
Spatial Outlier Detection Using GAMs
and Geographical Information Systems

Alfonso García-Pérez and Yolanda Cabrero-Ortega

Abstract A spatial (local) outlier is a value that differs from its neighbors. The usual
way in which these are detected is a complicated task, especially if the data refer to
many locations. In this paper we propose a different approach to this problem that
consists in considering outlying slopes in an interpolationmap of the observations, as
indicators of local outliers. To do this, we transfer geographical properties and tools
to this task using a Geographical Information System (GIS) analysis. To start, we
use two completely different techniques in the detection of possible spatial outliers:
First, using the observations as heights in a map and, secondly, using the residuals of
a robust Generalized AdditiveModel (GAM) fit.With this process we obtain areas of
possible spatial outliers (called hotspots) reducing the set of all locations to a small
and manageable set of points. Then we compute the probability of such a big slope at
each of the hotspots after fitting a classical GAM to the observations. Observations
with a very low probability of such slope will finally be labelled as spatial outliers.

1 Introduction. Spatial Outliers

A local or spatial outlier [3] or [6] is an observation that differs from its neighbors,
i.e., z(s0), the value of the variable of interest Z at location s0, is a local outlier if it
differs from z(s0 + Δs0) where Δs0 defines a neighborhood of location s0.

The usual method used to detect local outliers is somewhat complicated because,
first, we have to define what is a neighborhood, i.e., what is “close”; then, we have
to select some locations inside the neighborhood, to compute and compare the value
of Z at these locations.
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In the first part of the paper we propose two novel techniques based on a GIS
for easily and quickly detect possible local outliers. The first one, developed in
Sect. 2, is based on making a geographical map where the heights of the ground
correspond to the observations. This map of separate heights is completed by means
of a Triangulated Irregular Network (TIN) interpolation. Once the geographical map
has been made, local outliers are easily identified as hills with big slopes.

The second technique, developed in Sect. 3, consists in fitting a robust GAM to
the observations. Then, we do the previous process (interpolation plus detection of
outlying slopes) with the residuals of this robust fit.

These ideas have been previously used (with some variants) in [5, 10, 12]. Here
we extend their ideas considering a more general model, a GAM one, because this
is the model usually considered in a fit of spatial data.

Once identified possible local outliers, we compute, in Sect. 4, the probability of
such an extreme slope according to a model fitted to the data. If, according to this
model (i.e., assuming that the model is correct), the probability of such extreme slope
is small, the hotspot is labelled as a local outlier.

2 Spatial Outlier Detection by Interpolation

We propose, first, to interpolate the observations z(si ) using a TIN interpolation, that
is implemented in Quantum GIS (QGIS), and that essentially means to interpolate
the observations with triangles. Then we use the Geographic Resources Analysis
Support System (GRASS) to compute the slopes of all the triangles obtained with
the previous TIN interpolation. Finally, we reclassify the slopes, using GRASS grass
again, looking for outlying slopes. All locations with big slopes will be considered
as hotspots, i.e., potential outliers.

Other interpolation procedures could be used, such as Inverse DistanceWeighting
(IDW), but TIN works well for data with some relationship to other ones across the
grid, that should be the kind of data usually considered in a spatial data problem, [8].

2.1 Multivariate Spatial Outliers

If we havemultivariate observations, we first transform them into the scores obtained
from a Principal Component Analysis PC1, …, PCp. With this process, similar to
Principal Components RegressionAnalysis, we can apply the previousQGISmethod
to each one dimensional independent variable, PCi , obtaining so p layers of hotspots
(one layer for each PCi ). The intersection of all of them will be the set of possible
multivariate outliers. Moreover, in this way we also have a marginal analysis for each
univariate variable.
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Example 1 Let us consider Guerry data, [9], available in the R package with the
same name. This data set has been analyzed in [6] and, as there, here we only use
85 departments, excluding Corsica. The two variables considered are also “popula-
tion per crime against persons” (PER) and “population per crime against property”
(PROP).

As we mentioned before, the descriptive process of detection of possible outliers,
i.e., hotspots, consists in using QGIS, (a) incorporating first into QGIS the vectorial
data, france1.txt, of the scores, after transforming the original observations with the
two Principal Components PC1 and PC2; (b) computing a TIN interpolation for
each new variable PC1 and PC2; (c) computing with GRASS the slopes from a
Digital Elevation Model (DEM); (d) using again GRASS to reclassify slopes in two
groups: small slopes and big slopes.

The details of the computations of all the examples in the paper are at http://www.
uned.es/pfacs-estadistica-aplicada/smps.htm.

