to use the mean IGD metric
calculated as follows:

IGD = 1

nbChanges

nbChanges∑

i=1

IGDi (6)

where nbChanges is the number of occurred changes and IGDi is the IGD value
calculated before the occurrence of the (i + 1)th change.
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• The Success Ratio: The success ratio proposed in [33] indicates the ratio of the
found solutions that are members of the true optimal PF and is defined as follows:

SC = | {x \ f (x) ∈ PF∗} |
|PF | (7)

where PF∗ and PF are respectively the true optimal PF and the current one. The
main drawback of thismetric is that if an algorithmobtains a high number of solutions
not Pareto optimal but very close to the optimal PS, it will have a success ratio inferior
than one algorithm having only one solution belonging to the true optimal PS.

6.1.2 Diversity Performance Measures

• The maximum spread: The adaptation of the maximum spread metric to dynamic
multi-objective optimization (MS′) was introduced in [10] and is defined as fol-
lows:

MS′(PF, PF∗) =
√

∑M
j=1(

min(PF j, u , PF∗
j, u)−max(PF j, l , PF∗

j, l )

PF∗
j, u−PF∗

j, l
)2

M
(8)

where PF j, u and PF j, l are respectively themaximum and theminimumvalue of the
j-th objective in the obtained PF. PF∗

j, u and PF∗
j, l are respectively the maximum

and the minimum value of the j-th objective in the optimal PF. MS′ is applied to
measure how well the optimal PF is covered by the obtained PF. A higher value of
MS′ reflects that a larger area of PF∗ is covered by PF .

• The Path Length measure (PL): Since most of the proposed diversity measures
use the Euclidan distance, they do not take into account the shape of the PF. Thus,
a new measure based on path length for calculating distance between solutions is
proposed in [33]. The PL measure is the normalized product of the path between
sorted neighbouring solutions on the optimal PF.

• The Set Coverage Scope (CS): The Coverage Scope (CS) measure was introduced
by Zhang and Qian in [88]. It quantifies the coverage of the non-dominated set by
averaging the maximum distance between each solution and the other solutions in
the obtained PF. CS is calculated as follows:

CS = 1

|PF |
|PF |∑

i=1

max{‖ f (xi ) − f (x j ) ‖} (9)

where PF is the obtained optimal PF and xi , x j ∈ PF with i ≥ 1 and j ≤ |PF |.
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6.1.3 Robustness Performance Measures

• TheStabilitymeasure: The stabilitymeasures the effect of environment changes on
the accuracy (i.e., acc) of the algorithm. It was firstly proposed for dynamic single-
objective optimization in [89] and it was adapted for dynamic multi-objective
optimization in [90]. This measure is defined as follows

stb(t) =
{
stb0(t) i f stb0(t) ≥ 0

1 otherwise
(10)

stb0(t) = acc(t) − acc(t − 1)

• The Reactivity measure: This metric measures the ability of an algorithm to react
to changes by evaluating how much time the algorithm takes to achieve a desired
accuracy threshold. Similar to the stability, the reactivity measure is an adaptation
of a previous version developed by Weicker in [89] for dynamic single-objective
optimization. This measure was adapted for dynamic multi-objective optimization
in [90] and is defined in the following

reactalternative, ε(t) = min{{t ′ − t | t < t ′ ≤ maxgen, t ′ ∈ N , acc(t ′)
− acc(t) ≥ ε} ∪ {maxgen − t}}

where maxgen is the maximum number of generations.

6.1.4 Combined Performance Measures

This kind of measures are used to take into account several aspects simultaneously
in order to evaluate the overall quality of the obtained optimal PF.

• The Accuracy measure: The accuracy measures the closeness of the current best
found PF to the true optimal PF. Camara et al. [11] proposed to calculate the
accuracy based on the ratio of the hypervolume of the current approximated PF
and themaximumhypervolume (HVmax) that has been found so far. The accuracy
is calculated as follows:

accmaximization(t) = HVmax

HV (PF(t))
(11)

accminimization(t) = HV (PF(t))

HVmax
(12)
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acc(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

accmaximization i f objectives are

maximized

accminimization i f objectives are

minimized

(13)

• The Hypervolume difference: Zhou et al. [34] proposed to use the hypervolume
difference (HVD) to evaluate the quality of the found optimal PF. HVD is calcu-
lated as follows:

HV D = HV (PF∗) − HV (PF) (14)

The problem with this metric is that it can not be used when the true optimal PF
is unknown. In the same context, Camara et al. [90] extended the definition of the
accuracy measure for the case when the true optimal PF is known. The new accuracy,
noted as accalt is defined as the absolute value of the HVD at time t and is calculated
as follows:

accalt = |HV (PF∗) − HV (PF)| (15)

• The hypervolume ratio: The hypervolume of a set A with respect to a refer-
ence point re f noted as HV (A, re f ) is the hyperarea of the set R(A, re f ).
HV (A, re f ) measures how much of the objective space is dominated by A [51].
The hypervolume ratio defined in [31], is calculated as follows:

HV Ratio(PF, re f ) = HV (PF, re f )

HV (PF∗, re f )
(16)

where PF∗ is a set of uniformly distributed points along the true optimal PF in the
objective space. Themaximum value of the HV Ratio is 1 and as it becomes smaller,
the performance of the algorithm is worser. Table9 presents a summary of the most
used performance metrics in dynamic multi-objective optimization.

6.2 Comparing the Performance of Different Algorithms

Given a set of algorithms and their performance evaluation values, comparing and
ranking these various algorithms is not a trivial task. Several works in the literature
simply runned several instances of the algorithm. Then, they calculated, for each
performance measure the average and the standard deviation. The algorithms are
then ranked based on these values [14]. It should be noted that typically various
performance metrics are used. One algorithm may perform very well with respect
to some measures while it may not be the case regarding some others. This is why,
ranking different algorithms should be performed with respect to each performance
metric separately. Moreover, the use of statistical tests instead of simply comparing
the mean and standard deviations values becomes more and more essential. When
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Table 9 The most used performance metrics in dynamic multi-objective optimization

Category Performance metric Referenced in

Accuracy measures GD [33] [30, 62]

VD [10] [9, 10, 66]

IGD [32] [7, 40, 42, 47, 48, 50, 66]

SC [33] –

Diversity measures MS [10] [7, 9, 10, 50, 66]

PL [33] –

CS [88] –

Robustness measures Stability measure [89, 90] [11, 90]

Reactivity measure [90] [90]

Combined measures Accuracy measure [11, 89, 90] [11, 90]

HV [51] [11, 47, 53, 54, 58]

HVD [34] [34]

HV ratio [31] [6, 7, 50, 64, 66]

Table 10 The most used statistical tests in dynamic multi-objective optimization

Type Statistical test Referenced in

Parametric t-test [40, 47]

Non-parametric Kolmogorov–Smirnov test [9, 10]

Wilcoxon test [7, 50, 66]

analyzing the literature, we observed that several works just reported the mean and
deviation values while some others used parametric statistical tests like Student’s
t-test. Here, we note that the use of such tests should be preceded by the verification
that the performance values follow a normal distribution. This is why, the use of
non-parametric statistical tests such as the Wilocoxon test becomes more and more
considered by different authors. It confirms that the difference between two popu-
lations of values (performance metrics values) is not obtained by chance. Table10
presents the most used statistical tests in dynamic multi-objective optimization.

7 Discussion

Recently, a number of population-based approaches, includingEAs, artificial immune
systems and particles swarm optimization approaches have been proposed and
applied to solve DMOPs. Nevertheless, many challenges still not being taken into
consideration.
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7.1 General Challenges for Dynamic Optimization

When analyzing the literature of this research field, we remarked that there is a lack of
standardisation. First of all, there is no standard dynamic multi-objective benchmark
functions. For this reason, the performance of the proposed dynamic algorithmswere
evaluated differently using different test functions. The same observation is made
concerning the performance metrics. Thus, it is difficult to fairly compare the exist-
ing works unless re-implementing all of them and re-evaluating their performance.
Moreover, statistical tests are not yet highly used although their importance and their
usefulness to produce a fair comparison between different approaches. Studies pre-
senting a comprehensive state of the art of existing benchmark functions and existing
performance measures are very required. As well, a statistical comparative study of
representative works of different approaches and using standard test functions and
performancemetrics is needed. This is to understand their behaviours facing different
challenging types of DMOPs.

7.2 Specific Challenges for Dynamic MOEAs

This chapterwasmainly devoted to provide a surveyof the research that has beendone
over the past decade on the use of specially EAs for dynamic multi-objective opti-
mization. Concerning this specific research topic, in addition to the above mentioned
general challenges, we have observed a lack of works on mainly three directions:

• Dynamic constrained optimization: In real world, we often encounter problems
that not only involve the optimization of several conflicting objectives simultane-
ously but also have a set of constraint conditions that must be satisfied. Several
constraint handling techniques have been developed to be incorporated into EAs.
Most of them are restricted to the static optimization. Despite the growing inter-
est given to the use of EAs to solve dynamic optimization problems, most of
the research was focused on the unconstrained or domain constrained problems.
Applying EAs to solve constrained DMOPs is not yet highly explored although
this kind of problems is of significant importance in practice. Many real-world
problems are constrained DMOPs such as optimal control problems, portfolio
investment, chemical engineering design like the dynamic hydro-thermal power
scheduling problem, dynamic scheduling and transportation problems such as the
dynamic multi-objective vehicle routing problems and so forth. In fact, when deal-
ing with such problems, the main difficulties consist on the need to not only effi-
ciently handle the constraints but also rapidly and continually track the changing
PF and drive infeasible solutions to feasible ones whenever the constraints change.
As presented in Sect. 4, very few studies are available in this direction [6, 7]. As
well, we have observed a lack of benchmarks that simultaneously take into account
the dynamicity of objective functions and constraints. Recently, Azzouz et al. [7]
proposed the Dynamic CTPs (DCTPs) test functions, that extend a suite of static
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constrained MOPs where the PF, the PS and the constraints are simultaneously
time-dependent. More studies in this research direction are required.

• Dynamic parallel approaches: When dealing with DMOPs, a time restriction is
imposed since the EA should be able to converge as fast as possible to the optimal
PF before the next change appears. Parallel EAs are used in this context since they
are considered as efficient algorithms with an execution time much less impor-
tant than EAs with a sequential implementation. Despite this interesting feature,
regarding the works proposed in the literature, the use of parallel approaches rep-
resents the least focused research direction [11, 53, 54]. Investigating more efforts
in developing such approaches would be very promoting.

• Automatic Decision making: When the decision maker has specific preferences,
the EA should be able to converge the search towards the region of interest of the
optimal PF. Such goal was highly studied in static environments in both cases of
single and multiple decision makers [91–94]. However, a dynamic context might
suggest the user preferences change over time and so the preference handling
technique should allow preferences to be interactively adapted or automatically
learnt during the optimization process. To the best of our knowledge, only few
works [6, 77] proposed to suggest a decision-making aid to help identify one
dynamic single optimal solution. This research direction is not yet highly explored.

8 Conclusion and Future Research Paths

In addition to the challenge of satisfying several competing objectives, industrial
problems and many other problems that occur in our daily life are also dynamic in
nature. In such a situation, the objective functions, constraints and/or problem para-
meters may change over time. Despite of the considerable number of approaches
developed on dynamic single-objective optimization, dynamic multi-objective opti-
mization is explored only recently. Several works have been established in the lit-
erature such as diversity-based approaches, change prediction-based approaches,
memory-based approaches, parallel approaches, approaches that convert the DMOP
into multiple static MOPs, etc. The objective of this chapter was to provide an
overview of existing EAs proposed for the resolution of DMOPs.Moreover, a review
of the most commonly used benchmark functions, real-world DMOPs, performance
measures and statistical tests was presented. Challenges and future research direc-
tions were also discussed. This review has shown that several EAs have already been
developed to solve DMOPs. Despite of all existing works, there still exist a need
to future research in this area as the number of real world problems belonging to
this category is in a dramatic increase. We have presented in Sect. 5.2 a summary of
those that have been studied in the literature. However, due to the continuous increase
of senior people and greater need for health, disability support and higher quality
of life in general, some new real world problems such as smart houses and smart
cities problems begun to be considered as important topics. We have focused in this
problematic in [95] where we havemodeled appliances scheduling as a dynamic con-
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strained multi-objective optimization problem and have used DC-NSGA-II [7] for
the problem resolution. Moreover, as generally, there are multiple inhabitants in the
same home sharing context-aware applications with various conflicting individual
preferences, we proposed a new comfort function to support multi-user conflictual
preferences. The application of population-based approaches to smart houses and
smart cities problems has not been highly studied. In this context, we suggest two
main future research directions:

1. As smart technologies are considered as viable solution tomaintain independence,
functionality, well-being and higher quality of life, this motivate more research on
this topic. Exploring the eligibility of dynamic EAs to solve problems revealed by
smart houses and smart cities technologies may be of a significant importance. As
well, the use and the evaluation of the performance of different population-based
metaheuristics such as artificial immune systems [3, 88, 96], particles swarm
optimization [14, 67, 71] and chemical reaction optimization [97] to solve such
problems would be appreciated.

2. Smart houses and smart cities problems are strongly dependent on user pref-
erences. A dynamic context might impose taking into account the change of
these preferences over time and relatively to environment changes. The resolu-
tion method should be able to automatically learn decision maker’s preferences
during the optimization process. Such decision-making aid help identify the more
interesting solutions or even one dynamic single optimal solution.
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with solving this difficult class of problem, the area still lacks efficient solutionmeth-
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1 Introduction

Bilevel optimization is characterized as a mathematical program with two levels of
optimization. The outer optimization problem is commonly referred to as the upper
level optimization problem and the inner optimization problem is commonly referred
to as the lower level optimization problem. The origin of bilevel optimization can be
traced to two roots: these problems were first realized by Stackelberg [1] in the area
of game theory and came to be known as Stackelberg games; later these problems
were realized in the area of mathematical programming by Bracken and McGill [2]
as a constrained optimization task, where the lower level optimization problem acts
as a constraint to the upper level optimization problem. These problems are known to
be difficult due to its nested structure; therefore, it has received most attention from
the mathematical community towards simple cases where the objective functions
and constraints are linear [3, 4], quadratic [5–7] or convex [8]. The nested structure
in bilevel introduces difficulties such as non-convexity and disconnectedness even
for simpler instances of bilevel optimization like bilevel linear programming prob-
lems. Bilevel linear programming is known to be strongly NP-hard [9], and it has
been proven that merely evaluating a solution for optimality is also a NP-hard task
[10]. This gives us an idea about the kind of challenges offered by bilevel problems
with complex (non-linear, non-convex, discontinuous etc.) objective and constraint
functions.

An interest in bilevel programming has been driven by a number of new appli-
cations arising in different fields of optimization. For instance, in the context of
homeland security [11–13], bilevel and even trilevel optimization models are com-
mon. In game theoretic settings, bilevel programs have been used in the context
of optimal tax policies [14–16]; model production processes [17]; investigation of
strategic behavior in deregulated markets [18] and optimization of retail channel
structures [19], among others. Bilevel optimization applications are ubiquitous and
arise in many other disciplines, like in transportation [20–22], management [23, 24],
facility location [23, 25, 26], chemical engineering [27, 28], structural optimization
[29, 30], and optimal control [31, 32] problems.

Evolutionary computation [33] techniques have been successfully applied to han-
dle mathematical programming problems and applications that do not adhere to reg-
ularities like continuity, differentiability or convexities. Due to these properties of
evolutionary algorithms, attempts have beenmade to solve bilevel optimization prob-
lems using these methods, as even simple (linear or quadratic) bilevel optimization
problems are intrinsically non-convex, non-differentiable and disconnected at times.
However, the advantages come with a trade-off. Most of the evolutionary bilevel
techniques are nested where an outer algorithm handles the upper level optimization
task and an inner algorithm handles the lower level optimization task, thereby mak-
ing the overall bilevel optimization computationally very intensive. To address these
problems attempts have been made to reduce the computational expense of evolu-
tionary bilevel optimization algorithms by utilizing metamodeling-based principles.
Multiobjective bilevel programming is a natural extension of bilevel optimization
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problems with single objectives. However, multiple objectives in bilevel optimiza-
tion, alongwith computational challenges, brings in intricacies related to hierarchical
decision making.

In this chapter, we highlight some of the past, and recent studies and results
in the area of evolutionary bilevel optimization. The chapter begins with a survey
on single objective bilevel optimization in Sect. 2. This is followed by single-level
formulations of bilevel optimization in Sect. 3. Thereafter, in Sect. 4 we discuss and
compare some recent solution methods for bilevel optimization. Section5 introduces
multiobjective bilevel optimization and provides a survey on the topic. In Sect. 6 we
discuss the decision making issues in multiobjective bilevel optimization. Finally,
we conclude in Sect. 7 with some ideas on future research directions.

2 A Survey on Evolutionary Bilevel Optimization

Most of the evolutionary approaches proposed to handle bilevel optimization prob-
lems are nested in nature. As the name suggests, these approaches rely on two opti-
mization algorithms, where one algorithm is executed within the other. Based on
the complexity of the optimization tasks at each level, researchers have chosen to
use either evolutionary algorithms at both levels or evolutionary algorithm at one
level and classical optimization algorithm at the other level. One of the earliest
evolutionary algorithms for solving bilevel optimization problems was proposed in
the early 1990s by Mathieu et al. [34] who used a nested approach with genetic
algorithm at the upper level, and linear programming at the lower level. Later, Yin
[35] used genetic algorithm at the upper level and Frank–Wolfe algorithm (reduced
gradient method) at the lower level. In both these approaches a lower level opti-
mization task was executed for every upper level member that emphasizes the nested
structure of these approaches. Along similar lines, nested procedures were used in
[36–39]. Approaches with evolutionary algorithms at both levels are also common;
for instance, in [40] authors used differential evolution at both levels, and in [41]
authors nested differential evolution within an ant colony optimization.

In a number of studies, where lower level problem adhered to certain regularity
conditions, researchers have used the KKT conditions for the lower level problem
to reduce the bilevel problem into a single-level problem. The reduced single-level
problem is then solvedwith an evolutionary algorithm. For instance,Hejazi et al. [42],
reduced the linear bilevel problem to single-level and then used a genetic algorithm,
where chromosomes emulate the vertex points, to solve the problem. Wang et al.
[43] used KKT conditions to reduce the bilevel problem into single-level, and then
utilized a constraint handling scheme to successfully solve a number of standard
test problems. A later study by Wang et al. [44] introduced an improved algorithm
that performed better than the previous approach [43]. Recently, Jiang et al. [45]
reduced the bilevel optimization problem into a non-linear optimization problem
with complementarity constraints, which is sequentially smoothed and solved with
a PSO algorithm. Other studies using similar ideas are [46, 47].
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It is noteworthy that utilization of KKT conditions restricts the algorithm’s
applicability to only a special class of bilevel problems. To overcome this drawback,
researchers are looking into metamodeling based approaches where the lower level
optimal reaction set is approximated over generations of the evolutionary algorithm.
Studies in this direction are [48, 49]. Along similar lines, attempts have been made to
metamodel the lower level optimal value function [50] to solve bilevel optimization
problems. Approximating the lower level optimal value function may offer a few
advantages over approximating the lower level reaction set that has been highlighted
in this chapter.

3 Bilevel Formulation and Single-Level Reductions

In this section, we provide a general formulation for bilevel optimization, and differ-
ent ways people have used to reduce bilevel optimization problems to single-level
problems. Bilevel problems contain two levels, upper and lower, where lower level
is nested within the upper level problem. The two levels have their own objectives,
constraints and variables. In the context of game theory, the two problems are also
referred to as the leader’s (upper) and follower’s problems (lower). The lower level
optimization problem is a parametric optimization problem that is solvedwith respect
to the lower level variables while the upper level variables act as parameters. The
difficulty in bilevel optimization arises from the fact that only lower level optimal
solutions can be considered as feasible members, if they also satisfy the upper level
constraints. Below we provide a general bilevel formulation:

Definition 1 For the upper-level objective function F : Rn × R
m → R and lower-

level objective function f : Rn × R
m → R, the bilevel optimization problem is

given by

“min”
xu∈XU ,xl∈XL

F(xu, xl) subject to

xl ∈ argmin
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J }

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : XU × XL → R, k = 1, . . . , K denotes the upper level constraints, and
g j : XU × XL → R represents the lower level constraints, respectively.

3.1 Optimistic Versus Pessimistic

Quotes have been used while specifying the upper level minimization problem in
Definition 1 because the problem is ill-posed for cases where the lower level has
multiple optimal solutions. For instance, Fig. 1 shows the case where the lower level
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Fig. 1 A scenario where there is a single lower level optimal solution corresponding to an upper
level decision vector. The bilevel optimization problem in Definition 1 is clearly defined for this
case

problem has a single optimal solution corresponding to an upper level decision.
Therefore, it is clear that for the upper level decision, the only rational lower level
decision would be the single optimal solution at the lower level. However, there is
lack of clarity in the situation shown in Fig. 2, as it is not clear that, out of multiple
lower level optimal solutions, which solution will actually be chosen by the lower
level decision maker. If the selection of the lower level decision maker is unknown,
the bilevel formulation remains ill-defined. It is common to assume either of the
two positions, i.e., optimistic or pessimistic, to sort out this ambiguity. In optimistic
position some form of cooperation is assumed between the leader and the follower.
For any given leader’s decision vector that has multiple optimal solutions for the
follower, the follower is expected to choose that optimal solution that leads to the
best objective functionvalue for the leader.On theother hand, in a pessimistic position
the leader optimizes for the worst case, i.e. the follower may choose that solution
from the optimal set which leads to the worst objective function value for the leader.
Optimistic position being more tractable is commonly studied in the literature, and
we also consider the optimistic position in this chapter.
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Fig. 2 A scenario where there is a multiple lower level optimal solution corresponding to an upper
level decision vector. The bilevel optimization problem in Definition 1 is ill-defined for this case if
the lower level’s selection is not known or assumed

3.2 KKT Reduction

When the lower level problem in Definition 1 adheres to certain convexity and reg-
ularity conditions, it is possible to replace the lower level optimization task with its
KKT conditions.

Definition 2 The KKT conditions appear as Lagrangian and complementarity con-
straints in the single-level formulation provide below:

min
xu∈XU ,xl∈XL ,λ

F(xu, xl)

subject to

Gk(xu, xl) ≤ 0, k = 1, . . . , K ,

g j (xu, xl) ≤ 0, j = 1, . . . , J,

λ jg j (xu, xl) = 0, j = 1, . . . , J,

λ j ≥ 0, j = 1, . . . , J,

∇xl L(xu, xl ,λ) = 0,
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where

L(xu, xl ,λ) = f (xu, xl) +
J∑

j=1

λ jg j (xu, xl).

The above formulation might not be simple to handle, as the Lagrangian constraints
often lead to non-convexities, and the complementarity condition being combina-
torial, make the overall problem a mixed integer problem. In case of linear bilevel
optimization problems, the Lagrangian constraint is also linear. Therefore, the single-
level reduced problem becomes a mixed integer linear program. Approaches based
on vertex enumeration [51–53], as well as branch-and-bound [54, 55] have been
proposed to solve these problems.

