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Abstract The term fuzzy clustering usually refers to prototype-based methods that
optimize an objective function in order to find a (fuzzy) partition of a given data
set and are inspired by the classical c-means clustering algorithm. Possible trans-
fers of other classical approaches, particularly hierarchical agglomerative clustering,
received much less attention as starting points for developing fuzzy clustering meth-
ods. In this chapter we strive to improve this situation by presenting a (hierarchical)
agglomerative fuzzy clustering algorithm. We report experimental results on two
well-known data sets on which we compare our method to classical hierarchical
agglomerative clustering.

1 Introduction

The objective of clustering or cluster analysis is to divide a data set into groups
(so-called clusters) in such a way that data points in the same cluster are as similar
as possible and data points from different clusters are as dissimilar as possible (see,
e.g., [5, 10]), where the notion of similarity is often formalized by defining a distance
measure for the data points. Even in classical clustering the resulting grouping need
not be a partition (that is, in some approaches not all data points need to be assigned
to a group and the formed groups may overlap), but only if points are assigned to
different groups with different degrees of membership, one arrives at fuzzy clustering
[2, 3, 8, 14].

However, the term fuzzy clustering usually refers to a fairly limited set of methods,
which are prototype-based and optimize some objective function to find a good
(fuzzy) partition of the given data. Although classical clustering comprises many
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more methods than the well-known c-means algorithm (by which most fuzzy clus-
tering approaches are inspired), these other methods are only rarely “fuzzified”. This
is particularly true for hierarchical agglomerative clustering (HAC) [16], of which
only few fuzzy versions have been proposed.

Exceptions include [1, 7, 11]. Ghasemigol et al. [7] describes HAC for trapezoidal
fuzzy sets with either single or complete linkage, but is restricted to one dimension
due to its special distance function. Konkol [11] proposes an HAC algorithm for
crisp data based on fuzzy distances, which are effectively distances weighted by a
function of membership degrees. It mixes single and complete linkage. Bank and
Schwenker [1] merges clusters in the spirit of HAC, but keeps the original clusters
for possible additional mergers, so that a hierarchy in the form of a directed acyclic
graph results (while standard HAC produces a tree). Also noteworthy is [15], which
suggest a mixed approach, re-partitioning the result of fuzzy c-means clustering and
linking the partitions of two consecutive steps.

Related approaches include [6, 12] as well as its extension [9]. The first uses
a competitive agglomeration scheme and an extended objective function for fuzzy
c-means in order to reduce an overly large initial number of clusters to an “optimal”
number. The latter two change the term in the objective function that penalizes many
clusters from a quadratic expression to an entropy expression. Although fairly differ-
ent from hierarchical agglomerative clustering approaches, they share the property
that clusters are merged to find a good final partition, but they do not necessarily
produce a hierarchy.

Our approach is closest in spirit to [11], as it also relies on the standard scheme
of hierarchical agglomerative clustering, although we treat the original data points
as clusters already, while [11] keeps data points and clusters clearly separate.
Furthermore, [11] focuses on single and complete linkage while we use a centroid
scheme. Our approach also bears some relationship to [15] concerning the distances
of fuzzy sets, which [15] divides into three categories: (1) comparing membership
values, (2) considering spatial characteristics, and (3) characteristic indices. While
[15] relies on (2), we employ (1).

The remainder of this paper is structured as follows: in Sects. 2 and 3 we briefly
review standard fuzzy clustering and hierarchical agglomerative clustering, indicat-
ing which elements we use in our approach. In Sect. 4 we present our method and
in Sect. 5 we report experimental results. Finally, we draw conclusions from our
discussion in Sect. 6.

2 Fuzzy Clustering

The input to our clustering algorithm is a data set X = {x1, . . . , xn} with n data
points, each of which is anm-dimensional real-valued vector, that is, ∀ j; 1 ≤ j ≤ n :
x j = (x j1, . . . , x jm) ∈ R

m . Although HAC usually requires only a distance or sim-
ilarity matrix as input, we assume metric data, since a centroid scheme requires the
possibility to compute new center vectors.
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In standard fuzzy clustering one tries to minimize the objective function

J (X,C,U) =
c∑

i=1

n∑

j=1

uwi j d
2
i j ,

where C = {c1, . . . , cc} is the set of prototypes (often merely cluster centers), the
c × n matrix U = (ui j )1≤i≤c;1≤ j≤n is the partition matrix containing the degrees of
membershipwithwhich the data points belong to the clusters, the di j are the distances
between cluster ci and data point x j , and w, w > 1, is the fuzzifier (usually w = 2),
which controls the “softness” of the cluster boundaries (the larger w, the softer the
cluster boundaries). In order to avoid the trivial solution of setting all membership
degrees to zero, the constraints ∀ j; 1 ≤ j ≤ n : ∑c

i=1 ui j = 1 and ∀i; 1 ≤ i ≤ c :∑n
j=1 ui j > 0 are introduced.
A fuzzy clustering algorithm optimizes the above function, starting from a random

initialization of either the cluster prototypes or the partition matrix, in an alternating
fashion: (1) optimize membership degrees for fixed prototypes and (2) optimize
prototypes for fixedmembership degrees. From this schemewe take the computation
of membership degrees for w = 2, namely

ui j = d−2
i j∑c

k=1 d
−2
k j

.