In these computations, we obtain for PC1 a plot (and a table) of departments
with slopes higher than 30% and, for PC2, slopes higher than 19%. The intersection
of both layers is showed in Fig. 1 where the outlying slopes (the unfilled circles)
correspond to the departments Ain, Ardeche, Correze, Creuse, Indre, Isere, Jura,
Loire, Rhone, Saone-et-Loire and Haute-Vienne.

Fig. 1 Slopes reclassification (PC1 and PC2)

http://www.uned.es/pfacs-estadistica-aplicada/smps.htm
http://www.uned.es/pfacs-estadistica-aplicada/smps.htm
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3 Spatial Outlier Detection by a Robust GAM

The method proposed in the previous section is an exploratory technique based only
on a GIS. In this section we propose to fit a robust GAM to the spatial observations
zi = Z(si ). In this way, local large residuals will give us possible spatial outliers. We
consider a GAM because this type of models is generally used for modeling spatial
data.

With a GAM, [11], we assume that (univariate) observations are explained as

zi = h(si ) + h(u1i ) + · · · + h(uki ) + ei (1)

where si = (xi , yi ) are the coordinates of zi ; u = (u1, . . . , uk) is a vector of covari-
ates, and h is a smooth function that is expressed in terms of a basis {b1, . . . bq}
as

h(u) =
q∑

j=1

b j (u)β j (2)

for some unknown parameters β j ([15], pp. 122). The errors ei must be, as usual,
i.i.d. N (0,σ) random variables.

A key point in our proposal is to consider the coordinates si = (xi , yi ) of the
observations zi as a covariate in model (1).

The function h could be different for each covariate and, in some cases, the
coordinates covariate is split into two covariates being the model

zi = h1(xi ) + h2(yi ) + h3(u1i ) + · · · + hk+2(uki ) + ei .

We can summarize model (1) as zi = H(si , u1i , . . . , uki ) + ei . This approach
extends the ideas of [7] because they consider (pp. 52) a linear regression model.
Also, some aspects of the papers [12] or [5] are extended in this way.

The robust GAM that we shall fit is the model proposed in [13, 14] although other
possible robust GAMs could be the proposed in [1] or [4].

The robust M-type estimators β̂ for the GAM proposed byWong are the solution
of the following system of estimating equations

n∑

i=1

[
w(μi ) ν(zi ,μi )μ′

i − a(β) − 1

n
Sβ

]
= 0

where
μi = E[zi |ui ]; β = (β1, . . . ,βq)

t ; μ′
i = ∂μi/∂β; ν(zi ,μi ) = (zi − μi )/V (μi );

w(μi ) = 1

E[ϕ′
c((zi − μi )/V 1/2(μi ))]
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a(β) = 1

n

n∑

i=1

Ezi |ui [ν(zi ,μi )] w(μi )μ′
i

ϕc theHuber-type functionwith tuning constant c, andS = 2λD, beingλ a smoothing
parameter and D a pre-specified penalty matrix.

The previous system of estimating equations, hence, is formed by the robust
quasi-likelihood equations introduced in [2], plus the usual penalized GAM part.

After we have a good fit, the residuals of this fit, i.e., the differences between the
observed and the predicted values, will help us to detect possible spatial outliers. To
do this we compute the residuals (or the scores of the residuals if zi (s0) is multi-
variate), we incorporate them into QGIS and we follow the same process than in the
previous section: A TIN interpolation, the slopes obtained with GRASS and, finally,
a reclassification with GRASS looking for outlying slopes.

Example 2 Let us consider Guerry data again, [9].We first fit a robust GAM [13, 14]
for each dependent variable, PER and PROP, and we compute the residuals for each
fit. We then compute the scores of these residuals and, again with QGIS, we obtain
departments with slopes both, higher than 30% for PC1 and higher than 13% for
PC2, Fig. 2. The hotspots obtained correspond to the departments Hautes-Alpes,
Ardeche, Creuse, Indre, Loire, Rhone, Saone-et-Loire, Seine and Haute-Vienne.

Fig. 2 Slopes reclassification of the scores of the residuals (PC1 and PC2)
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4 Identification of Spatial Outliers

With the procedures considered in the two previous sections we obtain a set of possi-
ble local outliers. In this section we compute, mathematically, if the behavior around
a hotspot is very unlikely or not to label it as an actual spatial outlier, computing the
probability of obtaining an slope as big as the one obtained at a given location s0.
Considering the framework of the last section, a large (positive or negative) slope,
i.e., a large derivative of function H (h in fact) at s0 will give us a good idea if z(s0)
is a local outlier or not.

