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Abstract Maximum likelihood is a standard approach to computing a probability
distribution that best fits a given dataset. However, when datasets are incomplete or
contain imprecise data, depending on the purpose, a major issue is to properly define
the likelihood function to be maximized. This paper compares several proposals in
terms of their intuitive appeal, showing their anomalous behavior on examples.

1 Introduction

Edwards ([6], p. 9) defines a likelihood function as being proportional to the prob-
ability of obtaining results given a hypothesis, according to a probability model. A
fundamental axiom is that the probability of obtaining at least one among two results
is the sum of the probabilities of obtaining each of these results. In particular, a result
in the sense of Edwards is not any kind of event, it is an elementary event. Only
elementary events can be observed. For instance, when tossing a die, and seeing the
outcome, you cannot observe the event “odd”, you can only see 1, 3 or 5. If this
point of view is accepted, what becomes of the likelihood function under incomplete
or imprecise observations? To properly answer this question, one must understand
what is a result in this context. Namely, if we are interested in a certain random
phenomenon, observations we get in this case do not directly inform us about the
underlying random variables. Due to the interference with an imperfect measure-
ment process, observations will be set-valued. So, in order to properly exploit such
incomplete information, we must first decide what to model:

1. the random phenomenon through its measurement process;
2. or the random phenomenon despite its measurement process.
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In the first case, imprecise observations are considered as results, and we can con-
struct the likelihood function of a random set, whose realizations contain precise but
ill-known realizations of the random variable of interest. Actually, most authors are
interested in the other point of view, consider that outcomes are the precise, although
ill-observed, realizations of the random phenomenon. However in this case there
are as many likelihood functions as precise datasets in agreement with the impre-
cise observations. Authors have proposed several ways of addressing this issue. The
most traditional approach is based on the EM algorithm and it comes down to con-
structing a fake sample of the ill-observed random variable in agreement with the
imprecise data, and maximizing likelihood wrt this sample. In this paper we ana-
lyze this methodology in the light of the epistemic approach to statistical reasoning
outlined in [1] and compare it with several recent proposals by Denoeux [5], Hüller-
meier [8], and Guillaume [7]. Note that in this paper we do not consider the issue
of imprecision due to too small a number of precise observations (see for instance
Serrurier and Prade [10]).

2 The Random Phenomenon and Its Measurement Process

Let the random variable X : Ω → X represent the outcome of a certain random
experiment. For the sake of simplicity, let us assume that X = {a1, . . . , am} is finite.
Suppose that there is a measurement tool that provides an incomplete report of obser-
vations. Namely, the measurement tool reports information items Γ (ω) = B ∈ 2X ,
for somemultimappingΓ : Ω → 2X ,which represents our (imprecise) perceptionof
X, in the sense that we assume that X is a selection of Γ , i.e. X(ω) ∈ Γ (ω), ∀ω ∈ Ω

[3]. LetG = Im(Γ ) = {A1, . . . ,Ar} denote the image ofΓ (the collection of possible
outcomes).

We overview below two different ways to represent the information about the
joint distribution of the random vector (X, Γ ).

The imprecision generation standpoint. Here, we emphasize the outcome of
the experiment X and the “imprecisiation” process that leads us to just get imprecise
observations of X, Let us consider the following matrix: (M|p), where M is called
the mixing matrix with terms:

• ajk = p.j|k. = P(Γ = Aj|X = ak) denotes the (conditional) probability of
observing Aj if the true outcome is ak and

• pk. = P(X = ak) denotes the probability that the true outcome is ak .

Such a matrix determines the joint probability distribution modeling the underlying
generating process plus the connection between true realizations and incomplete
observations. Some examples and their characterizing matrices are as follows:

• Partition [4]. Suppose that Im(Γ ) = {A1, . . . ,Ar} forms a partition of X . There-
fore, we can easily observe that the probabilitiesP(Γ = Aj|X = ak) = 1 if ak ∈ Aj

and 0 otherwise, forall j, k.
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• Superset assumption [9]. Im(Γ ) coincides with 2X \ {∅}. For each k = 1, . . . ,m
there is a constant ck such that P(Γ = Aj|X = ak) = ck, if Aj � ak (P(Γ =
Aj|X = ak)) = 0, otherwise.) Furthermore, for every k ∈ {1, . . . ,m} there are
2m−1 subsets of X that contain it. Therefore the constant is equal to 1/2m−1, i.e.:

P(Γ = Aj|X = ak) =
{
1/2m−1 ifAj � ak
0 otherwise.