3.3 Reaction Set Mapping

An equivalent formulation of the problem given in Definition 1 can be stated in terms
of set-valued mappings as follows:

Definition 3 Let Ψ : Rn ⇒ R
m be the reaction set mapping,

Ψ (xu) = argmin
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents the constraint defined by the lower-level optimization problem,
i.e. Ψ (xu) ⊂ XL for every xu ∈ XU . Then the bilevel optimization problem can be
expressed as a constrained optimization problem as follows:

min
xu∈XU ,xl∈XL

F(xu, xl)

subject to

xl ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

Note that if the Ψ -mapping can somehow be determined, the problem reduces to a
single level constrained optimization task. However, that is rarely the case. Evolu-
tionary computation studies that rely on iteratively mapping this set to avoid frequent
lower level optimization are [48, 49]. The idea behind the algorithm has been shown
through Figs. 3 and 4. To begin with, the lower level problem is completely solved for
a few upper level decision vectors. For example, in Fig. 3 the lower level decisions
corresponding to upper level decisions a, b, c, d, e and f are determined by solving
a lower level problem completely. The lower level decisions for these members cor-
respond to the actual Ψ -mapping (unknown). These member are then used to find
an approximate Ψ -mapping locally as shown in Fig. 4. For every new upper level
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Fig. 3 Solving the lower level optimization problem completely for random upper level members
like a, b, c, d, e and f provides the corresponding lower level optimal solutions represented by
Ψ (a), Ψ (b), Ψ (c), Ψ (d), Ψ (e) and Ψ ( f ). The Ψ -mapping is assumed to be single valued

Upper-level decision space 

Lower-level decision space 

f

c

Ψ (c)

a

Ψ (a)

d

Ψ (d)

e

Ψ (e) Ψ (b)Ψ (f)

b

Actual

Approximate

Fig. 4 An approximate mapping for the lower level reaction set estimated using the actual val-
ues Ψ (a), Ψ (b), Ψ (c), Ψ (d), Ψ (e) and Ψ ( f ). Local approximations are preferable over a global
approximation of the Ψ -mapping

member, the local approximation is used to identify the lower level decision instead
of solving the lower level optimization problem. The idea is used iteratively until
convergence. The idea works well when the Ψ -mapping is single valued.
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3.4 Lower Level Optimal Value Function

Another equivalent definition of the problem in Definition 1 can be given in terms
of the lower level optimal value function that is defined below [56]:

Definition 4 Let ϕ : XU → R be the lower level optimal value function mapping,

ϕ(xu) = min
xl∈XL

{ f (xu, xl) : g j (xu, xl) ≤ 0, j = 1, . . . , J },

which represents theminimum lower level function value corresponding to any upper
level decision vector. Then the bilevel optimization problem can be expressed as
follows:

min
xu∈XU ,xl∈XL

F(xu, xl)

subject to

f (xu, xl) ≤ ϕ(xu)

g j (xu, xl) ≤ 0, j = 1, . . . , J

Gk(xu, xl) ≤ 0, k = 1, . . . , K .

The ϕ-mapping can be approximated iteratively during the generations of the evolu-
tionary algorithm, and a reduced problem described in Definition 4 can be frequently
solved to converge towards the bilevel optimum. An evolutionary algorithm relying
on this idea can be found in [50]. Approximating the optimal value function map-
ping offers an advantage over approximating reaction set mapping, as the optimal
value function mapping is not set valued. Moreover, it returns a scalar for any given
upper level decision vector. Figure5 shows an example where the lower level prob-
lem has multiple optimal solutions for some upper level decisions and single optimal
solutions for others. In all situations, the ϕ-mapping remains single valued scalar.
Though there are advantages associated with estimating the ϕ-mapping, it is also
interesting to note in Definition 4 that the reduced single level problem has to be

Fig. 5 Anexample showingϕ-mapping and how it depends on the lower level optimization problem
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solved with respect to both upper and lower level variables, while in Definition 7,
the lower level variables are directly available from theΨ -mapping. Therefore, there
exists a trade-off.

4 Comparison of Metamodeling Based Evolutionary
Approaches for Bilevel Optimization

In this section, we provide the steps of two different evolutionary bilevel algorithms,
where one utilizes iterative approximation of theΨ -mapping, while the other utilizes
iterative approximation of the ϕ-mapping in the intermediate steps. The steps of the
algorithms are provided through a flowchart in Fig. 6. For brevity, we do not discuss
the steps of the evolutionary algorithm, as any scheme can be utilized in the provided
framework to handle bilevel optimization problems. For further information about
the implementation of the approaches the readers are referred to [50].

The intermediate steps of the above algorithms utilizes quadratic approximation
for approximating the Ψ and the ϕ mappings. Both the ideas were tested on a set
of 8 test problems given in Tables1 and 2. To assess the savings achieved by the
two approximation approaches, we compare them against a nested approach where
the approximation idea is not incorporated, but the same evolutionary algorithm

Fig. 6 Flowchart for incorporating approximated ϕ-mapping in an evolutionary algorithm
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Table 1 Standard test problems TP1–TP5

Problem Formulation Best Known
Sol.

TP1

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = (x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2,

s.t.

y ∈ argmin
(y)

{
f (x, y) = (x1 − y1)2 + (x2 − y2)2

0 ≤ yi ≤ 10, i = 1, 2

}

,

x1 + 2x2 ≥ 30, x1 + x2 ≤ 25, x2 ≤ 15

F = 225.0

f = 100.0

TP2

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60,

s.t.

y ∈ argmin
(y)

⎧
⎪⎨

⎪⎩

f (x, y) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2

x1 − 2y1 ≥ 10, x2 − 2y2 ≥ 10

−10 ≥ yi ≥ 20, i = 1, 2

⎫
⎪⎬

⎪⎭
,

x1 + x2 + y1 − 2y2 ≤ 40,

0 ≤ xi ≤ 50, i = 1, 2.

F = 0.0

f = 100.0

TP3

n = 2,
m = 2

Minimize
(x,y)

F(x, y) = −(x1)2 − 3(x2)2 − 4y1 + (y2)2,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x, y) = 2(x1)2 + (y1)2 − 5y2
(x1)2 − 2x1 + (x2)2 − 2y1 + y2 ≥ −3

x2 + 3y1 − 4y2 ≥ 4

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(x1)2 + 2x2 ≤ 4,

0 ≤ xi , i = 1, 2

F = −18.6787

f = −1.0156

TP4

n = 2,
m = 3

Minimize
(x,y)

F(x, y) = −8x1 − 4x2 + 4y1 − 40y2 − 4y3,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x, y) = x1 + 2x2 + y1 + y2 + 2y3
y2 + y3 − y1 ≤ 1

2x1 − y1 + 2y2 − 0.5y3 ≤ 1

2x2 + 2y1 − y2 − 0.5y3 ≤ 1

0 ≤ yi , i = 1, 2, 3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

0 ≤ xi , i = 1, 2

F = −29.2

f = 3.2

(Note that x = xu and y = xl )

described in Fig. 6 is used at the upper level and a lower level optimization prob-
lem is solved for every upper level member. Hereafter, we refer this benchmark as
a no-approximation approach. Whenever lower level optimization is required, we
rely on sequential quadratic programming to solve the problem for all cases. Table3
provides the median function evaluations (31 runs) at the upper and lower level
required by each of the three cases, i.e., ϕ-approximation, Ψ -approximation and
no-approximation. Detailed results from multiple runs are presented through Figs. 7
and 8. Interestingly, both the approximation ideas perform significantly well on all
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Table 2 Standard test problems TP6–TP8

Problem Formulation Best Known Sol.

TP5

n = 2, m = 2

Minimize
(x,y)

F(x, y) = r t (x)x − 3y1 − 4y2 + 0.5t (y)y,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (x, y) = 0.5t (y)hy − t (b(x))y

−0.333y1 + y2 − 2 ≤ 0

y1 − 0.333y2 − 2 ≤ 0

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where

h =
(
1 3

3 10

)

, b(x) =
(

−1 2

3 −3

)

x, r = 0.1

t (·) denotes transpose of a vector

F = −3.6

f = −2.0

TP6

n = 1, m = 2

Minimize
(x,y)

F(x, y) = (x1 − 1)2 + 2y1 − 2x1,

s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, y) = (2y1 − 4)2+
(2y2 − 1)2 + x1y1
4x1 + 5y1 + 4y2 ≤ 12

4y2 − 4x1 − 5y1 ≤ −4

4x1 − 4y1 + 5y2 ≤ 4

4y1 − 4x1 + 5y2 ≤ 4

0 ≤ yi , i = 1, 2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

0 ≤ x1

F = −1.2091

f = 7.6145

TP7

n = 2, m = 2

Minimize
(x,y)

F(x, y) = − (x1+y1)(x2+y2)
1+x1 y1+x2 y2

,

s.t.

y ∈ argmin
(y)

{
f (x, y) = (x1+y1)(x2+y2)

1+x1 y1+x2 y2
0 ≤ yi ≤ xi , i = 1, 2

}

,

(x1)2 + (x2)2 ≤ 100

x1 − x2 ≤ 0

0 ≤ xi , i = 1, 2

F = −1.96

f = 1.96

TP8

n = 2, m = 2

Minimize
(x,y)

F(x, y) = |2x1 + 2x2 − 3y1 − 3y2 − 60|,
s.t.

y ∈ argmin
(y)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (x, y) = (y1 − x1 + 20)2+
(y2 − x2 + 20)2

2y1 − x1 + 10 ≤ 0

2y2 − x2 + 10 ≤ 0

−10 ≤ yi ≤ 20, i = 1, 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

x1 + x2 + y1 − 2y2 ≤ 40

0 ≤ xi ≤ 50, i = 1, 2

F = 0.0

f = 100.0

(Note that x = xu and y = xl )



Evolutionary Bilevel Optimization: An Introduction … 83

Table 3 Median function evaluations for the upper level (UL) and the lower level (LL) from 31
runs of different algorithms

UL func. evals. LL func. evals. Savings

ϕ-appx
Med

Ψ -appx
Med

No-appx
Med

ϕ-appx
Med

Ψ -appx
Med

No-appx
Med

ϕ Ψ

TP1 134 150 – 1438 2061 – Large Large

TP2 148 193 436 1498 2852 5686 73% 50%

TP3 187 137 633 2478 1422 6867 64% 79%

TP4 299 426 1755 3288 6256 19764 83% 69%

TP5 175 270 576 2591 2880 6558 61% 56%

TP6 110 94 144 1489 1155 1984 25% 41%

TP7 166 133 193 2171 1481 2870 24% 47%

TP8 212 343 403 2366 5035 7996 69% 36%

The savings represent the proportion of total function evaluations (LL+UL) saved because of using
the approximation when compared with no-approximation approach

Fig. 7 Box plot (31
runs/samples) for the upper
level function evaluations
required for test problems
1–8

the problems as compared to the no-approximation approach. The savings column
in the table shows the proportion of function evaluations savings that can be directly
attributed to ϕ and Ψ approximations. Slight difference in performance between
the two approximation strategies can be attributed to the quality of approximations
achieved for specific test problems. To provide the readers an idea about the extent
of savings in function evaluations obtained from using metamodeling based strate-
gies, we also provide comparisons with earlier evolutionary approaches [43, 44] in
Table4. These approaches are based on single-level reduction using lower level KKT
conditions. A significantly poor performance of these methods emphasizes the fact
that even when it is possible to write the KKT constraints for the lower level problem,
a single level reduction might not necessarily make the problem easy to solve.
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Fig. 8 Box plot (31 runs/samples) for the lower level function evaluations required for test problems
1–8

Table 4 Mean of the sum of upper level (UL) and lower level (LL) function evaluations for different
approaches

Mean func. evals. (UL+LL)

ϕ-appx. Ψ -appx. No-appx. WJL [43] WLD [44]

TP1 1595 2381 35896 85499 86067

TP2 1716 3284 5832 256227 171346

TP3 2902 1489 7469 92526 95851

TP4 3773 6806 21745 291817 211937

TP5 2941 3451 7559 77302 69471

TP6 1689 1162 1485 163701 65942

TP7 2126 1597 2389 1074742 944105

TP8 2699 4892 5215 213522 182121

It is noteworthy that the Ψ -mapping in a bilevel optimization problem could be a
set-valuedmapping as shown in Fig. 9, i.e. for some or all upper level decision vectors
in the search space, the lower level optimization problem may have multiple optimal
solutions. Such a situation offers dual challenges; first, finding the Ψ -set is difficult;
second, approximating the set is also difficult. In such cases approximating the Ψ -
mapping will not help. To test this hypothesis, we modified all the 8 test problems by
adding two additional lower level variables (yp and yq ) that makes the Ψ -mapping
in all the test problems as set-valued for the entire domain of Ψ . The modification
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Upper-level decision space 

Lower-level decision space 

b

d

Ψ(d)

c

Ψ(c)

a

Ψ(b)

Ψ(a)

Fig. 9 A scenario where the Ψ -mapping is set-valued in some regions and single-valued in other
regions

does not change the original bilevel solution. This was achieved by modifying the
upper and lower level functions for all the test problems as follows:

Fnew(x, y) = F(x, y) + y2p + y2q

f new(x, y) = f (x, y) + (yp − yq)
2

yp, yq ∈ [−1, 1]

Note that the above modification necessarily makes the lower level problem have
multiple optimal solutions corresponding to all x , as the added term gets minimized
at yp = yq which has infinitelymany solutions. Out of the infinitelymany lower level
optimal solutions, the upper level prefers yp = yq = 0.With this simplemodification,
we execute our algorithm with ϕ-approximation and Ψ -approximation on all test
problems, the results for which are presented through Tables5 and 6. For all the
problems, the Ψ -approximation idea fails. The ϕ-approximation idea continues to
work effectively as before. The slight increase in function evaluations for the Ψ -
approximation approach comes from the fact that there are additional variables in
the problem.

To conclude, the Ψ -mapping offers the advantage that if it can be approximated
accurately, it readily gives the optimal lower level variables. However, in cases when
this mapping is set-valued, approximatingΨ can be very difficult. On the other hand,
the ϕ-mapping is always single-valued, approximating which is much easier, and is
therefore more preferred over the Ψ -mapping. The results shown in this section
clearly demonstrate that even a simple modification that leads to multiple lower level
optimal solutions, makes the Ψ -approximation strategy fail because of poor quality
of approximation. To our best knowledge, most of the studies utilizingmetamodeling
techniques to solve bilevel optimization problems have mostly relied on approximat-



86 A. Sinha et al.

Table 5 Minimum, median and maximum function evaluations at the upper level (UL) from 31
runs of the ϕ-approximation algorithm on the modified test problems (m-TP)

ϕ-appx. Ψ -appx. No-appx.

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 130 172 338 – –

m-TP2 116 217 – – –

m-TP3 129 233 787 – –

m-TP4 198 564 2831 – –

m-TP5 160 218 953 – –

m-TP6 167 174 529 – –

m-TP7 114 214 473 – –

m-TP8 150 466 2459 – –

The other two approaches fail on all the test problems

Table 6 Minimum, median and maximum function evaluations at the lower level (LL) from 31
runs of the ϕ-approximation algorithm on the modified test problems (m-TP)

ϕ-appx. Ψ -appx. No-appx.

Min Med Max Min/Med/Max Min/Med/Max

m-TP1 2096 2680 8629 – –

m-TP2 2574 4360 – – –

m-TP3 1394 3280 13031 – –

m-TP4 1978 5792 28687 – –

m-TP5 3206 4360 17407 – –

m-TP6 2617 3520 8698 – –

m-TP7 1514 5590 11811 – –

m-TP8 2521 6240 35993 – –

The other two approaches fail on all the test problems

ing the Ψ -mapping. Given the ease and reliability offered by the ϕ-approximation
overΨ -approximation, we believe that future research on metamodeling-based tech-
niques should closely look at the benefits of the ϕ-approximation.

5 Multiobjective Bilevel Optimization

A substantial body of research exists on single-objective bilevel optimization, but
relatively few papers have considered bilevel problems with multiple objectives on
both levels. Even less research has been done to understand the impacts of decision-
interaction and uncertainty that arise in multiobjective bilevel problems. One of the
reasons for little research in the area is that the problembecomes bothmathematically
and computationally intractable even with simplifying assumptions like continuity,
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differentiability, convexity etc. However, given that multiobjective bilevel problems
exist in practice, researchers have tried to explore ideas to handle these problems.

Some of the studies on multiobjective bilevel optimization that exist are mostly
directed towards development of techniques for solving optimistic formulation of
the problem, where the decision-makers are assumed to co-operate and the leader
can freely choose any Pareto-optimal lower-level solution. Studies by Eichfelder
[57, 58] utilize classical techniques to solve simple multiobjective bilevel problems.
The lower level problems are handled using a numerical optimization technique,
and the upper level problem is handled using an adaptive exhaustive search method.
This makes the solution procedure computationally demanding and non-scalable to
large-scale problems. The method is close to a nested strategy, where each of the
lower level optimization problems is solved to Pareto-optimality. Shi and Xia [59]
use the ε-constraint method at both levels of a multiobjective bilevel problem to
convert the problem into an ε-constraint bilevel problem. The ε-parameter is elicited
from the decision maker, and the problem is solved by replacing the lower level
constrained optimization problem with its KKT conditions. The problem is solved
for different ε-parameters, until a satisfactory solution is found.

With the surge in computation power, a number of nested evolutionary algo-
rithms have also been proposed, which solve the lower level problem completely
for every upper level vector to arrive at the problem optima. One of the first stud-
ies, utilizing an evolutionary approach for bilevel multiobjective algorithms was in
[35]. The study involved multiple objectives at the upper level, and a single objec-
tive at the lower level. The study suggested a nested genetic algorithm, and applied
it on a transportation planning and management problem. Later [60] used a par-
ticle swarm optimization (PSO)-based nested strategy to solve a multi-component
chemical system. The lower level problem in their application problem was linear
for which they used a specialized linear multiobjective PSO approach. Recently, a
hybrid bilevel evolutionary multiobjective optimization algorithm approach coupled
with local search was proposed in [61]. In the paper, the authors handled nonlinear
as well as discrete bilevel problems with a relatively large number of variables. The
study also provided a suite of test problems for bilevel multiobjective optimization.
An extension to this study [62] attempted to solve bilevel multiobjective optimization
with fewer function evaluations by interacting with the leader. The idea in this study
was to interact with the upper level decision maker only to model her preferences
and find the most preferred Pareto-optimal point instead of the entire frontier. The
study borrowed ideas from the area of preference-based evolutionary algorithms.

Until recently, the focus has been primarily on algorithms for handling determin-
istic problems. Less emphasis has been paid to the decision-making intricacies that
arise in practical multiobjective bilevel problems. The first concern is the reliance on
the assumption that transfers decision-making power to the leader by allowing her
to freely choose any Pareto-optimal solution from the lower-level optimal frontier.
In practical problems, the preferences of the lower-level decision maker may not be
aligned with the leader. Although a leader can anticipate the follower’s actions and
optimize her strategy accordingly, it is unrealistic to assume that she can decidewhich
trade-off the follower should choose. To solve hierarchical problems with conflicting
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decision-makers, a few studies have proposed a line of interactive fuzzy program-
ming models [63, 64]. The methods have been successfully used to handle decen-
tralized bilevel problems that have more than one lower level decision maker [65].
However, the assumption of mutual co-operation and repeated interactions between
decision-makers is not necessarily feasible; e.g., in homeland security applications
and competitive business decisions. The second concern is the decision-uncertainty.
The strategy chosen by the follower may well deviate from what is expected by the
leader, which thus gives rise to uncertainty about the realized outcome. It is worth-
while to note that the notion of decision-uncertainty that emanates from not knowing
the follower’s preferences exactly is different from the uncertainty that follows from
non-preference related factors such as stochastic model parameters.

6 Multiobjective Bilevel Optimization and Decision Making

In this section, we provide three different formulations for a multiobjective bilevel
optimization problem. First, we consider the standard formulation, where there is no
decision making involved at the lower level and all the lower level Pareto-optimal
solutions are considered at the upper level (see Fig. 10). Second, we consider a
formulation, where the decision maker acts at the lower level and chooses a solution
to her liking. The preference structure of the follower is known to the leader and can

Obj 1

ob
j2

obj 1

ob
j2

obj 1

ob
j2

obj 1

Leader Follower’s 
problem for 
different xu

Optimistic frontier

Pareto-op mal points 
from the lower level 
that are most suitable 
for the leader are 
chosen

Fig. 10 Optimistic bilevel multiobjective optimization
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Fig. 11 Bilevel multiobjective optimization with deterministic lower level decisions

be modeled as a value function (see Fig. 11). Finally, we discuss a problem, where
the lower level decision maker’s preferences are not known with certainty and the
upper level decision maker needs to take this decision-uncertainty into account when
choosing her optimal strategy (see Fig. 12).

6.1 Multiobjective Bilevel Optimization: The Optimistic
Formulation

Bilevel multiobjective optimization is a nested optimization problem involving two
levels of multiobjective optimization tasks. The structure of a bilevel multiobjective
problem demands that only the Pareto-optimal solutions to the lower level optimiza-
tion problemmay be considered as feasible solutions for the upper level optimization
problem.There are two classes of variables in a bilevel optimization problem; namely,
the upper level variables xu ∈ XU ⊂ R

n , and the lower level variables xl ∈ XL ⊂ R
m .

The lower level multiobjective problem is solved with respect to the lower level vari-
ables, xl , and the upper level variables, xu act as parameters to the optimization
problem. Each xu corresponds to a different lower level optimization problem, lead-
ing to a different Pareto-optimal front. The upper level problem is optimized with
respect to both classes of variables, x = (xu, xl).
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Fig. 12 Bilevel multiobjective optimization with uncertainty in lower level decisions

Definition 5 For the upper-level objective function F : Rn × R
m → R

p and lower-
level objective function f : Rn × R

m → R
q , the bilevel problem is given by

min
xu∈XU ,xl∈XL

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to

xl ∈ argmin
xl

{ f (xu, xl) = ( f1(xu, xl), . . . , fq(xu, xl)) :
g j (xu, xl) ≤ 0, j = 1, . . . , J }

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Gk : XU × XL → R, k = 1, . . . , K denote the upper level constraints, and
g j : XU × XL → R represent the lower level constraints, respectively. Equality con-
straints may also exist that have been avoided for brevity.

An equivalent formulation of the above problem can be stated in terms of set-
valued mappings as follows:

Definition 6 Let Ψ : Rn ⇒ R
m be a set-valued mapping,

Ψ (xu) = argmin
xl

{ f (xu, xl) = ( f1(xu, xl), . . . , f2(xu, xl)) :
g j (xu, xl) ≤ 0, j = 1, . . . , J },
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which represents the constraint defined by the lower-level optimization problem,
i.e. Ψ (xu) ⊂ XL for every xu ∈ XU . Then the bilevel multiobjective optimization
problem can be expressed as a constrained multiobjective optimization problem:

min
xu∈XU ,xl∈XL

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to xl ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

where Ψ can be interpreted as a parameterized range-constraint for the lower-level
decision vector xl .

In the above two formulations, the lower level decision maker is assumed to coop-
erate with the upper level decision maker, such that she provides all Pareto-optimal
points to the upper level decision maker who then chooses the best point according
to the upper level objectives. The assumption effectively reduces the influence of
the follower and transfers the decision-making power to the leader. Alternatively,
one can say that the lower-level decision maker is assumed to be indifferent to all
lower-level Pareto-optimal solutions. Though this formulation has been studied in
the past, it is a highly unrealistic formulation where decision making aspects at the
lower level are not taken into account.

Next, we demonstrate the optimistic formulation through a simple multiobjective
bilevel optimization problem taken from [58].

Example 1 The problem has a single upper level and two lower level variables; such
that xu = (x) and xl = (y1, y2)T . The formulation of the problem is given below:

Minimize F(x, y1, y2) =
(
y1 − x
y2

)

,

subject to (y1, y2) ∈ argmin
(y1,y2)

{

f (x, y1, y2) =
(
y1
y2

) ∣
∣
∣
∣g1(x) = x2 − y21 − y22 ≥ 0

}

,

G1(x) = 1 + y1 + y2 ≥ 0,
−1 ≤ y1, y2 ≤ 1, 0 ≤ x ≤ 1.

