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Preface

This volume is a collection of peer-reviewed papers presented at the 8th
International Conference on Soft Methods in Probability and Statistics—SMPS
2016, held in Rome (Italy) during September 12–14, 2016. The series of biannual
international conferences on Soft Methods in Probability and Statistics (SMPS)
started in Warsaw in 2002. Subsequent events in this series took place in Oviedo
(2004), Bristol (2006), Toulouse (2008), Oviedo/Mieres (2010), Konstanz (2012),
and Warsaw (2014). SMPS 2016 was organized by the Department of Basic and
Applied Sciences for Engineering and the Department of Statistical Sciences,
Sapienza University of Rome, Italy.

Over the last 50 years in different areas such as decision theory, information
processing, and data mining, the interest to extend probability theory and statistics
has grown. The common feature of those attempts is to widen frameworks for
representing different kinds of uncertainty: randomness, imprecision, vagueness,
and ignorance. The scope is to develop more flexible methods to analyze data and
extract knowledge from them. The extension of classical methods consists in
“softening” them by means of new approaches involving fuzzy set theory, possi-
bility theory, rough sets, or having their origin in probability theory itself, like
imprecise probabilities, belief functions, and fuzzy random variables.

Data science aims at developing automated methods to analyze massive amounts
of data and extract knowledge from them. In the recent years the production of data
is dramatically increasing. Every day a huge amount of data coming from every-
where is collected: mobile sensors, sophisticated instruments, transactions, Web
logs, and so forth. This trend is expected to accelerate in the near future. Data
science employs various programming techniques and methods of data wrangling,
data visualization, machine learning, and probability and statistics. The soft
methods proposed in this volume represent a suit of tools in these fields that can
also be useful for data science.

The volume contains 65 selected contributions devoted to the foundation of
uncertainty theories such as probability, imprecise probability, possibility theory,
soft methods for probability and statistics. Some of them are focused on robustness,
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non-precise data, dependence models with fuzzy sets, clustering, mathematical
models for decision theory and finance.

We would like to thank all contributing authors, organizers of special sessions,
program committee members, and additional referees who made it possible to put
together the attractive program of the conference. We are very grateful to the
plenary speakers, Ana Colubi (University of Oviedo, Spain), Thierry Denoeux
(University of Technology of Compiégne, France), Massimo Marinacci (Bocconi
University, Italy) for their very interesting talks: “On some functional characteri-
zations of (fuzzy) set-valued random elements”, “Beyond Fuzzy, Possibilistic and
Rough: An Investigation of Belief Functions in Clustering” and “A non Bayesian
Approach to Measurement Problems”, respectively. We would like to express our
gratitude also to INDAM-GNAMPA for the financial support. Furthermore, we
would like to thank the editor of the Springer series Advances in Soft Computing,
Prof. Janusz Kacprzyk, and Springer-Verlag for the dedication to the production of
this volume.

Rome Maria Brigida Ferraro
June 2016 Paolo Giordani

Barbara Vantaggi
Marek Gagolewski
María Ángeles Gil

Przemysław Grzegorzewski
Olgierd Hryniewicz
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Mean Value and Variance of Fuzzy Numbers
with Non-continuous Membership Functions

Luca Anzilli and Gisella Facchinetti

Abstract We propose a definition of mean value and variance for fuzzy numbers
whose membership functions are upper-semicontinuous but are not necessarily con-
tinuous. Our proposal uses the total variation of bounded variation functions.

1 Introduction

In this work we face the problem of defining the mean value and variance of fuzzy
numbers whose membership functions are upper-semicontinuous but are not neces-
sarily continuous. The literature presents a high number of definitions in the con-
tinuous case [3–6, 9] also because the average has often been counted among the
ranking modes of fuzzy numbers. The starting point is that a fuzzy number is defined
by a membership function that is of bounded variation. Even in this more general
context, it is possible to introduce a weighted average by means of a classical vari-
ational formulation and by α-cuts, as well as many authors do in the continuous
case. In the non-continuous case, we introduce the lower and upper weighted mean
values, but the generality of the weights doesn’t let to obtain the weighted mean
value as the middle point of the previous ones. This property will be obtained either
in the continuous case or for particular weight functions. An interesting property of
this new version is connected to the view of the weighted mean value in a possi-
bilistic framework, as in the continuous case Carlsson and Fullér [3] and Fullér and
Majlender [5] do. This property is interesting and harbinger of future developments
also in the non-continuous case. Following the same line, we pass to introduce the
concept of variance and we suggest two different definitions as happens in the case
of continuous membership functions.
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2 Bounded Variation Functions

In this section we recall some basic properties of functions of bounded variation. For
more details see, e.g., [7].

Let I ⊂ R be an interval and u : I → R be a function. The total variation of u on

I is defined as VI [u] = sup
n∑

i=1

|u(xi ) − u(xi−1)|, where the supremum is taken over

all finite partitions {x0, x1, . . . , xn} ⊂ I with x0 < x1 < · · · < xn . We say that u is a
bounded variation function on I if VI [u] < +∞. We denote BV (I ) the space of all
bounded variation functions on I . The following properties hold: if u is monotone
and bounded on I then u ∈ BV (I ) and VI [u] = supI u − inf I u; if u1, u2 ∈ BV (I )
and k is a constant then ku1, u1 + u2, u1 − u2, u1u2 belong to BV (I ).
Let u : R → R be a bounded variation function. The total variation function of u is
the increasing function vu defined by vu(x) = V x−∞ [u], where V x−∞ [u] denotes the
total variation of u on ] − ∞, x].
The total variation measure |Du| of u is defined as the Lebesgue-Stieltjes measure
dvu associated to vu . The positive and negative variations of u are defined, respec-
tively, by the increasing functions

u+(x) = (vu(x) + u(x)) /2 , u−(x) = (vu(x) − u(x)) /2 . (1)

We have u = u+ − u−, the so-called Jordan decomposition of u. The integral of a
measurable function g with respect to |Du| is given by

∫
g(x) |Du| =

∫
g(x) du+(x) +

∫
g(x) du−(x) (2)

where du+ and du− are the Lebesgue-Stieltjes measures associated to u+ and u−,
respectively. In general, the total variation measure |Du| is not absolutely continuous
with respect to Lebesguemeasure. However, if u is an absolutely continuous function

then
∫

g(x) |Du| =
∫

g(x) |u′(x)|dx .

3 Weighted Mean Value of Fuzzy Numbers

In this section we propose a definition of f -weighted mean value for a fuzzy number
whosemembership function is upper-semicontinuous but not necessarily continuous.
These properties produce that the fuzzy number hasmembership function of bounded
variation and so we realize to introduce its weighted mean value by its total variation
measure.

A fuzzy number A is a fuzzy set of R with a normal, (fuzzy) convex and upper-
semicontinuous membership function μ : R → [0, 1] of bounded support [2]. From
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the previous definition there exist two functions μL ,μR : R → [0, 1], where μL is
nondecreasing and right-continuous and μR is nonincreasing and left-continuous,
such that

μ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x < a1 or x > a4
μL(x) a1 ≤ x < a2
1 a2 ≤ x ≤ a3
μR(x) a3 < x ≤ a4

with a1 ≤ a2 ≤ a3 ≤ a4. The α-cut of a fuzzy set A, 0 ≤ α ≤ 1, is the crisp set
Aα = {x ∈ X;μ(x) ≥ α} if 0 < α ≤ 1 and A0 = [a1, a4] if α = 0. Every α-cut of
a fuzzy number is a closed interval Aα = [aL(α), aR(α)].

We observe that the membership function μ of a fuzzy number A is a bounded
variation function.Wepropose a definition ofmeanvalue of A using the total variation
measure |Dμ| ofμ. Let f be aweighting function such that f > 0 and

∫ 1
0 f (α) dα =

1.

Definition 1 We define the f -weighted mean value of a fuzzy number A as

E(A; f ) =
∫ +∞

−∞
x f (μ(x)) |Dμ|

/ ∫ +∞

−∞
f (μ(x)) |Dμ| . (3)

In order to define the lower and upper mean values of A, we consider the positive
and negative variations of μ, as defined in (1), given by, respectively,

μ+(x) =

⎧
⎪⎨

⎪⎩

0 x < a1
μL(x) a1 ≤ x < a2
1 x ≥ a2 ,

μ−(x) =

⎧
⎪⎨

⎪⎩

0 x ≤ a3
1 − μR(x) a3 < x ≤ a4
1 x > a4 .

(4)

We observe that μ+ is an increasing and right continuous function and that μ− is an
increasing and left continuous function.

Definition 2 We define the lower and upper f -weighted mean values of A, respec-
tively, as

E∗(A; f ) =
∫ +∞
−∞ x f (μ(x)) dμ+(x)
∫ +∞
−∞ f (μ(x)) dμ+(x)

, E∗(A; f ) =
∫ +∞
−∞ x f (μ(x)) dμ−(x)
∫ +∞
−∞ f (μ(x)) dμ−(x)

.

(5)

From previous definition and (2) we deduce the following result

Proposition 1 We have E(A; f ) = (1 − w)E∗(A; f ) + wE∗(A; f ), where w ∈
(0, 1) is defined as w = ∫ +∞

−∞ f (μ(x)) dμ−(x)
/ ∫ +∞

−∞ f (μ(x)) |Dμ|.
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3.1 Weighted Mean Value Using α-cuts

Following the line present in the classical case of continuous fuzzy numbers, we face
the problem to give an expression of lower and upper f -weighted mean values using
α-cuts. This different version lets the possibility to write the previous definitions by
the left and right extreme points of fuzzy number α-cuts, exactly as happens in the
continuous case.

Proposition 2

E∗(A; f ) =
∫ 1
0 aL (α) f (μ(aL (α))) dα

∫ 1
0 f (μ(aL (α))) dα

, E∗(A; f ) =
∫ 1
0 aR(α) f (μ(aR(α))) dα

∫ 1
0 f (μ(aR(α))) dα

. (6)

Proof First, we prove the following equalities:

∫ +∞

−∞
g(x) f (μ(x)) dμ+(x) =

∫ 1

0
g(aL(α)) f (μ(aL(α))) dα , (7)

∫ +∞

−∞
g(x) f (μ(x)) dμ−(x) =

∫ 1

0
g(aR(α)) f (μ(aR(α))) dα . (8)

Since aL(α) = min{x ≥ a1; μL(x) ≥ α}, α ∈ [0, 1], applying the change of vari-

able formula [7, Theorem 5.42] we obtain
∫ +∞

−∞
g(x) f (μ(x)) dμ+(x) =

∫ a2

a1

g(x)

f (μ(x)) dμL(x) = ∫ 1
0 g(aL(α)) f (μ(aL(α))) dα and thus (7). We now prove (8).

We have
∫ +∞

−∞
g(x) f (μ(x)) dμ−(x) =

∫ a3

a4

g(x) f (μ(x)) dμR(x) =
∫ −a3

−a4

g(−y)

f (μ(−y)) dμR(−y) = ∫ −a3
−a4

g(−y) f (μ(−y)) dk(y)
where we have used the change of variable y = −x and let k(x) = μR(−x).
Since aR(α) = max{x; x ≤ a4 ,μR(x) ≥ α}, α ∈ [0, 1], letting h(α) = −aR(α) =
min{y; y ≥ −a4 , k(y) ≥ α} and using the change of variable formula [7, Theorem
5.42] (observing that k is increasing), we have, continuing the above chain of equal-
ities,

=
∫ k(−a3)

k(−a4)
g(−h(α)) f (μ(−h(α))) dα =

∫ μR(a3)

μR(a4)
g(aR(α)) f (μ(aR(α))) dα =

∫ 1
0 g(aR(α)) f (μ(aR(α))) dα. Then (8) is proved. Substituting (7) and (8) in (5)
with g(x) = x and g(x) = 1 we obtain for E∗(A; f ) and E∗(A; f ) the expressions
given in (6). 
�
We observe that w of Proposition 1 can be expressed in terms of α-cuts as

w = ∫ 1
0 f (μ(aR(α))) dα

/ (∫ 1
0 f (μ(aL(α))) dα + ∫ 1

0 f (μ(aR(α))) dα
)
.
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3.2 The Case f (α) = 1

We now consider the special case f (α) = 1. We denote by E(A), E∗(A) and E∗(A),
respectively, the mean value and lower and upper mean values of a fuzzy number A
computed using f (α) = 1. This particular case is interesting as we may show that
a sufficient condition so that the weight w is equal to 1/2 is that f (α) = 1. This
condition is not necessary as we will show later in an example.

Proposition 3 We have E(A) = 1
2

∫ +∞
−∞ x |Dμ| = 1

2

∫ 1
0 (aL(α) + aR(α)) dα,

E∗(A) = ∫ +∞
−∞ x dμ+(x) = ∫ 1

0 aL(α) dα and E∗(A) = ∫ +∞
−∞ x dμ−(x) = ∫ 1

0 aR(α)
dα. In particular E(A) = (E∗(A) + E∗(A))/2.

Proof Since μ+(x) is increasing, we have (see Sect. 2)
∫ +∞
−∞ dμ+(x) = V+∞

−∞[μ+] =
supμ+ − inf μ+ = 1, where last equality follows from (4). Similarly we get

∫ +∞
−∞

dμ−(x) = 1. Then, from (2),
∫ +∞
−∞ |Dμ| = ∫ +∞

−∞ dμ+(x) + ∫ +∞
−∞ dμ−(x) = 2. Sub-

stituting in (3), with f = 1, we have the first equality of the thesis for E(A). The
second equality follows observing thatw, as defined in Proposition 1, is equal to 1/2
and using (6) in Proposition 1 with f (α) = 1. 
�

3.3 Example

We now present an example to show that, when f (α) �= 1, we may have w �= 1/2.
We compute the mean values of two fuzzy numbers shown in Fig. 1 for f (α) = 2α.
First, we consider the fuzzy number (a). We have

∫ +∞
−∞ x f (μ(x)) dμ+(x) = 25/12,∫ +∞

−∞ f (μ(x)) dμ+(x) = 5/4 and thus E∗(A; f ) = 5/3. Furthermore,
∫ +∞
−∞ x

f (μ(x)) dμ−(x) = 59/16,
∫ +∞
−∞ f (μ(x)) dμ−(x) = 17/16 and then E∗(A; f ) =

59/17. Moreover E(A; f ) = 277/111 ≈ 2.5 and w = 17/37 �= 1/2.
We now consider the fuzzy number (b). We have

∫ +∞
−∞ x f (μ(x)) dμ+(x) =

25/12,
∫ +∞
−∞ f (μ(x)) dμ+(x) = 5/4 and thus E∗(A; f ) = 5/3. Furthermore,

∫ +∞
−∞

x f (μ(x)) dμ−(x) = 55/12,
∫ +∞
−∞ f (μ(x)) dμ−(x) = 5/4 and then E∗(A; f ) =

11/3. Moreover E(A; f ) = 8/3 ≈ 2.7 and w = 1/2.

3.4 Possibilistic Framework

Weobserve that our proposal, which starts from a variationalmeasure,may be viewed
in a possibilistic framework. Indeed, since Poss(A ≤ aL(α)) = supx≤aL (α)μ(x) =
μ(aL(α)) and Poss(A ≥ aR(α)) = supx≥aR(α)μ(x) = μ(aR(α)), from (6) we get

E∗(A; f ) = ∫ 1
0 aL(α) f (Poss(A ≤ aL(α))) dα

/ ∫ 1
0 f (Poss(A ≤ aL(α))) dα ,
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4

1

1 3

1/2

1/4

4

1

1 3

1/2

(a) (b)

Fig. 1 Two fuzzy numbers with non-continuous membership function

E∗(A; f ) = ∫ 1
0 aR(α) f (Poss(A ≥ aR(α))) dα

/ ∫ 1
0 f (Poss(A ≥ aR(α))) dα.

Note that A does not need to be continuous. In the special casewhen A is a continuous
fuzzy number we retrieve the lower and upper possibilistic mean values proposed
in [3] and [5] (see Proposition 4). Thus our approach offers an extension of possi-
bilistic mean values to the case of fuzzy numbers whose membership functions are
upper-semicontinuous but are not necessarily continuous.

3.5 Weighted Mean Value of Continuous Fuzzy Numbers

If we use the variational approach for continuous fuzzy numbers we obtain that the
weighted mean value is the simple average of upper and lower f -weighted mean
values. This means that for every weighting function f the weight w = 1/2.

Proposition 4 If A is a fuzzy number with continuous membership function μ then
E(A; f ) = 1

2

∫ +∞
−∞ x f (μ(x)) |Dμ| = 1

2

∫ 1
0 (aL(α) + aR(α)) f (α) dα, and E∗(A

; f ) = ∫ +∞
−∞ x f (μ(x)) dμ+(x) = ∫ 1

0 aL(α) f (α) dα, E∗(A; f ) = ∫ +∞
−∞ x f (μ(x))

dμ−(x) = ∫ 1
0 aR(α) f (α) dα.Moreover,w = 1/2and thus E(A; f ) = (E∗(A; f ) +

E∗(A; f ))/2.

Proof The assertions easily follow from previous results observing that, since μ
is continuous, we have μ(aL(α)) = α and μ(aR(α)) = α. In particular, we have∫ +∞
−∞ f (μ(x)) dμ+(x) = ∫ 1

0 f (μ(aL(α))) dα = ∫ 1
0 f (α) dα = 1 and, similarly,∫ +∞

−∞ f (μ(x)) dμ−(x) = 1. 
�
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4 Weighted Variance of Fuzzy Numbers

In this section we introduce two definitions of f -weighted variance of a fuzzy num-
ber A whose membership function is upper semicontinuous. The first, Var1(A), is
obtained as the simple average of the lower and upper variances of A, that derive
from the definition of lower and upper mean value of A given in Definition 2. The
second, Var2(A), is the natural definition of variance that starts from Definition 1.
In the continuous case and for particular weights f we recover classical definitions
introduced by other authors.

Definition 3 We define the lower and upper variances of a, respectively, as

Var∗(A; f ) =
∫ +∞
−∞

(x − E∗(A; f ))2 f (μ(x)) dμ+(x)

/∫ +∞
−∞

f (μ(x)) dμ+(x) ,

Var∗(A; f ) =
∫ +∞
−∞

(
x − E∗(A; f )

)2 f (μ(x)) dμ−(x)

/∫ +∞
−∞

f (μ(x)) dμ−(x) .

and the variance of A as Var1(A; f ) = (Var∗(A; f ) + Var∗(A; f ))/2.

Using (7) and (8) with g(x) = (x − E∗(A; f ))2 and g(x) = (x − E∗(A; f ))2,
respectively, we may express previous definitions in terms of α-cuts as follows

Var∗(A; f ) =
∫ 1

0
(aL(α) − E∗(A; f ))2 f (μ(aL(α))) dα

/ ∫ 1

0
f (μ(aL(α))) dα,

Var∗(A; f ) =
∫ 1

0

(
aR(α) − E∗(A; f )

)2
f (μ(aR(α))) dα

/ ∫ 1

0
f (μ(aL(α))) dα.

Definition 4 Alternatively, we may define the variance of a fuzzy number A as

Var2(A; f ) = ∫ +∞
−∞ (x − E(A; f ))2 f (μ(x)) |Dμ|

/ ∫ +∞
−∞ f (μ(x))|Dμ|.

4.1 Weighted Variance of Continuous Fuzzy Numbers

Proposition 5 If A is a fuzzy number with continuous membership function μ then
Var∗(A; f ) = ∫ 1

0 (aL(α) − E∗(A; f ))2 f (α) dα and Var∗(A; f ) = ∫ 1
0

(aR(α) − E∗(A; f ))2 f (α) dα.

Remark 1 If A is a continuous fuzzy number and f (α) = 2αweobtain that Var1(A)
matches the variance proposed by Zhang and Nie [9].

Proposition 6 If A is a continuous fuzzy number then
Var2(A; f ) = 1

2

∫ 1
0

(
(aL(α) − E(A; f ))2 + (aR(α) − E(A; f ))2

)
f (α) dα.
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Remark 2 If A is a continuous fuzzy number and f (α) = 2α we obtain that
Var2(A; f ) agrees with the variance Var ′(A) introduced by Carlsson and Fullér
[3].

Proposition 7 If A is a fuzzy number with differentiable membership functionμ then
Var2(A; f ) = 1

2

∫ +∞
−∞ (x − E(A; f ))2 f (μ(x)) |μ′(x)| dx.

Remark 3 If A is a fuzzy number with differentiable membership function μ and
f (α) = 2α then Var2(A) is the variance proposed by Li, Guo and Yu [8].

5 Conclusion

In this paper we have presented the weighted mean value and variance definitions for
fuzzy numberswith upper semicontinuousmembership functions that are of bounded
variation. In the same context in a previous paper we have looked for a definition of
evaluation and ranking for fuzzy numbers [1]. The idea to use the space of bounded
variation functions has allowed us to view the mean value and the variance of fuzzy
numbers either in a variational context or in a classical way by α-cuts. This choice,
thanks to the freedom that we have left to the weights, has shown interesting results
that are able to generalize the previous ones but even to recover others present in
literature for the continuous case. We have intention to continue in this direction to
see if the space of bounded variation functions offers a new research field for fuzzy
sets.
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On the Construction of Radially Symmetric
Trivariate Copulas

José De Jesús Arias García, Hans De Meyer and Bernard De Baets

Abstract We propose a method to construct a 3-dimensional symmetric function
that is radially symmetric, using two symmetric 2-copulas, with one of them being
also radially symmetric. We study the properties of the presented construction in
some specific cases and provide several examples for different families of copulas.

Keywords Copula · Quasi-copula · Radial symmetry · Aggregation function

1 Introduction

An n-dimensional copula (or, for short, n-copula) is a multivariate distribution func-
tion with the property that all its n univariate marginals are uniform distributions on
[0, 1]. Formally, an n-copula is a [0, 1]n → [0, 1] function that satisfies the following
conditions:

1. Cn(x) = 0 if x is such that x j = 0 for some j ∈ {1, 2, . . . , n}.
2. Cn(x) = x j if x is such that xi = 1 for all i �= j .
3. Cn is n-increasing, i.e., for any n-box P = [a1, b1] × · · · × [an, bn] ⊆ [0, 1]n it

holds that
VCn (P) =

∑

x∈vertices(P)

(−1)S(x)Cn(x) ≥ 0 ,
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where S(x) = #{ j ∈ {1, 2, . . . , n} | x j = a j }. VCn (P) is called the Cn-volume
of P .

Due to Sklar’s theorem, which states that any continuous multivariate distribution
function can be written in terms of its n univariate marginals by means of a unique
n-copula, n-copulas have become one of the most important tools for the study of
certain types of properties of random vectors, such as stochastic dependence (see [4,
13] for more details on n-copulas). One example of a property that can be directly
studied from copulas is the property of radial symmetry. An n-dimensional random
vector (X1, . . . , Xn) is said to be radially symmetric about (x1, . . . , xn) if the distri-
bution of the random vector (X1 − x1, . . . , Xn − xn) is the same as the distribution
of the random vector (x1 − X1, . . . , xn − Xn). It is easily shown that radial sym-
metry can be characterized using copulas: a random vector (X1, . . . , Xn) is radially
symmetric about (x1, . . . , xn) if and only if for any j ∈ {1, . . . , n} X j − x j has the
same distribution as x j − X j and the n-copula Cn associated to the random vector
satisfies the identity Cn = Ĉn , where Ĉn denotes the survival n-copula associated to
Cn , and which can be computed as:

Ĉn(x1, . . . , xn) =
n∑

j=1

x j − (n − 1) +
n∑

i< j

Cn(1, . . . , 1 − xi , . . . , 1 − x j , . . . , 1)

−
n∑

i< j<k

Cn(1, . . . , 1 − xi , . . . , 1 − x j , . . . 1 − xk, . . . , 1) + . . .

+(−1)nCn(1 − x1, 1 − x2, . . . , 1 − xn) . (1)

Due to this characterization, we say that an n-copula Cn is radially symmetric if it
satisfies the identity Cn = Ĉn . Survival copulas also have a probabilistic interpreta-
tion. If the random vector (X1, . . . Xn) has the copula Cn as its distribution function,
then Ĉn is the distribution function of the random vector (1 − X1, . . . , 1 − Xn). This
probabilistic interpretation has led to several studies of the transformations of copu-
las which are induced by certain types of transformations on random variables (see
[6–8]). These transformations have been generalized and studied in the framework
of aggregation functions [1–3].

Radially symmetric copulas have a particular importance in stochastic simulation,
as they are used as a part of the multivariate version of the antithetic variates method,
which is a variance reduction technique used in Monte Carlo methods (see [12]).
In the binary case, well-known examples of families of bivariate copulas that are
radially symmetric are the Gaussian family, the Frank family and the Farlie-Gumbel-
Morgenstern (FGM) family. However, there are few attempts to construct families of
n-copulas with some specific properties for n ≥ 3. In this contribution we propose a
construct method for trivariate radially symmetric copulas.
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2 Radial Symmetry and Associativity

Archimedean n(-quasi)-copulas are one of themost well-known classes of n-copulas,
which have the additional property that they are symmetric, i.e., for any permutation
σ of {1, 2, . . . , n} and for any x ∈ [0, 1]n it holds that

Cn(x1, x2, . . . , xn) = Cn(xσ(1), xσ(2), . . . , xσ(n)) .

Archimedean n(-quasi)-copulas are also associative and can be defined recur-
sively, i.e., for any x, y, z ∈ [0, 1] the equality C2(x,C2(y, z)) = C2(C2(x, y), z)
holds and for any n ≥ 2 and x ∈ [0, 1]n+1 it holds that

Cn+1(x) = C2(x1,Cn(x2, . . . , xn+1))

= C2(Cn(x1, . . . , xn), xn+1) .

It is well known that Archimedean n(-quasi)-copulas can be fully character-
ized in terms of an additive generator (see [11]). Some further generalizations of
Archimedean copulas have been proposed; for example in [10], nested Archimedean
n-copulas are studied, where several bivariate Archimedean copulas are iterated to
construct an n-copula (for example, in the trivariate case C2(x, D2(y, z)) would be
an example of such a construction, where C2 and D2 are bivariate Archimedean
copulas).

If a 2-copula is radially symmetric, then for any (x, y) ∈ [0, 1]2, it holds that

C2(x, y) + (1 − C2(1 − x, 1 − y)) = x + y .

If C2 is an Archimedean copula, the latter equation is a particular case of a func-
tional equation studied by Frank in [5]. More specifically in [5], it is proven that if a
continuous function F : [0, 1]2 → [0, 1] satisfies the following properties

1. for any x ∈ [0, 1] it holds that F(x, 0) = F(0, x) = 0,
2. for any x ∈ [0, 1] it holds that F(x, 1) = F(1, x) = x ,
3. the functions F(x, y) and G(x, y) = x + y − F(x, y) are both associative;

then F must be amember of the Frank family of copulas or an ordinal sumconstructed
from members of this family. The Frank family is given by:

F (α)(x, y) = − 1

α
ln

(
1 + (e−αx − 1)(e−αy − 1)

e−α − 1

)
,

whereα ∈ R ∪ {−∞,∞} (Although the caseα = ∞ is not anArchimedean copula).
In [8] this result is complemented by showing that 2-copulas that are both asso-

ciative and radially symmetric are members of the Frank family of copulas or an
ordinal sum of the form C2 = (〈a j , b j , F

(α j )

( j) 〉) j∈J , such that for any j , there exists
i j with the property that α j = αi j , a j = 1 − bi j and b j = 1 − ai j .
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Note that if a 3-copula is radially symmetric, then its 2-dimensional marginals
must also be radially symmetric. This trivially generalizes to higher dimensions.
Hence if an associative 3-copula is radially symmetric, then its 2-dimensional mar-
ginals must also be solutions of the Frank functional equation. Unfortunately, as
shown in [9], for n ≥ 3 the only solutions are the product copula Πn(x1, . . . , xn) =
x1x2 . . . xn (which is the copula of independent random variables) and the minimum
operator Mn(x1, . . . , xn) = min(x1, . . . , xn) (which is the copula of comonotonic
random variables) or ordinal sums constructed using these two n-copulas. From this
it follows that if we want to construct radially symmetric copulas in higher dimen-
sions, we must weaken the condition of associativity (and as a consequence the
Archimedean property is lost), as jointly requiring both properties is too restrictive
in higher dimensions.

3 The Construction

In [8], the authors study several transformations of bivariate copulas. They show that
every radially symmetric 2-copula has the following form

C2(x, y) + Ĉ2(x, y)

2
, (2)

where C2 is a 2-copula. This result is easily generalized to higher dimensions. Keep-
ing this result inmind, we propose the following constructionmethod in three dimen-
sions.

Definition 1 Let C2, D2 be two symmetric 2-copulas, such that C2 is also radially
symmetric. We define the symmetric function SC2,D2 : [0, 1]3 → R associated to the
pair C2, D2 as

SC2,D2(x, y, z) = 1

2
[1 − x − y − z + C2(x, y) + C2(x, z) + C2(y, z)]

+1

2
[HC2,D2(x, y, z) − HC2,D2(1 − x, 1 − y, 1 − z)] , (3)

where

HC2,D2(x, y, z) = D2(x,C2(y, z)) + D2(y,C2(x, z)) + D2(z,C2(x, y))

−2

3
[D2(x, D2(y, z)) + D2(y, D2(x, z)) + D2(z, D2(x, y))] .

Note that the function HC2,D2 satisfies the boundary conditions of a 3-copula,
and from this is easy to prove that SC2,D2 also satisfies the boundary conditions of a
copula, and that the bivariate marginals of SC2,D2 are all equal to C2.
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Proposition 1 Let C2, D2 be two symmetric 2-copulas, such that C2 is also radially
symmetric. Let SC2,D2 be defined as in Eq. (3). If SC2,D2 is a 3-copula, then it is radially
symmetric.

Proof It can be shown after some tedious computations that we can rewrite SC2,D2

as

SC2,D2(x, y, z) = x + y + z − 2 + SC2,D2(1 − x, 1 − y, 1)

+SC2,D2(1 − x, 1, 1 − z) + SC2,D2(1, 1 − y, 1 − z)

−SC2,D2(1 − x, 1 − y, 1 − z) ,

i.e., from the definition of survival copula given by Eq. (1), it follows that if SC2,D2

is a 3-copula, then SC2,D2 is a radially symmetric 3-copula because it coincides with
its associated survival copula. �

However, SC2,D2 is not necessarily a 3-copula, as it may even not be an increas-
ing function. For example, if C2 = D2 = F (−2), we can easily see that SF (−2),F (−2)

( 12 ,
1
10 ,

1
10 ) < 0 = SF (−2),F (−2) (0, 1

10 ,
1
10 ). We now provide some examples where the

construction effectively yields a 3-copula.

Example 1 Consider the Frank family of 2-copulas. From the results in [11], we
know that for α ≥ − ln(2), the 3-dimensional version of the Frank 2-copula, given by
F (α)
3 (x, y, z) = F (α)(x, F (α)(y, z)), is a 3-copula. From this, it follows immediately

that if α ≥ − ln(2) then SF (α),F (α) is a 3-copula. However, with some computational
help, it can be shown that SF (α),F (α) is also a 3-copula for α ≥ − ln(3).

Example 2 The FGM family of bivariate copulas is given by

F (θ)(x, y) = xy + θxy(1 − x)(1 − y) , θ ∈ [−1, 1] .

In this case, some computations show that SF (θ),F (θ) is a 3-copula if and only if
θ ∈ [−1/2(3 − √

5), 1/2(
√
21 − 3)].

Example 3 For any 2-copula C2, SC2,Π2 is a 3-copula if and only if for any
x1, x2, y1, y2, z1, z2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2, z1 ≤ z2 it holds that

(x2 − x1)VC2([y1, y2] × [z1, z2]) + (y2 − y1)VC2([x1, x2] × [z1, z2])
+(z2 − z1)VC2([x1, x2] × [y1, y2])
≥ 2(x2 − x1)(y2 − y1)(z2 − z1) .

If C2 is absolutely continuous, then this last condition is equivalent to:

∂2C2

∂x∂y
(x, y) + ∂2C2

∂x∂z
(x, z) + ∂2C2

∂y∂z
(y, z) ≥ 2 . (4)
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for almost every x, y, z ∈ [0, 1]. An example of a family of 2-copulas that satisfies
Eq. (4) is the FGM copulas F (θ) for θ ∈ [−1/3, 1/3].

We note that Example3 can be generalized to higher dimensions. Given a symmet-
ric n-copula Cn that satisfies Cn = Ĉn , we define the (n + 1)-dimensional function
SCn as

SCn (x1, . . . , xn+1) = 1

2

[ n+1∑

j=1

x j − n +
n+1∑

i< j

Cn(1, . . . , 1 − xi , . . . , 1 − x j , . . . , 1)

−
n+1∑

i< j<k

Cn(1, . . . , 1 − xi , . . . , 1 − x j , . . . 1 − xk, . . . , 1) + . . .

+(−1)n
n+1∑

j=1

Cn(1 − x1, . . . , 1 − x j−1, 1 − x j+11 − xn+1)
]

+1

2

[
H(x1, . . . , xn+1) + (−1)n+1H(1 − x1, . . . , 1 − xn+1)

]
,

where

H(x1, . . . , xn+1) =
n+1∑

j=1

x jCn(x{ j})

−
n+1∑

i< j

xi x jCn−1(x{i, j})

. . .

+(−1)n
n+1∑

i< j

⎛

⎝
∏

k �=i, j

xk

⎞

⎠C2(xi , x j )

+n(−1)n+1x1x2 . . . xn+1 ,

and xA denotes the vector whose components take the values of the elements
x1, . . . , xn+1, except of those elements x j for which j is in the set A of indices.
It can be proven that the function SCn is such that if SCn is an (n + 1)-copula, then
it is an (n + 1)-dimensional radially symmetric copula, with n-dimensional mar-
ginals given by Cn . The characterization in the absolutely continuous case is also
simple, since after doing some combinatorial analysis, it is easy to prove that if
Cn is absolutely continuous, then SCn is an (n + 1)-copula if and only if for any
x1, . . . xn+1 ∈ [0, 1], it holds that

n+1∑

j=1

∂nCn

∂x1 . . . ∂x j−1∂x j+1 . . . ∂xn+1
(x{ j})
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−
n+1∑

i< j

∂n−1Cn−1

∂x1 . . . ∂xi−1∂xi+1, . . . , ∂x j−1∂x j+1, . . . ∂xn+1
(x{i, j})

. . .

+(−1)n
n+1∑

i< j

∂2C2

∂xi∂x j
(xi , x j ) + n(−1)n+1 ≥ 0 .

4 Conclusions and Future Work

We proposed a way of constructing a symmetric and radially symmetric trivariate
copula with given bivariate marginals, and provided some examples of this con-
struction. However, it remains is an open problem to determine for which pairs of
2-copulas C2 and D2, the function SC2,D2 is a 3-copula. A first step in this study
would be to characterize the set of ternary aggregation functions for which it holds
that their ‘survival transformation’ is also an aggregation function (see [1–3]). A final
task is to analyse whether the presented construction can be properly generalized to
any dimension n > 3.

Acknowledgments The first author was supported by the “Consejo Nacional de Ciencia y Tec-
nología" (México) grant number 382963.
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Simulation of the Night Shift Solid Waste
Collection System of Phuket Municipality

Somsri Banditvilai and Mantira Niraso

Abstract This research was conducted in order to simulate the night shift solid
waste collection system of Phuket Municipality, Thailand. The Phuket Municipality
faced the problems of residualwaste and an unbalanced load for solidwaste collection
teams. The waste management committee of PhuketMunicipality wanted to improve
the solid waste collection system to run more efficiently. This research analyzed the
volume of solid waste collection instead of the weight, and has separated the solid
waste collection points into 11 “types”. The data was collected from the survey form.
Minitab 16.1 was used to analyze and test the data distribution, and then used them to
build themodel.Microsoft Visual C++was used to build the simulationmodel, which
was then verified and validated extensively. The model represented the actual night
shift solid waste collection system of Phuket Municipality. The heuristic approach
was then employed to apply new assigned zones and routings. The results from
the study of the new system of night shift solid waste collection system of Phuket
Municipality shows that there is no residual waste and no unbalanced load between
solid waste collection teams. The new system works effectively and can decrease
the total number of trips for solid waste collection by 9.1% and the average distance
and time for the solid waste collection system are decreased by 7.42% and 7.10%
respectively.

1 Introduction

Phuket is a popular tourist destination in Thailand. There are historical landmarks
and it has a beautiful natural scenery. The number of tourists, both domestic and
foreign, is increasing exponentially every year. As a result, there is a rapid expansion
of establishments such as hotels, restaurants, hospitals etc. These establishments also
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pollute the environment and increase solid waste, especially in the Phuket Munici-
pality. Solid waste management starts with collection, which is followed by trans-
portation, processing and disposal or destruction. The collection and transportation
of solid waste are considered very important, and accounts for 75 to 80% of the total
cost [3]. Therefore, this research is focused on the collection and transportation. It
is essential to manage solid waste collection efficiency, to save time and costs. It
is difficult to design a solid waste collection system to suit the garbage problems
that is always changing. Simulation is the imitation of the operation of a real-world
process or system over time [2]. In order to increase the vehicle productivity, it is
necessary to plan vehicle routing so that the quantity of waste collected is maximized
[6]. Therefore, a simulation model is a suitable tool in designing of the solid waste
collection system. This research used the simulation model in assigning areas of
responsibilities and routes for solid waste collection trucks.

2 The Scope of This Research

The Phuket Municipality is responsible for solid waste collection of 14 km2. This
study covers the night shift solid waste collection system routing and area of respon-
sibility of each trucks, and not covered by day shift and private solid waste collection
companies. The traffic conditions are not considered, since it is the night shift and
there are no traffic jams.

3 Methodology

[1, 5, 6] and others studied the solid waste collection by analyzing the weight of
solid waste collection. However, this research analyzed the volume of solid waste
collection instead of the weight, since a full truck means that the solid waste has
reached the limit of truck volume not the weight limit. The volume of solid waste
can easily determine by the container size. The heuristic approach includes the iden-
tification of preliminary routes to be updated to balance routes through trial and error
[4]. Therefore, this research employed the heuristic approach in assigning zones and
routes. Since the volume of solid waste collection and time spent at each collection
point are depending on the place that we collected the garbage is called “collection
point”. This research has classified the collection points into 11 types which are com-
mercial buildings, restaurants, hotels, markets, government buildings, gas stations
and garages, religious places, schools, hospitals, residential areas, streets/parks.
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3.1 The Study of the Night Solid Waste Collection System
of Phuket Municipality

Currently Phuket Municipality separates the area of night shift solid waste collection
system into 10 zones with one truck being responsible for each zone as shown
in Fig. 1. There are 11 compaction trucks-10 currently used and 1 spare truck. The
loading capacities of the trucks range from8 to 11m3. TheHead ofCleaningDivision
is responsible for assigning the area of responsibility for each truck which is called a
zone. The driver decides the route for solid waste collection for his zone. The night
shift solid waste collection is daily performed on each street of the city and it goes
from 9.00 p.m. to 5.00 a.m. The team of solid waste collection is composed of one
driver and two garbage collectors. Each day the teamwill continue to operate until all
the solid waste collection points are visited or the operation hours have ended. The
collection trip will start from the station of Phuket Municipality. Then it runs from
one solid waste collection point to the next in the area of responsibility until it has
reached full capacity of truck or runs through all collection points. This, leads to the
transfer of the solid waste to the disposal site, and the trip ends. Then starts another
trip until all collection points are visited or the operation hours end at 5.00 a.m.
After transferring solid waste to the disposal site, the driver drives the truck to the
station. Upon completion of the operation, it is typically 2–3 trips per day per truck.

Fig. 1 Phuket Municipal map before routing
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3.2 Data Collection and Analysis

This research study has collected the general data of the solid waste collection system
such as zoning areas, the number of solid waste collection vehicles, types, capacities
of the vehicles, and the solid waste collection routes from the Cleaning Division of
Public Health and the Environment Phuket Municipality, and maps of transportation
networks from the Bureau of Engineering Phuket Municipality. The survey form
designed for the operational solid waste collection system was used to record the
operational data of trucks each day. Observations were made while riding in the
collection vehicles. The detailed activities of the solid waste collection system were
noted starting when the truck leaves the station until the operations of solid waste
collection were completed, the collected data include: the transport route of each
truck; the distance and time from the station to the first collection point; the volume
of solid waste collection, and the time spent at the collection point classified by types
of solid waste collection points; the distance and time between each collection point;
the volume of solid waste transported in each trip by each vehicle; the distance and
time from the final solid waste collection point to the disposal site; the transfer time
at the disposal site; the distance and time from the disposal site to the station; the
total distance and time of operations of each truck per day; the number of trips of
each truck per day.

3.3 The Analysis of the Distribution

Minitab 16.1 was employed in analyzing the distribution of the collected data.
Anderson-Darling test was used to test the distribution. It was found as follows:
the number of solid waste collection points per vehicle code as shown in Table1; the
distance and time from the station to the first collection point of each vehicle code
have a normal distribution with mean and variance as shown in Table1; the volume
of solid waste collection, and the time spent at the collection point classified by types
of solid waste collection point have a normal distribution with mean and variance as
shown in Table2; the distance between each collection point has a normal distribu-
tion with a mean of 37.67m and a variance of 31.26m2; the time to travel between
the waste collection points has a normal distribution with a mean of 0.51min and a
variance of 0.24min2; the volume of solid waste that is fully capable of carrying by
each type of vehicle have a normal distribution with mean and variance as shown in
Table3; the distance from the last collection point to the disposal site has a normal
distribution with a mean of 4478m and a variance of 3.06m2; the time to travel from
the last collection point to the disposal site. From the survey data found that it has
a normal distribution with mean 2.62min and variance 1.69min2 The time spent at
the disposal site has a normal distribution with a mean of 19.31min and a variance
of 8.65min2; the distance from the disposal site to the station is 1000m; the time to
travel from the disposal site to the station has a normal distribution with a mean of
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Table 1 The number of solid waste collection points, the distribution of distance (meters) and time
(minutes) from the station to the first collection point of each vehicle code

Vehicle code Solid waste collection
points

Distance from station to
the first collection point

Time from station to the
first collection point

70 195 N(2412.5, 1124.33) N(7.69, 2.50)

71 159 N(2072.5, 66.12) N(9.06, 2.37)

96 84 N(3312.5, 2140.39) N(12.43, 6.81)

98 125 N(2125.0, 992.47) N(8.94, 2.01)

99 108 N(2687.5, 210.02) N(10.95, 4.45)

100 142 N(1237.5, 206.59) N(3.72, 1.05)

101 153 N(1962.5, 998.48) N(6.63, 2.92)

102 120 N(2712.5, 339.91) N(10.44, 1.59)

153 197 N(2725.0, 237.55) N(13.89, 6.42)

160 104 N(1925.0, 895.62) N(6.81, 1.96)

Table 2 The distribution of the volume of solid waste collection (liters), and the time spent at the
collection point (minutes) classified by types of solid waste collection point

Types of solid waste collection
point

The volume of solid waste
collection

Time spent at the collection
point

Commercial buildings N(1218.57, 936.94) N(8.25, 5.92)

Restaurants N(266.67, 197.52) N(2.68, 2.30)

Hotels N(1173.18, 823.33) N(9.94, 11.25)

Markets N(2035.63, 2804.46) N(12.25, 16.02)

Government buildings N(644.17, 356.28) N(2.40, 1.78)

Gas stations and garages N(280.67, 132.10) N(3.33, 2.39)

Religious places N(441.25, 352.92) N(3.0, 2.45)

Schools N(1471.25, 890.47) N(7.66, 6.40)

Hospitals N(4625.00, 1957.13) N(36.83, 17.71)

Residential areas N(798.49, 460.01) N(4.60, 3.10)

Streets/Parks N(186.52, 113.0) N(1.61, 1.09)

Table 3 The distribution of the volume of solid waste collection (liters) that is fully capable of
being carried by each type of vehicle

The compaction truck capacity The volume of solid waste that is fully capable of carrying
collection

8000 N(20743.93, 3714.06)

10000 N(24703.75, 2492.10)

11000 N(26148.57, 2191.21)
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4.15min and a variance of 0.78min2; the number of trips of solid waste collection
are 2 trips per day except only the vehicle code 101 and 102 that are 3 trips per day.

3.4 Model Building, Verification and Validation

By Microsoft Visual C++, a discrete-event simulation model of the night shift solid
waste collection of Phuket Municipality was built. The model was verified and vali-
dated extensively in order to confirm that the model represents the current night shift
solid waste collection system of Phuket Municipality. In a total of 1000 simulation
runs per vehicle code, the distance, time and volumeof solidwaste collection between
the current night shift solid waste collection system and the simulation model was
compared as shown in Tables4, 5 and 6.

Table 4 The comparison of the average distance (kilometers) of solid waste collection between
the current night shift solid waste collection system (actual) and the simulation model

Vehicle code Actual distance Simulation distance Difference(%)

70 22.50 21.94 2.49

71 28.30 28.12 0.64

96 39.00 39.72 −1.85

98 38.70 39.58 −2.27

99 14.50 15.21 −4.90

100 15.80 15.56 1.52

101 15.30 14.59 4.64

102 20.50 19.92 2.83

153 21.20 22.20 −4.72

160 13.90 13.32 4.17

Table 5 The comparison of the average time (hours) of solid waste collection between the current
night shift solid waste collection system (actual) and the simulation model

Vehicle code Actual time Simulation time Difference(%)

70 7.50 7.20 4.00

71 6.95 7.15 −2.88

96 8.00 7.65 4.38

98 7.97 8.14 −2.13

99 6.61 6.34 4.08

100 6.80 6.86 −0.88

101 6.51 6.25 3.99

102 8.05 8.10 −0.62

153 7.75 7.81 −0.77

160 5.78 5.72 1.04
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Table 6 The comparison of the average volume (liters) of solidwaste collection between the current
night shift solid waste collection system (actual) and the simulation model

Vehicle code Actual volume Simulation volume Difference(%)

70 32750 31159 4.86

71 37520 38949 −3.81

96 34510 36014 −4.36

98 48050 46256 3.73

99 38480 39294 −2.12

100 32800 34214 −4.31

101 47690 49708 −4.23

102 45020 44509 1.14

153 38680 37067 4.17

160 38470 39510 −2.70

Tables4, 5 and 6 show that the difference between the average distance, time, and
volume of the current night shift solid waste collection system and the simulation
model are less than 5%. The trips of each vehicle code are the same. Therefore, the
simulation model represents the current night shift solid waste collection system of
Phuket Municipality. Then the model can be used to evaluate alternative system to
improve the solid waste collection system.

3.5 Set the New Assigned Zones and Routings

From the study of the night shift solidwaste collection systemof PhuketMunicipality,
the average operation time of each truck is between 5.72 and 8.14h. The average
distance of each truck is between 13.90 and 39.00km. The trip of each vehicle is
2–3 trips per day. By employing the heuristic approach, the new assigned zones and
routes was set to improve the night shift solid waste collection system in order to
have the number of trips, distance and time of operation for each truck decreased.
The Phuket Municipality has no residual waste, and each truck has similar hours
of operation, regardless of the increase or decrease in the use of trucks, equipment,
employees, and collection points.

4 Results and Conclusion

The results from the study of the new system of night shift solid waste collection
system of Phuket Municipality shows that there is no residual waste and no unbal-
anced load between the teams of solid waste collection. The new assigned zones
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Fig. 2 Phuket Municipal map after routing

(Fig. 2) and routes work effectively and can decrease the total number of trips for
solidwaste collection by 2 trips per day or 9.1% and the average distance and time for
the solid waste collection system are decreased by 7.42% and 7.10% respectively.
The team of solid waste collection has the working hours between 6.26 and 7.23h.
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Updating Context in the Equation:
An Experimental Argument
with Eye Tracking

Jean Baratgin, Brian Ocak, Hamid Bessaa and Jean-Louis Stilgenbauer

Abstract The Bayesian model was recently proposed as a normative reference for
psychology studies in deductive reasoning. This new paradigm supports that indi-
viduals evaluate the probability of an indicative conditional if A then C in the natural
language as the conditional probability P(C given A) (P(C|A) according to Bayes’
rule). In this paper, we show applying an eye-tracking methodology that if the cog-
nitive process for both probability assessments (P(if A then C) and P(C|A)) is really
identical, it actually doesn’t match the traditional focusing situation of revision cor-
responding to Bayes’ rule (change of reference class in a static universe). Individuals
appear to revise their probability as if the universe was evolving. They use aminimal
rule in mentally removing the elements of the worlds that are not A. This situation,
called updating, actually seems to be the natural frame for individuals to evaluate
the probability of indicative conditional and the conditional probability.

Keywords Equation ·Conditional probability · Focusing ·Updating ·Eye-tracking
methodology

1 New Paradigm in Psychology of Reasoning

For a decade, psychologists have argued that the binary logic was inadequate to
account for the performance in reasoning tasks because people use strategies to
reason under uncertainty (whose nature is probabilistic) [6, 23, 35, 38]. These authors
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proposed to adopt the probabilistic Bayesian theory1 [7]: Individuals’ degrees of
belief must respect the axioms of additive probability (static coherence) and their
revision must follow the conditioning principle (dynamic coherence) which assumes
that the revised probability of hypothesisH upon learning the dataD (PD(H)) at time
t1 is equal to the probability of H conditioned on the (imagined or assumed) D at
time t0 (P(H|D) yielded by Bayes’ rule2):

PD(H) = P(H|D) (1)

This shift of model of reference implies several conceptual and methodological
modifications in the study of deductive reasoning [3, 4]. The main change is that the
indicative conditional ‘If A (antecedent) then C (consequent)’ in natural language
is interpreted as a single statement of a link (maybe weak) between A and C that
does not necessarily coincide with the material conditional in formal logic (which is
logically equivalent to ¬A ∨ C).3

2 The Equation

De Finetti [17] distinguishes two levels of knowledge (belief and degree of belief)
about the outcome of an event.

• For the belief, all events are conditional. LetAbe non-contradictory, the conditional
event C|A is True when A ∧ C is true, False when A ∧ ¬C is true and Void when
¬A is true.4 The fundamental relation for C|A at this level is5:

1In this paper we refer to de Finetti’s subjective Bayesian probability theory [16] that provides a
unified perspective to study reasoning and probability judgment [10].
2The two usual forms of Bayes’ rule are the conditional probability:

P(H|D) = P(H ∧ D)

P(D)
= P(H ∧ D)

P(H ∧ D) + P(¬H ∧ D)

and the Bayes’ identity:

P(H|D) = P(H)P(D|H)

P(D)
= P(H)P(D|H)

P(H)P(D|H) + P(¬H)P(D|¬H)

with P(H) the prior probability of hypothesis H , P(H|D) the posterior probability after the
knowledge of data D, P(D|H) the likelihood and P(D) the probability of D.
3The other main change, not covered in this paper, is the analyzis of deductive arguments in the light
of de Finetti’s Bayesian coherence interval [12, 41, 45]. Some studies show a relative coherence in
Human deduction under uncertainty [14, 41–43, 46, 48].
4Recent studies show that a majority of individuals have a trivalent interpretation of the conditional
event [47] and that de Finetti’s three-valued tables [18] are the best approximation for participants’
truth tables [5, 6, 11].
5With ∧k for the Kleene-Łukasiewicz-Heiting conjunction.
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if A then C = C|A = (C ∧k A)|A (2)

• For the degree of belief, it is assumed that individuals are able to specify the Void
value in subjective probabilistic terms [28, 39]. The main property (called the
Equation [26]) is that the probability of an indicative conditional if A then C is
equal to the probability ofC after the knowledge ofA (Ramsey test). It corresponds
(by the conditioning principle) to the conditional probability and readswith Bayes’
rule:

P(if A then C) = PA(C) = P(C|A) = P(C ∧ A)

P(A)
(3)

The majority of participants seem to act according to the Equation [13, 20, 21,
24, 25, 27, 36, 37, 40, 47, 48].

3 Context of Revision

Bayes’ rule illustrates a singular situation of ‘revision’ called focusing [15, 22, 50].
It is assumed that one object is selected from the reference class and that a message
releases information about this object. A change of reference class is consequently
considered by focusing attention on a given subset of the initial reference class
that complies with the information on the selected object. It concerns an atemporal
revision in a stable universe; that is to say, a situation where the class of reference is
not modified by the message. People seem to be ‘good focusers’ when the message
concerns only one level of belief (indication on an object randomly extracted from
a certain urn whose precise composition is known as the chip problem in Table1,
type 1). By contrast, very few participants grasp the focusing process when the
message concerns two levels of belief (indication on an object extracted in two
steps as Bertrand’s three boxes problem in Table1, type 2). Participants (and also
experts) confronted to type 2 problems seem to naturally interpret (for pragmatic and
cognitive reasons) [1, 2, 8, 9] the focusing situation as an updating [29, 32, 49, 50]
situation of revision in which the reference class is evolving and themessage conveys
some information on this transformation (temporal revision). The new distribution
of probability is obtained in two steps (minimal rule6 [50]):

1. Representing the new class of reference that results from the modification of the
initial one (removing the worlds invalidated by the message).

2. Inferring the ‘new’ prior probability distribution.

6This minimal rule is actually the intuitive local rule proposed in [30, 31] to estimate the probability
of a conditional in a problem of type 2. It recently ignated a philosophical debate [19, 33, 34]. In
this updating context, this rule is axiomatically justified [29, 49].
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Table 1 Focusing and updating contexts for chips and Bertrand’s three boxes problem

Problem Focusing (Bayes’ rule) Updating (Minimal rule)

Type 1. A chip is chosen at
random. Suppose the chip is
square. What are the chances
that it is black?

P (B|S) =
2
7
3
7

= 2
3

(Conditional probability)

1. Remove round chips
2. Count n(B ∧ S) on n(S):a

P
��¬S

(B) = 2
3

Type 2. A chip is chosen at
random from a box. Suppose
the chip is square. What are
the chances that box A has
been selected?

P (B|S) =
1
3×1

( 1
3×1)+( 1

3× 1
2 )

= 2
3

(Bayes’ identity form)

1. Remove round chips
2. Remove the empty box C
3. Count n(A ∧ S) on n(S):

P
��¬S

= 1
2

aLet n(x) be the number of chips with the x characteristics in the layout.

For the Type 1 problems, bothBayesian andminimal rules give the same solution.7

However in type 2 problems, whether focusing or updating, the revision contexts
imply different computational processes that clearly give two different solutions.

In this paper, our objective is to show that when confronted with type 1 problems,
individuals use an updating cognitive strategy and apply the minimal rule. They
should also proceed in the same way when evaluating the conditional probability.

7The minimal rule is isomorphic to redistributing the weights of removed world(s) proportionally
to the remaining world(s). For the type 1 problem, it mathematically corresponds to Bayes’ rule:

P(H|D) = P(H ∧ D)

P(H ∧ D) + P(¬H ∧ D)

= P(H ∧ D)

P(H ∧ D) + P(¬H ∧ D)
+ P(H ∧ D) ×

(
1 − P(H ∧ D) + P(¬H ∧ D)

P(H ∧ D) + P(¬H ∧ D)

)

= P(H ∧ D) + P(H ∧ D)

P(H ∧ D) + P(¬H ∧ D)
× P(¬D) = P��¬D(H)
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Fig. 1 Experiment’s procedure for the order P(if S then C), P(C|S) and P(S ∧ C)

4 The Experiment

4.1 Methodology

Participants: 19 students (9 female), agedbetween20and40 (M=25.33, SD = 3.75).
All of them had completed high school and were native French speakers. Their back-
ground covered all disciplines from 0 to 5years of higher education with a mean of
3years. They responded at their own pace and were orally guided through the exper-
iment (see the Fig. 1).

Apparatus: The equipment came from the SMIEye-trackingPackage (SensoMotoric
Instruments GmbH, Teltow, Germany). The experiment was programmed using the
SMI ExperimentCenter 2 v3.5.144 software. Eye-movement parameters were mea-
sured using an SMI REDm eye-tracker with a sampling rate of 120Hz (60Hz for
each eye).

Procedure: Seven chips of two colors (blue and red)8 and of two shapes (round and
square) were displayed in two rows as in [47].9 All participants saw the same five chip

8These colors were better discriminated.
9The viewing angle of the stimuli was 9.6 on a 1920 × 1080 resolution computer screen.
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Table 2 Average (and median) of participant’s time eye-fixations in AOIs (in ms) (N=18)a

AOIs P(if S then C) P(C|S) P(S ∧ C) TTOCFb

S ∧ C 2390 (2366) 2789 (1894) 3016 (1829) 2732 (2030)

S ∧ ¬C 1679 (940) 1025 (724) 947 (498) 1217 (721)

¬S 48 (0) 49 (0) 1829 (1395) 642 (465)

TTOCFb 1332 (1102) 1288 (873) 1931 (1241)
aOne participant has been removed because of a bad eye-tracking recording.
bTotal times of chip fixations.

layouts (one for each of the five questions, Fig. 1). The first two questions (Q1 and
Q2) ensured that the participants had understood the instructions. The three following
questions (Q3, Q4 and Q5) were randomized10 and corresponded respectively to
evaluations of (with S referring to the shape of the chip and C to the color):

1. the probability of a conditional P(if S then C),
2. the conditional probability P(C|S) and
3. the probability of a conjunction P(S ∧ C).

4.2 Results and Discussion

90% of participants answered respectively n(S∧C)
n(S∧C)+n(S∧¬C) for P(if S then C) and for

P(C|S). All participants gave n(S∧C)
n(S∧C)+n(S∧¬C)+n(¬S) for P(S ∧ C). These results are

very close to the results of [47]. The eye-fixation time in areas of interest (AOIs)
were defined for S ∧ C, S ∧ ¬C and ¬S for all groups and the eye-fixation time was
calculated11 (see Table2).

A Friedman’s test shows that the data are not distributed in the same way in the
three experimental conditions only for the¬S AOI (Friedman’s χ2 = 32.54, df = 2,
p − value < 0.0001). The multiple comparison analysis shows that the absolute
value of the mean rank sums difference of two conditions P(if S then C) and P(C|S)
is not significant (|R̄P(if S then C) − R̄P(C|S)| = 1 < 14.36). However for both condi-
tions the median difference is significant with the P(S ∧ C) condition (respectively
|R̄P(if S then C) − R̄P(S∧C)| = 26.5 > 14.36 and |R̄P(C|S) − R̄P(S∧C)| = 27.5 > 14.36).
These results are consistent with our hypothesis. To evaluate P(if S then C) and
P(C|S) participants have only looked at S ∧ C and S ∧ ¬C AOIs. However for
P(S ∧ C), participants have also looked the ¬S AOI.

10To avoid a possible order effect, the participants were randomly allocated to six groups which all
answered five questions (two controls and the three conditionals in different orders).
11The gaze behavior were also recorded for scan path and visual strategy (VS) investigation.
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5 Conclusion

In this experiment aiming at analysing the Equation, applying an eye-tracking
methodology, we find that participants evaluate the probability of a conditional
P(if A then C) in the same way they evaluate the conditional probability P(C|A).
However, for both evaluations, participants tend to naturally consider an updating
context of revision. Yet this result rises a concern for the conditioning principle that
should be more precisely studied in further experiments.
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Black-Litterman Model with Multiple
Experts’ Linguistic Views

Marcin Bartkowiak and Aleksandra Rutkowska

Abstract This paper presents fuzzy extensions of the Black-Litterman portfolio
selection model. Black and Litterman identified two sources of information about
expected returns and combined these two sources of information into one expected
return formula. The first source of information is the expected returns that follow
from the Capital Asset PricingModel and thus should hold if the market is in equilib-
rium. The second source of information is comprised of the views held by investors.
The presented extension, owing to the use of fuzzy random variables, includes two
elements that are important from the point of view of practice: linguistic informa-
tion and the views of multiple experts. The paper introduces the model extension
step-by-step and presents an empirical example.

1 Introduction

Modern portfolio theory attempts to maximize a portfolios expected return for a
given amount of portfolio risk, or equivalently to minimize the risk for a given
level of expected return, by carefully choosing the proportions of various assets. The
breakthrough article entitled “Portfolio Selection” was published byMarkowitz [19].
The next revolutionary papers in portfolio selection were published by Sharpe [23],
Lintner [17] and Black [2]. The model developed by Sharpe and Lintner, known as
the Capital Asset Pricing Model (further, CAPM), is still widely used in applications
and research studies that deal with risk and returns. The attraction of the CAPM is
that it offers powerful and intuitively pleasing predictions about how to measure risk
and the relationship between expected return and risk. Unfortunately, the empirical
record of the model is poor. Canonical portfolio optimization takes as inputs only
the expectations and covariances of a set of assets computed from a given reference
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econometric model. The Black-Litterman model (further, BL model), which was
first published by Fischer Black and Robert Litterman [3], provides a framework
in which more satisfactory results can be obtained from a larger set of inputs: the
view portfolios, the expected returns on those portfolios, the confidence in the view
portfolios. In other words, the BL model enables investors to combine their unique
views regarding the performance of various assets with the market equilibrium by
mixing different types of estimates. TheBLmodel was expanded in [4, 5]. Themodel
was discussed in greater detail in [1, 10, 18]. Now, there are a variety of models being
labeled as Black-Litterman even though they may be very different from the original
model created by Black and Litterman. A comprehensive taxonomy and literature
survey was provided in Meucci [20]. Since an investors view of future asset return is
always subjective and imprecise, the fuzzy approach seems to be a natural extension
of the BL model. Lawrence et al. [16] used fuzzy trapezoidal numbers to represent
investor views and omitted the aspect of consistency in combining prior probabilistic
distribution and fuzzy views. Gharakhani and Sadjadi [8] assumed views as fuzzy
numbers and mean asset return as well as covariance as fixed estimated parameters.
They focused on fuzzy compromise programming to find the solution of fuzzy return
maximization and fuzzy beta minimization.

In this paper, we introduce extensions of the BL model with linguistic expressed
views of future return. As a tool for handling linguistic label information, a fuzzy
random variable (further, FRV) is used. FRV concept1 have been developed in: [14,
15, 22] and in a unified approach in [13]. The overview of different variants can
be found in [6, 9]. Operationally, an FRV is a random variable taking fuzzy values.
In practice, we are often faced with random experiments whose outcomes are not
numbers but are expressed in inexact linguistic terms, in particular, predictions of
events in the stockmarket. Development of the information society resulted in access
to a wide range of business and economic information. In many fields of science,
there are discussions about taking into account the opinion of many experts at the
same time (see [11, 21]). At themoment, the discussion has notmoved on in portfolio
optimizing literature. Many services such as Bloomberg or Reuters Thompson allow
access to the predictions of various experts, and investment firms pay their own
experts. Take for example an expert who is questioned about how a planned tax
on minerals will affect the valuation of energy companies. Some possible answers
would be a slight decrease in value, no effect, a strong reduction in value and so on. A
natural question is how to take these opinions into account when choosing a portfolio.
The BL model allows the inclusion of expert views on the decision process, while
an FRV allows the user to calculate: what the average opinion of multiple experts
is and how great the uncertainty associated with it is, as well as natural linguistic
formulation of expectations.

The paper presents an expert view as the FRV in Puri and Ralescus approach.
Since an FRV is a generalization of the random variable, it is possible to combine
distributions in the way proposed by Black and Litterman. Themain advantage of the

1The concept of FRV was introduced by Feron, R., 1976. Ensembles aleatoires flous. C.R. Acad.
Sci. Paris, Ser. A (282), pp. 903–906.
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BL model is its intuitiveness and ease of application. The extended model presented
in this article, despite extensive mathematical tools, keeps these two features.

The rest of this paper is organized as follows: in Sect. 2, we introduce the funda-
mental theory of FRV and linguistic variables; Sect. 3 presents the new BL model
with linguistic views; the next section presents its application to portfolio selection
on the Warsaw Stock Exchange; and the last section concludes and summarizes the
study.

2 Preliminaries

This section briefly reviews some basic concepts of FRV by Puri and Ralescu [22]
and linguistic value.

Let F0(Rn) denote the set of fuzzy subsets: μ : Rn → [0, 1] with the following
properties:

• {x ∈ Rn : μ(x) ≥ α} is compact for each α > 0
• {x ∈ Rn : μ(x) = 1} �= �.

For μ ∈ F0, [μ]α = {x ∈ R : μ(x) ≥ α} , 0 ≤ α ≤ 1 is the α-level set of μ and
μ+ (α) ,μ− (α) are the upper and lower endpoints of [μ]α.

The addition and scalar multiplication are defined by the following:

[μ + v]α = [μ]α + [v]α , (1)

[λμ]α = λ [μ]α ,μ, v ∈ F0 and λ ∈ R. (2)

Operation 〈., .〉 is defined by the following equation:

〈μ, v〉 =
∫ 1

0

(
μ− (α) v− (α) + μ+ (α) v+ (α)

)
dα. (3)

Let (Ω, A, P) be a probability space where P is a probability measure assumed
to be non atomic. A FRV is a function X : Ω → F0 (Rn) such that: {(ω, x) : x ∈ Xα

(ω)} ∈ A × B, for every α ∈ [0, 1], where B denotes the Borel subsets of Rn , Xα :
Ω → P (Rn) is define by: Xα (ω) = {x ∈ Rn : X (ω) (x) ≥ α}.

The expected value of a FRV defined by Puri and Ralescu [22] is the Aumann-type
mean, which extends the mean of a real-valued d preserving its main properties and
behavior. The expected value is a fuzzy number, but the variance and covariance of
FRVs2 according to Feng et al. [7] is scalar, which determines the spread or dispersion
of the FRV around its expected value.

The expected value of X , denoted by E (X) is the fuzzy set μ ∈ F0 (Rn) such that
{x ∈ Rn : μ (x) ≥ α} = ∫

Xα for everyα ∈ [0, 1],where
∫

Xα = {∫
Ω

f d P : f ∈ S

2Variance of FRV have several definition of variance (cf. [6]).



38 M. Bartkowiak and A. Rutkowska

(Xα)} is the Aumann integral of Xα with respect to P and S (F) is a nonempty
bounded set with respect to the L1 (P)-norm.

If μi : R → [0, 1] , i = 1, 2, . . . , n are continuous with compact support and
P (X = μi ) = pi , then

E(X) = Σn
i=1 piμi (4)

Feng [7] proposed the following equation to calculate covariance and variance of
FRV X, Y :

Cov(X, Y ) = 1

2
(E 〈X, Y 〉 − 〈E X, EY 〉) , (5)

DX = Cov(X, X). (6)

Thus:

DX = 1

2
(E 〈X, X〉 − 〈E X, E X〉) = 1

2

(
Σn

i=1 pi 〈μi , μi 〉 − Σn
i=1Σ

n
j=1 pi p j

〈
μi , μ j

〉)
.

(7)
Further, in the paper we will use FRV with triangular membership function. The
triangular fuzzy number is a special type of L R fuzzy number—represented by its
core a (most likely value), where left α and right β spread (lower and upper bounds)
and the notation (a,α,β) is used for linear shape functions.

The concept of a linguistic variable was introduced by Zadeh [24]. A linguistic
variable is characterized by a quintuple (σ, T (σ) , U, G, A) where σ is the name of
the variable, T (σ) is the set of terms of σ, U is the universe of discourse, G is a
syntactic rule for generating the labels in the terms set, and A is the semantic U rule
for associating the meaning to each element of T (σ).

3 Black-Litterman Model with Linguistic Views

This section introduces the BL model with linguistic views. The BL model starts
with a neutral equilibrium portfolio for the prior estimate of returns, because the
model relies on General Equilibrium Theory. This part of the BL model is in the new
approach without any changes. Investors have specific views regarding the expected
return of some of the assets in a portfolio, which differ from the implied equilibrium
return. The BLmodel allows such views to be expressed in either absolute or relative
terms. The new BL model also allows them to be expressed in linguistic form and
allows the occurrence of many predictions/views in relation to a single asset to be
shown. For example, the standard BL format view would look like: Banks will have
an absolute excess return of -5%.After fuzzy modification in the BL model, we can
consider multiple views in the following form: expert 1: Banks will lose slightly,
expert 2: The situation will not affect the bank’s valuation, expert 3: The Eurozone
banking system may lose value about 3%.
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We assume that there is m experts and that every investor view is an FRV with
discrete probability and continuous membership functions, which describe the lin-
guistic term set. So, every view is represented by two vectors: μ̃ the vector of fuzzy
sets describes corresponding linguistic terms; p the vector of view confidence. In the
proposed solution, vector p is responsible for determining certain weight in relation
to the opinions of many experts.3 For every view described by μ and p according to
formula (4), we calculate the expected value. During the decision-making process,
the investor has a collection of views. We will represent the investors k views on n
assets in analogy to the BL model, using the following matrices:

• P , a k × n matrix of the asset weights within each view. The matrix is the same
as in the standard BL model.

• Q̃, a k × 1 fuzzy vector of the fuzzy expected returns for each view.
• Ω , a k × k matrix of the covariance according to formula (7) of the views. Ω is
diagonal as it will require each view to be unique and uncorrelated with the other
views.

After the specification of the prior estimate of returns (π,Σ), the scalar τ , the fuzzy
views Q̃ and the covariance matrix of the error Ω all of the inputs are then entered
into the BL formula, and the new combined return vector ˜E [r ] is derived as follows:

Ẽ [r ] =
[
(τΣ)−1 + P

′
Ω−1P

]−1 [
(τΣ)−1π + P

′
Ω−1 Q̃

]
(8)

The covariance matrix of the joint distribution is:

M̃ =
[
(τΣ)−1 + P

′
Ω−1P

]−1
(9)

Optimal portfolio weights are computed by solving the optimization problem. It can
be a traditional mean-variance approach starting from equilibrium expected returns
as well as the maximization of the utility function. The same as when computing the
equilibrium returns (4), we will use the following quadratic utility function:

Ũ = wT Ẽ − δ

2
wT M̃w (10)

where w is the vector of weights invested in each asset, Ẽ—the new combined
return vector, M̃—new covariance matrix. As expected returns are fuzzy vectors, it
is a fuzzy optimization problem. A different method for fuzzy optimization can be
found in [12]. Arriving at the optimal portfolio is somewhat more complex in the
presence of constraints. We only consider budget constraint which forces the sum of
the total portfolio weights to be one.

3The aggregation operator can be considered as a separate research issue. This paper illustrates a
new BL algorithm; so, vector p is set in the simplest way through the frequency of the experts
answers, with the assumption that all the opinions are equivalent.
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Table 1 Fuzzy relation of the linguistic variable Informations influence on a share

ti μi

A significant increase (0.1, 0.04, 0.05)

An increase (0.05, 0.03, 0.03)

A slight increase (0.01, 0.01, 0.015)

No influence (0, 0.005, 0.005)

A slight decrease (−0.01, 0.015, 0.015)

A decrease (−0.05, 0.03, 0.03)

A significant decrease (−0.1, 0.05, 0.04)

4 Empirical Study

The goal of this section is to test the newBLmodel and compare the results with those
of the standard BL model. To implement our study, we selected all the stocks from
theWIG20 index.4 The data series starts from 2010 to 2014, with daily observations.
This time period includes the 2011 European debt crisis, 2012–2013 stock boom
and stagnation. The set of terms of information influence with the assignment of a
meaning to each label is presented in Table1. At the beginning of each half-year,
we calculate the vector of equilibrium excess return and the covariance matrix of
the excess returns. For these calculations, we use data from the previous year. We
calculate the risk aversion parameter for Polish equity markets to be 3.78 and we use
δ = 4 for our model; although, our results are not materially affected by this choice
of parameter. Then we find the maximum of function with the following constraints:
(i) the sum of weights is equal 1, (i i) there is no short selling. In this way, we find
two equilibrium portfolios that are used as a benchmark. Next, we define views (3
views on each half-year), both in a non-fuzzy and linguistic way. Afterwards, we
again optimize the utility function and fuzzy utility function (10) with constraints (i)
and (i) + (i i). In both cases, we use τ = 1 and impose an additional condition that
the weight of a single share does not exceed 20%. This additional constraint ensures
adequate portfolio diversification. As mentioned above, the described algorithm was
repeated every six months, i.e. we rebuild a portfolio with semiannual frequency. To
implement the same algorithm in both cases, in the fuzzy case centroid defuzzification
of the objective function was first done and then optimization. Table2 shows the
performance of portfolios from January 2011 to December 2014. All BL portfolios
outperformed themarket portfolio (i.e. theWIG20 index) and equilibrium portfolios.
Returns from the fuzzy BL portfolios exceed the returns from the canonical BL
portfolios. In the case of the portfolio with constraint (i), the difference is not large:
it is less than 0.5 p.p. for the annualized return. However, for the portfolio with all

4The WIG20 index is based on the value of a portfolio with shares in the 20 major and most liquid
companies on the Warsaw Stock Exchange Main List.
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the constraints, the fuzzy BLmodel generates a portfolio that is almost twice as good
as the common BL model.

5 Conclusion

The paper presets the fuzzy BLmodel extension with linguistic views for many view
sources. To model the linguistic view, FRV is used. This approach allows intuitive
formulating views, as well as the setting of opinions from a group of experts. The
empirical tests suggest that fuzzy extensions of the BLmodel have investment value.
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Representing Lightweight Ontologies
in a Product-Based Possibility Theory
Framework

Salem Benferhat, Khaoula Boutouhami, Faiza Khellaf
and Farid Nouioua

Abstract This paper investigates an extension of lightweight ontologies, encoded
here in DL-Lite languages, to the product-based possibility theory framework. We
first introduce the language (and its associated semantics) used for representing
uncertainty in lightweight ontologies. We show that, contrarily to a min-based possi-
bilistic DL-Lite, query answering in a product-based possibility theory is a hard task.
We provide equivalent transformations between the problem of computing an incon-
sistency degree (the key notion in reasoning from a possibilistic DL-Lite knowledge
base) and the weighted maximum 2-Horn SAT problem.

1 Introduction

Knowledge representation for the semantic web requires an analysis of the universe
of discourse in terms of concepts, definitions, objects, roles, etc., and then selecting a
computer-usable version of the results. Ontologies play an important role for the suc-
cess of the semantic web as they provide shared vocabularies for different domains,
such as medicine and bio-informatics. There are many representation languages for
ontologies. Among them, description logics [2] provide solid theoretical foundations
to ontologies thanks to their clear semantics and formal properties.Moreover, despite
its syntactical restrictions, the DL-Lite family enjoys good computational properties
while still offering interesting capabilities in representing terminological knowledge
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[1]. This is why a large amount of works has been recently dedicated to this family
and this paper is a contribution to this general research line.

The dynamic of information available on the web naturally leads to a continuous
evolution of ontologies and to a permanent need tomerge or to align them.As a result,
we are often confronted to uncertainties in the used information. Proposing efficient
methods for handling uncertainty in description logics, and particularly in the DL-
Lite family, is an important research topic. Several recent works are devoted to fuzzy
extensions of description logics (see e.g. [4, 8, 10]). Other works propose (min-
based) possibilistic extensions of description logics and focus on standard reasoning
services (see e.g. [3, 6, 7, 9]).

In some applications the nature of the encountered uncertainty is quantitative. This
paper investigates the product-based possibilitic DL-Lite, denoted by Pb-π-DL-Lite,
which has not been considered before. This paper shows that contrarily to the min-
based possibilisticDL-Lite, query answering fromaPb-π-DL-Lite knowledge base is
no longer tractable.Weprovide an encoding of computing the inconsistency degree of
the product-basedpossibilisticDL-Lite knowledgebase (the basis of query answering
in Pb-π-DL-Lite) using a weighted maximum 2-Horn satisfiability problem.

2 Product-Based Possibilistic DL-Lite

DL-Lite is a family of DLs that aims to capture some of the most popular conceptual
modeling formalisms. A DL KB K = 〈T, A〉 consists of a set T of concept and
role axioms (TBox) and a set A of assertional facts (ABox). In this paper, we only
consider the DL-Litecore and DL-LiteR that underlie OWL2-QL [5]. The syntax of
the DL-Litecore language is defined as follows:

B → A|∃R C → B|¬B
R → P|P− E → R|¬R

(1)

where A denotes an atomic concept, P an atomic role, P− the inverse of the
atomic role P , B (resp. C) are called basic (resp. complex) concepts and roles R
(resp. E) are called basic (resp. complex) roles.

A DL-Litecore TBox is a set of inclusion axioms of the form: B � C . An ABox is
a set of membership assertions on atomic concepts and on atomic roles of the form:
A(a) and P(a, b) respectively, where a and b are two individuals.

The DL-LiteR language extends DL-Litecore with the ability of specifying in the
TBox inclusion axioms between roles of the form:

E � R
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2.1 Weighted Assertional DL-Lite Knowledge Base

The syntax of product-based possibilistic DL-lite is represented by the concept of a
Pb-π-DL-Lite knowledge base KB denoted by K .

Definition 1 A Pb-π-DL-Lite KB K = {〈φi ,αi 〉 : i = 1, . . . , n} is a finite set of
possibilistic axioms of the form 〈φi ,αi 〉, where φi is an axiom expressed in DL-Lite
and αi ∈]0, 1] represents the certainty degree of φi .

In Definition1, only somewhat certain facts (having certainty degrees > 0) are
considered. We consider that all the TBox axioms are fully certain. This means that
there is no uncertainty about the general relationships between concepts and roles,
but only about the ABox assertions. Hence, the terminological base is assumed to be
stable and should not be questioned in the presence of inconsistencies.

Example 1 Let us consider the Pb-π-DL-Lite KB K composed of the following
TBox T and ABox A, which will be used in the rest of the paper.

T = { 〈Supervisor � ¬PhD_Stud, 1.0〉, 〈∃Supervision_a � Supervisor, 1.0〉,
〈∃Supervision_a− � PhD_Stud, 1.0〉}.

A = { 〈Supervisor(b), 0.11〉, 〈Supervisor(h), 0.04〉, 〈PhD_Stud(a), 0.19〉,
〈Supervision(a, b), 0.89〉, 〈Supervision(a, h), 0.30〉}.

2.2 Semantics

A possibility distribution is a function that assigns to each DL-lite interpretation I ,
a real number in the interval [0, 1], called a possibility degree. πK (I ) represents the
degree of compatibility of I with respect to the available information given in K.
If an interpretation I is a model of each axiom of T and each assertion of A then
its possibility degree is equal to 1. This reflects the fact that I is fully compatible
with 〈T, A〉. It also obviously means that 〈T, A〉 is consistent. Now, if I falsifies
some axioms of T or some fully certain assertions of A, then its possibility degree
is equal to 0. This reflects the fact that I is impossible and should not be considered
in the query answering process. More generally, if an interpretation I falsifies some
assertions of the ABox, then its possibility degree is inversely proportional to the
product of the weights of the assertions that it falsifies.

Definition 2 For all I ∈ Ω ,

πK (I ) =
{
1 i f ∀〈φi ,αi 〉 ∈ K , I |= φi

∗{1 − αi : 〈φi ,αi 〉 ∈ K , I � φi } otherwise
(2)

where |= is the satisfaction relation between DL-lite interpretations and DL-Lite
formulas.
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Example 2 Let us consider again Example1. The following table gives an example
of the possibility degrees, obtained using Definition2, for four interpretations over
the domain 
 = {a, b}.

I .I πK (I )

I1 PHDI = {a}, Super I = {b, h}, Supervision_aI = {(a, b), (a, h)} 0.000
I2 PHDI = {a}, Super I = {b, h}, Supervision_aI = {(b, a), (h, a)} 0.077
I3 PHDI = {a}, Super I = {b, h}, Supervision_aI = {(a, b), (a, h)} 0.000
I4 PHDI = {b, h}, Super I = {a}, Supervision_aI = {(a, b), (a, h)} 0.692

A Pb-π-DL-Lite KB K is said to be fully consistent if there exists an interpretation
I such that πK (I ) = 1. Otherwise, K is said to be somewhat inconsistent. In the
presence of certainty degrees associated with assertions, the concept of inconsistency
becomes a graduated notion. More formally:

Definition 3 Let K be a Pb-π-DL-Lite KB and πK be the possibility distribution
induced by K obtained by Eq.2. The inconsistency degree of K , denoted by I nc(K ),
is semantically defined as follows:

I nc(K ) = 1 − max
I∈Ω

(πK (I)) (3)

Example 3 The inconsistency degree of the KB K , presented in Example1 is:
I nc(K ) = 1 − maxI∈Ω(πK (I)) = 0.30.

3 Inconsistency Degree as a Weighted Max-2-Horn-SAT
Problem

3.1 Weighted Max-2-Horn-SAT (WM2HSAT)

The WM2HSAT problem consists in finding an assignment of boolean values to
the propositional variables that maximizes the total weights of satisfied clauses. A
weighted 2-Horn KB is a set of weighted formulas of the form : θ = {(φi , ki ) : i =
1, ..., n} where φi is a clause with at most two literals and at most one non-negative
literal. ki is a natural number belonging to N ∪ {∞}.
Definition 4 Let θ be a weighted 2-Horn KB and R be a positive integer. The
weighted Max-2-Horn-SAT decision problem is defined as follows:

Is there a sub-base θ′ ⊆ θ such that i) {φi : (φi , ki ) ∈ θ′} is consistent, ii) θ′
contains every (φ, k) of θ such that k = ∞ and iii) Weight (θ′) � R?

where Weight (θ′) = ∑{ki : (φi , ki ) ∈ θ′ and ki �= ∞}.
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Note that maximizingWeight (θ′) is equivalent to minimizingCost (θ′) given by:
Cost (θ′) = ∑{ki : (φi , ki ) ∈ θ \ θ′ and ki �= ∞}.

3.2 From an Inconsistent Pb-π-DL-Lite KB to a Weighted
2-Horn KB

A conflict is aminimal sub-base of Awhich is inconsistent with A. A set of assertions
C is said to be a conflict if: i) C ⊆ A, ii) 〈T,C〉 is inconsistent and iii)∀C ′ ⊆ C, T ∪ C ′
is consistent. It has been shown in [1] that conflicts in a DL-Lite KB are composed
of at most two ABox assertions.

The first step in computing I nc(K ) is to encode the set of all conflicts and their
corresponding weights by a weighted 2-Horn KB BK .

Definition 5 Let K = 〈T, A〉 be a Pb-π-DL-Lite KB. Let ζ be the set of all conflicts
in A. LetM be a sufficiently large integer number. Let F be a scale changing function
defined by: F(x) = −10M ∗ (ln(1 − x)). Each assertional fact X (a) is associated
with a propositional symbol simply denoted by Xa .

The weighted propositional 2-Horn KB corresponding to K , denoted by BK , is
defined as follows:
BK = {(Da, F(α)), (Ba, F(β)), (¬Da ∨ ¬Ba,∞) | {(D(a),α), (B(a),β)} ∈ ζ}.

The function F is not unique. Recall that weights in K are expressed using the
unit interval [0, 1] while the weights in BK are integers.

Example 4 The weighted 2-Horn KB corresponding to the Example1 is:

BK = {(Supervisor_b, 11653), (Supervisor_h, 4082) ,
(PhD_Stud_a, 21072), (Superv_a_b, 220727), (Superv_a_b, 35667),
(¬Superv_a_h ∨ ¬PhD_Stud_a,∞), (¬Superv_a_h ∨ ¬Supervisor_h,∞),
(¬Superv_a_b ∨ ¬PhD_Stud_a,∞), (¬Superv_a_b ∨ ¬Supervisor_b,∞)}.
Proposition 1 Let K be a Pb-π-DL-Lite KB and BK be its associated weighted
propositional 2-Horn KB. Inc(K ) = α if and only if there exists a consistent sub-
baseB′

K ⊆ BK such that i) Cost (B′
K ) = F(α) and ii) for every consistent sub-base

B′′
K ⊆ BK , Cost (B′′

K ) ≥ Cost (B′
K ).

Proposition1 is important since it shows that the inconsistency degree of a Pb-π-DL-
Lite KB can be redefined using the cost of a solution of the WM2HSAT problem on
the associated weighted propositional KB. This gives us a practical mean to compute
inconsistency degree using a WM2HSAT solver.

For the sake of simplicity, we assume that full inconsistency cannot occur, namely
we assume that I nc(K ) < 1.

