
The Likelihood Interpretation
of Fuzzy Data

Marco E.G.V. Cattaneo

Abstract The interpretation of degrees of membership as statistical likelihood is
probably the oldest interpretation of fuzzy sets. It allows in particular to easily incor-
porate fuzzy data and fuzzy inferences in statistical methods, and sheds some light
on the central role played by extension principle and α-cuts in fuzzy set theory.
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1 Introduction

Most works on fuzzy set theory do not give any precise interpretation for the values of
membership functions. This is not a problem as far as the works remain in the realm
of pure mathematics. However, as soon as examples of application are included an
interpretation is needed, otherwise not only the membership functions are arbitrary,
but also all rules applied to them are unjustified [3, 25, 32].

In this paper, the interpretation of the values of membership functions in terms
of likelihood is reviewed. The concepts of probability and likelihood were clearly
distinguished by Fisher [19]: likelihood is simpler, more intuitive, and better suited to
information fusion [6, 8]. The likelihood interpretation of fuzzy sets is elucidated in
Sect. 2, while Sect. 3 shows that it justifies an expression for the likelihood function
induced by fuzzy data that appeared often in the literature [13, 20, 23, 26, 35],
but without a clear justification. This likelihood function can also be interpreted
as resulting from an errors-in-variables model or measurement error model [5], as
will be illustrated by a simple example. Finally, Sect. 4 discusses the interpretation of
α-cuts as confidence intervals, while the last section concludes the paper and outlines
future work.
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2 The Likelihood Interpretation

A fuzzy set is described by its membership function μ : X → [0, 1], where X is
a nonempty (crisp) set [34]. A standard example is the fuzzy set representing the
meaning of the word “tall” in relation to a man, where the elements of X are the
possible values of aman’s height in cm [36].Wecan expect for instance thatμ(180) >

μ(160), because the attribute “tall” fits better to a 180 cm man than to a 160 cm
one. However, the concept of a fuzzy set as described by a real-valued membership
function μ can only be used to model the reality if we have an interpretation for the
numerical values of μ.

In fact, a clear interpretation of membership functions should be the starting point
of a theory of fuzzy sets that describes the real world, and all rules of the theory
should be a consequence of the interpretation [3, 25, 32]. This is for example the
case with the theory of probability, whose rules are a consequence of each of its
interpretations (at least on finite spaces). As suggested by this example, it is not
necessary that the interpretation is unique, but only the rules that are implied by the
considered interpretation should be used in applications.

One of the first aspects to consider when discussing the interpretation of fuzzy sets
is if they are used in an epistemic or ontic sense [13, 15]. Fuzzy sets have an ontic
interpretation when they are themselves the object of inquiry, while they have an
epistemic interpretation when their membership function μ : X → [0, 1] only gives
information about the real object of inquiry, which is the value of x ∈ X . In this
paper, we will only consider epistemic fuzzy sets, and focus on their interpretation
in terms of likelihood.

The likelihood interpretation of a fuzzy set consists in interpreting its mem-
bership function μ : X → [0, 1] as the likelihood function lik on X induced
by the observation of an event D:

μ(x) = lik(x | D) ∝ P(D | x)

for all x ∈ X , where P(D | x) was the probability of the event D (before its
realization) given the value of x ∈ X .

For example, “John is tall” is a piece of information that can be modeled by a
fuzzy set with membership function μ : X → [0, 1] with μ(x) ∝ P(D | x), where
the elements of X are the possible values of John’s height in cm, and P(D | x) is the
probability of the event D of getting the information that “John is tall” when John’s
height is x cm. Hence, the exact meaning of the interpretation of fuzzy sets in terms
of likelihood depends on the interpretation given to probability values, but as noted
above, the choice of this interpretation does not affect the rules of probability theory.

The likelihood interpretation is probably the oldest interpretation of fuzzy sets: it
has been more or less explicitly used directly after [27] and even before [2, 29] the
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mathematical concept of fuzzy set was introduced by Zadeh [34], and has later been
studied in detail by several authors [1, 10–12, 14, 16, 17, 22, 24, 30, 31]. However,
most of them interpreted membership functions μ in terms of probability values
μ(x) = P(D | x), instead of likelihood values μ(x) = lik(x | D). Historically, the
subtle distinction between probability and likelihood confused several great minds,
before the likelihood of x ∈ X was clearly defined by Fisher as proportional to the
probability of the data D given x [18, 19, 21].

The proportionality constant in the definition of lik(x | D) can depend on any-
thing but the value of x ∈ X . The reason for defining the likelihood function lik
only up to a multiplicative constant is that otherwise lik would strongly depend on
irrelevant information. For example, if two persons chosen at random from a popu-
lation independently tell us that John is “tall” and “very tall”, respectively, then the
resulting fuzzy set should not change completely if we would or would not have the
additional information that the first person said “tall” and the second one “very tall”.