This is a kind of missing-at-random

assumption, whereby the imprecisiation process is completely random. It is often
presented as capturing the idea of “lack of information” about this process, which
sounds questionable.

Thedisambiguation standpoint.Wecan alternatively characterize the joint prob-
ability distribution of (X, Γ ) by means of the marginal distribution of Γ (the mass
assignment m(Aj) = P(Γ = Aj) = p.j, j = 1, . . . , r of a belief function describing
imprecise observations [3]) and the conditional probability of each result X = ak ,
knowing that the observationwasΓ (ω) = Aj, for every j = 1, . . . , r. The newmatrix
(M ′|p′) can be written as follows:

• bkj = pk.|.j = P(X = ak|Γ = Aj|) denotes the (conditional) probability that the
true value of X is ak if we have been reported that it belongs to Aj

• p.j = P(Y = Aj) = P(Γ = Aj) denotes the probability that the generation plus the
measurement processes lead us to observe Aj.

Such a matrix determines the joint probability distribution modeling the underly-
ing generating process plus the connection between true outcomes and incomplete
observations. (More specifically, the vector (p.1, . . . , p.r)

T characterizes the obser-
vation process while the matrix B = (pk.|.j)k=1,...,m;j=1,...,r represents the conditional
probability of X (true outcome) given Γ (observation). Here is an example:

• Uniform conditional distribution Under the uniform conditional distribution,
the (marginal) probability PX induced by X is the pignistic transform [11] of the
belief measure associated to the mass assignment m. The conditional distribution
is given by: pk.|.j = 1

#Aj
, if ak ∈ Aj and 0 otherwise. And the marginal distribution

is: pk. = ∑
j:Aj�ak

1
#Aj

p.j.

3 Different Likelihood Functions

Both matricesM = (A|p) andM ′ = (B|p′) univocally characterize the joint distribu-
tion of (X, Γ ). For each pair (k, j) ∈ {1, . . . ,m} × {1, . . . , r}, let pkj denote the joint
probability pkj = P(X = ak, Γ = Aj). According to the nomenclature used in the
preceding subsections, the respective marginals on X and G are denoted as follows:

• p.j = ∑m
k=1 pkj will denote the mass of Γ = Aj, for each j = 1, . . . , r, and

• pk. = P(X = ak) = ∑r
j=1 pkj will denote the mass of X = ak , for every k.
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Now, let us assume that the above joint distribution is characterized by means of
a (vector of) parameter(s) θ ∈ Θ (in the sense that M and M ′ can be written as
functions of θ). We naturally assume that the number of components of θ is less than
or equal to the dimension of bothmatrices, i.e., it is less than or equal to theminimum
min{m × (r + 1), r(m + 1)}. In other words, the approach uses a parametric model
such that a value of θ determines a joint distribution on X × Im(Γ ).

For a sequence of N iid copies of Z = (X, Γ ), Z = ((X1, Γ1), . . . , (XN , ΓN )), we
denote by z = ((x1,G1), . . . , (xN ,GN )) ∈ (X × G)N a specific sample of the vector
(X, Γ ). Thus, G = (G1, . . . ,GN ) will denote the observed sample (an observation
of the set-valued vector � = (Γ1, . . . , Γn)), and x = (x1, . . . , xN ) will denote an
arbitrary artificial sample from X for the unobservable latent variable X, that we
shall vary in X N . The samples x are chosen such that the number of repetitions
nkj of each pair (ak,Aj) ∈ X × G in the sample are in agreement with the numbers
n.j of observations Aj. We denote by XG (resp. ZG), the set of samples x (resp.
complete joint samples z) respecting this condition.We may consider three different
log-likelihood functions depending on whether we refer to