Assumption 1 Let K = 〈T, A〉 be a Pb-π-DL-Lite KB. Then, we assume that T ∪
{( f, 1) : ( f, 1) ∈ A} is consistent.
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Algorithm 1 Inconsistency degree (T, A)
Require: K = 〈T, A〉: a Pb-π-DL-Lite knowledge base.
Ensure: I nc_K {The inconsistency degree of K}

ζ = Compute_Con f licts(T, A)

BK = Tans f ormation(ζ, A)

l ← Min{ki : (ϕi , ki ) ∈ BK }
u ← ∑{ki : (ϕi , ki ) ∈ BK and ki �= ∞}
while (l < u) do
r ← (l + u)/2
if (Weighted_Max_Horn_2_Sat (BK , r) = True) then
u ← r − 1

else
l ← r + 1

end if
end while
return (1 − e−r÷10M );

The following algorithm accepts as input a Pb-π-DL-Lite KB and returns its
inconsistency degree.

Example 5 Let us consider the KB K from Example1. Its corresponding weighted
2-Horn KB BK is given in Example4. The next step consists in a dichotomic search
in the interval ranging from the minimum value l = 4082 and the maximum value
u = 293201. The solver WM2HSAT is invoked with the sub-base BK . The last
call of the solver returns the consistent sub-base B′

K which minimizes the sum of
the degrees of formulas outside B′

K cost (B′
K ) = 36807. The last step consists in

computing I nc(K ) = 1 − e(−36807÷105) = 0.30.

4 Query Answering in a Product-Based Possibilistic
DL-Lite

The problem of standard query answering is closely related to the ontology-based
data access problem which takes as inputs a set of assertions, an ontology and a
conjunctive query q and aims to find all answers to q over the set of data. We will
limit ourselves to boolean queries. This is not a restriction since a conjunctive query
can be equivalently redefined from a family of boolean queries, each of them is a
result of instantiating the vector of distinguished variables.

A basic boolean query is called a grounded query, has the form:
q ← ∃−→y ∧n

i=1 Bi (
−→yi ), where Bi is either an atomic concept or an atomic role or an

individual and −→yi is either a variable (if Bi is a concept) or a pair of variables or a
variable and an individual (if Bi is a role). Given a boolean query q, we first need to
define the concept of a necessity measure, defined by:

N (q) = 1 − max{πK (I ) : I � q}. (4)

N (q) represents to what extent q is certain given the available knowledge.



Representing Lightweight Ontologies in a Product-Based Possibility Theory Framework 51

IfπK (I ) is fully consistent, then N (q) > 0 holds (namelyq is somewhat accepted)
if and only if each model of axioms of T and assertions of A is also a model of q.
Similarly, N (q) = 1 (q is fully accepted) if and only if for all I such that I � q we
have π(I ) = 0 (namely, all counter models of q are declared as impossible). Now,
when π is sub-normalized or inconsistent, then q is said to be somewhat accepted if
and only if N (q) > I nc(K ).

Definition 6 Let K be a Pb-π-DL-Lite KB, πK be the possibility distribution asso-
ciated with K using Eq.2. Let Nπ be the necessity measure induced by πK using
Eq.5. Let q be a boolean query. Then K |=π q if and only if Nπ(q) > I nc(K ).

Query answering process comes down first to the reformulation of the query q
over the TBox in order to enrich it while eliminating all redundancies using the
algorithm Per f ect Re f proposed in [5]. This step leads to obtain a set of queries Q
where the union of the answer sets of these queries will be the answer of the initial
query. Hence, querying q comes down to evaluate each query qi ∈ Q.

A very basic case in query answering is instance checking. The instance checking
problem, in standard DL-Lite consists in deciding, given an individual a (or a pair of
individuals (a, b)) a concept B or a role R and a DL-Lite KB K = 〈T, A〉, whether
B(a)(resp. R(a, b)) follows from 〈T, A〉.
Proposition 2 Let K = 〈T, A〉 be a Pb-π-DL-Lite KB, B be a concept (resp. R be
a role) and a, b be two individuals. DB (resp. DR) is an atomic concept (resp. an
atomic role) not appearing in T . Then :

1 N (B(a)) = I nc(K1) (resp. N (R(a, b)) = I nc(K1)) where K1 = 〈T1, A1〉 with
T1 = T ∪ {(DB � ¬B, 1)} (resp. T1 = T ∪ {(DR � ¬R, 1)}) and A1 = A ∪
{(DB(a), 1)} (resp. A1 = A ∪ {(DR(a, b), 1)}).

2 B(a) (resp. R(a, b)) is a consequence of K , denoted by K |=π B(a) (resp. K |=π

R(a, b)) if I nc(K1) > I nc(K ).

Proposition2 shows how to evaluate the query by using the concept of inconsistency
degree. If a query is composed of a conjunction of assertions (grounded queries),
then its enough to apply Proposition2 to each assertion. This is possible thanks to
the following propriety of necessity measures:

N (q1 ∧ q2) = min(N (q1), N (q2)). (5)

5 Conclusions and Future Work

This paper developed an extension of lightweight ontologies, encoded in DL-Lite
language, to the product-based possibility theory framework. The resulting language
is denoted Pb-π-DL-Lite. The paper first introduced the syntax and the semantics of
Pb-π-DL-Lite. Then, it addressed the problem of query answering and showed that
it comes down to the problem of computing inconsistency degree in product-based
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Pb-π-DL-Lite knowledge bases. This problem is intractable in product-based DL-
Lite setting contrarily tomin-based DL-lite. An encoding of the inconsistency degree
computingproblemas aWM2HSATproblemhas beenproposed.This transformation
was then used to propose an algorithm using a WM2HSAT solver to compute the
inconsistency degree. As a future work, we plan to generalize our framework to
arbitrary DL-Lite bases where the TBox axioms are not fully certain.
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Asymptotics of Predictive Distributions

Patrizia Berti, Luca Pratelli and Pietro Rigo

Abstract Let (Xn) be a sequence of random variables, adapted to a filtration (Gn),
and let μn = (1/n)

∑n
i=1 δXi and an(·) = P(Xn+1 ∈ · | Gn) be the empirical and the

predictive measures. We focus on ‖μn − an‖ = supB∈D |μn(B) − an(B)|, where D
is a class of measurable sets. Conditions for ‖μn − an‖ → 0, almost surely or in
probability, are given. Also, to determine the rate of convergence, the asymptotic
behavior of rn ‖μn − an‖ is investigated for suitable constants rn . Special attention
is paid to rn = √

n. The sequence (Xn) is exchangeable or, more generally, condi-
tionally identically distributed.

1 Introduction

1.1 The Problem

Throughout, S is a Polish space and X = (Xn : n ≥ 1) a sequence of S-valued ran-
dom variables on the probability space (Ω,A, P). Further, B is the Borel σ-field
on S and G = (Gn : n ≥ 0) a filtration on (Ω,A, P). We fix a subclass D ⊂ B and
we let ‖·‖ denote the sup-norm over D, namely, ‖α − β‖ = supB∈D |α(B) − β(B)|
whenever α and β are probabilities on B.

Let

μn = (1/n)

n∑

i=1

δXi and an(·) = P(Xn+1 ∈ · | Gn).
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Bothμn and an are regarded as random probabilitymeasures onB;μn is the empirical
measure and (if X is G-adapted) an is the predictive measure.

Under some conditions, μn(B) − an(B)
a.s.−→ 0 for fixed B ∈ B. In that case, a

(natural) question is whether D is such that ‖μn − an‖ a.s.−→ 0.
Such question is addressed in this paper. Conditions for ‖μn − an‖ → 0, almost

surely or in probability, are given. Also, to determine the rate of convergence, the
asymptotic behavior of rn‖μn − an‖ is investigated for suitable constants rn . Special
attention is paid to rn = √

n. The sequence X is assumed to be exchangeable or,
more generally, conditionally identically distributed (see Sect. 2).

Our main concern is to connect and unify a few results from [1–4]. Thus, this
paper is essentially a survey. However, in addition to report known facts, some new
results and examples are given. This is actually the case of Theorem 1(d), Corollary 1
and Examples 1–3.

1.2 Heuristics

There are various (non-independent) reasons for investigating μn − an . We now list
a few of them under the assumption that G = GX , where GX

0 = {∅,Ω} and GX
n =

σ(X1, . . . , Xn). Most remarks, however, apply to any filtration G which makes X
adapted.

• Empirical processes for non-ergodic data. Slightly abusing terminology, say
that X is ergodic if P is 0–1 valued on the sub-σ-field σ

(
lim supn μn(B) : B ∈ B)

.
In real problems, X is often non-ergodic. Most stationary sequences, for instance,
fail to be ergodic. Or else, an exchangeable sequence is ergodic if and only if is
i.i.d. Now, if X is i.i.d., the empirical process is defined as Gn = √

n (μn − μ0)

where μ0 is the probability distribution of X1. But this definition has various
drawbacks when X is not ergodic; see [5]. In fact, unless X is i.i.d., the probability
distribution of X is not determined by that of X1.More importantly, ifGn converges
in distribution in l∞(D) (the metric space l∞(D) is recalled before Corollary 1)

then ‖μn − μ0‖ = n−1/2‖Gn‖ P−→ 0. But ‖μn − μ0‖ typically fails to converge to
0 in probability when X is not ergodic. Thus, empirical processes for non-ergodic
data should be defined in some different way. In this framework, a meaningful
option is to replace μ0 with an , namely, to let Gn = √

n (μn − an).
• Bayesian predictive inference. In a number of problems, the main goal is to
evaluate an but the latter can not be obtained in closed form. Thus, an is to be
estimated by the available data. Under some assumptions, a reasonable estimate of
an is just μn . In these situations, the asymptotic behavior of the error μn − an plays
a role. For instance, μn is a consistent estimate of an provided ‖μn − an‖ −→ 0
in some sense.
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• Predictive distributions of exchangeable sequences. Let X be exchangeable.
Just very little is known on the general form of an for given n, and a representation
theorem for an would be actually a major breakthrough. Failing the latter, to fix
the asymptotic behavior of μn − an contributes to fill the gap.

• de Finetti. Historically, one reason for introducing exchangeability (possibly, the
main reason) was to justify observed frequencies as predictors of future events.
See [8–10]. In this sense, to focus on μn − an is in line with de Finetti’s ideas.
Roughly speaking, μn should be a good substitute of an in the exchangeable case.

2 Conditionally Identically Distributed Sequences

The sequence X is conditionally identically distributed (c.i.d.) with respect toG if it is
G-adapted and P

(
Xk ∈ · | Gn

) = P
(
Xn+1 ∈ · | Gn

)
a.s. for all k > n ≥ 0. Roughly

speaking, at each time n ≥ 0, the future observations (Xk : k > n) are identically
distributed given the past Gn . When G = GX , the filtration G is not mentioned at
all and X is just called c.i.d. Then, X is c.i.d. if and only if

(
X1, . . . , Xn, Xn+2

) ∼(
X1, . . . , Xn, Xn+1

)
for all n ≥ 0.

Exchangeable sequences are c.i.d. while the converse is not true. Indeed, X is
exchangeable if and only if it is stationary and c.i.d. We refer to [3] for more on c.i.d.
sequences. Here, it suffices to mention a last fact.

If X is c.i.d., there is a random probability measure μ on B such that μn(B)
a.s.−→

μ(B) for every B ∈ B. As a consequence, if X is c.i.d. with respect to G, for each
n ≥ 0 and B ∈ B one obtains

E
{
μ(B) | Gn

} = lim
m

E
{
μm(B) | Gn

} = lim
m

1

m

m∑

k=n+1

P
(
Xk ∈ B | Gn

)

= P
(
Xn+1 ∈ B | Gn

) = an(B) a.s.

In particular, an(B) = E
{
μ(B) | Gn

} a.s.−→ μ(B) and μn(B) − an(B)
a.s.−→ 0.

Fromnowon, X is c.i.d. with respect toG. In particular, X is identically distributed
and μ0 denotes the probability distribution of X1. We also let

Wn = √
n (μn − μ),

where μ is the random probability measure on B introduced above. Note that, if X
is i.i.d., then μ = μ0 a.s. and Wn reduces to the usual empirical process.



56 P. Berti et al.

3 Results

Let D ⊂ B. To avoid measurability problems, D is assumed to be countably
determined. This means that there is a countable subclass D0 ⊂ D such that
‖α − β‖ = supB∈D0

|α(B) − β(B)| for all probabilities α, β on B. For instance,
D = B is countably determined (for B is countably generated). Or else, if S = R

k ,
thenD = {(−∞, t] : t ∈ R

k},D = {closed balls} andD = {closed convex sets} are
countably determined.

3.1 A General Criterion

Since an(B) = E
{
μ(B) | Gn

}
a.s. for each B ∈ B and D is countably determined,

one obtains

‖μn − an‖ = sup
B∈D0

|E{
μn(B) − μ(B) | Gn

} | ≤ E
{‖μn − μ‖ | Gn

}
a.s.

This simple inequality has some nice consequences. Recall that D is a universal
Glivenko-Cantelli class if ‖μn − μ0‖ a.s.−→ 0 whenever X is i.i.d.

Theorem 1 Suppose D is countably determined and X is c.i.d. with respect to G.
Then,

(a) ‖μn − an‖ a.s.−→ 0 if ‖μn − μ‖ a.s.−→ 0 and ‖μn − an‖ P−→ 0 if ‖μn − μ‖ P−→ 0.
(b) ‖μn − an‖ a.s.−→ 0 provided X is exchangeable, G = GX and D is a universal

Glivenko-Cantelli class.
(c) rn‖μn − an‖ P−→ 0 whenever the constants rn satisfy rn/

√
n → 0 and

supn E
{‖Wn‖b

}
< ∞ for some b ≥ 1.

(d) nu‖μn − an‖ a.s.−→ 0 whenever u < 1/2 and supn E
{‖Wn‖b

}
< ∞ for each b ≥

1.

Proof Since ‖μn − μ‖ ≤ 1, point (a) follows from the martingale convergence

theorem in the version of [7]. (If ‖μn − μ‖ P−→ 0, it suffices to apply an obvi-
ous argument based on subsequences). Next, suppose X , G and D are as in (b).
By de Finetti’s theorem, conditionally on μ, the sequence X is i.i.d. with com-
mon distribution μ. Since D is a universal Glivenko-Cantelli class, it follows that
P

(‖μn − μ‖ → 0
) = ∫

P
{‖μn − μ‖ → 0 | μ

}
dP = ∫

1dP = 1. Hence, (b) is a
consequence of (a). As to (c), just note that

E
{(
rn ‖μn − an‖

)b} ≤ rbn E
{‖μn − μ‖b} = (rn/

√
n)b E

{‖Wn‖b
}
.
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Finally, as to (d), fix u < 1/2 and take b such that b(1/2 − u) > 1. Then,

∑

n

P
(
nu‖μn − an‖ > ε

) ≤
∑

n

E
{‖μn − an‖b

}

εb n−ub
≤

∑

n

E
{‖μn − μ‖b}

εb n−ub

=
∑

n

E
{‖Wn‖b

}

εb n(1/2−u)b
≤

∑

n

const

n(1/2−u)b
< ∞ for each ε > 0.

Therefore, nu‖μn − an‖ a.s.−→ 0 because of the Borel-Cantelli lemma.

Some remarks are in order.
Theorem 1 is essentially known. Apart from (d), it is implicit in [2, 4].
If X is exchangeable, the second part of (a) is redundant. In fact, ‖μn − μ0‖

converges a.s. (not necessarily to 0)whenever X is i.i.d.Applying deFinetti’s theorem
as in the proof of Theorem 1(b), it follows that ‖μn − μ‖ converges a.s. even if X is

exchangeable. Thus, ‖μn − μ‖ P−→ 0 implies ‖μn − μ‖ a.s.−→ 0.
Sometimes, the condition in (a) is necessary as well, namely, ‖μn − an‖ a.s.−→ 0 if

and only if ‖μn − μ‖ a.s.−→ 0. For instance, this happenswhenG = GX andμ � λ a.s.,
whereλ is a (non-random)σ-finitemeasure onB. In this case, in fact,‖an − μ‖ a.s.−→ 0
by [6, Theorem 1].

Several examples of universal Glivenko-Cantelli classes are available; see [11]
and references therein. Similarly, for many choices of D and b ≥ 1 there is a
universal constant c(b) such that supn E

{‖Wn‖b
} ≤ c(b) provided X is i.i.d.; see

e.g. [11, Sects. 2.14.1 and 2.14.2]. In these cases, de Finetti’s theorem yields
supn E

{‖Wn‖b
} ≤ c(b) even if X is exchangeable. Thus, points (b)–(d) are espe-

cially useful when X is exchangeable.
In (c), convergence in probability can not be replaced by a.s. convergence. As a

trivial example, takeD = B,G = GX , rn =
√

n
log log n , and X an i.i.d. sequence of indi-

cators. Letting p = P(X1 = 1), one obtains E
{‖Wn‖2

} = n E
{(

μn{1} − p
)2} =

p (1 − p) for all n. However, the LIL yields

lim sup
n

rn ‖μn − an‖ = lim sup
n

| ∑n
i=1(Xi − p) |√
n log log n

= √
2 p (1 − p) a.s.

We finally give a couple of examples.

Example 1 Let D = B. If X is i.i.d., then ‖μn − μ0‖ a.s.−→ 0 if and only if μ0 is
discrete. By de Finetti’s theorem, it follows that ‖μn − μ‖ a.s.−→ 0 whenever X is
exchangeable and μ is a.s. discrete. Thus, under such assumptions and G = GX ,
Theorem 1(a) implies ‖μn − an‖ a.s.−→ 0. This result has possible practical interest.
In fact, in Bayesian nonparametrics, most priors are such that μ is a.s. discrete.

Example 2 Let S = R
k andD = {closed convex sets}. Given any probabilityα onB,

denote byα(c) = α − ∑
x α{x}δx the continuous part ofα. If X is i.i.d. andμ(c)

0 � m,
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wherem is Lebesguemeasure, then ‖μn − μ0‖ a.s.−→ 0.ApplyingTheorem1(a) again,
one obtains ‖μn − an‖ a.s.−→ 0 provided X is exchangeable, G = GX and μ(c) � m
a.s. While “morally true”, this argument does not work forD = {Borel convex sets}
since the latter choice of D is not countably determined.

3.2 The Dominated Case

In this Subsection, G = GX , A = σ
(∪nGX

n

)
, Q is a probability on (Ω,A) and

bn(·) = Q(Xn+1 ∈ · | Gn) is the predictive measure under Q. Also, we say that Q is
a Ferguson-Dirichlet law if

bn(·) = c Q(X1 ∈ ·) + n μn(·)
c + n

, Q-a.s. for some constant c > 0.

If P � Q, the asymptotic behavior of μn − an under P should be affected by that
of μn − bn under Q. This (rough) idea is realized by the next result.

Theorem 2 (Theorems 1 and 2 of [4]) Suppose D is countably determined, X

is c.i.d., and P � Q. Then,
√
n ‖μn − an‖ P−→ 0 provided

√
n ‖μn − bn‖ Q−→ 0

and the sequence (Wn) is uniformly integrable under both P and Q. In addition,
n ‖μn − an‖ converges a.s. to a finite limit whenever Q is a Ferguson-Dirichlet law,
supn EQ

{‖Wn‖2
}

< ∞, and

sup
n

n
{
EQ

{
(dP/dQ)2

} − EQ
{
EQ(dP/dQ | Gn)

2
}}

< ∞.

To make Theorem 2 effective, the condition P � Q should be given a simple
characterization. This happens in at least one case.

Let S be finite, say S = {x1, . . . , xk, xk+1}, X exchangeable and μ0{x} > 0 for all
x ∈ S. Then P � Q, with Q a Ferguson-Dirichlet law, if and only if the distribution
of

(
μ{x1}, . . . ,μ{xk}

)
is absolutely continuous (with respect to Lebesgue measure).

This fact is behind the next result.

Theorem 3 (Corollaries 4 and 5 of [4]) Suppose S = {0, 1} and X is exchangeable.

Then,
√
n

(
μn{1} − an{1}

) P−→ 0 whenever the distribution of μ{1} is absolutely
continuous. Moreover, n

(
μn{1} − an{1}

)
converges a.s. (to a finite limit) provided

the distribution of μ{1} is absolutely continuous with an almost Lipschitz density.

In Theorem 3, a real function f on (0, 1) is said to be almost Lipschitz in case
x �→ f (x)xu(1 − x)v is Lipschitz on (0, 1) for some reals u, v < 1.

A consequence of Theorem 3 is to be stressed. For each B ∈ B, define

Tn(B) = √
n

{
an(B) − P

{
Xn+1 ∈ B | GB

n

}}
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where GB
n = σ

(
IB(X1), . . . , IB(Xn)

)
. Also, let l∞(D) be the set of real bounded

functions onD, equipped with uniform distance. In the next result,Wn is regarded as
a random element of l∞(D) and convergence in distribution is meant in Hoffmann-
Jørgensen’s sense; see [11].

Corollary 1 Let D be countably determined and X exchangeable. Suppose

(i) μ(B) has an absolutely continuous distribution for each B ∈ D such that 0 <

P(X1 ∈ B) < 1;
(ii) the sequence (‖Wn‖) is uniformly integrable;
(iii) Wn converges in distribution to a tight limit in l∞(D).

Then,
√
n ‖μn − an‖ P−→ 0 if and only if Tn(B)

P−→ 0 for each B ∈ D.

Proof Let Un(B) = √
n

{
μn(B) − P

{
Xn+1 ∈ B | GB

n

}}
. Then, Un(B)

P−→ 0 for

each B ∈ D. In fact,Un(B) = 0 a.s. if P(X1 ∈ B) ∈ {0, 1}. Otherwise,Un(B)
P−→ 0

follows from Theorem 3, since (IB(Xn)) is an exchangeable sequence of indicators

and μ(B) has an absolutely continuous distribution. Next, suppose Tn(B)
P−→ 0

for each B ∈ D. Letting Cn = √
n (μn − an), we have to prove that ‖Cn‖ P−→ 0.

Equivalently, regarding Cn as a random element of l∞(D), we have to prove that

Cn(B)
P−→ 0 for fixed B ∈ D and the sequence (Cn) is asymptotically tight; see e.g.

[11, Sect. 1.5]. Given B ∈ D, since both Un(B) and Tn(B) converge to 0 in proba-

bility, then Cn(B) = Un(B) − Tn(B)
P−→ 0. Moreover, since Cn(B) = E

{
Wn(B) |

Gn
}
a.s., the asymptotic tightness of (Cn) follows from (ii) and (iii); see [3, Remark

4.4]. Hence, ‖Cn‖ P−→ 0. Conversely, if ‖Cn‖ P−→ 0, one trivially obtains

|Tn(B)| = |Un(B) − Cn(B)| ≤ |Un(B)| + ‖Cn‖ P−→ 0 for each B ∈ D.

If X is exchangeable, it frequently happens that supn E
{‖Wn‖2

}
< ∞, which in

turn implies condition (ii). Similarly, (iii) is not unusual. As an example, conditions
(ii) and (iii) hold if S = R, D = {(−∞, t] : t ∈ R} and μ0 is discrete or P(X1 =
X2) = 0; see [3, Theorem 4.5].

Unfortunately, as shown by the next example, Tn(B) may fail to converge to 0
even if μ(B) has an absolutely continuous distribution. This suggests the following
general question. In the exchangeable case, in addition to μn(B), which further
information is required to evaluate an(B)? Or at least, are there reasonable conditions

for Tn(B)
P−→ 0? Even if intriguing, to our knowledge, such a question does not have

a satisfactory answer.

Example 3 Let S = R and Xn = Yn Z−1, where Yn and Z are independent real ran-
domvariables,Yn ∼ N (0, 1) for alln, and Z has an absolutely continuous distribution
supported by [1,∞). Conditionally on Z , the sequence X = (X1, X2, . . .) is i.i.d.
with common distribution N (0, Z−2). Thus, X is exchangeable and μ(B) = P(X1 ∈
B | Z) = fB(Z) a.s., where
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fB(z) = (2 π)−1/2z
∫

B
exp

(−(xz)2/2
)
dx for B ∈ B and z ≥ 1.

Fix B ∈ B, with B ⊂ [1,∞) and P(X1 ∈ B) > 0, and define C = {−x : x ∈ B}.
Since fB = fC , then μ(B) = μ(C) a.s. Further, μ(B) has an absolutely continuous
distribution, for fB is differentiable and f ′

B �= 0. Nevertheless, one between Tn(B)

and Tn(C) does not converge to 0 in probability. Define in fact g = IB − IC and
Rn = n−1/2 ∑n

i=1 g(Xi ). Since μ(g) = μ(B) − μ(C) = 0 a.s., then Rn converges
stably to the kernel N (0, 2μ(B)); see [3, Theorem 3.1]. On the other hand, since
E

{
g(Xn+1) | Gn

} = E
{
μ(g) | Gn

} = 0 a.s., one obtains

Rn = √
n

{
μn(B) − μn(C)

} = Tn(C) − Tn(B)+
+√

n
{
μn(B) − P

{
Xn+1 ∈ B | GB

n

}} − √
n

{
μn(C) − P

{
Xn+1 ∈ C | GC

n

}}
.

Hence, if Tn(B)
P−→ 0 and Tn(C)

P−→ 0, Corollary 1 (applied with D = {B,C})
implies the contradiction Rn

P−→ 0.
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Independent k-Sample Equality
Distribution Test Based on the Fuzzy
Representation

Angela Blanco-Fernández and Ana B. Ramos-Guajardo

Abstract Classical tests for the equality of distributions of real-valued random
variables are widely applied in Statistics. When the normality assumption for the
variables fails, non-parametric techniques are to be considered; Mann-Whitney,
Wilcoxon, Kruskal-Wallis, Friedman tests, among other alternatives. Fuzzy repre-
sentations of real-valued random variables have been recently shown to describe in
an effective way the statistical behaviour of the variables. Indeed, the expected value
of certain fuzzy representations fully characterizes the distribution of the variable.
The aim of this paper is to use this characterization to test the equality of distribution
for two or more real-valued random variables, as an alternative to classical proce-
dures. The inferential problem is solved through a parametric test for the equality of
expectations of fuzzy-valued random variables. Theoretical results on inferences for
fuzzy random variables support the validity of the test. Besides, simulation studies
and practical applications show the empirical goodness of the method.

1 Introduction

The development of statistical methods for fuzzy random variables has increased
exponentially in last decades, from the seminal ideas on fuzziness by Zadeh [16]. In
some situations, experimental data are not precise observations, represented by fixed
categories or point-valued real numbers, and modelled by real-valued variables. The
outcomes of the experiment might be more imprecise or fuzzy, in the sense that they
are not represented by just a point value, but a set of values, an interval, or even
a function. Imprecise experimental data can be effectively modelled by means of
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fuzzy-valued variables. Additionally to the imprecision on the data, the randomness
on the data generation process drives to the formalization of fuzzy-valued random
variables (FRVs).

Powerful exploratory, probabilistic and inferential studies for fuzzy random vari-
ables have been deeply investigated in the literature. It is important to remark that
fuzzy data can be seen under two different perspectives, usually called ontic and epis-
temic views of fuzzy data, and the statistical treatment of the variables in each line is
radically different. In few words, the epistemic approach considers the fuzzy data as
imprecise observations or descriptions of crisp (but unknown) quantities. Statistical
methods are focused to draw conclusions for the original real-valued variable, and
they generally transfer the imprecision to methods and results [4, 5, 10, 12]. Alterna-
tively, ontic fuzzy data are treated as precise entities representing the outcomes of the
experiment, belonging to the corresponding space of functions instead of the space
of real numbers. In this case, statistical methods try to mimic classical techniques
to draw conclusions directly to the fuzzy-valued variables modelling the experiment
[2, 6, 7, 11, 13]. Further discussions on the two frameworks can be found in [2, 5].

Besides their own statistical analysis, fuzzy-valued random variables in the ontic
perspective have been also shown as a powerful tool to obtain statistical conclusions
to classical real-valued random variables [1, 3, 8, 9]. Exploratory and inferential
studies for real random variables have been developed through the so-called fuzzy
representation of the variable, defined, roughly speaking, by applying a fuzzy oper-
ator to the original variable and fuzzifying its values. The key idea is that it is not
included imprecision in the data gratuitously, but this transformation is very effec-
tive to certain statistical purposes. The aim of this paper is to extend this line of
research to test the equality of two or more real-valued distributions based on the
fuzzy representation of the variables. The rest of the paper is organized as follows.
In Sect. 2, the main concepts concerning fuzzy random variables and the concept of
fuzzy representation of a real-valued variable are recalled. The inferential studies
on the equality of real-valued distributions are presented in Sect. 3. Theoretical and
empirical results on the proposed tests are shown. Finally, some conclusions and
future problems are commented in Sect. 4.

2 Preliminaries

LetFc(R) denote the class of fuzzy setsU : R → [0, 1] such thatUα ∈ Kc(R) for all
α ∈ [0, 1], whereKc(R) is the family of all non-empty closed and bounded intervals
of R, the α-levels ofU are defined asUα = {x ∈ R|U (x) ≥ α} if α ∈ (0, 1], andU0

is the closure of the support of U .
The usual arithmetic between fuzzy sets is based on Zadeh’s extension principle

[16]. It agrees levelwise with the Minkowski addition and the product by scalars
for intervals. Given U, V ∈ Fc(R) and λ ∈ R, U + V and λU are defined such that
(U + V )α = Uα + Vα = {u + v : u ∈ Uα, v ∈ Vα} and (λU )α = λUα = {λu : u ∈
Uα}, for all α ∈ [0, 1].
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The spaceFc(R) can be embedded into a convex and closed cone ofL2({−1, 1} ×
[0, 1]) by means of the support function [11], defined for any U ∈ Fc(R) as sU :
{−1, 1} × [0, 1] → R such that sU (u,α) = supv∈Uα

〈u, v〉. It is important to note
that, although this embedding permits good operational properties, the statistical
processing of fuzzy sets cannot be directly transferred to L2({−1, 1} × [0, 1]); it
must always be guaranteed that the results remain coherently into the cone.

In order to measure distances between fuzzy sets, the family of metrics Dϕ
θ in

Fc(R) [14] is defined as

Dϕ
θ (U, V ) =

√∫

(0,1]

(
(midUα − midVα)2 + θ(sprUα − sprVα)2

)
dϕ(α),

with θ > 0, ϕ is associated with a bounded density measure with positive mass
in (0, 1], and midUα/sprUα are the mid-point/radius of the interval Uα ∈ Kc(R),
respectively, i.e. Uα = [midUα ± sprUα] for all α ∈ [0, 1].

Let (Ω,A, P) be a probability space. A mapping X : Ω → Fc(R) is a random
fuzzy set (RFS) (or random fuzzy variable) if it is Borel-measurable with respect to
BDϕ

θ
, the σ-field generated by the topology induced by the metric Dϕ

θ on the space
Fc(R).

The central tendency of a RFS is usually measured by the Aumann expectation of
X . If max{‖infX0‖, ‖supX0‖} ∈ L1(Ω,A, P), it is defined as the unique fuzzy set
Ẽ(X ) ∈ Fc(R) such that

(
Ẽ(X )

)
α

= Kudo-Aumann’s integral of Xα = [E(infXα), E(supXα)],

for all α ∈ [0, 1]. Given {Xi }ni=1 a simple random sample of size n from X ,the
associated sample mean is defined as Xn = (1/n)

∑n
i=1 Xi .

Let γ : R → Fc(R) the mapping transforming each x ∈ R into the fuzzy set γ(x)
whose α-levels are given by

(
γ(x)

)

α
=

[
fL(x) − gL(x)(1 − α)1/hL (x), fR(x) + gR(x)(1 − α)1/hR(x)

]
,

for all α ∈ [0, 1], where fL , fR : R → R, fL ≤ fR , gL , gR : R → [0,∞), hL , hR :
R → (0,∞), are Borel-measurable functions.

Given X : Ω → R a real randomvariable associatedwith (Ω,A, P), it is straight-
forward to show that the mapping γ ◦ X : Ω → Fc(R), ω �→ γ(X (ω)) is a random
fuzzy set. It is called the γ-fuzzy representation of X [8]. One of the main statistical
advantages of this fuzzification process is the possibility of managing real-valued
distributions, generally complicated in the classical framework, through powerful
statistical techniques for random fuzzy variables which are available in the current
literature on the fuzzy framework.

Several statistical problems for X have been already solved by means of this
technique [1, 3, 8, 9]. Different fuzzy operators γ are considered, depending on
the relevant information from X which it is desired to characterize. There exists the
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possibility of characterizing the whole distribution of X through the expected value
of certain fuzzy representations. The fuzzy operator γξ is defined as

γξ(x) = 1{x} + sig(x − x0)γ f

(∣∣∣∣
x − x0

a

∣∣∣∣

)
,

where ξ ∈ Θ = {(x0, a, f )|x0 ∈ R, a ∈ R
+, f : [0,+∞) → [0, 1] injective and

continuous}, sig(z) denotes the sign of z ∈ R and γ f : [0,+∞) → Fc(R) is an
auxiliary (fuzzy-valued) functional defined by

(
γ f (x)

)
α

=
{ [0, B(x) − C(x)α] if 0 ≤ α ≤ f (x)
[0, A(x)(1 − α)] if f (x) < α ≤ 1

for all α ∈ [0, 1] and x ≥ 0, where

A(x) = x2

1 − f (x)
, B(x) = x2

f (x)
and C(x) = x2(1 − f (x))

f (x)2
.

The triple parameter ξ = (E(X), 1, (0.6x + 0.001)/1.001) provides a good
exploratory analysis of X , as well as the characterization of its distribution, since
two real random variables X and Y are identically distributed if, and only if,
Ẽ(γξ ◦ X) = Ẽ(γξ ◦ Y ) (see [3]).

3 Testing the Equality of Real-Valued Distributions

Let (Ω,A, P) be a probability space and let X1, X2, . . . , Xk : Ω → R be k real-
valued random variables. The aim is to test whether the distributions of the k vari-
ables behave significantly different each other or not. Thus, the hypothesis test to be
solved is:

{
H0 : X1

d∼ X2
d∼ · · · d∼ Xk

H1 : ∃ i, j ∈ {1, . . . , k} s.t. Xi
d
� X j

(1)

Following previous results on the fuzzy representation of the variables, it is imme-
diate to note that the hypothesis test (1) can be equivalently written in terms of the
expected values of the corresponding γξ-fuzzy representations of the variables, as
follows:

{
H0 : E(γξ ◦ X1) = E(γξ ◦ X2) = · · · = E(γξ ◦ Xk)

H1 : ∃ i, j ∈ {1, . . . , k} s.t. E(γξ ◦ Xi ) �= E(γξ ◦ X j )
(2)
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Whenever the normality assumption for the distributions of the variables is not
guaranteed, the classical test (1) is solved through non-parametric techniques; k-
sample Kolmogorov-Smirnov test, Kruskal-Wallis method, are some of the well-
known alternatives, among others. Nevertheless, the equality of expectations of fuzzy
randomvariables is tested through parametric techniques, shown to be asymptotically
consistent. Let us defineXi = γξ ◦ Xi , the γξ-fuzzy representation of the real random
variable Xi , respectively for i = 1, . . . , k. Given {Xi j }nij=1 a simple random sample
from the real random variable Xi , for each i = 1, . . . , k, it is immediate to see that
{Xi j = γξ ◦ Xi j }nij=1 is a simple random sample from the random fuzzy variablesXi ,
i = 1, . . . , k.

By following ideas from [9], the test statistic to be considered to solve (2) from
the information provided by the random sample {Xi j }nij=1 is defined as follows:

Tn =
k∑

i=1

ni
(
Dϕ

θ (Xi ·,X··)
)2

, (3)

where Xi · = 1
ni

∑ni
j=1 Xi j for each i = 1, . . . , k, X·· = 1

n

∑k
i=1

∑ni
j=1 Xi j , and n =

n1 + · · · + nk is the overall sample size. The consistency of the testing procedure
based on the test statistic (3) is supported by the following asymptotic result.

Theorem 1 (see [9]) If ni → ∞, ni/n → pi > 0, as n → ∞, and Xi is non-
degenerated for some i ∈ {1, . . . , k}, then, if H0 is true,

Tn
n→

k∑

i=1

(
||Zi −

k∑

l=1

αli Zl ||ϕθ
)2

, (4)

where Z1, . . . , Zk are independent centered Gaussian processes in L2({−1, 1} ×
[0, 1]) whose covariances are equal to cov(sXi ), respectively, and αli =√
pl/pi

∑k
r=1(pr/pi ), i = 1, . . . , k.

Proposition 1 To test H0 : E(γξ ◦ X1) = E(γξ ◦ X2) = · · · = E(γξ ◦ Xk) at the
nominal significance level ρ ∈ [0, 1], H0 should be rejectedwhenever Tn > zρ, where
zρ is the 100(1 − ρ)-quantile of the distribution of the limit expression in (4).

The limit distribution in (4) depends on the populational covariances cov(sXi ), i =
1, . . . , k, which are usually unknown in practice. In such situations, that distribution
can be approximated by Monte Carlo simulations.

Alternatively to the asymptotic approach, a bootstrap testing procedure to solve
(2) is proposed, which is always applicable in practice. Let {X ∗

i j }nij=1 be a bootstrap
sample of {Xi j }nij=1, for each i = 1, . . . , k, i.e. {X ∗

i j }nij=1 being randomly chosen and
with replacement from {Xi j }nij=1. The bootstrap statistic is defined as follows:

T ∗
n =

k∑

i=1

ni
(
Dϕ

θ (X ∗
i · + X··,Xi · + X ∗·· )

)2
. (5)
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By applying the Bootstrap Central Limit Theorem, it can be shown that T ∗
n converges

in law to the same Gaussian process than Tn in (3) when H0 is true (see [9]). Conse-
quently, the bootstrap distribution of T ∗

n approximates the one of Tn under H0, and
the following test resolution holds.

Proposition 2 To test H0 : E(γξ ◦ X1) = E(γξ ◦ X2) = · · · = E(γξ ◦ Xk) at the
significance level ρ ∈ [0, 1], H0 should be rejected whenever T ∗

n > z∗
ρ, where z∗

ρ

is the 100(1 − ρ)-quantile of the bootstrap distribution of T ∗
n .

The bootstrap statistic T ∗
n is defined coherently in terms of the arithmetic between

fuzzy values and distances between them. The corresponding quantile to solve the
test can be easily approximated by re-sampling.

3.1 Simulation Studies

In order to illustrate the empirical behaviour of the proposed testing procedures, some
simulations are shown. Let δ > 0, Zi ↪→ N (0, 1), i = 1, 2, 3. We define X1 = Z1,

X2 = Z2 and X3 = δZ3. It is immediate to check that H0 : X1
d∼ X2

d∼ X3 holds
when δ = 1. E(X1) = E(X2) = E(X3) for all δ > 0. However, Var(X3) increases
and it differs more and more from Var(X1) = Var(X2) as δ increases.

A number of 10,000 random samples from {Xi }3i=1 are generated, for differ-
ent sample sizes n1, n2, n3, respectively. For each case, the corresponding samples
for the fuzzy-representations γξ ◦ Xi are constructed, with ξ = (E(X), 1, (0.6x +
0.001)/1.001), and the bootstrap test is run for B = 1000 bootstrap replications.
The percentage of rejections of the null hypothesis (2) (and so of (1)) on the 10,000
iterations of the test is computed. The results are compared with the classical non-
parametric Kruskal-Wallis (KW) method to test the equality of real-valued distri-
butions. Table1 contains the results for different values of δ. Some comments can
be done. First, it is immediate to see that the proposed bootstrap test approximates
the nominal significance level when H0 is true (δ = 1) as the sample size increases,
which agrees with the theoretical correctness of the method. Under H0, the classical
KW test approximates slightly better than the bootstrap test. However, the fuzzy-
based bootstrap test is always consistent, which is not the case of the classical one.

Table 1 Percentage of rejections (bootstrap fuzzy test/classical KW test)

(n1, n2, n3) δ = 1 δ = 2 δ = 4 δ = 6

(30, 30, 30) 3.80/4.69 34.16/5.70 34.46/6.81 35.86/7.45

(30, 50, 100) 4.22/5.09 90.36/2.46 71.62/2.52 83.32/2.62

(100, 100, 100) 4.62/5.13 90.52/5.59 72.22/7.20 88.45/7.68

(100, 150, 200) 4.68/5.04 97.78/4.13 87.64/4.92 99.48/5.15

(500, 500, 500) 4.80/5.11 99.98/5.88 100/6.96 100/7.89
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Kruskal-Wallis method does not identify the movement of the theoretical situation
far from H0 (when δ increases), whereas the bootstrap method does it effectively
even for small and moderate samples. Despite the fact that the KW test is used as a
non-parametric test to check the equality of distributions, it is, in fact, a test for the
comparison of medians. This could be a reason to the inconsistency of the KW test
when δ > 1.

3.2 Practical Applications

Once both the theoretical and empirical correctness of the proposed fuzzy-based
bootstrap testing procedure is shown, the technique is ready to be applied in practice.
Let us consider the sample dataset Energy Efficiency from the UCI Repository (see
[15]). It contains information about the heating load of houses aswell as different fea-
tures of the houses such as orientation, roof area, wall area, glazing area, etc. The aim
is to test whether the heating load of the houses is significantly different depending on
one of those features. For instance, if we consider Xi = heating load in a house with

orientation i , i = 1, 2, 3, 4, the hypothesis H0 : X1
d∼ X2

d∼ X3
d∼ X4 is not rejected

at the usual significance levels, since the obtained p-values with both the classical
KW test and the fuzzy bootstrap test are 0.9941 and 0.8741, respectively. Neverthe-
less, for Y j = heating load in a house with glazing area j , j = 1, 2, 3, the hypothesis

H0 : Y1 d∼ Y2
d∼ Y3 is rejected with p-values 4.31 × 10−13 and 0, respectively.

4 Conclusions

The statistical analysis of fuzzy-valued random sets is widely recognized as a power-
ful technique to develop descriptive and inferential studies in experimental scenarios
executed with certain degree of imprecision. Additionally, fuzzy-based techniques
can be also applied to solve statistical problems for real-valued random variables
through the fuzzy representation of the variables. In this work, the problem of testing
the equality of two or more real-valued distributions is addressed. Simulations and
applications show that the proposed techniques are a good alternative to classical
methods, with good and powerful statistical features.

The effect of using different fuzzy-operators to define the fuzzy representation
of the variables in the results of the test could be further investigated. Besides, the
extension to other classical statisticalmethods, as discriminant or regression analysis,
is still to be developed.
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Agglomerative Fuzzy Clustering

Christian Borgelt and Rudolf Kruse

Abstract The term fuzzy clustering usually refers to prototype-based methods that
optimize an objective function in order to find a (fuzzy) partition of a given data
set and are inspired by the classical c-means clustering algorithm. Possible trans-
fers of other classical approaches, particularly hierarchical agglomerative clustering,
received much less attention as starting points for developing fuzzy clustering meth-
ods. In this chapter we strive to improve this situation by presenting a (hierarchical)
agglomerative fuzzy clustering algorithm. We report experimental results on two
well-known data sets on which we compare our method to classical hierarchical
agglomerative clustering.

1 Introduction

The objective of clustering or cluster analysis is to divide a data set into groups
(so-called clusters) in such a way that data points in the same cluster are as similar
as possible and data points from different clusters are as dissimilar as possible (see,
e.g., [5, 10]), where the notion of similarity is often formalized by defining a distance
measure for the data points. Even in classical clustering the resulting grouping need
not be a partition (that is, in some approaches not all data points need to be assigned
to a group and the formed groups may overlap), but only if points are assigned to
different groups with different degrees of membership, one arrives at fuzzy clustering
[2, 3, 8, 14].

However, the term fuzzy clustering usually refers to a fairly limited set of methods,
which are prototype-based and optimize some objective function to find a good
(fuzzy) partition of the given data. Although classical clustering comprises many

C. Borgelt (B) · R. Kruse
School of Computer Science, Otto-von-Guericke-University Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: christian@borgelt.net

R. Kruse
e-mail: rudolf.kruse@ovgu.de

© Springer International Publishing Switzerland 2017
M.B. Ferraro et al. (eds.), Soft Methods for Data Science, Advances
in Intelligent Systems and Computing 456, DOI 10.1007/978-3-319-42972-4_9

69



70 C. Borgelt and R. Kruse

more methods than the well-known c-means algorithm (by which most fuzzy clus-
tering approaches are inspired), these other methods are only rarely “fuzzified”. This
is particularly true for hierarchical agglomerative clustering (HAC) [16], of which
only few fuzzy versions have been proposed.

Exceptions include [1, 7, 11]. Ghasemigol et al. [7] describes HAC for trapezoidal
fuzzy sets with either single or complete linkage, but is restricted to one dimension
due to its special distance function. Konkol [11] proposes an HAC algorithm for
crisp data based on fuzzy distances, which are effectively distances weighted by a
function of membership degrees. It mixes single and complete linkage. Bank and
Schwenker [1] merges clusters in the spirit of HAC, but keeps the original clusters
for possible additional mergers, so that a hierarchy in the form of a directed acyclic
graph results (while standard HAC produces a tree). Also noteworthy is [15], which
suggest a mixed approach, re-partitioning the result of fuzzy c-means clustering and
linking the partitions of two consecutive steps.

Related approaches include [6, 12] as well as its extension [9]. The first uses
a competitive agglomeration scheme and an extended objective function for fuzzy
c-means in order to reduce an overly large initial number of clusters to an “optimal”
number. The latter two change the term in the objective function that penalizes many
clusters from a quadratic expression to an entropy expression. Although fairly differ-
ent from hierarchical agglomerative clustering approaches, they share the property
that clusters are merged to find a good final partition, but they do not necessarily
produce a hierarchy.

Our approach is closest in spirit to [11], as it also relies on the standard scheme
of hierarchical agglomerative clustering, although we treat the original data points
as clusters already, while [11] keeps data points and clusters clearly separate.
Furthermore, [11] focuses on single and complete linkage while we use a centroid
scheme. Our approach also bears some relationship to [15] concerning the distances
of fuzzy sets, which [15] divides into three categories: (1) comparing membership
values, (2) considering spatial characteristics, and (3) characteristic indices. While
[15] relies on (2), we employ (1).

The remainder of this paper is structured as follows: in Sects. 2 and 3 we briefly
review standard fuzzy clustering and hierarchical agglomerative clustering, indicat-
ing which elements we use in our approach. In Sect. 4 we present our method and
in Sect. 5 we report experimental results. Finally, we draw conclusions from our
discussion in Sect. 6.

2 Fuzzy Clustering

The input to our clustering algorithm is a data set X = {x1, . . . , xn} with n data
points, each of which is anm-dimensional real-valued vector, that is, ∀ j; 1 ≤ j ≤ n :
x j = (x j1, . . . , x jm) ∈ R

m . Although HAC usually requires only a distance or sim-
ilarity matrix as input, we assume metric data, since a centroid scheme requires the
possibility to compute new center vectors.
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In standard fuzzy clustering one tries to minimize the objective function

J (X,C,U) =
c∑

i=1

n∑

j=1

uwi j d
2
i j ,

where C = {c1, . . . , cc} is the set of prototypes (often merely cluster centers), the
c × n matrix U = (ui j )1≤i≤c;1≤ j≤n is the partition matrix containing the degrees of
membershipwithwhich the data points belong to the clusters, the di j are the distances
between cluster ci and data point x j , and w, w > 1, is the fuzzifier (usually w = 2),
which controls the “softness” of the cluster boundaries (the larger w, the softer the
cluster boundaries). In order to avoid the trivial solution of setting all membership
degrees to zero, the constraints ∀ j; 1 ≤ j ≤ n : ∑c

i=1 ui j = 1 and ∀i; 1 ≤ i ≤ c :∑n
j=1 ui j > 0 are introduced.
A fuzzy clustering algorithm optimizes the above function, starting from a random

initialization of either the cluster prototypes or the partition matrix, in an alternating
fashion: (1) optimize membership degrees for fixed prototypes and (2) optimize
prototypes for fixedmembership degrees. From this schemewe take the computation
of membership degrees for w = 2, namely

ui j = d−2
i j∑c

k=1 d
−2
k j

.

We compute membership degrees for fuzzy clusters in an only slightly modified
fashion, which are then compared to decide which clusters to merge.

3 Hierarchical Agglomerative Clustering

As its name already indicates, hierarchical agglomerative clustering produces a
hierarchy of clusters in an agglomerative fashion, that is, by merging clusters (in
contrast to divise approaches, which split clusters). It starts by letting each data point
form its own cluster and then iteratively merges those two clusters that are most
similar (or closest to each other).

While the similarity (or distance) of the data points is an input to the procedure,
how the distances of (non-singleton) clusters are to bemeasured is a matter of choice.
Common options include (1) single linkage (cluster distances areminimum distances
of contained data points), (2) complete linkage (maximum distances of contained
data points), and (3) centroid (distances of cluster centroids). Note that the centroid
method requires that one can somehowcompute a cluster center (or at least an analog),
while single and complete linkage only require the initial similarity or distancematrix
of the data points. Because of this we assume metric data as input.

In the single and complete linkagemethods, clusters aremerged by simply pooling
the contained data points. In the centroid method, clusters are merged by computing
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a new cluster centroid as the weighted mean of the centroids of the clusters to be
merged, where the weights are provided by the relative number of data points in the
clusters to be merged.

4 Agglomerative Fuzzy Clustering

Our algorithm builds on the idea to see the given set of data points as the initial cluster
centers (as in standard HAC) and to compute membership degrees of all data points
to these cluster centers. However, for this the membership computation reviewed
in Sect. 2 is not quite appropriate, since it leads to each data point being assigned
to itself and to itself only (only one membership degree is 1, all others are 0). As
a consequence, there would be no similarity between any two clusters (at least in
the initial partition) and thus no proper way to choose a cluster merger. In order to
circumvent this problem, we draw on the concept of a “raw” membership degree,
which is computed from a distance via a radial function, where “raw” means that its
value is not normalized to sum 1 over the clusters [4]. Possible choices for such a
radial function (with parameters α and σ2, respectively) are

fCauchy(r;α) = 1

r2 + α
and fGauss(r;σ2) = e− r2

2σ2 ,

where r is the distance to a cluster center. Using these functions (withα > 0) prevents
singularities at the cluster centers that occurwith the simple inverted squared distance
(that is, for α = 0) and thus allows us to compute suitable membership degrees even
for the initial set of clusters, namely as

u(α)i j = fCauchy(di j ;α)∑c
k=1 fCauchy(dkj ;α)

or u(σ
2)

i j = fGauss(di j ;σ2)∑c
k=1 fGauss(dkj ;σ2)

.

Based on these membership degrees two clusters ci and ck can now be compared by
aggregating (here: simply summing) point-wise comparisons:

δik =
n∑

j=1

g(ui j , ukj ),

where g is an appropriately chosen difference function. Here we consider

gabs(x, y) = |x − y|, gsqr(x, y) = (x − y)2 and gwgt(x, y) = (x − y)(x + y).

The first function, gabs, may appear the most natural choice, while gsqr generally
weights large differences more strongly and gwgt emphasizes large differences of
large membership degrees and thus focuses on close neighbors.
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A fuzzy HAC algorithm can now be derived in a standard fashion: compute the
initial membership degrees by using each data point as a cluster center. Compute the
cluster dissimilarities δik for this initial set of clusters. Merge the two clusters ci and
ck , for which δik is smallest, according to

c∗ = 1∑n
j=1(ui j + ukj )

(
ci

n∑

j=1

ui j + ck
n∑

j=1

ukj

)
.

That is, the sum of membership degrees for each cluster is used as the relative weight
of the cluster for the merging and thus (quite naturally) replaces the number of data
points in the classical HAC scheme. The merged clusters ci and ck are removed and
replaced by the result c∗ of the merger.

For the next step membership degrees and cluster dissimilarities are re-computed
and again the two least dissimilar clusters are merged. This process is repeated until
only one cluster remains. From the resulting hierarchy a suitable partition may then
be chosen to obtain a final result (if so desired), which may be further optimized by
applying standard fuzzy c-means clustering.

Note that this agglomerative fuzzy clustering scheme is computationally consid-
erably more expensive than standard HAC, since all membership degrees and cluster
dissimilarities need to be re-computed in each step.

5 Experimental Results

We implemented our agglomerative fuzzy clustering method prototypically in
Python, allowing for the two radial functions (Cauchy and Gauss, with parame-
ters α and σ2) to compute membership degrees and the three cluster dissimilarity
measures (gabs, gsqr and gwgt) to decide which clusters to merge. We applied this
implementation in a simple first test of functionality to two well-known data sets
from the UCI machine learning repository [13], namely the Iris data and the Wine
data. For the clustering runs we used attributes petal_length and petal_width for
the Iris data and attributes 7, 10 and 13 for the Wine data, since these are the most
informative attributes w.r.t. the class structure of these data sets. This restriction of
the attributes also allows us to produce (low-dimensional) diagrams with which the
cluster hierarchies can be easily compared. The latter is important, since it is difficult
to find an undisputed way of evaluating clustering results. Visual representations in
diagrams at least allow to compare the results subjectively and provide some insight
about the properties of the different variants.

As a comparisonweapplied standard hierarchical agglomerative clustering (HAC)
with the centroid method for linking clusters. As it also produces a hierarchy of clus-
ters (cluster tree) the results can be displayed in the same manner and thus are
easy to compare. For both standard HAC and agglomerative fuzzy clustering we
z-normalized the data (that is, we normalized each attribute to mean 0 and stan-
dard deviation 1) in order to avoid effects resulting from different scales (which is
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particularly important for attribute 13 of the Wine data set, which spans a much
larger range than all other attributes and thus would dominate the clustering without
normalization).

A selection of results we obtained are shown in Figs. 1 and 2 for the Iris data and in
Figs. 3 and 4 for the Wine data. Since in our approach cluster dissimilarity basically
depends on all data points, the distribution of the data points in the data space has

Fig. 1 Result of standard hierarchical agglomerative clustering (i.e. crisp partitions) with the cen-
troid method on the well-known Iris data, attributes petal_length (horizontal) and petal_width
(vertical). The colors encode the step in which clusters are merged (from bottom to top on the color
bar shown on the right); the data points are shown in gray

fCauchy, α =1 .0, gabs fCauchy, α =0 .2, gabs fCauchy, α =0 .2, gsqr

fGauss, σ2 =1 .0, gabs fGauss, σ2 =0 .2, gsqr fGauss, σ2 =0 .2, gwgt

Fig. 2 Results of different versions of agglomerative fuzzy clustering on the Iris data, attributes
petal_length (horizontal) and petal_width (vertical)
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Fig. 3 Result of standard hierarchical agglomerative clustering (i.e. crisp partitions) with the cen-
troid method on the Wine data, attributes 7 and 10 (left), 7 and 13 (middle) and 10 and 13 (right).
The colors encode the step in which clusters are merged (from bottom to top on the color bar shown
on the right); the data points are shown in gray

fCauchy, α = 1.0, gabs

fCauchy, α = 0.2, gsqr

fGauss, σ2 = 1.0, gwgt

Fig. 4 Results of different versions of agglomerative fuzzy clustering on theWine data, projections
to attributes 7 and 10 (left), 7 and 13 (middle) and 10 and 13 (right)
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a stronger influence on the mergers to be carried out. For example, for the Iris data,
which ismainly located along adiagonal of the data space,mergerswith our algorithm
tend to be carried out more often in a direction perpendicular to this diagonal. How
strong this effect is depends on the parameters: a smaller α or σ2 reduces this effect.
For the wine data set, which has a more complex data distribution, we believe that
we can claim that the resulting cluster trees better respects the distribution of the data
points than standard HAC does.

6 Conclusions

We described a (hierarchical) agglomerative fuzzy clustering algorithm (fuzzy HAC)
that is based on a cluster dissimilarity measure derived from aggregated point-wise
membership differences. Although it is computationally more expensive than clas-
sical (crisp) HAC, a subjective evaluation of its results seems to indicate that it may
be able to produce cluster hierarchies that better fit the spatial distribution of the
data points than the hierarchy obtained with classical HAC. Future work includes
a more thorough investigation of the effects of its parameters (α and σ2 and the
choice of the dissimilarity function, as well as the fuzzifier, which we neglected in
this paper). Furthermore, an intermediate (partial) optimization of the cluster centers
with fuzzy c-means is worth to be examined and may make it possible to return to
simple inverted squared distances to compute the membership degrees.
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Bayesian Inference for a Finite Population
Total Using Linked Data

Dario Briscolini, Brunero Liseo and Andrea Tancredi

Abstract We consider the problem of estimating the total (or the mean) of a contin-
uous variable in a finite population setting, using the auxiliary information provided
by a covariate which is available in a different file. However the matching steps
between the two files is uncertain due to a lack of identification code for the single
unit. We propose a fully Bayesian approach which merges the record linkage step
with the subsequent estimation procedure.

1 Introduction

Statistical Institutes and other private and public agencies often need to integrate
statistical knowledge extracting information from different sources. This operation
may be important for two different and complementary reasons:

(i) per sé, i.e. to obtain a larger reference data set or frame, suitable to performmore
accurate statistical analyses;

(ii) to calibrate statistical models via the additional information which could not be
extracted from either one of the single data sets.

When the merging step can be accomplished without errors there are no practical
consequences. In practice, however, identification keys are rarely available and link-
age among different records is usually performed under uncertainty. This issue has
caused a very active line of research among the statistical and the machine learning
communities, named “record linkage”, or “data matching”. In these approaches one
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should consider the possibility to make wrong matching decisions, especially when
the result of the linking operation, namely the merged data set, must be used for
further statistical analyses.

In this short note there is no room to extensively describe what record linkage is
and how it is implemented. So we limit ourselves to a sketch. Suppose we have two
data sets, say A and B, whose records relate to statistical units (e.g. individuals, firms,
etc.) of partially overlapping samples (or populations), say SA and SB . Records in
each data set consist of several fields, or variables, either quantitative or categorical,
which may be observed together with a potential amount of noise. For example, in a
file of individuals, fields could be surname, age, sex, and so on.

The goal of a record linkage procedure is to detect all the pairs of units ( j, j ′),
with j ∈ SA and j ′ ∈ SB , such that j and j ′ actually refer to the same individual.
If the main goal of the record linkage process is the former outlined above (case
(i)), a new data set is created by merging together three different subsets of units:
those which are in both data sets and those belonging to SA (SB) only. Suitable data
analyses may be then performed on the enlarged data set. Since the linkage step is
done with uncertainty, the performance and the reliability of the statistical analysis
may be jeopardized by the presence of duplicate units and by a loss of power, mainly
due to erroneous matching in the merging process.

The latter situation (case (ii)) is even more challenging: to fix the ideas, assume
that the observed variables in A are (Y, X1, X2, . . . , Xr ), and the observed variables
in B are (Z , X1, X2, . . . , Xr ). One might be interested in performing a linear regres-
sion analysis (see [6]) (or any other more complex association model) between Y
and Z , restricted to those pairs of records which are considered matches after the
record linkage based on (X1, . . . , Xr ). The difficulties in such a simple problem are
discussed in [2–4]. In a regression example discussed in [6], it might be seen that the
presence of false matches reduces the level of association between Y and Z and, as
a consequence, they introduces a bias effect towards zero when estimating the slope
of the regression line. Similar biases may appear in any statistical procedure and,
in most of the cases, the bias takes a specific direction. In this paper we propose a
Bayesian encompassing approach, where the posterior distribution of the quantity
of interest intrinsically takes into account the matching step uncertainty. In particu-
lar, we consider the problem of estimating the total of a continuous variable Y in a
finite population framework, when data—possibly linked with error—are available
on another continuous variable Z . The method could be easily extended to more than
one response variable or covariate. In this set-upwe consider the two-fold objective of
(i) using the key variables X1, X2, . . . , Xr to infer about the common units between
sources A and B and, at the same time, (ii) adopting a model M to perform a sta-
tistical analysis based on Y and Z (or even including the common variables Xi ’s),
restricted to those records which have been recognized as matches. In order to pursue
this goal, we propose a fully Bayesian analysis which is able—in a natural way—to

• improve the performance of the linkage step (through the use of the extra infor-
mation contained in the Y ’s and Z ’s. This happens because pairs of records which
do not adequately fit the model M will be automatically down-weighted in the
matching estimation;
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• account for matching uncertainty in the estimation procedure related to modelM
involving Y and Z .

• improve the accuracy of the estimators of the parameters of modelM in terms of
bias.

In the next section we will briefly recall the Bayesian approach to record linkage
of [5, 6]. In Sect. 3 we describe how to include the “estimation of total” step and we
will compare the new proposal with the classical GREG technique. We illustrate our
proposal with simulated data sets in the final section.

2 Record Linkage

Given two data sets, say A and B, we observe, on A, records (Yi , Xi,1, . . . , Xi,r ),
i = 1, 2, . . . , nA; on B we observe (X j,1, . . . , X j,r , Z j,1, . . . , Z j,k), j = 1, . . . , nB .
Here variables Z1, . . . , Zk are potentially related to Y and they might be used in a
statisticalmodel.Variables (X1, X2, . . . , Xr ) are called the key variables and they are
used in order to identify common records between the two dataset. The key variables
are usually categorical. We assume there are Gl categories for X l . Extension to
continuous variables is certainly possible (see [7] for a practical illustration). Let us
denote X A (X B) the data matrix nA × r (nB × r ). We introduce a latent matching
matrix C , with nA rows and nB columns: each element of C may be either 0 or 1;
Ci j = 1 if the i th record of X A and the j th record of X B correspond to the same
unit. The main goal of a record linkage analysis is the estimation of C . Related to
this, it may be important to make inference on some statistical relationships between
Y and the Z’s, restricted to the matched pairs of records. Let T be a r × g matrix
where g is the number of categories that each key variable can assume (in practice,
each variable has a different g, so we can pick the highest value): each element of T
is the probability that a generic key variable assumes that generic category. We also
assume that the key variables might be observed with error; for l = 1, . . . , r there
is a probability γl that the generic value of X l is correctly observed. This can be

formalized in a “hit-and miss” model [1]: let (X̃
A
, X̃

B
) the true unobserved values

of the key variables on the sample units.

p(X A, X B |X̃ A, X̃ B) =
∏

dul

p(xdul |x̃dul , γl) =
∏

dul

[γl I (xdul = x̃dul) + 1 − γl

Gl
],
(1)

where d = {A, B}, u = {(i = 1, 2, . . . , nA), ( j = 1, 2, . . . , nB)}, l = {1, 2, . . . , r}
and xdul , x̃dul are the observed and the true value of the key variable l of unit u in
the dataset d, respectively. The other part of the model is related to the true values of
the key variables and it depends on the matrix C . In the following we will consider
the parameters T and γ as fixed and known. The method can be easily extended to
consider both the above parameters as unknown. We have the following structure:
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p(X̃ A, X̃ B |C) =
∏

i :Ci, j=0,∀ j

p(x̃ Ai )
∏

j :Ci, j=0,∀i
p(x̃B j )

∏

i, j :Ci, j=1

p(x̃ Ai , x̃B j )

where
p(x̃du) =

∏

s1,s2,...,sr :
T [s1,s2,...,sr ]>0

T [s1, s2, . . . , sr ]I (x̃du=(s1,s2,...sr ))

and
p(x̃ Ai , x̃B j ) =

∏

s1,s2,...,sr :
T [s1,s2,...,sr ]>0

T [s1, s2, . . . , sr ]I (x̃ Ai=(s1,s2,...sr ))

if x̃ Ai �= x̃B j otherwise the last probability is 0. In the expressions above s1, s2, . . . , sr
are the generic categories assumed respectively by the key variables 1, 2, . . . , r and
T [s1, s2, . . . , sr ] is the probability extracted by the T matrix and corresponding to
the selected categories.

Assuming the independence among the key variables one has

T [s1, s2, . . . , sr ] =
r∏

l=1

Tl,sl

where Tl,sl is the element in position (l, sl) of the T matrix. The prior on C is chosen
to be uniform over the space of all possible matrices whose elements are either 0 or 1
and no more than one 1 is present in each row or column. To reproduce the posterior
distribution of C we used a Metropolis Hastings algorithm where, at each iteration,
the proposed matrix is obtained from the current one by (1) deleting a match; (2)
adding a match; (3) switching two existing matches.

3 Inference on Linked Data

From a frequentist point of view one of the most popular ways to estimate totals
is the GREG estimator. Let us consider a variable Y and suppose a sample of size
n from a finite population of size N is available: the goal is to estimate

∑N
i=1 yi .

Suppose it is available, for all the population units the values of some covariate z.
In this case one can construct an estimator which uses the auxiliary information
provided by z. In detail, we assume that a N × k matrix Z is available, where k
is the number of covariates. Let s = ∑N

i=1 zi , with zi = (zi,1, zi,2, . . . zi,k)′ and let
ŝ = ∑n

i=1 zi/πi , where the πi ’s are the inclusion probabilities. Let ŷ = ∑n
i=1

1
πi
yi ;

the GREG estimator for the total is defined as

ŶGR = ŷ + (s − ŝ)′β̂,
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where β̂ = (
∑n

i=1
1
πi
zi zi ′)

−1 ∑n
i=1

1
πi
zi yi . When the matching step between Y ’s and

z is not certain, one needs to produce a point estimate of C first and then compute
the GREG estimator, conditionally on the estimated linked pairs.

3.1 Linkage and Estimation of Total: Full Bayesian
Approach

Consider the record linkage framework explained in Sect. 2 and assume that
∑N

i=1 zi
is known and Yi |zi ∼ N (z′

iβ,σ2), independently of each other. We also assume that
Zi ∼ pz(·). The choice of pz(·) is not crucial and in this paper we will take it as a
Gaussian distribution. Let SA (SB) be the set of units contained in sample A (B).
One can see that

N∑

i=1

yi =
∑

i∈SA

yi +
∑

i /∈SA

yi =
∑

i∈SA

yi + Y ∗.

Weneed to produce a sample from the posterior distribution ofY ∗, sayπ(Y ∗|X A, X B,

YSA , ZSB ) where X A (X B) is the matrix of key variables observed in sample A (B)
and YSA is the nA-dimensional response vector related to sample A. Finally, ZSB is
the nB × k matrix of the potential covariates in SB . It is easy to see that

π(Y ∗|X A, X B,YSA , ZSB ) =
∑

C∈C∗
π(C |X A, X B,YSA , ZSB )

× π(Y ∗|C, X A, X B,YSA , ZSB ) (2)

Two approaches can be used. In the former we assume that the posterior distribution
of C is only affected by the key variables and not by the information provided by Y
and Z ’s. Then expression (2) gets transformed into

π(Y ∗|X A, X B,YSA , ZSB ) =
∑

C∈C∗
π(C |X A, X B)π(Y ∗|C,YSA , ZSB ).

The first term is related to the linkage step; no information coming from the
regression analysis is used. The second term should be analysed in detail. Let θ =
(β,σ2) ∈ Θ . We know that

π(Y ∗|C,YSA , ZSB ) =
∫

Θ

π(y∗|θ,C,YSA , ZSB )π(θ|C,YSA , ZSB )dθ. (3)

Given the matrix C ,some pairs (yi , z′
j )

(c) are linked; here the exponent c indicates
those pairs which are linked given C . If we assume a Normal-Inverse Gamma prior
for (β,σ2), the posterior will also be of the same type. Then we set
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σ2 ∼ IG(t0/2, d0/2), β|σ2 ∼ N (β0,σ
2V0).

The posterior is
σ2|C, ySA , zSB ∼ IG(t∗(c)/2, d∗(c)/2) (4)

and
β|σ2,C, ySA , zSB ∼ N (β∗(c),σ2V ∗(c)). (5)

In detail,
V ∗(c) = (Z(c)′Z(c) + V−1

0 )
−1

β∗(c) = V ∗(c)(Z(c)′ y(c) + V0
−1β0)

t∗(c) = t0 + card(SA)

d∗(c) = d0 + (card(SA) − k)S2 + (β̂(c) − β0)
′Z(c)′Z(c)V ∗(c)V0

−1(β̂(c) − β0)

where

S2 = ( y(c) − ŷ(c))′( y(c) − ŷ(c))
card(SA) − k

,

β̂(c) is the conditional maximum likelihood estimate of β and ŷ(c) = Z(c)β̂(c).
Note that these expressions are identical to the usual ones in Bayesian linear mod-
elling, except for the fact that the entire structure is conditioned on C . Another point
to stress is the following: it might happen that the number of matches implied byC is
less than the sample size nA. In this case we need to impute a value for the covariate
of the units which are not linked.

The posterior distributions (4) and (5) represent the second term of the integrand
in (3). We now need to manage the first term; it is useful to split Y ∗ as

Y ∗ = Y1
∗ + Y2

∗,

where
Y1

∗ =
∑

i /∈SA,i∈SB

yi and Y2
∗ =

∑

i /∈SA,i /∈SB

yi .

It is easy to see that

Y1
∗|θ,C, ySA , zSB ∼ N

⎛

⎝
∑

i /∈SA,i∈SB

zi ′β,σ2card(i /∈ SA, i ∈ SB)

⎞

⎠

and
Y2

∗|θ,C, ySA , zSB ∼ N
(
g2(C)[μ(z)]′β,σ2g2(C)

)
,
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where g2(C) is the number of pairs which are not observed (i.e. they were not in
file A, neither in file B) and μ(z) = (1,μ(z2),μ(z3), . . . ,μ(zk))′ is the vector of
covariate means. These two distributions are independent then we can easily see that
Y ∗|θ,C, ySA , zSB has a Gaussian distribution with mean

λ =
∑

i /∈SA,i∈SB

zi ′β + g2(C)[μ(z)]′β,

and variance
ω2 = σ2(card(i /∈ SA, i ∈ SB) + g2(C)).

Using standard arguments, β can be easily integrated out: So we can write

Y ∗|σ2,C, ySA , zSB ∼ N (a,σ2(b + g2(C) + card(i /∈ SA, i ∈ SB)) (6)

where a = ∑
i /∈SA,i∈SB zi ′β∗ + g2(C)[μ(z)]′β∗ and b = p′V ∗ p with p = g2(C)

μ(z) + � and

� =
⎛

⎝card(i /∈ SA, i ∈ SB),
∑

i /∈SA,i∈SB

zi,2, . . . ,
∑

i /∈SA,i∈SB

zi,k

⎞

⎠
′

.

Finally combining the results in (4) and (6) we obtain the predictive distribution of
Y ∗ as

Y ∗|C, ySA , zSB ∼ St1

(
t∗, a,

d∗

t∗
(b + g2(C) + card(i /∈ SA, i ∈ SB))

)
,

that is a scalar Student t r.v. with t∗ dgf. The closed form expression for the density
of Y ∗ allows one to easily simulate from it, according to the following steps.

For g in 1, . . . ,G:

1. simulate C (g) from π(C |X A, X B) (using the Metropolis-Hastings algorithm
described in [6])

2. simulate Y ∗(g) from π(Y ∗|C (g),YSA , ZSB ).

An alternative approach is obtained by explicitly allowing the regression part of
the model to influence the posterior distribution of C . In particular the first term of
the integrand in (2) can be expressed as

π(C |X A, X B,YSA , ZSB ) =
∫

θ∈Θ

π(C,θ|X A, X B,YSA , ZSB ).
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Then it’s easy to modify the strategy by only changing the first step of the previous
algorithm:

for g in 1, . . . ,G:

1. simulate (C (g),θ(g)) from π(C,θ|X A, X B,YSA , ZSB )

2. simulate Y ∗(g) from π(Y ∗|C (g),YSA , ZSB ).

4 A Small Scale Simulation Study

A small simulation has been performed: we have chosen a trueC 50 × 48matrixwith
26matches. N is equal to 500.We have generated 10 samples of key variables and 10
samples of Y and a scalar Z ; We have used 5 key variables and 7 categories for each
of them. Each simulation is based on 60000 iterations with a burn-in time of 11000.
We distinguish two cases and compare them to the posterior distribution of Y ∗ using
the true C , which represents our benchmark. Using the first strategy discussed above
the posterior distribution of Y ∗ is quite different from the benchmark, especially in
terms of variability. Using the second strategy, the posterior distribution of Y ∗ is
much more similar to the benchmark: this happens because of a feed-back effect
which is able to improve both the linkage and the estimation steps.
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The Extension of Imprecise Probabilities
Based on Generalized Credal Sets

Andrey G. Bronevich and Igor N. Rozenberg

Abstract In the paper we continue investigations started in the paper presented at
ISIPTA’15, where the notions of lower and upper generalized credal sets has been
introduced. Generalized credal sets are models of imprecise probabilities, where it
is possible to describe contradiction in information, when the avoiding sure loss
condition is not satisfied. The paper contains the basic principles of approximate
reasoning: models of uncertainty based on upper previsions and generalized credal
sets, natural extension, and coherence principles.

1 Introduction

The theory of imprecise probabilities [1, 6, 9] allows us to model conflict (random-
ness) and non-specificity (imprecision) in information and any model of uncertainty
can be equivalently represented by the sets of probability measures also called credal
sets. But the modeling of contradiction is not possible. Some authors [5, 7] when
dealing with contradiction try to correct it returning to imprecise probability model,
but this way of processing uncertainty seems to be not general. Meanwhile, in the
theory of evidence [2, 3, 8] contradiction can be modeled by assigning positive
values to belief functions at empty set. This way of representing contradiction with
small changes was adopted in [4] for conjunction of contradictory sources of infor-
mation, and where generalized lower and upper credal sets are introduced. Lower
and upper credal sets are dual concepts that give us the same way of representing
uncertainty. A lower generalized credal set consists of belief functions conceived
as upper probabilities whose bodies of evidence contain only singletons and certain
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event, thus allowing us to model conflict and contradiction in information; while
the whole generalized credal set allows us to model also non-specificity. If an upper
prevision does not avoid sure loss, then the corresponding usual credal set is empty
and the classical theory of imprecise probabilities is not applicable, but based on
generalized credal sets we can analyze this information.

The paper has the following structure. We remind first some definitions from the
theory of imprecise probabilities, monotone measures and belief functions. After
that we describe how the conjunctive rule can be applied to probability measures
and by this way we introduce generalized credal sets. The next sections of the paper
are devoted to the main constructions: approximate reasoning based on generalized
credal sets, natural extension, and coherence principles.

2 The Main Definitions and Constructions

Let X be a finite non-empty set and let 2X be the powerset of X . A set function
μ : 2X → [0, 1] is called a monotone measure if μ(∅) = 0, μ(X) = 1, and A ⊆ B
for A, B ∈ 2X implies μ(A) � μ(B). On the set of all monotone measures denoted
by Mmon we introduce the following operations:

• convex sum: μ = aμ1 + (1 − a)μ2 for μ1, μ2 ∈ Mmon and a ∈ [0, 1] if μ(A) =
aμ1(A) + (1 − a)μ2(A) for all A ∈ 2X ;

• order relation: μ1 � μ2 for μ1, μ2 ∈ Mmon if μ1(A) � μ2(A) for all A ∈ 2X ;
• dual relation: ν = μd for μ ∈ Mmon if ν(A) = 1 − μ( Ā), where A ∈ 2X and Ā is
the complement of A.

We use also the following constructions from theory of belief functions:

• Bel : 2X → [0, 1] is called a belief function if Bel can be represented as Bel(A) =∑
B⊆A m(B), where m is non-negative set function with

∑
B∈2X m(B) = 1 called

the basic belief assignment (bba). It is possible that m(∅) > 0, when we model
contradiction by belief functions. The set A ∈ 2X is called a focal element for a
belief function Bel with bba m if m(A) > 0 and set of all focal elements is called
the body of evidence;

• a belief function is called categorical if the body of evidence contains only one
focal element B ∈ 2X . This set function is denoted by η〈B〉 and can be computed
as η〈B〉(A) = 1 if B ⊆ A and η〈B〉(A) = 0 otherwise. Every belief function can be
represented as Bel = ∑

B∈2X m(B)η〈B〉, where m is its bba;
• a belief function is a probability measure if its body of evidence consists of sin-
gletons, or equivalently P ∈ Mmon is a probability measure if P(A) + P(B) =
P(A ∪ B) for disjoint sets A, B ∈ 2X . The set of all probability measures on 2X

is denoted by Mpr .
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3 Modeling Uncertainty by Imprecise Probabilities

Aμ ∈ Mmon is called a lower probability if its values can be viewed as lower bounds
of probabilities. Thisμ avoids sure loss or it is non-contradictory if there is P ∈ Mpr

such thatμ � P . It is possible to describe uncertainty by lower previsions that can be
viewed as lower bounds of mean values of random variables. Let K be the set of all
functions f : X → R and K ′ ⊆ K . A mapping E : K ′ → R can be considered as a
lower prevision functional if E( f ) � inf x∈X f (x) for all f ∈ K ′. For any P ∈ Mpr

and f ∈ K we define the mean value as EP( f ) = ∑
x∈X f (x)P({x}). Then a lower

prevision functional is non-contradictory or avoids sure loss if the set of probability
measures

P = {
P ∈ Mpr |∀ f ∈ K ′ : E( f ) � EP( f )

}
(1)

is not empty. Let X = {x1, . . . , xn}, then every P ∈ Mpr can be viewed as a point
(P({x1}), . . . , P({xn})) inRn . By definition, a non-empty set of probabilitymeasures
is called a credal set if it is convex and closed. Clearly, any lower prevision functional
defines the corresponding credal set by formula (1) and it is possible to prove that
models of imprecise probabilities based on credal sets and lower previsions are
equivalent, i.e. every credal set can be generated by a lower prevision. It is easy
to see that lower probabilities can be modeled by lower previsions if we define
K ′ = {1A}A∈2X , where 1A is the characteristic function of the set A ∈ 2X .

The basic instrument of approximate reasoning in the theory of imprecise
probabilities is the natural extension. Let E : K ′ → R be a non-contradictory
lower prevision functional, then the natural extension of E is defined as EP( f ) =
inf {EP( f )|P ∈ P}, where f ∈ K and P is defined by formula (1). E is called a
coherent lower prevision if EP( f ) = E( f ), f ∈ K ′.

If we work with upper bounds of probabilities, then we consider monotone mea-
sures calledupper probabilities.Anupper probabilityμ ∈ Mmon isnon-contradictory
or it avoids sure loss if there is P ∈ Mpr such that P � μ. Analogously, we intro-
duce an upper prevision functional Ē : K ′ → R for K ′ ⊆ K such that E( f ) �
supx∈X f (x) for all f ∈ K ′. It is not contradictory if it defines the credal set

P = {
P ∈ Mpr |∀ f ∈ K ′ : ĒP( f ) � Ē( f )

}
.

The natural extension of Ē based on the corresponding credal set P is defined by
ĒP( f ) = sup {EP( f )|P ∈ P}. It easy to see that models of uncertainty based on
lower and upper previsions are equivalent, we can change lower previsions to upper
previsions using the formula: Ē( f ) = −E(− f ), f ∈ K ′, because functionals E
and Ē in this case define the same credal set. This equality holds also for coherent
lower and upper previsions: ĒP( f ) = −EP(− f ), f ∈ K . If we work with lower
probabilities, then we get upper probabilities using the dual relation, i.e. if μ is a
lower probability, then μd is an upper probability.

Let M ⊆ Mmon , then we denote Md = {μd |μ ∈ M}. For example, let Mbel be the
set of all belief functions on 2X , thenMd

bel is the set of all plausibility functions on 2
X .
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4 The Conjunctive Rule for Contradictory Sources
of Information Based on Generalized Credal Sets

Let sources of information be described by credal sets P1, . . . ,Pm . Then if these
sources of information are fully reliable, we can use the conjunctive rule (C-rule) to
aggregate themdefinedbyP = P1 ∩ · · · ∩ Pm . Let us notice that this rule is applicable
if the set P is not empty. If sources of information are described by lower previsions
Ei : K ′ → R, i = 1, . . . ,m, then the equivalent C-rule is based on maximum oper-
ation: E( f ) = maxi Ei ( f ), and the equivalent C-rule for upper previsions is based
on minimum operation. Meanwhile, in the theory of belief functions the conjunc-
tive rule can be defined also for contradictory sources of information described by
belief functions. For belief functions the C-rule is not defined uniquely, and in [2,
3] the choice based on optimality criteria is analyzed. Based on other grounds, the
conjunction of P1, . . . , Pm ∈ Mpr has been established in [4] as P = P1 ∧ · · · ∧ Pm ,
where

P = a0η
d
〈X〉 +

∑

xi∈X
aiη〈{xi }〉, (2)

is viewed as lower probability and ai = min j Pj ({xi }), i = 1, . . . , n, and a0 = 1 −∑n
i=1 ai . The value Con(P) = a0 is called the measure of contradiction. Let us

denote the set of all monotone measures of the type (2) by Mcpr .
The C-rule has the following interpretation [4]. If we consider the set Mcpr as

a partially ordered set w.r.t. �, then P can be viewed as the exact upper bound
of the set {P1, . . . , Pm}. The last result simply follows from the fact that P1 � P2,
where P1 = a0ηd

〈X〉 + ∑
xi∈X aiη〈{xi }〉 and P2 = b0ηd

〈X〉 + ∑
xi∈X biη〈{xi }〉 iff ai � bi ,

i = 1, . . . , n. This allows us to introduce the following definition.

Definition 1 A subset P ⊆ Mcpr is called an upper generalized credal set (UG-
credal set) if

(a) P1 ∈ P, P2 ∈ Mcpr , P1 � P2 implies that P2 ∈ P;
(b) if P1, P2 ∈ P, then aP1 + (1 − a)P2 ∈ P for any P1, P2 ∈ P and a ∈ [0, 1];
(c) the set P is closed as a subset ofRn (any P of the type (2) is a point (a1, . . . , an)

in Rn).

Let us describe howwe identify usual credal sets in thewhole family of UG-credal
sets. Let P be an UG-credal set. Then the set of all minimal elements in P is called
the profile of P and denoted by profile(P). Clearly, the profile(P) defines uniquely
the corresponding UG-credal set P. As we will see later if profile(P) is the usual
credal set, i.e. profile(P) ⊆ Mpr , then P brings the same information as the credal
set profile(P). We define the C-rule for UG-sets in the same way as for usual credal
sets, i.e. if P1, . . . ,Pm are credal sets in Mcpr , then the C-rule produces the credal set

P = P1 ∩ · · · ∩ Pm . (3)
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This definition is justified by the fact that if profiles of Pi in formula (3) are usual
probability measures, i.e. profile(Pi ) = {Pi }, where Pi ∈ Mpr , i = 1, . . . ,m, then
profile(P) = {P} and P = P1 ∧ · · · ∧ Pm .

Further we will use also the dual concept to UG-credal set called the lower gen-
eralized credal set (LG-credal set), i.e. if P is an UG-credal set in Mcpr , then Pd is
the LG-credal set in Md

cpr .

Remark 1 Let P be an UG-credal set in Mcpr , then any P ∈ P is viewed as lower
probability. Conversely, any Pd ∈ Pd is viewed as an upper probability and this
measure is represented as Pd = a0η〈X〉 + ∑n

i=1 aiη〈{xi }〉. The measure of contradic-
tion of Pd is Con(Pd) = a0. We can reformulate in this way other concepts intro-
duced for UG-credal sets. For example, any Pd ∈ Md

cpr can be represented as a point
(a1, . . . , an) inRn . Then any credal setPd is a convex closed set inMd

cpr , but the prop-
erty a) from Definition 1 should be reformulated as P1 ∈ Pd , P2 ∈ Md

cpr , P2 � P1
implies that P2 ∈ P. The profile of Pd consists of all maximal elements in Pd w.r.t.
� and obviously profile(Pd) = (profile(P))d .

5 Expectation Estimation with Generalized Credal Sets

Let us analyze how the functional EP w.r.t. P ∈ Mpr can be extended to monotone
measures in Mcpr viewed as lower probabilities. Let us look on the C-rule. Let
P ∈ Mcpr be the result of aggregating probability measures Pi by the conjunctive
rule, then every Pi ∈ Mpr participating in aggregation should be lower than P , i.e.
Pi � P and you can find also that P = ∧

Pi |Pi�P
Pi . Then taking in account that for

finding conjunction of lower previsions the maximum operation is used, we come to
the formula

EP( f ) = sup
{
EPi ( f )|Pi � P, Pi ∈ Mpr

}
,

where EP( f ) can be understood as a lower expectation of f ∈ K w.r.t. P ∈ Mcpr .
Because P ∈ Md

bel , we can use for computing EP( f ) the Choquet integral, that in
this special case gives us the value

EP( f ) =
n∑

i=1

ai f (xi ) + a0 max
i=1,...,n

f (xi ),

where P is defined by formula (2). Thus, the lower bound of expectation w.r.t. an
UG-credal set P can be defined by EP( f ) = inf P∈P EP( f ), f ∈ K .