We compute membership degrees for fuzzy clusters in an only slightly modified
fashion, which are then compared to decide which clusters to merge.

3 Hierarchical Agglomerative Clustering

As its name already indicates, hierarchical agglomerative clustering produces a
hierarchy of clusters in an agglomerative fashion, that is, by merging clusters (in
contrast to divise approaches, which split clusters). It starts by letting each data point
form its own cluster and then iteratively merges those two clusters that are most
similar (or closest to each other).

While the similarity (or distance) of the data points is an input to the procedure,
how the distances of (non-singleton) clusters are to bemeasured is a matter of choice.
Common options include (1) single linkage (cluster distances areminimum distances
of contained data points), (2) complete linkage (maximum distances of contained
data points), and (3) centroid (distances of cluster centroids). Note that the centroid
method requires that one can somehowcompute a cluster center (or at least an analog),
while single and complete linkage only require the initial similarity or distancematrix
of the data points. Because of this we assume metric data as input.

In the single and complete linkagemethods, clusters aremerged by simply pooling
the contained data points. In the centroid method, clusters are merged by computing



72 C. Borgelt and R. Kruse

a new cluster centroid as the weighted mean of the centroids of the clusters to be
merged, where the weights are provided by the relative number of data points in the
clusters to be merged.

4 Agglomerative Fuzzy Clustering

Our algorithm builds on the idea to see the given set of data points as the initial cluster
centers (as in standard HAC) and to compute membership degrees of all data points
to these cluster centers. However, for this the membership computation reviewed
in Sect. 2 is not quite appropriate, since it leads to each data point being assigned
to itself and to itself only (only one membership degree is 1, all others are 0). As
a consequence, there would be no similarity between any two clusters (at least in
the initial partition) and thus no proper way to choose a cluster merger. In order to
circumvent this problem, we draw on the concept of a “raw” membership degree,
which is computed from a distance via a radial function, where “raw” means that its
value is not normalized to sum 1 over the clusters [4]. Possible choices for such a
radial function (with parameters α and σ2, respectively) are

fCauchy(r;α) = 1

r2 + α
and fGauss(r;σ2) = e− r2

2σ2 ,

where r is the distance to a cluster center. Using these functions (withα > 0) prevents
singularities at the cluster centers that occurwith the simple inverted squared distance
(that is, for α = 0) and thus allows us to compute suitable membership degrees even
for the initial set of clusters, namely as

u(α)i j = fCauchy(di j ;α)∑c
k=1 fCauchy(dkj ;α)

or u(σ
2)

i j = fGauss(di j ;σ2)∑c
k=1 fGauss(dkj ;σ2)

.

Based on these membership degrees two clusters ci and ck can now be compared by
aggregating (here: simply summing) point-wise comparisons:

δik =
n∑

j=1

g(ui j , ukj ),

where g is an appropriately chosen difference function. Here we consider

gabs(x, y) = |x − y|, gsqr(x, y) = (x − y)2 and gwgt(x, y) = (x − y)(x + y).

The first function, gabs, may appear the most natural choice, while gsqr generally
weights large differences more strongly and gwgt emphasizes large differences of
large membership degrees and thus focuses on close neighbors.
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A fuzzy HAC algorithm can now be derived in a standard fashion: compute the
initial membership degrees by using each data point as a cluster center. Compute the
cluster dissimilarities δik for this initial set of clusters. Merge the two clusters ci and
ck , for which δik is smallest, according to

c∗ = 1∑n
j=1(ui j + ukj )

(
ci

n∑

j=1

ui j + ck
n∑

j=1

ukj

)
.

That is, the sum of membership degrees for each cluster is used as the relative weight
of the cluster for the merging and thus (quite naturally) replaces the number of data
points in the classical HAC scheme. The merged clusters ci and ck are removed and
replaced by the result c∗ of the merger.

For the next step membership degrees and cluster dissimilarities are re-computed
and again the two least dissimilar clusters are merged. This process is repeated until
only one cluster remains. From the resulting hierarchy a suitable partition may then
be chosen to obtain a final result (if so desired), which may be further optimized by
applying standard fuzzy c-means clustering.