• the observed sample: LG(θ) = logp(G; θ) = log
∏N

i=1 p(Gi; θ). It also writes =∑r
j=1 n.j log pθ

.j. where n.j denotes the number of repetitions of Aj in the sample of
size N

• the (ill-observed) sample of outcomes: Lx(θ) = logp(x, θ). It also writes
log

∏N
i=1 p(xi; θ) = ∑m

k=1 nk. log p
θ
k.,where nk. denotes the number of occurrences

of ak in the sample x = (x1, . . . , xN ) ∈ XG.
• the complete sample: Lz(θ) = logp(z, θ) = log

∏N
i=1 p(zi; θ). It also writes∑m

k=1

∑r
j=1 nkj log p

θ
kj where nkj = ∑N

i=1 1{(ak ,Aj)}(xi,Gi) denotes the number of
repetitions of the pair (ak,Aj) in the sample (i.e., z ∈ ZG).

In the sequel, we compare some existing strategies of likelihood maximization,
based on a sequence of imprecise observations G = (G1, . . . ,GN ) ∈ GN :

• The standard maximum likelihood estimation (MLE) : it computes the argu-
ment of the maximum of LG considered as a mapping defined on Θ , i.e.:
θ̂ = argmaxθ∈Θ LG(θ) = argmaxθ∈Θ

∏r
j=1(p

θ
.j)

n.j .The result is amass assignment
on 2X . For instance, the EM algorithm [4] is an iterative technique using a latent
variable X to achieve a local maximum of LG.

• Themaximax strategy [8]: it aims at finding the pair (x∗, θ∗) ∈ XG × Ω that max-
imizes Lz(θ), i.e.: (x∗, θ∗) = argmaxx∈XG,θ∈Θ Lz(θ), i.e., argmaxx∈XG,θ∈Θ

∏m
k=1∏r

j=1(p
θ
kj)

nkj .

• The maximin strategy [7]: it aims at finding θ∗ ∈ Θ that maximizes L−(θ) =
minx∈XG Lz(θ) = minx∈XG

∑m
k=1

∑r
j=1 nkj log p

θ
kj. It is a robust approach that also

identifies a fake optimal sample x∗.
• The Evidential EM strategy [5]: It assumes that the data set is uncertain and
defined by a mass-function over 2X

N
. Under the particular situation where it has a

single focal element B ⊂ X N , with mass m(B) = 1, the EEM approach considers
the following expression as a likelihood function, given such imprecise data (see
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Eq.16 in [5]): p(B; θ) = P((X1, . . . ,XN ) ∈ B; θ). The Evidential EM algorithm is
viewed as a variation of the classical EMalgorithm inorder to select a value of θ that
maximizes the “likelihood”p(B; θ). In particular, if we assume thatB is aCartesian
product of the sets in the collection {A1, . . . ,Ar} the criterion can be alternatively
written as follows: p(B; θ) = ∏m

j=1 Pθ(X ∈ Aj)
n.j . The EEM procedure may not

coincide with a maximum likelihood estimation since this criterion is not always
in the spirit of a likelihood function, as seen later on. The EM algorithm uses it
when the imprecise data forms a partition.

Under some particular conditions about the matricesM andM ′, some of the above
likelihood maximization procedures may coincide or not. In the rest of the paper
we provide some examples, focusing on the optimal samples z ∈ ZG or x ∈ XG

computed by the methods and that are supposed to disambiguate the imprecise data.
Indeed most existing techniques end up with computing a probability distribution on
X or a fake sample achieving an imputation of X.

4 A Comparison of Estimation-Disambiguation Methods

Let us to compare the potentials and limitations of these approaches. Here we just
give a few hints by means of examples.

EM-based approaches. Let PX N
be the set of all probability measures P we can

define on the measurable space (X N , ℘ (X N )). The EM algorithm [4] tries to max-
imize the function F : PX N × Θ → R: F(P, θ) = LG(θ) − D(P, θ), ∀P ∈ PX N