The same constructions can be introduced for LG-credal sets. Assume that P =
a0η〈X〉 +

n∑
i=1

aiη〈{xi }〉 in Md
cpr is viewed as a upper probability, then the upper bound

of expectation is defined by
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ĒP( f ) =
n∑

i=1

ai f (xi ) + a0 min
i=1,...,n

f (xi ), f ∈ K .

Analogously, the upper bound of expectation w.r.t. a LG-credal set P is defined
as ĒP( f ) = supP∈P ĒP( f ), f ∈ K . The duality relation between functionals EP
and ĒPd for a UG-credal set P in Mcpr looks the same as for usual credal sets:
ĒPd ( f ) = −EP(− f ), f ∈ K . Therefore, we will formulate next results for LG-
credal sets.

The next theorem proved in [4] describes the main properties of the functional
ĒP. The non-negative function f ∈ K is called normalized if there is xi ∈ X , where
f (xi ) = 0.

Theorem 1 A functional Φ : K → R coincides with ĒP on K for some credal set
P in Md

cpr iff it has the following properties:

(1) Φ( f + a1X ) = Φ( f ) + a for any f ∈ K and a ∈ R;
(2) Φ(a f ) = aΦ( f ) for any f ∈ K and a � 0;
(3) Φ( f1) � Φ( f2) for f1, f2 ∈ K if f1 � f2;
(4) Φ ( f1) + Φ ( f2) � Φ ( f3) for any normalized functions f1, f2, f3 in K such

that f1 + f2 = f3.

Remark 2 Let us observe that if we take a = 0 in 2) (Theorem 1) we get Φ(0) = 0,
where 0 is a function that identical to zero. Putting f = 0 and a = 1 in 2), we get that
Φ(1X ) = 1. The analogous theorem takes place and for the functional ĒP, where P
is a usual credal set, but in that theorem the subadditivity property 4) is fulfilled for
arbitrary functions f1, f2, f3 in K .

It easy to show that there are different LG-credal sets in Md
cpr that produce the

same generalized upper prevision functional. This can be shown by the following
example.

Example 1 Assume that X = {x1, x2} andLG-credal setsP1 andP2 inMd
cpr are given

by their profiles:profile(P1) = {P1} andprofile(P2) = {aP2 + (1 − a)P3|a ∈ [0, 1]},
where P1 = 0.5η〈{x1}〉 + 0.5η〈{x2}〉, P2 = 0.5η〈{x1}〉 + 0.5η〈X〉, P3 = 0.5η〈{x2}〉 +
0.5η〈X〉. Then, ĒP1( f )= 0.5 f (x1) + 0.5 f (x2) and ĒP2( f )= 0.5max{ f (x1), f (x2)}
+ 0.5min{ f (x1), f (x2)} = ĒP1( f ).

We will try next to describe the case when generalized upper prevision function-
als coincide for different LG-sets in Md

cpr . For this purpose we will introduce the
following definition. Let a LG-credal set P be described by a convex set in R

n , i.e.

we assume that (a1, . . . , an) ∈ P if P = a0η〈X〉 +
n∑

i=1
aiη〈{xi }〉 is in P. The j th pro-

jection of P = (a1, . . . , an) in Md
cpr is the point (b1, . . . , bn) such that bi = ai for

all i 
= j and bi = 0 for i = j . Obviously, the point (b1, . . . , bn) can be interpreted
as an element in Md

cpr denoted by Pr j P . The j th projection of a LG-credal set P in
Md

cpr is defined as Pr j P = {
Pr j P|P ∈ P

}
. Clearly, Pr j P is also a LG-credal set in

Md
cpr and Pr j P ⊆ P.
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Theorem 2 Let P1 and P2 be LG-credal sets in Md
cpr . Then ĒP1( f ) = ĒP2( f ) for

all f ∈ K iff Pr j P1 = Pr j P2, j = 1, . . . , n.

Thus, we see that the functional ĒP( f ) does not define the underlying LG-credal
set P in Md

cpr uniquely. For this reason, let us introduce the following definition.

Definition 2 The LG-credal set P in Md
cpr is called maximal if

P = {
P ∈ Md

cpr |∀ f ∈ K : ĒP( f ) � ĒP( f )
}
.

Theorem 3 Let P be a LG-credal set in Md
cpr whose profile is an usual credal set in

Mpr . Then the credal set P is maximal.

6 The Natural Extension Based on Generalized Credal Sets

Let Ē : K ′ → R be an upper prevision functional, then it defines the LG-credal set
P = {

P ∈ Md
cpr |∀ f ∈ K : ĒP( f ) � Ē( f )

}
and the functional ĒP can be considered

as the natural extensionof Ē on K . The functional Ē is called thegeneralized coherent
prevision if ĒP( f ) = Ē( f ), f ∈ K ′.

Theorem 4 Let Ē : K ′ → R be an upper prevision functional. Then its natural
extension Ē ′ : K → R based on LG-credal sets can be computed as

Ē ′
(
f
)

= inf

{
∑

k

ak Ē
(
fk

)
+ a|

∑

k

ak fk + a � f , fk ∈ K ′, ak, a � 0

}
, (4)

where f , fk are normalized functions and ĒP

(
f
)

= ĒP ( f ) − b, Ē
(
fk

)
=

Ē ( fk) − bk, b = min
x∈X f (x), bk = min

x∈X fk(x).

Remark 3 It is easy to see the difference between the natural extensions based on
usual credal sets and LG-credal sets. For computing the natural extension based on
usual credal sets it is sufficient to allow a to be any real number in formula (4).

Example 2 Assume that we have two sources of information that describe possible
diseases of a patient, and the set of diseases is X = {x1, x2, x3}. The first source of
information certifies that probabilities of events {x1, x2} and {x2, x3} are lower or
equal to 0.5. The second source of information fully supports that it is disease x2,
i.e. the probability of the event {x1, x3} is equal to 0. If we describe the first source
of information by upper previsions, then K ′ = {

1{x1,x2}, 1{x2,x3}
}
, and Ē(1{x1,x2}) =

Ē(1{x2,x3}) = 0.5. Consider natural extensions Ē ′ and Ē ′′ of Ē based on LG-credal
sets and usual credal sets. We see that Ē ′′(1{x2}) = 0, i.e. the natural extension based
on usual credal sets says that it is definitely not the disease x2, but Ē ′(1{x2}) = 0.5.
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It easy to see that the underlying credal set for Ē ′′ consists of one probability measure
P1 = (0.5, 0, 0.5), and the underlying LG-credal set for Ē ′ has the profile {t P1 +
(1 − t)P2|t ∈ [0, 1]}, where P2 = (0, 0.5, 0). We see that sources of information
are fully contradictory if we consider usual credal sets and no conclusion can be
done. But we can aggregate sources of information using the C-rule and get the LG-
credal set with the profile {P2} and make the conclusion that it is disease x2 but with
contradiction Con(P2) = 0.5.
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A Generalized SMART Fuzzy Disjunction
of Volatility Indicators Applied to Option
Pricing in a Binomial Model

Andrea Capotorti and Gianna Figà-Talamanca

Abstract In this paper we extend our previous contributions on the elicitation of the
fuzzy volatility membership function in option pricing models. More specifically we
generalize the SMART disjunction for a multi-model volatility behavior (Uniform,
LogNormal, Gamma, ...) and within a double-source (direct vs. indirect) information
set. The whole procedure is then applied to the Cox-Ross-Rubinstein framework for
option pricing on the S&P500 Index where the historical volatility, computed from
the Index returns’ time series, and the VIX Index observed data are respectively
considered as the direct and indirect sources of knowledge.A suitable distance among
the resulting fuzzy option prices and the market bid-ask spread make us appreciate
the proposed procedure against the classical fuzzy mean.

Keywords Smart average operators · Fuzzymean ·Merging ·Coherent conditional
probabilities · Fuzzy option pricing

1 Introduction

In previous contributions [1]we introduced amethodology formembership elicitation
on the hidden volatility parameterσ of a risky asset through both the historical volatil-
ity estimator σ̂ and the estimator ν = VIX/100, based on VIX; Our proposal led on
the Coletti and Scozzafava [3] interpretation of membership functions as coherent
conditional probability assessments, integrated with observational data, expert eval-
uations and simulation results. Consequently we followed an hybrid approach, lying
in between deterministic and stochastic volatility models.

The peculiarity of our procedure was to deal with alternative sources of informa-
tion, though leaving as an open problem the search for a proper fusion operator, the
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choice of which is heavily context-dependent. Within this framework, fuzzy arith-
metic mean is commonly adopted, being it a basic operation for estimation and also
a fuzzy set-theoretic connective.

An bridge between the estimation and the fusion views of merging information is
e.g. Yager’s intelligent constrained merging. In [2], we borrowed from Yager’s pro-
posal the motivation of including an intelligent component in the averaging process
to address conflicts in the data to be fused, but, contrarily to the original suggestion,
without resorting to an exogenous “combinability function”. We named the intro-
duced operators as “SMART”, not only because Smart is a—inflated—synonymous
of intelligent, but mainly because as an acronym it means “Specific, Measurable,
Achievable, Realistic and Time-related”, as our approach aimed to be.

In [2] we introduced two different kinds of fusion operators: one that disjointly
considers different distribution models and an other for merging conjointly the values
stemming from the different estimators.

The difference between the two suggested operators was on the deformation’s
direction with respect to the fuzzy arithmetic mean: toward canonical disjunction,
i.e. max; or toward canonical conjunction, i.e. min.

Both the operatorswere binary, allowing themerging of couples of fuzzy numbers,
and hardly generalizable to n-ary. This feature is not a limitation for the specific
application of the conjunction, as long as two sources of information are considered,
σ̂ and ν = VIX/100, while for the disjunction we were lucky to have the two most
contradictory results stemming from different simulating models covering the third
one. But this was just for chance in the examples analyzed in the quoted paper, hence
we need a more general n-ary disjunctive merging operator.

As further novelty, we apply the full methodology, stemming from the member-
ships elicitation and arriving to the fuzzy options pricing and proper comparisons
with bid-ask market prices, to the discrete Cox-Ross-Rubinstein (CRR henceforth)
binomial market model. Before we proceed with our specific proposal, we briefly
review some of the basic notions about fuzzy numbers and their aggregation.

Membership functions μ : R → [0, 1] of the fuzzy set of possible values of a
random variable X are usually viewed as either an imprecise value or as a possibility
distribution over a set of crisp values. As already stated, thanks to [3] we can view
them as conditional probabilities with the conditioning event varying.

Anyhow, operationally, we will profit from membership characterization through
α-cuts μα = {x ∈ R : μ(x) ≥ α}, α ∈ [0, 1]. The α value can be conveniently inter-
preted as 1 minus the lower bound of the probability that quantity X hits μα .

In [1] we were able to elicit membership functions through probability-possibility
transformations induced by confidence intervals around the median of specific
simulating distributions and we obtained so called “fuzzy numbers”, i.e. unimodal
membership functions with nested α-cuts identified by an interval [μα

l , μ
α
r ] in

the extended reals R̃. Aggregations are performed between α-cuts by considering
full/partial overlapping: for the conjunctive operator, we keep the smart � computed
level-wise in [2] since, as already mentioned in the introduction, we deal with two
parameter estimators; we get



A Generalized SMART Fuzzy Disjunction of Volatility Indicators Applied … 97

μ μ2

Δα

α

h

Fig. 1 Characteristic values for the conjunction of two memberships level-wise

(μ1 � μ2)α = [(μ1 � μ2)αl , (μ1 � μ2)αr ] (1)

= [
wlαμα

l I + (1 − wlα)μα
lO , wrαμα

r I + (1 − wrα)μα
rO

]
.

where the subscript O refers to the “outer” values, while the subscript I to the “inner”
ones (see e.g. Fig. 1). There is a “shrinking” towards the “inner” part for α-cuts
with non empty intersection—i.e. α ≤ h in Fig. 1—while towards the “outer” part
otherwise—i.e. α > h in Fig. 1. Such shrinking is realized by a careful choice of the
weights wlα and wrα that are proportional to δα for α ≤ h, while they resume to the
arithmetic mean, with a further quadratic deformation, for α > h (for further details
refer to the quoted paper).

On the contrary, since the usual simulating models for the volatility are more than
two, e.g., Uniform, LogNormal and Gamma, for the disjunctive operator we now
propose a new smart merging, again by considering full/partial overlapping of n α-
cuts. This can be obtained by adapting Marzullo’s algorithm [6], originally designed
to compute “relaxed” intersections among different information sources, computing
specific weights π

j
f and representing the partial overlapping among different f α-

cuts, f = 1, . . . , n. Due to the lack of space we just give here an idea of such
quantities by showing them in Fig. 2 and by giving a pseudo code of an R algorithm
to compute them in Table1. Extremes of the α-cuts of the disjunctive operator [(μ1 �
. . . � μn)αl , (μ1 � . . . � μn)αr ], are again computed as convex combinations of the
original ones, with n − 1 coefficients

1

n
(1 + εα

j ) j = 1, . . . , n − 1 , (2)

where the εα
j =

∑n
f =1

1
f π

j
f

Δα
, with Δα = max{μiαr }ni=1 − min{μiαl }ni=1, display the

weighted contributions of the n − 1 more relevant extremes, i.e. the first n − 1 outer
ones. Obviously, the n-th coefficient, associated to the inner extreme, must be
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π3 π π3
2 π∗

3 π2 π3
2 π2

α

Fig. 2 SMART disjunction (dashed line) among 3 fuzzy numbers compared to the fuzzy arithmetic
mean (dashed-dotted line). The zoom shows the relaxed intersections computed through adapted
Marzullo’s algorithm

1

n
(1 −

n−1∑

j=1

εα
j ). (3)

2 Facing the Practical Problem

We go back to the original practical problem of the implicit assessment of fuzzy
volatility based on two different estimators σ̂ and ν, and on three different simulating
models Uniform, LogNormal, Gamma for the parameter σ of interest.

In particular, for each estimator, different scenarios are considered on the base of
historical data and experts evaluations.

For each scenario and for both estimators it is possible to build pseudo-
memberships by coherent extension of a-priori information and likelihood values
stemming from classical CRR binomial model with the value of σ obtained by a
random generation from a specific simulating distribution. Parameters of such dis-
tributions are computed according to scenarios peculiarities. The empirical values
obtained for the estimators permit the selection of most plausible scenarios with
associated membership functions for the fuzzy value of the parameter. It is worth
noticing that such fuzzy numbers are single whenever there is sure dominance of one
scenario over the others, or more than one whenever dominance is partial.

As an illustrative example we can show how our weighted averaging operators
work with a multi-period binomial tree with N = 10 periods. As for the historical
volatility, by observing σ̂obs = 0.16, the Log-Normal simulatingmodel furnishes two
undominated scenarios, the “medium” and the “high”, while the other two models
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Table 1 Pseudo R code of an adapted Marzullo’s algorithm, with input ext = list of left and right
extremes, i = list of memberships belongings, type = −1 if left ext; +1 otherwise

relaxint = function(ext,i,type)

{

n = length(ext)/2

pi = matrix(0,n,n)

lambda = numeric(2*n)

lambda[1] = - type[1]

j=list()

j[[1]] = c(i[1])

for (l in 1:(2*n-1))

{ for (k in j[[l]]){

pi[lambda[l],k] = pi[lambda[l],k] + (ext[l+1] - ext[l])}

lambda[l+1] = lambda[l] - type[l+1]

if (type[l+1] == -1) j[[l+1]]=c(j[[l]], i[l+1])

else j[[l+1]] = setdiff(j[[l]], c(i[l+1]))

}

return(pi)

}

Fig. 3 Fuzzy estimations of the parameters σ̂ (left) and ν (right) obtained through the three different
simulating model and their merging through � and arithmetic mean

(the Uniform and the Gamma) agree in selecting only the “medium” one, whose
associated fuzzy numbers for σ̂ are reported in Fig. 3 (left—where the membership
associated to the Log-Normal model is already the smart disjunction of the fuzzy
numbers stemming from the “medium” and the “high” scenarios). In respect of the
other estimator ν, its observed value νobs = 0.19 always leads to the selection of the
“high” scenario, obtaining for its fuzzy estimation the three memberships reported
in Fig. 3 (right). We can finally merge with our smart � operator the memberships
of each estimator and average the two through �, obtaining as final unique fuzzy
number μσ̂obs � μνobs whose membership is reported in Fig. 4. Once a fuzzy number
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Fig. 4 The merging results: disjunction of the fuzzy numbers stemming from different models for
σ̂ (dashed lines on the left) and for ν (solid lines on the right) and their final conjunction (starred
lines on the center), by applying our � and � or the arithmetic mean

elicitation for σ̃ is obtained through the merging procedure described in the previous
section, it is possible to price options by a straightforward extension of standard CRR
to fuzzy multi-period binomial model. Our explicit numerical evaluation of each α-
cut of the fuzzy number for σ̃ allows us to take advantage of a different contribution
available in literature for each step of the pricing procedure. In particular:

• from σ̃ to the the fuzzy “UP” and “DOWN” jump factors (Zadeh’s extension
principle [8])

[uα, uα] = [eσα
√

Δt , eσα
√

Δt ] [dα, d
α] = [e−σα

√
Δt , e−σα

√
Δt ] ; (4)

• ũ and d̃ to the fuzzy risk neutral probabilities (Muzzioli and Torricelli [7])

[pα

u
, pα

u ] =
[
erΔt − d

α

uα − d
α ,

erΔt − dα

uα − dα

]
[pα

d
, pα

d ] =
[
uα − erΔt

uα − dα ,
uα − erΔt

uα − d
α

]
;
(5)

• p̃u and p̃d to option price (e.g. call) (Li and Han [5])

[Cα
0 ,C

α

0 ] = e−r NΔt

[
N∑

i=0

(pα

u
)i (pα

d
)N−iCα

N ,i ,

N∑

i=0

(pα
u )

i (pα
d )

N−iC
α

N ,i

]
(6)



A Generalized SMART Fuzzy Disjunction of Volatility Indicators Applied … 101

Fig. 5 Fuzzy option prices: market bid-ask (crisp interval), “smart” (blue), “arithmetic mean” (red)

with

[Cα
N ,i ,C

α

N ,i ] =
[
max(S0(u

α)i (dα)N−i− K , 0),max(S0(u
α)i (d

α
)N−i− K , 0)

]
.

(7)

According to the fuzzy number obtained by suitably merging information on
volatility, we compute the corresponding fuzzy option prices for SPX options written
on the S&P500 Index on a specific date.1

In order to appreciate the capability of our procedure to capture market option
prices, the Bhattacharya distance

R(A, B) =
[
1 −

∫ +∞

−∞
(μ∗

A(x)μ
∗
B(x))1/2dx

]1/2

(8)

with μ∗· (x) = μ·(x)/Power(·) and Power(·) = ∫ +∞
−∞ μ·(x)dx is computed between

fuzzy model prices and the corresponding market bid-ask prices thought as crisp
intervals; this is done both for our “smart”model fuzzy prices and for those derived
by the fuzzy arithmetic mean (see an example in Fig. 5). The outcomes seem to be
deeply influenced by the a priori choice of the number of volatility’s scenarios and
their possible overlapping. In fact, if we refer to the different scenarios detection pro-
posed in [1], by choosing just three incompatible scenarios like in Case 1 distances of
our fuzzy option prices from bid-ask interval are sensibly worst than those obtained
with usual arithmetic mean. On the contrary, with three partially overlapping sce-
narios like in Case 2 our method performs slightly better than arithmetic mean if we

1Reported results refer to trading on October 21st, 2010.
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consider all kinds of options (51%) or only those ”near themoney”—NDM—(52%),
and sensibly better for those ”at the money”—ATM—(60%).

Much better performances are obtained with the more fine five scenarios partition
of Case 3, where our price are closer to the market in 81% of all the traded options,
that became 86% if we focus only on the NTM and we reach 96% by considering
just those ATM.

3 Conclusion

We proposed a complete procedure for computing fuzzy option prices in the CRR
environment. Starting from the volatility membership elicitation (usually assumed as
known), based on a multi-model (Uniform, LogNormal, Gamma) volatility behavior
and with a double-source (direct v indirect) information set, and thanks to original
smart merging operators � and �, the suggested methodology performs quite well
by comparing model prices to market bid-ask prices via a fuzzy-distance measure.
Further efforts are in order to possibly define a better similarity measure—e.g. by
weighting differently the values x in the Power(·) function—apt to capture the close-
ness between fuzzy prices and crisp bid-ask intervals, and to define a reasonable
merging of conjunctive fusion levels among n > 2 sources.

Acknowledgments This work was partially supported by INdAM-GNAMPA through the Project
2015 U2015/000418 and by DMI—Universitá degli Studi di Perugia ricerca di base project 2016
“Operatori SMART per aggregazioni fuzzy”.
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The Representation of Conglomerative
Functionals

Gianluca Cassese

Abstract We prove results concerning the representation of certain linear function-
als based on the notion of conglomerability, originally introduced by Dubins and
de Finetti. We show that this property has some applications in probability and in
statistics.

1 Introduction

Take the sets Ω , Ω ′ and S and the familyH ⊂ R
S as given. Fix a map X ∈ SΩ and

a finitely additive probability m on Ω with h(X) ∈ L1(m). Hereafter we study the
problem of finding X ′ ∈ SΩ ′

and μ on Ω ′ such that

∫
h(X)dm =

∫
h(X ′)dμ h ∈ H . (1)

In the terminology of Dubins and Savage [3], X and X ′ are then companions, a
property depending onH , our model for the information available.

With Ω = S = R and X the identity, the left hand side of (1) may, e.g., originate
from some experiment for which a correct mathematical model X ′ is sought and
each h ∈ H is a statistic. A similar problem arises in Bayesian statistics: given a
predictive marginal m the purpose is to find a parametric family {Qθ : θ ∈ Θ} of
probabilities and a prior λ on Θ such that

m(A) =
∫

Θ

Qθ(A)dλ (2)

A problem similar to (2) was investigated long ago byDubins [4] in terms of a special
condition, conglomerability, originally due to de Finetti. In this work we provide a
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general formulation of such property and show some of its possible applications to
probability and statistics.

In particularwe obtain inTheorem1, ourmain result, an integral representation for
conglomerative linear functionals on an arbitrary vector space. Despite its simplicity,
this result admits a large number of implications of which the existence of a solution
to (1) is just a case in point.

2 Notation and Preliminary Results

Throughout the paperA andΣ are rings of subsets ofΩ and S, respectively.L(Ω, S)

andC (Ω, S) denote the families of linear and continuousmaps f ∈ SΩ , respectively
(reference to S is omitted when S = R). If f ∈ SΩ and A ⊂ Ω the image of A
under f is indicated as f [A]. A sublattice H of R

S is Stonean, if h ∈ H implies
h ∧ 1 ∈ H .

S (A ) is the family of A simple functions on Ω and B(A ) its closure in the
topology of uniform convergence. By f a(A ) and ba(A ) we designate the spaces
of real valued, finitely additive set functions on A and those elements of f a(A )

which are bounded in variation, respectively. If A is a ring of subsets of Ω and
λ ∈ f a(A )+ the pair (A ,λ) is a measurable structure.

If λ ∈ f a(A )+ we say that X ∈ R
Ω is λ-measurable if and only if there exists a

sequence 〈Xn〉n∈N inS (A ) thatλ-converges to X , i.e. such that limn λ∗(|Xn − X | >

c) = 0 for every c > 0whereλ∗ and its conjugateλ∗ are defined (with the convention
inf ∅ = ∞) asλ∗(E) = inf {A∈A :E⊂A} λ(A) and λ∗(E) = sup{B∈A :B⊂E} λ(B) for all
E ⊂ Ω . X is λ-integrable, X ∈ L1(λ), if there is a sequence 〈Xn〉n∈N inS (A ) that
λ-converges to X and is Cauchy in L1(λ). If A, B ⊂ Ω and f ∈ L1(λ), then

1A ≤ f ≤ 1B implies λ∗(A) ≤
∫

f dλ ≤ λ∗(B). (3)

Associated with λ ∈ f a(A )+ and X ∈ R
Ω are the following collections:

D(X,λ) = {
t ∈ R : lim

n
λ∗(X > t − 2−n) = lim

n
λ∗(X > t + 2−n)

}
(4a)

R0(X,λ) = {{X > t} : t ∈ D(X,λ)
}

(4b)

A (λ) = {
E ⊂ Ω : λ∗(E) = λ∗(E) < ∞}

. (4c)

λ admits but one extension to A (λ) and X is λ-measurable if and only if it is
measurable with respect to such extension, denoted again by λ. A sequence 〈Xn〉n∈N
in L1(λ) converges to X in norm if and only if it is Cauchy in norm and λ-converges
to X . If S is a topological space, then X ∈ SΩ is λ-tight if for all ε > 0 there exists
K ⊂ S compact such that λ∗(X /∈ K ) < ε.
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We now state without proof some basic facts concerning finite additivity, some of
which well known under countable additivity. We fix λ ∈ f a(A )+.

Lemma 1 X ∈ R
Ω is λ-measurable if and only if it is λ-tight and either (i) λ∗(X >

s) ≥ λ∗(X ≥ t) for all s < t or (ii)R0(X,λ) ⊂ A (λ).

Lemma 2 If X ∈ L1(λ) then
∫
Xdλ = ∫ ∞

0 λ∗(X > t)dt − ∫ 0
−∞ λ∗(X < τ )dτ .

To prove uniqueness of the set function generating a given class of integrals we
need to identify a minimal measurable structure. More precisely we define an order
� for measurable structures on the same underlying space by writing

(A ,λ) � (B, ξ) whenever A ⊂ B(ξ) and ξ|A = λ. (5)

Speaking of a minimal measurable structure refers to such partial order.

Lemma 3 Let H ⊂ R
Ω be a Stonean vector lattice and φ ∈ L(H )+. The family

M(φ) of measurable structures (A ,λ) on Ω satisfying

H ⊂ L1(λ) and
∫

hdλ = φ(h) h ∈ H , (6)

is either empty or contains a minimal element (Rφ,λφ).

Proof Let (A ,λ) ∈ M(φ) and let Rφ be the smallest ring containing

R0(φ) = {{h > t} : h ∈ H+, t ∈ D(h,λ), t > 0
}
. (7)

Write λφ = λ|Rφ. ∅ ∈ R0(φ), asH is Stonean. Suppose that (B, ξ) ∈ M(φ). Fix
h ∈ H+ and consider the classical inequality

1{h>a} ≥ (h ∧ b − h ∧ a)/(b − a) ≥ 1{h≥b} h ∈ H , b > a > 0. (8)

By the Stone property, the inner term belongs to H , so that ∞ > λ∗(h > a) ≥
ξ∗(h ≥ b), by (3). Choosing a and b conveniently and interchanging λ with ξ we
establish that D(h,λ) ∩ (0,∞) = D(h, ξ) ∩ (0,∞) and that

λ∗(h ≥ t) = ξ∗(h ≥ t) = ξ∗(h > t) = λ∗(h > t) t ∈ D(h,λ), t > 0

so thatR0(φ) ⊂ B(ξ). For i = 1, 2 pick hi ∈ H+, ti ∈ D(hi ,λ) and ti > 0. One can
easily prove thatR0(φ) is closedwith respect to union and intersection.Becauseλ and
ξ are additive and coincide onR0(φ) they also coincide onRφ, [1, Theorem 3.5.1].
Let h ∈ H+ and t > s. Then h is λH -tight because h ∈ L1(λ). If s < 0 then
λφ∗(h > s) ≥ λ∗

φ(h ≥ t). Otherwise there are t ′, s ′ ∈ D(h,λ) with t > t ′ > s ′ > s
and therefore λφ∗(h > s) ≥ λφ(h > s ′) ≥ λφ(h > t ′) ≥ λ∗

φ(h ≥ t). By Lemma 1 h
is thus λφ -measurable and therefore

∫
hdλφ = ∫

hdλ.



106 G. Cassese

The minimal measurable (Rφ,λφ) will generally depend on λ. However, since
D(h,λ) is dense, the generated σ ring corresponds to the usual notion.

Lemma 4 Let g : Ω → R+ be λ-measurable and define the ring Rg = {
A ∈

A (λ) : g1A ∈ L1(λ)
}
. There exists a unique λg ∈ f a(Rg)+ such that

∫
f λg =

∫
f gdλ f ∈ B(λ), f g ∈ L1(λ). (9)

The identity on Ω ′ = S is a companion to whatever random quantity X .

Proposition 1 Letm ∈ f a(A )+, X ∈ SΩ . LetH ⊂ R
S be a Stonean vector lattice.

There is a minimal measurable structure (R,μ) on X [Ω] with

h ∈ L1(μ) and
∫

h(X)dm =
∫

hdμ h ∈ H , h(X) ∈ L1(m). (10)

μ is countably additive whenever: (i) m is countably additive or (ii)H ⊂ C (S) and
either (a) X is m-tight or (b) each h ∈ H has compact support.

Proof The existence is easily proved by letting

R̄ = {
B ⊂ X [Ω] : X−1(B) ∈ R(H [X ],m)

}
(11)

and μ̄(B) = m(X ∈ B) for all B ∈ R̄. Then (R̄, μ̄) is a measurable structure
on X [Ω] and D(h(X),m) = D(h, μ̄) for every h ∈ H . By Lemma 1, h is μ̄-
measurable; by Lemma 2

∫
h(X)dm = ∫

hdμ̄ so that φ(h) = ∫
hdμ̄. By Lemma

3 there is a minimal measurable structure with this property.
φ is a Daniell integral when m is countably additive. To prove the same under

(ii) we follow Karandikar [6] quite closely. We only need to consider case (a), as
the restriction to compact sets is obvious under (b). Let the sequence 〈hk〉k∈N in
H decrease to 0. For each n ∈ N, let An ∈ A , An ⊂ {X ∈ Kn} and m(Ac

n) < 2−n ,
for some Kn ⊂ S compact. Then, hk(X)1An converges uniformly to 0 and, by [5,
III.2.15],

lim
k

∫
hk(X)dm = lim

k
lim
n

∫
hk(X)1Andm = lim

n
lim
k

∫
hk(X)1Andm = 0

which proves the Daniell property.

Claim (ii) was originally formulated, with S = Ω = R, by Dubins and Savage
[3, p.190]; Karandikar [6] revived and extended their proof.

3 Integral Representation of Linear Functionals

We prove a theorem on the integral representation of linear functionals.
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Theorem 1 LetH be a vector space and φ ∈ L(H ). Assume that T ∈ L
(
H , R

Ω
)

satisfies
∀h ∈ H , ∃h′ ∈ H such that |Th| ≤ Th′ (12)

and write L = {
f : Ω → R : | f | ≤ Th for some h ∈ H

}
. The condition

φ(h) < 0 implies inf
ω

(Th)(ω) < 0 h ∈ H (13)

is necessary and sufficient for the existence of (i) F⊥ ∈ L(L)+ with F⊥[L ∩
B(Ω)] = {0} and (ii) a measurable structure (R,μ) on Ω such that L ⊂ L1(μ)

and

φ(h) = F⊥(
Th

) +
∫

Thdμ h ∈ H . (14)

Proof By (13), we can define F ∈ L(T [H ])+ by letting

F
(
Th

) = φ(h) h ∈ H (15)

and then extend F as a positive linear functional (still denoted by F) on L . For each
α ⊂ H finite, let hα ∈ H be such that Thα ≥ ∨

h∈α |Th|, Ωα = {Thα �= 0} and
define Iα( f )(ω) = f (ω)/Thα(ω)when f ∈ L andω ∈ Ωα. Let also Lα = { f ∈ L :
| f | ≤ c T hα for some c > 0} and Hα = Iα[Lα]. Upon writing Uα

(
Iα( f )

) = F( f )
whenever f ∈ Lα we obtain another positive, linear functional Uα on Hα. [2, Theo-
rem1] implies

Uα

(
Iα( f )

) =
∫

Iα( f )dm̄α f ∈ Lα (16)

for some m̄α ∈ ba(Ωα)+. Letmα(A) = m̄α(A ∩ Ωα) for each A ⊂ Ω . By Lemma 4,
we can write (with the convention 0/0 = 0)

F( f ) =
∫

1Ωα
f/Thαdmα =

∫
f dμ̄α f ∈ Lα ∩ B(Ω) (17)

with μ̄α = mα,g defined as in (9) with g = 1Ωα
/Thα. Since Lα ∩ B(Ω) is Stonean,

there is by Lemma 3 a minimal (Rα,μα) supporting (17). Define R = ⋃
α Rα and

μ(A) = limα μα(A) for all A ∈ R.α ⊂ α′ implies Lα ⊂ Lα′ , (Rα,μα) � (Rα′ ,μα′)

and μα = μα′ |Rα = μ|Rα. If f ∈ Lα and f ≥ 0,

F( f ) = lim
k

F( f ∧ k) + lim
k

F(( f − k)+) = lim
k

∫
( f ∧ k)dμ + F⊥( f )

=
∫

f dμ + F⊥( f )
(18)

where F⊥( f ) = limk F(( f − k)+) and the inequality μ∗( f > k) ≤ k−1F( f )
implies that f ∧ k is μ-convergent to f and is Cauchy in L1(μ).

∫ | f |dμ ≤ F(| f |)
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follows from (18) and implies L ⊂ L1(μ). (14) is a consequence of (15) and (18).
Necessity is obvious as the right hand side of (14) defines a positive linear functional
on L .

(12) asserts that the range T [H ] of T is an upward directed set with respect to
the natural order of R

Ω and for this reason we shall refer to it to by saying that T is
directed. A positive linear map on an upward directed vector space is directed. An
immediate corollary is the following representation of positive linear functionals on
vector lattices that may fail to be Stonean.

(13) simply requires that φ and T do not rank the elements of H in a totally
opposite way. We shall refer to it by saying that φ is T -conglomerative. To make the
connection with the work of Dubins [4] more transparent we establish the following
version of the problem considered by him:

Corollary 1 Let (B,λ) be a measurable structure on S × Ω and H a Stonean
sublattice of L1(λ). Let {σω : ω ∈ Ω} ⊂ L(H )+. The condition

∫
hdλ < 0 implies inf

ω
σω(h) < 0 h ∈ H (19)

is equivalent to the existence of a measurable structure (R, γ) on Ω such that

∫
hdλ =

∫
σω(h)dγ h ∈ H . (20)

Proof Apply Theorem 1 with T : H → R
Ω defined as Th(ω) = σω(h).

In [4],H = B(S) and Ω is a partition of S, the family σ is called a strategy and
a probability such as λ is called strategic.

As for the Bayesian problem in the Introduction, we easily obtain:

Corollary 2 Let m and {Qθ : θ ∈ Θ} be probabilities on Σ . Write FA(θ) = Qθ(A)

for A ∈ Σ . There is a probability λ on Θ such that

FA ∈ L1(λ) and m(A) =
∫

Qθ(A)dλ A ∈ Σ (21)

if and only if the following condition holds

∫
hdm < 0 implies inf

θ∈Θ

∫
hdQθ < 0 h ∈ S (Σ). (22)

4 Finitely Additive Representations

Theorem 2 Let m ∈ f a(Σ)+, H a Stonean vector sublattice of L1(m) and X ′ ∈
SΩ ′

. There is equivalence between the condition
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∫
hdm < 0 implies inf

ω
h
(
X ′(ω)

)
< 0 h ∈ H (23)

and the existence of a minimal measurable structure (R,μ) on Ω ′ satisfying

h(X ′) ∈ L1(μ) and
∫

hdm =
∫

h(X ′)dμ h ∈ H . (24)

Either one of (23) or (24) is implicit in m∗(X ′[Ω ′]c) = 0. If m is countably additive,
Σ a σ ring and m∗(X ′[Ω ′]c) = 0 then μ is countably additive.

Proof (23) is equivalent to (13) with φ(h) = ∫
hdm and Th = h(X ′) for h ∈ H .

Thus, (24) follows from (14) after noting that, in the present setting, φ(h) =
limk φ(h ∧ k) for every h ∈ H+. If 〈Bn〉n∈N is a decreasing sequence in Σ with
X ′[Ω ′]c ⊂ Bn and m(Bn) ≤ 2−n and if h ∈ H then

∫
hdm = lim

n

∫
h1Bc

n
dm ≥ inf

ω′∈Ω ′ h(X ′(ω′)) lim
n

m(Bc
n)

Let m be countably additive, Σ a σ ring and m∗(X ′[Ω ′]c) = 0. Let 〈hn〉n∈N
be a sequence in H with hn(X ′) decreasing to 0. If g ∈ H and t ∈ D(g,m) ∩
D(g(X ′),μ), then from (11), {g > t} ∈ Σ(m), {g(X ′) > t} ∈ R(μ) andm(g > t) =
μ(g(X ′) > t). On a dense subset of t > 0 the following holds:

m(hn+1 − hn > t) = μ(hn+1(X
′) − hn(X

′) > t) = 0 n = 1, 2, . . .

hn ↓ h = infn hn , m a.s. so that {h > ε} ⊂ X ′[Ω ′]c and {h > ε} ∈ Σ . Therefore,
0 = m(h > 0) and limn

∫
hn(X ′)dμ = limn

∫
hndm = ∫

hdm ≤ 0.

In the absence of restrictions on μ, the existence of representations is guaranteed
by conglomerability. If, e.g., X ′[Ω]c ∈ Σ , then in order for X ′ to represent m when
H = L1(m) it is necessary and sufficient that m(X ′[Ω ′]c) = 0. If m consists of
sample frequencies, then this condition means that all the observations in the given
sample must belong to the range of X .

Example 1 Let (Ω,A , P) be a classical probability space, S = R and let X ′ be
normally distributed on Ω . Fix m ∈ ba(B(R))+ arbitrarily and let H = C (R) ∩
L1(m). Given that P(X ′ ∈ B) > 0 for every B open, we conclude that m is X ′-
conglomerative relatively to H .

In Theorem 2 the representing measure μ is completely unrestricted. A possible
mitigation is to require thatμvanishes on an idealN of subsets ofΩ ′, i.e. N , M ∈ N
and A ⊂ N imply N ∪ M, A ∈ N .

Theorem 3 If m,H and X ′ are as in Theorem 2, then
∫

hdm < 0 implies sup
N∈N

inf
ω′∈Nc

h
(
X ′(ω′)

)
< 0 (25)
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if and only if there is a measurable structure (R,μ) withN ⊂ R, μ[N ] = {0},

h(X ′) ∈ L1(μ) and
∫

hdm =
∫

h(X ′)dμ h ∈ H . (26)

If Σ is a σ ring, m is countably additive, N is closed with respect to countable
unions and m∗

(
X ′[Nc]c) = 0 for all N ∈ N then μ is countably additive.

Proof Write f � g if supN∈N infω′∈Nc( f − g)(ω′) ≥ 0. � is a partial order, f ≥ g
implies f � g and fi � gi for i = 1, 2 implies f1 ∨ f2 � g1 ∨ g2. In fact, f1 ∨ f2 �
fi � gi i.e. f1 ∨ f2 ≥ gi − ε outside of some Ni ∈ N . Thus, f1 ∨ f2 ≥ g1 ∨ g2 − ε
outside of N1 ∪ N2 ∈ N i.e. to f1 ∨ f2 � g1 ∨ g2. Relatively to pointwise ordering,
the set F = {

f ∈ R
Ω ′ : fS h(X ′) for some h ∈ H

}
is a Stonean vector lattice.

Define φ ∈ L(F )+ implicitly via

φ( f ) =
∫

hdm fS h(X ′), h ∈ H (27)

We conclude that there is a minimal measurable structure (R,μ) satisfying

f ∈ L1(μ) and φ( f ) =
∫

f dμ f ∈ F (28)

If N ∈ N then1N ∼ 0,1N ∈ F and μ(N ) = 0. (26) holds; the converse is obvious.
Under the stated conditions the functionalφ in (27) is aDaniell integral. Let fn ↓ 0

in F with fnS hn(X ′) and hn ∈ H for n = 1, 2, . . .. Define gn = ∧
1≤ j≤n h j and

gn = limn gn . We saw that fnS gn(X ′). Of course, fn � g(X ′) so that {g(X ′) > ε} ⊂⋃
n{g(X ′) ≥ fn + ε} ∈ N and {g > ε} ⊂ X [{g(X ′) ≤ ε}]c. Then, m(g > ε) = 0

and limn
∫

fndμ = limn
∫

gndm = ∫
gdm = 0.

The preceding result has immediate implications for Brownian motion.

Corollary 3 Let X be Brownian motion and let (mt1,...,tn : t1, . . . , tn ∈ R+) be
a projective family with mt1,...,tn ∈ f a(B(Rn)). There exists a probability space
(Ω,A , Q) such that

mt1,...,tn (B) = Q(Xt1 , . . . , Xtn ∈ B) B ∈ B(Rn). (29)

Proof Letα = {t1 < . . . < tn} ⊂ R+ and let B ⊂ R
n be openwith {s1, . . . , sn} ∈ B.

Then there exist B1, . . . , Bn ⊂ R open such that s ′
i − s ′

i−1 ∈ Bi for i = 1, . . . , n
(and s ′

0 = 0) implies {s ′
1, . . . , s

′
n} ∈ B. By the property of normally distributed,

independent increments, P(Xt1 , . . . , Xtn ∈ B) > 0. Conglomerability obtains for
hα ∈ C (Rn).
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The Likelihood Interpretation
of Fuzzy Data

Marco E.G.V. Cattaneo

Abstract The interpretation of degrees of membership as statistical likelihood is
probably the oldest interpretation of fuzzy sets. It allows in particular to easily incor-
porate fuzzy data and fuzzy inferences in statistical methods, and sheds some light
on the central role played by extension principle and α-cuts in fuzzy set theory.

Keywords Fuzzy sets · Foundations · Likelihood function · Measurement error ·
Fuzzy inference

1 Introduction

Most works on fuzzy set theory do not give any precise interpretation for the values of
membership functions. This is not a problem as far as the works remain in the realm
of pure mathematics. However, as soon as examples of application are included an
interpretation is needed, otherwise not only the membership functions are arbitrary,
but also all rules applied to them are unjustified [3, 25, 32].

In this paper, the interpretation of the values of membership functions in terms
of likelihood is reviewed. The concepts of probability and likelihood were clearly
distinguished by Fisher [19]: likelihood is simpler, more intuitive, and better suited to
information fusion [6, 8]. The likelihood interpretation of fuzzy sets is elucidated in
Sect. 2, while Sect. 3 shows that it justifies an expression for the likelihood function
induced by fuzzy data that appeared often in the literature [13, 20, 23, 26, 35],
but without a clear justification. This likelihood function can also be interpreted
as resulting from an errors-in-variables model or measurement error model [5], as
will be illustrated by a simple example. Finally, Sect. 4 discusses the interpretation of
α-cuts as confidence intervals, while the last section concludes the paper and outlines
future work.
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2 The Likelihood Interpretation

A fuzzy set is described by its membership function μ : X → [0, 1], where X is
a nonempty (crisp) set [34]. A standard example is the fuzzy set representing the
meaning of the word “tall” in relation to a man, where the elements of X are the
possible values of aman’s height in cm [36].Wecan expect for instance thatμ(180) >

μ(160), because the attribute “tall” fits better to a 180 cm man than to a 160 cm
one. However, the concept of a fuzzy set as described by a real-valued membership
function μ can only be used to model the reality if we have an interpretation for the
numerical values of μ.

In fact, a clear interpretation of membership functions should be the starting point
of a theory of fuzzy sets that describes the real world, and all rules of the theory
should be a consequence of the interpretation [3, 25, 32]. This is for example the
case with the theory of probability, whose rules are a consequence of each of its
interpretations (at least on finite spaces). As suggested by this example, it is not
necessary that the interpretation is unique, but only the rules that are implied by the
considered interpretation should be used in applications.

One of the first aspects to consider when discussing the interpretation of fuzzy sets
is if they are used in an epistemic or ontic sense [13, 15]. Fuzzy sets have an ontic
interpretation when they are themselves the object of inquiry, while they have an
epistemic interpretation when their membership function μ : X → [0, 1] only gives
information about the real object of inquiry, which is the value of x ∈ X . In this
paper, we will only consider epistemic fuzzy sets, and focus on their interpretation
in terms of likelihood.

The likelihood interpretation of a fuzzy set consists in interpreting its mem-
bership function μ : X → [0, 1] as the likelihood function lik on X induced
by the observation of an event D:

μ(x) = lik(x | D) ∝ P(D | x)

for all x ∈ X , where P(D | x) was the probability of the event D (before its
realization) given the value of x ∈ X .

For example, “John is tall” is a piece of information that can be modeled by a
fuzzy set with membership function μ : X → [0, 1] with μ(x) ∝ P(D | x), where
the elements of X are the possible values of John’s height in cm, and P(D | x) is the
probability of the event D of getting the information that “John is tall” when John’s
height is x cm. Hence, the exact meaning of the interpretation of fuzzy sets in terms
of likelihood depends on the interpretation given to probability values, but as noted
above, the choice of this interpretation does not affect the rules of probability theory.

The likelihood interpretation is probably the oldest interpretation of fuzzy sets: it
has been more or less explicitly used directly after [27] and even before [2, 29] the
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mathematical concept of fuzzy set was introduced by Zadeh [34], and has later been
studied in detail by several authors [1, 10–12, 14, 16, 17, 22, 24, 30, 31]. However,
most of them interpreted membership functions μ in terms of probability values
μ(x) = P(D | x), instead of likelihood values μ(x) = lik(x | D). Historically, the
subtle distinction between probability and likelihood confused several great minds,
before the likelihood of x ∈ X was clearly defined by Fisher as proportional to the
probability of the data D given x [18, 19, 21].

The proportionality constant in the definition of lik(x | D) can depend on any-
thing but the value of x ∈ X . The reason for defining the likelihood function lik
only up to a multiplicative constant is that otherwise lik would strongly depend on
irrelevant information. For example, if two persons chosen at random from a popu-
lation independently tell us that John is “tall” and “very tall”, respectively, then the
resulting fuzzy set should not change completely if we would or would not have the
additional information that the first person said “tall” and the second one “very tall”.

Interpreting fuzzy sets in terms of likelihood thus implies that proportional mem-
bership functions have the same meaning. Uniqueness of representation is recovered
by assuming, as is often done anyway, that all fuzzy sets are normalized. That is,
their membership functions μ : X → [0, 1] satisfy supx∈X μ(x) = 1, and are thus
uniquely determined by μ(x) ∝ P(D | x). Surprisingly, very few authors seem to
have somehow considered this important aspect of the likelihood interpretation, and
not in a very explicit way [14, 25, 31].

3 Fuzzy Data

A basic advantage of the likelihood interpretation of fuzzy sets is that it allows
to directly obtain statistical inferences from fuzzy data. The only condition on the
statistical methods used is that the data enter them through the likelihood function
only. In particular, all methods from the likelihood and Bayesian approaches to
statistics can be straightforwardly generalized to the case of fuzzy data.

As discussed in Sect. 2, themembership function of a fuzzy setμ(x) ∝ P(D | x) is
interpreted as the likelihood function induced by the observation of an event D. Now,
if we have a probability distribution on x ∈ X , depending on an unknown parameter
θ ∈ Θ , then the observation of the event D induces also a likelihood function lik on
Θ:

lik(θ | D) ∝ P(D | θ) =
∫

X
P(D | x) dP(x | θ) ∝

∫

X
μ(x) dP(x | θ) (1)

for all θ ∈ Θ , where P(D | x) is assumed to be a measurable function of x that does
not depend on θ .

Zadeh [35] defined the probability of the fuzzy event described by a member-
ship function μ : X → [0, 1] as the right-hand side of (1), without justifying this
choice through a clear interpretation of the values ofμ. The likelihood interpretation
provides only a partial justification: the right-hand side of (1) is proportional to the
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probability of the event D that induced the fuzzy information described by μ, where
the proportionality constant can depend on anything but θ (or x).

In [35] Zadeh introduced also the concept of probabilistic independence for fuzzy
events, again without a clear justification. The likelihood interpretation clarifies
another concept of independence, which is extremely important in fuzzy set theory:
the concept of independence among the pieces of information described by different
fuzzy sets, which is usually implicitly or explicitly assumed [3, 24]. The pieces of
information described by the membership functions μ1, . . . , μn : X → [0, 1] with
μi (x) ∝ P(Di | x) can be interpreted as independent when the events D1, . . . , Dn

that induced them were conditionally independent given x . In this case, the joint
fuzzy information is described by the membership function μ : X → [0, 1] with

μ(x) = lik(x | D) ∝ P(D | x) =
n∏

i=1

P(Di | x) ∝
n∏

i=1

μi (x) (2)

for all x ∈ X , where D = D1 ∩ · · · ∩ Dn .
In particular, if X = X1 × · · · × Xn , the components xi of x = (x1, . . . , xn)

are probabilistically independent (for all θ ), and each piece of fuzzy information
μi (xi ) ∝ P(Di | x) is about a different component of x , then the assumption of their
independence is very natural, and by combining (1) and (2) we obtain

lik(θ | D) ∝
∫

X

n∏

i=1

μi (xi ) dP(x | θ) =
n∏

i=1

∫

Xi

μi (xi ) dP(xi | θ) (3)

for all θ ∈ Θ . This likelihood function has been considered by several authors [13,
20, 23, 26], but only justified on the basis of Zadeh’s rather arbitrary definition of
the probability of a fuzzy event [35].

The likelihood function (3) induced by fuzzy data with membership functions
μi : Xi → [0, 1] is often too complex to be handled analytically [20], but this is
nowadays a typical situation in the likelihood and Bayesian approaches to statistics.
In particular, x1, . . . , xn play the role of unobserved variables in (3), and therefore
the EM algorithm can be used to maximize the likelihood [13]. Several examples
of numerical calculations of maximum likelihood estimates based on fuzzy data are
given for instance in [13, 23].

When the data are fuzzy numbers, in the sense that Xi ⊆ R, the likelihood func-
tion (3) can also be interpreted as resulting from an errors-in-variables model or
measurement error model [5]. In this case, the value ξi of a proxy x∗

i is assumed
to be observed instead of the value of the variable xi , where ξi ∈ R is an arbitrarily
chosen constant, while the measurement error εi = x∗

i − xi is random with den-
sity fi ∝ μi (ξi − · ) and independent of everything else. In this model, each fuzzy
numberμi (xi ) ∝ fi (ξi − xi ) ∝ lik(xi | x∗

i = ξi ) describes the information about the
unknown value of xi obtained from the observed value of its proxy x∗

i , and the like-
lihood function lik( · | x∗

1 = ξ1, . . . , x∗
n = ξn) on Θ induced by these observations

is the one in (3). The description of fuzzy data in terms of measurement errors is
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particularly useful when the various components combine well mathematically, as
in the following simple example.

Example 1 Assume that x1, . . . , xn is a sample from a normal distribution with
known variance σ 2 and unknown expectation θ ∈ R, but we have only fuzzy data
with membership functions μi (xi ) = exp

(−(xi−ξi )
2
/(2 σ 2

i )

)
, where ξi , σi are known

constants. Then the proxy variables x∗
1 , . . . , x

∗
n are independent, and each x∗

i is nor-
mally distributed with expectation θ and variance σ 2 + σ 2

i . Hence, the likelihood
function induced by the fuzzy data is given by

lik(θ | x∗
1 = ξ1, . . . , x∗

n = ξn) ∝ exp
(
− (θ−θ̂ )2

2 τ 2

)
(4)

for all θ ∈ R, where the maximum likelihood estimate θ̂ is the weighted average
of the centers ξi of the fuzzy numbers, with weights τ 2

/(σ 2+σ 2
i ) depending on their

precision 1/σ 2
i , while 1/τ 2 = ∑n

i=1
1/(σ 2+σ 2

i ) is the precision of θ̂ (which is normally
distributed with expectation θ and variance τ 2).

Besides the maximum likelihood estimate θ̂ , for each α ∈ (0, 1) we obtain a
likelihood-based confidence interval for θ :

{
θ ∈ R : lik(θ) > α lik(θ̂)

}
=

(
θ̂ ± τ

√−2 ln α
)
, (5)

with exact level Fχ2
1
(−2 ln α), where Fχ2

1
is the cumulative distribution function of

the chi-squared distribution with 1 degree of freedom. Alternatively, we can combine
the likelihood function (4) induced by the fuzzy data with a Bayesian prior, and base
our conclusions on the resulting posterior. In particular, if the prior is a normal distri-
bution with expectation θ0 and variance τ 2

0 , then the posterior is a normal distribution
with expectation θ1 and variance τ 2

1 , where θ1 is the weighted average of θ0 and θ̂ ,
with weights proportional to their precision 1/τ 2

0 and 1/τ 2, respectively, while these
add up to the posterior precision 1/τ 2

1 = 1/τ 2
0 + 1/τ 2.

4 Fuzzy Inference

Besides allowing the direct use of fuzzy data in statistical methods, the likelihood
interpretation of fuzzy sets also leads naturally to fuzzy statistical inference. In fact,
the likelihood function on Θ induced by the (fuzzy or crisp) data can be interpreted
as the membership function μ : Θ → [0, 1] of a (normalized) fuzzy set describing
the information obtained from the data about the unknown value of the parameter
θ ∈ Θ .

In particular, the likelihood-based confidence intervals (or regions) for θ , defined
as in the left-hand side of (5) for all α ∈ (0, 1), correspond to the α-cuts of the fuzzy
set with membership function μ. Both likelihood-based confidence intervals and
α-cuts are usually defined using the non-strict inequality, but the choice of the strict
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inequality in the definition provides a better agreement with the concept of profile
likelihood function [9], which is of central importance in the likelihood approach to
statistics, and corresponds to the extension principle [36], which is equally central
in fuzzy set theory.

A correspondence between α-cuts and (general) confidence intervals has also
been suggested as an alternative interpretation of some fuzzy sets [4, 28]. However,
this interpretation is afflicted by the fact that confidence intervals are rather arbitrary
constructs, and in particular do not usually satisfy the extension principle, when
they are not likelihood-based confidence intervals. The interpretation of fuzzy sets
in terms of likelihood-based confidence intervals (i.e. the likelihood interpretation)
has the advantage of uniqueness, invariance, and general applicability, although a
simple expression for the confidence level based on the chi-squared distribution,
as in Example 1, is valid (exactly or asymptotically) only under some regularity
conditions [33].

Since each value of θ ∈ Θ corresponds to a probability measure P( · | θ), a fuzzy
set with membership function μ : Θ → [0, 1] can also be interpreted as a fuzzy
probability measure [6, 7]. This likelihood-based model of fuzzy probability bears
important similarities to the Bayesian model of probability, and can be used as a
basis for statistical inference and decision making [6–8].

5 Conclusion

In this paper, the likelihood interpretation of fuzzy sets has been reviewed and some
of its consequences analyzed. Not surprisingly, with this interpretation fuzzy data
and fuzzy inferences can be easily incorporated in statistical methods. In particu-
lar, the likelihood interpretation of fuzzy data justifies the use of expression (3) for
the induced likelihood function, and establishes a fruitful connection with errors-in-
variables models or measurement error models, as illustrated by Example 1. Further-
more, the link between this interpretation and the likelihood approach to statistics
sheds some light on the central role played by extension principle and α-cuts in fuzzy
set theory.

The theory of fuzzy sets is also a theory of information fusion. However, only
the product rule μ(x) ∝ ∏n

i=1 μi (x) for the conjunction of independent pieces of
information is directly justified by the likelihood interpretation (2). The rules for other
logical connectives, with or without the independence assumption, can be obtained
through the concept of profile likelihood (i.e. the extension principle). For example,
the conjunction without independence assumption is then given by the minimum
rule μ(x) ∝ ∧n

i=1 μi (x), while negation always results in the vacuous membership
function μ ≡ 1. Such rules, which are a consequence of the likelihood interpretation
of fuzzy sets, will be the topic of future work.
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Combining the Information of Multiple
Ranker in Ranked Set Sampling
with Fuzzy Set Approach

Bekir Cetintav, Selma Gurler, Neslihan Demirel and Gozde Ulutagay

Abstract Ranked set sampling (RSS) is a useful alternative sampling method for
parameter estimation. Compared to other sampling methods, it uses the ranking
information of the units in the ranking mechanism before the actual measurement.
The ranking mechanism can be described as a visual inspection of an expert or a
highly-correlated concomitant variable. Accuracy for ranking of the sample units
affects the precision of the estimation. This study proposes an alternative approach,
called Fuzzy-weighted Ranked Set Sampling (FwRSS), to RSS for dealing with the
uncertainty in ranking using fuzzy set. It assumes that there are K (K > 1) rankers
for rank decisions and uses three different fuzzy norm operators to combine the
decisions of all rankers in order to provide the accuracy of ranking. A simulation
study is constructed to see the performance of the mean estimators based on RSS
and FwRSS.

1 Introduction

In a scientific research, sampling method plays an important role in collecting data
set fitting their intended uses in the research. Ranked set sampling (RSS) is an
advanced and effective method to obtain data for getting information and inference
about the population. The main impact of RSS is to use the ranking information of
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the units in the sampling mechanism. When the ranking is done properly with an
expert judgment or concomitant variable, the inference based on RSS generally gives
better results comparing with simple random sampling (SRS) for both parametric
and non-parametric cases [3, 7]. For detailed information see Chen et al. [2].

In RSS, the ranking process is done without actual measurement. Because, there
is an ambiguity in discriminating the rank of one unit with another, ranking the units
could not be perfect and it may cause uncertainty. There are some studies focused
on the modeling the uncertainty with a probabilistic perspective in the literature,
such as Dell and Clutter [3], Bohn and Wolfe [1], Ozturk [5], Ozturk [6]. Zadeh
[8] introduced fuzzy sets for representing and manipulating data when they are not
precise. In our study, we propose to use the fuzzy set theory in the rankingmechanism
of RSS under the idea that the units in the ranked sets could belong to not only the
most possibly rank but also the other possible ranks. Since fuzzy sets allow the units
to belong to different sets with different membership degrees [4], they can be used
for modeling the uncertainty in the ranking mechanism as a good way to reduce the
ranking error. Another way of reducing the ranking error is using multiple rankers as
in Ozturk [6] and combining the ranking information of K (K > 1) rankers with a
reasonable way. Therefore this shared wisdom can be used to determine which unit
will be sampled in a set.

In this study, we propose a fuzzy set approach for modeling the uncertainty in
ranking and for combining the information coming from multiple rankers. The new
sampling method, Fuzzy-weighted Ranked Set Sampling (FwRSS), enhances the
accuracy of ranking using fuzzy sets for rank decisions of each ranker and using
three different fuzzy norm operators to combine the decisions of all rankers. We
construct a comparative simulation study to show that our new method provides a
considerable amount of improvement on the estimation of the population mean over
the counterparts in the literature.

2 Fuzzy-Weighted Ranked Set Sampling Procedure

In RSS, ranking of a unit in a specific set is performed with a unit having the highest
possible ranking order. However there could be naturally some other possible ranks
for that unit because the ranking is done without actual measurement. In the fuzzy
set concept, we propose to deal with this uncertain situation using memberships
of fuzzy sets. Membership degrees provide a mechanism for measuring the degree
of membership as a function which represented by a real number in the range [0,
1]. In FwRSS, the membership degrees for rankers can be introduced in two ways.
In the first way, the main role of the membership function is to represent human
perceptions and decisions as a member of a fuzzy set. As a second way, when a
specific concomitant variable is used for ranking the units in the sets, a membership
function based on distance can be used to determine the membership degrees. When
the distances between units increase, the ranks of the units are determined more
clearly and the accuracy of the decisions about the ranks increases. Therefore we
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propose a membership function which is determined inversely proportional to the
distance between the values of concomitant variables for each sampled unit in the
set.

Let r = 1, 2, . . . ,m be the rank number, h = 1, 2, . . . ,m be the set size and j =
1, 2, . . . , n be the cycle number. Let also Y k

(h) j denote the value of kth concomitant
variable Y k for hth ordered unit of the set in j th cycle where k = 1, 2, . . . , K . Given
that X [h] j is the value of the hth ranked unit which is chosen to the sample from
the j th cycle. The membership degree of kth ranker for fuzzy set of rank r and for
hth ranked unit in a set of j th cycle, which is denoted by mk

h, j (r), can be given as
follows.

mk
h, j (r) =

⎧
⎪⎨

⎪⎩

1 for h = r

1 − |Y k
(r) j − Y k

(h) j |
max
q

|Y k
(q) j − Y k

(h) j |
for h �= r and q = 1, 2, . . . ,m (1)

Note that the membership degrees of a chosen unit for each rank are decided by
taking the other units in the set into account. Now, we can describe the seven-step
sampling procedure of FwRSS with two main outputs, which are the units chosen to
sample and their membership degrees:

1. Select m units at random from a specified population.
2. Each ranker (expert or concomitant variable) ranks these m units without mea-

suring them and determine the membership degrees of the unit for each rank.
3. Combine the membership degree decisions of the rankers.
4. Chose the unit which has the highest membership degree for first rank and retain

its membership degrees.
5. Select another m units at random, ranks these units, determine the membership

degrees and chose the unit which has the highest membership degree for second
rank and retain its membership degrees.

6. Continue to this process until m ranked units are chosen for m rank. The first six
steps are called a cycle.

7. First six steps are repeated for n times to get n cycle and m ∗ n observations.

In Step 3, the ranking information of multiple rankers could be combined in
the frame of the fuzzy set theory using one of the set operations as min, max and
average operators. min operator can be defined as a conservative or pessimistic
combiner which takes only minimums, max can be defined as a liberal or optimistic
combiner which takes the maximums and average operator can be defined as a bal-
anced operator which takes the averages (for detailed information about fuzzy norm
operators, see Zimmermann [9]). In our study, we will use each of these operators to
obtain the set of combined membership degree of hth ordered unit, say mh, j , given
as follows.



124 B. Cetintav et al.

mh, j (r) =

⎧
⎪⎨

⎪⎩

min(m1
h, j (r), . . . ,m

K
h, j (r)), if min is chosen

max(m1
h, j (r), . . . ,m

K
h, j (r)), if max is chosen

average(m1
h, j (r), . . . ,m

K
h, j (r)), if average is chosen

(2)

3 Estimation of Population Mean

From the FwRSS procedure, we will obtain two outputs. First one is the observations
and second one is the membership degree matrix consists of the membership degrees
of the observations to the each rank. Let Oj be chosen units from j th cycle andMj be
their membership matrix consist of the membership degrees (combined via chosen
operator) of the sampled units. Illustration for a specific cycle j is given below for
m = 3 (Fig. 1).

By using the measured X [h] j values of the sampled units and their membership
degrees, m(h, j)(r), we define a new estimator for the population mean as:

X̄ FwRSS = 1

m

m∑

r=1

m∑

h=1

n∑

j=1

mh, j (r)X [h] j
m∑

h=1

n∑

j=1

mh, j (r)

where r = 1, 2, . . . ,m is the rank number, h = 1, 2, . . . ,m is the set size and
j = 1, 2, . . . , n is the cycle number. Equation given above is a general form of
the estimator. In RSS notation, each rank r = 1, 2, . . . ,m are supposed as a stratum
and mean of each stratum are estimated for the estimation of population mean. Thus
we can rewrite the formula as follows.

X̄ FwRSS = 1

m

m∑

r=1

X̄ r
FwRSS where X̄r

FwRSS =
m∑

h=1

n∑

j=1

mh, j (r)X [h] j
m∑

h=1

n∑

j=1

mh, j (r)

As it is shown in the formula given above, the membership degrees of the units
for the ranks r = 1, 2, . . . ,m are used as weights to calculate the mean of each rank.

Fig. 1 Outputs of FwRSS
procedure for j th cycle
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Table 1 Comparison results for FwRSS versus SRS, RSS and multiple RSS

Corr. levels Relative efficiencies

Comb.
method

Y1 Y2 Y3 SRS RSS(Y1) RSS(Y2) RSS(Y3) Multiple
RSS

Average 0.95 0.90 0.85 2.0836 1.1774 1.2539 1.3603 1.0569

0.55 0.75 0.95 1.9863 1.7108 1.4081 1.1152 1.0454

0.35 0.65 0.95 1.7564 1.6449 1.4228 1.0092 1.0523

0.35 0.35 0.35 1.1228 1.0477 1.0545 1.0698 1.0130

Min 0.95 0.90 0.85 1.8101 1.0229 1.10509 1.1807 0.9181

0.55 0.75 0.95 1.5611 1.3446 1.1067 0.8765 0.8216

0.35 0.65 0.95 1.4243 1.3338 1.1538 0.8183 0.8533

0.35 0.35 0.35 0.8936 0.8339 0.8470 0.8514 0.8062

Max 0.95 0.90 0.85 1.9803 1.1191 1.2089 1.2928 1.0045

0.55 0.75 0.95 1.5382 1.3249 1.0905 0.8636 0.8096

0.35 0.65 0.95 1.3102 1.2270 1.0614 0.7528 0.7850

0.35 0.35 0.35 1.0501 0.9799 0.9953 1.0006 0.9474

4 Simulation Study

In order to see the performance of our new method, a simulation study is modeled
through the Dell and Clutter [3], which is widely used in RSS studies. There are
symmetric and asymmetric distributions generated as the population of the random
variables. MATLAB is used for the simulation and reputation number is 10000.
The preliminary results of simulation study (in terms of the relative efficiencies)
are summarized in Table1. RSS(Y1) means the concomitant variable Y1 is used as
a single ranker in classical RSS. Multiple RSS means the combination method and
mean estimator given by Ozturk [6] is used.

5 Conclusions

In this study a new sampling method, Fuzzy-weighted Ranked Set Sampling
(FwRSS), enhances the ranking accuracy using fuzzy sets for rank decisions of
individual ranker and using three different fuzzy norm operators to combine the
decisions of all rankers. We define a new estimator for the population mean based
on FwRSS. A comparative simulation study is constructed to see the performance of
our new method. The preliminary results indicate that our average method is more
efficient than the SRS, RSS and Multiple RSS methods for estimation of the popu-
lation mean. However min and max methods are not as efficient as average method
even if they are more efficient than SRS and RSS in most cases.
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A Savage-Like Representation Theorem
for Preferences on Multi-acts

Giulianella Coletti, Davide Petturiti and Barbara Vantaggi

Abstract We deal with a Savage-like decision problem under uncertainty where,
for every state of the world, the consequence of each decision (multi-act) is generally
uncertain: the decision maker only knows the set of possible alternatives where it
can range (multi-consequence). A Choquet expected utility representation theorem
for a preference relation on multi-acts is provided, relying on a state-independent
cardinal utility function defined on the (finite) set of all alternatives.

1 Introduction

The subjective expected utility (SEU) theory due to Savage [15] is the most known
model for decisions under uncertainty, having its roots in the von Neumann-
Morgenstern theory [20] for decisions under risk.

As is well-known, Savage’s model copes with preferences on acts (or decisions)
which are represented through a linear functional, depending on a cardinal utility
function and a (unique) non-atomic finitely additive probability. This theory rests
upon the assumption that every act associates to each state of the world s ∈ S a
unique consequence x ∈ X available with certainty. Thus, Savage’s model is plainly
a “one-stage” decision problem [14] in which there is uncertainty only on the states
of the world.
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Nevertheless, in many decision problems [11, 13], the consequence of an act for
a given state s ∈ S can be uncertain, though belonging to a known set of possible
alternatives Y ⊆ X. Such decision problems are naturally “two-stage” as they are
characterized by two types of uncertainty: the one on the state of the world that will
come true and (for a fixed decision and state) the one on the consequence that will
be available.

Such decision problems can be modelled through multi-valued acts (multi-acts)
[13] on which the decision maker specifies his preferences. A multi-act f can be
seen as a random set [12], which, in turn, corresponds to a set of logical constraints
between the Boolean algebras ℘(S) and ℘(X).

From a decision-theoretic point of view, comparing multi-acts can be interpreted
as comparing different possible (though not certain) “logical situations” existing
between℘(S) and℘(X). Hence, choosing a particular multi-act translates in accept-
ing the corresponding set of logical constraints between ℘(S) and ℘(X), which
determines the way the uncertainty on ℘(S) is transferred to ℘(X).

In this paper we provide an axiom system for a preference relation on multi-acts
to be represented through a Choquet expected utility (CEU) with respect to belief
functions, relying on a state-independent cardinal utility function defined on the
(finite) set of all alternatives. The resulting Savage-like representation theorem is the
counterpart in the context of decisions under uncertainty of the model for decisions
under risk given in [4, 5]. Even if our decision framework is common to the one
in [13], we are looking for an essentially different representation of the preference
relation. Indeed, in [13] the author searches for a linear functional where the utility
is defined on subsets of X while here the utility function is defined on X in the spirit
of Savage.

In the presentmodel, the second of the two decision stages involving uncertainty is
implicitly incorporated in the representation via multi-acts and corresponds to a pes-
simistic transfer of probabilistic uncertainty on (sets of) consequences. Hence, a CEU
maximizer decision maker in the present model realizes a form of maxmin expected
utility decision rule [8]. Another well-known “two-stage” CEU model present in
the literature is the one in [17] where the second stage has the form of an explicit
“objective” probability distribution in the sense of Anscombe-Aumann [1].

2 Preliminaries

Let X = {x1, . . . , xn} be a finite set and denote by ℘(X) the power set of X. We
recall that a belief function Bel [6, 18] on ℘(X) is a function such that Bel(∅) = 0,
Bel(X) = 1 and satisfying the n-monotonicity property for every n ≥ 2, i.e., for every
A1, . . . , An ∈ A,

Bel

(
n⋃

i=1

Ai

)
≥

∑

∅�=I⊆{1,...,n}
(−1)|I|+1Bel

(
⋂

i∈I

Ai

)
.
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Previous properties imply the monotonicity of Bel with respect to set inclusion
⊆, hence belief functions are particular normalized capacities [3].

A belief function Bel on ℘(X) is completely singled out by its Möbius inverse
(see, e.g., [2]) defined for every A ∈ ℘(X) as

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B).

Such a function, usually called basic (probability) assignment, is a function m :
℘(X) → [0, 1] satisfying m(∅) = 0 and

∑
A∈℘(X) m(A) = 1, and is such that for

every A ∈ ℘(X)

Bel(A) =
∑

B⊆A

m(B).

A set A in ℘(X) is a focal element for m (and so also for the corresponding Bel)
whenever m(A) > 0. In particular, a belief function is a probability measure if all its
focal elements are singletons.

Recall that every multi-valued mapping from a finitely additive probability space
(S, ℘ (S), P) to X gives rise to a belief function on ℘(X) [6, 19].

For a function u : X → R such that u(x1) ≤ . . . ≤ u(xn) the Choquet integral of
u with respect to Bel (see [7]) is defined as

C

∫
u dBel =

n∑

i=1

u(xi)(Bel(Ei) − Bel(Ei+1)),

where Ei = {xi, . . . , xn} for i = 1, . . . , n, and En+1 = ∅.

3 Preferences on Multi-acts

Consider the following decision-theoretic setting:

• S, a set of states of the world;
• X = {x1, . . . , xn}, a finite set of consequences;
• Y = ℘(X) \ {∅}, the set of all multi-consequences on X.

Definition 1 A multi-act is a function f : S → Y . Let us denote with F = YS the
set of all multi-acts among which we distinguish, for every Y ∈ Y , the constant
multi-act Y defined as

Y(s) = Y , for every s ∈ S.

For Y , Z ∈ Y and A ∈ ℘(S), a bivariate multi-act f Y ,Z
A is defined as

f Y ,Z
A (s) =

{
Z if s ∈ A,

Y if s ∈ Ac.
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Multi-consequences are also called opportunity sets ormenus in [11], whilemulti-
acts are referred to as opportunity acts in [13].

Example 1 Let us take an urn U from which we draw a ball. U contains white, black
and red balls, but in a ratio entirely unknown to us. Let S = {s1, s2} with s1 = “the
drawn ball is white” and s2 = “the drawn ball is not white”.

Examples of multi-acts where X = {bike, car, boat} are:

s1 s2
f1 {car} {car, bike}
f2 {car, boat} {car, bike}
f3 {bike} {bike}

�

Given a finitely additive probability P on℘(S), every f ∈ F induces a probability
distribution P ◦ f −1 on Y which, in turn, gives rise to a belief function Belf on ℘(X)

defined as

Belf (∅) = 0 and Belf (Y) =
∑

∅�=Z⊆Y

P(f −1(Z)), for every Y ∈ Y . (1)

Let us consider a preference relation � on F . Following Savage’s construction
[15], the aim is to find:

• a (unique) non-atomic finitely additive probability P : ℘(S) → [0, 1] such that
the set of multi-acts F induces the set B all belief functions on ℘(X);

• a (unique up to positive linear transformations) utility function u : X → R such
that, for every f , g ∈ F , f � g ⇐⇒ c

∫
u dBelf ≤ c

∫
u dBelg.

Notice that even if the decision framework is common to the one in [13], we are
looking for an essentially different representation of the preference � on F . Indeed,
in [13] the author searches for a linear functional in the spirit of [9, 10], where the
utility is defined on Y and is a 2-alternating function, the latter having a suitable
(non-unique) weighted mean representation as in [11]. On the contrary, here the goal
is to find a state-independent cardinal utility function u defined on X in the spirit of
Savage.

Definition 2 For A ∈ ℘(S), the conditional preference on A generated by � is the
relation �A defined, for f , g ∈ F , as

f �A g ⇐⇒ f ′ � g′, for all f ′, g′ ∈ F with f ′
|A = f|A, g′

|A = g|A, f ′
|Ac = g′

|Ac .

The previous relation allows to determine null events.

Definition 3 An event A ∈ ℘(S) is null if and only if f �A g for every f , g ∈ F .
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Let us consider the following axioms for � on F :

(B1) � is a weak order on F .
(B2) For all f , g, f ′, g′ ∈ F , for all A ∈ ℘(S),

if
[
f|A = f ′

|A, g|A =g′
|A, f|Ac =g|Ac , f ′

|Ac =g′
|Ac

]
, then

[
f � g⇐⇒ f ′ � g′].

(B3) For all f , g ∈ F , for all Y , Z ∈ Y , for all not null A ∈ ℘(S),
if

[
f|A = Y |A, g|A = Z |A

]
, then

[
f �A g ⇐⇒ Y � Z

]
.

(B4) For all Y , Z, V, W ∈ Y , for all A, B ∈ ℘(S),

if
[
Y ≺ Z, V ≺ W

]
, then

[
f Y ,Z
A � f Y ,Z

B ⇐⇒ f V,W
A � f V,W

B

]
.

(B5) There are xi, xj ∈ X such that {xi} ≺ {xj}.
(B6) For all f , g ∈ F , if f ≺ g and Y ∈ Y , then there is a partition {E1, . . . , Em}

of S such that for i = 1, . . . , m

⎧
⎪⎨

⎪⎩

[
f ′
Ei

= Y |Ei , f ′
|Ec

i
= f|Ec

i

]
=⇒ f ′ ≺ g,

[
g′

Ei
= Y |Ei , g′

|Ec
i
= g|Ec

i

]
=⇒ f ≺ g′.

The following relations are induced by �.

Definition 4 The preference relation on consequences ≤∗ on X induced by � is
defined, for xi, xj ∈ X, as

xi ≤∗ xj ⇐⇒ {xi} � {xj}.

The qualitative probability �∗ on ℘(S) induced by � is defined, for A, B ∈ ℘(S),
as

A �∗ B ⇐⇒ f Y ,Z
A � f Y ,Z

B ,

with Y , Z ∈ Y such that Y ≺ Z .

If � satisfies (B1)–(B6) then ≤∗ is a weak order with asymmetric part <∗ and
symmetric part =∗, and we can assume x1 ≤∗ . . . ≤∗ xn. Then, we can consider
X∗ = X/=∗ = {[xi1], . . . , [xim ]} for which <∗ is a strict order, and we can assume
[xi1 ] <∗ · · · <∗ [xim ].

Axioms (B1)–(B6) also imply that�∗ is a weak order on℘(S), whose asymmetric
and symmetric parts are denoted as ≺∗ and ∼∗, respectively. Recall that a finitely
additive probability P on℘(S) represents �∗ if, for every A, B ∈ ℘(S), A �∗ B ⇐⇒
P(A) ≤ P(B).

The set B of all belief functions on ℘(X) contains, in particular, the set P of all
probability measures on ℘(X). As is well-known [16], the Choquet integral of a
function u : X → Rwith respect to an element Belf ∈ B coincides with the Choquet
integral of u with respect to an “extremal” element of P dominating Belf . Thus, in
analogy to what happens in [14], the behaviour of a CEU maximizer decision maker
in the present model is completely determined by its “additive behaviour” on the
set P.



132 G. Coletti et al.

For this reason, the following condition (B7) can be interpreted as an extremality
axiom which consistently propagates the “additive behaviour” from P to the whole
set B.

(B7) For every f , g ∈ F , if for j = 1, . . . , m we have

⋃

xi∈[xij ]

⋃

{xi}⊆B⊆Ei

f −1(B) ∼∗ ⋃

xi∈[xij ]

⋃

{xi}⊆B⊆Ei

g−1(B),

then f ∼ g, where Ei = {xi, . . . , xn} for i = 1, . . . , n.

Theorem 1 Let S be a set of states of nature, X = {x1, . . . , xn} a set of consequences,
Y = ℘(X) \ {∅} the corresponding set of multi-consequences, and F = YS the set
of all multi-acts. If a binary relation � on F satisfies (B1)–(B7) then:

(i) there is a (unique) non-atomic finitely additive probability P : ℘(S) → [0, 1]
which represents �∗ on ℘(S), and B = {Belf : ℘(X) → [0, 1] | f ∈ F}, where
Belf is defined as in (1), corresponds to the set of all belief functions on ℘(X);

(ii) there is a (unique up to positive linear transformations) utility function u : X →
R such that, for every f , g ∈ F ,

f � g ⇐⇒ C

∫
u dBelf ≤ C

∫
u dBelg.

Proof Every multi-act inF can be considered as an ordinary Savage act with conse-
quences inY . Under this interpretation, axioms (B1)–(B4) and (B6) exactly coincide
with Savage axioms (P1)–(P4) and (P6), while (B5) implies (P5) [15]. By Savage
representation theorem, there is a (unique) non-atomic finitely additive probability
P : ℘(S) → [0, 1] which represents �∗ on ℘(S). This implies that S is uncountable
and that P({s}) = 0 for every s ∈ S.

The probability measure P induces the set

M = {
mf : Y → [0, 1] ∣∣ mf (Y) = P(f −1(Y)), Y ∈ Y, f ∈ F}

of all probability distributions onY and, in turn, this implies that the setB contains all
belief functions on℘(X). Savage theorem also implies that, for f , g ∈ F , if mf = mg

then f ∼ g. The relation � can be transported to M setting mf � mg if and only if
f � g, for f , g ∈ F .

Let us consider the subset P of M defined as

P = {mf ∈ M : mf (Y) = 0, card Y > 1, Y ∈ Y}

which corresponds to the set of all probability distributions on X. By Savage
representation theorem it follows that P is a mixture set and that the restriction
of � on P satisfies the von Neumann-Morgenstern axioms [20]. So, by the von
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Neumann-Morgenstern representation theorem there is a (unique up to positive lin-
ear transformations) utility function u : X → R such that for every mf , mg ∈ P

mf � mg ⇐⇒
n∑

i=1

u(xi)mf ({xi}) ≤
n∑

i=1

u(xi)mg({xi}).

Now, consider X∗ = X/=∗ = {[xi1 ], . . . , [xim ]} and assume without loss of gener-
ality [xi1 ] <∗ · · · <∗ [xim ]. Notice that the utility function u is strictly increasing with
respect to the strict preference<∗ onX, and is constant on each [xij ], for j = 1, . . . , m.

For an arbitrary multi-act f ∈ F , we can consider the function Mf : X∗ → [0, 1]
defined for every [xij ] ∈ X∗, as

Mf ([xij ]) =
∑

xi∈[xij ]

∑

{xi}⊆B⊆Ei

mf (B),

where Ei = {xi, . . . , xn} for i = 1, . . . , n. Note that Mf ([xij ]) ≥ 0 for every [xij ] ∈ X∗
and

∑m
j=1 Mf ([xij ]) = 1, thus Mf determines a probability distribution on X∗. It is

easily proven (see [4, 5]) that

C

∫
u dBelf =

∑

[xij ]∈X∗
u(xij )Mf ([xij ]).

Axiom (B7) implies that if mf , mg ∈ M are such that Mf = Mg then f ∼ g. In par-
ticular, if mf , mg ∈ P are such that Mf = Mg then

n∑

i=1

u(xi)mf ({xi}) =
n∑

i=1

u(xi)mg({xi}).

Hence, introducing the equivalence relation ≡P on M defined, for mf , mg ∈ M,
as mf ≡P mg if and only if Mf = Mg, the set M/≡P can be identified with

P∗ = {Mf : X∗ → [0, 1] : f ∈ F}

which consists of all probability distributions on X∗.
The relation � can be transported to P∗ setting for very Mf , Mg ∈ P∗, Mf � Mg

if and only if f � g, for f , g ∈ F . Since for mf , mg ∈ P it holds

mf � mg ⇐⇒ Mf � Mg

⇐⇒
∑

[xij ]∈X∗
u(xij )Mf ([xij ]) ≤

∑

[xij ]∈X∗
u(xij )Mg([xij ]),
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it follows that for every f , g ∈ F

f � g ⇐⇒ C

∫
u dBelf ≤ C

∫
u dBelg,

and this concludes the proof. �
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On Some Functional Characterizations
of (Fuzzy) Set-Valued Random Elements

Ana Colubi and Gil Gonzalez-Rodriguez

Abstract One of the most common spaces to model imprecise data through (fuzzy)
sets is that of convex and compact (fuzzy) subsets inRp. The properties of compact-
ness and convexity allow the identification of such elements bymeans of the so-called
support function, through an embedding into a functional space. This embedding
satisfies certain valuable properties, however it is not always intuitive. Recently, an
alternative functional representation has been considered for the analysis of impre-
cise data based on the star-shaped sets theory. The alternative representation admits
an easier interpretation in terms of ‘location’ and ‘imprecision’, as a generalized idea
of the concepts of mid-point and spread of an interval. A comparative study of both
functional representations is made, with an emphasis on the structures required for
a meaningful statistical analysis from the ontic perspective.

1 Introduction

The statistical analysis of (fuzzy) set-valued data from the so-called ‘ontic’ perspec-
tive has frequently been developed as a generalization of the statistics for interval
data (see, e.g., [1]). From this ‘ontic’ perspective, (fuzzy) set-valued data are con-
sidered as whole entities, in contrast to the epistemic approach, which considers
(fuzzy) set-valued data as imprecise measurements of precise data (see, e.g., [2]).
Both the arithmetic and metric structure to handle this ‘ontic’ data is often based
on an extension of the Minkowski arithmetic and the distance between either infima
and suprema or mid-points and spreads for intervals. In this way, key concepts such
as the expected value or the variability, are naturally defined as an extension of the
classical notions within the context of (semi-)linear metric spaces.

The generalization of the concept of interval to R
p keeps the compactness and

convexity properties, and this allows the identification of the contour of the convex
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and compact sets inRp by means of the support function (see, e.g., [6]). The support
function is coherent with the Minkowski arithmetic, but sometimes this is not easy
to interpret. In [4] the so-called kernel-radial characterization is investigated as an
alternative to the support function based on a representation on polar coordinates.
This polar representation is established in the context of the star-shaped sets, and is
connected with the developments in [3]. It is coherent with alternative arithmetics
and distances generalizing the concepts of location and imprecision in an intuitive
way, which are of paramount importance in the considered context.