(1)

The Pareto-optimal set for the lower level optimization task for a given x is the
bottom-left quarter of the circle: {(y1, y2) ∈ R

2 | y21 + y22 = x2, y1 ≤ 0, y2 ≤ 0}.
Lower level frontiers corresponding to different x are shown in Fig. 13. As observed
from the figure, the linear constraint at the upper level does not allow the entire quarter
circle to be feasible for some x . Therefore, at most two points from the quarter circle
belong to the upper level Pareto-optimal set of the bilevel problem that is shown in
Fig. 14. The lower level frontiers for different x are also plotted in the upper level
objective space. Figures13 and 14 also show three points A, B and C for x = 0.9,
where points A and B participate in the upper level frontier while point C is rendered
infeasible because of the upper level constraint. The analytical Pareto-optimal set for
this problem is given as:

{

(x, y1, y2) ∈ R
3

∣
∣ x ∈

[
1√
2
, 1

]

, y1 = −1 − y2, y2 = −1

2
± 1

4

√
8x2 − 4

}

. (2)
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This problem demonstrates that leader takes all the lower level Pareto-optimal solu-
tions and then based on her constraints and non-domination criterion decides the
solutions to be kept. Once thismultiobjective bilevel problem is given, the upper level
Pareto-frontier can be identified without considering any decision making aspects.

Some of the studies that attempted to handle the optimistic formulation are [57,
58] in the area of mathematical optimization and [61, 66] in the area of evolutionary
computation. In [61], authors utilize a hierarchical evolutionary multiobjective opti-
mization approach to solve a number of difficult multiobjective bilevel problems.
Though the approach retains a nested structure, a number of intelligent schemes
were employed that led to savings, when compared to a brute force nested algo-
rithm. Some of the ideas utilized include; adjusting the number of subpopulations
and their sizes for lower level search adaptively, solving the lower level problemwith
an evolutionary algorithm for a few generations and then employing local search on
members that are likely to participate in upper level non-dominated frontier, utiliz-
ing a hypervolume-based termination criterion at both levels, and using archive that
keeps those solutions that are feasible (with respect to constraints and lower level
problem) and non-dominated at the upper level.
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Table 7 Ratio of median function evaluations required by Algorithm-1 [61] against Algorithm-3
[66] and Algorithm-2 (purely nested) against Algorithm-3 [66]

Pr. No. Algori thm−1
Algori thm−3

Algori thm−2
Algori thm−3

Total LL FE Total UL FE Total LL FE Total UL FE

DS1 1.54 1.23 17.51 13.58

DS2 1.33 1.11 17.07 11.33

DS3 1.43 1.19 18.03 11.21

DS4 1.28 1.25 16.06 13.59

DS5 1.32 1.21 19.89 12.27

Table 8 Function evaluations (FE) required by Algorithm-3 for the upper level (UL ) and lower
level (LL)

Pr. No.
(var.)

Best Median Worst

Total LL FE Total UL FE Total LL FE Total UL FE Total LL FE Total UL FE

DS1 (20) 1946496 72334 2215966 74502 2430513 86697

DS2 (20) 3728378 93015 3728256 110006 4584177 126416

DS3 (20) 2540181 90754 3295798 100015 3733238 104025

DS4 (10) 904806 33804 1118631 42986 1339842 50686

DS5 (10) 1187359 38477 1356863 47071 1684170 59325

Best, median and worst values have been computed from 21 runs of the algorithm on each test
problem. The lower level function evaluations include the evaluations of local search as well

Recently, along the lines of Ψ -mapping approximation, a multi-fiber approach
has been proposed in [66]. In this approach the authors attempt to approximate the
Ψ -mapping using multiple discrete fibers. The Ψ -mapping is more likely to be a
(moving) set in the context of multiobjective bilevel optimization; therefore, ideas
that can approximate sets have to be employed. This is one of the approaches the tries
to exploit the structure and properties of the problem to solve it. The scheme can not
be termed nested, but still requires solving some instances of the lower level problem
to construct an approximation of the Ψ -mapping. In Table7 we provide the results
for three algorithms; algorithm 1 [61], algorithm 2 (purely nested) and algorithm 3
[66]; on a set of 5 test problems [61, 67]. The numbers in the table represent the
ratio of function evaluations required by algorithm 1 and algorithm 2 with respect to
algorithm 3. The function evaluations for algorithm 3 can be found in Table8.

Before concluding the discussion on the optimistic formulations and solution pro-
cedures for multiobjective bilevel optimization, we would like to highlight that it is
possible to write this formulation with multiple objectives at upper level and single
objective at lower level. However, this comes at the cost of increased variables at the
upper level. The following formulation has been known in mathematical optimiza-
tion, but one of the first studies in the context of evolutionary optimization can be
found in [68].
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Definition 7 For a scalarizing function S : Rp × R
p → R with weight vector w ∈

W ⊂ R
p

min
xu∈XU ,xl∈XL ,w∈W F(xu, xl)

subject to xl ∈ argmin
xl∈XL

{S( f (xu, xl), w)

subject to g j (xu, xl) ≤ 0, j = 1, . . . , J }
Gk(xu, xl) ≤ 0, k = 1, . . . , K ,

where w acts as an upper level vector along with xu .

It is important in the above formulation that the scalarizing function is able to
span the entire lower level Pareto-optimal set through different values ofw. The idea
behind the formulation is that by changingw, one can select different Pareto-optimal
solutions from the lower level corresponding to each upper level decision vector.

6.2 Multiobjective Bilevel Optimization with Deterministic
Decisions at Lower Level

Considering the decision-making situations that arise in practice, a departure from
the assumption of an indifferent lower level decision maker is necessary. Rather
than providing all Pareto-optimal points to the leader, the follower is likely to act
according to her own interests and choose the most preferred lower level solution
herself. As a result, the allowance of lower level decision making has a substantial
impact on the formulation of multiobjective bilevel optimization problems. First,
the lower level problem can no longer be viewed as a range-constraint that depends
only on lower-level objectives. Instead it is better interpreted as a selection function
that maps a given upper level decision to a corresponding Pareto-optimal lower level
solution that is most preferred by the follower. Second, in order to solve the bilevel
problem, the upper level decision maker now needs to model the follower’s behavior
by anticipating her preferences towards different objectives. Naturally, these changes
lead to a number of intricacies thatwere not encountered in the previous formulations.
This formulation assumes perfect information to the leader about the follower’s
preference structure. Using the preference structure information it is possible to
reduce the lower level problem into a single objective optimization problem [69].

Definition 8 Let ξ ∈ Ξ denote a vector of parameters describing the follower’s pref-
erences. If the upper level decision maker has complete knowledge of the follower’s
preferences, the follower’s actions can then be modeled via selection mapping

σ : XU × Ξ → XL , σ(xu, ξ) ∈ Ψ (xu), (3)
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where Ψ is the set-valued mapping given by Definition 2. The resulting bilevel
problem can be rewritten as follows:

min
xu∈XU

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl)) (4)

subject to xl = σ(xu, ξ) ∈ Ψ (xu)

Gk(xu, xl) ≤ 0, k = 1, . . . , K

To illustrate the definition, consider Fig. 15, where the shaded region

gphΨ = {(xu, xl) : xl ∈ Ψ (xu)} (5)

represents the follower’s Pareto-optimal solutionsΨ (xu) for any given leader’s deci-
sion xu . These are the rational reactions, which the follower may choose depending
on her preferences. If the leader is aware of the follower’s objectives, she will be able
to identify the shaded region completely by solving the follower’s multiobjective
optimization problem for all xu . However, if the follower is able to act according
to her own preferences, she will choose only one preferred solution σ(xu, ξ) for
every upper level decision xu . When the preferences of the follower are perfectly
known, the leader can identify σ(·, ξ) that characterizes follower’s rational reactions
for different xu , and solve the hierarchical optimization task completely.

6.3 Multiobjective Bilevel Optimization with Lower Level
Decision Uncertainty

The assumption that the follower’s preferences are perfectly known to the leader
itself might be an inaccurate description of real life scenarios. Most practitioners
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would find it hard to accept this even when constructing approximations. A natural
path towards a more realistic framework would be to relax the axiom of perfect
information by assuming that the leader is only partially aware of the follower’s
preferences. This lack of information leads to the notion of lower level decision
uncertainty that is experienced by the leader while solving the bilevel optimization
task [70].

For illustration, consider Fig. 16, where the expected behavior of the follower is
shown as the graph of the selection mapping σ(·, ξ̄), where ξ̄ represents the expected
preference known to the leader. The narrow dark shaded band shows the region of
uncertainty in which the follower makes her decisions. For different preferences ξ,
σ(·, ξ) represents the corresponding decisions of the follower. If the leader is aware
of the follower’s objectives, the uncertainty region identified by a random ξ is always
bounded by gphΨ because σ(xu, ξ) ∈ Ψ (xu) for all xu ∈ XU and ξ ∈ Ξ . However,
it is noteworthy that this band is not directly available to the leader but needs to
be modeled. In a situation, where the leader cannot elicit follower’s preferences by
interacting with the follower, a feasible strategy is to utilize the prior information
she has about the follower and incorporate it in a tractable stochastic model that
characterizes the follower’s behavior.

To accommodate the decision uncertainty, we assume that the follower’s prefer-
ences are described by a random variable ξ ∼ Dξ , which takes values in a set Ξ of
R

q . The probability distribution Dξ reflects the leader’s uncertainty and prior infor-
mation about follower’s expected behavior. In this framework, the assumption of
preference uncertainty is equivalent to saying that the lower level decision is a ran-
dom variable with a distribution that is parametrized by a given upper level decision
xu , i.e. xl ∼ Dσ(xu). This means that the lower level decision uncertainty experi-
enced by the leader will vary point-wise depending on the follower’s objectives and
the leader’s own decision.

For demonstration of the uncertainty aspects in the objective spaces of the leader
and the follower, consider Figs. 17 and 18 that show two different scenarios. In
the first scenario, we assume a deterministic situation where the follower’s prefer-
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Fig. 17 Insets: follower’s problem for different xu . Al , Bl andCl represent the follower’s decisions
for x (1)

u , x (2)
u and x (3)

u respectively. Au , Bu and Cu are the corresponding points for the leader in the
leader’s objective space

ences and actions are known with certainty. Both leader and follower are assumed
to have two objectives, i.e., p = q = 2. In this case, the leader solves the bilevel
problem in Definition 8 under perfect information. Therefore, each point on the
leader’s Pareto-frontier corresponds to one of the points on the follower’s Pareto-
frontier. If ξ̄ is the given vector of follower’s preferences, then for any leader’s
choice x (i)

u the corresponding lower level decision is given by x (i)
l = σ(x (i)

u , ξ̄).
This is shown in Fig. 17, where the upper level points Au = F(x (1)

u ,σ(x (1)
u , ξ̄)),

Bu = F(x (2)
u ,σ(x (2)

u , ξ̄)), and Cu = F(x (3)
u ,σ(x (3)

u , ξ̄)) are paired with the points
Al = f (x (1)

u ,σ(x (1)
u , ξ̄)), Bl = f (x (2)

u ,σ(x (2)
u , ξ̄)) and Cl = f (x (3)

u ,σ(x (3)
u , ξ̄)) that

lie on the follower’s Pareto-front for x (1)
u , x (2)

u , and x (3)
u , respectively.

The situation can be contrasted from another scenario shown in Fig. 18, where
the follower’s preferences are uncertain. The leader is still assumed to be fully aware
of the form of σ, but she no longer knows the true value of ξ. By assuming a prior
information ξ ∼ Dξ , the leader can attempt to solve the bilevel problem based on
the expected preferences of the follower, i.e.
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Fig. 18 Insets: follower’s problem for different xu . Al , Bl and Cl are the expected decisions of the
follower. A

′
l , B

′
l and C

′
l are the actual decisions that the follower takes. The corresponding points

for the leader are shown in the leader’s objective space

min
xu∈XU

F(xu, x̄l) (6)

subject to x̄l = σ(xu, E[ξ]) ∈ Ψ (xu), ξ ∼ Dξ

Gk(xu, x̄l) ≤ 0, k = 1, . . . , K .

For convenience of the example, we assume that the expected actions are the same
as the actions in Fig. 17, i.e., σ(xu, E[ξ])] = σ(xu, ξ̄) for all xu . As a result, the
leader obtains a Pareto-frontier corresponding to the follower’s expected value func-
tion (POF-EVF). However, when she begins to implement the given strategies, the
follower’s realized actions may deviate from the expected strategies obtained by
solving (6). Since ξ is uncertain from the leader’s perspective, the follower’s true
preferences ξ can differ from ξ̄ that was expected based on prior information. As
shown in the figure, for any strategy x (1)

u , x (2)
u or x (3)

u chosen by the leader, the fol-
lower may prefer to choose A

′
l , B

′
l orC

′
l instead of Al , Bl orCl expected by the leader.

It is found that because of the follower’s deviation from the expected actions, the
leader no longer operates on the POF-EVF. In the objective space, the uncertainty
experienced by the leader is reflected in the probability and size of deviations away
from the POF-EVF. The follower, on the other hand, does not experience similar
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uncertainty, because she can always observe the action taken by the leader before
making her own decision.

Depending on the problem, uncertainty of the lower level decision maker’s pref-
erences may lead to significant losses at the upper level. Therefore, the leader would
like to solve the bilevel problem taking the uncertainties into account. While making
a decision, the leader might prefer those regions on its frontier, which are less sen-
sitive to lower level uncertainties and at the same time offer an acceptable trade-off
between the objectives. For instance, in the context of the above example, we observe
that the expected variation in the objective space is considerably less at the region
corresponding to x (2)

u than at x (1)
u or x (3)

u . If the leader chooses this point, she knows
that the realized upper level objective values are only little affected by the actions of
the lower level decision maker. From the perspective of practical decision making,
it is valuable for the leader to be aware of the level of uncertainty associated with
different strategies.

7 Future Research Directions

In this chapter, we have tried to provide an introduction to the work done in the
area of bilevel optimization using evolutionary algorithms. The main topics covered
include;

1. Single objective bilevel optimization and promising ideas that might be useful in
solving complex bilevel problems.

2. Multiobjective bilevel optimization methods and decision making intricacies.

While the above two topics themselves offer significant opportunity of future
research, there also exist other areas within bilevel optimization that are less explored
and offer potential for future research. For instance, there can be other forms of
uncertainties in bilevel optimization, like, variable and parameter uncertainties. Some
preliminarywork on these topics can be found in [71, 72].With an increase in compu-
tational power, there is an enormous scope of development of distributed computing
methods that can solve bilevel problems with large number of variables or objectives
in a short time. However, at this point it is worth mentioning that in the last decade
a number of evolutionary algorithms have been developed that are computationally
very expensive and purely nested. Future research ideas on evolutionary computation
should rely also on exploiting the structure and properties of bilevel problems, which
will ensure better scalability of the procedures. To conclude, almost every other dis-
cipline faces application problems that are bilevel in nature. This offers application
oriented research opportunities both from modeling and solution perspectives.
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Abstract Multi-objective Evolutionary Algorithms (MOEAs) have proven their
effectiveness and efficiency in solving complex problems with two or three objec-
tives. However, recent studies have shown that the performance of the classical
MOEAs is deteriorated when tackling problems involving a larger number of con-
flicting objectives. Since most individuals become non-dominated with respect to
each others, the MOEAs’ behavior becomes similar to a random walk in the search
space. Motivated by the fact that a wide range of real world applications involves
the optimization of more than three objectives, several Many-objective Evolution-
ary Algorithms (MaOEAs) have been proposed in the literature. In this chapter, we
highlight in the introduction the difficulties encountered by MOEAs when handling
Many-objective Optimization Problems (MaOPs). Moreover, a classification of the
most prominent MaOEAs is provided in an attempt to review and describe the evo-
lution of the field. In addition, a summary of the most commonly used test problems,
statistical tests, and performance indicators is presented. Finally, we outline some
possible future research directions in this research area.
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1 Introduction

Since the implementation of the firstMOEA, different algorithms have been proposed
to deal with Multi-objective Optimization Problems (MOPs) [1]. MOEAs have been
widely used to solve problems with two or three objectives. In fact, most of the pro-
posed MOEAs use the Pareto-dominance relation to compare solutions of the pop-
ulation. Specially, the population members are ranked using the Pareto-dominance
relation and the recombination operator is performed to the best individuals in order
to generate solutions that are closer to the Pareto set. However, recent studies on
MOEAs have shown that Pareto-basedMOEAs struggle to solve problemswithmore
than three objectives. Thus, although the classical MOEAs such as NSGA-II [2] and
SPEA2 [3] have been successfully applied to solve many real-world problems with
a small number of objectives, they are not well-suited when dealing with problems
involving a high number of objectives. This limitation seems to affect only Pareto-
based MOEAs but some difficulties are common to most existing multi-objective
optimizer. For this reason, motivated by the fact that a wide range of real world
applications in industrial [4] and engineering [5] designs involves the optimization
of more than three objectives, a wide variety of proposals have been proposed to deal
with the difficulties encountered by the current state of the art MOEAs.

In summary, the challenges encountered by the state of the art MOEAs in finding
a representative set of Pareto optimal solutions when handling MaOPs can be briefly
discussed as follows:

• Increase of the number of non-dominated solutions: When the dimensionality
of the objective space increases, the proportion of Pareto-non dominated solutions
in the population grows which deteriorates the search process ability to converge
towards the Pareto front. Thus, the MOEA behavior becomes similar to a random
search one. Figure1 shows how the proportion of non-dominated solutions in
the population behaves with respect to the number of objectives. We can see
that after a few generations, the population becomes completely non-dominated.

Fig. 1 Proportion of Pareto-non-dominated solutions. From Ref. [6]. a DTLZ1. b DTLZ6
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Table 1 Bounds for the number of points required to represent a Pareto front with resolution r = 25

M Points

2 50

4 62 500

5 1 953 125

7 1 708 984 375

From Ref. [7]

As a consequence, new promising search directions become very hard to find.
Another reason is the increment of the number of dominance resistant solutions
in the population when we deal with many-objective. In fact, dominance resistant
solutions are non-dominated solutions but they are far from the True Pareto Front.

• Ineffectiveness of crossover and mutation operators: In a high dimensional
space, the population members are likely to be widely distant from each other.
Thereby, two distant parent solutions will produce two distant children that are not
similar to their parents. In such a case, the effect of the recombination operation
becomes inefficient in producing promising offspring individuals.

• Difficulty to represent the trade-off surface: Due to the high dimensionality,
more points are needed to represent the trade-off surface. In fact, the number of
points to represent a Pareto front withM objectives and r resolution is bounded by
O(MrM−1). This expression is derived assuming that each solution is contained
in a hypercube. Thus, the resolution r represents the number of hypercubes per
dimension. Table1 shows the bound of points required to represent a Pareto front
for different number of objectives using a resolution r = 25. We note that for 5
objectives the number of points required to represent the Pareto front is about 2
million points.

• High computational cost of the diversity measure estimation: In order to deter-
mine the extent of crowding of a solution in a population, the identification of
neighboring solutions in a population becomes computationally very expensive in
high dimensional spaces. For this reason, the use of any approximation in diversity
to reduce the computational cost may cause an unacceptable distribution of the
solutions.

• Difficulty of visualization: It is not a matter that is directly related to optimiza-
tion. The visualization of a higher dimensional trade-off front becomes difficult.
Hence, it is difficult for the Decision Maker (DM) to choose a preferred solution.
Several methodswere proposed to ease decisionmaking inMaOPs such as Parallel
coordinates and self-organizing maps.

2 A Taxonomy of Many-objective Solution Approaches

In this section, a classification of the most relevant approaches to deal with MaOPs
is presented.
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2.1 Preference Ordering Relation-Based Approaches

• Expansion Relation

The Expansion preference relation (ER) was proposed by Sato et al. [8] to control
the dominance area of solutions using a user-defined parameter S. This preference
ordering relation was proposed in order to induce an appropriate ranking of solutions
and to enhance the selection mechanism, so that the performance of MOEAs on
combinatorial optimization problems with a variety of objectives is improved. The
basic idea consists of expanding and contracting the dominance area by replacing
the objective function fi (x) using the vector S as follows:

f
′
i (x) = r sin(ωi + Si Π)

sin (Si Π)
∀i ∈ {1, 2, . . . ,m} (1)

where r is the norm of f (x), fi (x) is the fitness value of the i-th objective, and ωi

is the angle between f (x) and fi (x). Figure2 illustrates the fitness modification to
change the covered area of dominance when Si < 0.5 and φi = Si Π . One can notice
that the i-th fitness value fi (x) is increased to f

′
i (x) > fi (x). Thus, if Si < 0.5 amore

finer grained ranking of solutions is produced and the dominance area is expanded
which strengthen the selection. However, if Si > 0.5 a coarser ranking of solutions
is produced and the dominance area is contracted which would weaken the selection.
While if Si = 0.5, the usual dominance relation is used. Since in a MaOP we search
to produce a finer grained ranking of solutions, the parameter Si should be less than
0.5. In fact, the main characteristic of this preference relation is that it emphasizes
the solutions in the middle region of the Pareto front. The authors used the multi-
objective 0/1Knapsack problem [9] on two up to five objectives and integrated the ER
relation into NSGA-II. The experimental results show that contracting or expending
the dominance area is better thanusing conventional dominance in termsof the quality
of the obtained solutions. However, the ER was assessed only on problems involving
up to five objectives. Hence further experiments with higher dimension problems are

Fig. 2 Fitness modification
to change the covered area of
dominance for Si < 0.5.
From Ref. [8]
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required for validation. Moreover, since the expansion relation can improve either
convergence or diversity, the authors concluded that it would be better to combine it
with other methods.

• k-Optimality Relation

Farina and Amato [10] proposed the k-optimality relation. This preference relation is
based on the number of improved objectives between two solutions. The k-optimality
employs three quantities. Assuming that we have two solutions x and y, the first
quantity nb represents the number of objectives where x is better than y. The second
one ne denotes the number of objectives where x is equal to y and the final one nw

where x is worse. Thus, given M objectives the following inequalities holds true:

nb + nw + ne = M (2)

0 < nb, nw, ne < M (3)

In fact, by employing these quantities the concepts of (1-k)-dominance and k-
optimality can be defined.

Definition 1 (1-k)-dominance
A solution x (1-k)-dominates a solution y if and only if:

{
ne < M
nb ≥ M−ne

1+k 0 ≤ k ≤ 1
(4)

From the above definition, one can notice that the 1-dominance (i.e., k = 0) represents
the Pareto dominance. The parameter k can assume any value in [0,1], but because
nb has to be a natural number, the smallest integer greater than the quantity M−ne

1+k
need to be considered. After defining the (1-k)-dominance, the following definition
of the k-optimality can be given:

Definition 2 k-optimality
A solution x∗ is k-optimum if and only if there is no x ∈ � such that x k-dominates
x∗.

Therefore, the k-optimality represents a strong version of the Pareto-optimality
(0-optimality). The authors extended the (1-k) dominance relation by incorporating
fuzzy arithmetic techniques.

• Average and Maximum Ranking Relations

Bentley and Wakefield [11] proposed the average ranking (AR) and maximum rank-
ing (MR) preference ordering relations. The AR relation begins by sorting the solu-
tions based on their fitness. Then, a set of different ranking for every solution is
obtained for each objective. After that, the average ranking value of each solution is
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computed by summing their ranks on each objective. Hence, based on the obtained
average ranking values, the solutions can be sorted into order of best average rank.
Thus, a solution x dominates a solution y with respect to the AR relation (denoted
by x ≺avg y) if and only if Ravg(x) < Ravg(y)where Ravg(x) = ∑

1≤i≤M fi (x). The
AR distinguishes the non-dominated solutions based on their obtained ranks on dif-
ferent objectives. This preference ordering relation is simple and range-independent
[12]. However, Corne and Knowles [13] have reported that the obtained solution
set may only concentrate in a subregion of the Pareto front. Thus, it has a lack of
diversity maintenance mechanism.

Differently, the MR relation considers the best rank as the global rank of each
solution. Therefore, a solution x dominates a solution y with respect to the MR
relation (denoted by x ≺max y) if and only if Rmax (x) < Rmax (y) where Rmax (x) =
min1≤i≤M {rank fi (x)}. The main drawback of this method is that it emphasizes
solutions with high performance in some objectives, while they have a poor overall
performance (i.e., extreme solutions).

