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Abstract One of the most common spaces to model imprecise data through (fuzzy)
sets is that of convex and compact (fuzzy) subsets inRp. The properties of compact-
ness and convexity allow the identification of such elements bymeans of the so-called
support function, through an embedding into a functional space. This embedding
satisfies certain valuable properties, however it is not always intuitive. Recently, an
alternative functional representation has been considered for the analysis of impre-
cise data based on the star-shaped sets theory. The alternative representation admits
an easier interpretation in terms of ‘location’ and ‘imprecision’, as a generalized idea
of the concepts of mid-point and spread of an interval. A comparative study of both
functional representations is made, with an emphasis on the structures required for
a meaningful statistical analysis from the ontic perspective.

1 Introduction

The statistical analysis of (fuzzy) set-valued data from the so-called ‘ontic’ perspec-
tive has frequently been developed as a generalization of the statistics for interval
data (see, e.g., [1]). From this ‘ontic’ perspective, (fuzzy) set-valued data are con-
sidered as whole entities, in contrast to the epistemic approach, which considers
(fuzzy) set-valued data as imprecise measurements of precise data (see, e.g., [2]).
Both the arithmetic and metric structure to handle this ‘ontic’ data is often based
on an extension of the Minkowski arithmetic and the distance between either infima
and suprema or mid-points and spreads for intervals. In this way, key concepts such
as the expected value or the variability, are naturally defined as an extension of the
classical notions within the context of (semi-)linear metric spaces.

The generalization of the concept of interval to R
p keeps the compactness and

convexity properties, and this allows the identification of the contour of the convex
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and compact sets inRp by means of the support function (see, e.g., [6]). The support
function is coherent with the Minkowski arithmetic, but sometimes this is not easy
to interpret. In [4] the so-called kernel-radial characterization is investigated as an
alternative to the support function based on a representation on polar coordinates.
This polar representation is established in the context of the star-shaped sets, and is
connected with the developments in [3]. It is coherent with alternative arithmetics
and distances generalizing the concepts of location and imprecision in an intuitive
way, which are of paramount importance in the considered context.

The aim is to show a comparative study of the support function and the kernel-
radial representation through some examples. Methodological and practical similari-
ties anddifferences of both representations for statistical purposeswill be highlighted.
The rest of the paper is organized as follows. In Sect. 2 both functional representa-
tions are formalized and their graphical visualization is shown for some examples.
Section3 is devoted to the comparison of the corresponding statistical frameworks.
Section4 finalizes with some conclusions.

2 The Support Function and the Kernel-Radial
Characterization

Since the space of fuzzy sets to be considered is a level-wise extension of (convex and
compact) sets, the analysis will focus on Kc(R

p) = {A ⊂ R
p | A �= ∅, compact and

convex}. For any A ∈ Kc(R
p), the support function of A is defined as sA : Sp−1 → R

such that sA(u) = supa∈A〈a, u〉 for all u ∈ S
p−1, where S

p−1 stands for the unit
sphere in R

p and 〈·, ·〉 is the standard inner product in R
p. The support function sA

is continuous and square-integrable on S
p−1 and characterizes the set A (see, e.g.,

[6]).
On the other hand, let KS(R

p) be the space of star-shaped sets of Rp, i.e., the
space of the nonempty compact subsets A ⊂ R

p so that there exists cA ∈ A such
that for all a ∈ A, λcA + (1 − λ)a ∈ A, for all λ ∈ [0, 1], that is, all the points of
A are ‘visible’ from cA (see, e.g., [6]). The set of points cA ∈ A fulfilling the above
condition is called kernel of A, ker(A). Each cA ∈ ker (A) is considered a center of
A. Obviously, KS(R) = Kc(R), but for p > 1, Kc(R

p) ⊂ KS(R
p).