The aim is to show a comparative study of the support function and the kernel-
radial representation through some examples. Methodological and practical similari-
ties anddifferences of both representations for statistical purposeswill be highlighted.
The rest of the paper is organized as follows. In Sect. 2 both functional representa-
tions are formalized and their graphical visualization is shown for some examples.
Section3 is devoted to the comparison of the corresponding statistical frameworks.
Section4 finalizes with some conclusions.

2 The Support Function and the Kernel-Radial
Characterization

Since the space of fuzzy sets to be considered is a level-wise extension of (convex and
compact) sets, the analysis will focus on Kc(R

p) = {A ⊂ R
p | A �= ∅, compact and

convex}. For any A ∈ Kc(R
p), the support function of A is defined as sA : Sp−1 → R

such that sA(u) = supa∈A〈a, u〉 for all u ∈ S
p−1, where S

p−1 stands for the unit
sphere in R

p and 〈·, ·〉 is the standard inner product in R
p. The support function sA

is continuous and square-integrable on S
p−1 and characterizes the set A (see, e.g.,

[6]).
On the other hand, let KS(R

p) be the space of star-shaped sets of Rp, i.e., the
space of the nonempty compact subsets A ⊂ R

p so that there exists cA ∈ A such
that for all a ∈ A, λcA + (1 − λ)a ∈ A, for all λ ∈ [0, 1], that is, all the points of
A are ‘visible’ from cA (see, e.g., [6]). The set of points cA ∈ A fulfilling the above
condition is called kernel of A, ker(A). Each cA ∈ ker (A) is considered a center of
A. Obviously, KS(R) = Kc(R), but for p > 1, Kc(R

p) ⊂ KS(R
p).

A star-shaped set A can be characterized by a center kA (e.g., the center of gravity
of the kernel), and the radial function defined on the unit sphere. The radial function
identifies the contour bymeans of the distance to that center, i.e., bymeans of the polar
coordinates (see, e.g., [6]). Formally, the center of gravity is given by the expected
value of the uniform distribution on ker(A), that is, kA = ∫

ker(A) xdμk, being μk

the normalized Lebesgue measure on ker(A). The radial function is defined as the
mapping ρA : Sp−1 → R

+ such that ρA(u) = sup{λ ≥ 0 : kA + λu ∈ A}.
The radial function is the inverse of the gauge function, which has been used in

[3] in the context of fuzzy star-shaped sets. However, in [3] the gauge function was
not used as a basis for the arithmetic and the metric structure of the space, but in
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Fig. 1 Graphical representation of the support function (left) and the radial function (right) of a
line in Kc(R

2)

Fig. 2 Graphical representation of the support function (left) and the radial function (right) of a
triangle in Kc(R

2)

combination with the usual structures, which has reduced the practical usefulness of
the proposal.

In order to compare the interpretation of the support and the radial function, Figs. 1
and 2 show a graphical representation of both functions corresponding to a line and
a triangle respectively. Since the characterizing functions are defined over the unit
sphere, the representations show how each element of the unit sphere relates to the
corresponding value. For the support function the sets in R

2 are projected on each
one of the directions of the unit sphere and the maximum is computed. In this way,
the support function is the distance from the center to the contour of the blue lines.
Although this identifies in a unique way the boundaries of the set, the result is not
easy to relate with the original shape at first glance. The radial function represents
the polar coordinates of the contour line of the original set, that is the radius to each
point from the pole (i.e. the steiner point of the kernel). Consequently, the shape of
the radial function is straightforwardly connected with the original shape.

For the radial representation, kA is a center of A, describing the location of the
set, and ρA shows how far the contour line is from this center pointwise. Thus, in line
with the idea of mid-point (location) and spread (imprecision) of an interval, kA and
the radial function ρA can be identified with the generalized location and imprecision
of a star-shaped set respectively.

A previous attempt was made to define generalized concepts of location and
imprecision on the basis of the support function by considering the so-called mid-
spread representation [7]. This representation is so that sA = midA + sprA, where
midA(u) = (sA(u) − sA(−u))/2 and sprA(u) = (sA(u) + sA(−u))/2 for all u ∈
S
p−1. That is, the generalized mid-point/spread is connected with the
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location/imprecision associated with each direction. This fact entails an interpreta-
tional profit, but also some drawbacks from an operational view.Moreover, it inherits
the visualization shortcomings from the support function. Themain problem is that it
is disfficult to determine when a function s : Sp−1 → R is a support function of any
A ∈ Kc(R

p), and this is translated to the mid-function. This problem, however, does
not affect the kernel-radial representation, because any function ρA : Sp−1 → R

+ is
a radial function of a given set.

3 Statistical Frameworks

Either through the support function or through the kernel-radial characterization,
the space of the corresponding set-valued elements can be embedded into a Hilbert
space, namely,Hs = L2(Sp−1) endowed with the normalized Lebesgue measure on
S
p−1, λp, for the case of the support function and Hr = R

p × L2(Sp−1) endowed
withμp × λp for the case of the kernel-radial characterization. Nevertheless, in order
to have a meaningful embedding useful for statistical purposes, the arithmetic and
metric structures of the original spaces and the Hilbert ones should agree.

It is well known that the support function transfers the Minkowski arithmetic into
Hs and,with the propermetrics, itmakesKc(R

p) isometric to a coneofHs . This arith-
metic is defined so that A +M τ B = {a + τb | a ∈ A, b ∈ B} for all A, B ∈ Kc(R

p)

and τ ∈ R, and verifies that sA+M τ B = sA + τsB for all τ ≥ 0. The Minkowski addi-
tion is not always meaningful, and there exist various alternatives (see, e.g., [5]).

When the sets are characterized in terms of kernel-radial elements, the natural
arithmetic should be coherent as well, that is, A +r τ B should be the element in
K∗(Rp) such that kkA+r τ B

= kA + τkB andρA+r τ B = ρA + τρB ,where the+operator
denotes either the usual sum of two points in R

p or the usual sum of two functions
in L2(Sp−1), respectively, for all A, B ∈ K(Rp) and τ ∈ R.

Figure3 shows how sometimes the kernel-radial arithmetic may be more useful
than Minkowski’s one. The Minkowski and the kernel-radial sum of two lines is
shown graphically. The Minkowski sum of two elements in Kc(R

2) with null area
in R

2 and the same shape results in a convex set with different shape and non-null
area. On the contrary, the kernel-radial arithmetic keeps the shape and the surface of
the sets.

Fig. 3 Minkowski (left) and radial (right) sum of two segments
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Concerning the metric structure, L2-type metrics are normally considered for
statistical purposes. For instance, for the support function-related characterizations,
it is common to consider the generalized family for θ ∈ [0,+∞)

dθ(A, B) =
√

||midA − midB ||2p + θ||sprA − sprB ||2p,

for all A, B ∈ Kc(R
p)where || · ||p is the usual L2-type norm for functions definedon

S
p−1 with respect to λp [7]. In an analogous way, for the kernel-radial representation,

the natural family of metrics for statistical purposes from an ontic point of view is

d(A, B) =
√

τ‖kA − kB‖2 + (1 − τ )‖ρA − ρB‖2p

for all A, B ∈ K(Rp) and τ ∈ (0, 1), where || · || is the usual Euclidean norm in Rp.
With these structures, it is clear that the considered spaces can be identified with

cones of Hilbert spaces, and all the statistical concepts and tools defined in general
Hilbert space apply in this context, taking into account that some constraints may
arise whenever it is required to remain in the cone. Thus, notions such as random
element, expected value, variance or covariance operator, and basic results, such as
the CLT, are directly inherited from the theory in Hilbert spaces in the same way for
both characterizations. The unique methodological difference in this respect is that,
although it is trivial to check if a radial function remains in the cone (i.e. ρA(u) ≥ 0
for all u ∈ R

p), this is not the case for the support function.

4 Conclusions

The support function has traditionally been used to characterize compact and convex
sets. This is specially useful when the Minkowski arithmetic is suitable. We have
shown that this concept is not always intuitive. As an alternative, the kernel-radial
representation is proposed. One of the main advantages of this new representation is
that it is easy to interpret in terms of generalized concepts of mid-spread for intervals.
The statistical analysis involving both kind of elements can be reduced in both cases
to the Hilbert case, so no specific methodology is required to be developed for many
common problems. Moreover, the characterization of the cone where the sets are
embedded is trivial and similar to the interval case (i.e., non-negativity constraints).
This entails a substantial methodological simplification when it is essential to guar-
antee that any element remains in the cone. Concerning the arithmetic, it has been
shown that the Minkowski sum is not always suitable when p > 1, as it does not
keep shapes or areas, while the arithmetic based on the kernel-radial representation
can be a suitable alternative for cases where that is important.

All the discussions in this paper can be extended to the case of fuzzy sets by
considering levelwise-defined concepts. Namely, let Fc(R

p) be the space of fuzzy
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sets U : Rp → [0, 1] whose α-level sets Uα ∈ Kc(R
p) for all α ∈ (0, 1]. Then,

the support function can be defined as sA : Sp−1 × (0, 1] → R so that sA(u,α) =
sAα(u) supa∈Aα

〈a, u〉 for all u ∈ S
p−1, andα ∈ (0, 1]. In the sameway, theMinkowski

arithmetic is level-wise defined, and themetric is establishedwrt the joint normalized
Lebesgue measure on Sp−1 × (0, 1]. Analogous developments can be performed for
the case of the kernel-radial representation. The unique technical burden that dis-
tinguishes the case of fuzzy sets from the case of standard sets is the problem of
building a fuzzy set from the functions on the respective Hilbert spaces, if possible,
but this can be done by taking into account the well-known properties that guarantee
that a set of indexed levels {Aα}α∈[0,1] determines a fuzzy set.
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Maximum Likelihood Under Incomplete
Information: Toward a Comparison
of Criteria

Inés Couso and Didier Dubois

Abstract Maximum likelihood is a standard approach to computing a probability
distribution that best fits a given dataset. However, when datasets are incomplete or
contain imprecise data, depending on the purpose, a major issue is to properly define
the likelihood function to be maximized. This paper compares several proposals in
terms of their intuitive appeal, showing their anomalous behavior on examples.

1 Introduction

Edwards ([6], p. 9) defines a likelihood function as being proportional to the prob-
ability of obtaining results given a hypothesis, according to a probability model. A
fundamental axiom is that the probability of obtaining at least one among two results
is the sum of the probabilities of obtaining each of these results. In particular, a result
in the sense of Edwards is not any kind of event, it is an elementary event. Only
elementary events can be observed. For instance, when tossing a die, and seeing the
outcome, you cannot observe the event “odd”, you can only see 1, 3 or 5. If this
point of view is accepted, what becomes of the likelihood function under incomplete
or imprecise observations? To properly answer this question, one must understand
what is a result in this context. Namely, if we are interested in a certain random
phenomenon, observations we get in this case do not directly inform us about the
underlying random variables. Due to the interference with an imperfect measure-
ment process, observations will be set-valued. So, in order to properly exploit such
incomplete information, we must first decide what to model:

1. the random phenomenon through its measurement process;
2. or the random phenomenon despite its measurement process.
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In the first case, imprecise observations are considered as results, and we can con-
struct the likelihood function of a random set, whose realizations contain precise but
ill-known realizations of the random variable of interest. Actually, most authors are
interested in the other point of view, consider that outcomes are the precise, although
ill-observed, realizations of the random phenomenon. However in this case there
are as many likelihood functions as precise datasets in agreement with the impre-
cise observations. Authors have proposed several ways of addressing this issue. The
most traditional approach is based on the EM algorithm and it comes down to con-
structing a fake sample of the ill-observed random variable in agreement with the
imprecise data, and maximizing likelihood wrt this sample. In this paper we ana-
lyze this methodology in the light of the epistemic approach to statistical reasoning
outlined in [1] and compare it with several recent proposals by Denoeux [5], Hüller-
meier [8], and Guillaume [7]. Note that in this paper we do not consider the issue
of imprecision due to too small a number of precise observations (see for instance
Serrurier and Prade [10]).

2 The Random Phenomenon and Its Measurement Process

Let the random variable X : Ω → X represent the outcome of a certain random
experiment. For the sake of simplicity, let us assume that X = {a1, . . . , am} is finite.
Suppose that there is a measurement tool that provides an incomplete report of obser-
vations. Namely, the measurement tool reports information items Γ (ω) = B ∈ 2X ,
for somemultimappingΓ : Ω → 2X ,which represents our (imprecise) perceptionof
X, in the sense that we assume that X is a selection of Γ , i.e. X(ω) ∈ Γ (ω), ∀ω ∈ Ω

[3]. LetG = Im(Γ ) = {A1, . . . ,Ar} denote the image ofΓ (the collection of possible
outcomes).

We overview below two different ways to represent the information about the
joint distribution of the random vector (X, Γ ).

The imprecision generation standpoint. Here, we emphasize the outcome of
the experiment X and the “imprecisiation” process that leads us to just get imprecise
observations of X, Let us consider the following matrix: (M|p), where M is called
the mixing matrix with terms:

• ajk = p.j|k. = P(Γ = Aj|X = ak) denotes the (conditional) probability of
observing Aj if the true outcome is ak and

• pk. = P(X = ak) denotes the probability that the true outcome is ak .

Such a matrix determines the joint probability distribution modeling the underlying
generating process plus the connection between true realizations and incomplete
observations. Some examples and their characterizing matrices are as follows:

• Partition [4]. Suppose that Im(Γ ) = {A1, . . . ,Ar} forms a partition of X . There-
fore, we can easily observe that the probabilitiesP(Γ = Aj|X = ak) = 1 if ak ∈ Aj

and 0 otherwise, forall j, k.
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• Superset assumption [9]. Im(Γ ) coincides with 2X \ {∅}. For each k = 1, . . . ,m
there is a constant ck such that P(Γ = Aj|X = ak) = ck, if Aj � ak (P(Γ =
Aj|X = ak)) = 0, otherwise.) Furthermore, for every k ∈ {1, . . . ,m} there are
2m−1 subsets of X that contain it. Therefore the constant is equal to 1/2m−1, i.e.:

P(Γ = Aj|X = ak) =
{
1/2m−1 ifAj � ak
0 otherwise.

This is a kind of missing-at-random

assumption, whereby the imprecisiation process is completely random. It is often
presented as capturing the idea of “lack of information” about this process, which
sounds questionable.

Thedisambiguation standpoint.Wecan alternatively characterize the joint prob-
ability distribution of (X, Γ ) by means of the marginal distribution of Γ (the mass
assignment m(Aj) = P(Γ = Aj) = p.j, j = 1, . . . , r of a belief function describing
imprecise observations [3]) and the conditional probability of each result X = ak ,
knowing that the observationwasΓ (ω) = Aj, for every j = 1, . . . , r. The newmatrix
(M ′|p′) can be written as follows:

• bkj = pk.|.j = P(X = ak|Γ = Aj|) denotes the (conditional) probability that the
true value of X is ak if we have been reported that it belongs to Aj

• p.j = P(Y = Aj) = P(Γ = Aj) denotes the probability that the generation plus the
measurement processes lead us to observe Aj.

Such a matrix determines the joint probability distribution modeling the underly-
ing generating process plus the connection between true outcomes and incomplete
observations. (More specifically, the vector (p.1, . . . , p.r)

T characterizes the obser-
vation process while the matrix B = (pk.|.j)k=1,...,m;j=1,...,r represents the conditional
probability of X (true outcome) given Γ (observation). Here is an example:

• Uniform conditional distribution Under the uniform conditional distribution,
the (marginal) probability PX induced by X is the pignistic transform [11] of the
belief measure associated to the mass assignment m. The conditional distribution
is given by: pk.|.j = 1

#Aj
, if ak ∈ Aj and 0 otherwise. And the marginal distribution

is: pk. = ∑
j:Aj�ak

1
#Aj

p.j.

3 Different Likelihood Functions

Both matricesM = (A|p) andM ′ = (B|p′) univocally characterize the joint distribu-
tion of (X, Γ ). For each pair (k, j) ∈ {1, . . . ,m} × {1, . . . , r}, let pkj denote the joint
probability pkj = P(X = ak, Γ = Aj). According to the nomenclature used in the
preceding subsections, the respective marginals on X and G are denoted as follows:

• p.j = ∑m
k=1 pkj will denote the mass of Γ = Aj, for each j = 1, . . . , r, and

• pk. = P(X = ak) = ∑r
j=1 pkj will denote the mass of X = ak , for every k.
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Now, let us assume that the above joint distribution is characterized by means of
a (vector of) parameter(s) θ ∈ Θ (in the sense that M and M ′ can be written as
functions of θ). We naturally assume that the number of components of θ is less than
or equal to the dimension of bothmatrices, i.e., it is less than or equal to theminimum
min{m × (r + 1), r(m + 1)}. In other words, the approach uses a parametric model
such that a value of θ determines a joint distribution on X × Im(Γ ).

For a sequence of N iid copies of Z = (X, Γ ), Z = ((X1, Γ1), . . . , (XN , ΓN )), we
denote by z = ((x1,G1), . . . , (xN ,GN )) ∈ (X × G)N a specific sample of the vector
(X, Γ ). Thus, G = (G1, . . . ,GN ) will denote the observed sample (an observation
of the set-valued vector � = (Γ1, . . . , Γn)), and x = (x1, . . . , xN ) will denote an
arbitrary artificial sample from X for the unobservable latent variable X, that we
shall vary in X N . The samples x are chosen such that the number of repetitions
nkj of each pair (ak,Aj) ∈ X × G in the sample are in agreement with the numbers
n.j of observations Aj. We denote by XG (resp. ZG), the set of samples x (resp.
complete joint samples z) respecting this condition.We may consider three different
log-likelihood functions depending on whether we refer to

• the observed sample: LG(θ) = logp(G; θ) = log
∏N

i=1 p(Gi; θ). It also writes =∑r
j=1 n.j log pθ

.j. where n.j denotes the number of repetitions of Aj in the sample of
size N

• the (ill-observed) sample of outcomes: Lx(θ) = logp(x, θ). It also writes
log

∏N
i=1 p(xi; θ) = ∑m

k=1 nk. log p
θ
k.,where nk. denotes the number of occurrences

of ak in the sample x = (x1, . . . , xN ) ∈ XG.
• the complete sample: Lz(θ) = logp(z, θ) = log

∏N
i=1 p(zi; θ). It also writes∑m

k=1

∑r
j=1 nkj log p

θ
kj where nkj = ∑N

i=1 1{(ak ,Aj)}(xi,Gi) denotes the number of
repetitions of the pair (ak,Aj) in the sample (i.e., z ∈ ZG).

In the sequel, we compare some existing strategies of likelihood maximization,
based on a sequence of imprecise observations G = (G1, . . . ,GN ) ∈ GN :

• The standard maximum likelihood estimation (MLE) : it computes the argu-
ment of the maximum of LG considered as a mapping defined on Θ , i.e.:
θ̂ = argmaxθ∈Θ LG(θ) = argmaxθ∈Θ

∏r
j=1(p

θ
.j)

n.j .The result is amass assignment
on 2X . For instance, the EM algorithm [4] is an iterative technique using a latent
variable X to achieve a local maximum of LG.

• Themaximax strategy [8]: it aims at finding the pair (x∗, θ∗) ∈ XG × Ω that max-
imizes Lz(θ), i.e.: (x∗, θ∗) = argmaxx∈XG,θ∈Θ Lz(θ), i.e., argmaxx∈XG,θ∈Θ

∏m
k=1∏r

j=1(p
θ
kj)

nkj .

• The maximin strategy [7]: it aims at finding θ∗ ∈ Θ that maximizes L−(θ) =
minx∈XG Lz(θ) = minx∈XG

∑m
k=1

∑r
j=1 nkj log p

θ
kj. It is a robust approach that also

identifies a fake optimal sample x∗.
• The Evidential EM strategy [5]: It assumes that the data set is uncertain and
defined by a mass-function over 2X

N
. Under the particular situation where it has a

single focal element B ⊂ X N , with mass m(B) = 1, the EEM approach considers
the following expression as a likelihood function, given such imprecise data (see
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Eq.16 in [5]): p(B; θ) = P((X1, . . . ,XN ) ∈ B; θ). The Evidential EM algorithm is
viewed as a variation of the classical EMalgorithm inorder to select a value of θ that
maximizes the “likelihood”p(B; θ). In particular, if we assume thatB is aCartesian
product of the sets in the collection {A1, . . . ,Ar} the criterion can be alternatively
written as follows: p(B; θ) = ∏m

j=1 Pθ(X ∈ Aj)
n.j . The EEM procedure may not

coincide with a maximum likelihood estimation since this criterion is not always
in the spirit of a likelihood function, as seen later on. The EM algorithm uses it
when the imprecise data forms a partition.

Under some particular conditions about the matricesM andM ′, some of the above
likelihood maximization procedures may coincide or not. In the rest of the paper
we provide some examples, focusing on the optimal samples z ∈ ZG or x ∈ XG

computed by the methods and that are supposed to disambiguate the imprecise data.
Indeed most existing techniques end up with computing a probability distribution on
X or a fake sample achieving an imputation of X.

4 A Comparison of Estimation-Disambiguation Methods

Let us to compare the potentials and limitations of these approaches. Here we just
give a few hints by means of examples.

EM-based approaches. Let PX N
be the set of all probability measures P we can

define on the measurable space (X N , ℘ (X N )). The EM algorithm [4] tries to max-
imize the function F : PX N × Θ → R: F(P, θ) = LG(θ) − D(P, θ), ∀P ∈ PX N

,
θ ∈ Θ, where p(x|G; θ)= p(x,G;θ)

p(G;θ) , whenever p(G; θ) > 0. Moreover, D(P,P′) is

the Kullback-Leibler divergence from P′ to P,
∑

x∈X N p(x) log[ p(x)
p′(x) ], where p is

the mass function associated to P. It is then clear that LG(θ) ≥ F(P, θ) and that if
P = P(·|G; θ), then F(P, θ) = LG(θ). Given a value θ(n−1) obtained at the n − 1
M-step, the E-step actually computes P(·|G; θ(n−1)) (which is basically like deter-
mining a fake sample z ∈ ZG), and the next M step finds a value of θ that maximizes
F(P(·|G; θ(n−1)), θ), i.e. LG(θ) based on the fake sample z. In fact, the EM algo-
rithm iteratively finds a parametric probability model Pθ and a probability distribu-
tion P(·|G; θ) on X , that is in agreement with the data G, such that the divergence
from Pθ to P(·|G; θ) is minimal [2]. Pθ is an MLE for the fake sample z ∈ ZG in
agreement with P(·|G; θ), which yields the best imputation of X in this sense. There
are situations where the result of the EM algorithm will be questionable [2].

Example 1 Suppose that a dice is tossed and let X pertain to the result of the trial.
The probability distribution ofX is a vector (p1, . . . , p6) ∈ [0, 1]6, with∑6

i=1 pi = 1.
Suppose after each trial we are told either that the result has been less than or equal to
3 (A1) or greater than or equal to 3 (A2). After each toss, when the actual result (X) is
3, the reporter needs to decide A1 or A2. Assume the conditional probability P(Gn =
A1|Xn = 3) is a fixed number α ∈ [0, 1] for every trial, n = 1, . . . ,N . Suppose that
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we toss the dice N = 1000 times and the report tells us n.1 = 300 times that the
result was less than or equal to 3. Let θ denote the vector (p1, p2, p3, p4, p5;α).
The likelihood function based on the observed sampleG can be written as: LG(θ) =
(p1 + p2 + αp3)300 · [1 − (p1 + p2 + αp3)]700.Such a function ismaximized for any
vector θ satisfying the constraint p1 + p2 + αp3 = 0.3. If we use the EM algorithm,
we get a vector θ satisfying the above constraints after the first iteration of the M
algorithm. We will get a different vector θ(1), depending on the initial point θ(0). If
we start from θ(0) = ( 16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ; 1

2 ), we get θ
(1) = (0.12, 0.12, 0.16, 0.2, 0.2; 3

8 ).
It is also the MLE of θ based on a (fake) sample of 1000 tosses of the dice where the
number of repetitions of each of the six facets has been respectively 120, 120, 160,
200, 200, 200. But this is not the only MLE based on the observed sample.

Evidential EM Algorithm. We can distinguish the following cases:

• The case where Im(Γ ) forms a partition of X . In this case, P(X ∈ Aj) = P(Y =
Aj) = p.j, ∀ j = 1, . . . , r, and therefore

∏r
j=1 P(X ∈ Aj; θ)n.j coincides with the

likelihood p(G; θ).
• The case where the sets A1, . . . ,Ar do overlap. In this case, p(G; θ) and p(B; θ)
do not necessarily coincide, as shown in the following example.

Example 2 Let us take a sample of N tosses of the dice in Example 1 and let us
assume that the reporter has told us that n1 of the times the result was less than
or equal to 3, and n2 = N − n1 otherwise. The EEM likelihood is p(B; θ) = (p1 +
p2 + p3)n1 · (p3 + p4 + p5 + p6)n2 with

∑6
i=1 pi = 1. We can easily observe that it

reaches its maximum (p(B; θ) = 1) for any vector θ satisfying the constraint p3 = 1.
But such a prediction of θ would not be a reasonable estimate for θ.

The maximax approach. The parametric estimation based on the maximax
approach does not coincide in general with the MLE. Furthermore, it may lead
to questionable imputations of X.

Example 3 Let us suppose that a dice is tossed N = 10 times, and that Peter reports
4 heads, 2 tails and he does not tell whether there was heads or tails for the remain-
ing 4 times. Let us consider the parameter θ = (p,α,β), where p = P(X = h), α =
P(Γ = {h, t}|X = h) andβ = P(Γ = {h, t}|X = t). It determines the following joint
probability distribution induced by (X, Γ ): P(h, {h}) = (1 − α)p;P(h, {h, t}) =
αp;P(t, {t}) = (1 − β)p;P(t, {h, t}) = βp; and 0 otherwise.

The MLE of θ is not unique. It corresponds to all the vectors θ = (p,α,β) ∈
[0, 1]3 satisfying the constraints: (1 − α)p = 0.4 and (1 − β)(1 − p) = 0.2, indi-
cating the marginal probabilities P(Γ = {h}) and P(Γ = {t}) respectively.

In contrast, the maximax strategy seeks for a pair (θ∗; x∗) = (p∗,α∗,β∗; x∗) that
maximizes Lz(θ). It can be checked that the tuple that maximizes Lz(θ) is unique.
It corresponds to the vector of parameters θ∗ = (p∗,α∗,β∗) = (0.8, 0.5, 0) and the
sample where all the unknown outcomes are heads. In words, the maximax strategy
assumes that all the ill-observed results correspond to the most frequent observed
outcome (“heads”). Accordingly, the estimation of the probability of heads is the
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corresponding frequency (0.8). According to this strategy, and without having any
insight about the behaviour of Peter, we predict that each time he refused to report,
the result was in fact “heads”.

Example 4 Let us now consider the situation about the coin described in Example 3,
and let us suppose in addition that the following conditions hold: α = 1 − α =
0.5 and β = 1 − β = 0.5. In words, no matter what the true outcome is (heads or
tails) Peter refuses to give any information about it with probability 0.5 (the behavior
of Peter does not depend on the true outcome). This is the “superset assumption” [8]
already mentioned. Under this additional constraint, the MLE of θ = (p, 0.5, 0.5)
is reached at p̂ = 4/6 = 2/3. The maximum likelihood estimator provides the same
estimation as if we had just tossed the coin six times, since, as a consequence of
the superset assumption here, the four remaining tosses play no role in the statistics.
As a result, the conditional probability P(X = h|Γ = {h, t}) is assumed to coincide
with P(X = h|Γ �= {h, t}) and with P(X = h) = p. Such a probability is estimated
from the six observed outcomes, where four of them were “heads” and the rest were
“tails”. In contrast, the maximax strategy without the superset assumption leads us
to take into account the unobserved tosses as matching the most frequent observed
outcome, hence the imputation of X is compatible with a data set containing 8 heads
and only 2 tails.

The maximin approach. Consider again Example 3. The maximin approach
consists of considering all log-likelihood functions Lx

k (p) = (4 + k) log p + (6 −
k) log(1 − p) with 0 ≤ k ≤ 4. The approach consists in finding for each value of
p the complete data that minimizes Lx(p). Since Lx

k (p) is of the form k log p
(1−p) + a,

it is easy to see that if p < 1/2, the minimum L−(p) is reached for k = 4, and
if p > 1/2, it is reached for k = 0. So, it is 8 log p + 2 log(1 − p) if p < 1/2 and
4 log p + 6 log(1 − p) otherwise. So L−(p) is increasing when p < 1/2 and decreas-
ing when p > 1/2. It reaches its maximum for p = 1/2. So the maximin approach is
cautious in the sense of maximizing entropy in the coin-tossing experiment. It yields
the uniform distribution, i.e., an imputation of 5 heads and 5 tails, in agreement with
the observations.

5 Conclusion

This paper suggests that it is not trivial to extend MLE methods to incomplete data
despite the existence of several proposals. In particular, it is very questionable to
reconstruct distributions for unobserved variables when parameters of distributions
that generate themare not closely connected to parameters of distributions that govern
observed ones. In contrast, the famous EM article [4] deals with imprecise obser-
vations forming a partition and starts with an example in which a single parameter
determines the joint distribution of X and Γ . However, it is not straightforward to
adapt the EM procedure to incomplete overlapping data. In the general case, either
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one applies standardMLE to observed imprecise data only (yielding amass function)
or one has to add an assumption that comes down to selecting a single probability
measure in the credal set induced by this mass function. Each approach to imprecise
data MLE proposes its own assumption. As can be seen from the examples, it is
easy to find cases where these methods lead to debatable solutions: the solution to
the EM algorithm [4] depends on the initial parameter value, the EEM approach [5]
seems to optimize a criterion that sometimes does not qualify as a genuine likelihood
function, the maximax approach [8] may select a very unbalanced distribution for the
hidden variable, while the maximin robust MLE [7] favors uninformative distribu-
tions. More work is needed to characterize classes of problems where one estimation
method is justified and the other method fails.

Acknowledgments This work is partially supported by ANR-11-LABX-0040-CIMI within the
program ANR-11-IDEX-0002-02, by TIN2014-56967-R (Spanish Ministry of Science and Inno-
vation) and FC-15-GRUPIN14-073 (Regional Ministry of the Principality of Asturias).

References

1. Couso I, Dubois D (2014) Statistical reasoningwith set-valued information: Ontic vs. epistemic
views. Int J Approximate Reasoning 55(7):1502–1518

2. Couso I, Dubois D (2016) Belief revision and the EM algorithm. Proc, IPMU
3. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann

Math Stat 38:325–339
4. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the

EM algorithm. J Roy Statist Soc B 39:1–38
5. Denoeux T (2013) Maximum likelihood estimation from uncertain data in the belief function

framework. IEEE Trans Knowl Data Eng 26:119–130
6. Edwards AWF (1972) Likelihood. Cambridge University Press
7. Guillaume R, Dubois D (2015) Robust parameter estimation of density functions under fuzzy

interval observations, 9th ISIPTA Symposium. Pescara, Italy
8. Hüllermeier E (2014) Learning from imprecise and fuzzy observations. Int J Approximate

Reasoning 55(7):1519–1534
9. Hüllermeier E, Cheng W (2015) Superset learning based on generalized loss minimization.

ECML/PKDD 2:260–275
10. Serrurier M, Prade H (2013) An informational distance for estimating the faithfulness of a

possibility distribution, viewed as a family of probability distributions, with respect to data. Int
J Approximate Reasoning 54(7):919–933

11. Smets P (2005) Decision making in the TBM: the necessity of the pignistic transformation. Int
J Approximate Reasoning 38:133–147



The Use of Uncertainty to Choose Matching
Variables in Statistical Matching

Marcello D’Orazio, Marco Di Zio and Mauro Scanu

Abstract Statistical matching aims at combining information available in distinct
sample surveys referred to the same target population. The matching is usually based
on a set of common variables shared by the available data sources. For matching pur-
poses just a subset of all the common variables should be used, the so calledmatching
variables. The paper presents a novel method for selecting the matching variables
based on the analysis of the uncertainty characterizing the matching framework. The
uncertainty is caused by unavailability of data for estimating parameters describ-
ing the association/correlation between variables not jointly observed in a single
data source. The paper focuses on the case of categorical variables and presents a
sequential procedure for identifying the most effective subset of common variables
in reducing the overall uncertainty.

1 Introduction

Statistical matching (sometimes called data fusion or synthetical matching) aims
at combining information available in distinct sample surveys referred to the same
target population. Formally, letY and Z be two randomvariables; statisticalmatching
techniques can be applied for estimating the joint (Y, Z) distribution function (e.g.,
a contingency table or a regression coefficient) or some of its parameters when: (i)
Y and Z are not jointly observed in a survey, but Y is observed in a sample A, of size
nA, and Z is observed in a sample B, of size nB ; (ii) A and B are independent and
units in the two samples do not overlap (it is not possible to use record linkage); (iii)
A and B both observe a set of additional variables X .
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2 Choice of the Matching Variables

In statistical matching (SM) the data sources A and B may share many common
variables X . This is the case ofmatching of data from household surveyswhere a very
high number of variables concerning the household (living place, housing, number of
members, etc.) and its members (age, gender, educational level, professional status,
etc.) are available. In performing SM, not all the X variables will be used but just
the most important ones. The selection of the most relevant XM (XM ⊆ X ), usually
calledmatching variables, should be performed by consulting subject matter experts
and through appropriate statistical methods.

The choice of the matching variables should be made in a multivariate sense [4]
to identify the subset XM connected, at the same time, with Y and Z . This would
require the availability of a data source in which (X,Y, Z) are observed. In the basic
SM framework, A permits to investigate the relationship between Y and X , while the
relationship between Z and X can be studied in B. The results of the two separate
analyses are then joined and, in general, the following rule can be applied:

XY ∩ XZ ⊆ XM ⊆ XY ∪ XZ

where XY (XY ⊆ X) and XZ (XZ ⊆ X) are the subsets of the common variables that
better explain Y and Z , respectively. The intersection XY ∩ XZ provides a smaller
subset of matching variables if compared to XY ∪ XZ ; this is an important feature
in achieving parsimony. For instance, too many matching variables in a distance
hot deck SM micro application can introduce undesired additional noise in the final
results. Unfortunately, the risk with XY ∩ XZ is that most of the predictors of one
target variable will be excluded if they are not in the subset of the predictors of
the other target variable. For this reason, the final subset of the matching variables
XM is usually a compromise and the contribution of subject matter experts and data
analysts is important in order to achieve the “best” subset. Our proposal is to perform
a unique analysis for choosing thematching variables by searching the set of common
variables that are the most effective in reducing the uncertainty between Y and Z .

2.1 Uncertainty in Statistical Matching

Due to the nature of the SM problem (i.e., Y and Z are never jointly observed)
there is an intrinsic uncertainty: there cannot be unique estimates for the parame-
ters describing the association/correlation between Y and Z . Approaches, such as
maximum likelihood estimation, offer a set of solutions, all with the same (maxi-
mum) likelihood, usually closed, known as likelihood ridge. The non-uniqueness of
the solution of the SM problem has been described in different articles (see Chap.4
in [6] and references therein). Given that A and B do not contain any information
on Y and Z , apart from their association/correlation with the common variables X ,
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the set of solutions describes all the values of the parameters represented by all the
possible relationships between Y and Z given the observed data. For this reason,
[6] called this set of equally plausible estimates as “the uncertainty set”. In order to
reduce the uncertainty set, it is necessary to add external information (e.g., a struc-
tural zero on a cell of the contingency table of Y × Z or Y × Z |X reduce the set of
possible values). When X , Y and Z are categorical, the uncertainty set can be com-
puted by resorting to the Frèchet bounds. Let phjk = Pr(X = h,Y = j, Z = k) for
h = 1, . . . , H, j = 1, . . . , J, k = 1, . . . , K ; by conditioning on X , the probability
p. jk = Pr(Y = j, Z = k) is in the interval:

[p
. jk
, p. jk] =

[
∑

h

ph.. max{0, p j |h + pk|h − 1},
∑

h

ph.. min{p j |h, pk|h}
]

(1)

It should be noted that when external information is available, for instance in
terms of structural zeros on cells of the contingency table Y × Z) or Y × Z |X these
bounds are not sharp, in fact the admissible values are a closed sub-interval (when
the estimated probabilities are compatible), see [9].

The expression (1) allows to derive bounds for each cell in the contingency table
Y × Z . This information can be used to derive an overall measure of uncertainty; a
very basic one can be obtained by considering the average of the bounds width:

d = 1

J × K

∑

j,k

(
p· jk − p· jk

)
(2)

This is a simple and straightforward way of measuring uncertainty but it is not
unique, for instance alternative measures are proposed in [5].

2.2 Choosing the Matching Variables by Uncertainty
Reduction

The method proposed for selecting the matching variables when dealing with cate-
gorical X , Y and Z variables is based on an simple idea: select as matching variables
just the subset of the X that are more effective in reducing the uncertainty, measured
in our case, in terms of d. Unfortunately, the value of d decreases by increasing the
number of X variables, even when these variables are slightly associated with one or
both of the target variables Y and Z ; for this reason it is necessary to identify a cri-
terion to decide when to stop introducing additional common variable X among the
matching variables, having in mind the parsimony principle. All these considerations
lead to the definition of the following sequential procedure.

• Step (0) Initial ordering of the X variables according to their ability in minimizing
d̂ , and select the variable with the smallest d̂ as matching variable;
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• Step (1) Consider all the possible combinations obtained by adding one more
variable to the selected set of variables and evaluate their uncertainty in terms of
d̂; e.g., in the first iteration all the possible combinations of the variables identified
in step (0) with the remaining ones will be considered.

• Step (2) Select the combination of variables which determine the higher decrease
of the uncertainty (d̂) and go back to step (1).

The procedure ends when the starting tables for estimating the interval (1) become
too sparse. Sparseness here is measured in terms of average cell counts; in particular,
given that there are two starting data-sets, A and B, sparseness is measured by the
minimum value of the averages of the cell counts:

n̄ = min

[
nA

cXDY
,

nB

cXD Z

]
(3)

where cXDY and cXD Z denote the number of cells in the table XD × Y and XD × Z
respectively; and XD is the variable obtained by cross-classifying the selected X vari-
ables (XD = X1 × X2 × . . . × XM ). The rationale is that of considering the subset
of matching variables able to “keep the average number of observations from becom-
ing too small” ([3], p. 140). Too small in our case is meant maintaining n̄ > 1, in
other terms the procedure stops when n̄ ≤ 1. Such a stopping criterion is a subjective
choicewhich reflects the broad definition of sparseness in [2]: “contingency tables are
said to be sparse when the ratio of the sample size to the number of cells is relatively
small”. In the proposed procedure, the higher is the number of X variables being
considered, the larger are the tables XD × Y and XD × Z and, consequently, the
higher is the risk of having zero counts (empty cells), i.e., sparse tables. Empty cells
can be caused by structural zeros (i.e., events that cannot occur) or, more frequently,
by sampling zeros (i.e., no observations of an event that can occur). In our procedure,
it is not easy to separate structural from sampling zeros and the presence of many
empty cells is unappealing when estimating (1), for this reason the procedure stops
when the starting tables become too sparse. In literature, many alternative methods
have been proposed to measure sparseness, e.g., measures based on the percentage
of expected cell frequencies smaller than 1, 5 or 10, or the percentage of observed
zero frequencies. Further studies will be devoted to analyse the performance of other
sparseness indicators.

It is worth noting that sparseness can be tackled in a different manner by estimat-
ing the probabilities of the contingency table with alternative methods. Awidespread
practice for compensating for empty cells consists in adding a constant to all the cells
(frequently used constants are 1/c, 0.5 or

√
n/c, being c the number of cells in the

table). Such procedure has an unpleasant feature, in fact, adding a constant smooths
toward independence. An alternative approach, consists in collapsing adjacent cate-
gories for one or more variables; unfortunately it requires arbitrary choices and may
not solve the problem; in addition the risk is that of decreasing the degree of asso-
ciation between variables. A viable method can be that of applying a pseudo-Bayes
estimator of cells’ probabilities ([3], Sect. 12) that combines the sample proportions
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with the model based estimators, being consistent even when the model does not
hold [1]. In practice, the relative frequency of the generic cell h is estimated by a
weighted average, thus introducing a sort of smoothing of the data. This method is
not analysed in this paper, further studies will be dedicated to the evaluation of this
alternative approach.

2.3 Estimating Cell Bounds

In the usual SM setting, estimating the bounds for cells in the contingency table
Y × Z , requires an estimation of the probabilities:

ph··, p j |h, pk|h; h = 1, . . . , H ; j = 1, . . . , J ; k = 1, . . . , K . (4)

When A and B are simple random samples, (4) are estimated by considering the
corresponding sample proportions ([6], p. 24):

p̂h = nA
h.. + nB

h..

nA + nB
, p̂ j |h = nA

hj.

nA
h..

, p̂k|h = nB
h.k

nB
h..

(5)

where nA
hj. and nB

h.k are the observed marginal tables from A and B respectively, for
h = 1, . . . , H ; j = 1, . . . , J ; k = 1, . . . , K .

On the contrary, when dealing with data form complex sample surveys involving
stratification and/or clustering, (4) have to be estimated by considering the following
expressions ([8], Sect. 13.5):

p̂h = nA N̂ A
h../N̂A + nB N̂ B

h../N̂B

nA + nB
, p̂ j |h = N̂ A

hj.

N̂ A
h..

, p̂k|h = N̂ B
h.k

N̂ B
h..

(6)

with h = 1, . . . , H ; j = 1, . . . , J ; k = 1, . . . , K ; where the generic population
count NS

t is estimated by:

N̂ S
t =

nS∑

i=1

wS
i I (ui = t) (7)

wherewS
i is the survey weight assigned to the i th unit of sample S (usually reflecting

inclusion probabilities in the sample corrected to compensate for nonresponse, cov-
erage errors, etc.), while I () = 1 if the condition within parentheses is satisfied and
0 otherwise. Sometimes, for practical purposes, the survey weights are rescaled to
sum up to the sample size, i.e. N̂ S = ∑nS

i=1 w
S
i = nS; this rescaling has no effect on

the estimates of the relative frequencies (6). In any case, in complex samples surveys
the practice of estimating cells relative frequencies by discarding the survey weights
should be avoided because it may provide inaccurate results.
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3 Application and Results

In the following sub-sections two applications are presented, both cases refer to
artificial data.

Case 1 Bayesian networks are used to generate two artificial samples of size
nA = nB = 5000 sharing 3 binary X . The complete Bayesian network for Y , Z , X1,
X2, and X3 in Fig. 1 shows that there is a direct relationship betweenY and Z , and that
they are dependent on X1, X2, and X3, in fact we notice that Z and X3 are marginally
independent, but they are dependent conditionally on X2. The latter two networks
in Fig. 1 show the marginal Bayesian networks (once Z and Y are marginalized for
the pictures in the centre and the left, respectively) and denote that Y (Z ) depends
directly only on X1(X2) when Z (Y ) is missing. The intensity of the association
of the variables measured through the Cramer’s V is medium (around 0.6) between
(X1, X2), and (Y, Z), while is quite weak between the other variables (around 0.1).

Application of the step (0) of the procedure in Sect. 2.2 suggests that X1 should
be considered as the first one (d̂ = 0.1703), then X3(d̂ = 0.1911) and finally X2

(d̂ = 0.2012).
The procedure for selecting thematching variables selects X1, X2, X3 asmatching

variables (see Table1), however X1 alone is able to achieve quite the best score in
terms of average width of the uncertainty bounds; adding X2 does not improve the
result and just a negligible decrease of d̂ is achieved by considering all the X variables.

Case 2. As a toy example we refer to two artificial samples, nA = 3009 and
nB = 6686, generated from the EU-SILC data (data available in [7]). The ordering of
the 7 common variables obtained by applying the step (0) of the procedure presented
in Sect. 2.2 is reported in Table2.

In practice, step (1) starts considering “c.age” (classes of age), and then adding
the variables following the order presented in Table2 until four of the available
X variables are cross-classified, as shown in Table3. The selected combination is
reported in bold. In fact, after adding “area5” (geographical macro regions) the

Fig. 1 Simulated example: complete (left), Y |X (centre) and Z |X (right) models

Table 1 Output of the procedure for selecting the matching variables

X variables No. of X n̄ d̂

X1 1 1250 0.1703

X1 × X3 2 625 0.1703

X1 × X2 × X3 3 312.5 0.1699
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Table 2 Initial ordering of X variables. Step(0) of the algorithm

c.age edu7 marital sex hsize5 area5 urb

No. of
categories

5 7 3 2 5 5 3

d̂ 0.0878 0.1056 0.1085 0.1097 0.1120 0.1133 0.1159

Ranking 1 2 3 4 5 6 7

Table 3 X variables, average width d̂ and average cell counts n̄

Combination of X (XD) No. of X n̄ d̂

c.age 1 86.0 0.0878

c.age× sex 2 43.0 0.0781

c.age× sex× edu7 3 6.1 0.0714

c.age× sex× edu7× area5 4 1.2 0.0608

c.age× sex× edu7× area5× hsize5 5 0.2 0.0411

minimum of the average cell counts passes from 1.2 to 0.2, a value smaller than the
decided stopping rule (n̄ > 1).

By comparing the results with those that would be obtained by exploring all the
possible combinations of the X variables (not reported here), it comes out that the
procedure fails to identify the “best” model having four of the available X variables,
but the identified combination is the one that precedes immediately the best solution:
“c.age×edu7×area5×hsize5” (d̂ = 0.0575).

The results confirm that the larger is the number of matching variables the lower
is the uncertainty, but this reasoning is jeopardized by the fact that many matching
variables increase the sparseness of the contingency tables; as can be seen in Table3,
passing from four to five X , the estimated average width of bounds shows a non-
negligible decrease from 0.0608 to 0.0411, but the average cell frequency goes below
1 unit per cell.

4 Conclusions

The proposed procedure goes in the direction indicated by [4] avoiding separate
analysis on the data sources at hand. The procedure is fully automatic and searches
for the best combination of the available categorical common variables; it appears
successful in identifying the various subsets of 1, 2, 3, etc. “best” matching variables.
The stopping rule based on the sparseness of the tablesmeets the parsimony principle,
however it is likely to be further refined to better catch the sparseness problem. On the
other hand, further investigation is needed to understand whether the procedure can
be further improved by introducing different methods for estimating (4) in presence
of sparse tables (pseudo-Bayes estimator, etc.) and/or changing theway ofmeasuring
the overall uncertainty.
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Beyond Fuzzy, Possibilistic and Rough:
An Investigation of Belief Functions
in Clustering

Thierry Denœux and Orakanya Kanjanatarakul

Abstract In evidential clustering, uncertainty about the assignment of objects to
clusters is represented by Dempster-Shafer mass functions. The resulting cluster-
ing structure, called a credal partition, is shown to be more general than hard, fuzzy,
possibility and rough partitions, which are recovered as special cases. Different algo-
rithms to generate a credal partition are reviewed. We also describe different ways
in which a credal partition, such as produced by the EVCLUS or ECM algorithms,
can be summarized into any of the simpler clustering structures.

1 Introduction

Clustering is one of the most important tasks in data analysis and machine learning.
It aims at revealing some structure in a dataset, so as to highlight groups (clusters) of
objects that are similar among themselves, and dissimilar to objects of other groups.
Traditionally, we distinguish between partitional clustering, which aims at finding a
partition of the objects, and hierarchical clustering, which finds a sequence of nested
partitions.

Over the years, the notion of partitional clustering has been extended to several
important variants, including fuzzy [1], possibilistic [2], rough [3, 4] and evidential
clustering [5–7]. Contrary to classical (hard) partitional clustering, in which each
object is assigned unambiguously and with full certainty to a cluster, these variants
allow ambiguity, uncertainty or doubt in the assignment of objects to clusters. For
this reason, they are referred to as soft clustering methods, in contrast with classical,
hard clustering [8].
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Among soft clustering paradigms, evidential clustering describes the uncertainty
in the membership of objects to clusters using the formalism of belief functions [9].
The theory of belief functions is a very general formal framework for representing and
reasoning with uncertainty. Roughly speaking, a belief function can be seen as a col-
lection of sets with corresponding masses, or as a non additive measure generalizing
a probability measure. Recently, evidential clustering has been successfully applied
in various domains such as machine prognosis [10], medical image processing [11,
12] and analysis of social networks [13].

Because of its generality, the theory of belief functions occupies a central position
among theories of uncertainty. The purpose of this paper is to show that, similarly, the
evidential paradigm occupies a central position among soft clustering approaches.
More specifically, we will show that hard, fuzzy, possibilistic and rough clustering
can be all seen as special cases of evidential clustering. We will also study different
ways in which a credal partition can be summarized into any of the other hard of soft
clustering structures to provide the user with more synthetic views of the data.

The rest of this paper is structured as follows. In Sect. 2, the notion of credal
partition will first be recalled, and algorithms to construct a credal partition will be
reviewed. The relationships with other clustering paradigms will then be discussed
in Sect. 3. Finally, Sect. 4 will conclude the paper.

2 Credal Partition

Wefirst recall the notion of credal partition in Sect. 2.1. In Sect. 2.2, we briefly review
the main algorithms for constructing credal partitions.

2.1 Credal Partition

Assume that we have a set O = {o1, . . . , on} of n objects, each one belonging to
one and only one of c groups or clusters. Let Ω = {ω1, . . . ,ωc} denote the set of
clusters. Ifwe know for surewhich cluster each object belongs to,we can give a (hard)
partition of the n objects. Such a partition may be represented by binary variables
uik such that uik = 1 if object oi belongs to cluster ωk , and uik = 0 otherwise.

If objects cannot be assigned to clusters with certainty, then we can quantify
cluster-membership uncertainty by mass functions m1, . . . ,mn , where each mass
function mi is a mapping from 2Ω to [0, 1], such that ∑A⊆Ω mi (A) = 1. Each mass
mi (A) is interpreted as a degree of support attached to the proposition “the true
cluster of object oi is in A”, and to no more specific proposition. A subset A of Ω

such that mi (A) > 0 is called a focal set of mi . The n-tuple m1, . . . ,mn is called a
credal partition [6].
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Fig. 1 Butterfly dataset (a) and a credal partition (b)

Example 1 Consider, for instance, the “Butterfly” dataset shown in Fig. 1(a). This
dataset is adapted from the classical example byWindham [14], with an added outlier
(point 12). Figure1(b) shows the credal partition with c = 2 clusters produced by the
Evidential c-means (ECM) algorithm [7]. In this figure, the massesmi (∅),mi ({ω1}),
mi ({ω2}) andmi (Ω) are plotted as a function of i , for i = 1, . . . , 12. We can see that
m3({ω1}) ≈ 1, which means that object o3 almost certainly belongs to cluster ω1.
Similarly,m9({ω2}) ≈ 1, indicating almost certain assignment of object o9 to cluster
ω2. In contrast, objects o6 and o12 correspond to two different situations of maximum
uncertainty: for object o6, we have m6(Ω) ≈ 1, which means that this object might
as well belong to clusters ω1 and ω2. The situation is completely different for object
o12, for which the largest mass is assigned to the empty set, indicating that this object
does not seem to belong to any of the two clusters.

2.2 Evidential Clustering Algorithms

Three main algorithms have been proposed to generate credal partitions:

1. The EVCLUS algorithm, introduced in [6], applies ideas fromMultidimensional
Scaling (MDS) [15] to clustering: given a dissimilarity matrix, it finds a credal
partition such that the degrees of conflict between mass functions match the
dissimilarities, dissimilar objects being represented by highly conflicting mass
functions; this is achieved by iterativelyminimizing a stress function. A variant of
EVCLUS allowing one to use prior knowledge in the form of pairwise constraints
was later introduced in [16], and several improvements to the original algorithm
making it capable of handling large dissimilarity datasets have been reported
in [17].
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2. The Evidential c-means (ECM) algorithm [7] is a c-means-like algorithm that
minimizes a cost function by searching alternatively the space of prototypes and
the space of credal partitions. Unlike the hard and fuzzy c-means algorithms,
ECM associates a prototype not only to clusters, but also to sets of clusters. The
prototype associated to a set of clusters is defined as the barycenter of the proto-
types of each single cluster in the set. The cost function to be minimized insures
that objects close to a prototype have a high mass assigned to the correspond-
ing set of clusters. A variant with adaptive metrics and pairwise constraints was
introduced in [18], and a relational version for dissimilarity data (called RECM)
has been proposed in [19].

3. The Ek-NNclus algorithm [5] is a decision-directed clustering procedure based
on the evidential k-nearest neighbor (EK -NN) rule [20]. Starting from an initial
partition, the algorithm iteratively reassigns objects to clusters using the EK -NN
rule, until a stable partition is obtained.After convergence, the clustermembership
of each object is described by a Dempster-Shafer mass function assigning a mass
to each cluster and to the whole set of clusters. The mass assigned to the set of
clusters can be used to identify outliers. The procedure can be seen as searching
for the most plausible partition of the data.

Each of these three algorithms have their strengths and limitations, and the choice
of an algorithm depends on the problem at hand. Both ECM and EK -NN are very
efficient for handling attribute data. EK -NN has the additional advantage that it can
determine the number of clusters automatically, while EVCLUS and ECM produce
more informative outputs (withmasses assigned to any subsets of clusters). EVCLUS
was shown to be very effective for dealing with non metric dissimilarity data, and the
recent improvements reported in [17] make it suitable to handle very large datasets.

3 Relationships with Other Clustering Paradigms

In this section, we discuss the relationships between the notion of credal partition
and other clustering structures. In Sect. 3.1, we show that hard, fuzzy, possibilistic
and rough partitions are all special kinds of credal partitions. In Sect. 3.2, we describe
how a general credal partition can be summarized in the form of any of the simpler
structures mentioned previously.

3.1 Generality of the Notion of Credal Partition

The notion of credal partition is very general, in the sense that it boils down to sev-
eral alternative clustering structures when the mass functions composing the credal
partition have some special forms (see Fig. 2).
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Hard partition: If all mass functions mi are certain (i.e., have a single focal set,
which is a singleton), then we have a hard partition, with uik = 1 ifmi ({ωk}) = 1,
and uik = 0 otherwise.

Fuzzy partition: If themi are Bayesian (i.e., they assign masses only to singletons,
in which case the corresponding belief function becomes additive), then the credal
partition is equivalent to a fuzzy partition; the degree of membership of object i
to cluster k is uik = mi ({ωk}).

Fuzzy partition with a noise cluster: A mass function m such that each focal set
is either a singleton, or the empty set may be called an unnormalized Bayesian
mass function. If each mass function mi is unnormalized Bayesian, then we can
define, as before, the membership degree of object i to cluster k a uik = mi ({ωk}),
but we now have

∑c
k=1 uik ≤ 1, for i = 1, . . . , n. We then have mi (∅) = ui∗ =

1 − ∑c
k=1 uik , which can be interpreted as the degree of membership to a “noise

cluster” [21].
Possibilistic partition: If the mass functions mi are consonant (i.e., if their focal

sets are nested), then they are uniquely described by their contour functions

pli (ωk) =
∑

A⊆Ω,ωk∈A

mi (A), (1)

which are possibility distributions. We then have a possibilistic partition, with
uik = pli (ωk) for all i and k. We note that maxk pli (ωk) = 1 − mi (∅).

Rough partition: Assume that each mi is logical, i.e., we have mi (Ai ) = 1 for
some Ai ⊆ Ω , Ai �= ∅. We can then define the lower approximation of cluster ωk

as the set of objects that surely belong to ωk ,

ωL
k = {oi ∈ O|Ai = {ωk}}, (2)

and the upper approximation of cluster ωk as the set of objects that possibility
belong to ωk ,

ωU
k = {oi ∈ O|ωk ∈ Ai }. (3)

The membership values to the lower and upper approximations of cluster ωk are
then, respectively, uik = Beli ({ωk}) and uik = Pli ({ωk}). If we allow Ai = ∅ for
some i , then we have uik = 0 for all k, which means that object oi does not belong
to the upper approximation of any cluster.

3.2 Summarization of a Credal Partition

A credal partition is a quite complex clustering structure, which often needs to be
summarized in some way to become interpretable by the user. This can be achieved
by transforming each of the mass functions in the credal partition into a simpler
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Fig. 2 Relationship between credal partitions and other clustering structures

representation. Depending on the representation used, each of clustering structures
mentioned in Sect. 3.1 can be recovered as different partial views of a credal partition.
Some of the relevant transformations are discussed below.

Fuzzy and hard partitions: A fuzzy partition can be obtained by transforming
each mass function mi into a probability distribution pi using the plausibility-
probability transformation defined as

pi (ωk) = pli (ωk)∑c
�=1 pli (ω�)

, k = 1, . . . , c, (4)

where pli is the contour function associated to mi , given by (1). By selecting, for
each object, the cluster with maximum probability, we then get a hard partition.

Fuzzy partition with noise cluster: In the plausibility-probability transformation
(4), the information contained in the masses mi (∅) assigned to the empty set is
lost. However, this information may be important if the dataset contains outliers.
To keep track of it, we can define an unnormalized plausibility transformation
as πi (ωk) = (1 − mi (∅))pi (ωk), for k = 1, . . . , c. The degree of membership of
each object i to cluster k can then be defined as uik = πi (ωk) and the degree of
membership to the noise cluster as ui∗ = mi (∅).

Possibilistic partition: A possibilistic partition can be obtained from a credal par-
tition by computing a consonant approximation of each of the mass functions mi

[22]. The simplest approach is to approximatemi by the consonant mass function
with the same contour function, in which case the degree of possibility of object
oi belonging to cluster ωk is uik = pli (ωk).

Rough partition: As explained in Sect. 3.1, a credal partition becomes equivalent
to a rough partition when all mass functions mi are logical. A general credal
partition can thus be transformed into a rough partition by deriving a set Ai of
clusters from each mass function mi . This can be done either by selecting the
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focal set Amax = argmaxA⊆Ω m(A) with maximum mass as suggested in [7], or
by the interval dominance decision rule

A∗(mi ) = {ω ∈ Ω|∀ω′ ∈ Ω, pl∗i (ω) ≥ m∗
i ({ω′})}, (5)

where pl∗i and m
∗
i are defined, respectively, by pl∗i = pli/(1 − mi (∅)) and m∗

i =
mi/(1 − mi (∅)). If the interval dominance rule is used, we may account for the
mass assigned to the empty set by defining Ai as follows,

Ai =
{

∅ if mi (∅) = maxA⊆Ω mi (A)

A∗(mi ) otherwise.
(6)

4 Conclusions

The notion of credal partition, as well as its relationships with alternative clustering
paradigmshave been reviewed.Basically, each of the alternative partitional clustering
structures (i.e., hard, fuzzy, possibilistic and rough partitions) correspond to a special
form of the mass functions within a credal partition.We have also examined different
ways inwhich a credal partition can be transformed into a simpler clustering structure
for easier interpretation. As they build more complex clustering structures, credal
clustering algorithms such as EVCLUS and ECM tend to be more computationally
demanding than alternative algorithms. This issue can be dealt with by using efficient
optimization algorithms and by restricting the form of the credal partition, making it
possible to apply evidential clustering to large datasetswith large numbers of clusters.
First results along these lines have been reported in [17].
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Small Area Estimation in the Presence
of Linkage Errors

Loredana Di Consiglio and Tiziana Tuoto

Abstract In Official Statistics, interest for data integration has been increasingly
growing, though the effect of this procedure on the statistical analyses has been
disregarded for a long time. In recent years, however, it is largely recognized that
linkage is not an error-free procedure and linkage errors, as false links and missed
links can invalidate standard estimates. More recently, growing attention is devoted
to the effect of linkage errors on the subsequent analyses. For instance, Samart and
Chambers (Samart in Aust N Z J Stat 56, 2014 [14]) consider the effect of linkage
errors onmixed effectmodels. Their proposal finds a natural application in the context
of longitudinal studies, where repeated measures are taken on the same individuals.
In official statistics, the mixed models is largely exploited for small area estimation
to increase detailed information at local level. In this work, an EBLUP estimator that
takes account of the linkage errors is derived.

1 Data Integration and Impact of Linkage Errors

In Official Statistics, interest for data integration has been increasingly growing,
though the effect of this procedure on the statistical analyses has been disregarded
for a long time. In recent years, however, it is largely recognized that linkage is not an
error-free procedure and linkage errors, as false links and missed links can invalidate
standard estimates.More recently, growing attention is devoted to the effect of linkage
errors on the subsequent analyses. Chambers [2] reviews the original work by Neter
et al. [9] and its extensions byScheuren andWinkler [15, 16] and byLahiri andLarsen
[8]. Moreover Chambers [2] suggests a Best Unbiased Estimator and its empirical
version and proposes a maximum likelihood estimator with application to linear
and logistic regression functions. An extension to sample-to-register linkage is also
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suggested. Samart and Chambers [14] consider the effect of linkage errors on mixed
effect models, extending the settings in Chambers [2] and suggesting linkage errors
adjusted estimators of variance effects under alternative methods. Their proposal
finds a natural application in the context of longitudinal studies, where repeated
measures are taken on the same individuals. In official statistics, the mixed models is
largely exploited for small area estimation to increase detailed information at local
level. Administrative data can be used to augment information collected on sample
surveys, in order to expand auxiliary information and improve the model fitting for
small area estimation. Linkage of external sources with basic statistical registers
as well as with sample surveys can be carried out on different linkage scenarios.
Di Consiglio and Tuoto [3] showed a sensitivity analysis for different alternative
linkage error scenarios in the linear and logistic regression settings. In this work, we
extend the analysis on the effects of linkage errors on the predictors based on a unit
level mixed models for small area estimation when auxiliary variables are obtained
through a linkage procedure with an external register. Under the assumption that
false matches only occur within the same small area, the effect of linkage errors
on small area predictors is given both by the effects on estimation of the fixed and
random components, and by the effect on the variance matrix of the linked values
and by the erroneous evaluation of covariates mean(s) on the set of sampled units
(and consequently of unobserved population units). Following Chambers [2] in the
sample-to-register linkage setting, in particular, assuming that sampling does not
change the outcome of the linkage process, an EBLUP estimator based on the derived
distribution of the linked values is obtained.

2 Linkage Model and Linkage Errors

The most widespread theory for record linkage is given by Fellegi and Sunter [5].
Given two lists (i.e. a register and a sample), say L1 and L2, of size N1 and N2,
the linkage process can be viewed as a classification problem where the pairs in the
cartesian productΩ = ((i, j), i ∈ L1 and j ∈ L2) have to be assigned into two subsets
M and U, independent and mutually exclusive, such that M is the link set (i = j)
while U is the non-link set (i �= j). At the end of the linkage procedure, two kinds
of errors may occur: the false match or false positive, when a pair is declared as
a link but actually the two records are referred to different units, and the missing
match or false negative, when the pair is declared as a non-link but actually the two
records are referred to the same units. A good linkage strategy aims to minimize both
probabilities of false match and missing match or, at least, to keep under assigned
acceptable values. The probabilistic record linkage [5, 7] provides as output an
evaluation of the probability of being a correct link given that the link is assigned:

λij = m(γij)P(M∗)/(m(γij)P(M∗) + u(γij)P(U∗)), (1)



Small Area Estimation in the Presence of Linkage Errors 167

where m(γij) is the conditional probability of the comparison vector γ between
i ∈ L1 and j ∈ L2 given that the pair belongs to set M and u(γij) is the conditional
probability of the comparison vector γ given that the pair belongs to set U. These
quantities λij will be exploited for adjusting the linkage errors in the small area
estimation framework described in the next section.

3 Small Area Estimation Based on Unit Linear Mixed
Model

When sample size is not big enough, the standard estimators are often not reliable
enough to produce estimators at finer level of (geographical) detail (for a review, see
[10]). The EBLUP estimators based on a unit level models was firstly proposed by
Battese et al. [1] to improve the reliability of estimators exploiting the relationship
between the target variable and external auxiliary variables.

3.1 The Unit Linear Mixed Model

Let us suppose that the population units can be grouped in D domains, let Y be the
target variable and X auxiliary variables observed on the same units. Let us assume
a linear mixed relationship between the target variable and the covariates

yid = XT
idβ + ud + eid, i = 1, . . . ,Nd, d = 1, . . . ,D, (2)

where β is a p-dimensional vector of fixed regression coefficients and ud , d =
1, . . . ,D, are the i.i.d. random variables related to the specific or domain con-
tributions, with E(ud) = 0 and V (ud) = σ2

u and independent errors eid i.i.d. with
E(eid) = 0 and V (eid) = σ2

e . In matrix notation

Y = Xβ + Zu + e

where Z is the area design matrix, Z = Blockdiag(Zd = 1Nd ; d = 1 · · ·D). The
total variance is then V (Y) = V = σ2

uZZ
T + σ2

e I or V = diag(Vd; d = 1 · · ·D)

with Vd = σ2
e INd + σ2

uZdZ
T
d . When σ2

u and σ2
e are known, the BLUP estimator of

a small area mean or totals Ȳd , is given by

ˆ̄YBLUP
d = 1

Nd

⎛

⎝
∑

i∈sd
yid +

∑

i∈scd
ŷBLUPid

⎞

⎠ (3)
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where ŷBLUPid = XT
id β̂ + ûd with

β̂ = (XTV−1X)−1XTV−1y

and û = σuZTV (y − Xβ̂). An EBLUP is obtained by plugging the estimates ˆsigmau
and σ̂e in the previous expressions, (see Sect. 3.3).

3.2 The Unit Linear Mixed Model Under RL

When the covariates X and target variable Y are not observed on the same set of
data, but are obtained for example by linking a sample with a register, the use of the
previous relationships on the observed datamay produce biased estimates. Following
[2] and [14], for unit i let y∗

id be the value of the variable matched with the value Xid .
Let Z2 be a blocking variable, measured without error on both the Y-register and the
X-register, that partitions both registers so that all linkage errors occur within the
groups of records defined by the distinct values of this variable. An exchangeable
linkage errors model can be defined by assuming that the probability of correct
linkage is the same for all records in a block, q, q = 1, . . . ,Q. Under the following
standard assumptions [2]:

1. the linkage is complete, i.e. the X-register and Y-register refer to the same popula-
tion and have no duplicates, so the smallest Y-register is contained in the biggest
X-register

2. the linkage is one to one between the Y - and X-registers
3. exchangeable linkage errors model, see [2]

then, omitting the blocking index q for simplicity of notation, the observed vari-
able is a permutation of the true one Y∗ = AY where A is a random permutation
matrix such that E(A|X) = E. Being Pr(aii = 1|X) = Pr(correct linkage) = λ and
Pr(aij = 1|X) = Pr(uncorrect linkage) = γ then the expected value can be written
as:

E = (λγ)I + γ11T (4)

Samart and Chambers [14] proposed a ratio type corrected estimator for β

β̃R = (XTV−1EX)−1XTV−1y∗ (5)

Furthermore, by exploiting the relationship between the variable y∗ and X a BLUE
can be obtained as

β̃BLUE = (XTETΣEX)−1XTETΣy∗ (6)
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by taking into account the derived variance of the observed y∗

V (Y∗) = Σ−1 = σ2
uK + σ2

e I + V (7)

where
V ≈ diag((1 − λ)(λ(fi − f̄ ) + f̄ (2) − f̄ 2)) (8)

being fi = Xiβ̂ and K a function of the number of areas within a block, block-group
sizes and λs (see [14]).

3.3 Estimation of Variance Components (ML)

As σu and σe are unknown, they have to be estimated; common methods are the
methods of moments, ML or REML [6, 17]. Here we restrict to the ML, assuming
multivariate normal distribution. In general, there are no analytical expressions for
the variance component estimators obtained by usingML. Samart andChambers [14]
use the method of scoring as an algorithm to obtain the estimators. In the standard
case where the variables are recorded on the sample, we have y ∼ N(Xβ; V ) For
the record linkage case, recall that y∗ ∼ N(Ef ;Σ). The scoring algorithm can be
applied on the derivatives of the previous likelihood. Estimation of β is then obtained
by replacing the variance components estimates and clearly an iterative process is
needed.

3.4 Small Area Estimation Under Linkage Errors

For the purpose of small area estimation, the scenario to be considered is the linkage
of a sample with a register. Here we assume that the register is complete, i.e. neither
duplicates and coverage issues occur. This setting is considered in Chambers [2]
when the second data set is included in the first one. Following the proposed frame-
work, we also assume that the record linkage process is independent of the sampling
process. Chambers [2] assumes that an hypothetical linkage can be performed before
the sampling process. Under these conditions, the matrices E, V and Σ depend only
on the blocking variables and linkage errors, so the use of sampling weights is not
needed. Besides these assumptions, as specified in Sect. 3.2 we assume an exchange-
able linkage errors model, i.e. the linkage errors occur only within the same block
where records have the same probability of being correctly linked. Finally, we assume
that small area coincides with blocks. In this case, of course,

ˆ̄Y∗ = ˆ̄Y
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and we can exploit the distribution of Y∗ to obtain the EBLUP estimator:

ˆ̄Y∗BLUP
d = 1

Nd

⎛

⎝
∑

i∈sd
y∗
id +

∑

i∈scd
ŷBLUPid

⎞

⎠ (9)

where ŷBLUPid = EXβ̃BLUE + ûd and û = σuZTΣ−1(y∗ − EXβ̃BLUE). For computa-
tional ease the sum of the predicted values of non sampled units can be obtained
as the difference of the total population predicted values and sum of the sample pre-
dicted values. Note that given the assumptions, the populationmatrix E is known. The
EBLUP estimators are given by replacing in (9) the obtained estimators of regression
coefficients and variance components.

4 Results on Simulated Data

From the fictitious population census data [4] created for the ESSnet DI, which
was an European project on data integration run from 2009 to 2011, two different
populations A and B were created on the basis of the following linear mixed models

A: X ∼ [1,Uniform(0, 1)]; β = [2, 4]; u ∼ N(0, 1); e ∼ N(0, 3); Realized
Var(u) = 0.60

B: X ∼ [1,Uniform(0, 1)]; β = [2, 4]; u ∼ N(0, 3); e ∼ N(0, 1); Realized
Var(u) = 0.65.

The population size is over 20000 records for both A and B; they also contain
linking variables (names, dates of birth, addresses) for individual identification with
missing values and typos, mimicking real situation. The small domains are defined as
aggregation of postal codes, assigning 18 areas. For each population, 100 replicated
samples of size 1000 were independently randomly selected without replacement;
finally on each replicated setting, the sample containing the Y variable was linked
with the register reporting the X variables, represented by the two populations. The
linkage was performed by means of the batch version of the software RELAIS [11]
implementing the probabilistic record linkage model [5, 7]. Two different scenarios
were considered, characterized by two different sets of linking variables: in Scenario
1 we use Day,Month and Year of Birth; in Scenario 2 we adopt Day and Year of Birth
and Gender. In the first scenario, variables with the higher identifying power were
used for the linkage with respect to the second one, producing less linkage errors (in
terms of both missing and false links) affecting the results. Table1 summaries the
results of the linkage procedures for the 100 replications, illustrating the number of
declared matches (average) and statistics for the probability of false link λ and the
probability of missing link.
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Table 1 Linking results

Scenario Declared
matchesa

Min (λ) Mean (λ) Max (λ) Min (prob of
missing link)

1 937 0.000 0.028 0.25 0.063

2 957 0.000 0.14 0.357 0.043
aaverage values in 100 replications

Table 2 Average relative absolute differences of benchmark estimates and those obtained by esti-
mators C and D

Scenario POP A POP B

Estimates C Estimates D Estimates C Estimates D

1 0.005 0.004 0.002 0.001

2 0.007 0.007 0.006 0.002

In the simulation, four estimators are considered for comparison:

(A) the EBLUP with X and Y observed on the same dataset, i.e. no linkage is
assumed in this setting

(B) the EBLUP on the subset of linked records, in this setting we reduce the sample
size to the linked record but we do not introduce linkage errors; this is our
benchmark.

(C) the naïve EBLUP on the subset of linked records, considering X and Y observed
on two different dataset (without adjustment error linkage)

(D) the adjusted EBLUP estimator

In Table2 the average relative absolute difference is reported. As it is apparent
in our scenarios the EBLUP is not on average very sensitive to the resulting linkage
errors, however the adjusted estimator always improves the naïve estimator. The
regression coefficients and the variance components estimates are not reported but
the improvement is in the same direction.

5 Concluding Remarks and Future Works

Wehave examined the possibility to adjust theEBLUP for small area estimationbased
on a unit level mixed model when the auxiliary variables come from a register that
has to be linked with the sample reporting the target variable. The proposal produces
a slight improvement, when the magnitude of linkage errors is relatively low (in
the worst scenario, the average in areas and replications is less than 15%). One can
expect a more sensitive improvement with higher linkage error levels. The proposed
adjustment is still subject to very restrictive assumptions, such as the exchangeability
of linkage errors, the small areas coincident to blocks for the linkage process and
finally the assumption of known linkage errors. In presence of estimation of the latter
ones, the bias-variance trade-off of the adjustment should be assessed.



172 L. Di Consiglio and T. Tuoto

References

1. Battese GE, Harter RM, Fuller WA (1988) An error-components model for prediction of crop
areas using survey and satellite data. J Am Stat Assoc 83:28–36

2. Chambers R (2009) Regression analysis of probability-linked data. In: Official Statistics
Research Series, vol 4

3. Di Consiglio L, Tuoto T (2014) When adjusting for bias due to linkage errors: a sensitivity
analysis. In: European Conference on Quality in Official Statistics (Q2014), Vienna, 3–5 June
2014

4. Essnet DI- McLeod, Heasman, Forbes (2011) Simulated data for the on the job training. http://
www.cros-portal.eu/content/job-training

5. Fellegi IP, Sunter AB (1969) A theory for record linkage. J Am Stat Assoc 64:1183–1210
6. Harville DA (1977) Maximum likelihood approaches to variance component estimation and to

related problems. J Am Stat Assoc 72:320–338
7. Jaro M (1989) Advances in record linkage methodology as applied to matching the 1985 test

census of Tampa, Florida. J Am Stat Assoc 84:414–420
8. Lahiri P, LarsenMD (2005)Regression analysiswith linked data. JAmStatAssoc 100:222–230
9. Neter J, Maynes ES, Ramanathan R (1965) The effect of mismatching on the measurement of

response errors. J Am Stat Assoc 60:1005–1027
10. Rao JNK (2003) Small area estimation. Wiley, New York
11. RELAIS 3.0 Users Guide (2015). http://www.istat.it/it/strumenti/metodi-e-strumenti-it/

strumenti-di-elaborazione/relais
12. Samart K (2011) Analysis of probabilistically linked data. Ph.D. thesis, School ofMathematics

and Applied Statistics, University of Wollongong
13. Samart K, Chambers R (2010) Fitting linear mixed models using linked data, centre for statis-

tical and survey methodology. University of Wollongong, Working Paper 18-10
14. Samart K, Chambers R (2014) Linear regression with nested errors using probability-linked

data. Aust N Z J Stat 56
15. Scheuren F, Winkler WE (1993) Regression analysis of data files that are computer matched

Part I. Surv Methodol 19:39–58
16. Scheuren F, Winkler WE (1997) Regression analysis of data files that are computer matched-

part II. Surv Methodol 23:157–165
17. Searle SR, Casella G, McCulloch CE (2006) Variance components. Wiley, New York
18. Tancredi A, Liseo B (2011) A hierachical Bayesian approach to record linkage and population

size problems. Ann Appl Stat 5:1553–1585

http://www.cros-portal.eu/content/job-training
http://www.cros-portal.eu/content/job-training
http://www.istat.it/it/strumenti/metodi-e-strumenti-it/strumenti-di-elaborazione/relais
http://www.istat.it/it/strumenti/metodi-e-strumenti-it/strumenti-di-elaborazione/relais


A Test for Truncation Invariant Dependence

F. Marta L. Di Lascio, Fabrizio Durante and Piotr Jaworski

Abstract A test is proposed to check whether a random sample comes from a trun-
cation invariant copula C , that is, if C is the copula of a pair (U, V ) of random
variables uniformly distributed on [0, 1], then C is also the copula of the condi-
tional distribution function of (U, V | U ≤ α) for every α ∈ (0, 1]. The asymptotic
normality of the test statistics is shown. Moreover, a procedure is described to sim-
plify the approximation of the asymptotic variance of the test. Its performance is
investigated in a simulation study.

1 Introduction

Let (X,Y ) be a random pair describing a phenomenon of interest. To obtain a para-
metricmodel for the joint distribution function H of (X,Y ), a frequently used starting
point is Sklar’s recipe, which states that H can be expressed as

H(x, y) = C(F(x),G(y)) for all (x, y) ∈ R
2, (1)

in terms of a unique bivariate copulaC and the univariate margins F andG. A copula
model is hence obtained when suitable univariate distribution functions F and G are
chosen in (1), and a copula is selected from a specific family F .

Therefore, it is of interest in many applications to check whether the unknown
copulaC belongs to the given classF . In the literature, several tests of this type have
been developed for F being the family of Archimedean copulas [3, 13], extreme-
value copulas [2, 9, 16], or for other classes of copulas with special dependence
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properties [1, 11, 12]. Here, we consider a novel family of copulas introduced in
[5] (see also [4, 6, 14, 15]). Copulas belonging to this class, here denoted by CLT,
are characterized in terms of left truncation invariant property, i.e. if a random pair
(U, V ) is distributed according to a copulaC ∈ CLT, thenC is also the copula related
to the conditional distribution function of (U, V | U ≤ α) for every α ∈ (0, 1].

Specifically, our main purpose is to derive a procedure to test the null hypothesis
H0 : C ∈ CLT against the alternative H1 : C /∈ CLT. As for many goodness-of-fit tests
reviewed by [7, 8], the proposed procedure is based on pseudo-observations. As
known, such approach is justified because, the pseudo-observations, similarly as
copulas, are invariant under strictly increasing transformations of X and Y .

The manuscript is organized as follows. Section2 presents the main testing proce-
dure (as described in [4]) and discusses the asymptotic normality of the test. Section3
presents a way to approximate the variance of the test statistics.

2 The Testing Procedure

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from a random pair (X,Y ) with
distribution function H with unknown continuous margins F and G, and unknown
copula C . Let Fn and Hn be the empirical distribution functions given by

Fn(x) = 1

n

n∑

i=1

1l(Xi ≤ x), Hn(x, y) = 1

n

n∑

i=1

1l(Xi ≤ x,Yi ≤ y) (2)

for all x, y ∈ R.
We set I = E (H(X,Y )) and J = E (F(X)H(X,Y )). Moreover, we consider

their empirical counterparts

In = 1

n

n∑

i=1

Hn(Xi ,Yi ), Jn = 1

n

n∑

i=1

Fn(Xi )Hn(Xi ,Yi ). (3)

Here we present a test in order to check

H0 : C ∈ CLT versus H1 : C /∈ CLT,

Now, as a consequence of the results in [4], if (X,Y ) is distributed according to
H = C(F,G), then, under the null hypothesis that C ∈ CLT, the vector

RH (X,Y ) =
(
F(X),

C(F(X),G(Y ))

F(X)

)

is formed by independent components. Thus, in order to perform a test for the null
hypothesis of interest, one can consider the following null hypothesis
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H∗
0 : RH (X,Y ) is formed by independent components.

As H0 implies H∗
0 , we reject H0 if H∗

0 is rejected. Following [4], the test for the null
hypothesis H∗

0 can be performed by considering the test statistic

Tn = √
n

(
3

2
Jn − In

)
. (4)

In [4], it is shown that, under H0 and suitable regularity assumptions, for every δ > 0

lim
n→∞P(|Tn| < δ) = 0,

i.e. the test statistics is consistent.
Moreover, it can be also shown that the test statistics is also asymptotically normal.

Indeed, suppose that the arrow � denotes weak convergence in the sense of [17].
Under suitable regularity conditions, it can be proved that Fn = √

n(Fn − F) � F,
whereF(x) = β ◦ F(x) andβ is aBrownian bridge.Also,Hn = √

n(Hn − H) � H,
where H(x, y) = C(F(x),G(y)) and C is a C-Brownian bridge. Moreover, both
processes are centered Gaussian processes.

From [10, Sect. 3.5], it follows that
√
n(In − I ) and

√
n(Jn − J ) jointly converge

to

I = Z +
∫

H(x, y)dH(x, y), (5)

and

J = W +
∫

F(x)H(x, y)dH(x, y) +
∫

F(x)H(x, y)dH(x, y), (6)

where Zn = 1√
n

∑n
i=1{H(Xi ,Yi ) − I } � Z and Wn = 1√

n

∑n
i=1{F(Xi )H(Xi ,

Yi ) − J } � W. Finally, from [10, Sect. 3.5] the test statistics Tn is approximately
Gaussian for large n.

Thus, in order to determine the rejection and non-rejection regions of the test,
it would be enough to approximate the variance of Tn , which depends however on
the (unknown) copula. To overcome this problem, here we propose to calculate the
variance of Tn from a reference type of parametric family of copulas and, then, apply
it to the general class. Admittedly, this is just selecting one specific family out of the
whole class CLT under the null, but the selection shows reasonable performances, as
we will show. A natural candidate for such a reference distribution is the Clayton
family of copulas, as discussed in [4].

Under the previous setting, the testing procedure (at the significance level α) goes
as follows.

1. Given the i.i.d. observations (x1, y1), . . . , (xn, yn) from (X,Y ), calculate the cor-
responding empirical Kendall’s τ̂n and the value of the test statistics T̂n from
Eq. (4).
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2. Consider the approximate standard deviation σ̂n of the test statistics obtained
from the Clayton copula with Kendall’s τ equal to τ̂n . (In the next section we will
discuss how to approximate σ̂n .)

3. Reject H0 : C ∈ CLT if

∣∣∣∣
T̂n
σ̂n

∣∣∣∣ > φ−1
(
1 − α

2

)
,

where φ denotes the standard Gaussian cumulative distribution function.

The performance of the whole procedure is illustrated in a small simulation study
in Tables1 and 2. As it can be seen, the performance is generally acceptable, even
though the procedure is more restrictive than the results in [4]. However, notice that
this latter procedure is more expensive in terms of computational complexity.

Table 1 Rejection percentage (over N = 1000 replications) of H0 : C ∈ CLT (at different signif-
icance levels α) for a random sample of size n = 200 generated from different copulas with a
specified Kendall’s τ

True copula α = 0.01 α = 0.05 α = 0.1

τ =
0.25

τ =
0.5

τ =
0.75

τ =
0.25

τ =
0.5

τ =
0.75

τ =
0.25

τ =
0.5

τ =
0.75

Clayton 0.028 0.029 0.056 0.121 0.140 0.195 0.234 0.249 0.316

FrankLT 0.032 0.054 0.070 0.125 0.158 0.198 0.242 0.265 0.306

Surv Clayton 0.921 1.000 1.000 0.997 1.000 1.000 0.990 1.000 1.000

Surv Gumbel 0.041 0.231 0.695 0.135 0.483 0.886 0.238 0.628 0.952

Gumbel 0.727 0.999 1.000 0.884 1.000 1.000 0.935 1.000 1.000

Frank 0.304 0.920 0.997 0.551 0.982 0.999 0.680 0.994 1.000

Gaussian 0.288 0.923 0.999 0.540 0.975 1.000 0.702 0.991 1.000

t-Student 0.250 0.846 0.993 0.470 0.953 1.000 0.621 0.976 1.000

Table 2 Rejection percentage (over N = 1000 replications) of H0 : C ∈ CLT (at different signif-
icance levels α) for a random sample of size n = 200 generated from different copulas with a
specified Kendall’s τ

True copula α = 0.01 α = 0.05 α = 0.1

τ =
−0.25

τ =
−0.5

τ =
−0.75

τ =
−0.25

τ =
−0.5

τ =
−0.75

τ =
−0.25

τ =
−0.5

τ =
−0.75

Clayton 0.030 0.030 0.029 0.118 0.120 0.122 0.227 0.231 0.251

Cl0,1 0.035 0.035 0.037 0.127 0.126 0.139 0.231 0.245 0.234

Frank 0.487 0.964 0.997 0.738 0.995 1.000 0.842 0.999 1.000

Gaussian 0.453 0.959 0.999 0.747 0.997 0.998 0.999 1.000 1.000

t-Student 0.392 0.905 0.990 0.657 0.978 1.000 0.781 0.994 1.000
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3 Approximation of the Variance of the Test Statistics

In order to approximate the variance of the estimator Tn under the null hypothesis
that C ∈ CLT, we proceed as follows.

