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Abstract We describe a simple method for making inference on a functional of
a multivariate distribution. The method is based on a copula representation of the
multivariate distribution, where copula is a flexible probabilistic tool that allows the
researcher to model the joint distribution of a random vector in two separate steps:
the marginal distributions and a copula function which captures the dependence
structure among the vector components. The method is also based on the properties
of an approximate BayesianMonteCarlo algorithm,where the proposed values of the
functional of interest are weighted in terms of their empirical likelihood. Thismethod
is particularly useful when the likelihood function associatedwith theworkingmodel
is too costly to evaluate or when the working model is only partially specified.

1 Introduction

Theoretical proposals are now available to model complex situations, thanks to the
recent advances in computational methodologies and to the increased power of mod-
ern computers. In particular, there are newmethods formultivariate analysis, however
the goal of modelling complex multivariate structures and estimating them has not
yet been reached in a completely satisfactory way.

Copula models have been introduced as probabilistic tools to describe a multivari-
ate randomvector via themarginal distributions and a copula functionwhich captures
the dependence structure among the vector components, thanks to the Sklar’s theo-
rem [1], which states that any d-dimensional absolutely continuous density can be
uniquely represented as

f (x1, . . . , xd) = f1(x1) . . . fd(xd)c12...d(F1(x1), . . . , Fd(xd)). (1)
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While it is often straightforward to produce reliable estimates of the marginals, mak-
ing inference on the dependence structure is more complex. Major areas of appli-
cation include econometrics, hydrological engineering, biomedical science, signal
processing and finance.

In a parametric frequentist approach to copula models, there are no broadly satis-
factorymethods for the joint estimation ofmarginal and copula parameters. Themost
popular method is the so called Inference From the Margins (IFM), where the para-
meters of the marginal distributions are estimated first, and then pseudo-observations
are obtained by pluggin-in the estimates of the marginal parameters. Then inference
on the copula parameters is performed using the pseudo-observations: this approach
obviously does not account for the uncertainty on the estimation of the marginal
parameters. Bayesian alternatives are not yet fully developed, although there are
remarkable exceptions ([2, 3], among others).

In this work we consider the general problem of estimating some specific quan-
tities of interest of a generic copula (such as, for example, tail dependence index
or Spearman’s ρ) by adopting an approximate Bayesian approach along the lines of
[4]. In particular, we discuss the use of the an approximate Bayesian computation
algorithm based on empirical likelihood weights (in the following, BCEL ), based on
the empirical likelihood approximation of the marginal likelihood of the quantity of
interest (see [5] for a complete and recent survey on empirical likelihood methods).
This approach produces an approximation of the posterior distribution of the quanti-
ties of interest, based on an approximation of the likelihood function and on a Monte
Carlo approximation of the posterior distribution via simulations. Our approach is
general, in the sense that it could be adapted both to parametric and nonparametric
modelling of the marginal distributions. Also, the use of empirical likelihood avoids
the need of choosing a specific parametric copula model.

2 Approximate Bayesian Computation

The idea underlying likelihood-freemethods (or approximate Bayesian computation,
ABC) is to propose a candidate θ′ and to generate a data set from the working model
with parameter set to θ′. If the observed and the simulated data are similar “in some
way”, then the proposed value is considered a good candidate to have generated
the data and becomes part of the sample which will form the approximation to the
posterior distribution. Conversely, if the observed and the simulated data are too
different, the proposed θ′ is discarded.

In order to implement a basic version of the ABC algorithm one needs to specify
a set of summary statistics to make comparisons, a distance to quantify comparisons
and a tolerance level ε > 0.

The basic ABC may be inefficient, because it proposes values of θ from its prior
distribution, therefore, ABC algorithms are often linked with other methods, for
instance, with Markov Chain Monte Carlo (MCMC) or Sequential Monte Carlo
(SMC) methods. In this work, we will focus on a different ABC approach, described
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in Algorithm 1 where M simulations from the prior are generated; this method
avoids the most expensive step in computational time, that is the generation of new
data sets. A detailed description of the method is in [4]; it represents a re-sampling
scheme where the proposed values are re-sampled with weights proportional to their
empirical likelihood values.

for i = 1 to M do
repeat
Generate θi from the prior distribution π(θ)
Set the weight for θi as ωi = LEL (θi ; x).
end for
for i = 1 to M do
Draw, with replacement, a value θi from the previous set of M values using weights
ωi , i = 1, . . . , M .
end for

Algorithm 1: BCEL algorithm

3 The Proposed Approach

We propose to adapt the BCEL algorithm to a situation where the statistical model
is only partially specified and the main goal is the estimation of a finite dimensional
quantity of interest, i.e. a situation where the complete structure of the mutual depen-
dence is considered a nuisance parameter and it is kept as general as possible. While
the main interest of [4] was the approximation of the full posterior distribution of
the parameters of the model, here we use the empirical likelihood (EL) approach to
avoid a parametric definition of the model for the observed data and focus only on
a particular functional of the distribution, which summarizes the correlation among
the variables.