• Favour Relation

In order to refine the ranking of solutions inMaOPs,Drechsler et al. [14] proposed the
favour relation. In their work, the authors used the favour relation and amethod called
Satisfiability Class Ordering (SCO) where the former is used to compare solutions
to each others, while the latter is used to sort solutions. This preference ordering
relation can be defined as follows:

Definition 3 Favour relation
A solution x dominates a solution y with respect to the favour relation (denoted by
x ≺ f y) if and only if:

| {i : fi (x) < fi (y), 1 ≤ i ≤ M} | < | { j : f j (y) < f j (x), 1 ≤ j ≤ M
} | (5)

The main idea behind the favour relation is that the solution x is favoured to y
if and only if the number of objectives in which x outperforms y is superior to the
number of objectives in which y outperforms x. For example given two solutions x1
(4, 2, 1), and x2 (1, 1, 2) thenwe have that x2 ≺ f x1 since it has better objective values
than x1 with respect to the first two objectives. This preference ordering relation was
used in an algorithm proposed by Drechsler et al. [15]. In fact, it was demonstrated
that the favour relation does not create a partial order since it is not transitive but it
is able to create a finer grained ranking of solutions than that created by the Pareto
dominance when solving MaOPs. However, the main disadvantage of this relation
is that it emphasizes extreme solutions.

• Other Preference Ordering Relation-Based Approaches

Preference ordering relation-based approaches have been proposed to deal with
the first challenge which is the increase of the number of Pareto non-dominated
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solutions in the population in a high dimensional space. Therefore, preference order-
ing relation-based approaches aim mainly to provide a finer ranking of solutions
when solving MaOPs. Various methods based on preference ordering relations have
been proposed to deal with MaOPs. The preference order ranking was introduced
by Di Pierro et al. [16]. The basic idea of this preference relation is to discard the
objectives in order to compare the solutions. It is based on the concept of efficiency
of order proposed by Das [17]. However, the main drawback of this relation is its
high computational cost. Sülflow et al. [4] proposed the ε-preferred relation which
is based on the favour relation [14]. In the ε-preferred relation, two solutions are
compared based on the number of objectives in which one solution exceeds the other
using a predefined threshold. Moreover, the favour relation is used to determine
which solution is better in case of a tie. The authors replaced the favour relation in
the algorithmic framework used in [14] with the ε-preferred relation. The ε-preferred
relation has demonstrated good results on the nurse rostering problem [18] with 25
objectives. A summary of some existing preference ordering relations for solving
MaOPs is presented in Table2.

Table 2 Summary of preference ordering relations: MaxObjs means maximum number of objec-
tives

Relations References Basic idea MaxObj Test problems

ER Sato et al. [8] Control the dominance area
of solutions using a user
defined parameter S

5 MKP

k-Optimality Farina and Amato [10] Compare two solutions
based on the number of
improved objectives
between them

12 Test case

AR Garza-Fabre et al. [6] Sort the solutions based on
their average ranking
values

50 DTLZ

MR Garza-Fabre et al. [6] Compare the solutions
based on their best
obtained rank

50 DTLZ

Favour Drechsler et al. [14] Favour the solution that
outperforms the other one
in more objectives

7 5 benchmarks
problems

Preference
order ranking

Di Pierro et al. [16] Compare two solutions by
discarding objectives

8 DTLZ

ε-Preferred Sülflow et al. [4] Compare two solutions
based on the number of
objectives in which a
solution exceeds the other
one by using a predefined
threshold

25 NRP
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2.2 Objective Reduction-Based Approaches

• PCA-NSGA-II: Principal Component Analysis-NSGA-II

In thiswork,Deb andSaxena [19] proposed the Principal ComponentAnalysis-Nsga-
II algorithm called PCA-NSGA-II. This latter combines a reduction technique with
NSGA-II to deal with MaOPs with redundant objectives. In fact, many real world
problems haveM objectives, while the true Pareto front is less thanM-dimensional.
Hence, some of the objectives are redundant. Thus, in order to determine the true
Pareto optimal front, the authors suggested to use the PCA procedure. This reduction
technique was used to reduce the dimensionality of a data set with a large number
of interrelated variables. The PCA-NSGA-II starts with an initial set of objectives
Π0 = {1, 2, . . . , M}. Then, NSGA-II is executed for a given number of iterations to
obtain a population Pt where t represents the current generation. Next, the population
Pt is used by the PCA reduction method to get a new set of objectives Πt ⊂ Π0 to
be used in the next iterations of NSGA-II. The PCA procedure can be summarized
by the following four basic steps:

• Step 1: Store the objective values of the population Pt in an initial data matrix
D of size M × N, where M is the number of objectives and N is the size of the
population;

• Step 2: Obtain the standardized matrix X by subtracting the mean from each
objective value in matrix D;

• Step 3: Compute the covariance matrix V and the correlation matrix R using the
standardized matrix X;

• Step 4: Compute eigenvalues of the correlation matrix R and eigenvectors that are
considered as the PCs;

We note that the most negative and the most positive elements for a given PC are con-
sidered as the two most important conflicting objectives. In addition, PCA-NSGA-II
approach uses an additional procedure that selects the most negative and most pos-
itive elements for the first PC. The experimental results on a modified version of
DTLZ5 test problem [19] have demonstrated the ability of PCA-NSGA-II to solve
high dimensional problems with redundant objectives. However, the proposed algo-
rithm shows some vulnerability when the task involves finding a large Pareto optimal
front due to the difficulties encountered to find the correct combination of objectives
in MaOPs with non-redundant objectives.

• PCSEA: Pareto Corner Search Evolutionary Algorithm

Singh et al. [20] introduced the Pareto Corner Search Evolutionary Algorithm
(PCSEA). The authors proposed a new approach that identifies a reduced set of
objectives instead of dealing with the true dimensionality of the true MaOP. More-
over, PCSEA does not approximate the whole Pareto front but it searched for a
specific set of non-dominated solutions. More specifically, the authors suggested to
use boundaries of the Pareto front called corner solutions in order to predict the
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dimensionality of the true Pareto front. In fact, for a two-dimensional optimization
problem, a corner solution corresponds to the minimum value of each objective.
However, the number of corner solutions increases exponentially with the number
of objectives (i.e., 2M − 1 possible corners to aM-objective optimization problem),
but in reality, test problems such as DTLZ [21] and WFG [22] have M corner solu-
tions for M-objective problems. The proposed approach can be summarized by the
following two steps: (1) find the corner solutions, and (2) use the corner solutions
to reduce the set of objectives. PCSEA uses the same crossover and mutation opera-
tors used in NSGA-II. However, differently to NSGA-II which uses non-dominated
sorting and crowding distance-based ranking, PCSEA uses a corner-sort ranking.
Details of this method can be found in [20]. After identifying the corner solutions, a
heuristic technique is performed to determine the relevant objectives and to eliminate
the redundant ones. The reduction process can be described as follows. First, a set F
containing the non-dominated solutions produced by PCSEA is formed where only
unique solutions are considered in the set F. Second, in order to quantify the change
in the number of non-dominated solutions a parameter R was used. The parameter R
is defined as follows:

R = NFR− fm/NF (6)

where NF is the number of non-dominated solutions in the set F and NFR− fm is the
number of non-dominated solutions corresponding to the objective set obtained after
omitting fm from the set of relevant objectives FR . If the value of R is high for a
particular objective fm , it means that this objective can be omitted from the set of
relevant objectives. PCSEAdoes not suffer from the lack of the selection pressure and
it has a low computational complexity which makes it suitable for solving MaOPs.
However, it should be noted that a large population size is not required when dealing
with many objectives for the reason that PCSEA does not approximate the entire
Pareto front.

• Objective Reduction Using a Feature Selection Technique

In this work, López Jaimes et al. [23] proposed to integrate an unsupervised feature
selection technique that was originally introduced by Mitra et al. [24] in NSGA-II.
This reduction method is similar to the one used by [19] for the reason that both of
them use a correlation matrix to measure the conflict between each pair of objectives
and to determine the most conflicting objectives in order to eliminate the redundant
ones. Two algorithms have been introduced in this work. The first algorithm finds
the minimum subset of non-redundant objectives with the minimum possible error,
while the second algorithm finds the minimum set of k-non-redundant objectives that
yield to the minimum possible error. The authors described the main steps of their
reduction technique by the following three steps:

• Step 1: Define the conflict between objectives as distance and divide the objective
set into homogeneous neighborhoods of size q around each objective;
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• Step 2: Select the most compact neighborhood where the most compact neighbors
is the neighborhood with the minimum distance to its qth neighbor;

• Step 3: Retain the center of the neighborhood and discard q neighbors with least
conflict in the current set. The distance to the qth neighbor is considered as the
error committed by removing the q objectives;

The reduction techniques used in this work iterated Step 2 and Step 3 until the
number of desired objectives does not reach the predefined k value or until there are
not more considered neighborhoods. The experimental study has mentioned good
results in solving: a variation of DTLZ5 [21] with 3, 5, and 10 objectives, a variation
of the DTLZ2 [21], and the 0/1 knapsack problem [9] with 10 and 20 objectives. The
experiment results show that the proposed methods are competitive compared to the
PCA-based reduction method and the reduction method of Brockhoff et al. [25].

• Other Objective Reduction-Based Approaches

Objective reduction-based approaches aim to tackle MaOPs with redundant objec-
tives. In fact, there are two different timing of incorporating the dimensionality into
a MOEA, thus we can identify two classes [28]: (1) offline dimensionality reduc-
tion where the dimensionality reduction method is performed after obtaining a set
of Pareto optimal solutions or (2) online dimensionality reduction where the num-
ber of objectives is introduced gradually by iteratively obtaining solution sets and
invoking the dimensionality reduction method during the search process. In fact, the
first class can be further divided into three sub-classes: Correlation-based methods,
dominance structure-based methods, and feature-based methods. Correlation-based
methods consist in examining the correlation among the objectives. In this sub-class,
we find the work of Saxena et al. [26] in which they proposed L-PCA and NL-MVU-
PCA algorithms based on the PCA method and Maximum Variance Unfolding for
linear and nonlinear objective reduction, respectively. The authors investigated the
performance of the two algorithms on a wide range of redundant and non-redundant
test problems and on two real world problems. Dominance structure-based methods
consider the dominance relationships among the solutions obtained by a MOEA.
Brockhoff and Zitzler [27] proposed a new notion of conflict and they introduced
a quantification δ for measuring the change in the dominance structure based on ε-
dominance. In their studies, an exact and a greedy algorithm were proposed to solve
the δ-MOSS and the k-EMOSS problems, where the δ-MOSS consists in finding
the minimum objective subset corresponding to a given error, while k-EMOSS con-
sists in finding an objective subset of size k with the minimum possible error. The
experimental results demonstrated that the exact algorithm yields smaller objective
subsets than the greedy algorithm, while the high complexity of the exact method
limits its usage. In the third sub-class, we find the work of López Jaimes et al. [23].
Concerning the online dimensionality reduction algorithms, many approaches have
been proposed in the literature. PCA-NSGA-II is considered as an online dimen-
sional reduction algorithm since it iteratively obtains solution sets and reduces the
objectives using information of correlations among the objectives. Table3 presents a
comparison of the objective reduction-based approaches studied in this subsection.
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Table 3 Comparison of objective reduction-based approaches: OnDRA means online dimen-
sionality reduction approach, OfDRA means offline dimensionality reduction approach, C means
correlation-based methods, DS means dominance structure-based methods, F means feature-based
methods, and MObj means maximum number of objectives

Algorithms References Characteristics MObj Test
problemsOnDRA OfDRA

C DS F Other

PCA-NSGA-
II

Deb and Saxena
[19]

X – – – – 30 DTLZ5(I,M)

5 DTLZ2

PCSEA Singh et al. [20] – – – – X 100 DTLZ5(I,M)

20 DTLZ2

– López Jaimes
et al. [23]

– – – X – 20 MKP

20 DTLZ2BZ
10 DTLZ5(I,M)

L-PCA Saxena
et al. [26]

– X – – – 25 DTLZ

25 WFG

50 DTLZ5(I,M)

NL-MVU-
PCA

Saxena et al.
[26]

– X – – – 25 DTLZ

25 WFG

50 DTLZ5(I,M)

Exact-δ-
MOSS/k-
EMOSS

Brockhoff and
Zitzler [27]

– – X – – – –

Greedy-δ-
MOSS/k-
EMOSS

Brockhoff and
Zitzler [27]

– – X – – 25 DTLZ

25 MKP

2.3 Preference Incorporation-Based Approaches

• R-NSGA-II: Reference Point-Based NSGA-II

Deb et al. [29] introduced a modified version of NSGA-II that prefers solutions
closer to a user-provided reference point set and that de-emphasizes solutionswithin a
ε-neighborhood of a reference point. In fact, the parameter ε controls the extent of the
distribution of solutions near the closest Pareto-optimal solution and the reference
points are used to guide the search toward the preferred parts of the Pareto front.
In this work, the crowding distance used in NSGA-II is modified as follows. For
each reference point, the normalized Euclidean distance of each solution of the last
considered front is calculated and based on this distance the solutions are sorted in
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ascending order.Hence, the closest solution to the reference point is assigned a rank of
one. The second closest solution to the reference point is assigned a rank of two and so
on.After that, theminimumof the assigned ranks is assigned as the crowding distance
to a solution. Thus, the smallest crowding distance of one is assigned to the closest
solutions to all reference points. The solutions having next-to-smallest Euclidean
distance to all reference points are assigned the next-to-smallest crowding distance of
two, and so on. Thereafter, solutions with a smaller crowding distance are preferred.
The authors proposed to control the extent of obtained solutions by grouping all
solutions having a sum of normalized difference in objective values of ε or less.
A randomly picked solution from each group is retained and the rest of all group
members are assigned a large crowding distance in order to discourage them to remain
in the race. The proposed procedure allows finding multiple ROIs simultaneously in
a single simulation run. R-NSGA-II has demonstrated good results on two to five
objective test problems but it faces difficulties when using a single reference point
since diversity is not well maintained. Moreover, the ε clearing parameter setting is
not trivial.

• PBEA: Preference-Based Evolutionary Algorithm

In this work, Thiele et al. [30] proposed a new algorithm called PBEA that combines
IBEAwith the reference point method. In fact, in IBEA, the fitness value of a solution
x in a population P can be expressed as follows:

F(x) =
∑

y∈P{x}
(−e−I (y,x)/κ) (7)

where κ is a scaling factor. In IBEA, the additive epsilon indicator is used which is
a Pareto compliant indicator and it is defined as follows:

Iε+(x, y) = minε { fm(x) − ε ≤ fm(y) ∀m = 1, 2, . . . , M} (8)

In order to take the preference information into account, the authors defined a new
preference-based quality indicator described as follows:

Ip(x, y) = Iε+(x, y)/s(g, f (x), δ) (9)

where x and y are two solutions, Iε+ is the additive epsilon indicator, s is a function
used to normalize the set of points, and δ is a positive parameter used to specify the
minimal value of the normalized function, it allows the DM to control the spread of
the obtained Region of Interest (ROI). PBEA was also used in an interactive fashion
to offer many possibilities to the DM in directing the search into a preferred part of
the Pareto optimal set. The main motivation behind PBEA is that it gives reliable
information on the solutions to the DM. Moreover, the used binary quality indicator
Ip is Pareto dominance preserving. In addition, the experimental results show that it
is suitable to solve MaOPs due to the use of the achievement function. However, the
authors noted that adjusting the δ parameter is not an easy task.
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• r-NSGA-II: Reference Solution-Based NSGA-II

BenSaid et al. [31] proposed anewdominance relation called r-dominance (reference-
solution-based dominance) that creates a strict partial order among Pareto equivalent
solutions and that has the ability to differentiate between non-dominated solutions in
a partial manner based on a user-supplied aspiration level vector. The r-dominance
relation represents a hybridization between the Pareto dominance relation and the
reference point method (i.e., DM’ s preferences). In fact, the key feature of this
preference-based dominance relation is to prefer solutions that are closer to the ref-
erence point, while preserving the order induced by the Pareto dominance. Thus, in
order to determine the closeness of a solution to the reference point, the authors used
the weighted Euclidean distance employed by Deb et al. [30] which is expressed as
follows:

dist (x, g) =
√
√
√
√

M∑

i=1

wi

(
( fi (x) − fi (g))

( f max
i − f min

i )

)2

wi ∈]0, 1[
M∑

i=1

wi = 1 (10)

where x is a solution, g is a reference point, f max
i and f min

i represent the upper and
the lower bounds of the i-th objective, respectively, and wi is the weight associated
to each objective. The r-dominance is defined as follows:

Definition 4 r-dominance
Assuming a population of individuals P, a reference vector g, and a weight vector
w, a solution x is said to r-dominate a solution y (denoted by x ≺r y) if one of the
following statements holds true:

1. x dominates y in the Pareto sense,
2. x and y are Pareto-equivalent and D(x, y, g) < −δ, where δ ∈ [0, 1] and:

d(x, y, g) = dist (x, g) − dist (y, g)

distmax − distmin
(11)

distmax = Maxz∈P dist (z, g) (12)

distmin = Minz∈P dist (z, g) (13)

δ is termed as the non-r-dominance threshold.

After substituting the Pareto dominance with the r-dominance in the NSGA-II
algorithm with an adaptive management of the δ parameter, the performance of
the resulting preference-based MOEA, named r-NSGA-II, has been assessed on
several test problems where the number of objectives is varying between two and
ten objectives. The experimental results show that r-NSGA-II outperforms several
recent reference point approaches. Moreover, the r-dominance was able to guide the
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search using the DM’ s preferences and to control the spread of the region of interest.
However, r-NSGA-II algorithm has faced difficulties in solving highly multi-modal
problems such as ZDT4 [32].

• PICEA-g: Preference-Inspired Co-Evolutionary Algorithm-Goals

PICEA-g was introduced by Wang et al. [33]. PICEA-g is a posteriori preference-
based algorithm where the intervention of the DMs is performed after obtaining a
solution set which approximates the real Pareto front. Themain idea of this algorithm
is to provide DMs with both a proximal and a diverse representation of the entire
Pareto front before the elicitation and the application of their preferences. As the
search progress, PICEA-g coevolves a family of DM’ preferences together with a
population of candidate solutions. Thus, the solutions would gain fitness by perform-
ing well against the preferences and the preferences would gain fitness by offering
comparability between solutions. The general principle of PICEA-g is as follows.
The PICEA-g begins by initializing a population of candidate solutions S and pref-
erence sets G of fixed size N and NGoal, respectively. In each generation t, genetic
variation operators are applied to the parents S(t) in order to produce N offspring
Sc(t). Simultaneously, NGoal new preference sets Gc(t), are randomly regenerated
based on the initial bounds. Thereafter, S(t) and Sc(t) and both G(t) and Gc(t) are
then pooled, respectively. After that, the obtained populations are sorted based on
the fitness. Finally, a truncation selection is applied to select N solutions to form the
new parent population S(t+1) and NGoal solutions as new preference populationG(t
+ 1). The method to calculate the fitness Fs , of a candidate solution s is defined as
follows:

Fs = 0 +
∑

g∈G
Gc|s�g

1

ng
(14)

where ng is the number of solutions that satisfy preference g. It should be noted that
if s does not satisfy any g, then Fs is equal to zero. The fitness Fg of a preference g
can be expressed as follows:

Fg = 1

1 + α
(15)

where

α =
{
1 if ng = 0
ng−1
2N−1 otherwise

(16)

where N is the candidate solution population size. After calculating fitness values,
the non-dominated solutions in S ∪ Sc are identified. Then, based on the fitness, the
best N non-dominated solutions are selected to constitute the new parent S(t + 1).
The authors reported that PICEA-g outperforms several state-of-the-art methods in
terms of convergence and spread when compared on WFG test problems with up to
10 objectives.
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• Other Preference Incorporation-Based Approaches

In the context of incorporating preference information in EMO, many studies have
been made [34, 35]. A key point in preference-based approaches is the timing of
integrating the preference information into the optimizing process. In fact, the DM
can provide his/her preferences before (a priori), after (a posteriori), or during (inter-
actively) the MOEA run [36–38]. Since the search direction is biased towards the
area of the Pareto front onwhich theDMwould like to focus (i.e., ROI), the priori and
interactive algorithms can reduce the computational load during the search. However,
the posteriori preference-based algorithms are inferior to the abovementioned classes
since they might obtain a large number of solutions that the DM is not interested in
[28]. Deb and Kumar [40] proposed the reference direction-based NSGA-II (RD-
NSGA-II). In each iteration, the DM supplies a reference direction in the objective
space. Thereafter, the solutions are ranked using an achievement scalarizing function
and the crowding distance value. RD-NSGA-II has demonstrated good results when
tested onDTLZ functions with up to 10 objectives. However, the population diversity
degradation that can be yielded when using a single reference direction remains a
significant matter. Preference-inspired co-evolutionary algorithms (PICEAs) rep-
resent an example of a posteriori preference-based algorithm that tries to avoid
the intervention of the DM before or during the optimization process. In PICEAs
preferences are modeled as a set of solutions which co-evolve with the population
[41, 42]. In [41, 42], the authors tested a-PICEA-g and PICEA-w on the WFG
test problems with up to 7 objectives. Table4 presents a comparison of the studied
preference incorporation-based approaches that are classified into threemain classes:
(1) Priori preference-based approaches, (2) Interactive preference-based approaches,
and (3) Posteriori preference-based approaches.

2.4 Indicator-Based Approaches

• IBEA: Indicator-Based Evolutionary Algorithm

IBEA was introduced by Zitzler and Künzli [43]. They proposed a general IBEA
where they used a binary performance indicator in the selection process. Initially,
IBEA begins by generating an initial populationP. Then, the algorithm calculates the
fitness value of each solution x in P. In fact, the fitness value is a measure for the loss
in quality if a solution x is removed from P. After computing all the fitness values of
all individuals in the population, the worst individual is removed from the population
and the fitness values of the residual population must be updated. In the following,
the selection step is used in creating the mating pool P

′
. When we compare IBEA

with the use of two binary performance indicators the additive ε-indicator and the
IHD-indicator to Pareto-based MOEAs such as SPEA2 and NSGA-II, we note that
IBEA can greatly improve the quality of the generated Pareto set approximation. In
addition, IBEA outperforms NSGA-II and SPEA2 in term of convergence. However,
the parameter κ which is a scaling factor of the fitness function values should be
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Table 4 Comparison of preference incorporation-based approaches for MaOPs: MObjs means
maximum number of objectives (inspired by [28, 31])

Classes Algorithms References MObjs Test problems Preference
information

Priori
preference-
based
approaches

PBEA Thiele et al. [30] 5 LPMS Reference
points

SBGA Gong et al. [39] 20 DTLZ Preferred
regions

Interactive
preference-
based
approaches

R-NSGA-II Deb et al. [29] 10 DTLZ Reference
points

r-NSGA-II Ben Said et al.
[31]

10 DTLZ Reference
points

RD-NSGA-II Deb and Kumar
[40]

10 DTLZ Reference
directions

Posteriori
preference-
based
approaches

PICEA-g Wang et al. [33] 10 WFG Weight vectors

a-PICEA-g Wang et al. [41] 7 WFG Goal vectors

PICEA-w Wang et al. [42] 7 WFG Weight vectors

appropriately chosen. The main weakness of IBEA is the computational cost of the
quality indicator value. Several variants of IBEAs have been proposed such as the
work of Basseur and Bruke [44] in which they extended IBEA and proposed a multi-
objective local search algorithm called IBMOLS that uses a local search operator
and the work of Wagner et al. [45] that reported good results for MaOPs. Since,
IBEAs do not use Pareto dominance, their search ability is not severely deteriorated
by the increase of the number of objectives. It should be noted that most of the
existing variants use the hypervolume as an indicator but one difficulty arises in
using the hypervolume when dealing with a large number of objectives which is the
high computational cost of the hypervolume calculation.