First, if we replace H by Hn and F by Fn in Eqs. (5) and (6), one ends up with

∫
H(x, y)dH(x, y) = 1√

n

n∑

i=1

{H̄(Xi ,Yi ) − I } + oP(1),

with H̄(x, y) = P(X ≥ x,Y ≥ y) being the survival function associated with H .
Similarly,

∫
F(x)H(x, y)dH(x, y) = 1√

n

n∑

i=1

{φ(Xi ) − J } + oP(1),

with φ(x) = E (H(X,Y )1l(X ≥ x)), and

∫
H(x, y)F(x)dH(x, y) = 1√

n

n∑

i=1

{ψ(Xi ) − J } + oP(1),

with ψ(x, y) = E (F(X)1l(X ≥ x,Y ≥ y)).
As a result,

√
n(In − I ) and

√
n(Jn − J ) have the same asymptotic distribution as

1√
n

n∑

i=1

{H(Xi ,Yi ) + H̄(Xi ,Yi ) − 2I }

and
1√
n

n∑

i=1

{F(Xi )H(Xi ,Yi ) + φ(Xi ) + ψ(Xi ,Yi ) − 3J },

respectively.
In particular, if we consider the pseudo-observations (U, V ) = (F(X),G(Y )),

the asymptotic variance of Tn can be approximated from the variance of

3

2
(F(X)H(X, Y ) + φ(X) + ψ(X,Y ) − 3J ) − (

H(X,Y ) + H̄(X,Y ) − 2I
)

=3

2

(
UC(U, V ) + φ(F−1(U )) + ψ(F−1(U ),G−1(V )) − 3J

)

− (
C(U, V ) + C̄(U, V ) − 2I

)
,

where C̄ is the survival function associated with C .
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Assume now thatC ∈ CLT. As a consequence of [4, Corollary 3.1], if (U, V ) ∼ C ,
then U and Z = C(U,V )

U are independent. In such a case, it follows that

φ(F−1(u)) = E(C(U, V ))1l(U ≥ u)) = E(UZ1l(U ≥ u))

= 1

2
(1 − u2)E(Z) = (1 − u2)E(C(U, V )) = (1 − u2)I.

Analogously,

ψ(F−1(u),G−1(v)) = E
(
F(X)1l

(
X ≥ F−1(u),Y ≥ G−1(v)

))

= E (U1l (U ≥ u, V ≥ v))

= E

(
U1l

(
U ≥ u, Z ≥ C(U, v)

U

))

= E

(
U1l (U ≥ u)E

(
1l

(
Z ≥ C(U, v)

U

) ∣∣∣U
))

= 1

2
(1 − u2) − E

(
U1l (U ≥ u) FZ

(
C(U, v)

U

))

= 1

2
(1 − u2) − E (U1l (U ≥ u) ∂1C(U, v)) ,

where the last equality follows from the properties of the distribution function
FZ (z) = P(Z ≤ z) given in [4, Theorem 3.1]. Thus

ψ(F−1(u),G−1(v)) = 1

2
(1 − u2) −

∫ 1

u
ξ∂1C(ξ, v)dξ

= 1

2
(1 − u2) − v + uC(u, v) +

∫ 1

u
C(ξ, v)dξ,

where the last expression is obtained using integration by parts. Thus, taking into
account the previous equalities and 3J = 2I , the asymptotic variance of Tn can be
estimated from the variance of

3UC(U, V ) − 2C(U, V ) +
(

−3

4
U 2 +U − 3IU 2

2

)
− V

2
+ I

2
− 1

4
+ 3

2

∫ 1

U
C(ξ, V )dξ.

(7)

For example, if C is the independence copula, then the standard deviation of the
previous expression is easily verified to be equal to

√
10/60. For bivariate Clayton

copulas Cθ with Kendall’s τ spanning from −0.99 to 0.99 the standard deviation is
shown in Table 3 (values obtained byMonte-Carlo procedures with 107 replications).
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Table 3 Standard deviation
(SD) derived from Eq. (7) for
a bivariate Clayton copula Cθ

with different parameter
values

θ τ SD

−0.9950 −0.99 0.0091

−0.9744 −0.95 0.0198

−0.9189 −0.85 0.0323

−0.8571 −0.75 0.0394

−0.7879 −0.65 0.0440

−0.6667 −0.50 0.0486

−0.5185 −0.35 0.0517

−0.4000 −0.25 0.0530

−0.2609 −0.15 0.0535

−0.0952 −0.05 0.0532

0.1053 0.05 0.0521

0.3529 0.15 0.0503

0.6667 0.25 0.0480

1.0769 0.35 0.0450

2.0000 0.50 0.0390

3.7143 0.65 0.0308

6.0000 0.75 0.0239

11.3333 0.85 0.0157

38.0000 0.95 0.0057

198.0000 0.99 0.0026
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Finite Mixture of Linear Regression Models:
An Adaptive Constrained Approach
to Maximum Likelihood Estimation

Roberto Di Mari, Roberto Rocci and Stefano Antonio Gattone

Abstract In order to overcome the problems due to the unboundedness of the like-
lihood, constrained approaches to maximum likelihood estimation in the context of
finite mixtures of univariate and multivariate normals have been presented in the
literature. One main drawback is that they require a knowledge of the variance and
covariance structure. We propose a fully data-driven constrained method for estima-
tion of mixtures of linear regression models. The method does not require any prior
knowledge of the variance structure, it is invariant under change of scale in the data
and it is easy and ready to implement in standard routines.

1 Introduction

Let (yi , xxxi ) be a pair where, respectively, yi is the random variable of interest and
xxxi is a vector of K explanatory variables. Finite mixtures of conditional normal
distributions can be used to estimate clusterwise regression parameters in amaximum
likelihood context. In the literature, clusterwise linear regression is also known under
the names of finite mixture of linear regression model or switching regression model
[7, 20, 23, 24].

Let the conditional distribution of yi |xxxi be a finite mixture of linear regression
models, that is
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f (yi |xxxi ) =
G∑

g=1

pg fg(yi |xxxi ,σ2
g ,βββg) =

G∑

g=1

pg
1√
2πσ2

g

exp

(
− (yi − xxx

′
iβββg)

2

2σ2
g

)
,

(1)
where

(i) G is the number of clusters;
(ii) βββg is the vector of regression coefficients for the g-th cluster;
(iii) σ2

g is the variance term for the g-th cluster.

In addition let us denote the set of parameters to be estimated ψψψ ∈ ΨΨΨ ,
whereψψψ={(p1, . . . , pG;βββ1, . . . ,βββG;σ2

1, . . . ,σ
2
G) ∈ R

G(K+2) : p1 + · · · + pG = 1,
pg ≥ 0,σ2

g > 0 for g = 1, . . . ,G}. Unlike finitemixtures of other densities, the para-
meters of finitemixtures of linear regressionmodels, undermild regularity conditions
[15] are identified.

Let y1, . . . , yn , be a sample of independent observations, each respectively
observed alongside with a vector of regressors xxx1, . . . , xxxn . The likelihood function
can be formulated as

L(ψψψ) =
n∏

i=1

[ G∑

g=1

pg
1√
2πσ2

g

exp

(
− (yi − xxx

′
iβββg)

2

2σ2
g

)]
. (2)

Yet,MaximumLikelihood (ML) estimation is known to be problematic: whenever
a sample point coincides with the group’s center—i.e. its mean—and the group con-
ditional variance approaches zero, the likelihood function increases without bound
[5, 21]. Hence a global maximum cannot be found, and the EM algorithm tends to
produce the so-called degenerate solutions. Interestingly however, constraining the
mixture components to having a unique common variance, although being possibly
too restrictive, prevents the likelihood to degenerate.

We propose a constrained solution to the problem of degeneracy, which gener-
alizes the works of Ingrassia [18] and Ingrassia and Rocci [19], and apply it in the
context of clusterwise linear regression. We devise an estimation algorithm with
data-driven constraints, which are invariant under change of scale in the data and
are easy to implement within standard routines. In Sect. 2 we review the literature
on the topic of degeneracy, and some of the existing solutions. Section3 concludes,
describing the proposed estimation method.

2 The Issue of Degeneracy and How to Avoid It

The likelihood principle is based on the fact that the likelihood function embeds
the full information on the parameters contained in the sample. The unboundedness
of L(ψ) seems to cause a failure of the maximum likelihood principle. However
Kiefer [20] showed that, for switching regressions with components allowed to have
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component (cluster) specific variances, there is a sequence of estimators which is
consistent, asymptotically efficient and normally distributed. This corresponds to a
local maximizer in the interior of the parameter space. Yet, even if a local maximum
yielding a consistent estimator does exist, there can be several other local maxima.
Day [5] showed that, in mixtures with cluster-specific variances, each sample point
can generate a singularity in the likelihood function. Similarly, any pair of sam-
ple points being sufficiently close together can generate a local maximum—as will
triples, quadruplets, etc., which are sufficiently close. This gives rise to a number
of spurious maximizers [22], i.e. maximizers which are not good estimates. In the
multivariate case, as noticed by Ritter [25], spurious solutions arise from data points
being almost coplanar.

Problems related to degeneracy have been tackled by a large number of authors.
Possible remedies have conveyed into three main strands, (1) selecting the roots
obtained by standard maximum likelihood, or (2) transforming or (3) constraining
the likelihood function.

Concerning the first strand, Biernacki and Chrétien [2] provide a domain of attrac-
tion leading the estimating algorithm to degeneracy. They show that the speed at
which the algorithm converges to an infinite likelihood is at least exponential. As a
practical advice, they suggest to run the EM algorithm from different random starts.
Biernacki [1] proposes an asymptotic upper bound for the likelihood. Such bound
incorporates information on both the sample size and the components variances. Seo
and Kim [27] propose to run the EM from several random starts and, at each local
maximizer, evaluate the log-likelihood by taking out the k observations with the
highest log-likelihood. The root to be selected is the one with the highest k-deleted
log-likelihood. In a similar fashion, Ritter [25] proposes a method based on Gallegos
and Ritter [9], where scale balances are plotted against the likelihood value and a
method to select a valid solution among the several ones available is formulated.
Such proposal has most natural application in clustering in presence of outliers. Fur-
ther trimming-based methods can be found in the literature of robust model-based
clustering (e.g. [10–12]).

As for the second strand, Chen et al. [3], Ciuperca et al. [4], Eggermont and
LaRiccia [8], Green [13], Snoussi and Mohammad-Djafari [26], among the others,
address the issue of degeneracy by putting a penalty on the component variances and
maximizing the penalized log-likelihood. From a Bayesian perspective, this amounts
to incorporating a prior density for the component variances—typically Gamma, for
the univariate case, or Wishart, for the multivariate case. Ciuperca et al. [4] prove
existence and consistency of the estimator obtained via such penalizedmaximization.

As for the third strand, Hathaway [14] proposed relative constraints on the vari-
ances of the kind

min
i �= j

σ2
i

σ2
j

≥ c with c ∈ (0, 1]. (3)

Hathaway’s formulation of the maximum likelihood problem presents a strongly
consistent global solution, no singularities, a smaller number of spurious maxima.
Consistency and robustness of estimators of this sort was already pointed out by
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Huber [16, 17]. However, Hathaways constraints are very difficult to apply within
iterative procedures like the EM algorithm [6]. To solve this problem, Ingrassia [18]
formulated a sufficient condition such that Hathaway’s constraints hold, which is
easily implementable within the EM algorithm. He shows that constraints in (3) are
satisfied when it results

a ≤ σ2
g ≤ b, with g = 1, . . . ,G, (4)

where a and b are positive numbers such that a/b ≥ c. In this spirit Ingrassia and
Rocci [19] showed how Ingrassia [18] constraints can be implemented directly at
each iteration of the EM algorithm, preserving the monotonicity of the algorithm.

The constant c measures the scale balance. As pointed out by Ritter [25], a large
scale balance does not deviate dramatically from unique common variance. This
in turn means that there is some unknown transformation of the sample space that
transfers the component not too far from the common variance setting. High scale
variance is indeed valuable, nevertheless it has to be traded with fit.

Concerning the choice of the constant c in (3), among the others, Tan et al. [28],
and Xu et al. [29], establish the asymptotic properties of the constrained estimator
under a choice of c approaching zero as the sample size increases. Unfortunately, a
finite-sample choice of the constant c remains an open issue in all cited works. In
addition, as the scale of the data changes, the chosen constant might no longer be
appropriate.

In the present work, in the spirit of Hathaway [14] and of the series of papers
Ingrassia [18] and Ingrassia and Rocci [19], we formulate constraints where the
choice of the constant c is data driven. We exploit the unique common variance by
shrinking the component variances towards it, at a shrinkage rate equal to c. The
resulting constraints are showed to imply Hathaway’s. In addition the limitation of
lack of invariance of the constraints of Ingrassia and Rocci [19] under change of
scale in the response variable in overcome.

3 The Proposed Methodology

Starting form the set of constraints of Eq. (4), let c ∈ (0, 1] and let σ̄2 be the unique
common variance. The set of constraints proposed in this paper is as follows

√
c ≤ σ2

g

σ̄2
≤ 1√

c
,

or equivalently

σ̄2√c ≤ σ2
g ≤ σ̄2 1√

c
. (5)
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It is easy to show that (5) implies (3), whereas the converse is not necessarily true,
since (5) is more stringent than (3). That is

σ2
g

σ2
j

= σ2
g/σ̄

2

σ2
j/σ̄

2
≥

√
c

1/
√
c

= c.

The above constraints still require a choice for the scale balance. Notice that selecting
c via ML together with the mixture parameters would trivially yield a scale balance
far too optimistic and close to zero—since such a choice would allow for arbitrarily
small variances, thus letting the likelihood, or equivalently its log, approach infinity.

We propose to select c using cross-validation, implemented within the estimation
routine in Ingrassia and Rocci [19], adapted for clusterwise linear regression. The
procedure consists in maximizing with respect to c the cross-validated likelihood.
For a given c, this is computed as follows.

• Obtain a temporary estimate for the model parameters using the entire sample,
which is used as starting value for the cross-validation procedure.

• Partition the full data set into a test set and a training set.
• Estimate the parameters on the training set. Compute the contribution to the log-
likelihood of the test set.

• Run the previous two steps K times and sum the contributions of the test sets to
the log likelihood.

Such a method, using the constraints of Eq. (5), can be showed to be equivariant
under linear affine transformations of the response variable. This is a key property
which guarantees that, if the data are linearly transformed, the MLE is transformed
accordingly, and the posterior estimates do not change.

In order to assess its validity, the procedure has been tested with an extensive
simulation study and an empirical example. The results have shown that our con-
strained EM algorithm improves upon the unconstrained one and the standard unique
common variance, both in terms of accuracy of parameter estimation and clustering.
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AMultivariate Analysis of Tourists’
Spending Behaviour

Marta Disegna, Fabrizio Durante and Enrico Foscolo

Abstract According to the micro-economic theories regarding consumption
behaviour, the determinants affecting the joint propensity of purchasing different
goods and services are investigated. For this purpose, a copula-based model is sug-
gested to understand how different expenditure categories are dependent with each
other. A real application drawn from the tourism field illustrates the proposed ap-
proach and shows its main advantages. The findings could guide local practitioners
and managers in creating new promotional campaigns able to attract visitors willing
to pay on a bundle of goods and services correlated with each other.

1 Introduction

The economic impact of tourism flows is often essential for those regions/local com-
munities in which tourism is considered the major source of income [4]. In order to
improve the economic effects of tourism visits, appropriate data and tools are needed
to study the determinants of tourism expenditure and to analyse the tourists’ spending
behaviour in depth. In fact, as stated by [1], the use of micro-level makes it possible
to observe individual choices regarding the consumption of a tourism commodity or
service, and to analyse the heterogeneity and diversity that characterize individual
tourism consumption behaviour. In other words, adopting a micro-level approach en-
ables us to take both the consumer behaviour theory on the decision-making process
to purchase, and the neoclassical economic theory of budget constraint, into consid-
eration. In particular, we assume that the individual purchase process for a tourism
good or service is a two-decision process [5], i.e. the decision to purchase a good
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followed by the decision on how much to spend on it. The economic theory of bud-
get constraint is based on the assumption of weak separability between goods and
services that leads tourists to allocate their budgets in accordance with a three-stage
tourist spending process [6]: firstly, tourists decide how much of their budget to al-
locate for travel; secondly, they decide where to go on vacation; thirdly, they choose
how to allocate their tourist budget among various goods and services offered by
the selected destination. Obviously, the above-mentioned two economic theories are
not disjointed but overlap; this means that an individual has to make a two-stage
decision process in each stage comprised in the three-stage tourist spending process.
This study contributes to thismicro-economic tourism literature by analysing the first
stage of the decision-making process (i.e. the propensity of tourist purchase) and the
third stage of the budget allocation process (i.e. the allocation of tourist budget among
various goods and services offered by a destination) simultaneously. In particular,
this paper aims to analyse the factors involved in the decision to consume different
categories of tourism goods and services simultaneously. To this end, we exploit the
advantages of the copula-based models. Firstly, univariate Logit regressions are es-
timated per each category by considering a set of possible determinants. Then these
regressions are grouped together by means of a copula, which is a multivariate dis-
tribution function that aims at describing the dependence among random outcomes
in a flexible way [2]. The obtained model allows us to understand whether and how
the different purchase decisions are correlated with each other. The methodology is
illustrated by analysing a sample of international visitors to the South Tyrol region
(Northern Italy).

2 The Dataset

The dataset used in this study is drawn from the “International Tourism in Italy”
annual survey, conducted by Bank of Italy in order to determine the tourism balance
of payments. The survey offers detailed information on the amount of money (in
Euro) spent in the fivemain categories of a typical travel budget: (1) Accommodation
(Y1), which also includes expenditure on food and beverages within accommodation
premises; (2) Food&beverages (Y2) consumed outside accommodation premises; (3)
Shopping (Y3), including souvenirs, gifts, clothes, etc. purchased only for personal
use; (4) Internal transportation (Y4) within the visited destination, including purchase
of fuel; (5) Other services (Y5), likemuseums, shows, entertainment, etc. In this study
we focus on a subsample of 550 international visitors who spent time in the South
Tyrol region (Northern Italy) in 2011 and whose main purpose for the trip was
“tourism, holiday, leisure”.

The sample consists of 87% tourists (i.e. people who stayed at least one night in
South Tyrol), and 13% day-visitors. Most of the respondent stated they had incurred
costs for tickets and/or transportation fuel (77%), souvenirs, gifts, items of clothing,
or other things for personal use (69%), and food and beverages (87%) during the trip
to South Tyrol. By contrast, only 34% of the sample stated they had incurred costs
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for other services, like museums, shows, entertainments, guided excursions, rented
vehicles, or language courses. Table 1 describes the set of explanatory variables (x)
considered in this study.

3 The Methodology

Let Y j be a dichotomous variable describing the decision to spend (Y j = 1) or not
(Y j = 0) in the j-th tourism expenditure category, such as accommodation, trans-
portation, and shopping. This study aims at modelling the dependence among these
variables in order to understand whether the decision to spend in one category is
correlated with the decision to spend in other categories, given a set of explanatory
variables x. Thus, our main interest is to estimate the probability of spending in some
(or all) categories given the set of covariates related to the tourist, namely

P (Y1 ≤ y1, . . . ,Yd ≤ yd | x)

for y j ∈ {0, 1}. To this end, based on the copula approach,wemay assume the relation

P (Y1 ≤ y1, . . . ,Yd ≤ yd | x) = C [F1 (y1 | x) , . . . , Fd (yd | x)] , (1)

where F1 (· | x) , . . . , Fd (· | x) are suitable univariate model for, respectively, Y1 |
x, . . . ,Yd | x (e.g. Logit or Probit model), and C ∈ {Cθ }θ is a suitable copula be-
longing to a family indexed by the parameter θ ∈ R

d . An advantage of this copula
model is that the estimation of model parameters for the copula and the regressions
can be made in two steps.

1. Univariatemodels for eachmarginal distribution arefitted separately. In particular,
each Y j can be described by the logistic regression model specified as follows:

P(Y j = 1 | x) = exp
(
x� β j

)

1 + exp
(
x� β j

) (2)

where β j is the ( j + 1)−dimensional vector including the intercept and the re-
gression coefficients for the j−th variable. The estimation of themarginal models
is performed by maximum likelihood and the estimates β̂1, . . . , β̂d are obtained.
Notice that another binary model (e.g., Probit) may be used as well.

2. A suitable copula C is fitted from a parametric family. Specifically, we suppose
that C belongs to the family of multivariate Student t–copulas (including the
Gaussian copulas as limit cases). These copulas are characterized by a parameter
ν > 0, called degree of freedom, and by the parameters of a correlation matrix
(ρk�), k, � = 1, . . . , d. Now, supposing that ν is held fixed, the estimation of the
correlation parameters can be made by solving a system of d(d − 1)/2 equations
related to the score functions (for more details, see [3]).
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The copula model considered in the previous steps is quite convenient since the
adopted copula family enables us to describe both negative and positive pairwise as-
sociation among the randomvariables under consideration. This is particularly useful
in our context, since two purchase decisions may be both positively and negatively
correlated.

4 Model Results and Discussion

Following the two-step estimation method described in Sect. 3, five univariate logis-
tic regression models for each variable in Y = (Y1,Y2,Y3,Y4,Y5)

� were estimated
usingWhite’s robust standard variance-covariancematrix [7]. The regressionmodels
were first estimated considering the whole set of explanatory variables presented in
Table 1, then a stepwise procedure was adopted in order to sequentially drop the
variables that were non-significant or significant only in one out of five equations
for a significance level equal to α = 0.1. Table2 shows the reduced models obtained
after this backward procedure.

Once the univariate marginal had been fitted, a score test of independence was
performed to checkwhether the expenditures are conditionally uncorrelated given the
explanatory variables. Table3 shows the corresponding test statistics, denoted by zobs .
The resulting procedure should reject the assumption of conditional independence
if zobs is larger in absolute value than a critical value derived from the standard
Gaussian distribution. As can be seen, at a confidence level of 95%, we can reject
the assumption of independence between Accommodation (Y1) and Transportation
(Y4), and Accommodation (Y1) and Other services (Y5); while at a confidence level
of 90%, we can reject the assumption of independence between Food & Beverages
(Y2) and Other services (Y5), and Transportation (Y4) and Other services (Y5). The
other pairs, instead, seem to exhibit a weaker dependence.

Given the values of these statistics, for the sake of illustration we concentrated our
attention on the trivariate model formed by the expenditures related to Accommo-
dation (Y1), Transportation (Y4) and Other services (Y5), which exhibit a stronger
evidence of association. Table4 reports the composite likelihood estimates of the
pairwise correlations, along with their standard errors assuming either a Gaussian
copula or a Student t–copulawith degrees of freedom equal to 2, 5 or 10, respectively.

To exploit such a model, Fig. 1 reports the estimated probability of spending in
all the three considered categories by varying all the explanatory variables, while
the “Average level of satisfaction” is fixed at its average value. Analogously, Fig. 2
shows the estimated probabilities by varying all the explanatory variables except for
the “Number of paying travelers”, which equals its average value. In both cases, the
chosen copula model is the Gaussian copula. The models with a Student t–copula
have also been considered, but the results are similar and, hence, are not reported
here.

Regarding the country of origin, visitors from other foreign countries, exclud-
ing Germany and Austria, present higher estimated probabilities of spending on the



A Multivariate Analysis of Tourists’ Spending Behaviour 191

Table 1 Description of the explanatory variables

Independent variable Description Mean (Median)

Characteristics of the trip

Average level of satisfaction Average level of satisfaction
with some aspects of the
destination (values from 6 to
10)

8.334 (8.4)

Visit alone 1 = the respondent makes the
trip alone; 0 = otrw

0.116 (0)

Number of paying travellers Number of travellers who have
shared the expenditure of the
trip (discrete value from 1 to 7)

1.945 (2)

Number of times in Italy before

Zero 1 = the interviewee visits any
city in Italy for the first time; 0
= otrw

0.051 (0)

Up to 5 times 1 = been in Italy from 1 to 5
times before the interview; 0 =
otrw

0.229 (0)

More than 5 times 1 = been in Italy more than 5
times before the interview; 0 =
otrw (reference category)

0.720 (1)

Characteristics of the visitor

Country of origin

Austrian 1 = the respondent comes from
Austria; 0 = otrw

0.149 (0)

German 1 = the respondent comes from
Germany; 0 = otrw

0.618 (0)

Other country 1 = the respondent comes from
a foreign country; 0 = otrw
(reference category)

0.233 (0)

Employment status

Self-employed 1 = self-employed; 0 = otrw 0.191 (0)

Office worker 1 = office worker; 0 = otrw 0.225 (0)

Employee 1 = office employee; 0 = otrw 0.311 (0)

Retired 1 = retired person; 0 = otrw 0.220 (0)

Other 1 = other occupation; 0 = otrw
(reference category)

0.054 (0)

Age

Less than 35years old 1 = less than 35years old; 0 =
otrw (reference category)

0.131 (0)

35–44 years old 1 = 35–44 years old; 0 = otrw 0.267 (0)

45–64 years old 1 = 45–64 years old; 0 = otrw 0.425 (0)

More than 64years old 1 = 65years old and over; 0 =
otrw

0.176 (0)

Notes For the dichotomous variables, the mean value is to be intended as the proportion of 1’s in
the sample
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Table 2 Stepwise Logit regression coefficients

Independent
variables

Y a
1 Y b

2 Y c
3 Y d

4 Y e
5

Average level
of satisfaction

1.222∗∗∗
(0.205)

0.152
(0.179)

0.285∗∗
(0.122)

1.134∗∗∗
(0.174)

0.005
(0.121)

Retired −1.214∗∗
(0.358)

−0.337
(0.293)

0.250
(0.244)

−0.523∗∗
(0.254)

−0.267
(0.249)

Austrian −2.294∗∗∗
(0.500)

−1.395∗∗
(0.480)

−0.300
(0.301)

−1.904∗∗∗
(0.381)

−1.732∗∗∗
(0.353)

German 0.262
(0.485)

−0.765∗
(0.432)

0.865∗∗∗
(0.233)

−0.309
(0.339)

−1.214∗∗∗
(0.220)

Number of
paying
travelers

0.658∗∗
(0.290)

0.253∗
(0.148)

0.155
(0.114)

1.380∗∗∗
(0.363)

0.021
(0.099)

Constant −7.935∗∗∗
(1.680)

1.128
(1.492)

−2.341∗∗
(1.004)

−9.629∗∗∗
(1.435)

0.291
(1.032)

Notes ∗∗∗Significant at p � 0.01, ∗∗Significant at p � 0.05, ∗Significant at p � 0.1.White’s robust
standard variance-covariance matrix (White, 1980) has been used to estimate the robust standard
errors in brackets.
aN = 533; Wald χ2(5) = 93.38; Prob > χ2 = 0; Log pseudolikelihood = −118.35; McKelvey and
Zavoina’s R2 = 0.52
bN = 533; Wald χ2(5) = 17.83; Prob > χ2 = 0; Log pseudolikelihood = −185.41; McKelvey and
Zavoina’s R2 = 0.10
cN = 533; Wald χ2(5) = 39.99; Prob > χ2 = 0; Log pseudolikelihood = −307.86; McKelvey and
Zavoina’s R2 = 0.10
dN = 533; Wald χ2(5) = 95.66; Prob > χ2 = 0; Log pseudolikelihood = −187.74; McKelvey and
Zavoina’s R2 = 0.57
eN = 533; Wald χ2(5) = 42.96; Prob > χ2 = 0; Log pseudolikelihood = −320.18; McKelvey and
Zavoina’s R2 = 0.10

Table 3 Score test of independence (zobs ) among all possible pairs of response variables

Y2 Y3 Y4 Y5

Y1 1.4990 0.6304 3.2730 3.3255

Y2 −0.5398 −1.1045 1.9434

Y3 0.7583 −1.6897

Y4 1.8465

three expenditure categories simultaneously, regardless of the values assumed by the
explanatory variables. Austrian and retired tourists present the lowest estimated prob-
abilities of spending simultaneously. This latter finding can probably be explained
by geographical proximity that reduces the probability of their staying at least one
night in a South-Tyrolean accommodation for holiday purposes.

Figure1 reveals that the estimated propensity to spend onAccommodation, Trans-
portation, and on Other services simultaneously increases if the number of paying
travellers increases, but only up to four, because for a higher number of paying visi-
tors the propensity becomes quite stable. The Austrian tourists, however, show quite
different behaviour since the estimated probability assumes not negligible values
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Table 4 Estimates of the pairwise correlations and their standard errors in four meta-elliptical
copula models

Pair t2 t5 t10 Gaussian

ρ̂ SE ρ̂ SE ρ̂ SE ρ̂ SE

Y1–Y4 −0.8672 0.0015 −0.7117 0.0010 −0.6229 0.0004 −0.5145 0.0000

Y1–Y5 −0.8921 0.0040 −0.7621 0.0048 −0.6746 0.0053 −0.5614 0.0059

Y4–Y5 −0.8526 0.0050 −0.7392 0.0048 −0.6822 0.0038 −0.6200 0.0013

Fig. 1 Estimated
probabilities obtained taken
the “Average level of
satisfaction” fixed at its
average value and varying
the other explanatory
variables

Number of Paying Travellers

0.0
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0.2

0.3

0.4

1 2 3 4 5 6 7

Other

1 2 3 4 5 6 7

Austrian
0.0

0.1

0.2

0.3

0.4

German

Employed Retired

only when the paying travellers are more than two, until stable levels are reached
with bigger groups (i.e. six visitors). This finding is in line with the low estimated
probability of spending on the three expenditure categories simultaneously within
this group of visitors.

Focusing on Fig. 2 we observe how the estimated probability of spending on
Accommodation, Transportation, and Other services simultaneously is significantly
affected by the level of satisfaction with the destination. In fact, in the literature it was
often recognized that overall satisfaction stimulates higher profitability. TheAustrian
tourists show an increased estimated probability of spending only for very high
satisfaction levels, but, again, this is probably due to the low estimated probability
of spending as before.

To summarize, the highest estimated probabilities of spending on the three con-
sidered expenditure categories simultaneously was observed for employed foreign
tourists (excluding those from Germany or Austria), who are overall very satisfied
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Fig. 2 Estimated
probabilities obtained taken
the “Number of paying
travellers” fixed at its average
value and varying the other
explanatory variables
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with the destination, and who have visited the South-Tyrol in a large groups in which
6 or 7 are paying travellers.

5 Conclusions

In this paper a copula–based approach is suggested for studying tourism consump-
tion behaviour, i.e. the probability of spending at a given destination for different
goods and services. A sample of international visitors to the South Tyrol region
(Northern Italy) in 2011 was analysed to illustrate the main features of the method.
The results suggest that a stronger dependence exists between the consumption of
Accommodation, Transportation, and Other services; a weaker dependence exists
between Food and Beverages, Other services, and Transportation; while the hypoth-
esis of independence is not rejected (α = 0.1) for the other combinations of tourism
categories.

Focusing on the triplet of expenditures on Accommodation, Transportation, and
Other services, the paper illustrates how a set of explanatory variables affects the joint
probability of spending simultaneously on these three categories during the same trip.
Somehow surprisingly, age and employment status, apart from being retired, do not
significantly affect the joint consumption of these three commodities that is affected,
on the other hand, by the number of paying travellers, the country of origin of the
visitors, and the level of satisfaction towards the destination. To sum up, employed
foreign visitors (excluding those from Germany and Austria), who are overall very
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satisfied with the destination, and who have visited the South-Tyrol in a large group
in which 6–7 are paying travellers, present the highest estimated probabilities of
simultaneously spending on Accommodation, Transportation, and Other services.
Thus, our results highlight that the probability of spending on different tourism goods
and services simultaneously is affected not only by economic variables, but also by
other socio-demographic and psychographical variables; the level of satisfaction, in
particular, plays an important role.

Overall, the findings are of potential interest in tourism management in order to
knowhowvisitors decide to allocate their travel budget amongdifferent combinations
of tourism expenditure categories. Managing this information is fundamental for
policy makers and marketing experts in order to improve the touristic supply and
to implement specific marketing campaigns that offer a combination of different
services (meals, lodging, shopping, etc.) according to tourists’ preferences.
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Robust Fuzzy Clustering via Trimming
and Constraints

Francesco Dotto, Alessio Farcomeni, Luis Angel García-Escudero
and Agustín Mayo-Iscar

Abstract A methodology for robust fuzzy clustering is proposed. This methodol-
ogy can be widely applied in very different statistical problems given that it is based
on probability likelihoods. Robustness is achieved by trimming a fixed proportion
of “most outlying” observations which are indeed self-determined by the data set
at hand. Constraints on the clusters’ scatters are also needed to get mathematically
well-defined problems and to avoid the detection of non-interesting spurious clus-
ters. The main lines for computationally feasible algorithms are provided and some
simple guidelines about how to choose tuning parameters are briefly outlined. The
proposed methodology is illustrated through two applications. The first one is aimed
at heterogeneously clustering under multivariate normal assumptions and the second
one might be useful in fuzzy clusterwise linear regression problems.

1 Introduction

Hard clustering methods are aimed at searching meaningful partitions of a data set
into k disjoint clusters. Therefore, “0–1” membership values of observations to clus-
ters are provided. On the other hand, fuzzy clustering methods provide nonnegative
membership values which may generate overlapping clusters where every subject is
shared among all clusters [2, 28].

It is known that the presence of an (even a small) amount of outlying observations
can be problematic when applying traditional hard clustering methods. For instance,
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clearly differentiated clusters can be wrongly joined together and non-interesting
clusters (made up of only few outlying observations) can be detected. This is also
the case when applying many fuzzy clustering techniques. In fact, historically, the
fuzzy clustering community was the first one to face this robustness issue. This is
due to the fact that outliers may be approximately “equally remote” from all clusters
and, thus, they may have similar (but not necessarily small) membership values.

References on robustness in hard clustering can be found in [10] and in two
recent [7, 24] books. On the other hand, [1, 4] are good reviews on robust fuzzy
clustering. These proposals in fuzzy clustering include “noise clustering” [3], the
replacement of the Euclidean distance by other discrepancy measures [22, 31] or the
use of “possibilistic” clustering [19].

Trimming has a long history as a simple way to provide robustness to statistical
procedures. Its application in clustering needs to be done by taking into account the
possibility of discarding “bridge points”. A sensible way to perform trimming is to
let the data decide which observations must be trimmed such that we find an optimal
clustering for the non-trimmed ones. This is the “impartial” trimming approach
adopted when using the TCLUST method [9]. This approach was extended in [8]
to fuzzy clustering. This can be also seen as an extension of the “least trimmed
squares” approach in fuzzy clustering [17]. Discarding a fixed fraction of data was
also considered in [18].

One clear advantage of the methodology in [8] is that it allows the detection
of non-necessarily spherically-shaped clusters. Additionally, the use of likelihoods
in its statement allows its generalization to very different frameworks. The use of
procedures based on likelihoods is not new in fuzzy clustering (see, e.g., [12, 13, 25,
26, 30, 32]). Note also that some type of constraint on the clusters’ scatters is always
needed. Otherwise, the defining problem would become a mathematically ill-posed
one. By using these constraints, clusters with arbitrarily very different scatters are
not allowed. The use of procedures based on likelihoods is also useful in clusterwise
linear regression problems. Instead of detecting clusters just around centroids, it
is often interesting to detect clusters around linear structures [15, 21, 29] (hard
clustering) and [14, 16] (fuzzy clustering).

2 Methodology

Suppose that we have n observations {x1, . . . , xn} in R
p and we want to group

them into k clusters in a fuzzy way. Therefore, our aim is to obtain a collection of
nonnegative membership values ui j ∈ [0, 1] for all i = 1, . . . , n and j = 1, . . . , k.
A membership value 1 indicates that object i fully belongs to cluster j while a
0 membership value means that it does not belong at all to this cluster. However,
intermediate degrees of membership are allowed when ui j ∈ (0, 1). We consider
that an observation is fully trimmed if ui j = 0 for all j = 1, . . . , k.
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Let us assume that ϕ(·; θ j ) is a p-variate probability density function in R
p that

depends on a set of parameters θ j . Given a fixed trimming level α ∈ [0, 1) and a
fixed value of the fuzzifier parameter m > 1; a robust constrained fuzzy clustering
problem can be defined through the maximization of:

n∑

i=1

k∑

j=1

umi j log(p jϕ(xi ; θ j )), (1)

where the membership values ui j ≥ 0 are assumed to satisfy

k∑

j=1

ui j = 1 if i ∈ I and
k∑

j=1

ui j = 0 if i /∈ I,

for a subset I ⊂ {1, 2, . . . , n} with #I = [n(1 − α)], when θ = (θ1, . . . , θk) ∈ Θ ,
for a given parametric space Θ , and the p j ’s are positive weights satisfying∑k

j=1 p j = 1. Notice that ui1 = · · · = uik = 0 for all i /∈ I, so these observations do
not contribute to the summation in (1). The notation [·] is used for the floor function.

For instance, we may consider θ j = (m j , Sj ) and

ϕ(xi ; θ j ) = (2π)−p/2|Sj |−1 exp
( − (xi − m j )

′S−1
j (xi − m j )/2

)
. (2)

In a clusterwise linear regression framework, if xi = (yi , x′
i ) with yi ∈ R as the

response variable value and xi ∈ R
p−1 as the values taken by p − 1 explanatory

variables, then we can use θ j = (β j , s2j ) and

ϕ(xi ; θ j ) = (2πs2j )
−1/2 exp

( − (yi − x′
iβ j )

2/(2s2j )
)
. (3)

In the target function (1), clusters’ weights p j ’s are also included. This may be
seen as an “entropy regularization” [23]. Including these weights is interesting when
the number of clusters is misspecified, because some p j weights can be set close
to 0 when k is larger than the “true” number of clusters. Another possibility is to
exclude theseweights by directly assuming p1 = · · · = pk = 1/k. Thiswould shrink
assignments towards similar number of observations within each cluster.

It is important to note that the maximization of (1) when k > 1 is commonly an
ill-posed problem without any constraint on the scatter parameters. For instance, in
the two previous problems, we can see that (1) becomes unbounded when |Sj | → 0
or when s2j → 0. Additionally, these constraints are useful to avoid the detection
of non-interesting “spurious” solutions. Thus, in [8], it is proposed the use of an
eigenvalue ratio constraint

maxkj=1 maxp
l=1 λl(Sj )

minkj=1 minp
l=1 λl(Sj )

≤ c, (4)
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for a fixed constant c ≥ 1, where {λl(S)}pl=1 denote the p eigenvalues of the matrix S.
In a similar way, the use of (3) with the constraint

maxkj=1 s
2
j

minkj=1 s
2
j

≤ c, (5)

is proposed in [6] for fuzzy clusterwise linear clustering.
Therefore, if Θc ⊆ Θ denotes the restricted parametric space, the maximization

of (1) when θ ∈ Θc yields the FTCLUST method (ϕ(·) as in (2) and (4)) and the
FTCLUST-R method (ϕ(·) as in (3) and (5)).

3 Algorithm

The maximization of (1) under those constraints is not an easy problem. However, a
feasible algorithm can be given:

1. Initialization: The procedure is initialized several times by randomly selecting
initial θ j ’s parameters. This can be done by selecting k subsets of size p + 1 in
general position. Fitting k simple models within each subsample allows to obtain
these initial θ j ’s. Weights p1, . . . , pk with p j ∈ (0, 1) and summing up to 1 are
also randomly chosen.

2. Iterative steps: The following steps are executed until convergence or a maximum
number of iterations is reached.

2.1. Membership values: If max j=1,...,k p jϕ(xi ; θ j ) ≥ 1, then

ui j = I
{
p jϕ(xi ; θ j ) = max

q=1,...,k
pqϕ(xi ; θq)

}
(hard assignment),

with I {·} as the 0–1 indicator function. If maxq=1,...,k pqϕ(xi ; θq) < 1, then

ui j =
( k∑

q=1

(
log(p jϕ(xi ; θ j ))

log(pqϕ(xi ; θq))

) 1
m−1

)−1

(fuzzy assignment).

2.2. Trimmed observations: Let

ri =
k∑

j=1

umi j log(p jϕ(xi ; θ j )) (6)

and r(1) ≤ r(2) ≤ · · · ≤ r(n) be these values sorted. The observations to be
trimmed are those with indexes {i : ri < r([nα])}. The membership values for
those observations are redefined as ui j = 0, for every j if ri < r([nα]).
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2.3. Update parameters: Given the membership values obtained in the previous
step, the parameters are updated as

p j =
n∑

i=1

umi j

/ n∑

i=1

k∑

j=1

umi j ,

and the θ j ’s are updated bymaximizing (1)where the ui j ’s are those obtained
in the previous step. For instance, this maximization implies the use of
weightedmeans andweighted covariancematrices for the FTCLUSTand the
use ofweighted least squares for theFTCLUST-R (weightsumi j in both cases).
In more general frameworks, a weighted likelihood should be maximized in
a closed form or numerically.
It may happen that these so obtained θ j ’s do not fall within Θc. In this case,
as done in [8] and [6], it is needed to modify them properly by using opti-
mally truncated scatter parameters. I.e., if {dl} are these scatter parameters
(eigenvalues in the case of the FTCLUST and error terms’ variances in the
case of FTCLUST-R), then we use

[dl]t =
⎧
⎨

⎩

dl if dl ∈ [t, ct]
t if dl < t
ct if dl > ct

,

with t being a threshold value. Note that these truncated {dl} do satisfy the
required constraints and we only need to obtain the optimal threshold value
topt which maximizes (1). Sometimes, there are closed forms expressions
for obtaining topt (see [8] and [6]).

3. Evaluate objective function and return parameters yielding the highest (1).

This algorithm can be seen as a fuzzy extension of the classical EM algorithm [5]
where “concentration steps”, as those in [27], are also applied. Note also that it
naturally leads to a fuzzy clustering method with “high contrast” [25] (a compromise
between “hard” and “fuzzy” clustering methods).

4 Tuning Parameters

The proposed methodology exhibits high flexibility but the price we pay is that of
specifying several tuning parameters. In this section, we briefly discus about them
and we give some practical guidelines for their choice.
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Fuzzifier parameter: Parameter m serves to control the degree of fuzziness in
the obtained clustering. The m = 1 case provides “hard” or “crisp” clustering
membership values. In fact, with m = 1, we recover the TCLUST method in
[9] from the FTCLUST and the robust linear grouping in [11] (without second
trimming) from the FTCLUST-R. However, there is an unexpected problem if
m > 1 when applying fuzzy clustering approaches based on the maximum like-
lihood principle. This inherent problem has to do with the different effect of
m depending on the scale (i.e., when we replace xi by S · xi for a given con-
stant S). This problem can be addressed by choosing simultaneously m and the
scale of data (S) in such a way that we achieve some pre-specified “proportions
of hard assignments” and “relative entropy”. The relative entropy is defined as∑k

j=1

∑n
i=1 ui j log ui j/[n(1 − α)] log(k).

Trimming level: The trimming level α is the proportion of observations discarded.
Although an α value smaller than the true contamination level can be problem-
atic, we can see that α (slightly) higher than needed most of times provides good
θ j estimates. Then, wrongly trimmed observations can be recovered back. Addi-
tionally, given a tentative α value and r(1) ≤ · · · ≤ r(n) being the sorted ri values
in (6), we can check if this α was a sensible choice by seeing whether these r(i)
increase quickly when i/n < α and increase slowly when i/n > α.

Constraint on the scatter parameters: The constant c serves to control the degree
of “heteroscedasticity” in the obtained clusters. A large c value allows for more
different variances in the error terms when using FTCLUST-R. Large c values
also allows for more severe departures from sphericity in FTCLUST. The most
constrained case c = 1 (with α = 0 and “equal weights”) yields the classical
fuzzy k-means [2] when using FTCLUST and fuzzy k-regressions [14] when
using FTCLUST-R.

5 An Example

We conclude with an example of the application of FTCLUST to the “M5data”
set in [9] (available at the tclust package in the CRAN repository). This data
set is obtained from three normal bivariate distributions with different scales and
proportions (see the “true” cluster labels in Fig. 1a). One of the components strongly
overlaps with another one and there is a 10% background noise. Figure1b shows
the very bad results obtained when applying FTCLUST with α = 0 (all observations
are wrongly shared with similar membership values). We can see in Fig. 1c that the
use α = 0.1 and c = 1 gives better clustering results but it is unable to deal with the
very different cluster scatters. Finally, Fig. 1d shows the excellent results obtained
α = 0.1 and c = 50, i.e. a higher eigenvalues ratio constraint value.
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Fig. 1 a “M5data” dataset with the true assignments. Results of applying FTCLUST with α = 0
and c = 1 in (b), α = 0.1 and c = 1 in (c) and α = 0.1 and c = 50 in (d). A mixture of red, blue
and green colors with intensities proportional to the membership values are used to summarize the
clustering results and “◦” are the trimmed observations
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One-Factor Lévy-Frailty Copulas
with Inhomogeneous Trigger Rates

Janina Engel, Matthias Scherer and Leonhard Spiegelberg

Abstract Anewparametric family of high-dimensional, non-exchangeable extreme-
value copulas is presented. The construction is based on the Lévy-frailty construction
and stems from a subfamily of the Marshall–Olkin distribution. In contrast to the
classical Lévy-frailty construction, non-exchangeability is achieved by inhomoge-
neous trigger-rate parameters. This family is studied with respect to its distributional
properties and a sampling algorithm is developed. Moreover, a new estimator for its
parameters is given. The estimation strategy consists inminimizing themean squared
error of the underlying Bernstein function and certain strongly consistent estimates
thereof.

Keywords Extreme-value copula · Non-exchangeable Lévy-frailty model

1 Motivation

The Marshall–Olkin distribution, see [7], is a cornerstone in reliability theory and
quantitative risk management. It extends the exponential law to higher dimensions
by maintaining its lack-of-memory property. Its conditionally i.i.d. subfamily is
analyzed in [5] and an alternative construction—termed Lévy-frailty model—is
given. This model is generalized in the present manuscript by allowing for inhomo-
geneous intensity parameters for the exponentially distributed trigger variables. In
this way, non-exchangeability is achieved, which carries over to the induced survival
copula. Most parametric families of high-dimensional copulas are exchangeable,
explaining why research relaxing this assumption is necessary, see, e.g., [4, p.14] for
a multi-factor Lévy-frailty construction and [6] for applications.
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An important field of application for such models is portfolio-credit risk. The
default of a company can be triggered by two sources: (a) company-individual risk
factors—modeled by independent exponentially distributed trigger variables—and
(b) market risk factors—represented by a Lévy subordinator that is acting as (com-
mon) stochastic clock and thus introducing the underlying dependence structure. In
such a situation, non-homogeneous credit spreads can be achieved via individual
intensity-rate parameters.

The remainder of this article is organized as follows. Section2 explains the sto-
chastic model, derives the Lévy-frailty copula (LFC) with inhomogeneous trigger
rate parameters, summarizes its statistical properties, and provides a simulation algo-
rithm. Section3 introduces a new estimator for the parameters of the LFC. Finally,
Sect. 4 concludes.

2 Generalized One-Factor Lévy-Frailty Copulas

A new family of one-factor Lévy-frailty copulas, with a non-trivial Lévy subordi-
nator Λ = {Λt }t≥0 and inhomogeneous, exponentially distributed trigger variables
{Ek}k∈N with rate parameters {λk}k∈N as stochastic building blocks, is introduced.
A standard reference for Lévy subordinators is [1]. While Λ serves as a common
time-change, the individual trigger variables {Ek}k∈N model the arrival times of spe-
cific events. The sequence of random variables {Xk}k∈N is defined as the collection
of first-passage times of Λ across the thresholds {Ek}k∈N, i.e.

Xk := inf{t > 0 : Λt > Ek}, k ∈ N. (1)

A vivid example for this construction is to interpret Xk as the default time of a
risky asset that is triggered by the occurrence of shock Ek . So in general Xk can be
understood as a future time point at which an event related to asset k takes place.
The dependence structure lurking behind this construction is characterized in the
following.

Theorem 1 Let (Ω,F ,P) be a probability space on which the following indepen-
dent objects are defined. (a) The list E1, . . . , Ed of independent, exponential random
variables with Ek ∼ E(λk), (b)Λ = {Λt }t≥0 a Lévy subordinator with Laplace expo-
nent ΨΛ, i.e. E[exp(−xΛt )] = exp(−tΨΛ(x)), x, t ≥ 0, excluding Λt ≡ 0. Further,
we define the random variables

Xk := inf{t > 0 : Λt > Ek}, k = 1, . . . , d.

It follows that Xk ∼ E(ΨΛ(λk)) is exponentially distributed and the survival cop-
ula Ĉ of (X1, . . . , Xd) is given by

Ĉ(u1, . . . , ud) =
d∏

i=1

u

ΨΛ(
∑i

j=1 λπ( j))−ΨΛ(
∑i−1

j=1 λπ( j))
ΨΛ(λπ(i))

π(i) ,
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whereΨΛ

(∑0
j=1 λπ( j)

) = 0, i.e. the exponent of uπ(1) equals 1, andπ : {1, . . . , d} →
{1, . . . , d} is a permutation depending on −→u := (u1, . . . , ud), ΨΛ, and λ1, . . . ,λd

such that

u
1

ΨΛ(λπ(1))

π(1) ≤ u
1

ΨΛ(λπ(2))

π(2) ≤ · · · ≤ u
1

ΨΛ(λπ(d))

π(d) . (2)

Furthermore, the random vector (U1, . . . ,Ud) with joint distribution function Ĉ is
given by (exp (−ΨΛ (λ1) X1) , . . . , exp (−ΨΛ (λd) Xd)).

Proof We start with the marginal laws, showing Xk ∼ E(ΨΛ(λk)). Let t > 0

P (Xk > t) = E
[
E

[
1{Ek>Λt } | σ(Λt )

]] = E
[
e−λkΛt

] = e−tΨΛ(λk ).

The joint survival probability of (X1, . . . , Xd) can be derived similarly. Let t1 >

0, . . . , td > 0 and let π be a permutation such that tπ(d) ≤ tπ(d−1) ≤ · · · ≤ tπ(1) holds.
Then, by the tower rule and conditional independence

P (X1 > t1, X2 > t2, . . . , Xd > td)

= E

[
E

[
1{Λtπ(d)

<Eπ(d),...,Λtπ(2) <Eπ(2),Λtπ(1) <Eπ(1)} | σ(Λ)
]]

= E
[
P

(
Λtπ(d)

< Eπ(d) | σ(Λ)
) · . . . · P (

Λtπ(1) < Eπ(1) | σ(Λ)
)]

= E
[
exp

(−λπ(d)Λtπ(d)
− · · · − λπ(1)Λtπ(1)

)]

and we observe that Λtπ(2) = Λtπ(d)
+ (

Λtπ(d−1) − Λtπ(d)

) + · · · + (
Λtπ(2) − Λtπ(3)

)
and

Λtπ(1) = Λtπ(d)
+ (

Λtπ(d−1) − Λtπ(d)

) + · · · + (
Λtπ(1) − Λtπ(2)

)
, similarly for the other

involved quantities. So we continue with the derivation of the joint survival proba-
bility and find

· · · = E
[
exp

(−(λπ(d) + λπ(d−1) + · · · + λπ(1))Λtπ(d)

)]

· E [
exp

(−(λπ(d−1) + · · · + λπ(1))
(
Λtπ(d−1) − Λtπ(d)

))] · . . .

· E [
exp

(−(λπ(1))
(
Λtπ(1) − Λtπ(2)

))]

= E
[
exp

(−(λπ(d) + λπ(d−1) + · · · + λπ(1))Λtπ(d)

)]

· E [
exp

(−(λπ(d−1) + · · · + λπ(1))
(
Λtπ(d−1)−tπ(d)

))] · . . .

· E [
exp

(−(λπ(1))
(
Λtπ(1)−tπ(2)

))]

= exp
(

− tπ(d)ΨΛ(λπ(d) + λπ(d−1) + · · · + λπ(1))
)

· exp
(

− (tπ(d−1) − tπ(d))ΨΛ(λπ(d−1) + · · · + λπ(1))
)

· . . .

· exp
(

− (tπ(1) − tπ(2))ΨΛ(λπ(1))
)

=
d∏

i=1

exp
(

− tπ(i)

[
ΨΛ

( i∑

j=1

λπ( j)
) − ΨΛ

( i−1∑

j=1

λπ( j)
)])

.
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Table 1 Properties and dependence measures of the LFC Ĉ

Stable tail dependence function l(x1, . . . , xd ) :=
∑d

i=1 xπ(i)
ΨΛ

(∑i
j=1 λπ( j)

)
−ΨΛ

(∑i−1
j=1 λπ( j)

)

ΨΛ(λπ(i))

Pickands representation (d = 2) A(x) ={
1 + xψ

ΨΛ(λ2)
if x ≤ ΨΛ(λ2)

(ΨΛ(λ1)+ΨΛ(λ2))

1 + ψ(1−x)
ΨΛ(λ1)

if x >
ΨΛ(λ2)

(ΨΛ(λ1)+ΨΛ(λ2))

, where

ψ = ΨΛ

(
λ1 + λ2

) − ΨΛ

(
λ1

) − ΨΛ

(
λ2

)

Spearman’s ρ ρS = 3 · ΨΛ(λ1)+ΨΛ(λ2)−ΨΛ(λ1+λ2)
ΨΛ(λ1+λ2)+ΨΛ(λ1)+ΨΛ(λ2)

Kendall’s τ τ = ΨΛ(λ1)+ΨΛ(λ2)
ΨΛ(λ1+λ2)

− 1

Tail dependence UT DĈ =
ΨΛ(λ1)+ΨΛ(λ2)−ΨΛ(λ1+λ2)

ΨΛ(max{λ1,λ2}) , LT DĈ = 0

Next, we reconsider the survival functions uk := exp(−ΨΛ(λk)tk) and their inverses
tk = − log(u1/ΨΛ(λk )

k ), k = 1, . . . , d. This establishes that any decreasing ordering of

tπ(d) ≤ tπ(d−1) ≤ · · · ≤ tπ(1) is one-to-one to an increasing ordering of the u
1/ΨΛ(λπ(k))

π(k)
inEq. (2). This shows that plugging in themarginal survival functions into the claimed
copula yields the joint survival function and, thus, establishes the proof. �

To gain insight on the statistical properties of the derived LFC, Table1 gives an
overview of copula properties and dependence measures. Moreover, (X1, . . . , Xd)

belongs to the class of Marshall–Olkin (MO) distributions, see [7], since it fulfills
the multivariate lack-of-memory property. Hence, its survival copula is known to be
of extreme-value kind. A random vector (X1, . . . , Xd) with support on [0,∞)d on
a probability space (Ω,F ,P) satisfies the multivariate lack-of-memory property if

P
(
Xn1 > t1 + s, . . . , Xnk > tk + s | Xn1 > s, . . . , Xnk > s

) =
P

(
Xn1 > t1, . . . , Xnk > tk

)

for all 1 ≤ n1 < n2 < · · · < nk ≤ d and s, t1, . . . , tk ≥ 0, see [4, 7]. For a random
vector (X1, . . . , Xd) constructed via the inhomogeneous Lévy-frailty model, the
lack-of-memory property is intuitively clear by the lack-of-memory property of
the univariate trigger variables and the stationary and independent increments of
the Lévy subordinator. Formally, it can be shown as follows:
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P
(
Xn1 > t1 + s, . . . , Xnk > tk + s | Xn1 > s, . . . , Xnk > s

)

= P
(
Λt1+s < En1 , . . . , Λtk+s < Enk

)

P
(
Λs < min{En1 , . . . , Enk }

)

= Ĉ

⎛

⎝e−(tn1+s)ΨΛ(λn1), . . . , e−(tnk +s)ΨΛ(λnk ), 1, . . . , 1︸ ︷︷ ︸
d−k times

⎞

⎠ · A

= Ĉ
(
e−tn1ΨΛ(λn1), . . . , e−tnk ΨΛ(λnk )

)
· exp

⎛

⎝−sΨΛ

( k∑

j=1

λπ( j)
)
⎞

⎠ · A

= Ĉ
(
e−tn1ΨΛ(λn1), . . . , e−tnk ΨΛ(λnk )

)

= P
(
Xn1 > t1, . . . , Xnk > tk

)
, A :=

(
e−sΨΛ(λn1+···+λnk )

)−1
.

A versatile approach for constructing a random sample of (X1, . . . , Xd) and its
LFC is based on a path-wise simulation of the underlying Lévy subordinator, as given
by Algorithm 1. Since most Lévy subordinators cannot be simulated continuously,
a time discretization with mesh Δt is used for simulating the increments.

3 Parameter Estimation

This section presents a new method for estimating the parameter vector θ of the
underlying Bernstein function ΨΛ and the rate parameters λ1, . . . ,λd of the LFC.
So far, the only methodology available to estimate a high-dimensional LFC is given
in [2], this approach, however, is restricted to the exchangeable case λk ≡ 1. For
the margins Xk ∼ E (ΨΛ (λk)) an unbiased and consistent estimator for 1/ΨΛ (λk)

is directly given via the sample mean

1

n

n∑

i=1

X (i)
k

P−a.s.−→ 1

ΨΛ (λk)
, for n → ∞. (3)

Given these estimates, pseudo-samples of the LFC can be derived.

Lemma 1 Based on n i.i.d. samples of the LFC, an unbiased and strongly consistent
estimator for (ΨΛ

(
λs1 + · · · + λsk

) + 1)−1 is given by

1 − 1

n

n∑

i=1

Ũ (i) , (4)

where Ũ := max

{(
Us1

) 1

ΨΛ(λs1) , . . . ,
(
Usk

) 1

ΨΛ(λsk )
}

and ∅ 
= {
λs1 , . . . ,λsk

} ⊆
{λ1, . . . ,λd}.
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Function sample_LFC(function: LevyIncSim, function: BernsteinFct, vector: λ)

t ← 0
Λ ← 0
Δt ← 0.001

for k ← 1 to d do
Ek ← sample_EXP(λk)

end

while true do
Λ ← Λ + LevyIncSim(Δt)
t ← t + Δt
for k ← 1 to d do

if Λ > Ek and Xk not set then
Xk ← t

end
end
if all Xk set then

break
end

end

for k ← 1 to d do
Uk ← (exp ( − BernsteinFct(λk) ·Xk ))

end

return (U1, . . . ,Ud )

Algorithm 1: Simulation of a random sample (U1, . . . ,Ud) of the LFC. The
last loop can be skipped to return a sample of (X1, . . . , Xd) instead.

Proof From Glivenko–Cantelli, see [3, p. 20], it follows that

1

n

n∑

i=1

1{
min

{
E (i)
s1 ,...,E (i)

sk

}
≥Λ− log(u)

} n→∞−→ e−(λs1+···+λsk )Λ− log(u) . (5)

Taking the integral over u, applying the expectation on both sides of Eq. (5), and using
conditional independence yields the estimator. Unbiasedness can easily be shown by

E

[
1 − 1

n

n∑

i=1

Ũ (i)

]
= 1 −

∫ 1

0
u · ΨΛ

(
λs1 + · · · + λsk

)
uΨΛ(λs1+···+λsk )−1du

= 1

ΨΛ

(
λs1 + · · · + λsk

) + 1
.

Strong consistency follows from the strong law of large numbers. �

Based on the estimates of (ΨΛ

(
λs1 + · · · + λsk

) + 1)−1 for all non-empty{
λs1 , . . . ,λsk

} ⊆ {λ1, . . . ,λd}, the estimation strategy for the parameter(s) of the
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Lévy subordinator (denoted θ) and λ1, . . . ,λd is to minimize the Euclidean distance
between these points of estimation and the parameterized Bernstein function; i.e.

(
θ̂, λ̂1, . . . , λ̂d

)

n
:= argmin

(θ,λ1,...,λd )∈�

2d−1∑

k=1

⎛

⎝Ψ̂Sk − Ψθ

⎛

⎝
∑

s j∈Sk
λs j

⎞

⎠

⎞

⎠
2

, (6)

where Ψ̂Sk denotes the estimated points
{
ΨΛ

(∑
s j∈Sk λs j

)}

Sk⊆{λ1,...,λd }
of the Bern-

stein function. This is illustrated in Fig. 1.

Numerical results: The parameter estimation was tested via Monte Carlo sim-
ulation for 3-dim., 5-dim., and 10-dim. LFCs constructed from Poisson processes,
compound Poisson subordinators, and Gamma processes. All results show a simi-
lar performance of the estimation strategy. Table2 summarizes exemplary the mean

Fig. 1 Illustration of the estimation strategy. The estimation points aremarkedwith ∗, the Bernstein
function is interpolating these. The example corresponds to the numerical values from Table2

Table 2 Numerical results: parameter estimation for a 5-dim. LFC wrt. a Poisson process

θ λ1 λ2 λ3 λ4 λ5

True value 0.7622 0.8308 0.5497 1.2858 0.7537 0.5678

n = 50 Mean 0.7804 0.8454 0.5502 1.3122 0.7670 0.5735

SD 0.1468 0.2108 0.1362 0.3379 0.1930 0.1405

n = 100 Mean 0.7722 0.8372 0.5544 1.2980 0.7612 0.5666

SD 0.0978 0.1408 0.1005 0.2286 0.1276 0.1002

n = 1,000 Mean 0.7612 0.8346 0.5527 1.2930 0.7565 0.5708

SD 0.0301 0.0447 0.0308 0.0671 0.0403 0.0299
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and standard deviation of 1,000 iterations for the 5-dim. LFC built from a Poisson
process. In this particular example it seems that the method slightly overestimate the
parameter values. This, however, is not confirmed by other examples.

4 Conclusion

A new family of non-exchangeable extreme-value copulas was derived and analyzed
in some detail. The objective was to construct a copula that is intuitive, flexible, and
tractable while being non-exchangeable and satisfying the extreme-value property.
Such dependence models are of relevance for at least two reasons. First, most well-
known copulas are exchangeable, while real-world applications often impose the
need for non-exchangeable structures. Second, joint extreme events can have a mas-
sive impact in finance, insurance, or environmental science. The developed family of
LFC can provide an appropriate model for the analysis of such situations. Further-
more, a new estimation strategy for the parameters of the model was established.
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A Perceptron Classifier and Corresponding
Probabilities

Bernd-Jürgen Falkowski

Abstract In this paper a fault tolerant probabilistic kernel version with smoothing
parameter of Minsky’s perceptron classifier for more than two classes is sketched.
Moreover a probabilistic interpretation of the output is exhibited. The price one has
to pay for this improvement appears in the non-determinism of the algorithm. Never-
theless an efficient implementation using for example Java concurrent programming
and suitable hardware is shown to be possible. Encouraging preliminary experimental
results are presented.

Keywords Perceptron · Classifier for more than 2 classes · Bayes decision

1 Introduction

Recently the analysis of Big Data has become increasingly important. Indeed, im-
plementations of classifying and in particular ranking algorithms have been effected
in order to perform such diverse tasks as assessing the creditworthiness of banking
customers, supporting medical doctors in their diagnoses of patients, ranking drivers
according to their driving behaviour (as made possible by modern navigation sys-
tems) or establishing recommender systems for online shops. Here an improvement
of an old classification algorithm is sketched out that is appealing from an aesthetic
point of viewdue to its elegant simplicity, whilst in addition preliminary experimental
results indicate that it might well also be suitable for commercial applications.

In Sect. 2 the original algorithm is described together with a generalization for
more than 2 classes and a geometric interpretation is given. In Sect. 3.1 the kernel
trick is exhibited whilst in Sect. 3.2 the new algorithm is sketched out. In Sect. 4 a
probabilistic interpretation of the decision procedure is given. Preliminary experi-
mental results in Sect. 5 and a conclusion and outlook in Sect. 6 end the paper.
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2 The Perceptron

In their seminal work [9] Minsky and Papert describe a perceptron as a simple
classifier by means of a linear threshold function as follows.

Definition 1 Let Φ := {φ1,φ2, . . . ,φm} be a family of (generalized) predicates (in
general real valued functions defined on some set of objects). Then the truth-valued
function ψ (predicate) is a linear threshold function with respect to Φ if there exists
a real number θ and coefficients α(φ1), α(φ2), …, α(φm) such that ψ(x) = true if
and only if

∑m
i=1 α(φi )φi (x) > θ. Any predicate that can be defined in this way is

said to belong to L(Φ).

Now suppose that two disjoint sets of objects S+ and S− and a family of gener-
alized predicates Φ on S = S+ ∪ S− are given.Then one would like to construct a
predicate ψ in L(Φ) such that ψ(x) = true if and only if x ∈ S+, in other words one
would like to construct a ψ in L(Φ) that separates S+ and S−.

As shown by Minsky and Papert this can be done using the following sim-
ple program (the Perceptron Learning Algorithm, PLA), in which the conve-
nient scalar product notation A · �(x) instead of

∑m
i=1 α(φi )φi (x) is used and

A := (α(φ1), . . . ,α(φm)) and �(x) := (φ1(x), . . . ,φm(x)) are considered as ele-
ments of Rm, if a solution exists. (It is instructive to note here that the basic geomet-
ric concepts of length and angle may be described in purely algebraic terms using
the scalar product. Taking this into account and generalizing to higher dimensions
the solution may thus be considered in geometrical terms as a separating hyper-
plane. However, the set S is not required to carry a vector space structure although
in practical applications this will often be the case.).

Start Choose any value for A, θ.
Test If x ∈ S+ and A · �(x) > θ go to Test.

If x ∈ S+ and A · �(x) ≤ θ go to Add.
If x ∈ S− and A · �(x) < θ go to Test.
If x ∈ S− and A · �(x) ≥ θ go to Subtract .

Add Replace A by A + �(x) and θ by θ − 1. Go to Test.
Subtract Replace A by A − �(x) and θ by θ + 1. Go to Test.

Having found a suitable vector A� and a scalar θ� the decision procedure for
classification is given by:
Decide x ∈ S+ if and only if A� · �(x) > θ�.
If there exists a more general partition of S = ⋃q

i=1 Si , then one can still construct a
suitable classifier as follows.Given� as above, find a vectorA� := (A�

1,A
�
2, . . . ,A

�
q)

and a number θ∗ such that A�
i · �(x) > A�

j · �(x) + θ∗ for all j �= i if and only if
x ∈ Si . This problem can be reduced to the one described above by the following
definition.

Definition 2 Define a new vector �ij := (0, . . . , 0,�(x), 0, . . . , 0,−�(x), 0..., 0)
containing �(x) in the i-th place and �(x) in the j-th place.
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Indeed, this definition leads to the following program.

Start Choose any value for A, θ.
Test If x ∈ Si and A · �ij(x) > θ go to Test.

If x ∈ Si and A · �ij(x) ≤ θ go to Add.
If x ∈ Sj and A · �ij(x) < θ go to Test.
If x ∈ Sj and A · �ij(x) ≥ θ go to Subtract.

Add Replace A by A + �ij(x) and θ by θ − 1. Go to Test.
Subtract Replace A by A − �ij(x) and θ by θ + 1. Go to Test.

Note, in order to avoid confusion, that, by abuse of notation, the same A, θ as
above have been used.
Note also that having found a suitable A� and a scalar θ� the decision procedure for
classification is of course:
Decide x ∈ Si if and only if A� · �ij(x) > θ� for all j �= i .

The interesting point about this program is the fact that, as already noted by
Minsky and Papert, a straightforward error-correcting feedback results in a correct
algorithm. Of course, the required existence of a solution is by no means guaranteed
in general although, if suitable predicates are used, in many cases a solution can be
found, cf. [3]. However, nowadays good generalization properties of the perceptron
are of paramount importance and hence it is often preferable to admit a solution that
does not separate the Si completely, see also [2].

3 Kernel Learning

In order to avoid having to deal explicitly with extremely high dimensional spaces
that lead to unacceptable CPU times one applies the so-called kernel trick, cf. [11].

3.1 Positive Definite Kernels

If above one starts with the zero vector 0 for A in order to avoid technical complica-
tions then it is easily seen that finally A will have the form

A = (

m∑

k=1

b1k�(xk),
m∑

k=1)

b2k�(xk), . . . ,
m∑

k=1

bmk�(xk))

for some coefficients b jk . Hence A may equally well be described by the vector

b = (b1,b2, . . . ,bm)
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in terms of the bi j . Moreover

A · �ij(x) =
m∑

k=1

(bik − b jk)�(xk) · �(x) =
m∑

k=1

(bik − b jk)K (xk, x)

say, and the update operation is given by

A + �ij(xs) = (

m∑

k=1

c1k�(xk),
m∑

k=1

c2k�(xk), . . . ,
m∑

k=1

cmk�(xk))

where xs ∈ Si is assumed, and cis = bis + 1, c js = b js − 1 and elsewhere crl = brl .
This update operation may of course be described entirely in terms of the vectors b
and dij= (0, . . . , 0,di, 0, . . . , 0, dj , 0, . . . , 0) that has a 1 as the dis entry, a minus 1
as the d js entry and zeroes elsewhere by

b := b + dij

Thus one is lead to the following definition that formalizes the foregoing considera-
tions.

Definition 3 A real-valued function K : S × S → R is called a positive definite
kernel if for all choices of n, and x1, x2, , xn ∈ S the matrix with entries K (xi , x j ) is
symmetric and positive definite.

Given such a kernel an embedding � of S in a vector space H = R
S (the space

of functions from S to R) may always be constructed by setting �(x) := K(., x),
considering functions f = ∑m

j=1 γ j K (., x j ), and defining addition of such functions
and multiplication of such a function by a scalar pointwise. If the inner product is
defined by < �(x),�(y) >H := K (x, y) and extended by linearity, then a Hilbert
space H (the Reproducing Kernel Hilbert space) is obtained by completion as usual,
see e.g. [11]. Hence a positive definite kernel is seen to be the abstract version of
a scalar product. Of course, given a positive definite kernel one may now discard
the set of predicates entirely and arrive at the following algorithm constructing a
separating hyperplane, which is obtained from Minsky’s original version.

Start Choose any value for θ. and set brl = 0 for all r,l.
Test If xs ∈ Si and

∑m
k=1(bik − b jk)K (xk, xs) > θ go to Test.

If xs ∈ Si and
∑m

k=1(bik − b jk)K (xk, xs) ≤ θ go to Add.
If xs ∈ Sj and

∑m
k=1(bik − b jk)K (xk, xs) < θ go to Test.

If xs ∈ Sj and
∑m

k=1(bik − b jk)K (xk, xs) ≥ θ go to Subtract.
Add Replace b by b + dij and θ by θ − 1. Go to Test.
Subtract Replace b by b − dij and θ by θ + 1. Go to Test.
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The above program again computes a weight vector

b� = (b�
1,b

�
2, . . . ,b

�
m)

and a scalar θ� such that the decision procedure is given by:
Decide xs ∈ Si if and only if

∑m
k=1(b

�
ik − b�

jk)K (xk, xs) > θ� for all j �= i .

3.2 The Optimal Separating Hyperplane

The algorithm in Sect. 3.1 computes a separating hyperplane in the reproducing ker-
nel Hilbert space, if it exists. However, in this case it is desirable to arrive at a
hyperplane that is optimal in the sense that the minimum distance of any point from
the plane is maximal, cf. [12]. This can also be achieved by simple feedback if one
tests the “worst classified element” instead of an arbitrary one. Details are given
in the description of the Krauth/Mezard algorithm, cf. [8]. In fact this amounts to
minimizing the (square of the) norm of the weight vector

A = (

m∑

k=1

b1k�(xk),
m∑

k=1)

b2k�(xk), . . . ,
m∑

k=1

bmk�(xk))

given by

‖A‖2 =
q∑

k=1

m∑

i=1

m∑

j=1

bkibk j�(xi ) · �(x j ) =
q∑

k=1

m∑

i=1

m∑

j=1

bkibk j K (xi , x j )

where q is the number of classes, as can easily be seen. A detailed proof may be
found in [12].

This motivates the introduction of the target function E(D) + λ‖A‖2, where λ is
a smoothing parameter to be determined experimentally.

Here E(D)denotes the empirical riskwhichmaybe the number (ormore generally
cost) of errors whilst the second term describes the structural risk. Of course, now the
number of errors will not be zero in general at the minimum of the target function.
Nevertheless thePLA can bemodified so as to be still applicable by endowing it with
a ratchet. The resulting algorithm, based on a kernel version of the Pocket Algorithm,
cf. [6, 7], is a probabilistic one. A correctness proof based on the representer theorem,
cf. [4, 10] can be constructed.

4 Probabilistic Interpretation of the Decision Procedure

The decision procedure described above may under certain conditions be interpreted
as Bayes decision. Indeed, assume that the class conditional densities belong to
the family of exponential distributions (which includes a number of well-known
distributions) of the general form
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p(�(x)|x ∈ Si) = exp(B(ei) + C(�(x))+ < ei,�(x) >)

where x is now a vector in some Euclidean space and the ei are parameter vectors.
Then the posterior probabilities can be computed using Bayes theorem.

Theorem 1 If the class conditional densities belong to the family of exponential
distributions and B(ei)+ln(P(Si)) is independent of i the decision procedures derived
above will give the Bayes decision.

Proof The posterior probabilities can be computed using Bayes theorem as

p(x ∈ Si|�(x) =
p(�(x)|x ∈ Si) ∗ P(Si)∑
j p(�(x)|x ∈ Sj) ∗ P(Sj)

=

exp(B(ei) + C(�(x))+ < ei,�(x) >) ∗ P(Si)∑
j exp(B(e j ) + C(�(x))+ < ej,�(x) >) ∗ P(Sj)

=

exp(B(ei)+ < ei,�(x) > +ln(P(Si))∑
j exp(B(ej)+ < ej,�(x) > +ln(P(Sj))

=

Setting Ai := ei and −θ := B(ei)+ln(P(Si)) one obtains

p(x ∈ Si|�(x)) = exp(ai)∑
j exp(aj)

with
ai =< Ai,�(x) > −θ

Hence it becomes clear that, provided that the assumed class conditional density is
appropriate and that the above substitutions are justified, deciding that an x belongs
to Si if ai is maximal is also the Bayes decision since the a posteriori probability is
maximal in this case.
The kernel version of ai , say ki is then given by

ki =
m∑

k=1

bik K (xk, x) − θ

and again deciding that an x belongs to Si if bi is maximal is the Bayes decision. �
In this context also note that the function given in the equation above describes

a generalization of the logistic sigmoid activation function which is known as
the normalized exponential or softmax activation function: This function repre-
sents a smooth version of the winner-takes-all activation model, For further de-
tails see e.g. [1].



A Perceptron Classifier and Corresponding Probabilities 219

5 Preliminary Experimental Results

In order to get some information on the practical value of the fault tolerant kernel
version of the pocket algorithm using a smoothing parameter mentioned at the end of
Sect. 3.2 some performance and functionality tests were conducted using some real
life data. The experimentswere carried out with 2 ∗ 5964 sample vectors (constituting
a training and a validation set) provided in anonymous form by a German financial
institution. The customers had been divided into 2 preference classes and in both
sets there were exactly 123 bad customers. The experiments were conducted on a
commercially available PC (QuadCore, 4×2, 4 GHz processors, 8 GB RAM). The
operating system was Windows 7 and the current Java version was used applying
concurrent programming, cf. [5]. Using a cubic kernel and 20 000 iterations of the
main loop took about 2h of CPU time. The generalization properties (as judged
using the validation set) compared favourably with standard methods like logistic
regression.
Of course, it must be admitted that there were 2 classes only available for these
tests. Moreover whilst training results with an RBF (Radial Basis Function) kernel
were very good, generalization properties turned out to be rather poor for this kernel
(probably due to overfitting in view of the increased Vapnik-Chervonenkis bound,
see [13]). As a consequence no reliable information concerning the practical use of
the algorithm is available although the results described above seem encouraging.

6 Conclusion and Outlook

An elegant and compact probabilistic algorithm relying on straightforward error
correcting feedback has been sketched (derived essentially from Minsky’s original
perceptron learning algorithm) and a correctness proof has been hinted at. A proba-
bilistic interpretation of the output has been provided using Bayes’ theorem. Good
generalization properties due to the introduction of a smoothing parameter appear to
be likely as indicated by preliminary experimental results exhibited in Sect. 5. Whilst
the currently needed CPU times to execute the kernel version of the algorithm are
still in the region of several hours the possibility of parallelization (as demonstrated
with Java concurrent programming in a test version) allows significant improvements
if suitably sophisticated hardware is employed. Thus it seems that an algorithm has
been obtained that is not only very appealing from an aesthetic point of view but
could also quite successfully be used in commercial and academic applications. Of
course, in order to prove the commercial viability extensive experimental work is
still necessary.
Nevertheless, it seems rather remarkable that an old algorithm, that originally was
probably mainly of academic interest, can now be implemented using sophisticated
hardware and concurrent programming techniques in such a way that it retains most
of its inherent simplicity whilst also being of interest for practical applications.
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Fuzzy Signals Fed to Gaussian Channels

Laura Franzoi and Andrea Sgarro

Abstract We add fuzziness to the signals sent through a continuous Gaussian trans-
mission channel: fuzzy signals are modeled by means of triangular fuzzy numbers.
Our approach is mixed, fuzzy/stochastic: belowwe do not call into question the prob-
abilistic nature of the channel, and fuzziness will concern only the channel inputs.
We argue that fuzziness is an adequate choice when one cannot control crisply each
signal fed to the channel. Using the fuzzy arithmetic of interactive fuzzy numbers,
we explore the impact that a fuzziness constraint has on channel capacity; in our
model we are ready to tolerate a given fuzziness error F . We take the chance to put
forward a remarkable case of “irrelevance” in fuzzy arithmetic.

1 Introduction

In a finite or discrete setting, a fuzzy or possibilistic approach to information and
coding theories has been pursued starting with [11] up to [2], going through [1]. Be-
low, we shall consider a standard continuous Gaussian channel with additive white
noise; our aim is to compute the modified (diminished) channel capacity when chan-
nel inputs are allowed to be fuzzy, more precisely are triangular fuzzy signals Si ,
1 ≤ i ≤ n, which have to verify the power constraint 1

n

∑
i S

2
i ≤ P in an approx-

imate sense to be made precise below. The crisp positive number P is the given
energy power, cf. below Sects. 3 and 4, where our model of data transmission is
described and vindicated. While Sect. 2 is devoted to technical preliminaries, Sect. 3,
after some computations in fuzzy arithmetic, deals with what should be an adequate
information-theoretic notion of fuzziness error, as a sort of counterpart to the stan-
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dard probabilistic notion of decoding error. The final Sect. 4 is information-theoretic
and relies heavily on [5]; however, we have tried to present a paper which would be
as self-contained as possible. As a standard reference to fuzzy sets cf. e.g. [7].

2 Preliminaries and Technicalities

In the approach to fuzzy arithmetic which we are taking, an approach which was
pioneered in [6] and which is largely followed today, cf. e.g. [3, 4, 8, 9, 12, 13], a
fuzzy n-tuple X = X1, . . . , Xn is defined by giving its distribution function f (x) :
R

n → [0, 1], x =̇ x1, . . . , xn , where the equation f (x) = 1 admits of at least one
solution, usually, as happens below, of exactly one solution. The advantage of the
joint distribution approach is not only its generality, but first and foremost the fact
that the computation rules are the same1 as those in the usual arithmetic of crisp real
numbers. For n = 1 our fuzzy numbers X of distribution function f (x) =̇ X (x) will
be triangular-like, i.e. their continuous distribution function increases from 0 to 1 on
the interval [a, b] and then decreases from 1 to 0 on the interval [b, c], a ≤ b ≤ c.
One of the two monotone components might be lacking; crisp numbers b can be
identified with fuzzy numbers whose distribution function X (x) is 1 in b, else is 0.
In this paper the fuzziness of number X will be identified with the area

∫ c
a X (x)dx .

If ψ : Rn → R is a function, the distribution function Z(z) of the fuzzy quantity
Z =̇ ψ(X1, . . . , Xn) is given2 by:

Z(z) = max
x : ψ(x)=z

f (x) (1)

with Z(z) =̇ 0 when the maximization set is void. A relevant case is when
ψ(x1, . . . , xn) = xi : this allows one to obtain the n distribution functions of the
marginal fuzzy quantities X1, . . . , Xn . Another relevant case is when n = 2 and so
ψ(x, y) is a binary operation x ◦ y on fuzzy quantities X and Y of joint distribution
function f (x, y), Z = ψ(X,Y ) =̇ X ◦ Y .

Z(z) = max
x,y: x◦y=z

f (x, y) (2)

Let us take n fuzzy quantities X =̇ X1, . . . , Xn . An admissible n-dimensional joint
distribution f (x1, . . . , xn) can be derived by just taking minima ∧ and setting it

1Actually f (x1, . . . , xn) = g(x1, . . . , xn) is an identity for crisp numbers x1, . . . , xn if and only
if the two fuzzy quantities Z1 =̇ f (X1, . . . , Xn) and Z2 =̇ g(X1, . . . , Xn) are deterministically
equal whatever the joint distribution of the n fuzzy quantities X1, . . . , Xn ; deterministic equality is
formally defined in this Section. Cf. e.g. [9] for a discussion of this straightforward but important
result, called there the Montecatini lemma.
2Our functions below are quite well-behaved, and so we write directlymaxima rather than suprema.
With a slight imprecision, when the support of a function (the set where the function is positive) is
an interval, the interval will be closed anyway.
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equal to X1(x1) ∧ . . . ∧ Xn(xn). In this case, one says that the n randomquantities are
non-interactive; the joint distribution is admissible in the sense that the n distribution
functions Xi (x) are re-obtained asmarginal distributions, 1 ≤ i ≤ n. Aswell-known,
cf. e.g. [10], non-interactivity is (rightly) seen as a fuzzy analogue of probabilistic
independence for n random variables. As equally well-known and anyway soon
proven, for given X1, . . . , Xn , the non-interactive joint distribution is the unique
maximum in the partially ordered set of admissible joint distributions f (x), where
f1 ≤ f2 if the inequality f1(x) ≤ f2(x) holds whatever the n-dimensional argument
x . Another relevant admissible joint distribution of X =̇ X1 . . . Xn and Y =̇ Y1 . . . Yn
is deterministic equality: in this case one has to assume equidistribution X � Y , i.e.
equality of the two respective distribution functions f and g, f (x) = g(x) for all
x , and the joint distribution is 0 unless x = y, in which case it is equal to f (x) =
g(x) = f (y) = g(y). In our approach to fuzzy arithmetic, only under deterministic
equality X = Y one of the two symbols X or Y is disposable, while equidistribution
X � Y in itself is not enough.

To ease reference we find it convenient to mention explicitly a few well-known
and soon proven facts; below we say that a fuzzy number is a triangle (a, b, c) when
its distribution function increases linearly from 0 to 1 on [a, b] and decreases linearly
from 1 to 0 on [b, c].
1. If X1, . . . , Xn are non-interactive, so are any deterministic functions thereof,

ψ1(X1), . . . , ψn(Xn).
2. If Y = αX + β, α > 0, the distribution function Y (y) = X (

y−β
α

) has the same
“shape” as X (x), only translated and re-scaled. The non-interactive sum of two
triangles (a1, b1, c1) and (a2, b2, c2) is (a1 + a2, b1 + b2, c1 + c2, ).

3. If X (−x) ≤ X (x) for any x ≥ 0, e.g. if X (x) is symmetric around 0, the distrib-
ution function of the absolute value |X | equals X (x) for x ≥ 0, else is 0.

4. Let X and Y be interactive with joint distribution function f (x, y); if Z =̇ X ◦ Y
has the same distribution function Z(z) also under non-interactivity, then the
distribution function of Z remains the same under any joint distribution f1 > f
in the partially ordered set of admissible joint distributions.

Point 4 is a special case of irrelevance, a convenient notion introduced and discussed
in [8, 12, 13]; a remarkable case of irrelevance will be Theorem 1 below. The fol-
lowing lemma is stated explicitly, and represents a time-honored ante litteram case
of irrelevance involving non-interactivity and deterministic equality. We give it in a
rather general form, cf. [8];we are not assuming commutativity of the operation x ◦ y,
which however has to be order-preserving: x ≤ u, y ≤ v implies x ◦ y ≤ u ◦ v.