A star-shaped set A can be characterized by a center kA (e.g., the center of gravity
of the kernel), and the radial function defined on the unit sphere. The radial function
identifies the contour bymeans of the distance to that center, i.e., bymeans of the polar
coordinates (see, e.g., [6]). Formally, the center of gravity is given by the expected
value of the uniform distribution on ker(A), that is, kA = ∫

ker(A) xdμk, being μk

the normalized Lebesgue measure on ker(A). The radial function is defined as the
mapping ρA : Sp−1 → R

+ such that ρA(u) = sup{λ ≥ 0 : kA + λu ∈ A}.
The radial function is the inverse of the gauge function, which has been used in

[3] in the context of fuzzy star-shaped sets. However, in [3] the gauge function was
not used as a basis for the arithmetic and the metric structure of the space, but in
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Fig. 1 Graphical representation of the support function (left) and the radial function (right) of a
line in Kc(R

2)

Fig. 2 Graphical representation of the support function (left) and the radial function (right) of a
triangle in Kc(R

2)

combination with the usual structures, which has reduced the practical usefulness of
the proposal.

In order to compare the interpretation of the support and the radial function, Figs. 1
and 2 show a graphical representation of both functions corresponding to a line and
a triangle respectively. Since the characterizing functions are defined over the unit
sphere, the representations show how each element of the unit sphere relates to the
corresponding value. For the support function the sets in R

2 are projected on each
one of the directions of the unit sphere and the maximum is computed. In this way,
the support function is the distance from the center to the contour of the blue lines.
Although this identifies in a unique way the boundaries of the set, the result is not
easy to relate with the original shape at first glance. The radial function represents
the polar coordinates of the contour line of the original set, that is the radius to each
point from the pole (i.e. the steiner point of the kernel). Consequently, the shape of
the radial function is straightforwardly connected with the original shape.

For the radial representation, kA is a center of A, describing the location of the
set, and ρA shows how far the contour line is from this center pointwise. Thus, in line
with the idea of mid-point (location) and spread (imprecision) of an interval, kA and
the radial function ρA can be identified with the generalized location and imprecision
of a star-shaped set respectively.

A previous attempt was made to define generalized concepts of location and
imprecision on the basis of the support function by considering the so-called mid-
spread representation [7]. This representation is so that sA = midA + sprA, where
midA(u) = (sA(u) − sA(−u))/2 and sprA(u) = (sA(u) + sA(−u))/2 for all u ∈
S
p−1. That is, the generalized mid-point/spread is connected with the
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location/imprecision associated with each direction. This fact entails an interpreta-
tional profit, but also some drawbacks from an operational view.Moreover, it inherits
the visualization shortcomings from the support function. Themain problem is that it
is disfficult to determine when a function s : Sp−1 → R is a support function of any
A ∈ Kc(R

p), and this is translated to the mid-function. This problem, however, does
not affect the kernel-radial representation, because any function ρA : Sp−1 → R

+ is
a radial function of a given set.

3 Statistical Frameworks

Either through the support function or through the kernel-radial characterization,
the space of the corresponding set-valued elements can be embedded into a Hilbert
space, namely,Hs = L2(Sp−1) endowed with the normalized Lebesgue measure on
S
p−1, λp, for the case of the support function and Hr = R

p × L2(Sp−1) endowed
withμp × λp for the case of the kernel-radial characterization. Nevertheless, in order
to have a meaningful embedding useful for statistical purposes, the arithmetic and
metric structures of the original spaces and the Hilbert ones should agree.

It is well known that the support function transfers the Minkowski arithmetic into
Hs and,with the propermetrics, itmakesKc(R

p) isometric to a coneofHs . This arith-
metic is defined so that A +M τ B = {a + τb | a ∈ A, b ∈ B} for all A, B ∈ Kc(R

p)

and τ ∈ R, and verifies that sA+M τ B = sA + τsB for all τ ≥ 0. The Minkowski addi-
tion is not always meaningful, and there exist various alternatives (see, e.g., [5]).

When the sets are characterized in terms of kernel-radial elements, the natural
arithmetic should be coherent as well, that is, A +r τ B should be the element in
K∗(Rp) such that kkA+r τ B

= kA + τkB andρA+r τ B = ρA + τρB ,where the+operator
denotes either the usual sum of two points in R

p or the usual sum of two functions
in L2(Sp−1), respectively, for all A, B ∈ K(Rp) and τ ∈ R.