Interpreting fuzzy sets in terms of likelihood thus implies that proportional mem-
bership functions have the same meaning. Uniqueness of representation is recovered
by assuming, as is often done anyway, that all fuzzy sets are normalized. That is,
their membership functions μ : X → [0, 1] satisfy supx∈X μ(x) = 1, and are thus
uniquely determined by μ(x) ∝ P(D | x). Surprisingly, very few authors seem to
have somehow considered this important aspect of the likelihood interpretation, and
not in a very explicit way [14, 25, 31].

3 Fuzzy Data

A basic advantage of the likelihood interpretation of fuzzy sets is that it allows
to directly obtain statistical inferences from fuzzy data. The only condition on the
statistical methods used is that the data enter them through the likelihood function
only. In particular, all methods from the likelihood and Bayesian approaches to
statistics can be straightforwardly generalized to the case of fuzzy data.

As discussed in Sect. 2, themembership function of a fuzzy setμ(x) ∝ P(D | x) is
interpreted as the likelihood function induced by the observation of an event D. Now,
if we have a probability distribution on x ∈ X , depending on an unknown parameter
θ ∈ Θ , then the observation of the event D induces also a likelihood function lik on
Θ:

lik(θ | D) ∝ P(D | θ) =
∫
X
P(D | x) dP(x | θ) ∝

∫
X

μ(x) dP(x | θ) (1)

for all θ ∈ Θ , where P(D | x) is assumed to be a measurable function of x that does
not depend on θ .

Zadeh [35] defined the probability of the fuzzy event described by a member-
ship function μ : X → [0, 1] as the right-hand side of (1), without justifying this
choice through a clear interpretation of the values ofμ. The likelihood interpretation
provides only a partial justification: the right-hand side of (1) is proportional to the
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probability of the event D that induced the fuzzy information described by μ, where
the proportionality constant can depend on anything but θ (or x).

In [35] Zadeh introduced also the concept of probabilistic independence for fuzzy
events, again without a clear justification. The likelihood interpretation clarifies
another concept of independence, which is extremely important in fuzzy set theory:
the concept of independence among the pieces of information described by different
fuzzy sets, which is usually implicitly or explicitly assumed [3, 24]. The pieces of
information described by the membership functions μ1, . . . , μn : X → [0, 1] with
μi (x) ∝ P(Di | x) can be interpreted as independent when the events D1, . . . , Dn

that induced them were conditionally independent given x . In this case, the joint
fuzzy information is described by the membership function μ : X → [0, 1] with

μ(x) = lik(x | D) ∝ P(D | x) =
n∏

i=1

P(Di | x) ∝
n∏

i=1

μi (x) (2)

for all x ∈ X , where D = D1 ∩ · · · ∩ Dn .
In particular, if X = X1 × · · · × Xn , the components xi of x = (x1, . . . , xn)

are probabilistically independent (for all θ ), and each piece of fuzzy information
μi (xi ) ∝ P(Di | x) is about a different component of x , then the assumption of their
independence is very natural, and by combining (1) and (2) we obtain

lik(θ | D) ∝
∫
X

n∏
i=1

μi (xi ) dP(x | θ) =
n∏

i=1

∫
Xi

μi (xi ) dP(xi | θ) (3)

for all θ ∈ Θ . This likelihood function has been considered by several authors [13,
20, 23, 26], but only justified on the basis of Zadeh’s rather arbitrary definition of
the probability of a fuzzy event [35].

The likelihood function (3) induced by fuzzy data with membership functions
μi : Xi → [0, 1] is often too complex to be handled analytically [20], but this is
nowadays a typical situation in the likelihood and Bayesian approaches to statistics.
In particular, x1, . . . , xn play the role of unobserved variables in (3), and therefore
the EM algorithm can be used to maximize the likelihood [13]. Several examples
of numerical calculations of maximum likelihood estimates based on fuzzy data are
given for instance in [13, 23].

When the data are fuzzy numbers, in the sense that Xi ⊆ R, the likelihood func-
tion (3) can also be interpreted as resulting from an errors-in-variables model or
measurement error model [5]. In this case, the value ξi of a proxy x∗

i is assumed
to be observed instead of the value of the variable xi , where ξi ∈ R is an arbitrarily
chosen constant, while the measurement error εi = x∗

i − xi is random with den-
sity fi ∝ μi (ξi − · ) and independent of everything else. In this model, each fuzzy
numberμi (xi ) ∝ fi (ξi − xi ) ∝ lik(xi | x∗

i = ξi ) describes the information about the
unknown value of xi obtained from the observed value of its proxy x∗

i , and the like-
lihood function lik( · | x∗

1 = ξ1, . . . , x∗
n = ξn) on Θ induced by these observations

is the one in (3). The description of fuzzy data in terms of measurement errors is
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particularly useful when the various components combine well mathematically, as
in the following simple example.