We assume that a data set is available in the form of a size n × d matrix X , where
n is the sample size and d is the number of variables, that is

X =

⎛
⎜⎜⎝
x11 x12 . . . x1d
x21 x22 . . . x2d
. . . . . . xi j . . .

xn1 xn2 . . . xnd

⎞
⎟⎟⎠ .

In the following, X [·, j] will denote the j-th column (variable) and X [i,·] the i-
th row of X , respectively. For each j = 1, . . . , d, we consider the available data
information in X [·, j] to produce an estimate of the marginal CDF of X [·, j]. Let
λ j = (λ(1)

j ,λ(2)
j , . . . λ(B)

j ), j = 1, 2, . . . d, be the posterior sample of size B obtained
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for the distribution of X [·, j]. Notice that the vector λ j can be either a sample from
the posterior distribution of the parameters of the model we have adopted for X [·, j]
or a posterior sample of CDF’s in a nonparametric set-up.

Then we use a copula representation for estimating the multivariate dependence
structure of the random vector X ,

H(x1, . . . , xd) = Cθ

(
F1(x1), F2(x2), . . . , Fd(xd)

)
(2)

where θ is the parameter related to the copula function.
Estimating the copula Cθ(·) can be managed either using some parametric model

for the copula (such as Clayton, Gaussian, Skew-t, Gumbel, etc.) or using a nonpara-
metric approach. In this paper, we take a nonparametric route (in many situations it
is difficult to prefer a model instead of another) and we concentrate on some specific
function ofCθ(·), sayϕ = T (F), for example the Spearman’smeasure of association
ρ between two components of X , say Xh and X j , which is defined as the correlation
coefficient among the transformed values Ui = Fi (xi ), i = j, h:

ρ = 12
∫ 1

0

∫ 1

0

(
C(u j , uh) − uhu j

)
du jduh . (3)

Its sampling counterpart ρn is the correlation among ranks R and S of the data
observed for the two variables of interest and it can be written as:

ρn = 1

n

n∑
i=1

(
12

n2 − 1
Ri Si

)
− 3

n + 1

n − 1
. (4)

If interest lies only in a functional of the copula, instead of in its entire structure,
we use Algorithm 2 to produce an approximation of the posterior distribution of the
functional itself ϕ = T (F).

It is important to note that the approximation might hold only asymptotically:
for example, if the sample version of the Spearman’s ρ is used to approximate the
posterior distribution of ρ, one has to consider that the sample version is only asymp-
totically unbiased. One advantage of the proposedAlgorithm is that prior information
is only provided for the marginal distributions and for ϕ; so the prior elicitation is
easier: it is not necessary to define a prior distribution for the entire copula function.

Moreover, the method is robust with respect to different prior opinions about non-
essential aspects of the dependence structure andwith respect to the copula definition.
The most important disadvantage of the method is its inefficiency when compared to
a parametric copula, as usual in nonparametric or semiparametric setting; however
this is true only under the assumption that the parametric copula is the true model.

From a computational perspective Algorithm 2 is quite demanding, since one
needs to run a BCEL algorithm for each row of the posterior sample from the mar-
ginals. Even though the estimation of the marginal densities of the X [·, j]’s might not
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[1:] For b = 1, . . . , B, use the s-th row of the posterior simulation λ
(b)
1 ,λ

(b)
2 , . . . ,λ

(b)
d to

create a matrix of uniformly distributed pseudo-observations

u(b) =

⎛
⎜⎜⎜⎝

u(b)
11 u(b)

12 . . . u(b)
1d

u(b)
21 u(b)

22 . . . u(b)
2d

. . . . . . u(b)
i j . . .

u(b)
n1 u(b)

n2 . . . u(b)
nd

⎞
⎟⎟⎟⎠

with u(b)
i j = Fj

(
xi j ; λ

(b)
j

)
.

[2:] Given a prior distribution π(ϕ) for the quantity of interest ϕ,
for m = 1, . . . , M ,

1. draw ϕ(m) ∼ π(ϕ);
2. compute EL

(
ϕ(m); u(b)

) = ωmb; b = 1, . . . , B.

3. take the average weight ωm = B−1 ∑B
b=1 ωmb

end for
[3:] re-sample - with replacement - from {(ϕ(b),ωb

)
, b = 1, . . . , B}.