To compute the probabilities of large slopes at the hotspots previously identified,
we first fit a classical GAM.We consider now a classical GAM fit instead of a robust
one to magnify theirs slopes because the classical model will be more sensitive than
the robust and the slopes less soft.Also becauseweknow the (asymptotic) distribution
of the estimators of the parameters in a classical GAM but not in the robust one.

From a mathematical point of view, the slope at a point s0 in the direction v is
stated as the directional derivative along v (unit vector) at s0.

If we represent, as usual, by Dvh(s0) the collection of directional derivatives of
function h (assuming that it is differentiable) along all directions v (unit vectors)
at s0 and by MS the maximum slope, i.e., MS(s0) = supv |Dvh(s0)| , we compute
the probability of obtaining the observed maximum slopems(s0) , i.e., P{MS(s0) ≥
ms(s0)}. If this probability is low (for instance lower than 0.05), we shall label z(s0)
as a local outlier (more formally, we could say that we are rejecting the hypothesis
of being zero the slope at s0, i.e., that z(s0) is not a local outlier) and, as the smaller
the probability, the greater should be considered z(s0) as a local outlier.

Because we have assumed that the smooth function h has a representation in terms
of a basis, (2), the slopewill depend on the estimators of the parametersβ j , estimators
that are approximately normal distributed ([15], pp. 189) if the zi are normal.

From vector calculus, we known that the largest value for the slope at a location
s0 is gradient norm, i.e.,

MS(s0) = sup
v

|Dvh(s0)| = ||∇h(s0)|| =
√√√√

(
∂

∂x
h(x, y)

∣∣∣∣
s0

)2

+
(

∂

∂y
h(x, y)

∣∣∣∣
s0

)2

and because h is expressed in term of a basis, the probability that we have to compute refers to the
random variable √√√√√

⎛

⎝
q∑

j=1

∂

∂x
b j (s0) · β̂ j

⎞

⎠
2

+
⎛

⎝
q∑

j=1

∂

∂y
b j (s0) · β̂ j

⎞

⎠
2

(3)

If this is low, z(s0) will be labelled as a local outlier.
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4.1 Cubic Regression Splines

We shall use a cubic regression splines to explain function h in the fit of a GAM to the observations
zi . For this aim we shall use the R function gam of the R package mgcv. The cubic spline function,
with k knots v1, . . . , vk , that we fit ([15], pp. 149–150) is (v j ≤ v ≤ v j+1)

P(v) = v j+1 − v

h j
β j + v − v j

h j
β j+1 +

[
(v j+1 − v)3

h j
− h j (v j+1 − v)

]
δ j

6

+
[

(v − v j )
3

h j
− h j (v − v j )

]
δ j+1

6

where h j = v j+1 − v j , j = 1, . . . , k − 1 and δ j = P ′′(v j ).
The first derivative of P (partial derivative in formula (3)) is

P ′(v) = β j+1 − β j

h j
+

[
−3(v j+1 − v)2

h j
+ h j

]
δ j

6
+

[
3(v − v j )

2

h j
− h j

]
δ j+1

6

and considering as knots the locations, v j ,

P ′(v j ) = β j+1 − β j

h j
− δ j h j

3
.

If the term δ j h j/3 is negligible, we have to compute the probabilities,

P
{
(β̂ j+1 − β̂ j )/h j > observed slope

}

based on a normal model because ([15], pp. 189) β̂ j is approximately normal distributed with mean
β j .

Table 1 Probability of a big slope for both variables

Probability

Dept Department PER PROP

5 Hautes-Alpes 0.08677979 0.734663

1 Ain 0.7796545 0.9039119

7 Ardeche 0.08590459 0.5845837

19 Correze 0.8543756 0.968079

23 Creuse 0.3344432 0.8536806

36 Indre 0.8043197 0.9364876

38 Isere 0.2926037 0.7874324

39 Jura 0 0.0062001

42 Loire 0.5497284 0.8805521

69 Rhone 0 0.365532

71 Saone-et-Loire 0.45913 0.8109866

75 Seine 0 0

87 Haute-Vienne 0.01982465 0.6981038
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Example 3 Let us consider Guerry data again. The set of all departments detected as possible
outliers for, at least, one of the twomethods explained inSects. 2 and3, togetherwith the probabilities
of such slopes (i.e., the p-values of the bilateral test of the null hypothesis H0 : β j+1 − β j = 0),
are in Table1.

Hence, we can label as spatial outliers the observations at Jura, Rhone and Seine. As is remarked
in [6], Seine (together with Ain, Haute-Loire and Creuse) is a global outlier and a local one.

Hence, if we do not consider the Department of Seine (because is a global outlier) we have two
departments that can be considered as spatial outliers: Jura and Rhone, two departments in what is
called the Rhône-Alpes area, i.e., the same result than in [6].
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