Example 1 Assume that x1, . . . , xn is a sample from a normal distribution with
known variance σ 2 and unknown expectation θ ∈ R, but we have only fuzzy data
with membership functions μi (xi ) = exp

(−(xi−ξi )
2
/(2 σ 2

i )

)
, where ξi , σi are known

constants. Then the proxy variables x∗
1 , . . . , x

∗
n are independent, and each x∗

i is nor-
mally distributed with expectation θ and variance σ 2 + σ 2

i . Hence, the likelihood
function induced by the fuzzy data is given by

lik(θ | x∗
1 = ξ1, . . . , x∗

n = ξn) ∝ exp
(
− (θ−θ̂ )2

2 τ 2

)
(4)

for all θ ∈ R, where the maximum likelihood estimate θ̂ is the weighted average
of the centers ξi of the fuzzy numbers, with weights τ 2

/(σ 2+σ 2
i ) depending on their

precision 1/σ 2
i , while 1/τ 2 = ∑n

i=1
1/(σ 2+σ 2

i ) is the precision of θ̂ (which is normally
distributed with expectation θ and variance τ 2).

Besides the maximum likelihood estimate θ̂ , for each α ∈ (0, 1) we obtain a
likelihood-based confidence interval for θ :

{
θ ∈ R : lik(θ) > α lik(θ̂)

}
=

(
θ̂ ± τ

√−2 ln α
)
, (5)

with exact level Fχ2
1
(−2 ln α), where Fχ2

1
is the cumulative distribution function of

the chi-squared distribution with 1 degree of freedom. Alternatively, we can combine
the likelihood function (4) induced by the fuzzy data with a Bayesian prior, and base
our conclusions on the resulting posterior. In particular, if the prior is a normal distri-
bution with expectation θ0 and variance τ 2

0 , then the posterior is a normal distribution
with expectation θ1 and variance τ 2

1 , where θ1 is the weighted average of θ0 and θ̂ ,
with weights proportional to their precision 1/τ 2

0 and 1/τ 2, respectively, while these
add up to the posterior precision 1/τ 2

1 = 1/τ 2
0 + 1/τ 2.

4 Fuzzy Inference

Besides allowing the direct use of fuzzy data in statistical methods, the likelihood
interpretation of fuzzy sets also leads naturally to fuzzy statistical inference. In fact,
the likelihood function on Θ induced by the (fuzzy or crisp) data can be interpreted
as the membership function μ : Θ → [0, 1] of a (normalized) fuzzy set describing
the information obtained from the data about the unknown value of the parameter
θ ∈ Θ .

In particular, the likelihood-based confidence intervals (or regions) for θ , defined
as in the left-hand side of (5) for all α ∈ (0, 1), correspond to the α-cuts of the fuzzy
set with membership function μ. Both likelihood-based confidence intervals and
α-cuts are usually defined using the non-strict inequality, but the choice of the strict
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inequality in the definition provides a better agreement with the concept of profile
likelihood function [9], which is of central importance in the likelihood approach to
statistics, and corresponds to the extension principle [36], which is equally central
in fuzzy set theory.

A correspondence between α-cuts and (general) confidence intervals has also
been suggested as an alternative interpretation of some fuzzy sets [4, 28]. However,
this interpretation is afflicted by the fact that confidence intervals are rather arbitrary
constructs, and in particular do not usually satisfy the extension principle, when
they are not likelihood-based confidence intervals. The interpretation of fuzzy sets
in terms of likelihood-based confidence intervals (i.e. the likelihood interpretation)
has the advantage of uniqueness, invariance, and general applicability, although a
simple expression for the confidence level based on the chi-squared distribution,
as in Example 1, is valid (exactly or asymptotically) only under some regularity
conditions [33].

Since each value of θ ∈ Θ corresponds to a probability measure P( · | θ), a fuzzy
set with membership function μ : Θ → [0, 1] can also be interpreted as a fuzzy
probability measure [6, 7]. This likelihood-based model of fuzzy probability bears
important similarities to the Bayesian model of probability, and can be used as a
basis for statistical inference and decision making [6–8].

5 Conclusion

In this paper, the likelihood interpretation of fuzzy sets has been reviewed and some
of its consequences analyzed. Not surprisingly, with this interpretation fuzzy data
and fuzzy inferences can be easily incorporated in statistical methods. In particu-
lar, the likelihood interpretation of fuzzy data justifies the use of expression (3) for
the induced likelihood function, and establishes a fruitful connection with errors-in-
variables models or measurement error models, as illustrated by Example 1. Further-
more, the link between this interpretation and the likelihood approach to statistics
sheds some light on the central role played by extension principle and α-cuts in fuzzy
set theory.

The theory of fuzzy sets is also a theory of information fusion. However, only
the product rule μ(x) ∝ ∏n

i=1 μi (x) for the conjunction of independent pieces of
information is directly justified by the likelihood interpretation (2). The rules for other
logical connectives, with or without the independence assumption, can be obtained
through the concept of profile likelihood (i.e. the extension principle). For example,
the conjunction without independence assumption is then given by the minimum
rule μ(x) ∝ ∧n

i=1 μi (x), while negation always results in the vacuous membership
function μ ≡ 1. Such rules, which are a consequence of the likelihood interpretation
of fuzzy sets, will be the topic of future work.



The Likelihood Interpretation of Fuzzy Data 119

References
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