• SMS-EMOA: S Metric Selection-Based Evolutionary Multi-objective
Algorithm

Oneof themost successfully used indicator-basedMOEAs, is theS-Metric-Selection-
EMOA (SMS-EMOA) proposed by Emmerich et al. [46]. The SMS-EMOA invokes
firstly the non-dominated sorting that is used as a ranking criterion. Secondly, it
uses the hypervolume indicator as a selection mechanism to discard the individual
that contributes the least hypervolume to the worst-ranked front. The SMS-EMOA
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algorithm starts with generating a new population P with μ individuals. In each
iteration, there is a new individual that is generated by the application of random
variation operators. An individual becomes a member of the population if it replaces
dominated individuals and contributes to a higher quality of the population. Thus, the
selection criterion ensures that the non-dominated individuals could not be replaced
by the dominated ones. Then, the algorithm applied the fast-non-dominated-sort-
algorithm used in NSGA-II to compute the Pareto fronts. After that, an individual
is rejected from the worst ranked front RI if it contains more than one individual.
Thus, the individual n ∈ RI that minimizes the following equation is discarded:

ΔS(n, RI ) = S(RI ) − S(RI {n) (17)

where the ΔS(n, RI ) represents the contribution of n to the S metric value of its
appropriate front. The application of this algorithm to several standards benchmark
shows that it is suitable for Pareto optimization with two and three objectives. Rather
than that, SMS-EMOA outperforms a number of Pareto-based algorithms in term
of convergence. It is also shown that it provides solutions that are well distributed
on the Pareto Front. The main disadvantage of this indicator based-MOEA is the
high computational coast of the S-metric values with problems evolving more than
three objectives. Moreover, SMS-EMOA is well-suited for real-world applications
with a limited number of function evaluations. Wagner and Neumann [47] have
compared SMS-EMOA to a number of Pareto-based algorithms and indicator-based
algorithms on MaOPs. The results show that SMS-EMOA is unable to find the front
of the high-dimensional DTLZ1 and DTLZ3 test problems.

• AGE: Approximation-Guided Evolutionary

AGE was proposed by Bringmann et al. [48]. AGE uses the additive approximation.
In fact, the additive approximation of the set B with respect to the set A is expressed
as follows:

α(A, B) = max
a∈A

min
b∈B max

1≤i≤N
(ai − bi ) (18)

It could also use the multiplicative approximation which is similar to the additive
approximation by just replacing ai − bi with

ai
bi
. The goal is to minimize the additive

approximation that measures the approximation quality of the population B with
respect to the archive A. The archive A contains all non-dominated solutions seen so
far. However, the additive approximation is not locally sensitive to the changes of the
output population. AGE uses another sensitive indicator that should be minimized
which is defined as follows:

Sα(A, B) = (α1, . . . ,α|A|) (19)

where Sα(A, B) is the result of sorting decreasingly the set α({a} , B)|a ∈ A. The
algorithm begins by generating a population P of μ individuals. In each iteration, we
obtainλnewoffspring by selecting randomly two individuals from the population and
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applying the crossover and themutation operators. Thoseλ new offspring individuals
are added to P and a new population Q is obtained. After that, only non dominated
solutions obtained from Q are added to A. In addition, there are two criteria to add
a solution S to A: (1) S is not dominated by any existing individual in A and (2)
individuals that dominate S are removed. In each generation, the individual p with
lexicographically worst approximation is removed from Q. AGE was compared to
several MOEAs and as a result it was proved that AGE outperforms them in term
of the quality of the approximation set obtained especially when dealing with many
objectives and the covered hypervolume. Wagner and Neumann [47] extended AGE
and presented a new version called AGE-II where they control the size of the archive
by storing the additive ε-approximation of the non-dominated solutions and they
propose a new strategy for the parent selection.

• MOMBI: Many-objective Meta-Heuristic Based on the R2 Indicator

MOMBI was introduced by Gomez and Coello Coello [49]. The MOMBI algorithm
is based on the R2 indicator which is defined as:

R2(A, V, Z∗) = 1

|V |
∑

v∈V
min
a∈A

{

max
1≤ j≤m

v j |Z∗
j − a j |

}

(20)

where A is an individual set, V is a set of weight vectors, and Z∗ is used as a reference
point which is never dominated by any feasible solution. This algorithm produces
a non-dominated sorting scheme based on the utility functions. The main idea is to
group solutions that optimize the set of utility functions and gives them the first rank.
Then, those solutionswill be removed and a second rankwill be identified in the same
manner. The process will continue until all the population members will be ranked.
We notice that MOMBI uses the non-dominated sorting scheme without using the
usual Pareto dominance. The MOMBI algorithm is described as follows. MOMBI
begins by generating a populationP randomly. Then,we obtain the objective function
values, the ideal and the nadir point, and the R2-ranking of all P members. After
that, a binary tournament selection using the rank of the solutions and the mutation
and crossover operators are performed to create an offspring populationQ. Next, the
reference points are updated with the minimum and maximum objective function
values and the population Rwhich is the union of both P andQ populations is ranked
using the R2 indicator. In order to reduce the population, MOMBI selects the best
N individuals according to their ranks. The experimental results show that MOMBI
outperformsMOEA/D [50] inmost cases. This algorithmperformswellwhendealing
with many-objective. However, its main weakness is its high computational cost.

• Other Indicator-Based Approaches

Indicator-based approaches are yet another direct way to solve MaOPs [51]. In
fact, in an indicator-based algorithm, an indicator is not only used to evaluate the
obtained approximation set according to the indicator but also indicator values are
used to guide the search process. Although, an emerging trend is the use of a qual-
ity indicator to solve a MaOP. We identify two indicators that have been applied
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Table 5 Comparisonof indicator-based approaches forMaOPs:MaxObjsmeansmaximumnumber
of objectives

Classes Algorithms References MaxObjs Test problems

Hypervolume-
based
approaches

IBEA Zitzler and Künzli [43] 4 EXPO

SMS-EMOA Wagner and Neumann [47] 20 DTLZ

WFG

LZ

HypE Bader and Zitzler [52] 50 DTLZ

WFG

MKP

R2 indicator-
based
approaches

AGE Bringmann et al. [48] 20 DTLZ

AGE-II Wagner and Neumann [47] 20 DTLZ

MOMBI Gomez and Coello Coello [49] 8 DTLZ

WFG

R2-MOGA Manriquez et al. [54] 10 DTLZ

R2MODE Manriquez et al. [54] 10 DTLZ

by most indicator-based approaches for MaOPs: Hypervolume indicator and R2
indicator (cf. Table5). In fact, tow main issues arise when using the hypervolume
indicator to solve MaOPs. First, the computational cost of the hypervolume value is
high. Second, the hypervolume might not be appropriate when the DM aims to find
a uniform spread optimal set.

In order to deal with the high computational cost of computing the exact hypervol-
ume values, Bader and Zitzler [52] introduced the Hypervolume Estimation Algo-
rithm (HypE) where they used a Monte Carlo algorithm [53] in order to approximate
the exact hypervolume values. In this algorithm, the non-dominated solutions are
compared according to their hypervolume-based fitness values. Specifically, HypE
uses an environmental selection to create a new population from the best solutions in
the union set of the parent and offspring populations and estimate the hypervolume
value by sampling solutions in different fronts. The experimental results showed that
HypE achieved competitive performance in terms of the average hypervolume on a
number of test problems with up to 50 objectives. Manriquez et al. [54] proposed
two R2-indicator-based approaches which are: R2-MOGA and R2MODE. Those
latter present a modified version of Goldberg’s non-dominated sorting method. The
obtained results on DTLZ with up to 10 objectives indicate that these algorithms can
outperform SMS-EMOA in term of computational time.
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2.5 Decomposition-Based Approaches

• MOGLS: Multi-objective Genetic Local Search

MOGLS was first proposed by Ishibuchi and Murata [55] and improved by
Jaszkiewicz [56]. In fact, the Genetic Local Search (GLS) is a metaheuristic that
hybridizes recombination operators with local search or with other local improve-
ment heuristics. The basic idea of MOGLS is to transform the original MaOP into
a simultaneous optimization of a collection of weighted Tchebycheff functions or
weighted sum functions. At each iteration, the algorithm generates a random weight
vector to evaluate the current population and uses an external population to store the
non-dominated solutions. The Jaszkiewicz’s MOGLS can be described as follows:

• Step 1: An initialization step is performed to initialize a set of current solutionsCS
with S solutions, a vector z = (z1, z2, . . . , zm)T where zi is the largest value found
so far for the objective fi , and an external populationEP to store the non-dominated
solutions of CS;

• Step 2: Then, the external population EP is updated as follows:

1. A randomly weight vectorw is generated, k (i.e., the size of temporary elite pop-
ulation) best solutions with regard to the used scalarizing function are selected
to form a temporary elite population T, and a new solution y is generated by
applying the genetic operators to two randomly chosen solutions from T ;

2. A solution y′ is generated by applying a local improvement heuristic to y;
3. The vector z is updated: For each j = 1, . . . ,m, if z j < f j (y′), then set z j =

f j (y′). This step is performed only in the case where the Tchebycheff approach
is used, this step is removed otherwise;

4. The solution y′ is added to CS, if y′ is better than the worst solution in T with
regard to the used scalarizing function and different from the solutions in T with
regard to the m real-valued objective functions. In the case where the size of CS
is larger than K × S the oldest solution is deleted from CS.

5. All the solutions in EP that are dominated by y′ are removed and y′ is added to
EP if there is no solutions that dominate it.

The above described steps are repeated until a stopping criterion is satisfied. The
experimental results have shown that MOGLS may work well on MaOPs. However,
the use of the recombination operator and the appropriate selection of the solutions
for recombination influence the performance of MOGLS. Moreover, as reported in
[50], the upper bound of the size of CS which is equal to K × S influences the space
complexity of MOGLS.

• MOEA/D: Multi-objective Evolutionary Algorithm Based on Decomposition

MOEA/D is one of the most popular decomposition-based algorithm proposed by
Zhang and Li [50]. MOEA/D decomposes the MaOP into N sub-problems (N is the
population size) that are optimized simultaneously. It uses a set of well-distributed
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weight vectors λ j to cover the whole Pareto front. The algorithm begins by deter-
mining a neighborhood of T weight vectors for each λ j . After that, the population
members are assigned to the weight vectors. Thereafter, two solutions from neigh-
boring weight vectors are mated and an offspring solution is created. The offspring
solution is then evaluated using a scalarizing function. This generated new solution
can also replace several current solutions of its neighboring sub-problems when it
outperforms them. Three versions of scalarizing functions are adopted forMOEA/D:
(1) weighted sum approach [57], (2) weighted Tchebycheff approach [57], and (3)
boundary intersection approach [58, 59]. Ishibuchi et al. [60] studied the relation
between the neighborhood size and the performance of MOEA/D in solving many-
objective problems. In this work, it was proved that a large replacement neighbor-
hood improves the search ability of MOEA/D in the objective space. However, a
small replacement and mating neighborhood are beneficial to maintain the diversity.
MOEA/D has demonstrated very interesting results on several MaOPs. However,
its main shortcoming is the degradation of diversity and solution distribution when
tackling scaled problems.

• NSGA-III: Non-dominated Sorting Genetic Algorithm III

Deb and Jain [61] proposed NSGA-III which remains similar to the NSGA-II algo-
rithm with some changes in its selection mechanism. The general principle of this
MaOEA can be described as follows. Differently to MOEA/D, NSGA-III makes the
decomposition based on a set of well-distributed reference points. Afterwords, a ran-
domly parent population Pt with N individuals is generated. The following steps are
iterated until the termination criterion is satisfied. The algorithm begins by creating
an offspring population Qt with N individuals obtained by applying genetic oper-
ators to Pt . Thereafter, the two populations Pt and Qt are merged with each other
to form a new population Rt of size 2N . After that, the combined population Rt is
sorted into several fronts using the non-dominated sorting as done in NSGA-II. Then,
a new population St is constructed starting from the first front F1 until the size of the
population St becomes equal to N or for the first time greater than N. Let us suppose
that the last accepted level is the lth level. Therefore, all solutions from level (l + 1)
onwards are rejected. In most cases, the last front F1 is accepted partially. NSGA-II
uses a niching strategy to choose individuals from the last front which are situated in
the least crowding regions in F1. However, the crowding distance is not well-suited
for MaOPs. For this reason, the selection mechanism was modified in NSGA-III.
Figure3 illustrates the two mechanisms used in (a) NSGA-II and (b) NSGA-III to
maintain diversity among solutions. The principle of the selection mechanism is as
follows. It begins by normalizing the population members and the supplied reference
points. Then, it calculates the perpendicular distance between a solution in St and
each of the reference lines that join the ideal point with the reference points. So
that, each individual in St is associated with the reference point having the minimum
perpendicular distance. Thereafter, a niche preservation operation is performed and
it can be summarized by this two following steps:
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Fig. 3 Illustration of working principles of a NSGA-II versus b NSGA-III (inspired by [62])

• Step 1: Count the number of individuals from Pt+1 = St/Fl that are associated
with each reference point;

• Step 2: Define a reference point set that contains the reference points having the
minimum niche count ρ. If this set contains more than one point, we choose one
of them at random.

Hence, four scenarios are identified which are detailed in [61]. After that, we update
the different niche counts. It should be noted that this procedure is repeated until the
population size of Pt+1 becomes equal to N. NSGA-III has demonstrated very good
results on problems involving up to 15 objectives. The major advantage of NSGA-III
is its ability to findwell-converged andwell-diversified solutions. Another advantage
is that it does not require any additional parameters to be set such in MOEA/D.

• DBEA-Eps: Decomposition Based Evolutionary Algorithm for Many-
objective Optimization with Systematic Sampling and Adaptive Epsilon
Control

Asafuddoula et al. [63] proposed a decomposition-based algorithm that generates a
structured set of reference points, that uses an adaptive epsilon comparison tomanage
the balance between the convergence and the diversity, and that adopts an adaptive
epsilon formulation to deal with constraints. DBEA-Eps begins with a generation
of a set of reference points using the normal boundary intersection method (NBI).
Thereafter, the neighborhood of each reference point (i.e., T closest reference points
computed based on a Euclidean distance amongst them) is determined. Similarly
to NSGA-III, DBEA-Eps normalizes the population based on intercepts calculated
usingM extreme points of the non-dominated set and computes the same two distance
measures d1 and d2 used in NSGA-III to control diversity and convergence of the
algorithm. Figure4 illustrates the two distancemeasures d1 and d2 in a two objectives
minimization problem. It also uses a mating partner selection to select a parent from
the neighborhood of the current solution Pi with a given mating probability δ and a
method of recombination using information fromneighboring sub-problems. In order
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Fig. 4 Illustration of the
distance measures d1 and d2
with respect to a reference
direction. From Ref. [63]

to manage the balance between convergence and diversity, the authors proposed to
use an adaptive epsilon comparison, where a child solution replaces a single parent
based on the following equation:

(d1, d2) < εCD(d1, d2) ⇒
⎧
⎨

⎩

d1 < d2, if d2, d2 < εCD

d1 < d2, if d2 = d2
d1 < d2, otherwise

(21)

where d2i is the d2 measure of the i-th individual, W is the number of reference
points, and the average deviation εCD is defined as follows:

εCD ==
∑W

i=1 d2i
W

(22)

In this work, an epsilon level comparison is used to compare the solutions. The
DBEA-Eps has demonstrated its outperformance on the DTLZ1 and DTLZ2 prob-
lems and on the three constrained engineering design optimization problems with
three to seven constraints (car side impact [64], water resource management [65],
and a general aviation aircraft design problem [66]). Thus, it is able to deal with
unconstrained and constrained MaOPs. However, the performance is dependent on
the choice of a number of parameters and several adaptive rules.

The same authors [67] have proposed the improved decomposition based evo-
lutionary algorithm (I-DBEA) which is a modified version of DBEA-Eps. I-DBEA
eliminates the use of the neighborhood size T and the mating probability δ such that
the entire population is considered as a neighborhood and a first encounter replace-
ment strategy has been adopted. Comparisons between solutions were based on an
adaptive epsilon level of d2. However, in I-DBEA, a simple precedence rule is used,
where d2 has a precedence over d1. In the proposed algorithm, a corner-sort is used to
identifyM extreme points that are used to create the hyperplane and to compute the
intercepts. The experimental results indicate that I-DBEA is able to deal with uncon-
strained and constrained MaOPs. However, as noted by the authors, this approach
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is not suitable to solve problems evolving a large number of reference directions
(i.e., a large population is not practical).

• Other Decomposition-Based Approaches

Inspired by Preference based approaches, the researchers have proposed to direct
the search towards multiple well-distributed ROIs in order to cover the whole Pareto
front for MaOPs. In fact, decomposition-based approaches decompose the original
MOP into a collection of sub-problems that will be simultaneously optimized. Sev-
eral scalarizing functions have been used to convert the problem of approximation
of the PF into a number of scalar optimization sub-problems such as the weighted
summethod, the Tchebycheff method, and the boundary intersection method. Those
scalarizing functions have been used to decompose the problem into single objec-
tive sub-problems which are defined with the help of weight vectors (Miettinen and
Mäkelä [68]). Li et al. [69] proposed MOEA/DD which presents a unified paradigm
that combines dominance and decomposition-based approaches for many-objective
optimization to balance between convergence and diversity. MOEA/DD uses an
update procedure that depends on Pareto dominance, local density estimation, and
scalarizing functions, sequentially. The authors have also proposed a modified ver-
sion of MOEA/DD called C-MOEA/DD to solve constrained problems. The perfor-
mance of the two algorithms was investigated on a set of unconstrained benchmark
problems with up to fifteen objectives and on a number of constrained optimization
problems. The obtained results have demonstrated the outperformance of both algo-
rithms in solving problems with a high number of objectives. However, MOEA/DD
is sensitive to the two parameters T and δ which represent the neighborhood size and
the probability of selecting mating parents from neighboring sub-regions, respec-
tively. Different MOEA/D variants have been proposed in the literature to tackle
MaOPs such as MOEA/D-DRA (Zhang et al. [70]) and UMOEA/D (Tan et al.
[71]). Yuan et al. [72] proposed the θ-NSGA-III witch is an improved version of
NSGA-III, but the main difference between the two algorithms is that the θ-NSGA-
III replaces the Pareto dominance used in NSGA-III with a new dominance relation
which is called the θ-dominance. θ-NSGA-III outperforms MOEA/D and NSGA-III
in terms of convergence. However, it was proved that this algorithm is insensitive to
the parameter θ. Elarbi et al. [73] proposed a new dominance relation called TSD-
dominance to deal withMaOPs. The TSD-NSGA-II represents a newmany-objective
version of NSGA-II where the Pareto dominance is replaced by the TSD-dominance.
TSD-NSGA-II was found to be highly competitive in dealing with constrained and
unconstrained problems. However, MaOPs involving the characteristics of DTLZ6-
7 represent the limits of TSD-NSGA-II. Table6 provides a comparison of some of
the most prominent decomposition-based approaches for MaOPs. From the different
discussed works in this chapter, we remark that the choice of a specific scalarizing
function to use influences the performance of the decomposition-based algorithm
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Table 6 Comparison of decomposition-based approaches for MaOPs: MaxObjs means maximum
number of objectives, CP means constrained problems, UP means unconstrained problems, WV
means weight vectors, RP means reference points

Algorithms References MaxObjs CP UP WV RP

MOGLS Jaszkiewicz [56] 4 X – X –

MOEA/D Zhang and Li [50] 4 X X X –

NSGA-III Deb and Jain [61] 15 – X – X

DBEA-Eps Asafuddoula et al. [63] 15 X X – X

I-DBEA Asafuddoula et al. [67] 15 X X – X

MOEA/DD Li et al. [69] 15 X X X –

MOEA/D-DRA Zhang et al. [70] 5 – X X –

UMOEA/D Tan et al. [71] 5 X X X –

θ-NSGA-III Yuan et al. [72] 20 – X – X

TSD-NSGA-II Elarbi et al. [73] 20 – X – X

[74]. Moreover, different methods have been used to generate a set of weight vec-
tors (i.e., reference points) such as the systematic approach [58] and the on-the-fly
weighting vector generating method [75]. However, how to configure the weight
vectors is still a big challenge for decomposition-based algorithms, since those latter
dramatically affect the diversity performance.

3 Performance Assessment of MaOEAs

3.1 Test Problems and Statistical Analysis

Several test problems have been used to investigate MaOEAs capabilities in approx-
imating the Pareto front. In the literature, among the most used test function suites
we find: (1) the scalable DTLZ (Deb-Thiele-Laumans- Zitzler) suite and the scal-
able WFG (Walking Fish Group) Toolkit. MaOEAs have also been used in some
combinatorial problems such as knapsack problems. Recently, a number of scalable
constrained test problems having three up to 15 objectives have been introduced
[64]. Those latter are characterized with various types of difficulties to an algorithm.
Table7 summarizes the above mentioned test problems in this chapter.

Many existing works use the median and the interquartile range values obtained
by a specific performance metric in order to compare the performance of differ-
ent algorithms. However, each algorithm can behave differently from one run to
another. Hence, the use of a statistical testing approach is necessary. Firstly, we
should check whether the obtained results are normally distributed or not using the
Kolmogorov–Smirnov test. If data follow a normal distribution, we can use the t-
test when comparing between two algorithms and the ANOVA one if the comparison
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Table 7 Summary of the mentioned test problems (inspired by [28])

Test problems References Remarks

DTLZ Deb et al. [21] Scalable problem

WFG Huband et al. [22] Scalable problem

MKP Zitzler et al. [9] Multi-objective 0/1 Knapsack
Problem

NRP Burke et al. [18] Nurse Restoring Problem

DTLZ5(I,M) Deb et al. [19] Scalable problem

DTLZ2BZ Brockhoff et al. [77] Modified version of DTLZ2

LPMS Miettinen et al. [78] Locating a pollution
monitoring station

EXPO Thiele et al. [79] A network processor
application comprising
problem

LZ Li et al. [80] Continuous test problems

Car side impact Jain and Deb [64] Engineering constrained
problem

Water resource management Ray et al. [65] Engineering constrained
problem

General aviation aircraft
design

Hadka et al. [66] Engineering constrained
problem

involvesmore than two algorithms. To avoid verifying data normality, we can directly
use the Wilcoxon test and the Kruskal-Wallis as non-parametric alternatives of the
t-test and the ANOVA one respectively. For more details about statistical testing in
evolutionary computation, the reader could refer to [76].

3.2 Performance Metrics

In the literature, fewer are the performancemetrics that have been used to evaluate the
performance ofMaOEAs.Themost commonused performancemetrics are described
in this subsection.

• The Inverted Generational Distance (IGD)

The IGD is a performance metric that measures the distance between the true Pareto
front and the closest individual in an approximation set. It is expressed as follows
[81]:

IIGD = (
∑PF∗

i=1 dq
i )

1
q

PF∗ (23)
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where dq
i is the Euclidean distance between an individual from the Pareto front PF∗

to its nearest individual in the approximation set and q = 2. In fact, the lower are
the IIGD values, the better are the obtained sets. Moreover, the IGD can measure
both convergence and diversity. The IGD metric requires a reference true Pareto
front in the calculation. However, it is difficult to determine the reference true Pareto
front of MaOPs. Thus, an exact method to generate a set of uniformly well-spread
points over the true Pareto front has been proposed for the DTLZ1-DTLZ4 test
problems [69]. This method locates exactly the intersecting points of the reference
points generated by the algorithm and the Pareto-optimal surface since the exact
Pareto-optimal surfaces of DTLZ1 to DTLZ4 are known a priori. For DTLZ1, given
a reference point r = (r1, . . . , rM)T , the i-th objective function of a Pareto-optimal
solution x∗ is computed as follows:

fi (x
∗) = 0.5 × ri

∑M
j=1 r j

(24)

As for DTLZ2 to DTLZ4, given a reference point r = (r1, . . . , rM)T , the i-th objec-
tive function of a Pareto-optimal solution x∗ is computed as follows:

fi (x
∗) = ri

√∑M
j=1 r

2
j

(25)

• The Generational Distance (GD)

The GD metric evaluates an average distance of an approximation set P from the
true Pareto front PF∗ [82]. It is defined as follows:

IGD =
√

∑P
i=1d

2
i

|P| (26)

where di is theEuclidean distance between the solution i ∈ P and the nearestmember
of PF∗. A value of IGD = 0 indicates that all the individuals of the approximation
set P are in the true Pareto front PF∗. This metric evaluate only the convergence of
an algorithm.