Lemma 1 Take X and Y non-interactive and equidistributed, with X (x) = Y (x)
a (possibly weakly) concave function over its connected support. Take an order-
preserving operation x ◦ y such that h(x) =̇ x ◦ x is a continuous function of its
argument. Then one has X ◦ Y � X ◦ X.
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Proof The function h(x) is itself non-decreasing on the support. If u < v, one has
h(u) =̇ u ◦ u ≤ u ◦ v ≤ v ◦ v =̇ h(v) since ◦ is order-preserving, and so, by con-
tinuity of h(x), there is a value x = αu + (1 − α)v between u and v (0 ≤ α ≤ 1)
such that h(x) =̇ u ◦ v; then by concavity X (x) = Y (x) ≥ αX (u) + (1 − α)X (v) ≥
X (u) ∧ X (v) = X (u) ∧ Y (v). Use also point 4 above.

3 Fuzziness Error

The fuzzy signal Si will be modeled by a linear triangular fuzzy number (si −
c, si , si + c) = (si − 1, si , si + 1), setting without real restriction3 its area c, i.e. its
fuzziness, equal to 1 independent of i . In (3) the triangular number Xi = (−1, 0,+1)
represents the “unit fuzziness” summed to each crisp signal si . The fuzzy power con-
straint is soon found to be:

∑

i

S2i =̇ Z +
∑

i

s2i =
∑

i

X2
i + 2

∑

i

|si | · Xi +
∑

i

s2i ≤ nP (3)

We wrote absolute values because if si is negative the triangle si Xi is (si , 0,−si ). In
(3) the fuzzy term Z with Z(0) = 1 represents the “total fuzziness” summed to the
crisp sum of squares

∑
i s

2
i .

Let us deal with the distribution function Z(z) of Z = ∑
i X

2
i + 2

∑
i |si | · Xi , cf.

(3). Actually, we will be interested only in non-negative values z and in the fuzzy
quantity Z+ =̇ |Z | rather than Z , whose distribution function, using point 3, Sect. 2,
turns out to be Z+(z) = Z(z) for z ≥ 0, else Z+(z) =̇ 0. So, referring again to point 3:

Z+ =
∑

i

X2
i + 2

∑

i

|si |X+
i , X+

i =̇ |Xi |

In practice, with respect to (3) the original triangles (−1, 0,+1) are replaced by
“degenerate” triangles (0, 0,+1). The fuzzy term 2

∑
i |si |X+

i , cf. point 2 above, is
the triangle (0, 0, 2ns(n)) where we set s(n) =̇ 1

n

∑
i |si |.

Theorem 1 The distribution function of the fuzzy number Z+ is

Z+(z) = 1 + s(n) −
√

z

n
+ [s(n)]2 , z ∈ [

0, n
(
1 + 2s(n)

)]

Proof Fix i ; X2
i + 2|si |X+

i is a deterministic function of Xi , and its distribution

function is soon found to be 1 + si −
√
z + s2i , z ∈ [

0, 1 + 2si
]
, cf. (1). As for the

whole sum of n terms, one can use an induction on n, resorting to the Addendum at

3Else, one might re-scale each Si of fuzziness c, c > 0, to Si/c of fuzziness 1, and consequently
re-scale P and N (cf. Sect. 4) dividing them by c2.
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the end of the section so as to deal with non-interactive sums (we omit details of the
straightforward computations).

Before proceeding, we wish to point out a remarkable case of irrelevance, cf. Sect. 2.
In Z+ one sums up 2n terms: of course these terms are interactive, because each
Xi appears twice. Let us “force” non-interactivity: for each i we take Yi equidis-
tributed with X+

i ; the whole 2n-tuple X1, . . . , Xn,Y1, . . . ,Yn is assumed to be non-
interactive, by this precluding that contributions relative to distinct i’s might interact.

Proposition 1 The fuzzy numbers Z+ and Z̃+ =̇ ∑
i X

2
i + 2

∑
i |si |Yi are equidis-

tributed.

Proof Fix i ; we useLemma1with x ◦ y =̇ x2 + 2|si |y, a non-commutative operation
which, as required in the lemma, is order-preserving on the corresponding support.
This proves the proposition for n = 1; if n > 1 just observe that terms relative to
distinct i’s are non-interactive.

From now on, we shall assume limn s(n) = s, s ∈ R, a fact which will turn out to
hold in the case of Gaussian channels. In the sequel we rather needWn =̇ Z

n ; we shall
present directly its asymptotic form W , obtained when n diverges and so s(n) tends
to the constant s:

W (w) = 1 + s −
√

w + s2 , w ∈ [0, 1 + 2s]

The total area
∫ 1+2s
o W (w)dw is readily computed to be s + 1

3 , which is so the total
fuzziness of the fuzzy quantity W .

We are now ready to introduce the allowed fuzziness error, which sides with the
allowed probabilistic error, as currently used in “crisp” information theory. First
some heuristics: assume η ≤ d, both crisp numbers. Say B is triangular (a, b, c), or
“triangular-like”, with η (η < c) so “near” to the extreme c that you are willing to
consider “negligible” the area, i.e. the fuzziness, corresponding to [η, c]: in this case,
with a fuzziness error = negligible area, you might accept to keep the inequality B ≤
d which would still be “roughly” true, i.e. it would be true up to the allowed fuzziness
error. Following this philosophy, we fix the allowed fuzziness error F ∈ [0, s + 1

3 [
and search for the ξF = ξF (s) such that the area corresponding to [ξF , 1 + 2s] is
equal to F , and is therefore “negligible”.

Definition 1 Let ξF = ξF (s) be the unique solution of the equation

∫ 1+2s

ξF

W (w)dw = F (4)

To compute ξF one has to solve the integral, which by linear transformations can be
taken back to the standard integral

√
u du; it turns out that, to obtain now ξF , one has

to solve a cubic equation in v = √
u. This can be done by using Cardano’s formula,

which leads to quite an unwieldy expression. We will be contented to know that in
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principle ξF can be computed, even if not without effort. To proceed, we find it con-
venient to resort also to an upper bound ζF > ξF . We replace the convex distribution
functionW (w) by the linear4 distribution function W ∗(w) = 1 − w

1+2s ≥ W (w); the
total fuzziness of W ∗ goes up to s + 1

2 . Let us solve the problem as in definition 1,
only with ζF and W ∗ instead of ξF and W . One soon obtains:

ζF = ζF (s) = 1 + 2s − √
2(1 + 2s)F > ξF (5)

Addendum: We shortly cover the familiar case of a non-interactive sum Z = X + Y ,
fXY (x, y) = X (x) ∧ Y (y), when X (x) and Y (y) are continuous and strictly increas-
ing on [0, a] and [0, b], respectively; we assume without real restriction a ≤ b;
Y (z − x) is strictly decreasing when seen as a functions of x . For fixed z in the
interval [0, a + b], one soon checks that the equation in x X (x) = Y (z − x) has a
single solution μ(z), X

(
μ(z)

) = Y
(
z − μ(z)

)
, and that μ(z) strictly increases in z

from μ(0) = 0 to μ(a + b) = 1. More specifically, one conveniently distinguishes
three cases, 0 ≤ z ≤ a, a ≤ z ≤ b (void for a = b) and b ≤ z ≤ a + b. In the first,
x = z − y ∈ [0, a] ∩ [z − b, z] = [0, z]; for fixed z ∈ [0, a], on the border x = 0
the increasing function X (x) and the decreasing function Y (z − x) take the two val-
ues 0 = X (0) < Y (z), while on the border x = z they take the two values X (z) >

Y (0) = 0: the requiredmaximum is found for x = μ(z). The remaining two cases are
dealt in the same way and give the same solution Z(z) = X

(
μ(z)

) = Y
(
z − μ(z)

)
,

which is found also when X (x) and Y (y) are both strictly decreasing.

4 Channel Capacity Under a Fuzziness Constraint

Channel capacity, in particular the capacity of a Gaussian channel, is an asymptotic
notion, being the limit of rates of optimal codes as the codeword length n diverges;
roughly speaking, it is the maximal speed at which data can be reliably sent over the
noisy channel, the channel decoder working with a “negligible” error probability.
We refer the reader e.g. to [5], where, for given energy power Π , e.g. Π = P , one
proves the famous Shannon theorem on the capacity C of a Gaussian channel by
using a random coding technique, as did Shannon himself:

C = 1

2
log2

(
1 + Π

N

)

where the capacity is measured in bits and N is the variance of the white noise added
to each crisp signal. If the code used is optimal for given power Π and s1, . . . , sn is

4This “forced linearization” is not new in soft computing, when one replaces genuine products of
triangular numbers by pseudo-products which “force” linearity on the result; in practice, going to
W ∗ amounts to replace genuine squares as in (3) by pseudo-squares.
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one of its codewords, one can assume5 that, as the codeword length increases, the
sum of squares 1

n

∑
s2i tends to Π (so the energy power bound is asymptotically

verified with equality), while 1
n

∑ |si | tends to s =
√

2
π
Π , which is the value of s to

be inserted in Problem 1, Sect. 3, and in (5) to obtain ξF and ζF directly as functions
of Π , rather than s, ξF = ξF,Π and ζF = ζF,Π .

Let us explore the consequences of fuzziness up to tolerated fuzziness F . Unfor-
tunately, we do not control crisply each signal si due e.g. to instrumental imprecision,
and so the crisp signal actually fed to the channel might not be si . Let us construct the
optimal code assuming energy power Π . In the worst case the signal power might
actually be as high as Π + ξF,Π , cf. Definition 1, Sect. 3, and recall that the sum of
squares tends to Π . We shall pessimistically assume that this worst-case situation
does actually occur. With given power P , an ad hoc way out of the snag might be to
construct the optimal code with respect to the diminished energy power P − ξF,P .
Actually this difference might be ≤ 0, in which case the code meant to fight worst
case fuzziness cannot be constructed: to signal this fact one has to write |P − ξF,P |+
instead of P − ξF,P , where x+ = x for x positive, else is 0. E.g. in the limit case

F = 0, when ξ0,P = ζ0,P = 1 + 2s = 1 + 2
√

2
π
P , the construction is possible only

for P > 1 + 2
√

2
π
P . Solving6 the inequality:

P > 1 + 4 + 2
√
2π + 4

π
≈ 4.31

Actually, to determine the energy powerΠ ≤ P according to which the optimal code
has to be constructed, one should rather proceed as follows. One has Π = P − ξF,Π

(if this difference is not positive there is no possibility to ensure worst-case reliable

transmission), while ξF,Π is obtained as in (4) by Cardano’s formula, s =
√

2
π
Π .

This allows one to obtain Π and ξF as functions of P and F , Π = ΠF,P , ξF =
ξF,Π =̇ ρF,P . To understand what happens, if one is contented with the lower bound
ζF rather than ξF , cf. footnote 4, the equations to solve, cf. (5), would become:

P − ζ = Π and ζ = 1 + 2

√
2Π

π
−

√

2
(
1 + 2

√
2Π

π

)
F

5Just as a hint, using the randomcoding technique to construct optimal codes, in a codeword s1 . . . sn ,
each si can be seen as the output of a Gaussian distribution N (0,Π), where the expected normal-
ized sum of squares of the random outputs is constrained to be Π ; expectation is unconditionally
additive, and so the expectation of the normalized sum of the absolute values is soon computed to
be

√
(2/π)Π , a value approximated with high probability by the actual outputs if n is large; cf. [4]

for details.
6Note that we are assuming triangular fuzzy signals of unit fuzziness: were it not so, the last bound
would be on P

c2
rather than P , cf. footnote 2.
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in the two unknowns7 Π and ζ. In this paper we shall not deal with the taxing
numerical task of approximating to the desired degree of precision ΠF,P and ρF,P

for given values of F and P; however, the two parameters are well defined, if only
“in principle”.

Theorem 2 To ensure worst-case reliable transmission with triangular fuzzy input
signals of unit fuzziness bound to verify the fuzzy energy power constraint (3) with
tolerated fuzziness error F, the capacity of the Gaussian channel is

C = 1

2
log2

(
1 + |P − ρF,P |+

N

)
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Fuzzy Clustering Through Robust Factor
Analyzers

Luis Angel García-Escudero, Francesca Greselin
and Agustin Mayo Iscar

Abstract In fuzzy clustering, data elements can belong to more than one cluster,
and membership levels are associated with each element, to indicate the strength
of the association between that data element and a particular cluster. Unfortunately,
fuzzy clustering is not robust, while in real applications the data is contaminated
by outliers and noise, and the assumed underlying Gaussian distributions could be
unrealistic. Here we propose a robust fuzzy estimator for clustering through Factor
Analyzers, by introducing the joint usage of trimming and of constrained estimation
of noise matrices in the classic Maximum Likelihood approach.

1 Introduction

Clustering can be considered themost important unsupervised learning problem. It is
a process of partitioning a set of data (or objects) in a set of meaningful sub-classes,
called clusters. A cluster is therefore a collection of objects which are similar to
one another and thus can be treated collectively as one group. Clustering algorithms
may be classified into Exclusive (or Crisp, Hard), Overlapping, Hierarchical and
Probabilistic. To recall some well known examples, K-means [12] is an exclusive
clustering algorithm, Fuzzy C-means [2] is an overlapping clustering algorithm,
Single-linkage [1] is an agglomerative hierarchical clustering and, lastly, Mixture of
Gaussian is a probabilistic clustering algorithm. In the present work, we move from

L.A. García-Escudero · A. Mayo Iscar
Department of Statistics and Operational Research and IMUVA,
University of Valladolid, Valladolid, Spain
e-mail: lagarcia@eio.uva.es

A. Mayo Iscar
e-mail: agustin@med.uva.es

F. Greselin (B)
Department of Statistics and Quantitative Methods,
Milano-Bicocca University, Milan, Italy
e-mail: francesca.greselin@unimib.it

© Springer International Publishing Switzerland 2017
M.B. Ferraro et al. (eds.), Soft Methods for Data Science, Advances
in Intelligent Systems and Computing 456, DOI 10.1007/978-3-319-42972-4_29

229



230 L.A. García-Escudero et al.

a robust constrained fuzzy clustering approach based on Gaussian components [3],
and we introduce a fuzzy version of Mixtures of Gaussian Factor Analyzers (MFA).

Starting from Wee and Fu’s seminal work [16], fuzzy clustering has received an
increasing attention by researchers from several fields in the last fifty years. The aim
is to discover a limited number of homogeneous clusters in such away that the objects
are assigned to the clusters according to the so-called membership degrees ranging
in the interval [0, 1]. In real applications, the data is bound to have noise and outliers,
and the assumed models such as Gaussian distributions are only approximations
to reality. Unfortunately, one of the main limitations of all clustering algorithms is
that they are not robust to noise: a small fraction of outlying data may drastically
deteriorate the clustering ability. Hence we will provide robustness properties to our
estimator for Gaussian Factor Analyzers, by trimming those observations that are
less plausible under the estimated model. According to [10], a robust procedure can
be characterized by the following: (1) it should have a reasonably good efficiency
(accuracy) at the assumed model; (2) small deviations from the model assumptions
should impair the performance only by a small amount; and (3) larger deviations
from the model assumptions should not cause a catastrophe. We could see that our
proposal satisfies the three properties.

2 Fuzzy Clustering Through Gaussian Factors

Suppose that we have n observations {x1 . . . xn} inRp and we want to fuzzy-classify
them into k clusters. Therefore, our aim is to obtain a collection of non-negative
membership values ui j ∈ [0, 1] for all i = 1 . . . n and j = 1 . . . k. Increasing degrees
of membership are allowed when ui j ∈ (0, 1), while ui j = 1 indicates that object i
fully belongs to cluster j and, conversely, ui j = 0means that it does not belong to this
cluster. We will denote an observation as fully trimmed if ui j = 0 for all j = 1 . . . k
and, thus, this observation has no membership contribution to any cluster.

Further, wewant to employ Factor Analysis and suppose that, as inmany phenom-
ena, the p observed variables could be explained by a few unobserved ones. Factor
Analysis is an effective method of summarizing the variability between a number of
correlated features, through a much smaller number of unobservable, hence named
latent, factors. Under this approach, each single variable (among the p observed
ones) is assumed to be a linear combination of d underlying common factors with
an accompanying error term to account for the part of the variability which is unique
to it (not in common with other variables). We will assume that the distribution of xi
can be given as

xi = μ + ΛUi + ei for i = 1, . . . , n, (1)

where Λ is a p × d matrix of factor loadings, the factors U1, . . . ,Un are N (0, Id)
distributed independently of the errors ei . The latter are independently N (0,Ψ )

distributed, and Ψ is a p × p diagonal matrix. The diagonality of Ψ is one of the
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key assumptions of factor analysis: the observed variables are independent given the
factors. Note that the factor variableUi models correlations between the elements of
xi , while the errors ei account for independent noise for xi . We suppose that d < p.
Under these assumptions, xi ∼ N (μ,Σ), where the covariance matrix Σ has the
form

Σ = ΛΛ′ + Ψ . (2)

Given a fixed trimming proportionα ∈ [0, 1), a fixed constant c ≥ 1 and a fixed value
of the fuzzifier parameter m > 1, a robust constrained fuzzy clustering problem can
be defined through the maximization of the objective function

n∑

i=1

k∑

j=1

umi j logφ(xi ;m j ,S j ), (3)

where φ(·;m,S) is the density of the multivariate Gaussian with meanm and covari-
ance S, and the membership values ui j ≥ 0 are assumed to satisfy

k∑

j=1

ui j = 1 if i ∈ I and
k∑

j=1

ui j = 0 otherwise, (4)

for a subset

I ⊂ 1, 2, . . . , n with #I = [n(1 − α)], (5)

wherem1, . . . ,mk are vectors inRp, and S1, . . . ,Sk are positive semidefinite p × p
matrices satisfying the decomposition in (2), i.e. S j = Λ jΛ

′
j + Ψ j . With reference

to the diagonal elements {ψk}k=1,...,p of the noise matrices Ψ j , it is required that

ψ j1h ≤ cnoise ψ j2l for every 1 ≤ h �= l ≤ p and 1 ≤ j1 �= j2. ≤ k (6)

The constant cnoise is finite and such that cnoise ≥ 1, to avoid the |Sj | → 0 case.
This constraint can be seen as an adaptation to MFA of those introduced in [5, 11],
and is similar to the mild restrictions implemented for MFA in [7]. They all go back
to the seminal paper [9].

Notice that ui1 = . . . = uik = 0 for all i /∈ I, so the observations in I do not
contribute to the summation in the target function (3).

Our fuzzy method is based on a maximum likelihood criterium defined on a
specific underlying statistical model, as in many other proposal in the literature.

After the introduction of trimmed observation, the second specific features of the
proposedmethodology is the application of the eigenvalue ratio constraint in (6). This
is needed to avoid the unboundedness of the objective function (3), whenever one of
the m j is equal to one of the observations xi , setting ui j = 1, and for a sequence of
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scatter matrices S j such that |S j | → 0. This problem is recurrent in Cluster Analy-
sis whenever general scatter matrices are allowed, and has been already noticed in
fuzzy clustering, among other authors, by [8]. In our approach, the unboundedness
problem is addressed by constraining the ratio between the largest and smallest eigen-
values of the so-called noise matrices Ψ j . Larger values of cnoise lead to an almost
unconstrained fuzzy clustering approach.

It is well known that the use of an objective function like that in (3) tends to provide
clusters with similar sizes, or more precisely, with similar values of

∑n
i=1 u

m
i j . If this

effect is not desired then it is better to replace the objective function (3) by

n∑

i=1

k∑

j=1

umi j log p jφ(xi ;m j ,S j ), (7)

where p j ∈ [0, 1] and∑k
j=1 p j = 1 are some weights to be maximized in the objec-

tive function, as in the entropy regularizations in [14]. Once the membership values
are known, the weights are optimally determined as

p j =
n∑

i=1

umi j/
n∑

i=1

k∑

j=1

umi j

(see [4], for a detailed explanation). Finally, considering (7) as our target function,
and performing trimming and constrained estimation along the EM algorithm we
obtain a robust approach to fuzzy clustering through factor analyzers.

More precisely, we consider an AECM algorithm, where we incorporates a con-
centration step, as in many high-breakdown point robust algorithms like [15], before
eachE-step.After selecting the set of observations that contributed themost to the tar-
get function (concentration step), at each iteration, given the values of the parameters,
the best possible membership values are obtained (E-step). Afterwards, the parame-
ters are updated bymaximizing expression (7) on the parameters (M-step). The name
of AECM (that appeared in the literature for the case of mixtures of Gaussian factor
analyzers, see [13]) comes from the fact that the M-step is performed alternatively
on a partition of the parameter space. When updating the S j matrices the constraint
on the eigenvalue ratios are imposed accordingly, along the lines of [3].

Finally, it is worth to remark that the general approach presented herein encom-
passes the soft robust clusteringmethod introduced in [6], and leads to hard clustering
for m = 1. For m > 1 it provides fuzzy clustering.

3 Numerical Results

We present here a first experiment on synthetic data, to show the performance of
the proposal. We choose a two component population in R

10, from which we draw
two samples. Aiming at providing a plot of the obtained results, we work with
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unidimensional factors (otherwise we could not find a unique space, for the two
components, to represent the data). The first population X1 is defined as follows:

X11 ∼ N (0, 1) + 4 X12 ∼ 5 ∗ X11 + 3 ∗ N (0, 1) − 6;

and the second population X2 is given as:

X21 ∼ N (0, 1) + 4 X22 ∼ X21 + 2 ∗ N (0, 1) + 19.

After drawing 100 points for each component, to check the robustness of our
approach, we add some pointwise contamination X3 to the data, by drawing 10
points as follows

X31 ∼ N (0, 1) + 4 X32 ∼ 50 + 0.01 ∗ N (0, 1);

and 10 more points, denoted by X4, where

X41 ∼ N (0, 1) + 6 X42 ∼ −20 + 0.01 ∗ N (0, 1).

2 3 4 5 6 7

−
20

−
10

0
10

20
30

40
50

Fig. 1 Fuzzy classification of the synthetic data. Blue points are the projections of the 10-
dimensional data in the latent factor space of the first component. Black points are trimmed units.
The strength of the membership values is represented by the color usage
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Finally, we complement the data matrix with Xi j ∼ N (0, 1) for i = 1, . . . , 4 and
j = 3, . . . , 10. In this way we have built a dataset where one factor is explaining the
correlation among the 10 variables, in each component.

Figure1 shows that the estimation is robust to the most dangerous outliers, in
the form of pointwise contamination (although we have used the ten variables when
applying the algorithm, only the first two variables are represented here).

4 Concluding Remarks

We have introduced Fuzzy and robust estimation of mixtures of Factor Analyzers,
by including a trimming procedure and constrained evaluation of the noise matrices
along the steps of the EM algorithm. Our proposal lays in between soft and hard
robust clustering, and encompasses them. Based on our first findings, we observed
that small deviations from the model assumptions impair the performance of the
fuzzy classifier only by a small amount, and that good efficiency is obtained on
data without contamination. Further work is needed to show the advantages of the
proposed approach in real data applications.
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Consensus-Based Clustering in Numerical
Decision-Making

José Luis García-Lapresta and David Pérez-Román

Abstract In this paper, we consider that a set of agents assess a set of alternatives
through numbers in the unit interval. In this setting, we introduce a measure that
assigns a degree of consensus to each subset of agents with respect to every subset of
alternatives. This consensus measure is defined as 1 minus the outcome generated by
a symmetric aggregation function to the distances between the corresponding indi-
vidual assessments. We establish some properties of the consensus measure, some of
them depending on the used aggregation function. We also introduce an agglomera-
tive hierarchical clustering procedure that is generated by similarity functions based
on the previous consensus measures.

1 Introduction

When a group of agents show their opinions abut a set of alternatives, an impor-
tant issue is to know the homogeneity of these opinions. In this paper we consider
that agents evaluate each alternative by means of a number in the unit interval. For
measuring the consensus in a group of agents over a subset of alternatives, we pro-
pose to aggregate the distances between the corresponding individual assessments
through an appropriate symmetric aggregation function. This outcome measures the
dispersion of individual opinions in a similar way to the Gini index [13] measures
the inequality of individual incomes.

The consensus measure we propose is just 1 minus the mentioned dispersion
measure. The most important is not to know the degree of consensus in a specific
group of agents, but comparing the consensus of different groups of agents with
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respect to an alternative or a subset of alternatives. This is the starting point of
the agglomerative hierarchical clustering procedure we propose. We consider as
linkage clustering criterion one generated by a consensus-based similarity function
that merges clusters or individuals by maximizing the consensus.

The rest of the paper is organized as follows. Section2 includes some notation
and basic notions. In Sect. 3 we include our proposal for measuring the consensus.
Section4 is devoted to introduce the agglomerative hierarchical clustering procedure.
And Sect. 5 concludes with some remarks and further research.

2 Preliminaries

Along the paper, vectors in [0, 1]k are denoted as y = (y1, . . . , yk); in particular,
0 = (0, . . . , 0) and 1 = (1, . . . , 1). Given y, z ∈ [0, 1]k , by y ≥ z we mean yi ≥
zi for every i ∈ {1, . . . , k}. With #I we denote the cardinality of I . With P2(A) =
{I ⊆ A | #I ≥ 2} we denote the family of subsets of at least two agents.

We begin by defining standard properties of real functions on [0, 1]k and aggre-
gation functions. For further details the interested reader is referred to Beliakov et al.
[5], Grabisch et al. [14] and Beliakov et al. [4].

Definition 1

1. Given k ∈ N, a function F (k) : [0, 1]k −→ [0, 1] is symmetric if for all permu-
tation π on {1, . . . , k} and y ∈ [0, 1]k it holds that F (k)(yπ(1), . . . , yπ(k)) =
F (k)(y1, . . . , yk).

2. Given k ∈ N, a function F (k) : [0, 1]k −→ [0, 1] is monotonic if for all y, z ∈
[0, 1]k it holds that y ≥ z ⇒ F (k)( y) ≥ F (k)(z).

3. Given k ∈ N, a function F (k) : [0, 1]k −→ [0, 1] is called an k-ary aggregation
function if it is monotonic and satisfies the boundary conditions F (k)(0) = 0 and
F (k)(1) = 1. In the extreme case k = 1, the convention F (1)(y) = y for every
y ∈ [0, 1] is considered.

4. An aggregation function is a sequence F = (
F (k)

)
k∈N of k-ary aggregation func-

tions.
5. An aggregation function F = (

F (k)
)
k∈N is symmetric (monotonic) whenever

F (k) is symmetric (monotonic) for every k ∈ N.

For the sake of simplicity, the k-arity is omitted whenever it is clear from the
context.

3 Consensus

For measuring the degree of consensus among a group of agents that provide their
opinions on a set of alternatives, different proposals can be found in the literature
(see Martínez-Panero [16] for an overview of different notions of consensus).



Consensus-Based Clustering in Numerical Decision-Making 239

In the social choice framework, the notion of consensus measure was introduced
byBosch [6] in the context of linear orders.Additionally,Bosch [6] andAlcalde-Unzu
and Vorsatz [2] provided axiomatic characterizations of several consensus measures
in the context of linear orders. García-Lapresta and Pérez-Román [9] extended that
notion to the context of weak orders and they analyzed a class of consensus measures
generated by distances. Alcantud et al. [3] provided axiomatic characterizations of
some consensus measures in the setting of approval voting. In turn, Erdamar et al. [7]
extended the notion of consensus measure to the preference-approval setting through
different kinds of distances, and García-Lapresta et al. [12] introduced another ex-
tension to the framework of hesitant linguistic assessments.

Let A = {1, . . . ,m}, with m ≥ 2, be a set of agents and let X = {x1, . . . , xn},
with n ≥ 2, be the set of alternatives which have to be evaluated in the unit interval.

A profile is a matrix

V =

⎛

⎜⎜⎜⎜⎝

v1
1 · · · v1

i · · · v1
n

· · · · · · · · · · · · · · ·
va
1 · · · va

i · · · va
n

· · · · · · · · · · · · · · ·
vm
1 · · · vm

i · · · vm
n

⎞

⎟⎟⎟⎟⎠
= (

va
i

)

consisting of m rows and n columns of numbers in [0, 1], where the element va
i

represents the assessment given by the agent a ∈ A to the alternative xi ∈ X .
Let V = (

va
i

)
be a profile, π a permutation on A, σ a permutation on {1, . . . , n},

I ∈ P2(A) and ∅ �= Y ⊆ X . The profiles V π , Vσ and V−1, and the subsets I π

and Yσ are defined as follows:

1. V π = (
uai

)
where uai = v

π(a)
i .

2. Vσ = (
uai

)
where uai = va

σ(i).
3. V−1 = (

uai
)
where uai = 1 − va

i .
4. I π = {

π−1(a) | a ∈ A
}
, i.e., a ∈ I π ⇔ π(a) ∈ I .

5. Yσ = {xσ−1(i) | xi ∈ Y }, i.e., xi ∈ Yσ ⇔ xσ(i) ∈ Y .

Definition 2 Let F = (
F (k)

)
k∈N be a symmetric aggregation function. Given a

profile V = (va
i ), the degree of consensus in a subset of agents I ∈ P2(A) over a

subset of alternatives ∅ �= Y ⊆ X is defined as

CF (V, I,Y ) = 1 − F

(∣∣va
i − vb

i

∣∣a, b∈I, a<b
xi∈Y

)
.

In Proposition 1 we establish some properties of the consensus notion introduced
inDefinition 2.Normalizationmeans that the degree of consensus is always in the unit
interval. Anonymity means that all agents are treated in the same way. Unanimity
establishes necessary and sufficient conditions for reaching maximum consensus.
Maximum dissension establishes necessary and sufficient conditions for reaching
minimum consensus in two agents. Positiveness establishes that with more than
two agents the degree of consensus is never minimum. Neutrality means that all
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alternatives are treated in the same way. And reciprocity means that if all the agents
reverse their assessments, then the degree of consensus does not change.

Proposition 1 Let F = (
F (k)

)
k∈N be an aggregation function. The following prop-

erties are satisfied:

1. Normalization: CF (V, I,Y ) ∈ [0, 1].
2. Anonymity: CF (V π , I π ,Y ) = CF (V, I,Y ) for every permutation π on A.
3. Unanimity: If for every xi ∈ Y there exists ti ∈ [0, 1] such that va

i = ti for every
a ∈ I , then CF (V, I,Y ) = 1.
Additionally, if F (k)( y) = 0 ⇔ y = 0, for all k ∈ N and y ∈ [0, 1]k , and
CF (V, I,Y ) = 1, then for every xi ∈ Y there exists ti ∈ [0, 1] such that
va
i = ti for every a ∈ I .

4. Maximum dissension: If
((

va
i = 0 and vb

i = 1
)
or

(
va
i = 1 and vb

i = 0
))

for

all xi ∈ Y , then CF (V, {a, b},Y ) = 0.
Additionally, if F (k)( y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0, 1]k , and
CF (V, {a, b},Y ) = 0, then

((
va
i = 0 and vb

i = 1
)
or

(
va
i = 1 and vb

i = 0
))

for all xi ∈ Y .
5. Positiveness: If F (k)( y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0, 1]k , and

#I > 2, then CF (V, I,Y ) > 0.
6. Neutrality:CF (Vσ , I,Yσ ) = CF (V, I,Y ) for every permutation σ on {1, . . . , n}.
7. Reciprocity: CF (V−1, I,Y ) = CF (V, I,Y ).

Proof It is straightforward.

4 Clustering

There are many clustering algorithms (see Ward [17], Jain et al. [15] and Everitt
et al. [8], among others). Most methods of hierarchical clustering use an appropriate
metric (for measuring the distance between pairs of observations), and a linkage cri-
terion which specifies the similarity/dissimilarity of sets as a function of the pairwise
distances of observations in the corresponding sets.

Ward [17] proposed an agglomerative hierarchical clustering procedure, where
the criterion for choosing the pair of clusters to merge at each step is based on the
optimization of an objective function. In the following procedure, the criterion is to
maximize the consensus.

Definition 3 Let F = (
F (k)

)
k∈N be an aggregation function. Given a profile V =

(va
i ), the similarity function relative to a subset of alternatives ∅ �= Y ⊆ X

SYF : (P(A) \ {∅})2 −→ [0, 1]
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is defined as

SYF (I, J ) =
{
CF (V, I ∪ J,Y ), if #(I ∪ J ) ≥ 2,

1, if #(I ∪ J ) = 1.

Remark 1 In the extreme case of two agents and a single alternative, the similarity
between these agents on that alternative is just 1 minus the distance between their
assessments: given an alternative xi ∈ X and two different agents a, b ∈ A, we have

S{xi }
F ({a}, {b}) = CF (V, {a, b}, {xi }) = 1 − ∣∣va

i − vb
i

∣∣ .

The agglomerative hierarchical clustering procedure we propose is related to the
ones provided by García-Lapresta and Pérez-Román [10, 11], in different settings.

Given an aggregation function F = (
F (k)

)
k∈N and a profile V = (va

i ), our pro-
posal of clustering with respect to a subset of alternatives ∅ �= Y ⊆ X consists of a
sequential process addressed by the following stages:

1. The initial clustering is AY
0 = {{1}, . . . , {m}}.

2. Calculate the similarities between all the pairs of agents, SYF ({a}, {b}) for all
a, b ∈ A.

3. Select the two agents a, b ∈ A that maximize SYF and construct the first cluster
AY
1 = {a, b}.

4. The new clustering is AY
1 = (AY

0 \ {{a}, {b}}) ∪ {AY
1 }.

5. Calculate the similarities SYF (AY
1 , {c}) and take into account the previously com-

puted similarities SY ({c}, {d}), for all {c}, {d} ∈ AY
1 .

6. Select the two elements of AY
1 thatmaximize SYF and construct the second cluster

Ai
2.

7. Proceed as in previous items until obtaining the next clustering Ai
2.

The process continues in the same way until obtaining the last cluster, AY
m−1 =

{A}.
In the case of several pairs of agents or clusters are in a tie, then proceed in a

lexicographic manner in 1, . . . ,m.

5 Concluding Remarks

In general, clusters are usually merged by minimizing a distance between clusters.
The complete, single, average and median linkage clustering take into account the
maximum, minimum, mean and median distance between elements of each cluster,
respectively. In turn, centroid linkage clustering is based on the distances between
the clusters centroids. In these conventional linkage clustering criteria there is a loss
of information. In our proposal, clusters are merged when maximizing the consensus
and, consequently, all the information is used for merging clusters.
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It is important emphasizing the flexibility of our proposal. Different aggregation
functions can be used for measuring the consensus in each subset of agents regarding
a subset of alternatives. The good properties of the corresponding consensus measure
ensure a suitable clustering procedure. Nevertheless, as further research we plan to
make some comparative analysis of our proposal with other clustering procedures,
and also a quality measuring of our approach, in the sense of Ackerman and Ben-
David [1].
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Zadrȯzny S (eds) Consensual Processes, STUDFUZZ, vol 267. Springer-Verlag, Berlin, pp
179–193

17. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc
58:236–244



Spatial Outlier Detection Using GAMs
and Geographical Information Systems

Alfonso García-Pérez and Yolanda Cabrero-Ortega

Abstract A spatial (local) outlier is a value that differs from its neighbors. The usual
way in which these are detected is a complicated task, especially if the data refer to
many locations. In this paper we propose a different approach to this problem that
consists in considering outlying slopes in an interpolationmap of the observations, as
indicators of local outliers. To do this, we transfer geographical properties and tools
to this task using a Geographical Information System (GIS) analysis. To start, we
use two completely different techniques in the detection of possible spatial outliers:
First, using the observations as heights in a map and, secondly, using the residuals of
a robust Generalized AdditiveModel (GAM) fit.With this process we obtain areas of
possible spatial outliers (called hotspots) reducing the set of all locations to a small
and manageable set of points. Then we compute the probability of such a big slope at
each of the hotspots after fitting a classical GAM to the observations. Observations
with a very low probability of such slope will finally be labelled as spatial outliers.

1 Introduction. Spatial Outliers

A local or spatial outlier [3] or [6] is an observation that differs from its neighbors,
i.e., z(s0), the value of the variable of interest Z at location s0, is a local outlier if it
differs from z(s0 + Δs0) where Δs0 defines a neighborhood of location s0.

The usual method used to detect local outliers is somewhat complicated because,
first, we have to define what is a neighborhood, i.e., what is “close”; then, we have
to select some locations inside the neighborhood, to compute and compare the value
of Z at these locations.
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In the first part of the paper we propose two novel techniques based on a GIS
for easily and quickly detect possible local outliers. The first one, developed in
Sect. 2, is based on making a geographical map where the heights of the ground
correspond to the observations. This map of separate heights is completed by means
of a Triangulated Irregular Network (TIN) interpolation. Once the geographical map
has been made, local outliers are easily identified as hills with big slopes.

The second technique, developed in Sect. 3, consists in fitting a robust GAM to
the observations. Then, we do the previous process (interpolation plus detection of
outlying slopes) with the residuals of this robust fit.

These ideas have been previously used (with some variants) in [5, 10, 12]. Here
we extend their ideas considering a more general model, a GAM one, because this
is the model usually considered in a fit of spatial data.

Once identified possible local outliers, we compute, in Sect. 4, the probability of
such an extreme slope according to a model fitted to the data. If, according to this
model (i.e., assuming that the model is correct), the probability of such extreme slope
is small, the hotspot is labelled as a local outlier.

2 Spatial Outlier Detection by Interpolation

We propose, first, to interpolate the observations z(si ) using a TIN interpolation, that
is implemented in Quantum GIS (QGIS), and that essentially means to interpolate
the observations with triangles. Then we use the Geographic Resources Analysis
Support System (GRASS) to compute the slopes of all the triangles obtained with
the previous TIN interpolation. Finally, we reclassify the slopes, using GRASS grass
again, looking for outlying slopes. All locations with big slopes will be considered
as hotspots, i.e., potential outliers.

Other interpolation procedures could be used, such as Inverse DistanceWeighting
(IDW), but TIN works well for data with some relationship to other ones across the
grid, that should be the kind of data usually considered in a spatial data problem, [8].

2.1 Multivariate Spatial Outliers

If we havemultivariate observations, we first transform them into the scores obtained
from a Principal Component Analysis PC1, …, PCp. With this process, similar to
Principal Components RegressionAnalysis, we can apply the previousQGISmethod
to each one dimensional independent variable, PCi , obtaining so p layers of hotspots
(one layer for each PCi ). The intersection of all of them will be the set of possible
multivariate outliers. Moreover, in this way we also have a marginal analysis for each
univariate variable.
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Example 1 Let us consider Guerry data, [9], available in the R package with the
same name. This data set has been analyzed in [6] and, as there, here we only use
85 departments, excluding Corsica. The two variables considered are also “popula-
tion per crime against persons” (PER) and “population per crime against property”
(PROP).

As we mentioned before, the descriptive process of detection of possible outliers,
i.e., hotspots, consists in using QGIS, (a) incorporating first into QGIS the vectorial
data, france1.txt, of the scores, after transforming the original observations with the
two Principal Components PC1 and PC2; (b) computing a TIN interpolation for
each new variable PC1 and PC2; (c) computing with GRASS the slopes from a
Digital Elevation Model (DEM); (d) using again GRASS to reclassify slopes in two
groups: small slopes and big slopes.

The details of the computations of all the examples in the paper are at http://www.
uned.es/pfacs-estadistica-aplicada/smps.htm.

In these computations, we obtain for PC1 a plot (and a table) of departments
with slopes higher than 30% and, for PC2, slopes higher than 19%. The intersection
of both layers is showed in Fig. 1 where the outlying slopes (the unfilled circles)
correspond to the departments Ain, Ardeche, Correze, Creuse, Indre, Isere, Jura,
Loire, Rhone, Saone-et-Loire and Haute-Vienne.

Fig. 1 Slopes reclassification (PC1 and PC2)

http://www.uned.es/pfacs-estadistica-aplicada/smps.htm
http://www.uned.es/pfacs-estadistica-aplicada/smps.htm
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3 Spatial Outlier Detection by a Robust GAM

The method proposed in the previous section is an exploratory technique based only
on a GIS. In this section we propose to fit a robust GAM to the spatial observations
zi = Z(si ). In this way, local large residuals will give us possible spatial outliers. We
consider a GAM because this type of models is generally used for modeling spatial
data.

With a GAM, [11], we assume that (univariate) observations are explained as

zi = h(si ) + h(u1i ) + · · · + h(uki ) + ei (1)

where si = (xi , yi ) are the coordinates of zi ; u = (u1, . . . , uk) is a vector of covari-
ates, and h is a smooth function that is expressed in terms of a basis {b1, . . . bq}
as

h(u) =
q∑

j=1

b j (u)β j (2)

for some unknown parameters β j ([15], pp. 122). The errors ei must be, as usual,
i.i.d. N (0,σ) random variables.

A key point in our proposal is to consider the coordinates si = (xi , yi ) of the
observations zi as a covariate in model (1).

The function h could be different for each covariate and, in some cases, the
coordinates covariate is split into two covariates being the model

zi = h1(xi ) + h2(yi ) + h3(u1i ) + · · · + hk+2(uki ) + ei .

We can summarize model (1) as zi = H(si , u1i , . . . , uki ) + ei . This approach
extends the ideas of [7] because they consider (pp. 52) a linear regression model.
Also, some aspects of the papers [12] or [5] are extended in this way.

The robust GAM that we shall fit is the model proposed in [13, 14] although other
possible robust GAMs could be the proposed in [1] or [4].

The robust M-type estimators β̂ for the GAM proposed byWong are the solution
of the following system of estimating equations

n∑

i=1

[
w(μi ) ν(zi ,μi ) μ′

i − a(β) − 1

n
Sβ

]
= 0

where
μi = E[zi |ui ]; β = (β1, . . . ,βq)

t ; μ′
i = ∂μi/∂β; ν(zi ,μi ) = (zi − μi )/V (μi );

w(μi ) = 1

E[ϕ′
c((zi − μi )/V 1/2(μi ))]
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a(β) = 1

n

n∑

i=1

Ezi |ui [ν(zi ,μi )] w(μi ) μ′
i

ϕc theHuber-type functionwith tuning constant c, andS = 2λD, beingλ a smoothing
parameter and D a pre-specified penalty matrix.

The previous system of estimating equations, hence, is formed by the robust
quasi-likelihood equations introduced in [2], plus the usual penalized GAM part.

After we have a good fit, the residuals of this fit, i.e., the differences between the
observed and the predicted values, will help us to detect possible spatial outliers. To
do this we compute the residuals (or the scores of the residuals if zi (s0) is multi-
variate), we incorporate them into QGIS and we follow the same process than in the
previous section: A TIN interpolation, the slopes obtained with GRASS and, finally,
a reclassification with GRASS looking for outlying slopes.

Example 2 Let us consider Guerry data again, [9].We first fit a robust GAM [13, 14]
for each dependent variable, PER and PROP, and we compute the residuals for each
fit. We then compute the scores of these residuals and, again with QGIS, we obtain
departments with slopes both, higher than 30% for PC1 and higher than 13% for
PC2, Fig. 2. The hotspots obtained correspond to the departments Hautes-Alpes,
Ardeche, Creuse, Indre, Loire, Rhone, Saone-et-Loire, Seine and Haute-Vienne.

Fig. 2 Slopes reclassification of the scores of the residuals (PC1 and PC2)
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4 Identification of Spatial Outliers

With the procedures considered in the two previous sections we obtain a set of possi-
ble local outliers. In this section we compute, mathematically, if the behavior around
a hotspot is very unlikely or not to label it as an actual spatial outlier, computing the
probability of obtaining an slope as big as the one obtained at a given location s0.
Considering the framework of the last section, a large (positive or negative) slope,
i.e., a large derivative of function H (h in fact) at s0 will give us a good idea if z(s0)
is a local outlier or not.

To compute the probabilities of large slopes at the hotspots previously identified,
we first fit a classical GAM.We consider now a classical GAM fit instead of a robust
one to magnify theirs slopes because the classical model will be more sensitive than
the robust and the slopes less soft.Also becauseweknow the (asymptotic) distribution
of the estimators of the parameters in a classical GAM but not in the robust one.

From a mathematical point of view, the slope at a point s0 in the direction v is
stated as the directional derivative along v (unit vector) at s0.

If we represent, as usual, by Dvh(s0) the collection of directional derivatives of
function h (assuming that it is differentiable) along all directions v (unit vectors)
at s0 and by MS the maximum slope, i.e., MS(s0) = supv |Dvh(s0)| , we compute
the probability of obtaining the observed maximum slopems(s0) , i.e., P{MS(s0) ≥
ms(s0)}. If this probability is low (for instance lower than 0.05), we shall label z(s0)
as a local outlier (more formally, we could say that we are rejecting the hypothesis
of being zero the slope at s0, i.e., that z(s0) is not a local outlier) and, as the smaller
the probability, the greater should be considered z(s0) as a local outlier.

Because we have assumed that the smooth function h has a representation in terms
of a basis, (2), the slopewill depend on the estimators of the parametersβ j , estimators
that are approximately normal distributed ([15], pp. 189) if the zi are normal.

From vector calculus, we known that the largest value for the slope at a location
s0 is gradient norm, i.e.,

MS(s0) = sup
v

|Dvh(s0)| = ||∇h(s0)|| =
√√√√

(
∂

∂x
h(x, y)

∣∣∣∣
s0

)2

+
(

∂

∂y
h(x, y)

∣∣∣∣
s0

)2

and because h is expressed in term of a basis, the probability that we have to compute refers to the
random variable √√√√√

⎛

⎝
q∑

j=1

∂

∂x
b j (s0) · β̂ j

⎞

⎠
2

+
⎛

⎝
q∑

j=1

∂

∂y
b j (s0) · β̂ j

⎞

⎠
2

(3)

If this is low, z(s0) will be labelled as a local outlier.
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4.1 Cubic Regression Splines

We shall use a cubic regression splines to explain function h in the fit of a GAM to the observations
zi . For this aim we shall use the R function gam of the R package mgcv. The cubic spline function,
with k knots v1, . . . , vk , that we fit ([15], pp. 149–150) is (v j ≤ v ≤ v j+1)

P(v) = v j+1 − v

h j
β j + v − v j

h j
β j+1 +

[
(v j+1 − v)3

h j
− h j (v j+1 − v)

]
δ j

6

+
[

(v − v j )
3

h j
− h j (v − v j )

]
δ j+1

6

where h j = v j+1 − v j , j = 1, . . . , k − 1 and δ j = P ′′(v j ).
The first derivative of P (partial derivative in formula (3)) is

P ′(v) = β j+1 − β j

h j
+

[
−3(v j+1 − v)2

h j
+ h j

]
δ j

6
+

[
3(v − v j )

2

h j
− h j

]
δ j+1

6

and considering as knots the locations, v j ,

P ′(v j ) = β j+1 − β j

h j
− δ j h j

3
.

If the term δ j h j/3 is negligible, we have to compute the probabilities,

P
{
(β̂ j+1 − β̂ j )/h j > observed slope

}

based on a normal model because ([15], pp. 189) β̂ j is approximately normal distributed with mean
β j .

Table 1 Probability of a big slope for both variables

Probability

Dept Department PER PROP

5 Hautes-Alpes 0.08677979 0.734663

1 Ain 0.7796545 0.9039119

7 Ardeche 0.08590459 0.5845837

19 Correze 0.8543756 0.968079

23 Creuse 0.3344432 0.8536806

36 Indre 0.8043197 0.9364876

38 Isere 0.2926037 0.7874324

39 Jura 0 0.0062001

42 Loire 0.5497284 0.8805521

69 Rhone 0 0.365532

71 Saone-et-Loire 0.45913 0.8109866

75 Seine 0 0

87 Haute-Vienne 0.01982465 0.6981038
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Example 3 Let us consider Guerry data again. The set of all departments detected as possible
outliers for, at least, one of the twomethods explained inSects. 2 and3, togetherwith the probabilities
of such slopes (i.e., the p-values of the bilateral test of the null hypothesis H0 : β j+1 − β j = 0),
are in Table1.

Hence, we can label as spatial outliers the observations at Jura, Rhone and Seine. As is remarked
in [6], Seine (together with Ain, Haute-Loire and Creuse) is a global outlier and a local one.

Hence, if we do not consider the Department of Seine (because is a global outlier) we have two
departments that can be considered as spatial outliers: Jura and Rhone, two departments in what is
called the Rhône-Alpes area, i.e., the same result than in [6].

Acknowledgment This work is partially supported by Grant MTM2012-33740.
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Centering and Compound Conditionals
Under Coherence

Angelo Gilio, David E. Over, Niki Pfeifer and Giuseppe Sanfilippo

Abstract There is wide support in logic, philosophy, and psychology for the
hypothesis that the probability of the indicative conditional of natural language,
P(if A then B), is the conditional probability of B given A, P(B|A). We identify
a conditional which is such that P(if A then B) = P(B|A) with de Finetti’s condi-
tional event, B|A. An objection to making this identification in the past was that it
appeared unclear how to form compounds and iterations of conditional events. In
this paper, we illustrate how to overcome this objection with a probabilistic analysis,
based on coherence, of these compounds and iterations. We interpret the compounds
and iterations as conditional random quantities, which sometimes reduce to con-
ditional events, given logical dependencies. We also show, for the first time, how
to extend the inference of centering for conditional events, inferring B|A from the
conjunction A and B, to compounds and iterations of both conditional events and
biconditional events, B||A, and generalize it to n-conditional events.
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1 Introduction

There is wide agreement in logic and philosophy that the indicative conditional
of natural language, if A then B, cannot be adequately represented as the material
conditional of binary logic, logically equivalent to A ∨ B (not-A or B) [8]. Psycho-
logical studies have also shown that ordinary people do not judge the probability
of if A then B, P(if A then B), to be the probability of the material conditional,
P(A ∨ B), but rather tend to assess it as the conditional probability of B given A,
P(B|A), or at least to converge on this assessment [3, 10, 11, 24, 27]. These psy-
chological results have been taken to imply [3, 9, 13, 22, 24], that if A then B is best
represented, either as the probability conditional of Adams [2], or as the conditional
event B|A of de Finetti [5, 6], the probability of which is P(B|A). We will here
adopt the latter view and base our analysis on conditional events and coherence (for
analyses on categorical syllogisms and the square of opposition under coherence see
[19, 25]). Given two events B and A, with A �= ⊥, the conditional event B|A is
defined as a three-valued logical entity which is true if AB (i.e., A ∧ B) is true, false
if B A is true, and void if A is false.

In the above andwhat follows, we use the same symbols, for instance A, to refer to
the (unconditional) event A and its indicator. One possible objection to holding that
P(if A then B) = P(B|A) is that it is supposedly unclear how this relation extends
to compounds of conditionals and makes sense of them [7, 8, 28]. Yet consider:

a︷ ︸︸ ︷
She is angry if

b︷ ︸︸ ︷
her son gets a B and

f︷ ︸︸ ︷
she is furious if

c︷ ︸︸ ︷
he gets a C . (1)

The above conjunction appears to make sense, as does the following seemingly even
more complex conditional construction [7]:

If she is angry if her son gets a B, then she is furious if he gets a C. (2)

We will show below, in reply to the objection, how to give sense to (1) and (2) in
terms of compound conditionals. Specifically, we will interpret (1) as a conjunction
of two conditionals (a|b and f |c) and (2) in terms of a conditional whose antecedent
(a|b) and consequent ( f |c) are both conditionals (if a|b, then f |c). But we note first
that (2) validly follows from (1) by the formof inferencewewill call centering (which
is often termed “conjunctive sufficiency”) [21], when this is extended to compounds
of conditionals (see Sect. 2). We point out that our framework is quantitative rather
than a logical one. Indeed in our approach, syntactically conjoined and iterated con-
ditionals in natural language are analyzed as conditional random quantities, which
can sometimes reduce to conditional events, given logical dependencies [15, 18].
For instance, the biconditional event A||B, which we will define by (B|A) ∧ (A|B),
reduces to the conditional event (A ∧ B)|(A ∨ B). Moreover, the notion of bicon-
ditional centering will be given. We will also introduce the notion of n-conditional
centering (see Sect. 3). Finally, in Sect. 4 we will give some remarks on future work
which will involve counterfactuals.
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2 Centering

There is one-premise centering: inferring if A then B from the single premise A ∧ B.
And two-premise centering: inferring if A then B from the two separate premises A
and B. Centering is valid for quite a wide range of conditionals [23]. It is clearly valid
for the material conditional, since not-A or B must be true when A and B is true. It
is also valid for Lewis conditional if A then B [21], which holds, roughly, when B is
true in the closest world in which A is true. In [21] Lewis has a semantic condition
of centering, which states that the actual world is the closest world to itself. The
characteristic inference rule for this semantic condition is what we are also calling
centering. This rule is probabilistically valid, p-valid, for the conditional event, i.e.
the premise p-entails the conclusion.

A (p-consistent) set of premises p-entails a conclusion if and only if the conclusion
must have probability one when all the premises have probability one [16]. Clearly,
one-premise centering is p-valid, indeed the p-entailment of B|A from A ∧ B fol-
lows by observing that P(A ∧ B) = P(A)P(B|A) and so P(A ∧ B) ≤ P(B|A): if
P(A ∧ B) = 1, then P(B|A) = 1. Two-premise centering is also clearly p-valid, as
it is p-valid to infer A ∧ B from A and B, and then one-premise centering can be
used to infer B|A: if P(A) = x and P(B) = y, coherence requires that P(A ∧ B)
has to be in the interval [max{0, x + y − 1},min{x, y}], with P(A ∧ B) ≤ P(B|A).
Therefore, the set of premises {A, B} p-entails B|A: if P(A) = P(B) = 1, it fol-
lows P(A ∧ B) = P(B|A) = 1. We will give here a probabilistic analysis of two-
premise centering when the premises are conditionals, A|H , B|K , and the conclu-
sion is an iterated conditional, (B|K )|(A|H). We recall that in the approach given
in [14, 15, 18] any conditional event A|H can be seen as the random quantity
AH + x H c ∈ {1, 0, x}, where x = P(A|H). In the same papers the notions of con-
junction and iterated conditioning for two conditional events are studied. We give
the notion of conjunction below.

Definition 1 (Conjunction)Given any pair of conditional events A|H and B|K , with
P(A|H) = x, P(B|K ) = y, we define their conjunction as the conditional random
quantity

(A|H) ∧ (B|K ) = min {A|H, B|K } | (H ∨ K ) = (A|H) · (B|K ) | (H ∨ K ) .

Based on the betting scheme the compound conditional (A|H) ∧ (B|K ) coincides
with 1 · AH BK + x · H BK + y · AH K + z · H K , where z is the prevision of the
random quantity [(A|H) ∧ (B|K )], denoted by P[(A|H) ∧ (B|K )]. Notice that z
represents the amount you agree to pay, with the proviso that you will receive the
quantity (A|H) ∧ (B|K ). By linearity of prevision, if P(H ∨ K ) > 0 it holds that
[20]

P[(A|H) ∧ (B|K )] = P(AH BK ) + P(A|H)P(H BK ) + P(B|K )P(AH K )

P(H ∨ K )
.
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For examples see [15] and [20].We remark that in the setting of coherence de Finetti’s
notion of prevision P, which corresponds to the notion of expected value, may be
evaluated in a direct way. We recall the following result [18]:

Theorem 1 Given any coherent assessment (x, y) on {A|H, B|K }, with A, H, B, K
logically independent, and with H �= ∅, K �= ∅, the extension z = P[(A|H) ∧
(B|K )] is coherent if and only if the Fréchet-Hoeffding bounds are satisfied:

max{x + y − 1, 0} = z′ ≤ z ≤ z′′ = min{x, y} . (3)

Remark 1 From (3) it holds that 0 ≤ z′ ≤ z′′ ≤ 1 for every coherent assessment
(x, y). Moreover, if x = 1, y = 1, then z′ = z′′ = 1. Thus, z = 1 is the unique coher-
ent extension. Then, by adopting the usual language, we say that

{A|H, B|K } |=p (A|H) ∧ (B|K ) , (4)

where “|=p” denotes p-entailment. We call this inference rule “And rule for condi-
tional events.”

Now, we recall the notion of iterated conditioning.

Definition 2 (Iterated conditioning) Given any pair of conditional events A|H and
B|K , the iterated conditional (B|K )|(A|H) is the conditional random quantity
(B|K )|(A|H) = (B|K ) ∧ (A|H) + μA|H , where μ = P[(B|K )|(A|H)].
Notice that, in the context of betting scheme, μ represents the amount you agree to
pay, with the proviso that you will receive the quantity

(B|K )|(A|H) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if AH BK true,
0, if AH BK true,
y, if AH K true,
μ, if AH true,
x + μ(1 − x), if H BK true,
μ(1 − x), if H BK true,
z + μ(1 − x), if H K true.

(5)

We recall the following product formula [15]

Theorem 2 (Product formula) Given any assessment x = P(A|H),μ = P[(B|K )|
(A|H)], z = P[(B|K ) ∧ (A|H)], if (x, y, z) is coherent, then z = μ · x.

The result in Theorem 2 can be obtained by applying the linearity of prevision [18];
indeed by linearity:

P[(B|K )|(A|H)] = μ = P[(B|K ) ∧ (A|H)] + μP(A|H) = z + μ(1 − x) , (6)

from which it follows z = μ · x , that is

P[(B|K ) ∧ (A|H)] = P[(B|K )|(A|H)]P(A|H) . (7)
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Moreover, by taking into account (6), (B|K )|(A|H) coincides with

1 AH BK + y AH K + (x + μ(1 − x)) H BK + μ(1 − x) H BK + μ (AH ∨ H K ).

One-premise centering is p-valid, indeed the p-entailment of (B|K )|(A|H) from
(B|K ) ∧ (A|H) follows from (7) by observing that

P[(B|K ) ∧ (A|H)] ≤ P[(B|K )|(A|H)], (8)

therefore: if P[(B|K ) ∧ (A|H)] = 1, then P[(B|K )|(A|H)] = 1.
Two-premise centering is also p-valid; indeed, it is p-valid to infer (B|K ) ∧ (A|H)

from A|H and B|H , and then one-premise centering can be used to infer (B|K )|
(A|H): by applying Theorem 1 with x = P(A|H) = 1 and y = P(B|K ) = 1,
it follows that the extension z = P[(B|K ) ∧ (A|H)] is coherent if and only if
z = 1. Therefore, based on (8), the set of (p-consistent) premises {A|H, B|K }
p-entails (B|K )|(A|H): if P(A|H) = P(B|K ) = 1, then P[(A|H) ∧ (B|K )] =
P[(B|K )|(A|H)] = 1.

Remark 2 If we only assign the values x = P(A|H) and y = P(B|K ), by The-
orem 1, we obtain z ∈ [max{0, x + y − 1},≤ min{x, y}], where z = P[(A|H) ∧
(B|K )]. Then, by assuming x > 0, by Theorem 2 it follows that the extension μ =
P[(B|K )|(A|H)] is coherent if and only if μ ∈ [μ′,μ′′], where μ′ = max

{
0, x+y−1

x

}

and μ′′ = min
{
1, y

x

}
. When x = 0 (by the penalty criterion) we can prove that

[μ′,μ′′] = [0, 1].

3 Biconditional and n-Conditional Centering

In classical logic the biconditional A ↔ B (defined by (A ∨ B) ∨ (A ∧ B)) can be
represented by the conjunction of the two material conditionals A ∨ B and B ∨ A.
Therefore, {A ∨ B, B ∨ A} |= A ↔ B, which is called biconditional introduction
rule. With the material conditional interpretation of a conditional, the bicondi-
tional A ↔ B represents the conjunction of the two conditionals if A then B and
if B then A. In this section, we present an analogue in terms of conditional events,
by also giving a meaning to the conjunction of two conditional events A|B and B|A.

From centering it follows that {A, B} |=p B|A and {A, B} |=p A|B. Then, from
P(A) = P(B) = 1 it follows that P(B|A) = P(A|B) = 1, which we denoted by:
{A, B} |=p {A|B, B|A}. Thus, by applying (4) with H = B and K = A, we obtain
{A|B, B|A} |=p (A|B) ∧ (B|A) (which we call biconditional introduction rule).
Then, by transitivity

{A, B} |=p (A|B) ∧ (B|A) . (9)
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In a similar way, we can prove that

A ∧ B |=p (A|B) ∧ (B|A) . (10)

We recall that the conditional event (A ∧ B) | (A ∨ B), denoted by A||B, captures
the notion of the biconditional event, which has been seen as the conjunction of two
conditionals with the same truth table as the “defective” biconditional discussed in
[12]; see also [11]. We have

Theorem 3 Given two events A and B it holds that: (A|B) ∧ (B|A) = (A ∧
B)|(A ∨ B) = A||B.

Proof We note that (A|B) ∧ (B|A) = min(A|B, B|A)|(A ∨ B) = AB + μ · AB,
where μ = P[(A|B) ∧ (B|A)]; we also observe that (A ∧ B)|(A ∨ B) = AB + p ·
A B, where p = P[(A ∧ B)|(A ∨ B)]. Then, under the assumption that “(A ∨ B) is
true”, the two random quantities (A|B) ∧ (B|A) and (A ∧ B)|(A ∨ B) coincide. By
coherence (see [18, Theorem 4]) it follows that these two random quantities coincide
also under the assumption that “(A ∨ B) is false”, that isμ and p coincide. Therefore,
(A|B) ∧ (B|A) = (A ∧ B)|(A ∨ B). �
Therefore, based on Theorem 3, we can now really interpret the biconditional
event A||B as the conjunction of the two conditionals (B|A) and (A|B). Moreover,
equations (9) and (10) represent what we call two-premise biconditional centering
and one-premise biconditional centering respectively, that is {A, B} |=p A||B and
A ∧ B |=p A||B.

Though in classical logic {A, B} |= (A ↔ B), the analogue does not hold in our
approach, since we do not have p-entailment of A||B from A, B, indeed if P(A) =
P(B) = 1, then P(A ∨ B) = 0 and therefore P(A||B) = P((A ∧ B)|(A ∨ B)) ∈
[0, 1]. The biconditional event A||B is of interest to psychologists because there is
evidence that children go through a developmental stage in which they judge that
P(if A then B) = P[(A ∧ B)|(A ∨ B)], with this judgment being replaced by P(if
A then B) = P(B|A) as they grow older [12]. We recall that, given two conditional
events A|H and B|K , their quasi conjunction is defined as the conditional event
Q(A|H, B|K ) = [(AH ∨ H) ∧ (BK ∨ K )]|(H ∨ K ). Quasi conjunction is a basic
notion in the work of Adams [1] and plays a role in characterizing entailment from a
conditional knowledge base (see also [4]).We recall that in [17] A||B was interpreted
by the quasi conjunction of A|B and B|A, by obtaining A||B = Q(A|B, B|A) =
(A ∧ B)|(A ∨ B). In the same paper the following probabilistic rule is given. Let
(x, y) be any coherent assessment on {A|B, B|A}; then, the probability assessment
z = P(A||B) is a coherent extension of (x, y) if and only if

z = T H
0 (x, y) =

{
0, (x = 0 ∨ y = 0) ,

xy
x+y−xy = 1

1−x
x + 1−y

y +1
, (x �= 0 ∧ y �= 0) , (11)

where T H
0 (x, y) is the Hamacher t-norm, with parameter λ = 0. Of course, two-

premise centering for the biconditional event directly follows by instantiating (11)
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with x = y = 1. In [17] the notion of biconditional event has been generalized by
defining the n-conditional event. Given n (non-impossible) events A1, . . . , An , the
associated n-conditional event is given by

A1||A2|| · · · ||An = Q(A2|A1, A3|A2, . . . , An|An−1, A1|An) =
= (A1 ∧ · · · ∧ An) | (A1 ∨ · · · ∨ An) .

Then, by recalling that the extension of a t-norm T in [0, 1]n is defined as

T (p1, p2, . . . , pn) =
{

T (T (p1, . . . , pn−1), pn), n > 2,
T (p1, p2), n = 2,

and based on [17, Proposition 3] we obtain

Theorem 4 Given any coherent assessment (p1, p2, . . . , pn) on {A1, A2, . . . , An},
for every k = 2, . . . , n, the extension zk = P(A1||A2|| · · · ||Ak) of (p1, p2, . . . , pk)

is coherent if and only if

zk = T H
0 (p1, p2, . . . , pk) =

{
0, pi = 0 for at least one i,

1∑k
i=1

1−pi
pi

+1
, pi > 0 for i = 1, . . . , k . (12)

By formula (12), if p1 = p2 = . . . = pn = 1, then z = 1, that is A1, A2, . . . , An |=p

A1||A2|| · · · ||An , which we call n-premise n-conditional centering. As a further
observationwenote that, by applying theAnd rule to the events A1, . . . , An ,weobtain
theone-premise n-conditional centering A1 ∧ A2 ∧ . . . ∧ An |=p A1||A2|| · · · ||An.

4 Conclusion

In this paper, we have illustrated a probabilistic analysis of the conjunction and
iteration of conditional events, and of the centering inference for these conjunctions
and iterations. We see this analysis as relevant to the conjunction and iteration of
indicative conditionals in natural language. It is often argued that there are deep
differences between indicative and counterfactual conditionals in natural language.
For example, the indicative conditional If Oswald did not kill Kennedy, someone else
did seems very different from the counterfactual conditional If Oswald had not killed
Kennedy then someone else would have [8]. However, we will consider extending
our approach in future work to counterfactuals (see [20] for points relevant to this
and see [26] for an experimental study comparing systematically counterfactuals and
indicative conditionals under coherence).
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Approximate Bayesian Methods
for Multivariate and Conditional Copulae

Clara Grazian and Brunero Liseo

Abstract We describe a simple method for making inference on a functional of
a multivariate distribution. The method is based on a copula representation of the
multivariate distribution, where copula is a flexible probabilistic tool that allows the
researcher to model the joint distribution of a random vector in two separate steps:
the marginal distributions and a copula function which captures the dependence
structure among the vector components. The method is also based on the properties
of an approximate BayesianMonteCarlo algorithm,where the proposed values of the
functional of interest are weighted in terms of their empirical likelihood. Thismethod
is particularly useful when the likelihood function associatedwith theworkingmodel
is too costly to evaluate or when the working model is only partially specified.

1 Introduction

Theoretical proposals are now available to model complex situations, thanks to the
recent advances in computational methodologies and to the increased power of mod-
ern computers. In particular, there are newmethods formultivariate analysis, however
the goal of modelling complex multivariate structures and estimating them has not
yet been reached in a completely satisfactory way.

Copula models have been introduced as probabilistic tools to describe a multivari-
ate randomvector via themarginal distributions and a copula functionwhich captures
the dependence structure among the vector components, thanks to the Sklar’s theo-
rem [1], which states that any d-dimensional absolutely continuous density can be
uniquely represented as

f (x1, . . . , xd) = f1(x1) . . . fd(xd)c12...d(F1(x1), . . . , Fd(xd)). (1)
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While it is often straightforward to produce reliable estimates of the marginals, mak-
ing inference on the dependence structure is more complex. Major areas of appli-
cation include econometrics, hydrological engineering, biomedical science, signal
processing and finance.

In a parametric frequentist approach to copula models, there are no broadly satis-
factorymethods for the joint estimation ofmarginal and copula parameters. Themost
popular method is the so called Inference From the Margins (IFM), where the para-
meters of the marginal distributions are estimated first, and then pseudo-observations
are obtained by pluggin-in the estimates of the marginal parameters. Then inference
on the copula parameters is performed using the pseudo-observations: this approach
obviously does not account for the uncertainty on the estimation of the marginal
parameters. Bayesian alternatives are not yet fully developed, although there are
remarkable exceptions ([2, 3], among others).

In this work we consider the general problem of estimating some specific quan-
tities of interest of a generic copula (such as, for example, tail dependence index
or Spearman’s ρ) by adopting an approximate Bayesian approach along the lines of
[4]. In particular, we discuss the use of the an approximate Bayesian computation
algorithm based on empirical likelihood weights (in the following, BCEL ), based on
the empirical likelihood approximation of the marginal likelihood of the quantity of
interest (see [5] for a complete and recent survey on empirical likelihood methods).
This approach produces an approximation of the posterior distribution of the quanti-
ties of interest, based on an approximation of the likelihood function and on a Monte
Carlo approximation of the posterior distribution via simulations. Our approach is
general, in the sense that it could be adapted both to parametric and nonparametric
modelling of the marginal distributions. Also, the use of empirical likelihood avoids
the need of choosing a specific parametric copula model.

2 Approximate Bayesian Computation

The idea underlying likelihood-freemethods (or approximate Bayesian computation,
ABC) is to propose a candidate θ′ and to generate a data set from the working model
with parameter set to θ′. If the observed and the simulated data are similar “in some
way”, then the proposed value is considered a good candidate to have generated
the data and becomes part of the sample which will form the approximation to the
posterior distribution. Conversely, if the observed and the simulated data are too
different, the proposed θ′ is discarded.

In order to implement a basic version of the ABC algorithm one needs to specify
a set of summary statistics to make comparisons, a distance to quantify comparisons
and a tolerance level ε > 0.

The basic ABC may be inefficient, because it proposes values of θ from its prior
distribution, therefore, ABC algorithms are often linked with other methods, for
instance, with Markov Chain Monte Carlo (MCMC) or Sequential Monte Carlo
(SMC) methods. In this work, we will focus on a different ABC approach, described
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in Algorithm 1 where M simulations from the prior are generated; this method
avoids the most expensive step in computational time, that is the generation of new
data sets. A detailed description of the method is in [4]; it represents a re-sampling
scheme where the proposed values are re-sampled with weights proportional to their
empirical likelihood values.

for i = 1 to M do
repeat
Generate θi from the prior distribution π(θ)
Set the weight for θi as ωi = LEL (θi ; x).
end for
for i = 1 to M do
Draw, with replacement, a value θi from the previous set of M values using weights
ωi , i = 1, . . . , M .
end for

Algorithm 1: BCEL algorithm

3 The Proposed Approach

We propose to adapt the BCEL algorithm to a situation where the statistical model
is only partially specified and the main goal is the estimation of a finite dimensional
quantity of interest, i.e. a situation where the complete structure of the mutual depen-
dence is considered a nuisance parameter and it is kept as general as possible. While
the main interest of [4] was the approximation of the full posterior distribution of
the parameters of the model, here we use the empirical likelihood (EL) approach to
avoid a parametric definition of the model for the observed data and focus only on
a particular functional of the distribution, which summarizes the correlation among
the variables.

We assume that a data set is available in the form of a size n × d matrix X , where
n is the sample size and d is the number of variables, that is

X =

⎛

⎜⎜⎝

x11 x12 . . . x1d
x21 x22 . . . x2d
. . . . . . xi j . . .

xn1 xn2 . . . xnd

⎞

⎟⎟⎠ .

In the following, X [·, j] will denote the j-th column (variable) and X [i,·] the i-
th row of X , respectively. For each j = 1, . . . , d, we consider the available data
information in X [·, j] to produce an estimate of the marginal CDF of X [·, j]. Let
λ j = (λ(1)

j ,λ(2)
j , . . . λ(B)

j ), j = 1, 2, . . . d, be the posterior sample of size B obtained
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for the distribution of X [·, j]. Notice that the vector λ j can be either a sample from
the posterior distribution of the parameters of the model we have adopted for X [·, j]
or a posterior sample of CDF’s in a nonparametric set-up.

Then we use a copula representation for estimating the multivariate dependence
structure of the random vector X ,

H(x1, . . . , xd) = Cθ

(
F1(x1), F2(x2), . . . , Fd(xd)

)
(2)

where θ is the parameter related to the copula function.
Estimating the copula Cθ(·) can be managed either using some parametric model

for the copula (such as Clayton, Gaussian, Skew-t, Gumbel, etc.) or using a nonpara-
metric approach. In this paper, we take a nonparametric route (in many situations it
is difficult to prefer a model instead of another) and we concentrate on some specific
function ofCθ(·), sayϕ = T (F), for example the Spearman’smeasure of association
ρ between two components of X , say Xh and X j , which is defined as the correlation
coefficient among the transformed values Ui = Fi (xi ), i = j, h:

ρ = 12
∫ 1

0

∫ 1

0

(
C(u j , uh) − uhu j

)
du jduh . (3)

Its sampling counterpart ρn is the correlation among ranks R and S of the data
observed for the two variables of interest and it can be written as:

ρn = 1

n

n∑

i=1

(
12

n2 − 1
Ri Si

)
− 3

n + 1

n − 1
. (4)

If interest lies only in a functional of the copula, instead of in its entire structure,
we use Algorithm 2 to produce an approximation of the posterior distribution of the
functional itself ϕ = T (F).

It is important to note that the approximation might hold only asymptotically:
for example, if the sample version of the Spearman’s ρ is used to approximate the
posterior distribution of ρ, one has to consider that the sample version is only asymp-
totically unbiased. One advantage of the proposedAlgorithm is that prior information
is only provided for the marginal distributions and for ϕ; so the prior elicitation is
easier: it is not necessary to define a prior distribution for the entire copula function.

Moreover, the method is robust with respect to different prior opinions about non-
essential aspects of the dependence structure andwith respect to the copula definition.
The most important disadvantage of the method is its inefficiency when compared to
a parametric copula, as usual in nonparametric or semiparametric setting; however
this is true only under the assumption that the parametric copula is the true model.

From a computational perspective Algorithm 2 is quite demanding, since one
needs to run a BCEL algorithm for each row of the posterior sample from the mar-
ginals. Even though the estimation of the marginal densities of the X [·, j]’s might not
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[1:] For b = 1, . . . , B, use the s-th row of the posterior simulation λ
(b)
1 ,λ

(b)
2 , . . . ,λ

(b)
d to

create a matrix of uniformly distributed pseudo-observations

u(b) =

⎛

⎜⎜⎜⎝

u(b)
11 u(b)

12 . . . u(b)
1d

u(b)
21 u(b)

22 . . . u(b)
2d

. . . . . . u(b)
i j . . .

u(b)
n1 u(b)

n2 . . . u(b)
nd

⎞

⎟⎟⎟⎠

with u(b)
i j = Fj

(
xi j ; λ

(b)
j

)
.

[2:] Given a prior distribution π(ϕ) for the quantity of interest ϕ,
for m = 1, . . . , M ,

1. draw ϕ(m) ∼ π(ϕ);
2. compute EL

(
ϕ(m); u(b)

) = ωmb; b = 1, . . . , B.

3. take the average weight ωm = B−1 ∑B
b=1 ωmb

end for
[3:] re-sample - with replacement - from {(ϕ(b), ωb

)
, b = 1, . . . , B}.

Algorithm 2: ABCOP algorithm

require a huge number of iterations B, still it might be very expensive to run B differ-
ent BCEL algorithms. To avoid this computational burden, we propose to modify the
above algorithm by simply performing a single run of the BCEL algorithm, where,
for each iteration m = 1, . . . , M , a randomly selected (among the B rows) row λb

is used to transform the actual data into pseudo-observations lying in [0, 1]d .

4 An Example: Spearman’s ρ

The definition of the Spearman’s ρ given in (4) can be interpreted as an average
distance between the copula C and the independence copula Π(u, v) = uv. Thus,
in a d-dimensional setting the multivariate ρ becomes

ρ =
∫
[0,1]d C(u)du − ∫

[0,1]d Π(u)du
∫
[0,1]d M(u)du − ∫

[0,1]d Π(u)du

= d + 1

2d − (d + 1)

{
2d

∫

[0,1]d
C(u)du − 1

}
. (5)

The multivariate extension of the empirical copula is

Ĉn(u) = 1

n

n∑

i=1

d∏

j=1

I{
Ûi jn≤ui

} f or u = (u1, u2, . . . , un) ∈ [0, 1]d (6)
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where Ûi jn = F̂(Xi j ) for i = 1, . . . , d and F̂(·) is the empiricalmarginal distribution
function. Therefore, a nonparametric estimator of ρ is

ρ̂1n = h(d)

{
2d

∫

[0,1]d
Ĉn(u)du − 1

}
= h(d)

⎧
⎨

⎩
2d

n

n∑

i=1

d∏

j=1

(1 − Ûi jn) − 1

⎫
⎬

⎭ (7)

where h(d) = (d + 1)/(2d − d − 1). An alternative estimator is

ρ̂2n = h(d)

{
2d

∫

[0,1]d
Π(u)dĈ(u) − 1

}
= h(d)

⎧
⎨

⎩
2d

n

n∑

i=1

d∏

j=1

Ûi jn − 1

⎫
⎬

⎭ (8)

Asymptotic properties of these estimators are assessed in [6].
Once an estimator of the multivariate version of ρ is available, it is possible to

apply the procedure presented in Sect. 3. On the other hand, the variance of the
proposed estimators can be explicitly computed only in few cases, for example in the
case of the independence copula. [6] proposes to estimate it in a nonparametric way
via a bootstrap method. Nevertheless, in practice this method tends to underestimate
the variance, as it is shown in Fig. 1, where the frequentist procedure for a fixed n
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Fig. 1 100 simulations from a Clayton copula: sample size is 100; the true value of ρ is equal to 0.5
(red line). The results for the frequentist procedure are available above, the ones for the Bayesian
procedure are available below. The black lines are the point estimates of ρ1, the blue lines represent
the lower and the upper bounds of the intervals of level 0.95
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leads to a coverage of about 10% (coverage of 0% for the interval of ρ̂2), while the
proposed Bayesian method has the expected coverage, even if the average length is
necessarily greater, about 0.822, i.e. the intervals contain almost half of the parameter
space.

5 Further Research

Algorithm 2 produces an approximation of the posterior distribution of any summary
of the multivariate dependence, once a multivariate estimator is available, as in the
case of the Spearman’s ρ. In some cases the analysis may be focused on measures
of dependence as functions of some available conditioning variables. In the case
of two response variables X1 and X2, both depending on the same covariate Z ,
the observations (x1i , x2i , zi ) follow a distribution FX1,X2|Z (·|z). [7] proposes the
following estimator for the Spearman’s ρ.

ρ̂n(x) = 12
n∑

i=1

wni (x, hn)(1 − Ûi1)(1 − Ûi2) (9)

where Ûi, j = ∑n
i ′=1 wi ′(x, hn)I(Ui ′ j ≤ ui j ) for j = 1, 2, Ui j = Fj (xi j ) and

wi j (x, hn) are appropriately chosen weights depending on xi j and a bandwidth hn ,
for example kernel-based weights as the Nadaraya-Watson. Unfortunately, estimator
(9) is based on an estimator of the conditional copula, given in [7], which is biased.
A first simulation study implemented for 10,000 simulations of the function ρ(x)
(see Fig. 2) shows that, while the estimator (9) is not able to capture the true function

Fig. 2 Simulations from the
conditional Clayton copula
based on 10,000 ABC
simulations of ρ(x) and 100
data points: true function
ρ(x) in black, Bayesian
estimates in red (median,
0.05 and 0.95 credible
bands), frequentist estimate
in blue
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(it underestimates the dependence among values), the Bayesian estimate obtained
via Algorithm 2 can recover it, even if the variance increases as the value of the
covariate increases. Further research will be focused on trying to understand why
this happens and on producing more stable estimates.
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The Sign Test for Interval-Valued Data

Przemysław Grzegorzewski and Martyna Śpiewak

Abstract Two versions of the generalized sign test for interval-valued data are
proposed. Each version correspond to a different view on the interval outcomes
of the experiment—either the epistemic or the ontic one. As it is shown, each view
yield different approaches to data analysis and statistical inference.

1 Introduction

Interval-valued data have drawn an increasing interest in recent years. However, a
closed intervalmaybe used tomodel twodifferent types of information: the imprecise
description of a point-valued quantity or the precise description of a set-valued entity.

Quite often the results of an experiment are imprecisely observed or are so uncer-
tain that they are recorded as intervals containing the precise outcomes. Sometimes
the exact value of a variable is hidden deliberately for some confidentiality reasons
(see [7]). In all such cases intervals are considered as disjunctive sets representing
incomplete information (epistemic view, according to [1]). In other words, an epis-
temic set A contains an ill-known actual value of a point-valued quantity x , so we
can write x ∈ A. Since it represents the epistemic state of an agent, it does not exist
per se.

There are also situationswhen the experimental data appear as essentially interval-
valued data describing a precise information (ranges of fluctuations of some physical
measurements, time interval spanned by an activity, etc.). Such intervals are called
conjunctive and correspond to the ontic view (see [1]). Thus an ontic set is the precise
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representation of an objective entity, i.e. A is a value of a set-valued variable X , so
we can write X = A.

In this paperwe suggest how to generalize thewell-known sign test for the interval-
valued data perceived from these two perspectives. We have chosen a distribution-
free test deliberately to avoid problems in verifying assumptions on the underlying
distribution. Indeed, yet we do not have satisfactory goodness-of-fit techniques for
interval-valued data.

The paper is organized as follows: In Sect. 2 we recall the classical sign test. In
Sect. 3 we introduce basic notations and concepts related to interval-valued data.
Next, we propose two generalizations of the sign test adequate to each type of data:
for epistemic sets in Sect. 4 and for ontic sets in Sect. 5.

2 The Sign Test

Many classical tests were derived assuming that samples come from the normal
population. If we cannot warrant normality and a sample size is not large enough
to perform an asymptotic test, nonparametric tests are usually recommended. For
example, the popular z-test or t-test for the mean, which require normality, we may
substitute by a very simple but useful sign test.

Although the sign test is not very powerful its most important advantage is the
almost complete lack of assumptions on the population distribution. It does not
also require a big sample. In this test the hypotheses concerns the median, not the
mean. Both the mean and the median are good measures of central tendency and
they coincide for symmetric distributions, but in any population the median always
exists, which is not true for the mean, and the median is more robust to outlier as an
estimate of location than the mean.

Suppose a random sample of n independent observations X1, . . . , Xn is drawn
from the population with unknown median M . The only assumption is that the
population distribution is continuous and strictly increasing in the vicinity of M . We
verify the null hypothesis H0 : M = M0 with a corresponding one-sided or two-sided
alternative. The idea of the sign test is very simple: if the data are consistent with the
hypothesized median M0 on the average half of the observations should lie above
M0 and a half below. Conversely, a significant disproportion between the number of
positive signs of differences Xi − M0 and the number of negative signs would lead
to rejection of H0. The test statistic delivers the number of observed “plus” signs and
is defined as follows

T =
n∑

i=1

I(Xi − M0 > 0), (1)

where I(ρ) = 1 if a sentence ρ is true and I(ρ) = 0 otherwise.



The Sign Test for Interval-Valued Data 271

The sampling distribution of T is binomial Bin(n, θ) with parameters n and θ
which is equal to 0.5 if H0 holds. For a one-sided upper-tailed alternative H1 : M >

M0 we reject H0 if T � kα, where kα is chosen to be the smallest integer which
satisfiesP(T � kα|H0) = ∑n

i=kα

(n
i

)
0.5n � α andα is an accepted significance level.

Similarly, for a one-sided lower-tailed alternative H1 : M < M0 we reject H0 if
T � k ′

α, where k
′
α = n − kα. And finally, for a two-sided alternative H1 : M �= M0

we reject H0 if T � kα/2 or T � k ′
α/2.

The sign test is also applicable to paired-sample data. Suppose we have two
samples X1, . . . , Xn andY1, . . . ,Yn representing “pretreatment” and “posttreatment”
observations on each of n subjects (patients, blocks, etc.), respectively. Then we
consider the null hypothesis that the treatment effect is not significant, i.e. H0 :
M(X − Y ) = 0, where M(X − Y ) stands for the median of the difference between
the pretreatment and the posttreatment. In our paired-sample problem the test statistic
is given by

T =
n∑

i=1

I(Xi − Yi > 0), (2)

while the rejection criteria remain as for the one-sample problem.
A generalization of the sign test for fuzzy data was proposed by Grzegorzewski

[3, 5]. Below we suggest how to generalize the sign test for interval-valued data.