,
θ ∈ Θ, where p(x|G; θ)= p(x,G;θ)

p(G;θ) , whenever p(G; θ) > 0. Moreover, D(P,P′) is

the Kullback-Leibler divergence from P′ to P,
∑

x∈X N p(x) log[ p(x)
p′(x) ], where p is

the mass function associated to P. It is then clear that LG(θ) ≥ F(P, θ) and that if
P = P(·|G; θ), then F(P, θ) = LG(θ). Given a value θ(n−1) obtained at the n − 1
M-step, the E-step actually computes P(·|G; θ(n−1)) (which is basically like deter-
mining a fake sample z ∈ ZG), and the next M step finds a value of θ that maximizes
F(P(·|G; θ(n−1)), θ), i.e. LG(θ) based on the fake sample z. In fact, the EM algo-
rithm iteratively finds a parametric probability model Pθ and a probability distribu-
tion P(·|G; θ) on X , that is in agreement with the data G, such that the divergence
from Pθ to P(·|G; θ) is minimal [2]. Pθ is an MLE for the fake sample z ∈ ZG in
agreement with P(·|G; θ), which yields the best imputation of X in this sense. There
are situations where the result of the EM algorithm will be questionable [2].

Example 1 Suppose that a dice is tossed and let X pertain to the result of the trial.
The probability distribution ofX is a vector (p1, . . . , p6) ∈ [0, 1]6, with∑6

i=1 pi = 1.
Suppose after each trial we are told either that the result has been less than or equal to
3 (A1) or greater than or equal to 3 (A2). After each toss, when the actual result (X) is
3, the reporter needs to decide A1 or A2. Assume the conditional probability P(Gn =
A1|Xn = 3) is a fixed number α ∈ [0, 1] for every trial, n = 1, . . . ,N . Suppose that
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we toss the dice N = 1000 times and the report tells us n.1 = 300 times that the
result was less than or equal to 3. Let θ denote the vector (p1, p2, p3, p4, p5;α).
The likelihood function based on the observed sampleG can be written as: LG(θ) =
(p1 + p2 + αp3)300 · [1 − (p1 + p2 + αp3)]700.Such a function ismaximized for any
vector θ satisfying the constraint p1 + p2 + αp3 = 0.3. If we use the EM algorithm,
we get a vector θ satisfying the above constraints after the first iteration of the M
algorithm. We will get a different vector θ(1), depending on the initial point θ(0). If
we start from θ(0) = ( 16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ; 1

2 ), we get θ
(1) = (0.12, 0.12, 0.16, 0.2, 0.2; 3

8 ).
It is also the MLE of θ based on a (fake) sample of 1000 tosses of the dice where the
number of repetitions of each of the six facets has been respectively 120, 120, 160,
200, 200, 200. But this is not the only MLE based on the observed sample.

Evidential EM Algorithm. We can distinguish the following cases:

• The case where Im(Γ ) forms a partition of X . In this case, P(X ∈ Aj) = P(Y =
Aj) = p.j, ∀ j = 1, . . . , r, and therefore

∏r
j=1 P(X ∈ Aj; θ)n.j coincides with the

likelihood p(G; θ).
• The case where the sets A1, . . . ,Ar do overlap. In this case, p(G; θ) and p(B; θ)
do not necessarily coincide, as shown in the following example.

Example 2 Let us take a sample of N tosses of the dice in Example 1 and let us
assume that the reporter has told us that n1 of the times the result was less than
or equal to 3, and n2 = N − n1 otherwise. The EEM likelihood is p(B; θ) = (p1 +
p2 + p3)n1 · (p3 + p4 + p5 + p6)n2 with

∑6
i=1 pi = 1. We can easily observe that it

reaches its maximum (p(B; θ) = 1) for any vector θ satisfying the constraint p3 = 1.
But such a prediction of θ would not be a reasonable estimate for θ.

The maximax approach. The parametric estimation based on the maximax
approach does not coincide in general with the MLE. Furthermore, it may lead
to questionable imputations of X.

Example 3 Let us suppose that a dice is tossed N = 10 times, and that Peter reports
4 heads, 2 tails and he does not tell whether there was heads or tails for the remain-
ing 4 times. Let us consider the parameter θ = (p,α,β), where p = P(X = h), α =
P(Γ = {h, t}|X = h) andβ = P(Γ = {h, t}|X = t). It determines the following joint
probability distribution induced by (X, Γ ): P(h, {h}) = (1 − α)p;P(h, {h, t}) =
αp;P(t, {t}) = (1 − β)p;P(t, {h, t}) = βp; and 0 otherwise.