• The Hypervolume (HV)

The HV indicator is a unary indicator that calculates the volume of the hypercube
dominated by an approximation set. This indicator can be expressed as follows:

IHV = ∪
i
S(i)|i ∈ PF∗ (27)

where S(i) is the hypercube bounded by a solution i and a reference point. In fact,
the choice of the reference point is important because it influences the outcome of
this metric. The reference point can be constructed by the worst objective function
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values. This measure captures both convergence and diversity. A large value of the
HV metric is desirable.The main drawback of this metric is the high computational
cost needed to compute the exact HV [53].

• The Spread (Δ)

The Δ metric measures the deviation among neighboring solutions in the non-
dominated solution set P furnished by the MOEA [83]. Analytically, it is stated
as follows:

IΔ =
|P|∑

i=1

|di − d|
|P| (28)

where di is the Euclidean distance between two neighbor solutions in P and d is the
average of these distances. In fact, a smaller value of Δ indicates that the algorithm
is able to find a diverse set of non-dominated solutions.

4 Conclusion and Future Research Paths

In this chapter, we have first described the related issues that MOEAs encounter
when the dimensionality of the objective space increases. Then, we have sur-
veyed the most prominent MaOEAs. We have proposed to classify the existing
MaOEAs into five classes: Preference ordering relation-based approaches, objective
reduction-based approaches, preference incorporation-based approaches, indicator-
based approaches, and decomposition-based approaches.

The preference ordering relation-based approach aims to propose a preference
relation that induce a finer order than that induced by the Pareto dominance rela-
tion. Hence, the non-dominated solutions are further ranked using this relation. This
method has the ability to increase the selection pressure towards the Pareto front.
However, it decreases the diversity of the solutions. Thus, it will be interesting to
propose newflexible selectionmethods and new diversitymechanisms for preference
ordering relation-based approaches.

The objective reduction-based approach finds the relevant objectives and elimi-
nates the redundant objectives that are not essential to describe the Pareto optimal
front. In other words, it identifies the non-conflicting objectives and discards them to
reduce the number of objectives of theMaOPs during the search process. Two reduc-
tion methods can be identified: (1) the offline dimensionality reduction method and
(2) the online dimensionality reductionmethod. Themain advantage of this approach
is that it reduces the computational cost of the MaOEAs. However, for MaOps with
non-redundant objectives this approach may fail to reduce the number of objectives.

The preference incorporation-based approach exploits the DM preferences in
order to differentiate between Pareto equivalent solutions. It focuses the search
process on a specific region of the Pareto front. Preference incorporation-based
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methods can be classified into the three following subclasses: (1) priori preference-
based approaches, (2) interactive preference-based approaches, and (3) posteriori
preference-based approaches. In fact, one of the issues that arises when using the a
posteriori preference-based approach is that it may obtain a high number of solutions
that the DM is not interested in [28].

The indicator-based approach transforms the MaOP into the problem of optimiz-
ing an indicator by evaluating the solutions using a performance metric. The high
computational cost of the hypervolume calculation represents a difficulty for this
approach when dealing with high dimensional objective space. Hence, it will be
interesting to propose new indicators that are well-adapted for MaOPs.

The decomposition-based approach decomposes the problem into several sub-
problems thatwill be simultaneously optimized using scalarizing functions.Actually,
decomposition is the most successful approach to solveMaOPs. Both the scalarizing
function and the method used to generate a structured set of reference points (or
weight vectors) influence the performance of a decomposition-based algorithm. For
this reason,more future research are neededonproposing newmethods for generating
weight vectors.
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On the Emerging Notion of Evolutionary
Multitasking: A Computational Analog
of Cognitive Multitasking

Abhishek Gupta, Bingshui Da, Yuan Yuan and Yew-Soon Ong

Abstract Over the past decades, Evolutionary Computation (EC) has surfaced as a
popular paradigm in the domain of computational intelligence for global optimiza-
tion of complex multimodal functions. The distinctive feature of an Evolutionary
Algorithm (EA) is the emergence of powerful implicit parallelism as an offshoot of
the simple rules of population-based search. However, despite the known advantages
of implicit parallelism, it is interesting to note that EAs have almost exclusively been
developed to solve only a single optimization problem at a time; seldomhas any effort
been made to multitask, i.e., to tackle multiple self-contained optimization problems
concurrently using the same population of evolving individuals. To this end, inspired
by the remarkable ability of the human brain to performmultiple tasks with apparent
simultaneity, we present evolutionary multitasking as an intriguing direction for EC
research. In particular, the paradigm opens doors to the possibility of autonomously
exploiting the underlying complementarities between separate (but possibly simi-
lar) optimization exercises through the process of implicit genetic transfer, thereby
enhancing productivity in decision making processes via accelerated convergence
characteristics. Along with the design of an appropriately unified solution represen-
tation scheme, we present the outline of a recently proposed algorithmic framework
for effective multitasking. Thereafter, the efficacy of the approach is substantiated
through a series of practical examples in continuous and discrete optimization that
highlight the real-world utility of the paradigm.
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1 Introduction

One of the most astonishing aspects of human cognition is its ability to manage and
execute multiple tasks with what appears to be apparent simultaneity. It is recognized
that in this fast-paced, technologically driven world that we live in, the explosion in
volume and variety of incoming information streams presents unprecedented oppor-
tunity, tendency, and (even) the need to effectivelymultitask.Merely a fleeting glance
at the world around us reveals the ubiquity of supposed cognitive multitasking. From
relatively straightforward examples, such as phoningwhilewalking, tomore complex
ones, such as media multitasking, the human brain has shown notable adaptability to
multitask settings. In fact, it is generally acknowledged that multitasking is perhaps
the only way to fit in all our priorities into increasingly busy schedules, albeit at
the (often tolerable) cost of a marginal drop in the quality of output achieved. Thus,
it is not unnatural to expect the pursuit of intelligent systems and algorithms capa-
ble of effective multitasking to gain popularity among scientists and engineers who
are constantly aiming for enhanced productivity in a world that routinely presents a
multiplicity of complex challenges.

It is noted that a major criticism leveled against cognitive multitasking origi-
nates from an observed switching cost during which the brain attempts to over-
come the interference between tasks and adjusts to the new task [1]. Thus, while
constantly switching between competing tasks, an individual may often experience
slower response times, degraded performance, and/or increased error rates [2]. In this
regard, while developing computational analogues of multitasking, it is observed
that modern-day computers are in the most part free from any significant switch-
ing cost while handling multiple tasks at once. This observation forms grounds for
our contention that an artificial (computational) multitasking engine may be capa-
ble of retaining many of the advantages of cognitive multitasking, while effectively
overcoming its potential perils.

In the field of computational intelligence, Evolutionary Algorithms (EAs) con-
stitute a family of stochastic optimizers that are inspired by Darwinian principles of
natural selection [3–5]. The increasing popularity of EAs as a mainstay of optimiza-
tion in science, operations research, and engineering is largely due to the emergent
properties of implicit parallelism of population-based search [6], which circumvents
the need for derivative-based techniques that impose continuity and differentiability
requirements on objective function landscapes. In fact, it is largely due to the efficient
exploitation of implicit parallelism that Multi-objective Evolutionary Algorithms
(MOEAs) have rapidly gained in popularity in recent decades, enabling synchronous
convergence to a diverse set of near optimal trade-off points [7–9]. Encouraged by this
observation, a central goal of the present proposition is to further leverage upon the
known power of implicit parallelism, thereby establishing a new niche for EAs that
undeniably sets them apart from existing mathematical optimization procedures. In
particular, we investigate the potential utility of EAs towardsmultitask optimization,
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i.e., the solution of multiple self-contained (but possibly similar) optimization tasks
at the same time using a single population of evolving individuals. While the propo-
sition bears resembling conceptual motivation to the field of multitask learning [10,
11], it operates from the standpoint of nature-inspired computing, facilitating implicit
information exchange across different numerical optimization tasks. To elaborate,
we contend that useful inductive biases or some form of knowledge overlap may
exist in the evolutionary search of one or more optimization tasks that lie outside the
self-contained scope of a particular problem of interest. Neglecting this information,
as is typically the case in tabula rasa optimization, may be deemed highly counterpro-
ductive, especially given the increasing complexity of real-world problems. In such
scenarios, evolutionary multitasking provides the scope for autonomously exploiting
the complementarities in an implicit manner (through the process of genetic trans-
fer), and consequently accelerating convergence characteristics by circumventing
several (often impeding) function evaluations [12–14].

For a more detailed illustration of the various notions discussed heretofore, the
remainder of this chapter is organized as follows. In Sect. 2, we introduce the prelim-
inaries of multitask optimization. Following [12], we hereafter label the paradigm
as multifactorial optimization (MFO) in order to emphasize that each task presents
an additional factor influencing the evolution of a single population. Further, we
highlight the key conceptual distinction between multitasking and multi-objective
optimization in order to address several queries arising in this regard. In Sect. 3, we
present the Multifactorial Evolutionary Algorithm (MFEA) from [12], an approach
that draws inspiration from bio-cultural models ofmultifactorial inheritance [15–18].
The means by which the MFEA facilitates knowledge transfer across tasks is also
briefly discussed therein. Thereafter, Sect. 4 contains recent case studies for a vari-
ety of practical applications of multitasking, including examples in continuous and
discrete optimization. In essence, it is reasoned that there exist numerous promising
opportunities for MFO in real-world problems, which encourages future research
efforts in this direction. Finally, Sect. 5 summarizes the chapter, highlighting impor-
tant research questions brought to the table by the promising future prospects of
multitask optimization.

2 Preliminaries

Consider a hypothetical situation wherein K self-contained optimization tasks are
to be performed concurrently. Without loss of generality, all tasks are assumed to be
minimization problems. The j-th task, denoted Tj , is considered to have a search
space X j on which the objective function is defined as Fj : XXX j → R. In addition,
each task may be constrained by several equality and/or inequality conditions that
must be satisfied for a solution to be considered feasible. In such a setting, we
define MFO as an evolutionary multitasking paradigm that aims to simultaneously
navigate the design space of all tasks, constantly building on the implicit paral-
lelism of population-based search so as to rapidly deduce {xxx1, xxx2, . . . , xxxK−1, xxxK } =
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argmin{F1(xxx), F2(xxx), . . . , FK−1(xxx), FK (xxx)}, where xxx j is a feasible solution in XXX j .
As suggested by the nomenclature, herein each Fj is treated as an additional factor
influencing the evolution of a single population of individuals. For this reason, the
composite problem may also be referred to as a K -factorial problem.

While designing evolutionary solvers for MFO, it is necessary to formulate a
general technique for comparing populationmembers in amultitasking environment.
To this end, we first define a set of properties for every individual pi , where i ∈
{1, 2, |P|}, in a population P . Note that the individuals are encoded in a unified
search space YYY encompassing XXX1, XXX2, . . . , XXXK , and can be decoded into a task-
specific solution representation with respect to each of the K optimization tasks.
The decoded form of pi can thus be written as {xxxi1, xxxi2, . . . , xxxiK }, where xxxi1 ∈ XXX1,
xxxi2 ∈ XXX2, . . ., and xxxiK ∈ XXXK .

• Definition 1(Factorial Cost): For a given task Tj , the factorial costΨi j of individual
pi is given by Ψi j = λ · δi j + Fi j ; where λ is a large penalizing multiplier, Fi j and
δi j are the objective value and the total constraint violation, respectively, of pi
with respect to Tj . Accordingly, if pi is feasible with respect to Tj (zero constraint
violation), we have Ψi j = Fi j .

• Definition 2(Factorial Rank): The factorial rank ri j of pi on task Tj is simply
the index of pi in the list of population members sorted in ascending order with
respect to factorial cost Ψi j .

Note that, while assigning factorial ranks, whenever Ψ1 j = Ψ2 j for a pair of indi-
viduals p1 and p2, the parity is resolved by random tie-breaking.

• Definition 3(Skill Factor): The skill factor τi of pi is the one task, amongst all other
tasks in a K -factorial environment, with which the individual is associated. If pi
is evaluated for all K tasks then τi = argmin j {ri j }, where j ∈ {1, 2, . . . , K }.

• Definition 4(Scalar Fitness): The scalar fitness of pi in amultitasking environment
is given by ϕi = 1/riT , where T = τi . Notice that max{ϕi } = 1.

Once the fitness of every individual has been scalarized according to Definition 4,
performance comparison can then be carried out in a straightforward manner. For
example, individual p1 will be considered to dominate individual p2 in multifactorial
sense simply if ϕ1 > ϕ2.

It is important to note that the procedure described heretofore for comparing indi-
viduals is not absolute. As the factorial rank of an individual, and implicitly its scalar
fitness, depends on the performance of every other individual in the population, the
comparison is in fact population dependent. Nevertheless, the procedure guaran-
tees that if an individual p∗ uniquely attains the global optimum of any task then
ϕ∗ = 1, which implies that ϕ∗ ≥ ϕi for all i ∈ {1, 2, . . . , |P|}. Therefore, it can be
said that the proposed technique is indeed consistent with the ensuing definition of
multifactorial optimality.

• Definition 5(Multifactorial Optimality): An individual p∗ is considered to be opti-
mum in multifactorial sense if there exists at least one task in the K -factorial
environment which it globally optimizes.
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Fig. 1 Multi-objective
optimization typically
comprises a single design
space encompassing all
objective functions. On the
other hand, multitask
optimization unifies (into YYY )
multiple heterogeneous
design spaces belonging to
distinct tasks [13]

2.1 Multitask Versus Multi-objective Optimization

Since multitask and multi-objective optimization are both concerned with process-
ing a set of objective functions, a conceptual overlap may be seen to exist between
them. However, it must be observed that there exists a vital difference between the
fundamental principles of the two paradigms. While MFO aims to leverage upon the
implicit parallelism of population-based search to exploit the underlying common-
alities and/or complementarities between multiple separate (but possibly similar)
optimization tasks, the formulation of a multi-objective optimization problem and its
associated solution algorithms (such as any MOEA) attempt to effectively resolve
conflicts among competing objectives of the same task. An illustration summarizing
the statement is depicted in Fig. 1. The key ingredient distinguishing the two para-
digms is the simultaneous existence of multiple heterogeneous design spaces in the
case of multitasking, each corresponding to a distinct task. On the other hand, for
the case of multi-objective optimization, there typically exists a single design space
for a given task of interest, with all objective functions depending on variables con-
tained within that space. Furthermore, note that a multitasking environment could
potentially include a multi-objective optimization task as one among many other
concurrent tasks, which highlights the greater generality of the proposed paradigm.

3 Multifactorial Evolution: A Framework for Effective
Multitasking

In this section we describe the Multifactorial Evolutionary Algorithm (MFEA), an
effective multitasking framework that draws upon the bio-cultural models of mul-
tifactorial inheritance [15, 16]. As the workings of the approach are based on the
transmission of biological as well as cultural building blocks from parents to their
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Algorithm 1 Pseudocode of the MFEA
1: Randomly generate n individuals in YYY to form initial population P0
2: for every p j in P0 do
3: Assign skill factor τ j = mod ( j, K ) + 1, for the case of K tasks
4: Evaluate p j for task τ j only
5: end for
6: Compute scalar fitness ϕ j for every p j
7: Set t = 0
8: while stopping conditions are not satisfied do
9: Ct = Crossover + Mutate(Pt )
10: for every c j in Ct do
11: Determine skill factor τ j → Refer Algorithm 2
12: Evaluate c j for task τ j only
13: end for
14: Rt = Ct ∪ Pt
15: Update scalar fitness of all individuals in Rt
16: Select N fittest members from Rt to form Pt+1
17: Set t = t + 1
18: end while

offspring, the MFEA is regarded as belonging to the realm of memetic computation
[19, 20]—a field that has recently emerged as a successful computational paradigm
synthesizing Darwinian principles of natural selection with the notion of memes,
as put forth by Richard Dawkins, as the basic unit of cultural evolution [21]. An
overview of the procedure is provided next.

As shown in Algorithm 1, the MFEA starts by randomly creating a population of
n individuals in the unified search space YYY . Moreover, each individual in the initial
population is pre-assigned a specific skill factor (see Definition 3) in a manner that
guarantees every task to have uniform number of representatives. We would like to
emphasize that the skill factor of an individual (i.e., the taskwithwhich the individual
is associated) is viewed as a computational representation of its pre-assigned cultural
trait. The significance of this step is to ensure that an individual is only evaluated
with respect to a single task (i.e., only its skill factor) amongst all other tasks in the
multitasking environment. Doing so is considered practical since evaluating every
individual exhaustively for every task will generally be computationally demanding,
especially when K (the number of tasks in the multitasking environment) becomes
large. The remainder of the MFEA proceeds similarly to any standard evolutionary
procedure. In fact, it must be mentioned here that the underlying genetic mechanisms
may be borrowed from any of the plethora of population-based algorithms available
in the literature, keeping in mind the properties and requirements of the multitasking
problem at hand. The only significant deviation from a traditional approach occurs
in terms of offspring evaluation which accounts for cultural traits via individual skill
factors.
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3.1 Offspring Evaluation in the MFEA

Following the memetic phenomenon of vertical cultural transmission [17–19], off-
spring in the MFEA experience strong cultural influences from their parents, in
addition to inheriting their genes. In gene-culture co-evolutionary theory, vertical
cultural transmission is viewed as a mode of inheritance that operates in tandemwith
genetics, and leads to the phenotype of an offspring being directly influenced by the
phenotype of its parents. The algorithmic realization of the aforementioned notion
is achieved in the MFEA via a selective imitation strategy. In particular, selective
imitation is used to mimic the commonly observed phenomenon that offspring tend
to imitate the cultural traits (i.e., skill factors) of their parents. Accordingly, in the
MFEA, an offspring is only decoded (from the unified genotype space YYY to a task-
specific phenotype space) and evaluated with respect to a single task with which at
least one of its parents is associated. As has been mentioned earlier, selective evalu-
ation plays a role in managing the computation expense of the MFEA. A summary
of the steps involved is provided in Algorithm 2.

Algorithm 2 Vertical cultural transmission via selective imitation
Consider offspring c ∈ Ct where c = Crossover + Mutate(p1, p2)
1: Generate a random number rand between 0 and 1
2: if rand ≤ 0.5 then

c imitates skill factor of p1
3: else

c imitates skill factor of p2
4: end if

3.2 Search Space Unification and Cross-Domain Decoding
Exemplars

Thecoremotivationbehind the evolutionarymultitaskingparadigm is the autonomous
exploitationof knownor latent commonalities and/or complementarities betweendis-
tinct (but possibly similar) optimization tasks for achieving faster and better conver-
gence characteristics. One of the possible means of harnessing the available synergy,
at least from an evolutionary perspective, is through implicit genetic transfer during
crossover operations. However, for the relevant knowledge to be transferred across
appropriately, i.e., to ensure effective multitasking, it is pivotal to first describe a
genotypic unification scheme that suits the requirements of the multitasking problem
at hand. In particular, the unification serves as a higher-level abstraction that consti-
tutes a meme space, wherein building blocks of encoded knowledge are processed
and shared across different optimization tasks. This perspective is much in alignment
with the workings of the human brain, where knowledge pertaining to different tasks
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are abstracted, stored, and re-used for relevant problem solving exercises whenever
needed.

Unification implies that genetic building blocks [22] corresponding to differ-
ent tasks are contained within a single pool of genetic material, thereby facili-
tating the MFEA to process them in parallel. To this end, assuming the search
space dimensionality of the j-th optimization task (in isolation) to be Dj , a uni-
fied search space YYY comprising K (traditionally distinct) tasks may be defined such
that Dmulti task = max j {Dj }, where j ∈ {1, 2, . . . , K }. In other words, while han-
dling K optimization tasks simultaneously, the chromosome yyy ∈ YYY of an individual
in the MFEA is represented by a vector of Dmulti task variables. While addressing the
j-th task, we simply extract Dj variables from the chromosome and decode them
into a meaningful solution representation for the underlying optimization task. In
most cases, an appropriate selection of Dj task-specific variables from the list of
Dmulti task variables is crucial for the success of multitasking. For instance, if two
distinct variables belonging to two different tasks have similar phenotypic meaning,
then they should intuitively be associated to the same variable in the unified search
space YYY . On the other hand, in many naive cases where no a priori understanding
about the phenotype space is available, simply extracting the first D j variables from
the chromosome can oftentimes be a viable alternative [12].

In what follows, we demonstrate how chromosomes in a unified genotype
space can be decoded into meaningful task-specific solution representations when
a random-key unification scheme [23] is adopted. According to the random-key
scheme, each variable of a chromosome is simply encoded by a continuous value in
the range [0, 1]. The salient feature of this representation is that it elegantly accom-
modates a wide variety of problems in continuous as well as discrete optimization,
thereby laying the foundation for a cross-domainmultitasking platform. Somedecod-
ing examples for continuous and popular instantiations of combinatorial optimization
shall be discussed hereafter. At this juncture, it must however be emphasized that
the concept of multitasking is not necessarily tied to cross-domain optimization. In
fact, domain-specific schemes can indeed be used (often with greater success) when
all constitutive tasks belong to similar domains.

3.2.1 Decoding for Continuous Optimization Problems

In the case of continuous optimization, decoding can be achieved in a straight-
forward manner by linearly mapping each random-key from the genotype space to
the box-constrained phenotype space of the relevant optimization task [12].

3.2.2 Decoding for Discrete Sequencing Problems

In the domain of combinatorial optimization, sequencing problems include a variety
of classical examples such as the Travelling Salesman (TSP), Job-Shop Schedul-
ing (JSP), Quadratic Assignment (QAP), Vehicle Routing (VRP), etc. The common
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feature of these problems is that they involve the ordering of a finite set of distinct
entities in a manner that optimizes a given objective function. The applicability of the
real parameter random-key chromosome representation scheme to discrete problems
of this kind was perhaps first investigated in [23]. In particular, it was observed that
under any real-coded variation operation, the decoding procedure ensures feasibility
of the generated offspring. This outcome is in contrast to domain-specific represen-
tations of sequencing problems wherein specially designed variation operators are
needed to ensure offspring feasibility. As a consequence, the random-key represen-
tation has found notable interest over the past two decades in the field of operations
research [24–26].

For an illustration of the decoding scheme, consider a case where 5 distinct enti-
ties are to be ordered optimally. To this end, a sample random-key chromosome in
the MFEA may look like yyy = (0.1, 0.7, 0.2, 0.9, 0.04), such that the first entity is
labeled as 0.1, the second entity is labeled as 0.7, the third is labeled as 0.2, and so on.
Following the technique suggested in [23], the order of entities encoded by the chro-
mosome yyy is given by the sequence sss = (5, 1, 3, 2, 4). In other words, the sequence
can be deduced simply by sorting the random-key labels in ascending order. Each
entity is assigned an index in sss that corresponds to the position of its label in the
sorted list.

3.3 Implicit Knowledge Transfer in the MFEA

For any proposed unification scheme to be useful for multitasking, a matter of critical
importance is the means of knowledge transfer in the unified space. In this regard, it
has been stated that knowledge transfer across two or more optimization tasks, being
simultaneously solved in the MFEA, occurs in the form of implicit genetic exchange
between cross-cultural parents undergoing crossover [13]. While there are a plethora
of such operators available in the literature, many of which exploit unique features
of the underlying optimization tasks, herein we focus on the mechanics of the well-
established simulated binary crossover (SBX) operator [27] from the standpoint of
multitasking.