3 Interval-Valued Data

Let Kc(R) = {[u, v] : u, v ∈ R, u � v} denote the family of all non-empty closed
and bounded intervals in the real line R. Each compact interval A ∈ Kc(R) can be
expressed by its endpoints, i.e. A = [a, a]. Alternatively, the notation A = [mid A ±
spr A], with spr A � 0, where mid A = 1

2 (a + a) is the mid-point (center) of the
interval A and spr A = 1

2 (a − a) is the spread (radius) of A, can be considered.
To handle intervals a natural arithmetic on Kc(R) is defined by means of the

Minkowski addition and the product by scalars, given by

A + B = {a + b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A},

for any A, B ∈ Kc(R) and λ ∈ R. These two operations can be jointly expressed
in terms of the mid /spr representation of the intervals as A + λB = [(mid A +
λmid B) ± (spr A + |λ|spr B)], while using the endpoints of the intervals we obtain
A + B = [a + b, a + b], A − B = [a − b, a − b] and λA = [min{λa,λa},
max{λa,λa}].

It should be noted that the space (Kc(R),+, ·) is not linear but semi linear, due to
the lack of the opposite element with respect to the Minkowski addition: in general,
A + (−1)A �= {0}, unless A = {a} is a singleton.
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Although we use the same notation and basic operations on intervals both for the
epistemic and ontic approach, there are significant differences in statistics of interval-
valued data perceived from those two perspectives. In the epistemic approachwe deal
with usual random variables which attribute to each random event a real value, only
its perception is not known precisely but exact to interval. On the other hand, in the
ontic approach we deal with random intervals defined as follows.

Definition 1 Given a probability space (Ω,A, P), a mapping X : Ω −→ Kc(R) is
said to be a random interval (interval-valued random set) if it is Borel-measurable
with the Borel σ-field generated by the topology associated with by the Hausdorff
metric on Kc(R).

Equivalently, a mapping X : Ω −→ Kc(R) is a random interval if mid X : Ω →
R and spr X : Ω → R+ ∪ {0} are random variables defined as the mid-point and the
spread of the interval X (ω), respectively, for each ω ∈ Ω .

4 The Sign Test in the Epistemic Perspective

Within the epistemic view let us consider a sequence of interval observations X1 =
[x1, x1], . . . , Xn = [xn, xn], which are perceptions of the unknown true outcomes
x1, . . . , xn of the experiment, where xi ∈ Xi . As in the classical case we assume
that our observations come from the unknown distribution with a median M and our
goal is to verify a hypothesis H0 : M = M0 against the alternative H1 : M > M0.
Suppose T denotes test statistic (1). Our goal now is to find a set of possible values
that the test statistics can assume, i.e.

TI = {T (x1, . . . , xn) : xi ∈ Xi }. (3)

In general finding the setwhich is guaranteed to contain the actual range of statistic
which may be assumed for any possible real values belonging to intervals that form
interval-valued data is not easy. Moreover, in some cases it is even impossible in a
reasonable time (e.g. determining the sample variance for arbitrary sample of the
interval data perceived from the epistemic perspective is the NP-hard problem, see
[9]). Fortunately, in the case of the sign test statistic to find its enclosure is not only
possible but even easy. In fact, it will be enough to identify situations when (3)
assumes its smallest value t and largest value t .

Let us consider the following three situations. Firstly, if xi < M0 then I(xi −
M0 > 0) = 0 for any xi ∈ [xi , xi ], which means that in this case one may choose
arbitrary xi ∈ [xi , xi ] for computing both the upper or the lower bound of T . Sec-
ondly, if xi < M0 < xi then for designing t we may choose arbitrary xi ∈ [xi , M0),
for which we get I(xi − M0 > 0) = 0. Similarly, to get t we may choose arbitrary
xi ∈ (M0, xi ], for which I(xi − M0 > 0) = 1. Finally, if M0 < xi then I(xi − M0 >

0) = 1 for any xi ∈ [xi , xi ] which means that one may choose arbitrary xi ∈ [xi , xi ]



The Sign Test for Interval-Valued Data 273

for computing both the upper or the lower bound of T . As a conclusion we obtain
both desired bounds of possible values of the test statistic

t = min{T (x1, . . . , xn) : xi ∈ Xi } =
n∑

i=1

I(xi − M0 > 0), (4)

t = max{T (x1, . . . , xn) : xi ∈ Xi } =
n∑

i=1

I(xi − M0 > 0). (5)

Since now the test statistic is no longer represented by a single value but by a
bounded set with bounds (4) and (5), the corresponding p-value, required for making
a decision, is not also a single value but form a set

pI = {P(T � t | H0) : t ∈ TI } (6)

with the following bounds

p = min{P(T � t | H0) : t ∈ TI } = P(T � t | H0) =
n∑

i=t

(
n

i

)(1
2

)n
, (7)

p = max{P(T � t | H0) : t ∈ TI } = P(T � t | H0) =
n∑

i=t

(
n

i

)(1
2

)n
. (8)

It is worth noticing that TI ⊆ {t, t + 1, . . . , t} and pI ⊆ {p, p + 1, . . . , p}.
In classical statistics we reject H0 if a p-value p is small enough, e.g. if p < α,

where α is the assumed significance level (typically α = 0.05) and do not reject
H0 (accept H0) otherwise. Unfortunately, in this case of the set-valued p-value the
relation pI < α means nothing. However, we may apply there the following natural
algorithm proposed by Filzmoser and Viertl [2] to handle a fuzzy p-value: if p < α
then reject H0; if α < p then accept H0; otherwise (i.e. if p � α � p) we suspend
the decision and, e.g., demand more observations to make a well-based decision.

It seems that the algorithm by Filzmoser and Viertl is well-grounded and may
be recommended to practitioners. However, if one requires just one of the binary
decisions—either reject or accept H0—he/she may apply an appropriate randomiza-
tion (see [4]).

By the similar reasoning we may generalize the sign test for two-sample paired
data given by interval-valued observations X1 = [x1, x1], . . . , Xn = [xn, xn] and
Y1 = [y

1
, y1], . . . ,Yn = [y

n
, yn]. In this case the desired bounds of possible val-

ues of the test statistic are given as follows: t = min{T (x1, . . . , xn, y1, . . . , yn) :
xi ∈ Xi , yi ∈ Yi } = ∑n

i=1 I(xi > yi ) and t = max{T (x1, . . . , xn, y1, . . . , yn) : xi ∈
Xi , yi ∈ Yi } = ∑n

i=1 I(xi > y
i
).
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5 The Sign Test in the Ontic Perspective

Now let us consider a sample of random intervals X1, . . . , Xn . Suppose we want to
test hypothesis about the central tendency interval M0 = [midM0 ± sprM0] which
is somehow “typical” for the population represented by our sample. However, firstly,
one has to specify how to imagine a “typical” interval. Secondly, the relation between
the object assumed to characterize the population and the true one has to be defined.
And finally, the desired testing procedure has to be constructed. A test for interval-
valued mean was proposed by Montenegro et al. [8]. Quite different approach was
suggested by Ramos-Guajardo et al. [10, 11] who proposed a test for a hypothesis
about a similarity between the expected value of a random interval and afixed interval.
In both cases the crucial difficulty is to find the distribution of the test statistic so the
advised way-out is to use a bootstrap or to apply an asymptotic approach, provided
a sample is large enough. Below we suggest a simple generalization of the sign test
that avoids the above mentioned problem.

Let Med = [midMed ± sprMed] denote the unknown interval-valued popula-
tion median (see [12]). Assume that we want to test a hypothesis H0 : Med = M0,
where M0 = [midM0 ± sprM0] is a fixed interval. Therefore, as a null hypothesis
on location we will consider the following statement

H0 : (midMed = midM0 and sprMed = sprM0), (9)

against the “two-sided” alternative H1 : ¬H0 that at least one of the equalities in (9)
fails.

Since, according to Sect. 3, each interval-valued observation is completely
described by its mid-point and spread, it seems obvious that if the null hypothesis (9)
holds then the mid-point and the spread of M0 should be “close” to the mid-points
and spreads of the observed intervals, respectively.

Let us define the following two statistics:

T1 =
n∑

i=1

I(mid Xi − midM0 > 0), (10)

T2 =
n∑

i=1

I(spr Xi − sprM0 > 0). (11)

This way our sign test for interval-valued data consists of two usual sign
tests: one for the mid-points and the second for spreads. We reject the null
hypothesis (9) if at least one of these tests indicates rejection, i.e. if either the
median of (mid X1, . . . ,mid Xn) differs too much from midM0 or the median of
(spr X1, . . . , spr Xn) differs too much from sprM0.

Let α ∈ (0, 1) denote the significance level of our generalized sign test. Then we
have

P(T1 ∈ W1 or T2 ∈ W2 | H0) � α, (12)



The Sign Test for Interval-Valued Data 275

whereW1 andW2 denote critical regions for our two subtests, i.e. for the mid-points
and spreads, respectively. If the null hypothesis (9) holds then both T1 and T2 are
binomially distributed, i.e. Bin(n, 0.5). However, a natural question that arises now
is: How to find W1 and W2?

The left side of (12) equals P(T1 ∈ W1|H0) + P(T2 ∈ W2|H0) − P(T1 ∈
W1, T2 ∈ W2|H0). If we additionally assume that T1 and T2 are independent, which
seems to be quite natural, then we get

P(T1 ∈ W1|H0) + P(T2 ∈ W2|H0) − P(T1 ∈ W1|H0)P(T2 ∈ W2|H0) � α. (13)

Let us introduce the following notation: α1 = P(T1 ∈ W1|H0) and α2 = P(T2 ∈
W2|H0). Then (13) can be expressed as follows

α1 + α2 − α1α2 � α. (14)

If we additionally assume that the closeness in mid-points is equally important
as the closeness in spreads then α1 = α2 and hence (14) reduces to α1(2 − α1) �
α. Keeping in mind that α1 ∈ (0, 1) we obtain the following desired relationship
between α1 and α

α1 � 1 − √
1 − α. (15)

Therefore, going back to Sect. 2, we obtain the critical region W1 = W2 =
[0, k ′

α1/2] ∪ [kα1/2, n], where kα1 is chosen to be the smallest integer which satis-
fies

∑n
i=kα1/2

(n
i

)
0.5n � α1

2 , k
′
α1/2 = n − kα1/2 and α1 is given by (15).

It is worth noting that in a case when no identical importance is connected with
the mid-points and spreads one may consider differentW1 andW2 corresponding to
different α1 and α2, respectively, which satisfy (14).

Unfortunately, the sign test designed for random intervals cannot be directly
applied for the “one-sided” alternatives because intervals are not linearly ordered
and for two intervals M and M0 the meaning of the expression like M “is greater
than” M0 is neither clear nor obvious.

We may also calculate a p-value of the generalized sign test. If t1 and t2 are
the observed values of statistics T1 and T2, respectively, then p1 = 2min{P(T1 �
t1|H0),P(T1 � t1|H0)} and p2 = 2min{P(T2 � t2|H0),P(T2 � t2|H0)} are p-values
of the two subtests oriented on the mid-points and spreads, respectively. Assuming
independence of T1 and T2 and applying the same reasoning as used above, we obtain
the p-value of the overall test

p = p1 + p2 − p1 p2. (16)

Please note, that the p-value defined for the ontic approach by (16) is a real number
from the unit interval, as in classical case and not as in the epistemic approach
described in Sect. 4.
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6 Conclusions

We have proposed two generalizations of the sign test designed for two different
views on interval-valued data. However, one should be aware the distinction between
ontic and epistemic sets because there is a risk of misusing even basic notions and
tools. Both ontic and epistemic view yield different approaches to data analysis and
statistical inference. Thus in the paper we have proposed two generalizations of the
sign test designed for two different views on interval-valued data. Of course, many
questions are still open. In particular, the statistical properties of both generalizations
are of interest. Moreover, the case of dependent statistics T1 and T2 considered in the
ontic perspective, as well as the one-sided test for random intervals would be also of
interest.
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Probability Distributions Related to Fuzzy
P-Values

Olgierd Hryniewicz

Abstract In the paperwe have considered different approaches for the calculation of
the p-value for fuzzy statistical tests. For the particular problem of testing hypotheses
about themean in thenormal distributionwith knownstandarddeviation, and a certain
type of fuzziness (both in data and tested hypotheses) we have found probability
distributions of the respective defuzzified p-values. These distributions let us evaluate
the compatibility of the observed data with the assumed hypothetical model.

1 Introduction

The concept of p-value is probably the most frequently used and misused concept
of statistics. It was formally introduced by R.A. Fisher in the 1920’s, but practically
it was used earlier, e.g., in works of Karl Pearson. Its usage represents an inductive
approach to statistical data analysis. Many practitioners, trying to interpret results
of their experiments, mix this approach with a deductive one introduced by Neyman
and Pearson, and arrive at completely false conclusions. The situation is even more
complicated when we take into account the third paradigm of data analysis—the
Bayesian one. In this approach—in its “objective” version proposed by Jeffreys—an
uninformative prior distribution defined on the set of all considered hypotheses is
introduced, and then a posterior probability distribution, conditioned on the observed
value of a certain test statistic, is calculated. The hypothesis with the highest value
of this posterior probability is taken as the most plausible.

The controversies between different approaches to the interpretation of statisti-
cal tests are even amplified when we consider the problem of statistical testing in
a fuzzy statistical environment. By a fuzzy statistical environment we understand
situation when both statistical data and/or statistical hypotheses can be imprecisely
perceived or defined. Statistical tests used in this environment are usually called fuzzy
statistical tests. The problems with the understanding of fuzzy statistical tests begin
with the used interpretation of the concept of a fuzzy random variable. Depending on
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“epistemic” or “ontic” interpretation of fuzzy random data (see [3] for more informa-
tion) the interpretation of the results of fuzzy statistical tests may be quite different.

The paper is organized as follows. In the second section we present the concept
of p-value, as it is used and interpreted in classical statistics. We begin with some
historical remarks, then we present mathematical description of the concept, and
finally present its often disputable interpretation. In the third section we present
different approaches to the usage of the concept of p-value in fuzzy statistical tests.
We discuss the application of a fuzzy p-value, and a crisp p-value that can be used
in a fuzzy statistical environment. Using simulation methods we analyze differences
between probability distributions of defuzzified versions of p-values. The paper is
concluded in its last section.

2 The Concept of P-Value—A Crisp Case

The concept of p-value has been defined in many ways. Below, following [17],
we present a general definition that can be used in further considerations. Let X be
randomdata described by a continuous density function f (x). Let us also assume that
in our decisionmodel this density is completely specified, and forms our hypothetical
model H0. Compatibility of this hypothetical model with observed data x is evaluated
using a certain statistic T (X) whose large values indicate less compatibility. The p
value is then defined as

p = P(T (X) ≥ T (x)). (1)

Let us reformulate this definition making it more understandable, but in some
cases more difficult for computation. Let M be our hypothetical model (parameter
of a distribution, cumulative probability function, etc.), and Mx (X) be a sample
statistic that describes M . Let d(X) = d(Mx (X) − M) be a non-negative function
that measures appropriately defined “distance” between Mx (X) and M . Then, the
definition (1) may be reformulated as

p = P(T
′
(d(X)) ≥ T

′
(d(x))). (2)

This representation is especially useful for testing hypotheses about a parameter of
location. For example, in testing hypotheses about the expected value of a normally
distributed random variable with known value of σ such that σ

√
n = 1 we have the

following simple formulae for the calculation of p-values [16]:

pl = Φ(μ0 − x̄), (3)

for testing the one-sided null hypothesis H0 : μ ≤ μ0 against the alternative HA :
μ > μ0,

pu = Φ(x̄ − μ0), (4)
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for testing the one-sided null hypothesis H0 : μ ≥ μ0 against the alternative HA :
μ < μ0, and

pu = Φ(−|x̄ − μ0|), (5)

for testing the two-sided null hypothesis H0 : μ = μ0 against the alternative HA :
μ �= μ0, where Φ(.) is the cdf function of the standard normal distribution.

For the calculation of p-valueswe usually require that statistics T (or T
′
) should be

pivotal, i.e., their probability distribution should not depend on unknown parameters.
It always can be done if our model does not contain nuisance parameters. We need
to know the cdf FT of the distribution of T under the null hypothesis, and then
the observed p-values FT (T (x)) are realizations of a uniformly distributed random
variables.

The usage of the concept of p-value raisesmany problems and questions. Its calcu-
lation is simple in many practical cases (e.g., for the normal distribution). However,
in the case of discrete distributions (non-parametric tests!), asymmetric null distri-
bution of T , and the existence of nuisance parameters, even the methods applied
in its computing are disputable (see, e.g., [1, 6]). However, the main problem, still
unsolved despite dozens of papers which have been devoted to it, is with its inter-
pretation. For example, this is by no means the probability that the tested hypothesis
is true in the frequentist interpretation of probability. Selke et al. [17] found in sim-
ulation experiments, that the percentage of cases when the hypothesis is true, but
the reported p-value is close to 0.05 (a typical critical value in decision making)
is much higher than 0.05. Moreover, even if we interpret p-values as measures of
support of respective hypotheses, this interpretation, as it was shown by Schervish
[16], is logically incoherent. It has to be noted, however, then when we use other
approaches to probability (Bayesian, fiducial) the usage of the word “probability” in
the description of the p-value is justified. For example [16], p-values calculated for
one-sided hypotheses are posterior probabilities (in the sense of Jeffreys) or fiducial
probabilities (in the sense of Fisher).

3 The Concept of P-Value—A Fuzzy Case

The necessity of taking into account fuzzy imprecision while solving statistical prob-
lems has been shown in many publications. Interesting overviews can be found, e.g.,
in [7, 8]. The applicability of fuzzy statistics in solving practical problems has been
also well described in many papers (in particular, for the application in the area of
reliability and statistical quality control, see [9, 12]). Due to limited volume of this
paper we do not want to repeat arguments that imprecise (fuzzy) data do exist in prac-
tice. However, especially in the context of this paper, we want to stress the necessity
to consider fuzzy statistical hypotheses. It has been noticed by many authors that the
concept of p-value does not work properly for large samples and point-wise statistical
hypotheses. In such cases the reported p-value will be usually very small, indicating
the rejection of the tested hypothesis. A good example was given by Hryniewicz [10]
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who considered the problem of testing statistical independence. As this concept is
very precisely defined, even small, and unimportant from a practical point of view,
departures from the ideal situation will lead to unnecessary rejection of the tested
hypothesis. Another example is related to the existence of small correlations between
sample observations. The existence of these correlations changes the distribution of
the test statistic, usually influencing its variability. Therefore, the observed test error
rates may differ from the assumed ones. These, and similar, examples let us convince
that the consideration of “relaxed” (fuzzy) hypotheses makes practical sense.

The crucial, in statistical practice, concept of a fuzzy p-value was introduced
independently in papers of Filzmoser and Viertl [5] and Denœux et al. [4]. Filzmoser
and Viertl [5] considered, using somewhat different terminology, δ-cuts (or δ-level
sets) of the fuzzy observed values x̃ of the test statistic T defined by (1). Then,
they calculated the probabilities by the computation of respective areas under the
pdf function of T . For example, for one-sided tests, and imprecise data described
by closed and finite intervals [T1(δ), T2(δ)] the fuzzy p-values of these tests are
described by the following sets of intervals

CL
δ ( p̃) = [P(T ≤ T1(δ)), P(T ≤ T2(δ))], δ ∈ (0, 1], (6)

and
CU

δ ( p̃) = [P(T ≥ T1(δ)), P(T ≥ T2(δ))], δ ∈ (0, 1]. (7)

For two-sided hypothesis the respective formulae are more complicated.
Denœux et al. [4] in their definition of the fuzzy p-value used a computationally

more effective approach. They noticed that in many cases there exist closed for-
mulae for the computation of p-values in crisp cases, such as (3)–(5) when the test
statistic T is at least asymptotically normally distributed. In such cases they directly
apply Zadeh’s extension principle arriving at the fuzzy p-value p̃ whose membership
function is represented by the nested set of respective δ-cuts.

What really differs these two proposals is the suggested method of decision mak-
ing. In both cases the authors assume, as in the Neyman-Pearson methodology, that
the null hypothesis H0 is tested against the alternative HA. Filzmoser and Viertl [5]
propose a very restrictive approach. They assume a certain critical value α (e.g.,
equal to 0.05), and propose to reject (accept) H0 only when the whole support of
p̃ is situated to the left (right) of α. Otherwise, the decision cannot be made. The
procedure proposed by Denœux et al. is far less restrictive. They interpret the mem-
bership function of the fuzzy p-value as a possibility distribution. Then, they calculate
possibilities: Π1 = Π( p̃ ≤ α) and Π0 = Π( p̃ > α), and propose to reject the null
hypothesis if Π1 > Π0, and accept, otherwise. Another, well-grounded in the the-
ory of possibility and imprecise probabilities, approach was proposed by Couso and
Sanchez [2]. They have shown how the fuzzy p-value can be interpreted in terms of a
second order possibility measure. Then, they proposed a defuzzified representation
of the fuzzy p-value by the following crisp interval [pval(x̃)], pval(x̃)], where
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pval(x̃) =
∫ 1

0
inf[pval(x̃)]δdδ, (8)

pval(x̃) =
∫ 1

0
sup[pval(x̃)]δdδ. (9)

Let us propose now to look at the fuzzy p-value from a different point of view.
In this approach we will use the concept of testing interval hypotheses introduced
by Lehmann [14]. Schervish [16] shows that this concept generalizes testing of both
one-sided and two-sided hypotheses. For testing the interval hypothesis μ ∈ (μ1,μ2)

about the mean in the normal distribution with the known value of σ the formula for
the respective (crisp) p-value is given as [16]

pμ1,μ2(x) =
{

Φ(x − μ1) + Φ(x − μ2), if x < 0.5(μ1 + μ2)

Φ(μ1 − x) + Φ(μ2 − x), if x ≥ 0.5(μ1 + μ2)
(10)

Suppose now that we observe fuzzy random data X̃ = X0 + W̃ , where X0 is a crisp
random variable that represents the most plausible value of the unknown origin of
the observed fuzzy random variable, and W̃ represents the fuzzy part of X̃ which
is independent of X0. Moreover, we assume that our hypothetical value μ may also
be imprecise, and is represented by a fuzzy number μ̃. Consider now a “distance”
between an observed value of X̃ , namely x̃ , and μ̃. For a given δ-level, x̃ is represented
by its δ-cut (xL ,δ, xL ,δ), and μ̃ by its δ-cut (μL ,δ,μL ,δ). Then, by some simple opera-
tions on interval-valued numbers we can show that this difference is equivalent to the
distance between the observed value x0, and the interval [μL ,δ − xr,δ,μR,δ − xL ,δ].
Hence, on a given δ-cut we can consider a fuzzy statistical test as a test of an interval
hypothesis about X0. Note, that this means that there is no difference in testing sta-
tistical hypotheses using fuzzy data and fuzzy hypothetical values. In both cases, on
the given δ-level, the test is described by a single number. For instance, for a fuzzy
test about the expected value of the normal distribution (with known value of σ)

pint,δ(x) =
{

Φ(x0 − u1,δ) + Φ(x − u2,δ), if x < 0.5(u1 + u2)

Φ(u1,δ − x0) + Φ(u2,δ − x0), if x ≥ 0.5(u1 + u2)
(11)

where u1,δ = μL ,δ − xr,δ , and u2,δ = μR,δ − xL ,δ . Intervals (0, pint,δ(x)) can be
regarded as the representation of the fuzzy p-value p̃int . This fuzzy value can be
defuzzified using (9). Unfortunately, p̃int is not a fuzzy number, as its membership
function is not convex. It is a consequence of the incoherence of p-values, as it was
noted by Schervish [16].

Finally, let us consider a possibilistic approach to statistical testing of hypotheses
in a fuzzy environment proposed by Hryniewicz [11]. He assumed that for a test on a
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given significance levelαonly those values of fuzzydata and fuzzyhypotheses should
be taken into account whose values of membership functions are not smaller than
α. This assumption can be justified by treating α as a certain measure of possibility.
To illustrate this approach let us consider the case of a two-sided hypothesis about
the value θ of a parameter of a certain probability distribution. In presence of fuzzy
data x̃ we can calculate, using a classical approach proposed by Kruse and Meyer
[13], fuzzy confidence intervals for θ. Denote by μX (x) and μθ(θ0) the membership
functions of fuzzy data x̃ and fuzzy hypothesis μ̃0, respectively. Let x0 be such that
μX (x0) = 1, θ0 be such that μθ(θ0) = 1, [μδ

0,L ,μ
δ
0,R] be the δ-level set of the fuzzy

hypothesis μ̃0, and [Cδ
α,L ,C

δ
α,R] be the δ-level set of the fuzzy confidence interval

of θ, calculated on the confidence level β = 1 − α/2. Then, the possibilistic p-value
pps for the two-sided test about θ is given by

pps =

⎧
⎪⎨

⎪⎩

sup
δ

Cδ,R = μδ
0,L , if x0 < μ0

sup
δ

Cδ,L = μδ
0,R, otherwise

(12)

Similar conditions can be formulated also for one-sided hypotheses about the values
of parameters of probability distributions. The advantage of this approach stems
from the fact that we do not need any defuzzification procedure. For both fuzzy
data and fuzzy hypotheses the value of pps is crisp, and thus seemingly easier for
interpretation.

4 Probability Distributions of Deffuzified P-Values

When we want to compare different approaches for the calculation of p-values in
fuzzy environment we need to define certain comparable characteristics. Unfortu-
nately, even in the crisp case such characteristics do not exist. The analysis of the
probability distribution of the p-value, when the model of data is different from the
hypothetical one, seems to be one of a few options. We know that when the null
hypothesis is true this distribution is uniform. In other cases a general answer about
the distribution of the p-value seemingly does not exist. However, when we test a
double-sided hypothesis about the expected value θ of a normally distributed test
statistic with a known value of its standard deviation σ, the p-value is distributed
according to the power law distribution F(p) = pγ . Let D = |θ − θ0| = Dσ ∗ σ be
the shift of the considered expected value. Without the lost of generalization we
assume that the hypothetical value θ0 is equal to zero, and let z = Dσ/

√
n. Then in

a simulation experiment we have found a very precise (R2 = 0.997) relationship for
the calculation of an approximate value of γ

γ0 = 0, 056908n2z2 − 0, 45953nz + 1 (13)
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In extensive simulation experiments we have tried to find similar relationships for
lower and upper values of the p-values defuzzified according to (8)–(9), interval based
p-values pint calculated according to (11), and defuzzified according to (9).Moreover
wehave considered possibilistic p-values pps calculated according to (12). In all these
cases using simulation experiments we have found good approximations of functions
that link the value of γ with characteristics of fuzzy data and fuzzy hypotheses. These
approximations have a following general form γ f pv = γ0 + γ f, f pv , where γ f, f p f

is a part related to the fuzziness of data and/or hypotheses. In our experiments,
whose results are described below, we have assumed that fuzzy data are described
by randomly chosen triangular membership functions with constant support sx . Our
considered fuzzy hypotheses havemembership functions symmetric around a precise
null hypothesis with the support equal to sm .

For the lower and upper limits of the fuzzy p-values, defuzzified according to
(8)–(9), the respective formulae for the fuzzy part of γ f pv are the following

γ f, f L = −5, 737sx − 7, 669sm + 9, 129s2x + 56, 587s2m − 0, 224nsm+
− 178, 99zsm + 75, 686sx sm − 3, 795s3x + 0, 0015n2sm+
− 69, 913s2x sm + 694, 29s2mz − 306, 57s2msx + 271, 70s2x s

2
m,

(14)

γ f, f R = −83, 52zsx − 0, 223nsm − 272, 1zsm + 36, 05sx sm+
+ 1483, 2z2sm + 0, 101ns2x − 110, 54zs2x + 0, 0188n2s2m + 1492, 3z2s2x .

(15)

The accuracy of the approximation for γ f, f L is good (R2 = 0, 879). However, for
γ f, f R the accuracy looks only reasonable (R2 = 0, 744). The respective formulae for
the cases of fuzzy interval hypotheses, and possibilistic p-value, are the following

γ f, f int = −25, 11sm + 250, 0s2m − 0, 018nsm − 114, 42zsx+
− 43, 24zsm + 24, 78sx sm − 621, 4s3m + 459, 76z2sx+
+ 0, 0222s2x n + 60, 88s2x z − 80, 09s2msx ,

(16)

γ f, f ps = 4, 086s2x + 147, 62s2m − 0, 231nsm − 111, 65zsx − 547, 26zsm+
+ 20, 03sx sm − 3, 114s3x − 717, 95s3m + 304, 75z2sx + 2739, 7z2sm + 85, 74zs2x+
+ 0, 0262ns2x − 17, 94s2x sm + 1, 15ns2m + 2052, 2zs2m − 10497, 3z2s2m .

(17)
The accuracy of these approximations is also reasonable, R2 = 0, 758 and R2 =
0, 825, respectively. It has to be noted, however, that for some combinations of input
parameters these approximations do not work well (possible negative values of γ).

Knowing the description of fuzziness (both for data and hypotheses) we can
compute the respective value of γ, and thus the probability of having the p-value not
greater than the observed one. Therefore, we may have an idea whether the observed
p-value is small enough to reject the null hypothesis against its alternative.
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5 Conclusions

In the paper we have considered different approaches for the calculation of the
p-value for fuzzy statistical tests. For the particular problem of testing hypotheses
about the mean in the normal distribution with known standard deviation, and a cer-
tain type of fuzziness (both in data and tested hypotheses) we have found probability
distributions of the respective defuzzified p-values. These distributions let us eval-
uate the compatibility of the observed data with the assumed hypothetical model.
Further research is needed for other popular statistical tests (e.g., a fuzzy version of
Student’s t), and for different types of fuzziness.
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Probabilistic Semantics and Pragmatics
for the Language of Uncertainty

Stefan Kaufmann

Abstract The idea that the probability of a conditional is the corresponding con-
ditional probability has led something of an embattled existence in philosophy and
linguistics. Part of the reason for the reluctance to embrace it has to do with certain
technical difficulties (especially triviality). Even though solutions to the triviality
problem are known to exist, their widespread adoption is hindered by their nar-
row range of data coverage and unclear relationship to established frameworks for
modeling the dynamics of belief and conversation. This paper considers the case
of Bernoulli models and proposes steps towards broadening the coverage of their
application.

1 Introduction

This paper is concerned with the interpretation of conditional (if-then) sentences in a
probabilistic framework. I take as my starting point the idea that the probability of a
conditional if A then C is the conditional probability of C , given A (henceforth “the
Thesis”). Its theoretical and empirical ramifications have been studied extensively
by philosophers [1, 2, among many others] and psychologists [28–30]. A general
consensus has emerged that despite certain counterexamples [15, 19, 23, 26], its
theoretical and empirical appeal is sufficient to warrant detailed investigation.

Nonetheless, the Thesis still has something of an embattled status in Philosophy
of Language and Natural Language Semantics. A major factor contributing to this
is undoubtedly the fact that it cannot be straightforwardly unified with the view that
conditionals denote propositions in the usual sense. This was first established by
Lewis’s famous triviality results [24, 25], which inspired a formidable tradition of
further observations and generalizations.
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In this paper I assume familiarity with the issue of triviality; the interested reader
is referred to the numerous excellent surveys and expositions (e.g. [3, 6, 10]) and
references therein. What I focus on instead is the fact that it is possible to uphold the
Thesiswhile avoiding triviality. Specifically, I shall focus on van Fraassen’sBernoulli
models for the assignment of probabilities to simple and compounded conditionals
[33].1 This approach was put forward at roughly the same time as the triviality results
themselves, but despite a number of subsequent elaborations and explorations [9, 17,
18, 32], no account of conditionals based on it has as-yet gained significant currency.

One reason for this reluctance may be the fact that in some cases the probabilities
predicted for certain conditionals are counter-intuitive. I have argued elsewhere for
some of these challenges that they call for fine-tuning rather than abandonment of the
approach [15–17], and I suspect that solutions for further problems can also be found.
In this paper I shall address another potential impediment in the way of the Bernoulli
model towards the mainstream, viz. its relatively narrow range of application.

Stepping back, there are good reasons to think not only that theBernoulli approach
deserves closer investigation, but also that this is a good time to carry out such
a program. One such reason is a confluence of results between this approach and
the coherence-based framework for subjective probability, which originated with
de Finetti’s work. De Finetti’s ideas influenced the development of the Bernoulli
framework via Jeffrey and Stalnaker [13, 32]; specifically, Jeffrey’s proposal to treat
conditionals as random variables was inspired by [5]. More recently, the full extent
of the affinity was clarified in Gilio and Sanfilippo’s explorations [8, 9], which
uncovered parallels not only in basic ideas but also in concrete results and predictions
(e.g., concerning probabilities of compounds with conditional constituents).

2 Some Data and Observations

At its core, a conditional if A, then C states that C holds on the supposition that A.
This idea goes back at least as far as Ramsey [31]. It underlies the standard semantic
analysis in linguistics, which assumes that all conditionals involve a modal operator
(which may or may not be overtly expressed in the sentence) whose domain of
quantification is restricted by the antecedent ([20–22], inter alia). In a probabilistic
framework, the natural analog of this idea is that conditionals are interpreted by
conditioning on their antecedent.

This basic idea is straightforward enough. It raises a number of theoretical and
empirical questions, however, as soon as we consider a somewhat broader range of
phenomena. I list two in the remainder of this section.

1Van Fraassen dubbed them “Stalnaker Bernoulli models.” I avoid this label in deference to Robert
Stalnaker’s contention that it suggests more credit for him than he deserves (p.c.).
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2.1 Compounds of Conditionals

Compounded and embedded conditionals are well-formed and attested (here and
below, I use the symbol ‘>’ in formal renderings):

(1) a. If this vase will crack if it is dropped onwood, it will shatter if it is dropped
on marble. (W > C) > (M > S)

b. If she drew a prime number, it is even, and if she drew an odd number, it
is prime. (P > E) ∧ (O > P)

Such sentences pose challenges for the Thesis. The standard Bayesian calculus does
not provide a way to calculate their probabilities in accordance with the Thesis. In
Lewis’s words, conditional probabilites are “probabilities only in name” [24], not
probabilities that some proposition is true. Thus there is no straightforward way to
extend a probabilistic account of conditionals to embeddings containing them.

2.2 Unconditionals

Another problem concerns so-called unconditional sentences, which share with con-
ditionals the overall antecedent-consequent architecture, but are set apart by the fact
that their antecedents are interrogative clauses:

(2) a. Whether Mary comes or not, we will have fun.
b. Whether John or Mary comes, we will have fun.
c. Whoever comes, we will have fun.
d. No matter who comes, we will have fun.

Interrogative clauses are typically analyzed as denoting sets of propositions, rather
than just propositions as their declarative counterparts do [11, 12, 14]. It is widely
agreed that in an unconditional, the conditional operator distributes over the propo-
sitions in the denotation of the antecedent. Thus for instance, (2a) and (2b) are
equivalent to (3a) and (3b); likewise for the remaining sentences. This gives us some
idea of what a semantic analysis of these sentences ought to predict.

(3) a. If Mary comes we will have fun, and if Mary doesn’t come we will have
fun.

b. If John comes we will have fun, and if Mary comes we will have fun.

However, the standard probabilistic calculus does not even provide us with a means
to conditionalize on sets of propositions.
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3 Bernoulli Models

Definition 1 (Probability model) A probability model for the language of proposi-
tional logic is a structure 〈Ω,F , Pr, V 〉, where
a. Ω is a non-empty set (of possible worlds);
b. F is a σ-algebra of subsets of Ω (propositions);
c. Pr is a probability measure on F ; and
d. V is a valuation function mapping sentence-world pairs to truth values in

{0, 1}, subject to the following constraints:

V (¬ϕ)(ω) = 1 − V (ϕ)(ω)

V (ϕ ∧ ψ)(ω) = V (ϕ)(ω) · V (ψ)(ω)

Although this is not required by the definition, no harm is done if we assume
for simplicity that Ω is countable and F is the powerset of Ω . This ensures that
the σ-algebra can be defined and that the denotations of all atomic sentences and
truth-functional compounds thereof receive probabilities under Pr ; otherwise this
would have to be stipulated separately.

To be able to talk about the probability of a sentence, I define a function P mapping
sentences to the expectations of their truth values: P(ϕ) = E[V (ϕ)]. Clearly in the
present case this means that P(ϕ) = Pr({ω|V (ϕ)(ω) = 1}), that is, the probability
that ϕ is true.

Of course, the material conditional is not the intended rendering of our natural
language if-then sentences.Nor is there away in general to extendV to conditionals in
such a way that their probabilities equal the corresponding conditional probabilities
for all probability distributions. This is the lesson from the triviality results.2

A Bernoulli model is an extension of a probability model, incorporating a simple
intuition about the interpretation of conditionals ϕ > ψ: Perform a series of trials
(independent and identically distributed, according to Pr ) in which a world is chosen
from Ω (with replacement), until you pick a world at which the antecedent ϕ is true.
Check whether the consequent ψ is also true at the same world. Sentences receive
truth values relative to sequences of such trials (hence the term “Bernoulli” model).

Definition 2 (Bernoulli model) Given a probability model 〈Ω,F , Pr, V 〉, the cor-
responding Bernoulli model is the structure

〈
Ω∗,F∗, Pr∗, V ∗〉, where

a. Ω∗ is the set of all countable sequences of worlds in Ω . Notation:

‘ω∗[n]’ is the n-th world in ω∗, n ≥ 1;
‘ω∗(n)’ is the “tail” of ω∗ starting with the n-th world.

b. F∗ is the set of all Cartesian products X1 × · · · × Xn × Ω∗ for Xi ∈ F ;
c. Pr∗ is a product measure on F∗ defined as follows:

Pr∗(X1 × · · · × Xn × Ω∗) = Pr(X1) × · · · × Pr(Xn)

2Except, that is, for models with no more than two distinct propositions in the domain of the
probability distribution. [24] called such models “trivial.”
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d. V ∗ is a function from pairs of sentences and sequences in Ω∗ to truth values,
defined as follows:

V ∗(p)(ω∗) = V (p)(ω∗)[1] for atomic p

V ∗(¬ϕ)(ω∗) = 1 − V ∗(ϕ)(ω∗)
V ∗(ϕ ∧ ψ)(ω∗) = V ∗(ϕ)(ω∗) · V ∗(ψ)(ω∗)
V ∗(ϕ > ψ)(ω∗) = V ∗(ψ)(ω∗(n)) for the least n s.t. V ∗(ϕ)(ω∗(n)) = 1

In the last clause of the definition of V ∗, the rule for conditionals with antecedent
ϕ at ω∗ calls for inspection of the longest “tail” of ω∗ at which ϕ is true. If there is no
such tail, the value of any conditional with antecedent ϕ is undefined. But whenever
ϕ has positive probability, the set of these “ϕ-less” sequences has zero probability,
thus the probability that the sentence is true equals the conditional probability that it
is true, given that its truth value is defined.

As before, I define a function P∗ mapping sentences to the expectations of their
truth values under V ∗. Now, in a Bernoulli model, the probability P∗(ϕ > ψ) of a
conditional is both the probability of a set of sequences (namely those at which the
conditional is true) and the conditional probability P∗(ψ|ϕ).3 Moreover, if ϕ and
ψ do not contain conditionals (and thus are in the domain of V in the underlying
probability model), then P∗(ψ|ϕ) also equals P(ψ|ϕ). The probabilities of more
complex compounds involving conditionals can likewise be calculated in terms of
the probabilities of their conditional-free constituents. For details, see [9, 17, 18].

4 Interrogative Antecedents

I first define a simple auxiliary device: For arbitrary sequences ω∗ and sentences ϕ,
let ω∗↑ϕ be defined as follows:

(4) ω∗↑ϕ =
{

ω∗(n) for the least n s.t. V ∗(ϕ)(ω∗(n)) = 1

ω∗ if there is no such n

Thus ω∗↑ϕ is the longest tail at which ϕ is true, referred to in the definition of V ∗
above, if such a longest tail exists. Otherwise ω∗↑ϕ is just ω∗.

Consider first the interpretation of conditionals with interrogative antecedents.
Recall that, as I stated above in Sect. 2.2, interrogative clauses are analyzed as denot-
ing sets of propositions. Extend the definition of the ·↑·-operator to sets Φ of propo-
sitions as follows:

(5) ω∗↑Φ = {ω∗↑ϕ | ϕ ∈ Φ}

3Note that V ∗(ϕ > ψ) is defined with probability 1 if P∗(ϕ) > 0, and undefined with probability 1
if P∗(ϕ) = 0. In the latter case, the expectation of the conditional’s truth value is undefined, as is
the probability P∗(ψ|ϕ), at least when defined as the ratio P∗(ϕ ∧ ψ)/P∗(ϕ). But see [18] for a
definition of conditional probability inBernoullimodelswhich is defined for certain zero-probability
propositions onwhich onemightwant to conditionalize. ([8, 9] also define the “prevision” forϕ > ψ
in such a way that it includes the case that the prevision of ϕ is zero.).
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Thus ω∗↑Φ can result in multiple “active” alternatives for ω∗. We can then define
three different conditional operators as follows:

(6) a. V ∗(Φ >∀ ψ)(ω∗) = 1 iff V ∗(ψ)(ω∗′) = 1 for all ω∗′ ∈ ω∗↑Φ

b. V ∗(Φ >min ψ)(ω∗) = 1 iff V ∗(ψ)(ω∗′) = 1 for the least ω∗′ ∈ ω∗↑Φ

c. V ∗(Φ >∃ ψ)(ω∗) = 1 iff V ∗(ψ)(ω∗′) = 1 for some ω∗′ ∈ ω∗↑Φ

By referring to the “least” ω∗′ in the set I assume the obvious order of the sequences,
i.e., in terms of the position in ω∗ at which they start. It can then be shown that (6a)
yields the desired prediction for the probabilities of conditionals with interrogative
antecedents: P(Φ > ψ) = P(

∧
ϕ∈Φ(ϕ > ψ)).

Conditionals with disjunctive antecedents are also typically interpreted by distri-
bution over the disjuncts – that is, the probability of (ϕ1 or ϕ2) > ψ is the probability
of the conjunction (ϕ1 > ψ) ∧ (ϕ2 > ψ). This likewise falls out if we assume that
the disjunctive antecedent denotes a set of propositions (a commonly made assump-
tion in Inquisitive Semantics, cf. [4]) and interpreted according to (6a). In contrast,
(6b) corresponds to an interpretation that gives the disjunction in the antecedent its
Boolean interpretation. Finally, (6c) also distributes over the elements ofΦ, but yields
the probability of the disjunction, rather than the conjunction, of the conditionals.

For the simple special case in which the antecedent has two alternatives, neither
of which contains conditionals, the resulting readings are as follows (the general case
is similar but more tedious to show):

(7) a. P({A, B} >∀ C) = P((A > C) ∧ (B > C))

b. P({A, B} >min C) = P((A ∨ B) > C)

c. P({A, B} >∃ C) = P((A > C) ∨ (B > C))

For reasons of space I cannot provide detailed proofs here. Suffice it to point out that
(7a) is the probability that the first A-world is a C-world and the first B-world is a
C-world; (7b) is the probability that the first world at which either A or B is true is
a C-world; and (7c) is true iff the first A-world is a C-world or the first B-world is a
C-world (or both). Clearly (7a-c) asymmetrically entail each other. Whether all three
are attested as potential readings for conditionals with interrogative or disjunctive
antecedents is an open empirical question.4
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Dynamic Analysis of the Development
of Scientific Communities in the Field
of Soft Computing

Ekaterina Kutynina and Alexander Lepskiy

Abstract This paper is dedicated to the research of the dynamics of development
and interactions among several scientific communities in the field of fuzzy logic and
soft computing. This analysis was performed with the help of the following char-
acteristics: conferences participants’ renewal, the level of cooperation in scientific
communities, participation of one community’s key players in activities of the other
ones, comparative number of most active participants in each community, uniformity
of key players’ participation in different conferences.

Keywords Scientific communities · Key participants of communities · Interaction
between scientific communities

1 Introduction

At present scientific communities are an essential part and an important form of
the scientific process organizing. In recent years, scientific communities are often
studied by methods of network analysis. In particular, the co-authorship networks
and citing networks [7] are popular. However, the scientific community tends to
develop: there are new communities; some communities degrade, while others are
combined, etc. The life cycle of scientific communities is considered in a number
of works (see [1]). The interactions among the scientific communities in the field
of artificial intelligence for the last 19 years were investigated in [2, 4] is a similar
study that was carried out for scientific communities in the field of computer science.
In [10] the dynamic changes in the co-authorship network of conference ISIPTA [9]
were analyzed.
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The givenwork is devoted to the investigation of the development and interactions
of scientific communities in the field of fuzzy mathematics (EUSFLAT, NAFIPS),
imprecise probability (SIPTA, BFAS) and soft computing (SMPS) during the period
1999–2014. The database of this study is based on the materials of the conferences
held by the above mentioned scientific communities.

2 Dataset Description

Following scientific communities were considered:

• BFAS (Belief Functions and Applications Society) [3]. BFASwas formed in 2010.
Conference—BELIEF.

• EUFSLAT (European Society for Fuzzy Logic and Technology) [8] was founded
in 1998. Conference—EUFSLAT.

• NAFIPS (North American Fuzzy Information Processing Society) [6]. NAFIPS
was established in 1981. Conference—NAFIPS.

• SIPTA (The Society for Imprecise Probability: Theories and Applications) [9] was
formed in 2002. Conference—ISIPTA (International Symposium on Imprecise
Probability: Theories and Application).

• SMPS (International Conferences on Soft Methods in Probability and Statis-
tics) [5]. Conference SMPS has been held since 2002.

Conferences EUFSLAT, ISPITA, SMPS, BELIEF (for brevity they are designated
with letters E, I, S, B respectively) are held once every 2 years, and conference
NAFIPS (symbol N)—every year.

Fig. 1 The schematic
visualization of the
intersection of communities’
themes
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TheFig. 1 provides the visualization of the intersection of the conferences’ themes.
It could be expected, that connection within groups of communities EUSFLAT,
NAFIPS, SMPS on the one hand, and BFAS, ISIPTA on the other hand would be
tighter within groups than between them.

The data about the authors of the papers presented at conferences during the
period 1999–2014 was collected. There are N = 3377 participants in total. Since
almost all the conferences are held every 2 years, the entire time interval 1999–2014
was divided into 8 equal subintervals [1999, 2001), …, [2013, 2015). On the figures
below the left boundaries of all subintervals are indicated on the horizontal axes.
Data on the conferences held by the NAFIPS community have been combined for
the 2009 and the 2010, 2011 and 2012 and then considered as a single event.

3 Analysis of the Development Dynamic of Scientific
Communities

3.1 Renewal of Conferences’ Participants

One of the main indicators that can characterize the internal development of the
scientific community can be a number of new conference participants, who did
not participate in previous conferences of the community. Let All ji is a set of all
participants of the conference j in the period i . The coefficient of renewability for

j th conference in the period i can be considered as a valueU j
i =

∣∣∣All ji \
(
All j1∪...∪All ji−1

)∣∣∣
∣∣∣All ji

∣∣∣
,

which is the ratio of the number of new entrants to the number of all participants of
this conference in the considered period.

Fig. 2 The renewal level
of participation
in conferences



296 E. Kutynina and A. Lepskiy

The Fig. 2 shows that the average renewal of ISIPTA conference participants is
significantly lower than renewability for other conferences. Almost all the confer-
ences (except for SMPS) tend to decrease renewal of participants. At the same time it
should be noticed that the total number of participants in each conference on average
varies slightly.

Experienced researchers take part in the conferences as well as their young col-
leagues. However, in terms of development and interaction of the scientific com-
munities it seems more meaningful to consider the information about experienced
researchers, in other words those who took part in several conferences and presented
several papers at the same conference. Let’s call these researchers key participants.

3.2 Key Participants

The significance of a participant s is defined as Vali (s), the sum of the researchers
contributions in the creation of all publications for the period i , where s = 1, . . . ,
3377, i = 1, . . . , 8. It will be assumed that the total value of the publication is equal to
1 and is divided among all co-authors equally. If the participant s took part in several
conferences during the period i his total contribution is calculated as Vali (s) =∑

j V al ji (s) (the total contribution was calculated separately for two periods 1999–
2007 and 2009–2015, since the number of conferences which were held during this
periods was different). Those conference participants are called key participants,
whose total contributions exceed a certain limit p. Below are the results for the cut-
off threshold of the key participants p = 2, in other words, those who totally wrote
not less than 2 works over 8 years. The set of key participants in the period i is
indicated Ki .

Suppose that K j
i = Ki ∩ All ji is a set of key participants of the community j ,

which held the conference in the period i . In this case there is an opportunity to
study the dynamics of the K j

i sets structural changes and characteristics of their
interactions. The Fig. 3 shows the changes in the total numbers of the key participants
in all communities Ki . As it can be seen from the graph, the rate tends to increase
in the considered time interval. This suggests that interest in research in the field
of imprecise probability, fuzzy sets and soft computing increases with time, the
significance of this research area is growing.

3.3 The Level of Communication Among Communities
in Relation to the Key Participants

Oneof the key issues is to determine the level of cooperation in scientific communities
in connection with the common key participants of the conferences organized by
thematically close communities. This level can be defined as the correlation between
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Fig. 3 Dynamics of changes
in the total number of
communities’ key
participants

Fig. 4 The correlation
between the key participants
of the conferences

the vectors of the significances of the key participants in couples of communities.
Thus, ni = |Ki | is the number of the key participants in the period i . For each
period i , the vector wi

j = (wi
1 j , . . . , w

i
ni j

) is put in correspondence to conference

j , where wi
s j = Val ji (s) is the significance of scientist s just for the conference of

j th community in the period i . Then, the level of cooperation among communities
k and j in the period i can be considered as a selective linear Pearson correlation
coefficient r ik j between vectors wi

k and wi
j . The Fig. 4 shows the variation of the

selective correlation coefficient for all pairs of communities. It is evident that, as
a rule, the level of cooperation among communities in terms of the common key
participants of conferences either are initially small (for example, among E and I, E
and B), or have a tendency to a decrease (for example, between E and S, S and B, I
and B). All this suggests a trend to isolate these communities. The exception here is
a pair of I and S.
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Fig. 5 The dynamics of
changes in the participation
rate in other communities

3.4 The Participation of the Key Participants in Other
Communities

If, however, the key participants of the community are involved in other conferences,
the extent of such participation for the community j in the period i can be estimated
with the formula kij = 1

l·nij
∑5

k=1,k �= j m
i
jk , where l is the number of non-empty sets

K j
i in the i th period, mi

jk =
∣∣∣K j

i ∩ Kk
i

∣∣∣ is the number of common key members

of communities j and k in the period i , nij =
∣∣∣K j

i

∣∣∣ is the number of key conference

participants of j th community in the period i . The higher this ratio, the more actively
the key participants of the particular community are involved in other communities’
activities. The high value of this factor could mean that the key participants do not
regard the community as a key community in the considered field of knowledge.

The Fig. 5 is a visualization of this ratio dynamics. One can see that the least
“key” one was the community of S until 2009. The community N turned to be the
most “closed”, in other words, the key members of this community rarely visit other
conferences. But this can be explained by “regional” separateness of this community.
The most stable is the community E, for which the rate of participation of key
scientists in the other communities does not change much and remains quite small.

3.5 The Most Active Community Members and Most Active
Communities

Suppose Ki is a set of the key participants of all conferences for the period i , K =⋃
i Ki is a set of the key participants of all conferences on record.
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Consider the “friendship” graph for the communities participants (conferences)
Gi = (Ki , Ei ), i = 1, . . . , 8 and G = (K , E), where Ei (E) is the set of edges with
weights est , which is equal to the number of the joint participation of key participants
s and t in the same conferences for the period i (for all periods).

In this connection we can rise the problem of determining those members who are
“friends” with the greatest number of other key participants, taking into account not
only direct relations (participation in one conference), but also indirect (i.e. a “sign
through a friend”). Such participants can be considered as the most active members
of the communities. This problem is solved in the analysis of network structures with
the help of the eigenvector centrality. The calculation of the measure of centrality for
each node is connected with the solution of eigenvalue finding problem regarding the
adjacency matrix A of the network graph [7]: the vector of the relative centralities x
is an eigenvector of the adjacency matrix that corresponds to the largest eigenvalue
λmax.

On the basis of the eigenvector centrality indicators such as the average value
of activities of key participants in each community were introduced: act j = 1

m j N j∑N
s=1 nsj xs , where xs is sth component of the relative centralities vector x =

(x1, . . . , xN ) of the “friendship” graph of key community members; nsj is the num-
ber of times that the participant s took part in the conference j , j = 1, . . . , 5; N j

is the total number of key participants of the community j at the moment of the index
calculating; m j is the number of conferences that had been held by the community
j by the moment of index calculating.

TheTable 1 provides the list ofmost activemembers of all communities. The num-
ber of the considered scientists’ participation in the conferences of each community
is shown in brackets in the last column.

Dynamics of changes in the average value of activity for all communities is rep-
resented in Fig. 6. The most active key players are participants of SMPS community,
the lowest average activity is observed among the participants of NAFIPS and BFAS
communities.

Table 1 The list of the most active participants of all communities

Key participant Centrality Participation in communities

Dubois D. 0.260 E(7), I(5), S(5), B(2)

Kacprzyk J. 0.256 E(8), S(5), N(2)

Grzegorzewski P. 0.229 E(6), S(6), N(1)

de Baets B. 0.211 E(8), I(1), S(4)

Trillas E. 0.183 E(7), N(3)

Prade H. 0.181 E(6), I(1), S(3)

Novák V. 0.175 E(8), N(2)

Recasens J. 0.172 E(7), S(1), N(2)
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Fig. 6 The dynamics
of changes in the average
value of activity for the all
communities

3.6 Analysis of Participation Uniformity of the Key
Participants in Different Communities

Each participant s was assigned with the vector ns = (ns1, . . . , ns5), where nsj is the
number of times, which the participant s took part in the conference j , j = 1, . . . , 5.
The vector ns = (ns1, . . . , ns5) was put to correspondence to the vector of relative
frequencies ps = (ps1, . . . , ps5), where psj = ns j∑5

k=1 nsk
. Then ps = (ps1, . . . , ps5) is

some probability distribution. Pose the question of the non-uniformity degree of
this distribution, which characterizes the degree of heterogeneity of participation
in conferences of different communities for the sth scientist. This degree can be
estimated with the help of the Shannon entropy S(ps) = −∑5

j=1 psj log2 psj . For the
uniform distribution this function reaches its maximum S

(
1
5 , . . . ,

1
5

) = log25. The
entropy achieves the minimum S(p) = 0 when exactly one of the p j is one and all
the rest are zero.

Now, for each set of key participants K j of community j the average homogeneity
was calculated by the formula uni f j = 1|K j |

∑
s∈K j S(ps).

Great value of uni f j indicates that the key members of this community are also
actively involved in the work of other communities. A small value of uni f j demon-
strates a certain “isolation” degree of the community. The Fig. 7 is a graphical rep-
resentation of communities by points on the plane, where the first coordinate on the
horizontal axis is the average homogeneity of the community, and the second one on
the vertical axis is the average value Val j of the aggregate contributions of the key
participants in community j for the entire considered period. It can be seen, that the
most “closed” communities are EUSFLAT and ISIPTA, thus the average contribution
of key participants of these conferences is the highest. The most open community is
SMPS, which can be explained by the variety of scientific papers themes presented



Dynamic Analysis of the Development of Scientific Communities … 301

Fig. 7 The average
homogeneity and average
significance of the key
communities’ participants

at conferences of this community. On the other hand it is evident that these two
characteristics—average contribution and uniformity are strongly correlated. Again,
the “outlier” here is ISIPTA community.

4 Conclusions

The main conclusions of this research are as follows:

• almost all of the conferences (except for SMPS) have a tendency to reduce the
renewal of its members (at a fairly constant total number of conference partici-
pants); on average the renewal of ISIPTA conference participants is significantly
lower than other conferences renewal;

• the level of cooperation in scientific communities in relation to the common key
participants of the conferences either is initially small (for example, between
EUSFLAT and ISIPTA, EUSFLAT and the BELIEF), or have a tendency to
a decrease (for example, between EUSFLAT and SMPS, SMPS and BELIEF,
ISIPTA and BELIEF). All this says about the trend to isolate these communities;
exceptions here are ISIPTA and SMPS conferences;

• in terms of the participation of the key participants of a particular community in
the activities of other communities, until 2009 the most “open” was a conference
SMPS; as far as this characteristics is concerned the most stable community is
EUSFLAT, for which the participation rate of key scientists in other communities
does not change much and remains quite small;

• the most active participants of the communities were emphasized; It shows that
the most active participants are key participants of SMPS community; the lowest
activity was observed among the participants of NAFIPS and BFAS communities;
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• in termsof uniformity of participation of keyparticipants of a particular community
in other communities, the most “closed” communities are EUSFLAT and ISIPTA,
thus the average contribution of key participants of these conferences is the highest;
the most open community on this indicator is SMPS.
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Talk to Your Neighbour: A Belief
Propagation Approach to Data Fusion

Eleonora Laurenza

Abstract Data fusion is a major task in data management. Frequently, different
sources store data about the same real-world entities, however with conflicts in the
values of their features. Data fusion aims at solving those conflicts in order to obtain
a unique global view over those sources. Some solutions to the problem have been
proposed in the database literature, yet they have a number of limitations for real
cases: for example they leave toomany alternatives to users or produce biased results.
This paper proposes a novel algorithm for data fusion actually addressing conflict
resolution in databases and overcoming some existing limitations.

Keywords Data fusion · Bayesian networks · Belief propagation · Data
uncertainty · Data integration

1 Context and Motivation

Data fusion is the task of merging multiple representations of the same real-world
entities in order to obtain a single and unified view of them. In relational database
systems, data are represented by records (tuples) in tables and are characterized by
a multiplicity of features. Some features are referred to as key, since they uniquely
identify the records. One major problem of the various representations of the same
entity in different data sources happen to have disagreeing values for corresponding
features, data fusion involves detecting and solving such conflicts [2].

The problem has an increasingly significant industrial relevance, because of the
massive proliferation of redundant and often contradictory data. Moreover, the com-
plexity of themost recent data management scenarios (statistical microdata, genomic
data, linked open data), together with the always increasing volumes, cause quality
loss and reduced trust in the data [15]. Database fusion problem aims at achieving
a unified view of various representations of the same entity by solving the conflicts
among the disagreeing features. In order to fuse databases, other activities are needed,
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which in the literature are typically grouped in the data integration problem [18]. It
involves schema integration [1, 9] and data matching [5]. The former aims at fusing
the databases at a schema level, hence achieving the same logical representation of
entities, that is, the same name for relations and features; the latter concerns the
identification of the same real-world entities in the different sources, as it is often the
case that common identifiers (such as social security numbers for individuals, VAT
code for companies) are not present. Data fusion is a meaningful problem in database
literature, however the results that have been provided have proven to be not effective
inmany real cases. Several algorithms simply ignore the conflicts (conflict-ignoring),
leaving the choice to the final users; other approaches adopt a preference strategy
(conflict-avoiding), taking the value from themost trustworthy sources. Finally, some
others actually try to solve the conflicts (conflict-solving), but with techniques that
are limited to simple arithmetic approximations [3]. These approaches have a num-
ber of limitations. Ignoring or avoiding conflicts is not practical, especially with the
recent explosion of available sources and attributes for each entity. Users would be
exposed to a very large number of alternatives for each conflict. Algorithms based
on approximations only lead to local bests, since the specific kind of approximation
depends on each user’s sensitivity, overall resulting in a biased global view.

This work proposes BP-fuse (Belief Propagation fusion), a novel algorithm for
solving conflicts in database fusion. This is the first approach that uses the probabilis-
tic dependencies among attributes exploiting the non-conflicting values to choose the
“true” values for the conflicting ones. The probabilistic dependencies are modeled
using Bayesian networks for a compact representation and efficient querying.

2 The Approach

Let us approach the problem of data fusion by referring to the real application of
several European company registers, which are collections of records about multina-
tional enterprises in EU, considering two of them, held, for example, by two different
national statistical institutions of the respective member states: Italy and Germany.
The registers are modeled as two tables. Figure1 shows a fragment of those tables.

Fig. 1 Sample tables from
European business registers

ITALIAN BUSINESS REGISTER

ID L NAME EMP NO GEO AREA NACE PROFIT

526 FCA 100k Ur AUTO 20M

114 SIEMENS 360k Co ICT 700M

834 Ferrari 9k - AGRI 200M

GERMAN BUSINESS REGISTER

ID L NAME REV GEO AREA EMP NO FORM

38 FCA - Ur 200 SPA

73 SIEMENS 6.14G Ur 100 Gmbh

714 LVMH 3.06G Co 83k -
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For one single company some characteristics are known in the Italian register and
unknown in the German one and viceversa. Besides, for two companies, the two reg-
isters have conflicting values for the corresponding attributes. The goal is obtaining
a unified business register by fusing the two. For each of the registers, ID is the pri-
mary key and L_NAME is the legal identifier of the company. Both the registers store
the geographical area (GEO_AREA) and the number of employees (EMP_NO). My
approach relies onBayesian networks to solve the conflicts. They areDAGs (Directed
Acyclic Graphs) that specify a multivariate joint probability distribution over a set
of random variables used to represent knowledge in an uncertain domain [13]. The
nodes represent the random variables that are concerned in the reality of interest.
Probabilistic dependencies among variables are graphically expressed by directed
edges in the network. Each node is labelled with a conditional probability distrib-
ution (CPT) table. It contains the distribution of such variable, as it is conditioned
on all the variables corresponding to incoming edges and encodes the quantitative
knowledge about the domain. In Bayesian networks, we need to specify the graph
topology and the values of each CPT. It is possible to infer both of these automati-
cally from data (for example there are simple strategies to learn CPT’s from training
sets using the ML or EM algorithms) or exploiting the knowledge of the domain
experts [12].

For the domain in the example, a simple net is shown in Fig. 2: the net represents
some kind of causal dependency relatingG and N with E and the CPT refers to node
E and shows how the number of employees varies depending on the geographical
area and the economic classification of the company. The geographical area where
the production site of the company resides, together with the economic classification
of its business are reported to influence the number of employees as shown in the
probability table in Fig. 2. For instance, automotive enterprises (AUTO) situated in
the country (Co) tend to have between 10 and 49 employees, while construction
enterprises (CONST) in urban centers (Ur) have about 70 employees with a prob-
ability of 0.33. Let us consider the fusion of the two records referring to the FCA
in Fig. 1. FCA is present in both the registers, the attributes NACE and PROFIT are
present only in the Italian register: therefore values AUTO and 20M are directly in
the result. REV and FORM, which are present only in the German register, appear
with their values in the result as well (Fig. 3).

G N

E

GEO by NACE by EMP NO
AGRI AUTO CONST ICT
Ur Co Ur Co Ur Co Ur Co

< 10 0.6 0.01 0.2 0.23 0.25 0.19 0.01 0.75
10-49 0.34 0.1 0.03 0.4 0.3 0.34 0.01 0.21
50-249 0.03 0.32 0.12 0.07 0.33 0.43 0.2 0.03
> 249 0.03 0.57 0.65 0.3 0.12 0.04 0.78 0.01

Fig. 2 Relations among GEO, NACE and EMP_NO
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EUROPEAN BUSINESS REGISTER

ID L NAME EMP NO GEO AREA NACE REV PROFIT FORM

1 FCA 100k Ur AUTO - 20M SPA

2 SIEMENS 360k Ur ICT 6.14G 700M GMBH

3 Ferrari 9k Co AGRI - 200M -

4 LVMH 83k Co - 3.06G - -

Fig. 3 The result of BP-fuse algorithm

The two relations agree on the GEO_AREA, but show a conflict for EMP_NO:
100k for the Italian one, 200 for the German one. BP-fuse solves conflicts of this
kind, by evaluating the plausibility of the candidate values, given the certain ones.
Using the simple Bayesian net in Fig. 2 with only three variables, the algorithm
calculates P(100k |Ur,AUTO), which is 0.65; it also calculates P(200 |Ur,AUTO),
yielding 0.12. The most plausible value is 100k and it is assigned to EMP_NO in the
fused record. The case for SIEMENS is quite similar, however particular attention
must be paid as both GEO_AREA and EMP_NO disagree. The final two records,
Ferrari and LVMH, appear only in one relation and so they are directly part of the
result. Figure4 shows a more complete network for this example, including variables
(J_LABOUR_COST, EXPORT_VOL) that are not attributes of the input tables, but
are meaningful in the domain of interest. The progress bars in each node intuitively
represent the marginal probabilities for each value of the random variables, when all
the dependencies are considered and after the network convergence.

Fig. 4 A larger Bayesian network
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3 BP-fuse

Simple sensor model (SSM) is the conceptual data model envisaged to support data
fusion in this paper and gives a solution independent of the relational model, even
though the correspondence between the constructs of relational model and those of
SSM is quite straightforward. In this model, data to be fused are modeled as the
measures in a physical sensor. A sensor S(I,V) is characterized by an identifier
I and a set of variables V = V1, . . . , Vn . The identifier and the variables represent
the attributes of the entity measured by the sensor, in particular the identifier is the
real-world name. The instances of each sensor are named measures, where each
one is an assignment i for I and v = (v1, . . . , vn) for V. SSM also comprises the
information about the causal dependencies among the variables of the sensors and
adopts constructs from Bayesian networks to model them. The identifiers are also
a link between different sensors, because they allow to tell what measures refer to
the same entity. Given two sensors S1(I, V1) and S2(I, V2), where V1 and V2 are two
sets of variables, their fusion is a third sensor S3(I, V3), such that for each pair of
matched measures (they have the same value for the identifier) showing a conflict on
a common variable, the conflict is solved in S3. In particular, one single value for that
variable is chosen from one of the two sensors. In relational terms, this corresponds
to a JOIN between S1 and S2 on the common variable I , with the application of some
conflict-solving function on the variables, and is summarized by the following SQL
query:

SELECT S1.I, fuse(S1.V1, S2.V1), ..., fuse(S1.Vn, S2.Vn)

FROM S1,S2 WHERE S1.I = S2.I

Here fuse() denotes a conflict solving function, using, for example, BP-fuse.
This approach has two phases: the former, emission, is devoted to the extraction of
the measures from the input sensors; the latter, unification, has the responsibility
to actually solve conflicts among the values of the variables in all the sensors. For
every sensor and for every measure m(i, v1, . . . , vk), the emission phase produces
a set of triples (i, V1, v1), …, (i, Vk, vk). The triples are then grouped by identifier
i into candidate entities (CE), which are collections of triples referring to the same
real-world entity. In a candidate entity the triples are in turn grouped by Vi into
candidate sets (CS). A candidate set collects for each variable and entity, all the
possible values coming from different measures and sensors.1 The unification phase
has the responsibility to produce from every candidate entity a measure for Sr . To
achieve this, BP-fuse needs to reduce every candidate set to a unique value.

Four cases are possible with respect to candidate set reduction: (i) there is only one
non-null value in the candidate set: BP-fuse chooses the non-null candidate value;
(ii) null set: the candidate set only contains the null value, BP-fuse chooses the null
value; (iii) no conflict: the candidate set has exactly one value, BP-fuse chooses

1Notice that for a given i , different candidates for a variable can also derive from the same sensor,
in case of duplicate measures.
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this value; (iv) conflict: there are different values in the candidate set. Case (iv) is
indeed very common and, moreover, several variables are likely to be conflicting in
a measure at the same time.

For every candidate entity, BP-fuse considers all the conflicting variables. Let
V1, . . . , Vt , be such variables. BP-fuse generates all the possible assignments a =
(v1, . . . , vt ), where vi is chosen from candidate set Vi . Then the algorithm inves-
tigates the plausibility of each assignment a as follows. Let Vt+1, . . . , Vq be the
other variables of the measure, the ones for which the respective candidate sets have
already been reduced by applying cases i-iii. For each assignment a, BP-fuse esti-
mates the plausibility with the support of the associated Bayesian net. It generates
and evaluates queries such as:

P(v1, . . . , vt | vt+1, . . . , vq) = P(v1, . . . , vt , vt+1, . . . , vq)

P(vt+1, . . . , vq)
(1)

In order to efficiently compute the lhs of (1) for a, BP-fuse applies some basic
manipulations, resulting in the rhs. Each conjunctive form in the rhs is factorized
into P(v1)P(v2 | v1) . . . P(vn | vn−1, . . . , v1) by applying the chain rule. Now, BP-
fuse orderly calculates each factor P(vi | v1, . . . , v j ) by applying an algorithm for
the network convergence such as belief propagation [13]. It starts from initial fac-
tors P(vi ) of the chain and then uses each vi in the evidence set for the following
factors. It eventually extracts the marginal probability (Vi = vi ) after the network
convergence for the conditioned variable vi . BP-fuse calculates the plausibility of
a by replacing previously calculated factors in (1). At this step, BP-fuse chooses
for the candidate entity under consideration the assignment a with top plausibility.
It reduces every candidate set to a unique value and, as a consequence, produces a
measure for Sr . The application of the explained steps to all the candidate entities
results in the generation of all the fused measures for Sr . BP-fuse returns the measure
corresponding to the assignment with the highest plausibility, solving the conflicts
together. One recognized way to evaluate algorithms for data integration and data
fusion in particular, consists in weighing the data fusion answer by means of two
indicators: completeness and conciseness [3] with an approach recalling the more
usual terms of precision and recall.

A good fusion algorithm would be expected to increase the completeness and, at
least, not to decrease the conciseness with duplicates. For the running example, the
result has the best values for intentional completeness as it contains the union of all
the variables. BP-fuse maximizes extensional completeness as well, since the key-
value pairs are generated for all the involved sensors and no measures are discarded
during the unification phase. BP-fuse maximizes also the intensionally conciseness
by allowing for the application of any schema matching algorithm. Regarding exten-
sional conciseness, the algorithm also gives the highest value: the emission produces
a key-value pair for each measure and variable, and the unification phase collects all
the pairs with the same real-world key into a single fused measure.
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4 Related Work

In the database literature some techniques for fusion have been provided. Some
solutions rely on relational algebra operations [7, 14, 21], unaffordable in many
real cases. Others actually try to solve the conflicts and propose a combination of
the disagreeing values based on simple arithmetics or user-defined functions [2, 3].
Their results are not always acceptable, as, for instance, the average of two conflicting
values may be out of the acceptable domain or, in any case, tightly coupled to each
user’s sensitivity.

In multi sensor fusion, indeed, the problem consists in combining sensor data
deriving from disparate sources, with uncertain information about the specific sce-
nario, which can be any, including: combining two-dimensional images from two
cameras at slightly different viewpoints, combining animal tracking data with mete-
orological and animal habitat data [10]. More specifically, (multi)sensor data fusion
problem aims at assessing the situation awareness of possible threats and under-
standing their relevance in the respective scenario. This can be done in many ways,
such as: using sensor data deriving from radar, passive electronic supports, infrared
identification-friend-foe sensors, electro-optic image sensors, etc. These kinds of
data are not inherently relational, but physical streams of (semi)unstructed data.

In the statistical literature and in the marketing research, scientists often face the
task of reconstructing/imputing missing data. This problem is named in variety of
ways, including data fusion, but it is important to point out that it faces a very differ-
ent issue,more often concerning statisticalmatching techniques [20]. Denominations
include statistical data fusion [11], file concatenation method [17], micro data set
merging [4], cross-tabulation [6, 11], or in the marketing field, multi-source impu-
tation [8, 19]. The real task, without referring to this plethora of names, is linking
a number of datasets with the goal of accessing the variables that are not present in
a single source. In contrast with the data fusion problem, these datasets are not the
output of any matching process [5, 16]: they are not structurally reconciled hence do
not share any identifier, if any subsample of tuples contains the same units.

5 Conclusions

This paper presented BP-fuse as a novel algorithm to solve conflicts in database
fusion. The major result is the possibility to exploit the dependencies among the
features to solve the conflicts. These dependencies are modeled in Bayesian net-
works that represent domain knowledge. Dependencies among the attributes and
non-conflicting values are used in conjunction in a global perspective, to establish
which values are more plausible in the result. Once the knowledge has been captured
by the Bayesian network, it can be used independently of the data, in this sense
BP-fuse is context independent but domain aware.
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The Qualitative Characteristics
of Combining Evidence with Discounting

Alexander Lepskiy

Abstract The qualitative characteristics of the combining evidence with the help
of Dempster’s rule with discounting is studied in this paper in the framework of
Dempster-Shafer theory. The discount coefficient (discounting rate) characterizes
the reliability of information source. The conflict between evidence and change of
ignorance after applying combining rule are considered in this paper as important
characteristics of quality of combining. The quantity of ignorance is estimated with
the help of linear imprecision index. The set of crisp and fuzzy discounting rates for
which the value of ignorance after combining does not increases is described.

Keywords Belief functions · Discount method · Imprecise index

1 Introduction

The study of combining rules of evidence occupies an important place in the belief
functions theory. A combining rule puts in correspondence to two or more evidences
the one evidence. Dempster’s rule [4] was the first from combining rules. The review
of some popular combining rules can be found in [10]. There is no combining rule
which give a plausible aggregation of information in all cases regardless of context.
The prognostic quality of combining evidence is evaluated with the help of some
characteristics. The reliability of sources of information, the conflict measure of
evidence [7], the degree of independence of evidence are a priori characteristics of
quality of combining. The amount of change of ignorance after the use of a combining
rule is the most important a posteriori characteristic [8]. The amount of ignorance
contained in evidence may be estimated with the help of imprecision indices [2].
The generalized Hartley’s measure is an example of such index [5]. It is known, for
example, that the amount of ignorance does not increase when used Dempster’s rule
for non-conflicting evidences. Dempster’s rule can be considered as an optimistic
rule in this sense [8]. On the contrary, Dubois and Prade’s disjunctive consensus
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rule [6] has a pessimistic character in the sense that amount of ignorance does not
decrease after applying such a rule.

The discount method is one of the approaches where the reliability of information
source is taken into account. This method was proposed by Shafer [11]. The discount
coefficient (discounting rate) characterizes the reliability of information source. The
discount method with Dempster’s rule may be pessimistic rule or optimistic rule in
depending on the values of discounting rates. The generalizations of the discount
method were considered in several papers. In particular, Smets [12] introduced a
family of combination rules known as α-junctions. Pichon and Denoeux [9] have
established the linkbetween theparameter ofα-junction and reliability of information
sources.

In this paper we will find conditions on the discount rates for which the amount
of ignorance after applying Dempster’s rule is not increased, i.e. this rule will be
still optimistic in spite of unreliable information sources. This problem is solved in
general case of conflicting evidences and crisp discounting rates as well as in the case
of non-conflicting evidences and fuzzy discounting rates. In addition, the problem
of finding such discount rates for which a conflict of evidence will not be greater
than a certain threshold and the quality of ignorance after the combination will not
increase is formulated and solved.

2 Belief Function Basics

Let X be a finite universal set and 2X is a set of all subsets of X . We consider the
belief function [11] g : 2X → [0, 1]. The value g(A), A ∈ 2X , is interpreted as a
degree of confidence that the true alternative of X belongs to set A. A belief function
g is defined with the help of so called mass function mg : 2X → [0, 1] that satisfy
the conditions [11]: mg(∅) = 0,

∑
A⊆X mg(A) = 1. Then g(A) = ∑

B: B⊆A mg(B).
Let the set of all belief functions on 2X be denoted by Bel(X). The belief function
g ∈ Bel(X)may be representedwith the help of so called categorical belief functions

η〈B〉(A) =
{
1, B ⊆ A,

0, B � A,
A ⊆ X , B �= ∅. Then g = ∑

B∈2X \{∅} mg(B)η〈B〉. The sub-

set A ∈ 2X is called a focal element ifm(A) > 0. LetA be a set of all focal elements.
The pair F = (A,m) is called a body of evidence. We will denote throughA(g) and
F(g) the set of all focal elements and the body of evidence correspondingly related
with the belief function g. Let us have two bodies of evidence F(g1) = (A(g1),mg1)

and F(g2) = (A(g2),mg2) which related with the belief functions g1, g2 ∈ Bel(X).
For example, it can be evidences which were received from two information sources.
Then the task of combining of these two evidence in one evidence with the help of
some operator ϕ : Bel2(X) → Bel(X), g = ϕ(g1, g2), is an actual problem. Demp-
ster’s rule was the first from combining rules. This rule was introduced in [4] and
generalized in [11] for combining arbitrary independent evidence. This rule is defined
as g = ϕD(g1, g2) = ∑

A∈2X\{∅} mg(A)η〈A〉, where
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mg(A) = 1

1 − K

∑

B∩C=A

mg1(B)mg2(C), A �= ∅, mg(∅) = 0, (1)

K = K (g1, g2) =
∑

B∩C=∅
mg1(B)mg2(C).

The value K (g1, g2) characterizes the amount of conflict in two information
sources which determined with the help of bodies of evidence F(g1) and F(g2).
If K (g1, g2) = 1 then it means that information sources are absolutely conflict and
Dempster’s rule cannot be applied. The discounting of mass function was introduced
by Shafer [11] for accounting of reliability of information. The main idea consists
in the use of coefficient α ∈ [0, 1] for discounting of mass function:

mα(A) = (1 − α)m(A), A �= X, mα(X) = α + (1 − α)m(X). (2)

The coefficientα is called the discounting rate. The discounting rate characterized
the degree of reliability of information. Ifα = 0 then itmeans that information source
is absolutely reliable. If α = 1 then it means that information source is absolutely
non-reliable. Dempster’s rule (1) applies after discounting of mass functions of two
evidences in general with different discounting rates.

The following Dubois and Prade’s disjunctive consensus rule is a dual to Demp-
ster’s rule [6]: g = ϕDP(g1, g2) = ∑

A∈2X\{∅} mg(A)η〈A〉, where mg(A) =∑
B∪C=A mg1(B)mg2(C), A ∈ 2X .

3 Estimation of Ignorance Associated with the Belief
Function

Let us have source of information and this information is described by a belief
function g ∈ Bel(X). The belief function g defines the informationwith some degree
of uncertainty. There are few approaches to definition of uncertainty measure in the
evidence theory. We will follow the approach described in work [2]. This approach
based on the notion of imprecision index.

Let us know only that true alternative belong to the non empty set B ⊆ X . This
situation may be described with the help of categorical belief function η〈B〉(A), A ⊆
X , which gives the lower probability of an event x ∈ A. The degree of uncertainty of
such function is described by the well-known Hartley measure H(η〈B〉) = log2 |B|,
which characterized the degree of information uncertainty about belonging of true
alternative to set B ⊆ X .

The following construction is a generalization of above situation. Let g =∑
B∈2X mg(B)η〈B〉 ∈ Bel(X). Then the generalized Hartley measure [5] from g is

defined as GH (g) = ∑
B∈2X\{∅} mg(B)log2 |B|. The generalized Hartley measure is

an example of the following general notion.
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Definition 1 [2]. A functional f : Bel(X) → [0, 1] is called imprecision index if
the following conditions are fulfilled: (1) if g be a probabilitymeasure then f (g) = 0;
(2) f (g1) ≥ f (g2) for all g1, g2 ∈ Bel(X) such that g1 ≤ g2 (i.e. g1(A) ≤ g2(A) for
all A ∈ 2X ); (3) f

(
η〈X〉

) = 1.

An imprecision index f on Bel(X) is called linear if for any linear combination∑k
j=1 α jg j ∈ Bel(X), α j ∈ R, g j ∈ Bel(X), j = 1, . . . , k, we have

f
(∑k

j=1 α jg j

)
= ∑k

j=1 α j f
(
g j

)
.

The different representations of imprecision index were found in [2]. In this paper
we will use the following representation.

Proposition 1 A functional f : Bel(X) → [0, 1] is a linear imprecision index
on Bel(X) iff f (g) = ∑

B∈2X\{∅} mg(B)μ f (B), where set function μ f satisfies
the conditions: (1) μ f ({x}) = 0 for all x ∈ X; (2) μ f (X) = 1; (3)

∑
B:A⊆B

(−1)|B\A|μ f (B) ≤ 0 for all A �= ∅, X.

4 Change of Ignorance After Combining with the Crisp
Discount Rates

Assume that we have two information sources which are defined by the bodies
of evidence F(g1) = (A(g1),mg1) and F(g2) = (A(g2),mg2) correspondingly and
which relatedwith the belief functions g1, g2 ∈ Bel(X). If we apply some combining
ruleϕ to the pair of belief functions g1, g2 ∈ Bel(X) thenwe get a newbelief function
g = ϕ(g1, g2). We have a question about changing of the amount of ignorance after
applying combining rule ϕ. We will estimate the quantity of ignorance with the help
of imprecision index f .

Definition 2 A combining rule ϕ is called optimistic (pessimistic) rule with respect
to imprecision index f , if f (g) ≤ min

i∈1,2 f (gi ) ( f (g) ≥ max
i∈1,2 f (gi )) for all g1, g2 ∈

Bel(X).

In other words, the optimistic rule does not increase the amount of ignorance,
but the pessimistic rule does not decrease the amount of ignorance. It is known [6,
8] that Dempster’s rule is an optimistic rule with respect to any linear imprecision
index, but Dubois and Prade’s disjunctive consensus rule is a pessimistic rule.

Now we investigate on pessimism-optimism Dempster’s rule with discounting.
Let g1 = ∑

A∈2X\{∅} mg1(A)η〈A〉 and g2 = ∑
A∈2X\{∅} mg2(A)η〈A〉. Each of two infor-

mation sources has its own reliability (discount rate) α,β ∈ [0, 1] correspondingly
in the sense of discounting method (2). We obtain two new belief functions taking
into account discount rates:

g(α)
1 =

∑
A∈2X\{∅} m

(α)
g1

(A)η〈A〉, g
(β)

2 =
∑

B∈2X \{∅} m
(β)
g2

(B)η〈B〉,
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wherem(α)
g1

(A) = (1 − α)mg1
(A), A �= X ,m(α)

g1
(X) = α + (1 − α)mg1(X) andm(β)

g2
calculated similarly. We note that

g(α)
1 =

∑
A∈2X\{∅} mg1

(A)η(α)
〈A〉, g

(β)

2 =
∑

B∈2X \{∅} mg2
(B)η

(β)

〈B〉, (3)

where η(α)
〈A〉 = (1 − α)η〈A〉 + αη〈X〉 and η

(β)

〈B〉 calculated similarly. We assume that
evidences F(g1) and F(g2) are non-conflicting, i.e. K = K (g1, g2) = 0. Then

K
(
g(α)
1 , g

(β)

2

)
= 0. If we apply Dempster’s rule ϕD to the pair g(α)

1 , g
(β)

2 of belief

functions then we get a new belief function gα,β = ϕD(g(α)
1 , g

(β)

2 ). Dempster’s rule
ϕD(g(α)

1 , g
(β)

2 ) is a linear rule for every argument for non-conflicting evidences.There-
fore we get from representations (3)

ϕD(g(α)
1 , g

(β)

2 ) =
∑

A∈A(g1)

∑

B∈A(g2)

mg1(A)mg2(B)ϕD

(
η(α)

〈A〉, η
(β)

〈B〉
)
.

We have A ∩ B �= ∅ for every pair A ∈ A(g1), B ∈ A(g2) in case of non-
conflicting evidences. Consequently we get

ϕD

(
η(α)

〈A〉, η
(β)

〈B〉
)
=(1 − α)(1 − β)η〈A∩B〉 + (1 − α)βη〈A〉 + α(1 − β)η〈B〉 + αβη〈X〉.

Therefore, a new belief function gα,β has the following expression through initial
functions g1, g2 ∈ Bel(X) and the belief function g = ϕD(g1, g2) obtained without
discounting

gα,β = ϕD(g(α)
1 , g

(β)

2 ) = (1 − α)(1 − β)g + (1 − α)βg1 + (1 − β)αg2 + αβη〈X〉.
(4)

We have a question about changing of the amount of ignorance after applying
Dempster’s rule with discounting. We will estimate the quantity of ignorance with
the help of linear imprecision index f . Dempster’s rule is an optimistic rule (i.e.
f (g) ≤ min

i
f (gi ),) for non-conflicting and reliable information sources (α,β = 0)

with respect to any linear imprecision index. If we use non-reliable information
sources (α,β �= 0) then imprecision index f (gα,β) of new belief function gα,β could
be greater than imprecision indices of initial functions f (gi ), i = 1, 2. We will find
the conditions on discounting rates for which the amount of ignorance will not
increase after applying Dempster’s rule with discounting. We obtain from (4) with
account of linearity of index f and normalization condition f (η〈X〉) = 1 that

f (gα,β) = (1 − α)(1 − β) f (g) + (1 − α)β f (g1) + (1 − β)α f (g2) + αβ.