Figure3 shows how sometimes the kernel-radial arithmetic may be more useful
than Minkowski’s one. The Minkowski and the kernel-radial sum of two lines is
shown graphically. The Minkowski sum of two elements in Kc(R

2) with null area
in R

2 and the same shape results in a convex set with different shape and non-null
area. On the contrary, the kernel-radial arithmetic keeps the shape and the surface of
the sets.

Fig. 3 Minkowski (left) and radial (right) sum of two segments
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Concerning the metric structure, L2-type metrics are normally considered for
statistical purposes. For instance, for the support function-related characterizations,
it is common to consider the generalized family for θ ∈ [0,+∞)

dθ(A, B) =
√

||midA − midB ||2p + θ||sprA − sprB ||2p,

for all A, B ∈ Kc(R
p)where || · ||p is the usual L2-type norm for functions definedon

S
p−1 with respect to λp [7]. In an analogous way, for the kernel-radial representation,

the natural family of metrics for statistical purposes from an ontic point of view is

d(A, B) =
√

τ‖kA − kB‖2 + (1 − τ )‖ρA − ρB‖2p

for all A, B ∈ K(Rp) and τ ∈ (0, 1), where || · || is the usual Euclidean norm in Rp.
With these structures, it is clear that the considered spaces can be identified with

cones of Hilbert spaces, and all the statistical concepts and tools defined in general
Hilbert space apply in this context, taking into account that some constraints may
arise whenever it is required to remain in the cone. Thus, notions such as random
element, expected value, variance or covariance operator, and basic results, such as
the CLT, are directly inherited from the theory in Hilbert spaces in the same way for
both characterizations. The unique methodological difference in this respect is that,
although it is trivial to check if a radial function remains in the cone (i.e. ρA(u) ≥ 0
for all u ∈ R

p), this is not the case for the support function.

4 Conclusions

The support function has traditionally been used to characterize compact and convex
sets. This is specially useful when the Minkowski arithmetic is suitable. We have
shown that this concept is not always intuitive. As an alternative, the kernel-radial
representation is proposed. One of the main advantages of this new representation is
that it is easy to interpret in terms of generalized concepts of mid-spread for intervals.
The statistical analysis involving both kind of elements can be reduced in both cases
to the Hilbert case, so no specific methodology is required to be developed for many
common problems. Moreover, the characterization of the cone where the sets are
embedded is trivial and similar to the interval case (i.e., non-negativity constraints).
This entails a substantial methodological simplification when it is essential to guar-
antee that any element remains in the cone. Concerning the arithmetic, it has been
shown that the Minkowski sum is not always suitable when p > 1, as it does not
keep shapes or areas, while the arithmetic based on the kernel-radial representation
can be a suitable alternative for cases where that is important.

All the discussions in this paper can be extended to the case of fuzzy sets by
considering levelwise-defined concepts. Namely, let Fc(R

p) be the space of fuzzy
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sets U : Rp → [0, 1] whose α-level sets Uα ∈ Kc(R
p) for all α ∈ (0, 1]. Then,

the support function can be defined as sA : Sp−1 × (0, 1] → R so that sA(u,α) =
sAα(u) supa∈Aα

〈a, u〉 for all u ∈ S
p−1, andα ∈ (0, 1]. In the sameway, theMinkowski

arithmetic is level-wise defined, and themetric is establishedwrt the joint normalized
Lebesgue measure on Sp−1 × (0, 1]. Analogous developments can be performed for
the case of the kernel-radial representation. The unique technical burden that dis-
tinguishes the case of fuzzy sets from the case of standard sets is the problem of
building a fuzzy set from the functions on the respective Hilbert spaces, if possible,
but this can be done by taking into account the well-known properties that guarantee
that a set of indexed levels {Aα}α∈[0,1] determines a fuzzy set.
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