A salient feature of the SBX operator is that it emphasizes (with high probability)
on creating offspring that are located close to their parents [28]. In other words, in
a continuous search space, it is often the case that a generated offspring possesses
genetic material that is in close proximity to at least one of its parents.With this back-
ground, consider the situation in Fig. 2 where two parents p1 and p2, with different
cultural traits or skill factors (recall Definition 3), undergo crossover in a hypotheti-
cal 2-D unified search space. In particular, p1 is assigned skill factor τ1 while p2 is
assigned skill factor τ2, with τ1 �= τ2. Further, a pair of offspring, namely c1 and c2,
is generated in the neighborhood of the parents by the SBX operator. Notice that c1
is found to inherit much of its genetic material from p1, while c2 is found to inherit
much of its genetic material from p2. In such a scenario, if c1 imitates the skill factor
of p2 (i.e., if c1 is evaluated for τ2) and/or if c2 imitates the skill factor of p1 (i.e., if c2
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Fig. 2 Parent candidates p1 and p2 undergo standard SBX crossover to produce offspring c1 and
c2 that are located close to their parents with high probability. Parent p1 possesses skill factor τ1 and
p2 possesses skill factor τ2 with τ1 �= τ2, thereby creating a multicultural environment for offspring
to be reared in. Now, if c1 imitates p1 and/or if c2 imitates p2, then implicit genetic transfer is said
to occur between the two tasks [13]

is evaluated for τ1), then implicit transfer of knowledge occurs between the two tasks.
At this juncture, if the genetic material corresponding to τ1 (carried by c1) is found to
be useful for τ2, or vice versa, then the transfer is deemed beneficial. Thereafter, the
evolutionary selection pressure takes over to ensure that the positively transferred
knowledge survives through generations. On the other hand, if the transfer turns out
to be unproductive, the fundamental property of evolution is to eliminate the weak
(negatively transferred [29–31]) genes by the natural process of survival of the fittest.

3.4 A Summary of the Salient Features of Evolutionary
Multitasking

Standard EAs typically generate a large population of candidate solutions, all of
which are unlikely to be competent for the task at hand. In contrast, in a multitasking
environment,wherein all constitutive tasks are assimilated into a unified search space,
it is intuitively more probable that a randomly generated or genetically modified
individual is competent for at least one task. The mechanisms of the MFEA leverage
upon this observation by effectively coordinating the search via the metaphorical
interactions of genetic and cultural factors, thereby facilitating enhanced productivity
in decision making processes in real-world settings.

Interestingly, during the combined optimization process it may so happen that the
refined genetic material created within individuals of a particular skill factor (i.e., of
a particular cultural trait) may also be useful for another group of individuals with a
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different skill factor. Thus, in such situations, the scope for implicit genetic transfer
across tasks can potentially lead to accelerated convergence characteristics and/or
the discovery of hard to find global optima. For the MFEA in particular, the transfer
of genetic material occurs whenever cross-cultural parents with different skill factors
undergo chromosomal crossover, as described in the previous subsection.

Practical scenarios amenable to multitasking are likely to occur in a variety of
domains, including engineering, business, operations, etc., wherein optimization
tasks with essentially identical underlying characteristics recur in large numbers. As
per traditional practices, the knowledge contained in these related tasks is generally
ignored by taking a tabula rasa approach to optimization. To this end, evolutionary
multitasking provides a novel means of harnessing the so-far untapped source of
knowledge, thereby opening doors to a plethora of real-world opportunities, some
of which shall be showcased next.

4 Scope for Multitasking in the Real-World

Humans demonstrate cognitivemultitasking capabilities on a daily basis. In [12], this
anthropic phenomenon was realized computationally in the form of evolutionary
multitasking for optimization. In order to emphasize the considerable real-world
scope of multitasking, we present some guiding thoughts to aid effective utilization
of the concept. It is contended that insights for a variety of practical applications can
naturally be inferred from our discussions.

Without loss of generality, consider a hypothetical 2-factorial scenario where the
first task is labeled τ1 and the second task is labeled as τ2. The setup of themultitasking
environment is depicted in Fig. 3. Therein, notice the presence of a unified genotype
space YYY that encodes solutions to each of the constitutive tasks. In particular, xxx1
represents a solution in the phenotype space of τ1 while xxx2 represents a solution in
the phenotype space of τ2.With this background,we categorizemultitasking problem
instances based on the amount of overlap in the phenotype space. We quantify the
overlap (χ) as the number of variables in a task-specific solution space that have
similar phenotypicmeaningwith respect to the other task, i.e.,χ = |xxxoverlap|, leading
to three broad categories, namely, complete, partial, and no overlap.

4.1 Complete Overlap in Phenotype Space

The first scenario we consider is perhaps the most intuitively pleasing applica-
tion domain for evolutionary multitasking. In particular, we assume xxx1\xxxoverlap =
xxx2\xxxoverlap = ∅ in Fig. 3. Accordingly, the only feature distinguishing the tasks is
the set of task-specific auxiliary variables which are not explicitly part of the search
space but describe the background in which the optimization tasks play out. A vari-
ety of possible real-world manifestations of this category in fields such as complex
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Fig. 3 Setup of a 2-factorial environment. The overlap in phenotype space represents the variables
that have similar phenotypic interpretation with respect to either task. Note that although the over-
lapping variables need not bear identical numeric values for both tasks, they often provide the scope
for useful genetic transfer due to similarities in their underlying behavior

engineering design and operations research have been discussed in [13]. In the present
chapter, we delve into recent advancements in other areas of interest that have not
been reviewed in previous papers.

A promising approach for improving optimization performance is the creation
of artificial helper (or catalyst) tasks that can aid the search process for a target
optimization task of interest, i.e., when both are combined in a single multitasking
environment.While this possibility has been exploited in thefield ofmachine learning
[32], little has beendone in the context of optimization. The lack of related approaches
in optimization is particularly surprising given the availability of population-based
methods that are endowed with the power of implicit parallelism. In light of this fact,
preliminary investigations show that combining a target single-objective optimiza-
tion task together with an artificially created multi-objective reformulation of the
same task can improve convergence characteristics [33]. A representative example
is depicted in Fig. 4 for a TSP instance where the target task and the helper task have
completely overlapping phenotype spaces. In essence, the multi-objective reformu-
lation, which has often been found to remove local optima [34], aids performance
by leveraging on the scope for implicit genetic transfer.

In addition to the above, a recent study in bi-level optimization has shown the
potential utility of evolutionarymultitasking therein [14]. It was found that the notion
of multitasking naturally emerges in the realm of evolutionary bi-level optimization
where several lower level optimization tasks are to be solved with respect to differ-
ent upper level population members. In particular, lower level tasks corresponding
to neighboring upper level individuals, such as those belonging to the same cluster
(as shown in Fig. 5), are likely to possess useful underlying commonalities that can
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Fig. 4 Convergence trends for single-objective, multi-objective, and multitasking approaches for
TSP kroB200. Multitasking harnesses the unique advantages of the single-objective and multi-
objective formulations to accelerate convergence. Here, the artificially formulated multi-objective
task acts as a catalyst during multitasking

Fig. 5 In evolutionary
bilevel optimization, lower
level tasks corresponding to
closely located upper level
individuals (such as those
belonging to the same
cluster) are likely to possess
commonalities that are
exploitable by multitasking

be exploited via multitasking. The efficacy of the proposition was demonstrated by
a proof-of-concept case study from the composites manufacturing industry which
led to a computational cost saving of nearly 65% for an expensive simulation-based
optimization exercise [14]. A representative plot comparing the convergence trends
achieved in practical bi-level optimization with and without evolutionary multitask-
ing is provided in Fig. 6.
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Fig. 6 Comparing averaged
convergence trends of a
standard Nested-Bilevel
Evolutionary Algorithm
(N-BLEA) with a
Multitasking-Bilevel
Evolutionary Algorithm
(M-BLEA) for a
Compression Resin Transfer
Molding (CRTM) based
composites manufacturing
cycle [14]

4.2 Partial Overlap in Phenotype Space

Next, we consider the case where the phenotype spaces of constitutive tasks are
only partially overlapping. For the 2-factorial setup in Fig. 3, this implies that
xxx1\xxxoverlap �= ∅ and/or xxx2\xxxoverlap �= ∅ and χ ≥ 1. Thus, the transferrable knowl-
edge between tasks is largely contained in the overlapping region, i.e., in xxxoverlap.
Real-world instantiations of such situations appear aplenty in the conceptualization
phase of engineering design exercises. The process of conceptualization, as depicted
in Fig. 7, is a human creativity driven preliminary design stage dealing with the for-
mulation of an idea or concept which determines the scope of a project in terms of

Fig. 7 Workflow of the
conceptualization phase in
engineering design [13].
Immense scope for
multitasking exists due to the
emergence of multiple
alternative concepts to be
analyzed. The concepts are
likely to share some
underlying commonalities as
they all cater to the same
product or process. This
knowledge may be harnessed
during multitasking to
accelerate the design process
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desired design features and requirements [35–37]. Typically, numerous alternative
approaches will be proposed and analyzed before agreeing upon the single most suit-
able one. In these situations, the scope for evolving similar concepts via multitasking
is quite intuitive, especially because several overlapping (i.e., recurring) design vari-
ables appear in different conceptual designs. Therefore, useful transferrable knowl-
edge is instinctively known to exist among the tasks as they pertain to the same
underlying product or process [13].

4.3 No Overlap in Phenotype Space (Blind Multitasking)

In both categories discussed so far, it is generally possible to make an a priori infer-
ence about the existence of transferrable knowledge that can be exploited by the
process of multitasking. However, in many other real-world applications, it may be
extremely difficult, if not impossible, to make such prior judgment about the comple-
mentarity between different optimization tasks. Multitasking instances belonging to
the third category of no overlap in phenotype space, i.e., xxxoverlap = ∅, are examples
of such blind multitasking. However, even in these cases, it is noted that some latent
complementarity between tasks may continue to exist in the unified genotype space.
Thus, it often makes sense to allow evolution to take over and autonomously harness
the complementarities whenever available, without the need to explicitly identify and
inject domain knowledge into the algorithm. Needless to say, the execution of blind
multitasking in the proposed naïve manner raises the fear of predominantly negative
transfer. Whether the potential for enhanced productivity is sufficient to subdue such
fears remains to be seen in the future. In the long run however, an ideal evolutionary
multitasking engine is envisaged to be a complex adaptive system that is capable
of inferring and appropriately responding to inter-task relationships on the fly, with
its overall performance being at least comparable to the single-task solvers of the
present day.

For the purpose of demonstration, we present a multitasking instance where per-
formance enhancements are achieved despite the lack of any apparent overlap in
the phenotype spaces of constitutive tasks. The example combines a pair of combi-
natorial optimization problems. As is well known, combinatorial problems possess
complex objective function landscapes that are generally difficult to analyze. Thus,
in most cases it is extremely challenging to make any prior inference about the avail-
ability of transferrable knowledge across tasks. Nevertheless, it can be concluded
from the convergence trends in Fig. 8 that even in such cases of blind multitasking
performance enhancement is achievable via the MFEA.

The 2-factorial problem depicted in Fig. 8 comprises a TSP (kroA200) and JSP
(la39). For both tasks, the single-tasking approach is found to consistently get trapped
in a local optimum. On the other hand, the diversified search facilitated by multitask-
ing substantially improves performance characteristics, primarily as a result of the
constant transfer of genetic material from one task to the other. It is therefore con-
tended that while no decipherable complementarity exists between the tasks when
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Fig. 8 Averaged convergence trends achieved while single-tasking and while multitasking across
combinatorial optimization problems occurring in complex supply chain networks: TSP (kroA200)
and JSP (la39) [13]

Fig. 9 Complex multi-echelon supply chain networks provide promising future prospects for the
application of evolutionary multitasking [13]
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viewed in the phenotype space, some latent complementarity may emerge in the
unified genotype space. A real-world setting where the need to multitask across such
seemingly disparate problems may arise is that of complex multi-echelon supply
chain networks. The increase in productivity can help ease bottlenecks in decision
making across multiple silos at once. Accordingly, as illustrated in Fig. 9, the domain
of supply chain management can be a notable future beneficiary of evolutionary mul-
titasking. For instance, while a TSP may represent a transportation (or logistics) silo
of a supply chain, the JSP may represent a manufacturing silo, together forming key
ingredients of the overall network.

5 Conclusions and Directions for Future Research

Evolutionarymultitasking is a novel optimization paradigm that, albeit in its in-fancy,
is showcasing significant promisewith regard to unleashing the true power of implicit
parallelism of population-based search [38]. To highlight the fact that each task in
a multitasking environment presents an additional factor influencing the evolution
of single population of individuals, the paradigm has also been formally labeled
as Multifactorial Optimization (MFO). Sharing similar motivations as the field of
multitask learning, MFO provides the scope for exploiting the underlying common-
alities and/or complementarities between different (but possibly similar) optimiza-
tion tasks, thereby achieving accelerated convergence characteristics in comparison
to standard single-task optimizers. Furthermore, the quality of results obtained in
a variety of domains of practical interest strongly encourages more comprehensive
research pursuits in the future. It is envisaged that with increasing contributions from
the community of EC researchers, as well as from the computer science and engi-
neering communities at large, the notion of multitasking has the potential to change
the current landscape of optimization techniques by seamlessly incorporating the
scope of autonomous knowledge adaptation from various sources. In particular, it is
contended that an artificial (computational) multitasking engine may be capable of
retaining many of the advantages of cognitive multitasking, while effectively over-
coming its potential perils.

In summary, it is recognized that so far we have merely scratched the surface
of a potentially rich research topic. Rigorous examination of several practical and
theoretical aspects of the paradigm is needed in the future. To begin with, a funda-
mental question that may arise in the mind of a practitioner is whether multitasking
will always improve performance. In this regard, it must be noted that evolutionary
multitasking acts as a means of harnessing the inductive bias provided by other opti-
mization tasks in the same multitasking environment. Thus, while some inductive
biases are helpful, some other inductive biases may hurt [10]. In fact, in the cur-
rent simplistic description of the MFEA, we have indeed encountered some counter
examples where the observed performance deteriorates during multitasking. How-
ever, in the long run, an ideal evolutionary multitasking engine is conceived to be an
adaptive system that will be capable of estimating and autonomously responding to
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the level of complementarity between tasks on the fly. Thus, with the aim of enhanc-
ing productivity in complex decision making environments, it is the design of such
intelligent algorithms that shall form the crux of our future research endeavours.
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Practical Applications in Constrained
Evolutionary Multi-objective Optimization
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Bishakh Bhattacharya and Slim Bechikh

Abstract Constrained optimization is applicable to most real world engineering
science problems. An efficient constraint handling method must be robust, reli-
able and computationally efficient. However, the performance of constraint handling
mechanism deteriorates with the increase of multi-modality, non-linearity and non-
convexity of the constraint functions. Most of the classical mathematics based opti-
mization techniques fails to tackle these issues. Hence, researchers round the globe
are putting hard effort to deal with multi-modality, non-linearity and non-convexity,
as their presence in the real world problems are unavoidable. Initially, Evolutionary
Algorithms (EAs) were developed for unconstrained optimization but engineering
problems are always with certain type of constraints. The in-dependability of EAs to
the structure of problem has led the researchers to re-think in applying the same to
the problems incorporating the constraints. The constraint handling techniques have
been successfully used to solve many single objective problems but there has been
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limited work in applying them to the multi-objective optimization problem. Since for
most engineering science problems conflicting multi-objectives have to be satisfied
simultaneously, multi-objective constraint handling should be one of the most active
research area in engineering optimization. Hence, in this chapter authors have con-
centrated in explaining the constrained multi-objective optimization problem along
with their applications.

Keywords Multi-objective optimization · Constraint handling · Evolutionary
algorithms · Practical applications
1 Introduction

Evolutionary Multi-objective Optimization (EMO) has been successfully applied
over a wide variety of domains of engineering science in the last two decades [1,
2]. Initially, EAs were developed to solve optimization problems with out the con-
sideration of constraints [3, 4]. However, the role of constraints cannot be denied in
real world physical problems which are conflicting in nature in the presence of one
or many constraints imposed on it. The constraints crop up in real physical world
problems either due to geometric dependency or to fulfill operational requirement.
Hence, the researchers have focused their attention to integrate constraint handling
techniques in EAs and EMOs. This has led research engineers to exploit these tech-
niques in number of complex problems with non-linear and non-convex functions.
The constraint handling techniques incorporated into EMO have been handled with
Genetic Algorithms (GAs), Differential Evolution (DE), Particle Swarm Optimiza-
tion (PSO), Evolutionary Strategy (ES), etc. It is also necessary for the Constrained
EMO (C-EMO) to satisfy the properties like feasibility, diversity, convergence and
computationally efficiency.

A standard Constrained Multi-objective Optimization Problem (CMOP) can be
formulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Minimize fm(x), m = 1, . . . ,M,

subject to g j (x) ≥ 0, j = 1, . . . , J,
hk(x) = 0, k = 1, . . . , K ,

xli ≤ xi ≤ xui , i = 1, . . . , n.

(1)

The above nonlinear programming (NLP) equation has n number of variables, m
number of objective functions, J number of constraints with inequality type, and
K number of equality constraints. The number of objective functions are fm(x),
where as j-th inequality constraint is g j (x) and hk(x) is the k-th equality constraint.
The variation i-th variable is in the range of [xli , xui ]. As compared to inequality
constraints, equality constraints are the most difficult ones to satisfy using any opti-
mization algorithm as the feasible solution must coincide with the intersection of
all equality constraints. As a result, obtaining feasible solution is very critical. The
regular way to is to convert equality constraints into appropriate inequality constraint
by adding tolerance in the following way:
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hk(x) ≥ −ε,
hk(x) ≤ ε.

(2)

where, ε is the user defined tolerance taken as 10−3. Thus, the Eq. (1) is converted
to J + 2K number of inequality constraints distributed equally on either side of the
original value. Now, the total number of inequality constraints can be written in the
following way:

g j (x) ≥ 0, j = 1, . . . , J,
gJ+k(x) = |εk − hk(x)| ≥ 0, k = 1, . . . , K .

(3)

2 Constraint Handling in Evolutionary Multi-objective
Optimization

Among the issues that one can facewhenhandling constrained optimization problems
is how to deal with the infeasible solutions that do not satisfy at least one of the
constraints. In the specialized literature, a variety of constraint handling techniques
have been proposed to deal with this issue [5]. In this section, we propose to review
the most common used constraint handling techniques for C-EMO.

2.1 Penalty Functions

Penalty functions are one of the most used techniques to solve constrained optimiza-
tion problems [6]. The main idea behind penalty functions is to favor the selection
of feasible solutions by decreasing the fitness of the infeasible solutions in the popu-
lation. In single objective optimization, a penalty function transforms a constrained
optimization problem into an unconstrained one by adding a penalty term to the
objective function. The expended objective function to be optimized F(x) can be
expressed as follows [5]:

F(x) = f (x) + P(x) (4)

where the constraint violation measure P(x) can be calculated as follows:

P(x) =
J∑

j=1

r j · max(0, g j (x))
2 +

K∑

k=1

ck · |hk(x)| (5)

where r j and ck are two positive penalty factors.
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The principle of penalty functions in multi-objective optimization remains similar
to single-objective optimization. However, the penalty factor is added to all the objec-
tive functions instead of only one objective. The way of defining the penalty factors
differ from a penalty function to another (i.e., static, dynamic, adaptive, co-evolved,
fuzzy adapted, etc.). In this subsection, we briefly review some of the most represen-
tative works that have employed this method for solving CMOPs [7]. Woldesenbet
et al. [8] proposed an adaptive penalty function to solve CMOPs. The proposed
penalty function adds a large penalty factor to infeasible solutions if there are a
few feasible solutions in the population. Besides, a small penalty factor is added.
Moreover, they define new objective function values based on distance measure and
the adaptive penalty function. In addition, the authors proposed two other penalty
functions for infeasible solutions. The first penalty function is based on the objective
functions, while the second one is based on the constraint violation. The perfor-
mance of the proposed algorithm was tested on seven test problems. The obtained
results demonstrated that the algorithm is able to find a set of feasible solutions that
are well-spread over the Pareto front. The main advantage of this approach is that
there is no parameter tuning in the design of constraint handling. Jan and Zhang [9]
introduced amodified version ofMOEA/DE [10] called CMOEA/D-DE-ATP, where
the replacement and the update scheme are modified in order to deal with CMOPs.
CMOEA/D-DE-ATP introduced a penalty function that uses a threshold τ to dynam-
ically control the amount of penalty of infeasible solutions. This penalty function is
able to guide the algorithm to search the feasible region and the infeasible region
which is near the feasible one. CMOEA/D-DE-ATP has shown its effectiveness on
six out of ten constrained test instances in terms of the IGDmetric and convergence to
the true Pareto front. However, it is proved that the elimination of the threshold affects
the performance of the algorithm considerably. Jan et al. [11] proposed a dynamic
and adaptive version of the penalty function used in CMOEA/D-DE-ATP which led
to a new algorithm called CMOEA/D-DE-TDA. Thus, the threshold value τ is set
as the average value of the degree of constraint violations of all infeasible solutions
in the neighborhood of a solution. However, CMOEA/D-DE-ATP with the dynamic
and adaptive penalty functions fails partly if there are few infeasible solutions in the
initial population. Additionally, it fails totally if the whole initial population is highly
infeasible due to the presence of hard constraints.

2.2 Superiority of Feasible Solutions

This constraint handling technique was introduced by Powell and Skolnick [12]. It
was also employed by Deb [13] to solve single-objective optimization problems. For
the multi-objective optimization case it can be expressed as follows:

fitnessi (x) =
{

fm(x) i f x is feasible
f mworst + v(x)

(6)



Practical Applications in Constrained Evolutionary Multi-objective Optimization 163

where f mworst represents the m-th objective value of the worst feasible solution in
the current population and v(x) is the overall constraint violation. In the case where
there is no feasible solutions in the population, f mworst is set to zero.

In this method, feasible solutions are considered better than the infeasible ones.
Hence, the feasible solutions are evolved towards the Pareto optimal front, while the
infeasible ones are evolved to towards the feasible region. Deb et al. [14] introduced a
constrained domination principle which is based on the superiority of feasible solu-
tions. However, it was demonstrated that the adopted constrained domination can
cause a premature convergence. Pal et al. [15] used this constraint handling mecha-
nism to solve a linear antenna array synthesis problem as a MOP. The experimental
study has mentioned good results in solving the proposed design problem and in
achieving good trade-off solutions.

2.3 ε-Constraint Method

The ε-constraint handling techniquewas introducedbyTakahamaandSakai [16]. The
basic idea is to transform the constrained optimization problem into an unconstrained
optimization problem. It uses an ε parameter for the relaxation of the constraint
violations in the earlier stages of evaluation. In fact, infeasible solutions with small
overall constraint violation may give useful information about the search space. For
this reason, in the first stages of evolution, the relaxation of the constraint violations
may include some infeasible solutions in the population. The ε-constraint method
has been widely used for single-objective optimization [17]. Recently, this method
has gained a wide interest to solve CMOPs and has been integrated into variants
of a decomposition-based algorithm which is MOEA/D [18]. Martínez and Coello
[19] proposed the eMOEA/D-DE algorithm that uses a selection mechanism-based
on a modified ε-constraint method. This new ε-constraint method was proposed to
deal with the problem called the ε level comparison drift which occurs when the
original ε-constraint method is used. The experimental results show that eMOEA/D-
DE is highly competitive in dealing with CMOPs. However, for some test problems
the computation of the ε-constraint value is not done in a proper way and the use
of a misguided ε value will mislead the search of optimal solutions. Yang et al.
[20] employed the ε-constrained method into MOEA/D-DE framework to form a
new algorithm called MOEAD-εDE. In the experimental study, the authors compare
MOEAD-εDE against four algorithms on CF-series test instances [21]. MOEA/D-
εDE has the best performance in terms of IGD on CF1, CF6, and CF10. However,
the results are preliminary and MOEA/D-εDE needs further improvements.