Algorithm 2: ABCOP algorithm

require a huge number of iterations B, still it might be very expensive to run B differ-
ent BCEL algorithms. To avoid this computational burden, we propose to modify the
above algorithm by simply performing a single run of the BCEL algorithm, where,
for each iteration m = 1, . . . , M , a randomly selected (among the B rows) row λb

is used to transform the actual data into pseudo-observations lying in [0, 1]d .

4 An Example: Spearman’s ρ

The definition of the Spearman’s ρ given in (4) can be interpreted as an average
distance between the copula C and the independence copula Π(u, v) = uv. Thus,
in a d-dimensional setting the multivariate ρ becomes

ρ =
∫
[0,1]d C(u)du − ∫

[0,1]d Π(u)du∫
[0,1]d M(u)du − ∫

[0,1]d Π(u)du

= d + 1

2d − (d + 1)

{
2d

∫
[0,1]d

C(u)du − 1

}
. (5)

The multivariate extension of the empirical copula is

Ĉn(u) = 1

n

n∑
i=1

d∏
j=1

I{
Ûi jn≤ui

} f or u = (u1, u2, . . . , un) ∈ [0, 1]d (6)
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where Ûi jn = F̂(Xi j ) for i = 1, . . . , d and F̂(·) is the empiricalmarginal distribution
function. Therefore, a nonparametric estimator of ρ is

ρ̂1n = h(d)

{
2d

∫
[0,1]d

Ĉn(u)du − 1

}
= h(d)

⎧⎨
⎩
2d

n

n∑
i=1

d∏
j=1

(1 − Ûi jn) − 1

⎫⎬
⎭ (7)

where h(d) = (d + 1)/(2d − d − 1). An alternative estimator is

ρ̂2n = h(d)

{
2d

∫
[0,1]d

Π(u)dĈ(u) − 1

}
= h(d)

⎧⎨
⎩
2d

n

n∑
i=1

d∏
j=1

Ûi jn − 1

⎫⎬
⎭ (8)

Asymptotic properties of these estimators are assessed in [6].
Once an estimator of the multivariate version of ρ is available, it is possible to

apply the procedure presented in Sect. 3. On the other hand, the variance of the
proposed estimators can be explicitly computed only in few cases, for example in the
case of the independence copula. [6] proposes to estimate it in a nonparametric way
via a bootstrap method. Nevertheless, in practice this method tends to underestimate
the variance, as it is shown in Fig. 1, where the frequentist procedure for a fixed n
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Fig. 1 100 simulations from a Clayton copula: sample size is 100; the true value of ρ is equal to 0.5
(red line). The results for the frequentist procedure are available above, the ones for the Bayesian
procedure are available below. The black lines are the point estimates of ρ1, the blue lines represent
the lower and the upper bounds of the intervals of level 0.95
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leads to a coverage of about 10% (coverage of 0% for the interval of ρ̂2), while the
proposed Bayesian method has the expected coverage, even if the average length is
necessarily greater, about 0.822, i.e. the intervals contain almost half of the parameter
space.

5 Further Research

Algorithm 2 produces an approximation of the posterior distribution of any summary
of the multivariate dependence, once a multivariate estimator is available, as in the
case of the Spearman’s ρ. In some cases the analysis may be focused on measures
of dependence as functions of some available conditioning variables. In the case
of two response variables X1 and X2, both depending on the same covariate Z ,
the observations (x1i , x2i , zi ) follow a distribution FX1,X2|Z (·|z). [7] proposes the
following estimator for the Spearman’s ρ.

ρ̂n(x) = 12
n∑

i=1

wni (x, hn)(1 − Ûi1)(1 − Ûi2) (9)

where Ûi, j = ∑n
i ′=1 wi ′(x, hn)I(Ui ′ j ≤ ui j ) for j = 1, 2, Ui j = Fj (xi j ) and

wi j (x, hn) are appropriately chosen weights depending on xi j and a bandwidth hn ,
for example kernel-based weights as the Nadaraya-Watson. Unfortunately, estimator
(9) is based on an estimator of the conditional copula, given in [7], which is biased.
A first simulation study implemented for 10,000 simulations of the function ρ(x)
(see Fig. 2) shows that, while the estimator (9) is not able to capture the true function

Fig. 2 Simulations from the
conditional Clayton copula
based on 10,000 ABC
simulations of ρ(x) and 100
data points: true function
ρ(x) in black, Bayesian
estimates in red (median,
0.05 and 0.95 credible
bands), frequentist estimate
in blue
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(it underestimates the dependence among values), the Bayesian estimate obtained
via Algorithm 2 can recover it, even if the variance increases as the value of the
covariate increases. Further research will be focused on trying to understand why
this happens and on producing more stable estimates.
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