The MLE of θ is not unique. It corresponds to all the vectors θ = (p,α,β) ∈
[0, 1]3 satisfying the constraints: (1 − α)p = 0.4 and (1 − β)(1 − p) = 0.2, indi-
cating the marginal probabilities P(Γ = {h}) and P(Γ = {t}) respectively.

In contrast, the maximax strategy seeks for a pair (θ∗; x∗) = (p∗,α∗,β∗; x∗) that
maximizes Lz(θ). It can be checked that the tuple that maximizes Lz(θ) is unique.
It corresponds to the vector of parameters θ∗ = (p∗,α∗,β∗) = (0.8, 0.5, 0) and the
sample where all the unknown outcomes are heads. In words, the maximax strategy
assumes that all the ill-observed results correspond to the most frequent observed
outcome (“heads”). Accordingly, the estimation of the probability of heads is the
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corresponding frequency (0.8). According to this strategy, and without having any
insight about the behaviour of Peter, we predict that each time he refused to report,
the result was in fact “heads”.

Example 4 Let us now consider the situation about the coin described in Example 3,
and let us suppose in addition that the following conditions hold: α = 1 − α =
0.5 and β = 1 − β = 0.5. In words, no matter what the true outcome is (heads or
tails) Peter refuses to give any information about it with probability 0.5 (the behavior
of Peter does not depend on the true outcome). This is the “superset assumption” [8]
already mentioned. Under this additional constraint, the MLE of θ = (p, 0.5, 0.5)
is reached at p̂ = 4/6 = 2/3. The maximum likelihood estimator provides the same
estimation as if we had just tossed the coin six times, since, as a consequence of
the superset assumption here, the four remaining tosses play no role in the statistics.
As a result, the conditional probability P(X = h|Γ = {h, t}) is assumed to coincide
with P(X = h|Γ �= {h, t}) and with P(X = h) = p. Such a probability is estimated
from the six observed outcomes, where four of them were “heads” and the rest were
“tails”. In contrast, the maximax strategy without the superset assumption leads us
to take into account the unobserved tosses as matching the most frequent observed
outcome, hence the imputation of X is compatible with a data set containing 8 heads
and only 2 tails.

The maximin approach. Consider again Example 3. The maximin approach
consists of considering all log-likelihood functions Lx

k (p) = (4 + k) log p + (6 −
k) log(1 − p) with 0 ≤ k ≤ 4. The approach consists in finding for each value of
p the complete data that minimizes Lx(p). Since Lx

k (p) is of the form k log p
(1−p) + a,

it is easy to see that if p < 1/2, the minimum L−(p) is reached for k = 4, and
if p > 1/2, it is reached for k = 0. So, it is 8 log p + 2 log(1 − p) if p < 1/2 and
4 log p + 6 log(1 − p) otherwise. So L−(p) is increasing when p < 1/2 and decreas-
ing when p > 1/2. It reaches its maximum for p = 1/2. So the maximin approach is
cautious in the sense of maximizing entropy in the coin-tossing experiment. It yields
the uniform distribution, i.e., an imputation of 5 heads and 5 tails, in agreement with
the observations.

5 Conclusion

This paper suggests that it is not trivial to extend MLE methods to incomplete data
despite the existence of several proposals. In particular, it is very questionable to
reconstruct distributions for unobserved variables when parameters of distributions
that generate themare not closely connected to parameters of distributions that govern
observed ones. In contrast, the famous EM article [4] deals with imprecise obser-
vations forming a partition and starts with an example in which a single parameter
determines the joint distribution of X and Γ . However, it is not straightforward to
adapt the EM procedure to incomplete overlapping data. In the general case, either
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one applies standardMLE to observed imprecise data only (yielding amass function)
or one has to add an assumption that comes down to selecting a single probability
measure in the credal set induced by this mass function. Each approach to imprecise
data MLE proposes its own assumption. As can be seen from the examples, it is
easy to find cases where these methods lead to debatable solutions: the solution to
the EM algorithm [4] depends on the initial parameter value, the EEM approach [5]
seems to optimize a criterion that sometimes does not qualify as a genuine likelihood
function, the maximax approach [8] may select a very unbalanced distribution for the
hidden variable, while the maximin robust MLE [7] favors uninformative distribu-
tions. More work is needed to characterize classes of problems where one estimation
method is justified and the other method fails.
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