2.4 Other Constraint Handling Techniques

Most constraint handling studies have been developed for optimization problems con-
sisting of only one objective. Researchers have provided detailed reviews of dealing
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Table 1 Summary of some existing C-EMO works with various constraint handling techniques

References Description Test problems

Jiménez et al. [22] Uses the Pareto concept to guide the
feasible solutions towards the
optimal front and the min-max
formulation to guide the infeasible
solutions towards the feasible region

CTP1 and CTP7, and OSY

Vieira et al. [23] Transforms constraints into two
objectives. The first objective is
based on a penalty function, while
the second objective is equal to the
number of violated constraints

TBU, CPT6-CPT7, and OSY

Young [24] Uses a combined value obtained by
blending the individual’s ranks in
the ojective and constraint spaces

CTP6-CTP8

Geng et al. [25] Adopts an infeasible elitist
preservation mechanism to deal
with CMOPs characterized with
disconnected feasible regions and
employs stochastic ranking to
maintain the diversity

CONSTR, SRN, TNK, CTP1,
CTP6, and CTP7

Oyama et al. [26] Uses the idea of non-domination and
niching concepts to solve CMOPs

Optimal design of a welded beam
and conceptual design optimization
of a two-stage-to-orbit spaceplane

Isaacs et al. [27] Employs a non-dominated sorting
for feasible and infeasible solutions.
It transforms the CMOP into an
unconstrained one by adding an
additional objective which is the
number of constraint violations

CTP2-CTP8

Ray et al. [28] Keeps a small percentage of
infeasible solutions during the
evolutionary process in addition to
the feasible solutions to search the
feasible region

CTP2-CTP8

Liu and Wang [29] Uses a constraint handling technique
which is based on a temporary
register. This strategy allows
individuals with lower constraint
violation values to participate in the
crossover and mutation operators

CTP1-CTP8

Datta and Regis [30] Uses surrogates for the objectives
and constraints to determine the
objective and constraint function
values and a non-dominated sorting
to find the most promising trial
offspring solutions

BNH, SRN, TNK, OSY,
ROBOT_2OBJ, ROBOT_3OBJ,
ROBOT_5OBJ, MFG1, MFG2,
BICOP1, BICOP2, TRICOP, G7,
G18, G19
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constraints with single objective optimization [31]. However, little is the effort that
has been devoted to deal with CMOPs in the specialized literature. Fonseca and
Fleming [32] proposed an algorithm that handles constraints by assigning a high
priority to constraints and low priority to objective functions. Coello Coello and
Christiansen [33] proposed to ignore the infeasible solutions. The implementation of
thismethod is easy but it is difficult to find even a one feasible solution using this tech-
nique. This proof that an algorithm designed for C-EMO has to take into account
various limits imposed on decision variables and convenient conceptualization of
objective vectors. However, it is fundamental to take advantage of the profitable data
supplied by infeasible individuals while dealing with C-EMO. Ray et al. [34] sug-
gested the use of a Pareto ranking concept for both the objectives and the constraints.
In fact, three non-domination rankings have been used in their work: (1) a ranking
using the objective function values, (2) a ranking using different constraints, and
(3) a ranking which is based on the combination of the objective functions and the
constraints. The main advantage of using the Pareto ranking for both objectives and
constraints is that it eliminates the problems of aggregation and scaling. Moreover,
the method uses effective mating strategies which improve the convergence con-
siderably. Harada et al. [35] designed a Pareto Descent Repair (PDR) operator that
searches for feasible solutions out of infeasible individuals. Asafuddoula et al. [36]
proposed to use an adaptive constraint handling schemewhich is based on a violation
threshold for comparison. In their constraint handling approach, a modified formula-
tion of the constraint violation measure and a violation threshold measure were pro-
posed. This method separates the constraint violation and objective function values
and considers infeasible solutions with violations less than the identified threshold
at par with feasible solutions. The experimental results on 10 benchmark CMOPs
and on a real world submarine design problem [37] have shown the ability of this
approach in dealing with CMOPs. However, the authors compared their approach to
only NSGA-II. Hence, further comparisons are needed. Table1 summarizes some of
the existing C-EMO approaches in the literature. Recently, multi-objective optimiza-
tion with a high number of objectives called many-objective optimization problems
have gained a wide interest [18, 38]. In the literature, there are few works that have
been proposed to solve constrained many-objective optimization problems [39, 40].
Thus, it will be interesting to design new constraint handlingmethods for constrained
many-objective optimization problems.

3 Engineering Applications

Multi-objective optimization has always been an important area of application to
which researchers have widely contributed [41–43]. The literature shows that multi-
objective problems can be transformed into many-objective optimization and can
be integrated with decision making tools for efficient productivity. The following
(Tables2 and 3) presents a brief outline of contributed research work in C-EMO.
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Table 2 C-EMO applications in real world engineering optimization

Contributers Application area

Kurpati et al. [44] (a) Speed reducer design (minimize the volume, minimize the stress in
one of the gear shaft)

(b) Oil carrying fleet of ships (minimize the overall cost of building
and operating a fleet of oil tankers), (maximize the cargo capacity of
the fleet)

Aute et al. [45] Air cooled condensing unit optimization (maximize heat rejection
through the condenser coil and minimize the cost)

Pinto [46] Supply chain management optimization (minimize cost
(manufacturing, transportation) and maximize profit)

Sarker and Ray [47] Crop rotation planning optimization (contribution maximization and
cultivation cost minimization)

Chakraborty et al. [48] Embedded system design optimization (maximize the performance and
minimize the additional area requirement)

Sardiñas et al. [49] Optimization of cutting parameters in turning processes (maximize
tool life and maximize operation time)

As discussed earlier sections, C-EMOhaswide spread applications in engineering
science. In next subsections, we will elaborate each engineering applications and
discuss how the C-EMO problem has been handled. This application will provide a
base to apply such techniques in the deficient areas where C-EMO techniques are
yet to be applied.

3.1 Speed Reducer Design and Design of Oil Carrying
Fleet of Ships

Two constraint handling approaches are proposed in the study of [44]. The authors
have developed four constraint handling techniques using Multi-objective Genetic
Algorithm (MOGA). All these four techniques are developed on the basis of Con-
straint Handling by Narayanan and Azarm (CH-NA) [50]. Two engineering design
problems; a speed reducer design and the design of a fleet of ships are solved with
these four C-EMO techniques and CH-NA. The comparative study clearly showed
that all fourC-EMO techniques are better thanCH-NA. In the first constraint handling
technique, the authors emphasized on evaluating “Constraints First Objectives Next”
model. In this model, constraints are evaluated to separate out feasible and infeasible
individuals. In the second approach, infeasibility is considered to handle constraints.
Third approach used the information of violated constraints. The last approach is
the hybridization of all three approaches. As a result, the non-dominated solution
from last strategy can find more uniformly distributed non-dominated solutions. The
study clearly showed that “Constraint-First-Objective-Next” model outperformed
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Table 3 C-EMO applications in real world engineering optimization (continued)

Contributors Application area

Li et al. [53] Power generation loading optimization (minimize fuel
consumption, minimize emissions,minimize total cost and
maximize output)

Guo et al. [54] Aircraft landing schedule optimization (minimize total delay and
total cost)

Moser and Sanaz [55] Automotive Deployment Problem optimization (Data Transmission
Reliability and minimize Communication Overhead)

Abu el Ala et al. [56] Optimization of electric power system emission (minimize fuel
cost and emission)

Tripathi and Chauhan [57] Optimization of planetary gear train (minimization of surface
fatigue life factor of gear and minimization of gear box volume)

Puisa and Streckwall [58] Propeller optimization (Maximization of efficiency and
Minimization of cavity volume)

Hajabdollahi et al. [59] Optimization of compact heat exchanger (maximum effectiveness
and the minimum total pressure drop)

Rajendra and Pratihar [60] Gait Planning of Biped Robot optimization (maximize dynamic
balance and minimize power consumption)

Liu and Bansal [61] Optimize boiler combustion process (maximize flue gas
temperature field value and maximize heat transfer rate)

Wang et al. [62] Aircraft design for emission and cost reductions optimization
(minimize total delay and minimize total cost)

Pandey et al. [63] Topology optimization of compliant structures (minimize
compliance, minimize maximum stress, minimize weight)

Sorkhabi et al. [64] Energy-noise wind farm layout optimization (maximize the energy
generation and minimize noise production)

Droandi and Gibertini [65] Blade design of Tiltrotor aircraft optimization (maximize
propulsive efficiency and hover Figure of Merit)

Datta et al. [66] Robot gripper design optimization (minimize fluctuation of
gripping force, minimize force transformation ratio)

“Objective-First-Constraint-Next”model. All the four C-EMO techniques workwith
few parameters. The authors concluded that amount of infeasibility and the number
of violated constraints are vital for efficient performance of any C-EMO technique.

3.2 Air Cooled Condensing Unit Optimization

Oneof the prime component of theRefrigeration andAir-Conditioning system (RAC)
is air cooled cross-flow heat exchangers. Its design severely affects the efficiency and
performance of the entire system. The authors used the condenser model proposed
by [51]. The objectives that are considered in [45] are to maximize the heat rejection
through the condenser coil and minimize the overall cost. The constraints which lim-
its the performance of both the objectives are refrigerant and air-side pressure drop,
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interrelationship between tube length and combined width of the fans placed on the
cabinet, coil height, tube length. A GA based C-EMO coupled with a condenser sim-
ulation tool is developed to obtain the non-dominated solutions. Two multi-objective
genetic algorithms are used to solve the C-EMO problem [32, 52]. The obtained
solutions suggested to use fewer number of fans and tube of small lengths added
with number of parallel circuits and more number of fins.

3.3 Supply Chain Management

Supply ChainManagement (SCM) is concerned with integrating the efficient flow of
materials, information, andfinances as theymove from supplier to consumer viaman-
ufacturer, wholesaler and retailer. The important benefits of SCM includes improved
inventory management system, better sales forecasting, balanced supply-demand,
elimination of irrelevant elements, improved balanced plans, working strategies and
stronger partnerships. The author [46] has implemented NSGA-II in a hypothetical
problem which is similar to usual problem encountered in real life. The important
objective functions considered are manufacturing cost, transportation cost, profit.
Many constraints, such as plant capacities, supplier capacities, inventory-balancing
and total operating cost have been considered simultaneously. The study also con-
cluded that EAs are highly efficient techniques for solving combinatorial problems.

3.4 Crop Rotation Planning Optimization

Reference [47] solved multi-objective crop planning problem. The crop planning
problem is modeled as a linear and a non-linear bi-objective problem. A C-EMO is
developed which is similar to NSGA-II with some modifications. The modifications
is done in the parent selection and population reduction process. However, it is more
computationally expansive than NSGA-II [14]. The hyperarea of the objective space
is considered while selecting parent population from the feasible solutions in the
same front. To maintain diversity in the variable space, the method not only maintain
the extreme points but also considers minimum and maximum values of the decision
variables. Few cases of bi-objective linear and nonlinear constrained optimization
problems is solved with proposed Multi-objective Constrained Algorithm (MCA).
Both algorithms (MCA and NSGA-II) have faced some difficulties to generate feasi-
ble solutions for the linear version of the problem. The comparative study shows that
MCA outperforms NSGA-II for the linear version of the crop planning problem. The
results of MCA are compared with NSGA-II. The study also discusses the sensitivity
analysis of variables for non-dominated solutions.
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3.5 Embedded System Design Optimization

The authors have targeted the embedded system design where the conflicting objec-
tives are to maximize the performance and minimize the additional area requirement
[48]. A hybrid MOGA is proposed which is a combination of multi-objective GA
andmulti-objective branch and boundmethod. The role of branch and boundmethod
is to repair the infeasible solutions with the search progress. The comparative study
betweenwith orwithout repair clearly shows that the repairmethod is able to generate
better set of non-dominated solutions.

3.6 Optimization of Cutting Parameters in Turning Processes

There are different cutting parameters in a turning process, such as cutting speed,
feed and depth of cut, which are optimized as decision variables while the two con-
flicting objectives-maximization of tool life and the operation time is considered
in the study of [49, 67]. Micro-GA [68] is used as the solution technique because
of low computational time and wide spread diversity maintenance mechanism. It is
a hard task to have the domain knowledge of machining, tool life empirical equa-
tions, surface finish, cutting forces, cutting power requirement to arrive at real life
constraint of machining and to co-relate it with the actual performance desired by
using mathematical and numerical optimization techniques. The tool life is severely
affected by the Material Removal Rate (MRR) which is directly proportional to the
tool wear and the cutting time. As the cutting time increases, the surface temperature
also rises which decorates the surface finish. The authors also suggested that more
number of conflicting objectives and constraints can be integrated to this problem.
Such constraints or objectives could be surface temperature of tool, surface finish of
workpiece, cost of machining, tool wear to name a few.

3.7 Power Generation Loading Optimization

In the advent of depletion of fossil fuels, the coal based power plants are facing acute
shortage of fuel supply added with increased emissions of poisonous gases such as
carbon monoxide, nitrogen oxides. Hence, in current scenario of power generation,
it becomes essential to optimize the parameters such as minimum fuel consumption,
maximum power output and minimize the emissions within the prescribed envi-
ronmental limits. The authors proposed a constraint handling method incorporating
the PSO algorithm for the power generation application. The same method will be
applicable mainly to coal fired power plants but can also be extended to similar appli-
cations where the above three parameters need to be optimized simultaneously. The
authors incorporated the dominance concept and used a few selection mechanism
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rules to guide the search direction from infeasible to feasible region. The method is
independent of parameters that to be tuned by the user.

3.8 Aircraft Landing Schedule Optimization

The Air Traffic Control (ATC) on all the major and busy airports round the globe
faces the difficulty of scheduling the flights landings on daily basis. The ATC has to
schedule flight landing within a small time frame with sufficient separation between
adjacent flight landing, such that total delay and total cost is minimized without
compromising with the comfort and safety of the passengers. The authors [54] have
focused for the development of a C-EMO problem that occurs in ATC. They have
proposed two methods to handle constraints which is able to locate feasible region
in a search space while NSGA-II and other first-come-first-served (FCFS) approach
is inefficient in finding the feasible solutions.

3.9 Automotive Deployment Problem Optimization

The automotive industry installs Electronic Control Units (ECU) and data buses on
vehicles of same type. There are approximately 50–80 ECUs which are individually
connected to one of the 3–5 data buses. The software deployment problem has been
formulated by the authors [55] in the form of bi-objective such that data transmission
reliability is maximized and communication overhead is minimized. The reliability
of data transmission is associated with functions such as precise actuation of air bag
system based on the reliable data received from crash detection sensor to ECUwhich
is passed on to airbag firing unit in quick succession such that overhead is minimum.
The authors have used EA by incorporating the realistic constraints such as number
of components on single ECU and size of ECUmemory and compared the effects of
diverse operators and constraint handlingmethods. Themethod consists of constraint
handling mechanism coupled with repair mechanism.

3.10 Optimization of Electric Power System Emission

The main aim of Economic Power Dispatch (EPD) of electric power generation is to
have optimal number of electricity generation facilities, which can meet the system
load requirements, at the minimum possible fuel cost, satisfying all transmission and
operational constraints including reduction in emission of toxic gases such as sulfur
oxides and nitrogen oxides. The authors [56] developed a constrained differential
evolution (DE) algorithm which is successfully tested and examined on the standard
IEEE 30-bus test system.
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3.11 Optimization of Planetary Gear Train

The Planetary gear train consists of two gears mounted so that the center of one
gear revolves around the center of the other. This is used for applications such as 3D
printing, automatic transmissions, etc. Themulti-objective optimizationofmultistage
planetary gear train is done by [57] which is a complicated problem due to the
presence of integer variables. The twomain contradicting objective functions include
gear box volume and surface fatigue life factor which have been minimized by
using Sequential Quadratic Programming (SQP) optimization technique and (NSGA
II) [14]. It is observed that NSGA-II gives impressive results and concluded that
planetary gear train occupies less volume and increases the efficiency of the system.

3.12 Propeller Optimization

A new constraint-handling technique for C-EMO is proposed based on behavioural
memory technique (BMT) [58]. Initially, BMT was proposed for single objective
optimization. The authors extended BMT technique for C-EMO by integrating with
NSGA-II [14]. The multi-objective BMT is compared with an extra technique (a
technique that in which summation of constraint violations are used) and constrained
Pareto dominance technique. The comparative study showed that multi-objective
BMT outperforms others.

3.13 Optimization of Compact Heat Exchanger

Due to the advancement in heat transfer technology and development of materials
there has been tremendous improvement in the heat exchanger performance. The
unique and distinctive feature of compact heat exchanger is a large heat transfer
surface area per unit volume of the exchanger and they are widely used in various
industries. The authors [59] have considered two conflicting objective functions in
order to maximize the effectiveness and minimize total pressure drop for a triangular
fin geometry with geometric constraints for a compact heat exchanger. The analysis
has been carried out by integrating Computational Fluid Dynamics (CFD), Artificial
Neural network (ANN) and NSGA-II [14] which has been named as CAN. The post
optimal analysis concludes that the increase in heat transfer surface area does not
have severe effect on the pressure drop.

3.14 Gait Planning of Biped Robot

Biped robot is a type of humanoid robot which resembles real human motions has
been an active research topic in the field of bio-mechanics to understand the human
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body structure and behavior. The authors [60] have usedmulti-objective optimization
in gait planning of a 7-dof biped robot while it ascends and descends staircases. The
conflicting objective functions selected aremaximumdynamic balance andminimum
power consumption. Both GA and PSO Algorithm has been used to solve both
constrained and unconstrained optimization problem. The study has also showed the
performance of PSO is better than GA in terms of convergence, speed and diversity.

3.15 Optimize Boiler Combustion Process

The coal fired power plants are required to operate on high combustion efficiency
with minimum carbon emission. But, the efficiency is greatly affected by slagging
which occur if furnace exit gas temperature exceeds the fusion temperature of ash
from the coal being fired and later deposits on furnace walls thereby reducing heat
transfer. In this study authors [61] have integrated NSGA-II with Computational
Fluid Dynamics (CFD) in order to optimize the boiler combustion process using the
objective functions as the flue gas temperature field value and the heat transfer rate of
water wall. The results are compared with conventional neural network based boiler
optimization methods and the proposed method is better in terms of performance.
The results maintains higher heat transfer rate of boiler as well as temperature in the
vicinity of the boiler furnace within the ash melting temperature limit.

3.16 Aircraft Design for Emission and Cost Reductions

In the era of environmental protection, the aircraft which is the fastest mode of
transportation, has to also deal with strict regulation of pollutants emissions which
includes carbon dioxide, nitrogen oxides, hydrocarbons, smoke, soot and other gases.
These gases not only responsible for polluting ground environment but also affects
upper atmosphere. In this study, authors [62] have targeted to minimize emissions
and cost using NSGA-II for constrained multi-objective optimization. A sensitive
analysis is performed which shows that on reduction of cruise altitude and mach
number results in lowering of global warming impact at the expense of operating
cost.

3.17 Topology Optimization

The study focuses establishing a constructive solid geometry-based topology opti-
mization (CSG-TOM) technique for the designing a compliant structure and mech-
anism using multi-objective optimization [63]. This method can deal with voids,
non-design constraints, and irregular boundary shapes of the design domain, which
are critical for any structural optimization. The constraints which restricts the search
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space are weight and volume fraction have been considered. NSGA-II is combined
with finite element technique to handle constraints and to achieve non-dominated
solutions. The authors compared the results with state of the art techniques for 2-D
and 3-D geometries.

3.18 Energy-Noise Wind Farm Layout Optimization

A constrained multi-objective energy-noise wind farm layout optimization is solved
[64]. The constraints are handled with dynamic penalty functions. Thereafter, a
hybrid approach is developed by combining a constraint Programming model with
penalty functions to improve the objective functions. In the initial generations, the
local search associated with the dynamic penalty approach used a smaller penalty
factor. This method tries to achieve the closest feasible solutions near to the infea-
sible region. But a global search has been carried out by the penalty functions to
penalize the objective functions of the infeasible region. It has been observed that
the hybrid approach has better performance than penalty approach but affected by
amount of feasible solutions corrected by the Constraint Programming model. The
computational cost also increases with the introduction of local and global searches.

3.19 Blade Design of Tiltrotor Aircraft

Tiltrotor aircraft are used for vertical take-off and landing as they have tiltable rotors
named as Proprotors and thus the capabilities of both helicopter and airplane. Such
kind of versatility gives the advantage of cutting down fuel consumption during
cruising and elevating the maximum cruising speed. However, the critical design
challenges for such type of proprotors are bit complex. The authors [65] have consid-
ered three objective functions which includes maximization of propulsive efficiency
during cruising at high speed, vertical climb and Maximization of the hover Figure
ofMerit. Here constrained NSGA-II [14] algorithm has been used for three objective
optimization process coupled with a 2D-aerodynamic solver.

3.20 Robot Gripper Design Optimization

The authors have dealt with design optimization of a 7-link gripper [66]. The actua-
tor model has been integrated into the robotic gripper problem. A generic actuation
system (for e.g. a voice coil actuator) where force proportional to the applied volt-
age is considered. The design variables are the link lengths and the joint angles.
Constraints that limits the search space are due to geometry and force requirements.
The constraints are non-linear and multi-modal in nature. The bi-objective problem
is solved using multi-objective evolutionary algorithm (MOEA) to optimally deter-
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mine the dimensions of links and the joint angle of the robot gripper. The authors
have developed a relationship between force and actuator displacement using the
set of non-dominated solutions which can provide can provide the decision maker
better insight to select the appropriate voltage and gripper design for appropriate
application.

4 Medical Applications

Although C-EMO has been widely applied in engineering problems, use of medical
application is rare and slowly gaining popularity. Some potential applications of
C-EMO in medical science are described below.

4.1 Radiation Treatment Planning

Cancer is fast turning into an epidemic in the world, about more than twenty two
million registered patients with most patients required to be treated with radiation
therapy. Radiation therapy uses high-energy radiation to shrink tumors and kill can-
cer cells by damaging their DNA. Cancer cells whose DNA gets damaged ultimately
stops dividing and dies.When the damaged cells die, they are broken down and elim-
inated by the body’s natural processes. Radiation therapy can also damage normal
cells leading to side-effects. Thus, amount of dose (energy deposited per unit mass)
and area of exposure needs to be carefully selected to minimize the damage to health
cells. The objectives of this radiation treatment planning comprises:- A high dose
to be delivered (but below the critical value fixed for different cells) to the target
area with a margin taking into account for position inaccuracies, patient movements,
etc. for specific number of treatment over a set period of time [69]. Preventing the
damage to healthy tissues and sensitive organs by minimizing the exposure time.
This problem can be posed as C-EMO problem with many critical constraints.

4.2 Medical Image Processing

In order to inspect the vital internal organs of human body, an oncologist heavily rely
on the information provided by various 3-D imaging techniques such as Computed
Tomography (CT), Ultrasound, Magnetic Resonance Imaging (MRI), etc. These
techniques combine the various projections obtained to create a 3D image. Thus for
Medical Image Reconstruction for CT image 3 objectives were considered by [70]
as to minimize the sum of the squared error between the original projection data and
the re-projection data,Optimize the local smoothness in the neighborhood pixel of the
reconstructed image and if the image is contaminated with noise, then maximize the
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entropy should be performed. This area also has a lot of opportunities for exploring
the capabilities of C-EMO techniques.

4.3 Computer Aided Diagnosis

This is concerned with analyzing the medical data with the help of computer, for
example a breast mammogram. In this, features extracted from both normal and
diseased cases are compared to arrive at a conclusion by a classifier. The classi-
fier considers two contradicting objective function namely sensitivity description
(abnormal cases) and specificity description (normal cases) [71]. Researchers are
encouraged to perform more deeper research in medical applications with C-EMO
techniques to serve the humanity.

5 Conclusions

In this chapter, we have discussed about constraint handling in multi-objective evo-
lutionary optimization techniques which have an added advantage over single objec-
tive optimization problems in context of efficient decision making. The real appli-
cation of C-EMO can be found in various branches of engineering such as basic
science, agricultural science, thermal science, electronics, robotics, operation man-
agement, etc. in which researchers have contributed. One of the potential area could
be medical science. C-EMO techniques can be applied in radiotherapy treatment
planning, brachytherapy, medical image processing, etc. Presently, researchers have
started putting focus on multi-objective optimization with more than three objec-
tives. Many-objective (more than 3 conflicting objectives) constraint handling will
be a potential research direction. There are still many void areas of application which
require attention of these techniques to attain optimized parameters for efficient and
fruitful results.
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