Note that this agglomerative fuzzy clustering scheme is computationally consid-
erably more expensive than standard HAC, since all membership degrees and cluster
dissimilarities need to be re-computed in each step.

5 Experimental Results

We implemented our agglomerative fuzzy clustering method prototypically in
Python, allowing for the two radial functions (Cauchy and Gauss, with parame-
ters α and σ2) to compute membership degrees and the three cluster dissimilarity
measures (gabs, gsqr and gwgt) to decide which clusters to merge. We applied this
implementation in a simple first test of functionality to two well-known data sets
from the UCI machine learning repository [13], namely the Iris data and the Wine
data. For the clustering runs we used attributes petal_length and petal_width for
the Iris data and attributes 7, 10 and 13 for the Wine data, since these are the most
informative attributes w.r.t. the class structure of these data sets. This restriction of
the attributes also allows us to produce (low-dimensional) diagrams with which the
cluster hierarchies can be easily compared. The latter is important, since it is difficult
to find an undisputed way of evaluating clustering results. Visual representations in
diagrams at least allow to compare the results subjectively and provide some insight
about the properties of the different variants.

As a comparisonweapplied standard hierarchical agglomerative clustering (HAC)
with the centroid method for linking clusters. As it also produces a hierarchy of clus-
ters (cluster tree) the results can be displayed in the same manner and thus are
easy to compare. For both standard HAC and agglomerative fuzzy clustering we
z-normalized the data (that is, we normalized each attribute to mean 0 and stan-
dard deviation 1) in order to avoid effects resulting from different scales (which is
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particularly important for attribute 13 of the Wine data set, which spans a much
larger range than all other attributes and thus would dominate the clustering without
normalization).

A selection of results we obtained are shown in Figs. 1 and 2 for the Iris data and in
Figs. 3 and 4 for the Wine data. Since in our approach cluster dissimilarity basically
depends on all data points, the distribution of the data points in the data space has

Fig. 1 Result of standard hierarchical agglomerative clustering (i.e. crisp partitions) with the cen-
troid method on the well-known Iris data, attributes petal_length (horizontal) and petal_width
(vertical). The colors encode the step in which clusters are merged (from bottom to top on the color
bar shown on the right); the data points are shown in gray

fCauchy, α =1 .0, gabs fCauchy, α =0 .2, gabs fCauchy, α =0 .2, gsqr

fGauss, σ2 =1 .0, gabs fGauss, σ2 =0 .2, gsqr fGauss, σ2 =0 .2, gwgt

Fig. 2 Results of different versions of agglomerative fuzzy clustering on the Iris data, attributes
petal_length (horizontal) and petal_width (vertical)
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Fig. 3 Result of standard hierarchical agglomerative clustering (i.e. crisp partitions) with the cen-
troid method on the Wine data, attributes 7 and 10 (left), 7 and 13 (middle) and 10 and 13 (right).
The colors encode the step in which clusters are merged (from bottom to top on the color bar shown
on the right); the data points are shown in gray

fCauchy, α = 1.0, gabs

fCauchy, α = 0.2, gsqr

fGauss, σ2 = 1.0, gwgt

Fig. 4 Results of different versions of agglomerative fuzzy clustering on theWine data, projections
to attributes 7 and 10 (left), 7 and 13 (middle) and 10 and 13 (right)
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a stronger influence on the mergers to be carried out. For example, for the Iris data,
which ismainly located along adiagonal of the data space,mergerswith our algorithm
tend to be carried out more often in a direction perpendicular to this diagonal. How
strong this effect is depends on the parameters: a smaller α or σ2 reduces this effect.
For the wine data set, which has a more complex data distribution, we believe that
we can claim that the resulting cluster trees better respects the distribution of the data
points than standard HAC does.

6 Conclusions

We described a (hierarchical) agglomerative fuzzy clustering algorithm (fuzzy HAC)
that is based on a cluster dissimilarity measure derived from aggregated point-wise
membership differences. Although it is computationally more expensive than clas-
sical (crisp) HAC, a subjective evaluation of its results seems to indicate that it may
be able to produce cluster hierarchies that better fit the spatial distribution of the
data points than the hierarchy obtained with classical HAC. Future work includes
a more thorough investigation of the effects of its parameters (α and σ2 and the
choice of the dissimilarity function, as well as the fuzzifier, which we neglected in
this paper). Furthermore, an intermediate (partial) optimization of the cluster centers
with fuzzy c-means is worth to be examined and may make it possible to return to
simple inverted squared distances to compute the membership degrees.
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