The function f (gα,β) can be rewritten in the form

f (gα,β) = f (g) + αΔ2 + βΔ1 + αβ(Δ − Δ1 − Δ2), (5)
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where Δi = f (gi ) − f (g), i = 1, 2 is a changing of ignorance of i-th information
source after applying Dempster’s rule (without of discounting),Δ = 1 − f (g). Note
that we have Δi ≥ 0, i = 1, 2 in any non-conflicting case and we have Δ ≥ Δi ,
i = 1, 2 in any case. Then the condition f (gα,β) ≤ f (gi ), i = 1, 2 is equivalent to
inequality

αΔ2 + βΔ1 + αβ(Δ − Δ1 − Δ2) ≤ min{Δ1,Δ2}. (6)

Let Ign0 = Ign0(g1, g2) be a set of all pair (α,β) ∈ [0, 1]2 which satisfy inequal-
ity (6) for given belief functions g1, g2 ∈ Bel(X).

We have the following result in the general case of conflicting evidence (i.e.
K = K (g1, g2) �= 0).

Proposition 2 Dempster’s rule with discounting (α,β) ∈ [0, 1]2 is optimistic rule
with respect to linear imprecision index f (i.e. f (gα,β) ≤ min

i
f (gi )) iff

αΔ2 + βΔ1 + αβ(Δ − Δ1 − Δ2) ≤ (1 − (1 − α)(1 − β)K )min{Δ1,Δ2}. (7)

Let IgnK = IgnK (g1, g2) be a set of all pair (α,β) ∈ [0, 1]2, which satisfy
inequality (7) for given belief functions g1, g2 ∈ Bel(X), which have conflict
K = K (g1, g2). It is easy to see from (7) that IgnK ′ ⊆ IgnK ′′ ⊆ Ign0, if K ′ ≥ K ′′
under condition Δi = f (gi ) − f (g) ≥ 0, i = 1, 2.

The value of conflict after discounting is equal Kα,β = K
(
g(α)
1 , g

(β)

2

)
= (1 −

α)(1 − β)K . If the discount rates are increased then the value of conflict between
the evidence is decreased. The problem of description of all pair (α,β) ∈ [0, 1]2
for given belief functions g1, g2 ∈ Bel(X) for which the conflict Kα,β is not greater
some threshold value Kmax ≤ K (i.e. Kα,β = (1 − α)(1 − β)K ≤ Kmax) can be for-
mulated. We denote this set through Con f lK (Kmax).

The problem of description of reliability of information sources (discounting
rates) for which the aggregation with the help of Dempster’s rule will not lead to
an increase of ignorance ((α,β) ∈ IgnK ) but a conflict will not be great ((α,β) ∈
Con f lK (Kmax)) is an actual problem. This set is defined as IgnK ∩ Con f lK (Kmax).

Now theproblemoffindingof points-reliabilities (α,β)∈ IgnK ∩ Con f lK (Kmax)

for which the imprecision index f (gα,β) after combining will be minimal can be for-
mulated:

f (gα,β) → min, (α,β) ∈ IgnK ∩ Con f lK (Kmax). (8)

This problem is an actual if we have several pairs of conflicting information
sources with different reliabilities. We must choose the best pair for combining.
Note that the formulation of the problem (8) can be considered as an optimization
problem of finding of combining rule from parametric family of rules

{
gα,β

}
α,β∈[0,1],

for which the ignorance will be minimal under the condition that the conflict is not
greater some threshold value Kmax. The generalized statement of the problem is
considered in [3].
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5 Change of Ignorance After Combining with Fuzzy
Discount Rates

Assume that reliabilities of information sources α and β are not known precisely but
we have a fuzzy numbers α̃ and β̃. Then the imprecision index f (gα̃,β̃) will be by
a fuzzy number also and, for example, in case of non-conflicting evidence (see (5))
f (gα̃,β̃) is equal

f (gα̃,β̃) = f (g) + α̃Δ2 + β̃Δ1 + α̃β̃(Δ − Δ1 − Δ2).

Then we can formulate the problem of finding of the fuzzy numbers α̃ and β̃
for which f (gα̃,β̃)≤I f (gi ), i = 1, 2, where ≤I is a some relation of comparison of
fuzzy numbers.

Example Let α̃ and β̃ are by triangular fuzzy numbers of the form α̃ =
(α − δ,α,α + δ) and β̃ = (β − ω,β,β + ω) correspondingly. We will use the
method Adamo [1] for comparison of the fuzzy numbers ũ and ṽ. Let ũγ =
{t | μũ(t) ≥ γ} be a γ-cut of fuzzy number ũ with relationship function μũ and
ũγ = [lũ(γ), rũ(γ)]. The fuzzy number ũ does not exceed the fuzzy number ṽ

with respect to the method Adamo (ũ≤Aṽ), if rũ(γ) ≤ rṽ(γ) for given (fixed) level
γ ∈ (0, 1]. The level γ characterizes a measure of risk of the wrong decision. Then

f (gα̃,β̃)≤I f (gi ) ⇔ r f (gα̃,β̃)(γ) ≤ min
i

f (gi ),

where r f (gα̃,β̃)(γ) = f (g) + rα̃(γ)vΔ2 + rβ̃(γ)Δ1 + rα̃(γ)rβ̃(γ)(Δ − Δ1 − Δ2),
rα̃(γ) = α + δ(1 − γ), rβ̃(γ) = β + ω(1 − γ), γ ∈ (0, 1].

6 Conclusion

The qualitative characteristics of the combining evidencewith the help of Dempster’s
rulewith discountingwere studied in this paper in the framework ofDempster-Shafer
theory. In particular we found conditions on the discount rates for which the amount
of ignorance after applying Dempster’s rule is not increased, i.e. this rule will be
still optimistic in spite of unreliable information sources. This problem was solved
in general case of conflicting evidences and crisp discounting rates as well as in
the case of non-conflicting evidences and fuzzy discounting rates. In addition, the
problem of finding such discount rates for which a conflict of evidence will not be
greater than a certain threshold and the quality of ignorance after the combination
will not increase was formulated and solved.
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Measuring the Dissimilarity Between
the Distributions of Two Random
Fuzzy Numbers

María Asunción Lubiano, María Ángeles Gil, Beatriz Sinova,
María Rosa Casals and María Teresa López

Abstract In a previous paper the fuzzy characterizing function of a random fuzzy
number was introduced as an extension of the moment generating function of a real-
valued random variable. Properties of the fuzzy characterizing function have been
examined, among them, the crucial one proving that it unequivocally determines
the distribution of a random fuzzy number in a neighborhood of 0. This property
suggests to consider the empirical fuzzy characterizing function as a tool to measure
the dissimilarity between the distributions of two random fuzzy numbers, and its
expected descriptive potentiality is illustrated by means of a real-life example.

1 Introduction

The formalization of random fuzzy numbers as Borel-measurable fuzzy number-
valued mappings associated with a probability space, this one modeling a random
experiment, allows us to properly refer to its induced distribution as well as to the
independence of random fuzzy numbers.Nevertheless, although the existence of such
an induced distribution is clear (and it can be easily determined in the sample case),
there is not a sound general concept which enables us to develop some probabilistic
and statistical results we have in the real-valued case, like the distribution function
of a real-valued random variable. Moreover, there are not exact or approximated
models widely applicable and realistic enough for the induced distribution.
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In Sinova et al. [9] a function characterizing the induced distribution of a random
fuzzy number has been defined. This function aims to extend the moment generating
function of a real-valued random variable (and, therefore, there are just a few distri-
butions for which it does not exist) and it is based on the Aumann-type mean of a
random fuzzy number. Since the extension preserves the convenient characterizing
ability of the moment generating function, one can think of using it to measure to
some extent whether the (induced) distributions of two random fuzzy numbers coin-
cide or not. More concretely, we can consider to state a measure of the dissimilarity
of such distributions.

This paper aims to empirically analyze the descriptive behaviour of this mea-
sure by means of a real-life example. The derived descriptive conclusions will be
compared with some inferential ones which have been recently drawn. Some open
problems will be finally proposed.

2 Preliminaries

Fuzzy sets, and particularly fuzzy numbers, are very suitable to cope with the impre-
cision of different real-life data, especially those coming from human thought and
experience in variables like quality perception, satisfaction, opinion, etc.

Definition 1 A mapping Ũ : R → [0, 1] is said to be a (bounded) fuzzy number if
its α-levels

Ũα =
{ {x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : Ũ(x) > 0} if α = 0

(with cl denoting the topological closure) are nonempty compact intervals for all
α ∈ [0, 1]. The class of (bounded) fuzzy numbers will be denoted by F∗

c (R).

To deal with fuzzy numbers in this paper we should consider the extension of the
sum and product by a scalar as well as that for the exponential function, which will be
supposed to be based on Zadeh’s extension principle [10] and coincides level-wise
with the usual interval arithmetic and function image (see Nguyen [7]).

Definition 2 Let Ũ, Ṽ ∈ F∗
c (R) and γ ∈ R. The sum of Ũ and Ṽ is the fuzzy number

Ũ + Ṽ such that

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα = [inf Ũα + inf Ṽα, sup Ũα + sup Ṽα].

The product of Ũ by the scalar γ is the fuzzy number γ · Ũ such that

(γ · Ũ)α = γ · Ũα =
⎧
⎨

⎩

[
γ inf Ũα, γ sup Ũα

]
if γ ∈ [0,∞)

[
γ sup Ũα, γ inf Ũα

]
otherwise.
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The (induced) image of Ũ through the exponential function is the fuzzy number eγ·Ũ
such that

(eγ·Ũ)α =

⎧
⎪⎨

⎪⎩

[
eγ inf Ũα , eγ sup Ũα

]
if γ ∈ [0,∞)

[
eγ sup Ũα , eγ inf Ũα

]
otherwise.

If a random experiment leads to data which can be suitably modeled in terms of
fuzzy numbers, one should also properly model the random mechanism generating
such data to analyze them in a rigorously established setting. The concept of random
fuzzy number (or one-dimensional fuzzy random variable, as coined and introduced
by Puri and Ralescu [8]) is an appropriate model to formalize a random mechanism
associating with each experimental outcome a fuzzy number. That is, random fuzzy
numbers are mainly addressed to deal with the ‘ontic’ view of experimental fuzzy
data (see Couso and Dubois [1]).

Definition 3 LetKc(R) be the space of nonempty compact intervals. Given a prob-
ability space (Ω,A,P), a random fuzzy number associated with it is a mapping X :
Ω → F∗

c (R) such that for eachα ∈ [0, 1] the set-valued mappingXα : Ω → Kc(R)

(with Xα(ω) = (X (ω)
)
α
) is a compact random interval.

Equivalently, a random fuzzy number is a mapping X : Ω → F∗
c (R) such that

it is Borel-measurable w.r.t. the Borel σ-field generated on F∗
c (R) by the topology

induced by several different metrics, like the 2-norm distance

ρ2(Ũ, Ṽ ) =
√
1

2

∫

[0,1]

([
inf Ũα − inf Ṽα

]2 + [
sup Ũα − sup Ṽα

]2)
dα

by Diamond and Kloeden [2].

As we have already pointed out, the assumed Borel-measurability of random
fuzzy numbers in the second equivalent definition allows us to trivially induce the
distribution (from P) of a random fuzzy number.

A relevantmeasure in summarizing such an induced distribution is themean value,
which has been defined by Puri and Ralescu [8]) as follows:

Definition 4 Given a probability space (Ω,A,P) and a random fuzzy number X
associated with it, the (population) Aumann-type mean value of X is the fuzzy
number Ẽ(X ), if it exists, such that for each α ∈ [0, 1]

(
Ẽ(X )

)
α

= [
E(inf Xα),E(supXα)

]
.

In particular, if one deals with a finite sample of observations from a random
fuzzy number X , say x̃ = ( x̃1, . . . , x̃n), the corresponding (sample) Aumann-type
mean value is the fuzzy number

x̃ = 1

n
· ( x̃1 + · · · + x̃n) .
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On the basis of the Aumann-type mean value of a random fuzzy number, one can
formally extend the notion of moment generating function of a real-valued random
variable as follows (see Sinova et al. [9]):

Definition 5 Given a probability space (Ω,A,P) and a random fuzzy number X
associated with it, the (population) fuzzy characterizing function ofX is the mapping
M̃X defined on a neighborhood of 0 that associates with each t in the neighborhood
the fuzzy number M̃X (t) = Ẽ

(
etX

)
, if it exists. That is, for each α ∈ [0, 1]

(
M̃X (t)

)
α

=
{[

E(et inf Xα),E(et supXα)
]

if t ≥ 0[
E(et supXα),E(et inf Xα)

]
otherwise.

In particular, if one deals with a finite sample of observations from a random fuzzy
number X , say x̃ = (̃x1, . . . , x̃n), the corresponding empirical fuzzy characterizing

function is the mapping ̂̃Mx̃ associating with each t in a neighborhood of 0 the fuzzy
number

̂̃Mx̃(t) = 1

n
· (
et̃x1 + · · · + et̃xn

)
.

As shown in [9], the fuzzy characterizing function preservesmost of the properties
of the moment generating one in the real-valued case, but the one associated with
the moment generation. However, it keeps the crucial property of characterization
of the induced distribution of the associated random element, so that if X and Y are
two random fuzzy numbers for which the fuzzy characterizing functions exist and
coincide in a neighborhood of 0, then X and Y should be equally distributed.

In the next section, we are going to take advantage of this characterizing skill to
state a descriptive measure for the dissimilarity between the sample distributions of
two random fuzzy numbers.

3 A Sample Measure for the Dissimilarity Between the
Distributions of Two Fuzzy Datasets

This section aims to state an index for the dissimilarity between the distributions of
two fuzzy datasets. Due to the characterizing property, and being inspired by ideas in
some statistics for the homogeneity of distributions in the real-valued case (see, for
instance, Meintanis [5], Mora and Mora-López [6], who also suggest the correction
in contrast to the measure in Lubiano et al. [3]), it seems plausible to consider in the
current setting a statistic based on distances between the sample fuzzy characterizing
functions in a narrow neighborhood of 0.

In this way, for an arbitrarily fixed ε > 0:

Definition 6 The ε-sample dissimilarity between the distributions of samples x̃ =
( x̃1, . . . , x̃n) and ỹ = ( ỹ1, . . . , ỹm) is given by the index
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�n,m,ε( x̃, ỹ ) = 1

ε

√
nm

n + m
max

t∈[−ε,ε] ρ2
(
̂̃Mx̃(t),

̂̃Mỹ(t)
)

.

In this section we are going to apply the preceding measure on a dataset from a
real-life situation.

Example The nine items displayed in Table1 have been drawn from the TIMSS/
PIRLS 2011 Student questionnaire. This questionnaire is conducted in many coun-
tries and it is to be responded by fourth grade students (nine to ten years old) in
connection with some aspects about reading, math and science.

These nine items have been originally designed to be answered in accordance with
a 4-point Likert scale (disagree a lot, disagree a little, agree a little,
agree a lot).

Recently, the questionnaire form involving these nine items, along with a few
more ones about students’ support resources at home, has been adapted to allow also
a fuzzy rating scale-based one (see Fig. 1 for QuestionM.2). For the full paper-and-
pencil and computerized versions of the questionnaire, see http://bellman.ciencias.
uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html.

The fuzzy rating scale (see, e.g., [3, 4]) has been designed with reference interval
[0, 10]. The adapted questionnaire has been conducted on 69 fourth grade students
from Colegio San Ignacio (Oviedo-Asturias, Spain). The complete dataset can be
found in the webpage containing the forms.

Now we are going to examine whether the fuzzy rating scale-based responses
seem or not to be affected by respondents’ sex, filled form version and the fact that
respondents have or not an individual bedroom at home.

For this purpose, and for each of the three variables, we have first considered
the (descriptive) dissimilarity index with ε = 0.001, 0.01 and 0.1 (a deeper and
exhaustive discussion about the choice of ε should be developed in the future).
Secondly, as an alternative (albeit inferential) way to discuss such an influence, we

Table 1 Items selected from the TIMSS-PIRLS 2011 Student Questionnaire

Reading in school

R.1 I like to read things that make me think

R.2 I learn a lot from reading

R.3 Reading is harder for me than any other subject

Mathematics in school

M.1 I like mathematics

M.2 My teacher is easy to understand

M.3 Mathematics is harder for me than any other subject

Science in school

S.1 My teacher taught me to discover science in daily life

S.2 I read about in my spare time

S.3 Science is harder for me than any other subject

http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
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Fig. 1 Example of the double-response form to an item

have considered tests in Lubiano et al. [4] for the two-sample equality of independent
means and compute the associated p-values when the chosen metric is ρ2. Tables2,
3 and 4 gather the outputs for the descriptive and inferential analyses.

Table 2 ε-sample dissimilarity between the distributions of girls’ and boys’ samples for ε =
0.001, 0.01, 0.1 and ρ2-based testing p-values for the equality of means

�n,m,ε �n,m,ε �n,m,ε ρ2 two-sample

Item (ε = 0.001) (ε = 0.01) (ε = 0.1) test p-values

R.1 0.3874 0.4056 0.665 0.502

R.2 0.2397 0.2544 0.4759 0.702

R.3 0.6087 0.6416 1.1206 0.425

M.1 1.2692 1.3337 2.2487 0.049

M.2 0.3713 0.39 0.658 0.574

M.3 0.6207 0.6469 1.0211 0.49

S.1 0.6784 0.7145 1.2232 0.275

S.2 0.2754 0.2942 0.5738 0.687

S.3 0.4223 0.4394 0.6851 0.606
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Table 3 ε-sample dissimilarity between the distributions of paper-and-pencil respondents’ sample
and computerized respondents’ sample for ε = 0.001, 0.01, 0.1 and ρ2-based testing p-values for
the equality of means

�n,m,ε �n,m,ε �n,m,ε ρ2 two-sample

Item (ε = 0.001) (ε = 0.01) (ε = 0.1) test p-values

R.1 1.0148 1.0606 1.678 0.065

R.2 1.1045 1.1724 2.1556 0.029

R.3 0.7244 0.7497 1.0904 0.366

M.1 0.8622 0.9008 1.4245 0.176

M.2 1.3347 1.4103 2.5025 0.01

M.3 1.5316 1.6148 2.8161 0.062

S.1 1.5403 1.6122 2.6124 0.016

S.2 0.6827 0.7058 0.9985 0.292

S.3 1.5221 1.5978 2.664 0.042

Table 4 ε-sample dissimilarity between the distributions of respondents’ sample with individual
bedroom and respondents’ sample with shared bedroom for ε = 0.001, 0.01, 0.1 and ρ2-based
testing p-values for the equality of means

�n,m,ε �n,m,ε �n,m,ε ρ2 two-sample

Item (ε = 0.001) (ε = 0.01) (ε = 0.1) test p-values

R.1 0.5859 0.6277 1.2509 0.294

R.2 1.2238 1.3036 2.4909 0.013

R.3 0.4755 0.4983 0.8005 0.543

M.1 0.9392 0.9919 1.7486 0.188

M.2 0.3153 0.3365 0.6604 0.685

M.3 0.6548 0.6987 1.3606 0.46

S.1 0.2659 0.2746 0.394 0.772

S.2 0.5868 0.6063 0.8561 0.373

S.3 0.8058 0.859 1.6633 0.366

As an attempt to analyze the coherence between the descriptive dissimilarity and
the inferential testing for the equality of means outputs, we have computed Pearson’s
correlation coefficient r between both series of outputs. In connection with sex we
have that r = −0.9567 (if ε = 0.001), r = −0.9574 (if ε = 0.01), and r = −0.9572
(if ε = 0.1).

In connection with the filled format we have that r = −0.8269 (if ε = 0.001), r =
−0.8331 (if ε = 0.01), and r = −0.8664 (if ε = 0.1). In connection with bedroom
type for respondents we have that r = −0.9437 (if ε = 0.001), r = −0.9426 (if
ε = 0.01), and r = −0.9145 (if ε = 0.1).

Consequently, there is a high linear relationship between both tools. Notice that
the correlation coefficient is not expected to be exactly equal to−1, not only because
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we are using samples and linearity could be a restrictive assumption, but also because
the dissimilarity index is related to the whole distribution whereas p-values concern
only their means.

4 Conclusions and Future Directions

By looking at the outputs in Table2, one can conclude both descriptively (through
the dissimilarity measure) and inferentially (through the p-value) that sex affects the
liking for mathematics (related to item M.1). Actually, M.1 is the only item among
the 9 in the adapted questionnaire for which �n,m,0.001 > 1 and the p-value is lower
than 0.05.

By looking at the outputs in Table3, one can conclude that the version form affects
(to a rather great extent) the response to items R.1, R.2, M.2, M.3, S.1 and S.3, for
which �n,m,0.001 > 1 and the p-value is always lower or much lower than 0.07.

By looking at the outputs in Table4, one can conclude that having or not an
individual bedroom at home affects students’ learning from reading (related to item
R.2), for which �n,m,0.001 > 1 and the p-value is lower than 0.02.

On the other hand, the measure in this paper has been simply applied for de-
scriptive purposes. Consequently, we cannot attempt to interpret the significance of
the dissimilarity measure. It would be desirable to consider this measure in the near
future to develop inferential methods (more concretely, for testing hypothesis about
the homogeneity of the population distributions of two random fuzzy numbers).
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An Empirical Analysis of the Coherence
Between Fuzzy Rating Scale- and Likert
Scale-Based Responses to Questionnaires

María Asunción Lubiano, Antonia Salas, Sara De la Rosa de Sáa,
Manuel Montenegro and María Ángeles Gil

Abstract In dealingwith questionnaires concerning satisfaction, quality perception,
attitude, judgement, etc., the fuzzy rating scale has been introduced as a flexible
way to respond to questionnaires’ items. Designs for this type of questionnaires are
often based on Likert scales. This paper aims to examine three different real-life
examples in which respondents have been allowed to doubly answer: in accordance
with either a fuzzy rating scale or a Likert one. By considering a minimum distance-
based criterion, each of the fuzzy rating scale answers is associated with one of the
Likert scale labels. The percentages of coincidences between the two responses in
the double answer are computed by the criterion-based association. Some empirical
conclusions are drawn from the computation of such percentages.

1 Introduction

In designing questionnaires concerning variables which cannot be measured by
means of exact numerical values but can be graded to some extent (as it happens with
satisfaction, quality perception, agreement level, and so on), commonly employed
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scales are Likert ones. Items in Likert scale-based questionnaires are responded by
choosing among a list of a few pre-specified answers the one that best represents
respondent’s valuation, rating, opinion, etc. Likert scale-based answers can be usu-
ally ordered with respect to a certain criterion (say degree of satisfaction, degree of
goodness, degree of agreement, etc.).

Hesketh et al. [5] (see also Hesketh and Hesketh [4]) proposed the so-called fuzzy
rating scale to allow a complete freedom and expressiveness in responding, without
respondents being constrained to choose among a few pre-specified responses. By
drawing the fuzzynumber that best represents respondent’s valuation, the fuzzy rating
scale captures the logical imprecision associated with such variables and allows us
to have a rich continuous scale of measurement. In this way, the fuzzy rating scale
somehow combines the power of the fuzzy linguistic scales with the power of visual
analogue scales.

In previous papers, responses to items in synthetic and real-life questionnaires
based both on Likert and fuzzy rating scales have been empirically compared by
means of different statistical tools (see, for instance, De la Rosa de Sáa et al. [1], Gil
et al. [3] and Lubiano et al. [7]).

Since responses in accordance with the two scales are collected in a linked way
(i.e., respondents supply a double answer), one question that arises is whether or not
respondents follow a kind of systematic classification of the fuzzy rating scale-based
responses into classes that could be identified with Likert’s possible answers.

This paper aims to examine this question by analyzing three real-life examples
involving questionnaires with double response type items. For this purpose a cri-
terion based on a distance between Likert and fuzzy responses (actually, between
numerically encoded Likert and fuzzy responses) is applied. This analysis evidences
that the coincidences between the expected Likert response and the one really cho-
sen are high, but up to 90%. This suggests that in assigning fuzzy rating scale-based
responses people behave in a very free way, without trying to exactly follow a kind of
fuzzy linguistic description of a Likert response. Furthermore, this fact corroborates
to some extent that, as it has been frequently pointed out in the literature, the usual
numerical encoding of Likert responses is not appropriate enough.

2 Preliminaries

Fuzzy numbers are often considered to express imprecise data because of their ability
and power to precisiate the imprecision and to be mathematically handled.

Definition 1 A mapping Ũ : R → [0, 1] is said to be a (bounded) fuzzy number if
its α-levels

Ũα =
{ {x ∈ R : Ũ (x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : Ũ (x) > 0} if α = 0
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(with cl denoting the topological closure) are nonempty compact intervals for all
α ∈ [0, 1]. The class of (bounded) fuzzy numbers will be denoted by F∗

c (R).

In accordance with Hesketh et al. [5] (see also Hesketh and Hesketh [4]), the
guideline for the use of fuzzy numbers through the so-called fuzzy rating scale is the
following:

1. A reference bounded interval/segment [a, b] is first considered. This is often
chosen to be [0, 10] or [0, 100], but the choice of the interval is not at all a
constraint. The end-points are often labeled in accordance with their meaning
referring to the degree of satisfaction, quality, agreement, and so on.

2. The core, or 1-level set, associated with the response is determined. It corre-
sponds to the interval consisting of the real values within the reference one
which are considered to be as ‘fully compatible’ with the response.

3. The support, or its closure or 0-level set, associated with the response is deter-
mined. It corresponds to the interval consisting of the real values within the
referential that are considered to be as ‘compatible to some extent’ with the
response.

4. The two preceding intervals are ‘linearly interpolated’ to get a trapezoidal fuzzy
number.

In accordance with Likert scales, people respond to items by specifying their
feeling with respect to a statement on a symmetric ‘agree-disagree’, or ‘extremely
high-extremely low’, etc., scale. This specification is performed by choosing one
among several given points representing some key degrees of agreement/suitability,
etc. To analyze Likert scale-based responses, such points are encoded by means of
consecutive integer numbers.

The question posed in Sect. 1, about whether or not fuzzy rating scale-based
responses could be into k-point Likert’s ones, is to be answered in this paper by con-
sidering the distance-based mapping ι : F∗

c (R) → [a, b]k = {a, a + (b − a)/(k −
1), . . . , a + (b − a)(k − 2)/(k − 1), b} (with [a, b] = reference interval, so that the
integer consecutive codes have been re-scaled in accordance with the reference inter-
val) such that Ũ �→ argmini∈[a,b]k ρ2(Ũ ,1{i}), that is,

ι(Ũ ) = arg min
i∈[a,b]k

√∫

[0,1]
(inf Ũα − i)2 + (sup Ũα − i)2

2
dα,

ρ2 being the well-known L2 metric introduced by Diamond and Kloeden [2].
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3 Real-Life Examples

In this section, we are going to examine three real-life situations in which question-
naires allowing to choose-draw double Likert type-fuzzy rating type responses have
been conducted. In each of the examples, we have determined the percentages of
coincidences between the expected Likert response (more concretely, the image of
the fuzzy rating response through ι and the assessed Likert response).

Example 1 By using an online computerized application an experiment has been
performed in which people have been asked for their perception of the relative length
of different line segments with respect to a pattern longer one (see http://bellman.
ciencias.uniovi.es/SMIRE/Perceptions.html).

On the center top of the screen the longest (pattern) line segment has been drawn
in black. This segment is fixed for all the trials, so that there is always a reference
for the maximum length. At each trial a grey shorter line segment is generated and
placed below the pattern one, parallel and without considering a concrete location
(i.e., indenting or centering). For each respondent, line segments are generated at
random, although to avoid the variation in the perception of different respondents
can be mainly due to the variation in length of different generated segments, the (27
first) trials for two respondents refer to the same segments but appearing in different
position and location.

The computerized application explains the formalization andmeaning of the fuzzy
rating values (see Fig. 1), with reference interval [0, 100]. People have participated
online by providing with their judgement of relative length for each of several line
segments. Each of these judgements can be doubly expressed: by choosing a label
from a 5-point Likert-like list (0 = very small, 25 = small, 50 = medium, 75 =
large, 100 = very large), and by using the fuzzy rating method.

25 respondents (all with a university scientific background) have supplied 1387
double responses after the corresponding trials. The dataset can be found in http://
bellman.ciencias.uniovi.es/smire/Archivos/Perceptionsdataset.pdf. The percentage
of coincidences through the minimum distance criterion equals 84.93%.

Example 2 A sample of 70 people with different age, background andwork type and
position has been considered to fill a restaurant customer satisfaction questionnaire
with 14 items by using a double response-type form (see http://bellman.ciencias.
uniovi.es/smire/FuzzyRatingScaleQuestionnaire-Restaurants.html).

The questionnaire has been conducted by a few students of a Master on Soft
Computing and Intelligent Data Analysis held in Mieres in 2011–2012. Figure2
displays the excerpt of the form to be filled corresponding to one of the involved
items.

The form allows the double response, where Likert-like ones are chosen from a
5-point Likert scale (0 = strongly disagree, 25 = somewhat disagree, 50 =
neutral, 75 = somewhat agree, 100 = strongly agree) and the fuzzy ones
have reference interval [0, 100].

http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
http://bellman.ciencias.uniovi.es/SMIRE/Perceptions.html
http://bellman.ciencias.uniovi.es/smire/Archivos/Perceptionsdataset.pdf
http://bellman.ciencias.uniovi.es/smire/Archivos/Perceptionsdataset.pdf
http://bellman.ciencias.uniovi.es/smire/FuzzyRatingScaleQuestionnaire-Restaurants.html
http://bellman.ciencias.uniovi.es/smire/FuzzyRatingScaleQuestionnaire-Restaurants.html
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Fig. 1 Example of a double response from the computerized application in Example 1

Fig. 2 Excerpt of a questionnaire about the satisfaction with the quality of restaurants in Example 2

The dataset with 980 double responses can be also found in the webpage including
the form. The percentage of coincidences through the minimum distance criterion
equals 78.16%.

Example 3 This third example is related to the well-known questionnaire TIMSS-
PIRLS 2011 which is conducted on populations of (nine to ten years old) fourth
grade students and concerns their opinion and feeling on aspects regarding reading,
math, and science. This questionnaire is rather standard and most of the involved
questions have to be answered according to a 4-point Likert scale (0 = disagree a
lot, 10/3 = disagree a little, 20/3 = agree a little, 10 = agree a lot).

The original questionnaire form has been adapted to allow a double-type response,
the original Likert and a fuzzy rating scale-based one with reference interval [0, 10]
(see Fig. 3 for one of the items, and the webpage http://bellman.ciencias.uniovi.
es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html for the full paper-and-
pencil and computerized forms and datasets).

As a differential feature and to ease the relationship between the two scales for
respondents, each numerically encoded Likert response has been superimposed upon
the reference interval of the fuzzy rating scale part.

The questionnaire involving these double-response questions has been conducted
on 69 fourth grade students from Colegio San Ignacio (Oviedo-Asturias, Spain). The

http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
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Fig. 3 Example of the double-response form to a question in Example 3

dataset with 599 double responses can be also found in the webpage including the
form. The percentage of coincidences through theminimum distance criterion equals
81.47%.

The above indicated percentages for the three examples have been also computed
with some other few metrics, even some ones assessing different weights to different
α-levels (more concretely, assessing weights so that the higher the α the higher/lower
the weight). Percentages have been scarcely affected by the choice of the metric.

4 Some Remarks from the Analysis of the Real-Life
Examples

As a summary of the analysis of the percentages in the three examples in Sect. 3 we
can empirically conclude that background, age and sample sizes seem not to be very
influential, as we could formerly suspect. Actually, we should confess that children
in the third example, which are much younger and are assumed not to have yet a
high background, have positively surprised us with their ease to catch the idea in just
15min of explanation.
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Fig. 4 Example of two fuzzy responses from Example 3 for which both the real and the minimum
distance-based Likert labels coincide

Fig. 5 Example of two fuzzy responses from Example 3 for which the minimum distance-based
Likert labels coincide, but the real choices do not

On the other hand, we can also conclude that in real-life people having the
opportunity of the double response is not necessarily guided by what Likert labels
can mean. In fact, it seems that people take advantage of the flexibility, freedom
and expressiveness of the fuzzy rating scale to draw their valuations and they
make it rather independently of their Likert assessment even in case they have to
do it simultaneously. This corroborates what has been statistically concluded by
Lubiano et al. [6, 7]: Likert scales ‘aggregate’ in some sense valuations which could
be ‘precisiated’ through fuzzy numbers, so relevant information can be lost when
using Likert scales.

This paper also adds that the real-life aggregation does not correspond in practice
to a natural (distance-based) partition of the fuzzy rating scale-based responses. And,
probably, there is no criterion which could properly mimic human association. In this
way, the following responses have been taken from the dataset of the responses in
Example 3 to the item M.2 in Fig. 3, namely, “My math teacher is easy to under-
stand”. Figure4 shows two very different fuzzy responses to this item for which both
the distance-based association and the real choice from the 4-point Likert scale coin-
cide (disagree a little). Figure5 shows two rather close fuzzy responses to this
item for which the distance-based association from the 4-point Likert scale coincide
(agree a little), but the real choices do not.

To end this paper, we would like simply illustrating these conclusions with a
simple instance also taken from the dataset of the responses in Example 3 to the
item M.2 in Fig. 3. Among the 69 double responses to this item, 10 of the Likert
components have not matched with the minimum distance Likert (that we can refer
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Table 1 Responses to the item “My math teacher is easy to understand” in Example 3 for which
the real 4-point Likert choice and the minimum distance one do not match
inf Ũ0 inf Ũ1 sup Ũ1 sup Ũ0 Chosen

Likert
dist to
0

dist to
10/3

dist to
20/3

dist to
10

Mindist
Likert ι

Width
support

Width
core

3.5 3.55 6.25 7.5 10/3 5.47 2.52 2.24 5.09 20/3 4 2.7

5.95 6 9.2 10 10 8 4.81 2.14 2.86 20/3 4.05 3.2

4.9 4.9 8.45 9.975 10 7.38 4.31 2.21 3.66 20/3 5.075 3.55

8 8.5 8.5 9 20/3 8.5 5.17 1.86 1.53 10 1 0

3.4 4.825 9.95 9.95 10 7.62 4.72 2.96 4.17 20/3 6.55 5.125

3.175 5.025 7.5 9.95 10 6.85 3.9 2.41 4.31 20/3 6.775 2.475

8 8.5 9.2 9.2 20/3 8.74 5.41 2.11 1.36 10 1.2 0.7

5.6 6.7 9.15 10 10 8.05 4.85 2.11 2.75 20/3 4.4 2.45

5.825 5.85 9.875 9.95 10 8.13 4.98 2.37 2.94 20/3 4.125 4.025

2.5 4.625 4.625 6.9 20/3 4.83 1.84 2.37 5.49 10/3 4.4 0

to as the expected Likert label). These responses have been gathered in Table1,
where we can easily see that 8 of them correspond to the 8 widest (w.r.t. support,
and, mostly, w.r.t. core) fuzzy responses, whereas the other 2 correspond to narrower
fuzzy responses but showing close distances (w.r.t. the maximum distance 10) to two
of the encoded Likert responses.

Finally, it should be emphasized that the high percentage of coincidences of the
real and the minimum distance-based ‘Likertization’ processes should not be viewed
as an argument in favour of the use of the Likert scale in contrast to the fuzzy rating
one. On the contrary, situations like those in Figs. 4 and 5 clearly illustrate the need
for the last scale, whenever it can be properly employed and data are to be statisti-
cally analyzed. Thus, the statistical analysis of the Likert responses in Fig. 4 doesn’t
distinguish between them, whereas the responses are indisputably different if the
fuzzy rating scale is considered. Consequently, many errors, deviations, differences,
are often neglected in using Likert scales.
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Asymptotic Results for Sums of Independent
Random Variables with Alternating Laws

Claudio Macci

Abstract Stochastic models governed by alternating dynamics arise in various
applications. In several cases these models can be described by sums of indepen-
dent random variables with alternating laws. The aim of this paper is to study the
asymptotic behavior of these sums in the fashion of large deviations.

1 Introduction

Stochastic models with alternating dynamics arise in various applications and are
widely studied in the literature. A remarkable example is telegraph process (see e.g.
[5]; see also [1] for the case with drift) which is considered in several fields; for
instance see [6] for its use in finance modeling (a wide source for other similar
models in this field is [4]).

In several cases these models are well described by sequences of sums{∑n
i=1 Xi : n ≥ 1

}
of independent random variables {Xn : n ≥ 1} with alternating

laws; namely we mean that the odd summands {X2n−1 : n ≥ 1} are identically dis-
tributed with law ξ , and the even summands {X2n : n ≥ 1} are identically distributed
with law ν. This kind of sequences has been recently studied in [7] where ξ and ν

are exponential laws, i.e.

ξ(dx) = λξe
−λξ x1(0,∞)(x)dx and ν(dx) = λνe

−λν x1(0,∞)(x)dx

for some λξ , λν > 0.
The aim of this paper is to prove large deviation results for these sums. The

theory of large deviations gives an asymptotic computation of small probabilities
on exponential scale (see [3] as a reference on this topic). The results are presented
in Sect. 3 after some preliminaries in Sect. 2. The final Sect. 4 is devoted to some
concluding remarks.
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2 Preliminaries

We start by recalling some basic definitions on large deviations. A speed function is a
sequence {vn : n ≥ 1} such that limn→∞ vn = ∞. Let Z be a Hausdorff topological
spacewithBorelσ -algebraB(Z) (herewe always assume thatZ = R); a lower semi-
continuous function I : Z → [0,∞] is called rate function. A sequence ofZ-valued
random variables {Zn : n ≥ 1} (defined on the same probability space (Ω,F , P))
satisfies the large deviation principle (LDP for short) with speed vn and rate function
I if

lim sup
n→∞

1

vn
log P(Zn ∈ C) ≤ − inf

z∈C I (z) for all closed sets C ⊂ Z

and

lim inf
n→∞

1

vn
log P(Zn ∈ G) ≥ − inf

z∈G I (z) for all open sets G ⊂ Z.

We remark that the definition of LDP concerns the laws of the random variables
{Zn : n ≥ 1}; therefore the random variables {Zn : n ≥ 1} do not need to be defined
on the same probability space. Finally a rate function I is said to be good if all its
level sets {{z ∈ Z : I (z) ≤ η} : η ≥ 0} are compact.

The term moderate deviations is used for a class of LDPs determined by the
sequences of positive numbers {an : n ≥ 1} such that Eq. (3) below holds (see Theo-
rem 3); these LDPs concern centered random variables and are governed by the same
quadratic rate function which vanishes at the origin only. In some sense moderate
deviations fill the gap between a law of large numbers for centered random vari-
ables, and an asymptotic Normality result; this aspect will be illustrated in Sect. 4
(see Remark 2).

In view of what follows we recall that a convex function f : R → (−∞,∞] is
essentially smooth if:

• the interior D◦
f of its domain D f := {θ ∈ R : f (θ) < ∞} is nonempty;

• the function f is differentiable throughout D◦
f ;• the function f is steep (namely, if | f ′(θn)| → ∞ as n → ∞ whenever {θn : n ≥

1} ⊂ D◦
f approaches to the boundary of D f as n → ∞).

We remark that the steepness condition holds vacuously if the function f is finite
and differentiable everywhere.

Nowwe are ready to recall the statement of thewell-knownGärtner Ellis Theorem
(see e.g. Theorem 2.3.6(c) in [3]) and, for our aim, we restrict the attention on the
case of real valued random variables.

Theorem 1 (Gärtner Ellis Theorem) Let {Zn : n ≥ 1} be a sequence of real valued
random variables such that the limit

Λ(θ) := lim
n→∞

1

vn
logE

[
evnθ Zn

]
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exists as an extended real number for all θ ∈ R. Moreover, assume that 0 ∈ D◦
Λ.

Then, if the functionΛ is essentially smooth and lower semi-continuous, the sequence
{Zn : n ≥ 1} satisfies the LDP with speed vn and good rate function Λ∗ defined by
Λ∗(x) := supθ∈R{xθ − Λ(θ)}.

3 Large and Moderate Deviations

Here we always consider probability measures π on R such that

Λπ(θ) := log
∫

R

eθxπ(dx)

is finite in a neighborhood of θ = 0, essentially smooth and we have

Λπ(θ) = θΛ′
π (0) + θ2

2
Λ′′

π (0) + o(θ2), (1)

where o(θ2)

θ2 → 0 as θ → 0. It is known that, in this case, Λ′
π (0) and Λ′′

π (0) are mean
and variance of any random variable with law π ; thus

Λ′′
π (0) ≥ 0. (2)

We recall the logarithm of a moment generating function is always a lower semi-
continuous (see e.g. Exercise 2.3.16(a) in [3]). Moreover, we set

Λ∗
π (x) := sup

θ∈R
{xθ − Λπ(θ)}.

In our results we always assume that:

• ξ and ν are two different probability measures on R which satisfy the above
hypotheses presented for π .

• {Xn : n ≥ 1} are independent real valued random variables such that {X2n−1 :
n ≥ 1} are identically distributed with law ξ , and {X2n : n ≥ 1} are identically
distributed with law ν.

We remark that we assume that ξ �= ν to avoid a well-known case (see Remark 3
in Sect. 4); furthermore, with some slight changes of the proofs, Theorems 2 and 3
still hold if the roles of ξ and ν are exchanged (i.e. if {X2n−1 : n ≥ 1} are identically
distributed with law ν, and {X2n : n ≥ 1} are identically distributed with law ξ ).

We recall that, for the convolution ξ � ν between ξ and ν, we have Λξ�ν = Λξ +
Λν and, under our hypotheses, ξ � ν satisfies the hypotheses presented above for π .
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Theorem 2 (Large Deviations) Let {Xn : n ≥ 1} be a sequence of real valued ran-
dom variables as above. Then the sequence

{
1
n

∑n
i=1 Xi : n ≥ 1

}
satisfies the LDP

with speed vn = n and good rate function J defined by J (x) := 1
2Λ

∗
ξ�ν(2x).

Proof Wewant to apply Theorem 1 with vn = n and Zn = 1
n

∑n
i=1 Xi . For all θ ∈ R

we distinguish two cases: if n is even we have

1

n
logE

[
enθ 1

n

∑n
i=1 Xi

]
= 1

n
· n
2
Λξ�ν(θ)

whereas, if n is odd, we have

1

n
logE

[
enθ 1

n

∑n
i=1 Xi

]
= 1

n

(
n − 1

2
Λξ�ν(θ) + Λξ(θ)

)
.

Then, since
1

n
Λξ(θ) →

{
0 if Λξ(θ) < ∞
∞ if Λξ(θ) = ∞,

and {θ ∈ R : Λξ�ν(θ) < ∞} ⊂ {θ ∈ R : Λξ(θ) < ∞} (because Λξ�ν = Λξ + Λν),
for all θ ∈ R we have

lim
n→∞

1

n
logE

[
enθ 1

n

∑n
i=1 Xi

]
= 1

2
Λξ�ν(θ).

In conclusion, by Theorem 1,
{
1
n

∑n
i=1 Xi : n ≥ 1

}
satisfies the LDP with speed

vn = n and good rate function J defined by

J (x) := sup
θ∈R

{
xθ − 1

2
Λξ�ν(θ)

}
,

and one can easily see that it coincides with the rate function in the statement of
proposition. 
�
Theorem 3 (Moderate Deviations) Let {Xn : n ≥ 1} be a sequence of real valued
random variables as above. Then, for all sequences of positive numbers {an : n ≥ 1}
such that

lim
n→∞ an = 0 and lim

n→∞ nan = ∞, (3)

the sequence
{√

nan ·
∑n

i=1(Xi−E[Xi ])
n : n ≥ 1

}
satisfies the LDPwith speed vn = 1/an

and good rate function J̃ defined by J̃ (x) := x2

Λ′′
ξ�ν (0)

if Λ′′
ξ�ν(0) > 0, and by
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J̃ (x) :=
{
0 if x = 0
∞ if x �= 0

if Λ′′
ξ�ν(0) = 0.

Proof Wewant to apply Theorem 1with vn = 1/an and Zn = √
nan ·

∑n
i=1(Xi−E[Xi ])

n .
For all θ ∈ R we have to consider

Ψn(θ) := 1

1/an
logE

[
e

θ
an

·√nan ·
∑n

i=1(Xi−E[Xi ])
n

]
,

and therefore (after simple computations)

Ψn(θ) = an

(
logE

[
eθ ·

∑n
i=1 Xi√
nan

]
− θ√

nan

n∑

i=1

E[Xi ]
)

.

We remark that, for all θ ∈ R, θ√
nan

→ 0 as n → ∞; therefore, for n large enough,

Λξ�ν

(
θ√
nan

)
and Λξ

(
θ√
nan

)
are finite and we can consider Eq. (1) with π = ξ � ν

and with π = ξ . We distinguish two cases. If n is even we have

Ψn(θ) = ann

2

(
Λξ�ν

(
θ√
nan

)
− θ√

nan
Λ′

ξ�ν(0)

)

and therefore

Ψn(θ) = ann

2

(
1

2
· θ2

nan
Λ′′

ξ�ν(0) + o

(
θ2

nan

))
.

If n is odd we have

Ψn(θ) = an

(
n − 1

2
Λξ�ν

(
θ√
nan

)
+ Λξ

(
θ√
nan

))

−an

(
θ√
nan

(
n − 1

2
Λ′

ξ�ν(0) + Λ′
ξ (0)

))

= an(n − 1)

2

(
Λξ�ν

(
θ√
nan

)
− θ√

nan
Λ′

ξ�ν(0)

)

+an

(
Λξ

(
θ√
nan

)
− θ√

nan
Λ′

ξ (0)

)

= an(n − 1)

2

(
1

2
· θ2

nan
Λ′′

ξ�ν(0) + o

(
θ2

nan

))

+an

(
Λξ

(
θ√
nan

)
− θ√

nan
Λ′

ξ (0)

)
.
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Then we can say that

lim
n→∞ Ψn(θ) = θ2

4
Λ′′

ξ�ν(0). (4)

In conclusion, by Theorem 1,
{√

nan ·
∑n

i=1(Xi−E[Xi ])
n : n ≥ 1

}
satisfies the LDPwith

speed vn = 1/an and good rate function J̃ defined by

J̃ (x) := sup
θ∈R

{
xθ − θ2

4
Λ′′

ξ�ν(0)

}
.

Furthermore, Λ′′
ξ�ν(0) ≥ 0 by Eq. (2) (with π = ξ � ν); on the other hand we have

Λ′′
ξ�ν(0) ≥ 0 because the function θ �→ θ2

4 Λ′′
ξ�ν(0) is a convex (in fact we have a limit

of convex functions in Eq. (4)). Then, if we distinguish the cases Λ′′
ξ�ν(0) > 0 and

Λ′′
ξ�ν(0) = 0, we easily get the expressions of J̃ in the statement of the proposition.


�

4 Concluding Remarks

This section is devoted to some concluding remarks on Theorems 2 and 3, and on
the case ξ = ν.

Remark 1 (On Theorem 2) It is known (and this easily can be checked) that
Λ∗

ξ�ν(x) = 0 if and only if x = Λ′
ξ�ν(0) = Λ′

ξ (0) + Λ′
ν(0). Therefore, as far as the

rate function J in Theorem 2 is concerned, we have J (x) = 0 if and only if x = x∞,
where

x∞ := 1

2

(
Λ′

ξ (0) + Λ′
ν(0)

)

is the mean of the expected values of two random variables with laws ξ and ν. The
LDP in Theorem 2 allows to say that the sequence

{
1
n

∑n
i=1 Xi : n ≥ 1

}
converges

to x∞ (as n → ∞). In fact, for all open sets A such that x∞ ∈ A, we have J (Ac) :=
inf x∈Ac J (x) > 0 and, for all ε > 0, there exists nε such that

P

(
1

n

n∑

i=1

Xi ∈ Ac

)
≤ e−n(J (Ac)−ε)

for all n > nε.

Remark 2 (On Theorem 3) Firstly we can say that Λ′′
ξ�ν(0) = Λ′′

ξ (0) + Λ′′
ν(0) is

nonnegative because is the sum of two variances; so we can have Λ′′
ξ�ν(0) = 0 if and

only if both ξ and ν are degenerating probability measures (i.e. the laws of constant
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random variables). On the contrary, if Λ′′
ξ�ν(0) > 0 because at least one variance is

strictly positive, we have

J̃ (x) := x2

2σ 2
,

where σ 2 := 1
2 (Λ

′′
ξ (0) + Λ′′

ν(0)) it is the mean of the variances of two random vari-
ables with laws ξ and ν.

Moreover, a closer inspection of the proof of Theorem 3 reveals that the relation
in Eq. (4) holds even if an = 1 for all n ≥ 1, i.e.

lim
n→∞ logE

[
eθ ·

∑n
i=1(Xi−E[Xi ])√

n

]
= θ2

4
Λ′′

ξ�ν(0) = θ2

2
σ 2;

therefore we can say that
∑n

i=1(Xi−E[Xi ])√
n

converges weakly to the centered Normal

distribution with variance σ 2 (as n → ∞).
Thus, in some sense, moderate deviations fill the gap between this weak conver-

gence to the centered Normal distribution with variance σ 2, and the convergence of∑n
i=1(Xi−E[Xi ])

n to 0 (as n → ∞). In the first case, aswe said above, we have an = 1 and
in the second case we have an = 1

n (for all n ≥ 1); thus, in both cases, one condition
in Eq. (3) holds and the other one fails.

In connection with the arguments of this remark we recall the paper [2] where an
asymptotic Normality result can be derived by a LDP proved by using Gärtner Ellis
Theorem (i.e. Theorem 1 in this paper).

Remark 3 (On the case ξ = ν) In this case the random variables {Xn : n ≥ 1} are
identically distributed with law ξ = ν. Thus, if we look at the proof of Theorem 2 in
this paper, we have

1

2
Λξ�ν = 1

2
(Λξ + Λν) = Λξ,

or 1
2Λξ�ν = Λν , and therefore the LDP holds with good rate function J = Λ∗

ξ = Λ∗
ν .

We also remark that, whenwe deal to the i.i.d. case, we can directly refer to Theorems
2.2.3 and 3.7.1 in [3] (for large and moderate deviations, respectively). Moreover,
Theorem 2.2.3 in [3] (i.e. the well-known Cramér Theorem) provides the LDP with
rate function J = Λ∗

ξ = Λ∗
ν even without having steep logarithmmoment generating

functions and the goodness of the rate function could fail.
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Dispersion Measures and Multidistances
on Rk

Javier Martín and Gaspar Mayor

Abstract After introducing a definition of dispersion measure on the Euclidean
space R

k , we deal with the connection between these measures and the so called
multidistances. In this way, we show that thr standard deviation is a relevant example
of multidistance and, on the other hand, several significant families of multidistances
are, at the same time, dispersion measures. Sufficient conditions for a multidistance
to be a dispersion measure are also established.

1 Introduction

Descriptive Statistics provides some indexes to measure the dispersion of a set of
unidimensional data. Several attempts have been done in order to set a general frame-
work to deal with this topic, introducing different axiomatic definitions, such as [5].

According to the fact that in many situations the data to be processed are multidi-
mensional in nature, it seems reasonable to have a tool which also allows measuring
the dispersion of a set of such data. In this contribution we introduce an axiomatic
definition of dispersionmeasures, based on the one given in [2], andwe study the rela-
tionship between these measures and the multi-argument distances, multidistances
for short, defined in [3].

The paper is organized as follows. Section2 introduces our proposal of axiomatic
definition of dispersion measure, and compares it with the one given in [2]. In Sect. 3
we recall the definition of multidistance and prove that the standard deviation is a
relevant example of this kind of multidimensional distances. Then, we prove that
functionally expressible multidistances, fulfilling an additional condition, are dis-
persion measures. Finally, multidistances belonging to three relevant families are
shown to be also dispersion measures.
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2 Measures of Dispersion on R
k

Let us consider in this work the set
(
R

k
)n

of all finite lists of elements of R
k .

We recall here the definition of measure of dispersion given in [2].

Definition 1 A function Δ : ⋃
n�1

(
R

k
)n → R

+ is called a measure of dispersion
if Δ is not identically zero and it satisfies the following axioms for all n � 1 and all
(x1, . . . , xn) in

(
R

k
)n
:

(A1) Δ(x, . . . , x) = 0.
(A2) Δ is symmetric.
(A3) Δ is invariant under translations.
(A4) Δ is invariant under rotations.

Sometimes, the authors point out, one more axiom is also considered:

(A5) There exists a function ρ : R
+ → R

+ such that, for all a ∈ R
+:

Δ(ax1, . . . , axn) = ρ(a)Δ(x1, . . . , xn) . (1)

The definition we propose in this work shares several axioms, and the other ones
are slightly modified.

Definition 2 A function Δ : ⋃
n�1

(
R

k
)n → R

+ is said to be a c-dispersion mea-
sure, c > 0, when it fulfills these four conditions:

(Δ1) Δ(x1, . . . , xn) = 0 if and only if xi = x j for all i, j = 1, . . . , n.
(Δ2) Δ is symmetric: Δ(x1, . . . , xn) = Δ(xπ(1), . . . , xπ(n)) for any permutation π

of {1, . . . , n}.
(Δ3) Δ is invariant under isometries:Δ(x1, . . . , xn) = Δ(φ(x1), . . . ,φ(xn)) for any

isometry φ of R
k .

(Δ4) Δ(ax1, . . . , axn) = acΔ(x1, . . . , xn), for all a ∈ R
+.

Remark 1 Our definition is, of course, more restrictive than the given by axioms A1
to A5. However, it is worth noting that if we add some very weak hypothesis, such
as the continuity at a point of the function ρ in axiom A5, and taking into account
the rest of axioms and the condition Δ �= 0, it can be deduced that ρ has to be of
the form ρ(a) = ac for all a > 0, with c arbitrary. We have only considered positive
values of c in condition Δ4 because of the nature of the concept that we are defining.

Example 1 The function Δ : ⋃
n�1

(
R

k
)n → R

+, defined for all list x1, . . . , xn) of
elements of R

k by the formula

Δ(x1, . . . , xn) = 1

n

n∑

i=1

(xi − x̄)2 , (2)
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where x̄ = 1
n

∑n
i=1 xi , and its square root

√
Δ, are examples of dispersion measures

in R
k . They fulfill conditions Δ1, Δ2, Δ3, and taking into account that

Δ2(ax1, . . . , axn) = a2Δ2(x1, . . . , xn) , (3)

condition Δ4 also holds: Δ is a 2-dispersion measure and
√

Δ is a 1-dispersion
measure.

Observe that Δ and
√

Δ generalize the usual variance σ2 and standard deviation
σ, respectively, because they are obtained in the case k = 1.

3 Multidistances and Dispersion Measures

Multidistances are a generalization of ordinary distances in order to measure how
much separated are not only two elements of a set but any finite list. They are defined
as follows.

Definition 3 [3] We say that a function D : ⋃
n�1 X

n → R
+ is a multidistance on a

non empty set X when the following properties hold, for all n and x1, . . . , xn, y ∈ X :

(md1) D(x1, . . . , xn) = 0 if and only if xi = x j for all i, j = 1, . . . n.
(md2) D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for any permutation π of {1, . . . , n}.
(md3) D(x1, . . . , xn) � D(x1, y) + · · · + D(xn, y), for all y ∈ X .

A remarkable example is the so called Fermat multidistance:

DF (x1, . . . , xn) = min
{ n∑

i=1

d(xi , x) : x ∈ R
k
}
, ∀x1, . . . , xn ∈ R

k . (4)

We will deal with this multidistance at the end of this section.
The next result shows that multidistances and dispersionmeasures are interrelated

notions.

Proposition 1 The standard deviation σ : ⋃
n�1 R

n → R
+,

σ(x1, . . . , xn) =
√√√√1

n

n∑

i=1

(xi − x̄)2 , (5)

is a multidistance.

Proof Conditions md1, md2 are trivially fulfilled.
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Let us go with condition md3.

• The cases n = 1, 2 are also trivial. Observe that for n = 2 we have σ(x1, x2) =
1
2 |x1 − x2|.

• For n � 4, we have:

σ(x1, . . . , xn) =
√√√√1

n

n∑

i=1

(xi − x̄)2

�

√√√√1

n

n∑

i=1

(xi − y)2 ∀y ∈ R

� 1√
n

n∑

i=1

|xi − y|2 ∀y ∈ R

= 2√
n

n∑

i=1

σ(xi , y) ∀y ∈ R ,

where the first inequality is due to the fact that the mean minimizes the sum of
square deviations, the second one is a property of the sum of squares of non
negative real numbers, namely

∑
a2i �

(∑
ai

)2
, and finally the expression of

standard deviation for two numbers has been used in the last equality.
But for all n � 4,

2√
n

n∑

i=1

σ(xi , y) �
n∑

i=1

σ(xi , y) ∀y ∈ R ,

and so this case is proved.
• For n = 3 we have to proof that for all x1, x2, x3, y ∈ R,

σ(x1, x2, x3) � σ(x1, y) + σ(x2, y) + σ(x3, y) . (6)

Without loss of generality, we can consider that x1 � x2 � x3, with x1 < x3.
The transformation defined by f (t) = 2

x3−x1
t − x3+x1

x3−x1
converts the list (x1, x2, x3)

into (−1,α, 1), where α = 2x2−x1+x3
x3−x1

∈ [−1, 1].
Then,

σ(x1, x2, x3) = σ( f −1(−1), f −1(α), f −1(1)) = x3 − x1
2

σ(−1,α, 1) ,

and similarly,

σ(x1, y) + σ(x2, y) + σ(x3, y) = x3 − x1
2

(
σ(−1, y′) + σ(α, y′) + σ(1, y′)

)
,
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where y′ = f −1(y). Therefore, inequality (6) reduces to the following:

σ(−1,α, 1) � σ(−1, y′) + σ(α, y′) + σ(1, y′), ∀y′ ∈ R .

But

σ(−1,α, 1) = 1

3

√
6 + 2α2 � 1

3

√
8 < 1 ,

and on the other side,

σ(−1, y′) + σ(α, y′) + σ(1, y′) = 1

2

(|1 + y′| + |α − y′| + |1 − y′|) � 1 .

�	
Remark 2 • The standard deviation is a contractive multidistance [1]; this means
that for any non constant list there exists at least one point which strictly decreases
the multidistance when added to the list. The mean of the list can be this point:

σ(x1, . . . , xn, x̄) =
√

n

n + 1
σ(x1, . . . , xn) < σ(x1, . . . , xn) . (7)

• The variance fulfills conditions md1, md2. Also, it follows from the previous proof
that it fulfills condition md3 for n � 3. But it is not a multidistance because it does
not work for n = 2. For example, if we take the values 0, 2 and their arithmetic
mean 1, we have:

σ2(0, 2) = 1 � σ2(0, 1) + σ2(1, 2) = 0.25 + 0.25 = 0.5 . (8)

A class of multidistances, remarkable in this work, is the class of the so called
functionally expressible multidistances.

Definition 4 [4] Let D be a multidistance on a set X and d an ordinary distance on
the same set. We will say that D is functionally expressible from d and F , or (d, F)-
functionally expressible, if there exist a symmetric function F : ⋃

n�1(R
+)n → R

+
such that:

D(x1, . . . , xn) = F(d(x1, x2), . . . , d(xi , x j ), . . . , d(xn−1, xn)) , (9)

for all n � 2, 1 � i < j � n and x1, . . . , xn ∈ X .

Example 2 The standard deviation is a multidistance, as shown in Proposition 1,
and it can be proved that it is functionally expressible. We do it with the help of the
following well-known formula, which expresses the standard deviation in terms of
the absolute differences |xi − x j |, that is, the pairwise distances:
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σ(x1, . . . , xn) = 1

n

√∑

i< j

|xi − x j |2 . (10)

Therefore,

σ(x1, . . . , xn) = F(|x1 − x2|, |x1 − x3|, . . . , |xn−1 − xn|) , (11)

where the function F should be given by

F(a1, . . . , am) =
√√√√ 2

1 + 4m + √
1 + 8m

m∑

i=1

a2i . (12)

The following example proves the existence of non functionally expressible mul-
tidistances.

Example 3 Consider the function D : ⋃
n�1(R

2)n → R
+ defined in this way:

D(P1, . . . , Pn) is the length of the diagonal of the smallest rectangle, with sides
parallel to the axes, containing the points P1, . . . , Pn . Note that the restriction of D
to (R2)2 is the Euclidean distance d.

It can be proved that D is a multidistance. But it is not d–functionally express-
ible: if we take, for example, the points P1 = (0, 0), P2 = (0, 1) and P3 = (1, 0),
their pairwise distances are d(P1, P2) = d(P1, P3) = 1, d(P2, P3) = √

2, and their
multidistance is D(P1, P2, P3) = √

2.
But if we change the last two ones to P ′

2 = (
√
2
2 ,

√
2
2 ) and P ′

3 = (
√
2
2 ,−

√
2
2 ),

the pairwise distances are the same as before but the multidistance changes:

D(P1, P ′
2, P

′
3) =

√
5
2 .

Therefore, the value taken by the multidistance is not determined by the pairwise
distances and hence, D is not d–functionally expressible.

ComparingDefinitions2 and 3 (with X = R
k and d being the Euclidean distance),

it can be observed that conditions Δ1, Δ2 are the same as md1, md2. Moreover,
condition Δ3 holds for functionally expressible multidistances, and an additional
condition can be given in order to fulfill Δ4.

Proposition 2 Let D be a (d, F)-functionally expressible multidistance on R
k . If

there exists c > 0 such that, for all n � 1, t1, . . . , tn and a � 0, it holds:

F(at1, . . . , atm) = acF(t1, . . . , tm) , (13)

then D is a dispersion measure.

Proof For any list (x1, . . . , xn) ∈ (Rk)n and any isometry φ defined on R
k , it holds:
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D(x1, . . . , xn) = F(. . . , d(xi , x j ), . . .)

= F(. . . , d(φ(xi ),φ(x j )), . . .)

= D(φ(x1), . . . ,φ(xn)) .

Hence, D is invariant under isometries.
Also, condition Δ4 holds, because of (13). �	

3.1 Sum-Based Multidistances

ThemultidistancesDλ
Σ : ⋃

n�1(R
k)n → R

+, defined for all (x1, . . . , xn) ∈ (Rk)n by:

Dλ
Σ(x1, . . . , xn) =

{
0 si n = 1,
λ(n)

∑
i< j d(xi , x j ) si n � 2, (14)

with λ(2) = 1 and 0 < λ(n) � 1
n−1 for all n � 3, are said to be sum-based multidis-

tances.

Proposition 3 Sum-based multidistances are 1-dispersion measures.

Proof Only conditions Δ3, Δ4 must be checked. The first follows from the fact that
this kind of multidistances are functionally expressible. The second one is inmediate,
taking into account that d(axi , ax j ) = ad(xi , x j ), for all a ∈ R, and xi , x j . �	

3.2 Fermat λ-Multidistances

These multidistances on the set
⋃

n�1(R
k)n are defined as follows:

Dλ
F (x1, . . . , xn) = λ(n)DF (x1, . . . , xn), (15)

where λ(2) = 1 and λ(n) ∈ (0, 1] for all n � 3.

Proposition 4 Fermat λ-multidistances are 1-dispersion measures.

Proof If r is the minimum of the sum
∑n

i=1 d(xi , x) x ∈ R
k . then the minimum of∑n

i=1 d(φ(xi ), x) and
∑n

i=1 d(axi , x) are reached at φ(r) and ar , respectively, and
so Δ3, Δ4 hold. �	
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3.3 OWA-Based Multidistances

Let W = (Wn)n�1 be a family of OWA operators. The weights of the OWA Wn will
be denoted by ωn

1 , . . . ,ω
n
n .

An OWA-based multidistance is a function DW : ⋃
n�1(R

k)n → R
+ defined, for

all (x1, . . . , xn) ∈ (Rk)n , in this way:

DW (x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

0 if n = 1,

Wn(

(n2)︷ ︸︸ ︷
d(x1, x2), . . . , d(xn−1, xn)) if n � 2,

(16)

with the weights of the OWA operators of the family W fulfilling this condition:

ω
(n2)
1 + · · · + ω

(n2)
n−1 > 0, ∀n � 2 . (17)

We can establish the following result.

Proposition 5 OWA-based multidistances on R
k are 1-dispersion measures.

Proof OWA-based multidistance are obviously functionally expressible, from the
expression (17), and so they are invariant under isometries. Also conditionΔ4 holds,
due to the fact that OWA operators are homogeneous of degree 1. �	

It has been found out that multidistances belonging to these three families are
dispersion measures. The versatility of these families, and of multidistances in gen-
eral, allows choosing the appropriate ones to be used as measures of dispersion in
contexts where their character, mainly given by the generalized triangle inequality
md3, could be required.
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Full Conglomerability, Continuity
and Marginal Extension

Enrique Miranda and Marco Zaffalon

Abstract We investigate fully conglomerable coherent lower previsions in the sense
of Walley, and some particular cases of interest: envelopes of fully conglomerable
linear previsions, envelopes of countably additive linear previsions and fully disin-
tegrable linear previsions. We study the connections with continuity and countable
super-additivity, and show that full conglomerability can be characterised in terms
of a supremum of marginal extension models.

Keywords Coherent lower previsions · Conglomerability · Disintegrability ·
Marginal extension

1 Introduction

Conglomerability of a probability P was first discussed by Bruno de Finetti in [4].
If we consider a partition B of the possibility space � such that P(B) > 0 for every
B ∈ B, conglomerability means that

(∀A ⊆ �) inf
B∈B

P(A|B) ≤ P(A) ≤ sup
B∈B

P(A|B). (1)

A related (but stronger) notion was later studied by Dubins, with the name disinte-
grability [3]. Other studies in the precise case were made in [1, 2, 9, 10].

Imposing as well as checking conglomerability can be technically difficult. Partly
for this reason, there are different schools of thought about the previous question:
those who reject that conglomerability should be a rationality requirement—among
them looms the figure of de Finetti himself; and thosewho think it should be imposed,
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often in the light of the paradoxical situations that the lack of conglomerability may
lead to. Among the latter stands PeterWalley, who has proposed a behavioural theory
of imprecise probabilities, where the core modelling unit is a closed convex set of
finitely additive probabilities [11]. This theory is essentially Peter Williams’ earlier
theory of imprecise probability [12] with an additional axiom of conglomerability
for sets of probabilities, which coincides with Eq. (1) in the special case of precise
probability (and with disintegrability if we require that the conditional model is also
precise). The notion of conglomerability is nonetheless not univocally defined in the
literature; for this reason, in Sect. 3 we try to sort out the situation by examining and
comparing the different proposals in some detail.

In previous papers we have provided a behavioural support for conglomerability
[13] and we have showed that it may be a difficult condition to work with in practice
[7, 8]. Here we investigate whether at least the notion of full conglomerability (that
is, conglomerability with respect to every partition) admits a simple treatment. To
this end, we make a thorough mathematical study of the properties of full conglom-
erability and its relations to other notions: continuity (in various forms), countable
super-additivity, and marginal extension. Due to limitations of space, the proofs of
the results as well as some relevant counterexamples have been omitted.

2 Preliminary Notions

Let us introduce the basic elements of the theory of coherent lower previsions. We
refer to [11] for more details. Consider a possibility space �. A gamble is a bounded
map f : � → R. One instance of gambles are the indicator gambles of sets B ⊆ �,
which we shall denote by IB or B. We denote byL(�) the space of all gambles on�.

A linear prevision on L(�) is a linear operator satisfying P( f ) ≥ inf f for all
f ∈ L(�). It is the expectation operator with respect to a finitely additive probabil-
ity. When its restriction to events is countably additive, meaning that P(∪n Bn) =∑

n P(Bn) for any countable family (Bn)n of pairwise disjoint events, we say that P
is a countably additive linear prevision.

A coherent lower prevision P on L(�) is the lower envelope of a closed and
convex set of linear previsions. The conjugate upper envelope P is called a coherent
upper prevision, and it holds that P( f ) = −P(− f ) for all f . We let M(P) :=
{P linear prevision : (∀ f ) P( f ) ≥ P( f )} and call it the credal set associated with
P . More generally, we say that a map P : L(�) → R avoids sure loss when it is
dominated by some coherent lower prevision. The smallest such prevision is called
its natural extension, and it coincides with the lower envelope of the non-empty
setM(P).

A coherent lower prevision is in a one-to-one correspondence with its associated
set of strictly desirable gambles R := { f : P( f ) > 0 or f � 0}, in the sense that
P( f ) = sup{μ : f − μ ∈ R} for all f ∈ L(�); the closure R of the set of strictly
desirable gambles in the topology of uniform convergence is called the set of almost-
desirable gambles, and it satisfies R = { f : P( f ) ≥ 0}.
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The notion of coherence can also be extended to the conditional case. Let B be a
partition of�. A separately coherent conditional lower prevision is a map P(·|B) :=∑

B∈B IB P(·|B), and where for every B ∈ B the functional P(·|B) : L(�) → R is
a coherent lower prevision satisfying P(B|B) = 1.

Given a coherent lower prevision P and a separately coherent conditional
lower prevision P(·|B), they are (jointly) coherent when P(G( f |B)) = 0 for
all f ∈ L(�), B ∈ B and P(G( f |B)) ≥ 0 for all f ∈ L(�), where G( f |B) :=
B( f − P( f |B)) and G( f |B) := ∑

B G( f |B) = f − P( f |B).
This notion is based on what Walley called the conglomerative principle, which

means that if a gamble f satisfies that IB f is desirable for any B ∈ B, then f should
also be desirable. This is the main point of controversy between Walley’s and de
Finetti’s approaches. The latter only requires that a finite sum of desirable gambles
is again desirable, and this yields a different notion of conditional coherence, usually
referred to as Williams coherence [12].

The notion of natural extension can also be considered in the conditional case.
Given a coherent lower prevision P and a partition B of �, its conditional natural
extension P(·|B) is given by

P( f |B) :=
{
inf B f if P(B) = 0,

sup{μ : P(B( f − μ)) ≥ 0} otherwise
(2)

for any f ∈ L(�). It always holds that P(G( f |B)) = 0 for all f ∈ L(�), B ∈ B,
so P, P(·|B) are coherent if and only if P(G( f |B)) ≥ 0 for all f ∈ L(�).

3 Different Notions of Conglomerability in the Literature

As we mentioned in the Introduction, conglomerability was first introduced by de
Finetti in [4] in terms of Eq. (1). The conditional probability P(A|B) in that equation
is derived from the unconditional one by Bayes’ rule, so that P(A|B) = P(A ∩
B)/P(B), whenever P(B) 
= 0. However, de Finetti argued [5, Chap. 5] that it also
makes sense to consider the conditional probability P(A|B) when the event B has
probability 0 but is not deemed impossible. In that case, he suggested to define a full
conditional measure as that considered in [3, Sect. 3].

There exists a connection between full conditional measures and the theory of
coherent previsions: if we represent a full conditional measure on P(�) × (P(�) \
∅) as a family of conditional and unconditional assessments {P(·|B) : B ⊆ �}, then
these conditional previsions satisfy the notion of Williams coherence [12, Proposi-
tion 6]. On the other hand, as Schervisch, Seidenfeld and Kadane have established in
[9, 10], if the linear prevision that results from restricting a full conditional measure
to P(�) is not countably additive, then there is some partition B of � where Eq. (1)
is violated. In other words, under this approach the only fully conglomerable models
are the countably additive ones.
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On the other hand, Walley [11, Sect. 6.8.1] calls a coherent lower prevision P on
L(�) B-conglomerable if for any gamble f such that P(B f ) ≥ 0 for all B ∈ B with
P(B) > 0, it holds that P(

∑
P(B)>0 B f ) ≥ 0. This is equivalent to the existence of a

conditional lower prevision P(·|B) such that P, P(·|B) are jointly coherent, and also
to the coherence of P with its conditional natural extension. Thus, conglomerability
means that the coherent lower prevision P can be updated in a coherent way to
a conditional lower prevision P(·|B). The notion can be applied in particular to
linear previsions. However, in that case we may also require that the linear prevision
can be updated into a linear model; this gives rise to a stronger notion, called B-
disintegrability. From [11, Theorem6.5.7], theB-disintegrability of a linear prevision
is equivalent to the existence of a conditional linear prevision P(·|B) such that P =
P(P(·|B)).

We say that P is fully conglomerable when it is B-conglomerable for every parti-
tionB of�. In a similar manner, we say that a linear prevision P is fully disintegrable
when for every partition B there is some conditional linear prevision P(·|B) such
that P = P(P(·|B)).

If a lower prevision P is fully conglomerable, then we can define a family of
conditional lower previsionsH := {P(·|B) : B partition of �}with the property that
P, P(·|B) are coherent for every partition B. It can be checked that these conditional
lower previsions are also coherent with each other, in the sense that they can all be
induced by a common fully conglomerable set of desirable gambles. This means that
when we consider the family of all partitions, coherence becomes equivalent to the
notion of conglomerable coherence studied in much detail in [7]. In the samemanner
that the natural extension of a lower prevision is the smallest dominating coherent
lower prevision, we shall call the fully conglomerable natural extension the smallest
fully conglomerable coherent lower prevision that dominates P , in case it exists.

We see then that the two approaches are different, basically because of the manner
the problem of conditioning on sets of (lower) probability zero is dealt with. In de
Finetti’s case, it is advocated to use full conditional measures, while inWalley’s case
these sets are not taken into account (in the lower prevision approach we are consid-
ering here; a more informative model would be that of sets of desirable gambles). In
this sense, Walley’s condition is close to what Armstrong called positive conglomer-
ability in [1]. The different approach means for instance that a linear prevision whose
restriction to events is {0, 1}-valued will always be fully conglomerable for Walley,
while it may not be so for de Finetti. Another key difference is in the rejection by de
Finetti of the conglomerative principle, that makes the conditional models subject to
a different consistency condition (Williams coherence for de Finetti, and the stronger
version of Walley in his case).
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4 Full Conglomerability in the Precise Case

In the precise case, we consider three properties for a linear prevision P:

M1. P is countably additive.
M2. P is fully disintegrable.
M3. P is fully conglomerable.

By [11, Theorem 6.9.1], condition M1 implies M2; on the other hand, it fol-
lows from its definition that a fully disintegrable linear prevision is in particular
fully conglomerable. With respect to the converse implication, we shall consider
two cases: linear previsions whose restrictions to events have a finite range (called
molecular in [2]) and those whose restrictions to events have infinite range (called
non-molecular in [2]).

Proposition 1 Let P be a linear prevision on L(�).

1. If P is molecular, then for every partitionB of�, |{B ∈ B : P(B) > 0}| < +∞,
and as a consequence, P is fully conglomerable.

2. If P is non-molecular, then it is countably additive if and only if it is fully con-
glomerable. In that case, P({ω ∈ � : P(ω) > 0}) = 1.

In [9, Theorem 3.3] it is proven that any full conditionalmeasurewhose associated
unconditional probability is molecular and not countably additive is not fully disin-
tegrable. In other words, countable additivity and full disintegrability are equivalent
in the molecular case provided we enter the framework of full conditional measures.

Next we study the connection with continuity. We consider the following conti-
nuity conditions:

C1. ( fn)n∈N → f ⇒ (P( fn))n∈N → P( f ).
C2. ( fn)n∈N ↓ f ⇒ (P( fn))n∈N ↓ P( f ).
C3. ( fn)n∈N ↓ 0 ⇒ (P( fn))n∈N ↓ 0.
C4. ( fn)n∈N ↑ f ⇒ (P( fn))n∈N ↑ P( f ).

It is not difficult to show the following:

Proposition 2 For any linear prevision P, M1 ⇔ C2 ⇔ C3 ⇔ C4.

We deduce from this that condition C1 is sufficient for P to be countably additive.
However, it is not necessary. On the other hand, any of the conditions C2–C4 is suffi-
cient for P to be fully disintegrable, and as a consequence also fully conglomerable.

The only open problem at this stage would be the equivalence between M2 and
M1. A counterexample would require the definition of a family of conditional linear
previsions {P(·|B) : B partition of �} and an unconditional linear prevision P such
that P = P(P(·|B)) for everyB (so P is fully disintegrable) while there exists a finite
sub-family of {P(·|B) : B partition of �}which violatesWilliams coherence (so that
we cannot make a representation in terms of full conditional measures, because if we
could, then P would be countably additive by [9]). Such an example seems unlikely,
in our opinion.
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5 Full Conglomerability in the Imprecise Case

In the imprecise case, we consider three properties of a coherent lower prevision P:

M4. P is the lower envelope of a family of countably additive linear previsions.
M5. P is the lower envelope of a family of fully conglomerable linear previsions.
M6. P is fully conglomerable.

Analogous conditions toM4,M5 (in terms of upper envelopes) can be established
for a coherent upper prevision P . It is immediate to see that

M1 ⇒ M3 ⇒ M5 ⇒ M6 and M1 ⇒ M4 ⇒ M5 ⇒ M6.

However, the remaining implications do not hold: on the one hand, a linear prevision
may be fully conglomerable without being countably additive; moreover, there are
fully conglomerable coherent lower previsions that are not dominated by any fully
conglomerable (and as consequence by any countably additive) linear prevision [11,
Example 6.9.6].

With respect to M4, Krätschmer established in [6, Sect. 5] that a 2-alternating
upper probability on P(�) is the upper envelope of a family of countably addi-
tive probabilities if and only if P(A) = sup{P(B) : A ⊇ B finite} for every A ⊆ �.
However, we have shown that the above condition does not characterise M4 in gen-
eral. Nevertheless, we can give a necessary and sufficient condition in the particular
case where � = N:

Proposition 3 Let P be a coherent upper prevision on L(N). Then P satisfies
M4 ⇔ (∀n ∈ N) P = supMn ⇔ (∀ f ≥ 0) P( f ) = limn P( f I{1,...,n}) ⇔ (∀ f ≥
0) P( f ) = sup{P(g) : g ≤ f,supp(g) finite}, where Mn := {P ≤ P :
limm P({1, . . . ,m}) ≥ 1 − 1

n } and (∀g) supp(g) = {n : g(n) 
= 0}.
Next, we study the connection with the continuity properties C1–C4. On the one

hand, we deduce from the precise case that none of them is necessary for P to belong
to M5, M6. On the other hand, we have that:

Proposition 4 C1 ⇒ C4 ⇒ M4 ⇒ C2, M5 ⇒ M6 and C2 ⇒ C3. Moreover, no
additional implication other than the ones that immediately follow from these holds.

Next we investigate the connection with the following condition:

M7. (∀( fn)n ⊆ L(�) such that
∑

n fn ∈ L(�)) P
(∑

n fn
) ≥ ∑

n P( fn).

The reason for our investigation is that both countable super-additivity and con-
glomerability are quite related to the closedness of a set of desirable gambles under
countable sums. Specifically, we have proven the following:

Proposition 5 Let P be a coherent lower prevision and let R,R denote its associ-
ated sets of strictly desirable and almost desirable gambles, respectively. Then each
of the following statements implies the next:
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1. P satisfies M7.
2. (∀( fn)n ⊆ R : ∑

n fn ∈ L(�))
∑

n fn ∈ R.
3. (∀( fn)n ⊆ R : ∑

n fn ∈ L(�))
∑

n fn ∈ R.
4. P satisfies C3.

The connection between M7 and the other conditions is given by

C2 ⇒ M7 ⇒ C3 and M7 ⇒ M6,

together with those derived from Proposition 4. We deduce that if P is linear,

C1 ⇒ M1 ⇔ C2 ⇔ M7 ⇔ C3 ⇔ C4 ⇒ M2 ⇒ M3.

The only open problem left at this stage is whether M7 and C2 are equivalent.

6 Full Conglomerability and Marginal Extension

From [11, Theorem 6.8.2], given a coherent lower prevision P and a partitionB of�,
it holds that P isB-conglomerable if and only if P ≥ P(P(·|B)), where P(·|B) is the
conditional natural extension of P , given by Eq. (2). Thus, P is fully conglomerable
if and only if P ≥ supB partition P(P(·|B)) := Q.

The concatenation P(P(·|B)) of a marginal and a conditional lower prevision is
called a marginal extension model [11, Sect. 6.7]; this is an extension of the product
rule to the imprecise case. The condition above tells us then that fully conglomerable
lower previsions are always the supremum of a family of marginal extension models.
Our next proposition summarizes the relationship between P and the functional Q
it determines:

Proposition 6 Let P be a coherent lower prevision and F its fully conglomerable
natural extension (if it exists), and define Q as above.

1. P ≤ Q ≤ F.
2. P is fully conglomerable ⇔ P = Q.
3. Q does not avoid sure loss in general, and M(Q) 
= ∅ � P satisfies M6.

Thus, the full conglomerability of P implies the coherence of Q. Although it is an
open problem whether the converse holds in general, it is easy to see that when P is
linear, then Q ≥ P is coherent if and only if Q = P (it cannot be that Q( f ) > P( f )
and still be that Q is coherent), so in the precise case we have the equivalence.
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7 Conclusions

Our results show that countably additive models and their envelopes seem to be
easier to use in practice than fully conglomerable ones; although the connection
with continuity in the precise case is well known, as it follows almost immediately
from existing results from probability theory, in the imprecise case we have given
a necessary and a sufficient condition, as well as a characterisation in terms of the
natural extension from gambles with a finite range. In our view, this indicates that
envelopes of countably additive linear previsionsmay bemore interesting in practice,
and they could be a tool to guarantee the property of full conglomerability.

The definition of joint coherence of a conditional and an unconditional lower pre-
vision has led us to define the functional Q as a supremum of marginal extensions. A
deeper study of this functional is one of the main open problems for future work; in
particular, we would like to determine whether the existence of the fully conglomer-
able natural extension is equivalent (and not only sufficient) to Q avoiding sure loss,
and whether the coherence of Q is sufficient (and not only necessary) for its equality
with the fully conglomerable natural extension of P .

More generally, it would be interesting to make a deeper comparison between our
results and the ones established by Seidenfeld et al. for the precise case by means of
full conditional measures.
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On Extreme Points of p-Boxes and Belief
Functions

Ignacio Montes and Sebastien Destercke

Abstract The extreme points of convex probability sets play an important practi-
cal role, especially as a tool to obtain specific, easier to manipulate sets. Although
this problem has been studied for many models (probability intervals, possibility
distributions), it remains to be studied for imprecise cumulative distributions (a.k.a.
p-boxes). This is what we do in this paper, where we characterize the maximal num-
ber of extreme points of a p-box, give a family of p-boxes that attains this number
and show an algorithm that allows to compute the extreme points of a given p-box.
To achieve all this, we also provide what we think to be a new characterization of
extreme points of a belief function.

1 Introduction

Imprecise probability theory [11] is a powerful unifying framework for uncertainty
treatment, relying on convex sets of probabilities, or credal sets, to model the uncer-
tainty. Formally, they encompass many existing models: belief functions, possibility
distributions, probability intervals, …. To apply such models, it is important to study
their practical aspects, among which is the characterization of their extreme points.
Indeed, these extreme points can be used in many settings, such as graphical models
or statistical learning.
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Extreme points ofmanymodels have already been studied. For instance,Dempster
[3] shows that the maximal number of extreme points of a belief function on a n-
element space1 is n!, and this upper boundwas also given for less restrictivemodels in
[12]. It was later [6] proved that themaximal number of extreme points for possibility
distributions in a n-element space is 2n−1, and in [8] an algorithm to extract them
was provided. In [2], authors studied the extreme points of probability intervals.

One practical and popular model for which extreme points have not been char-
acterized are p-boxes [4]. They are special kinds of belief functions whose focal
elements are ordered intervals [5, 10, 11], and are quite instrumental in applications
such as risk and reliability analysis.

In this paper, we investigate extreme points of p-boxes: we demonstrate that their
maximal number is the Pell number, and give the family of p-boxes for which this
bound is obtained. To do so, we introduce a new way to characterize the extreme
points of a belief function. We also provide an algorithm to compute the extreme
points of a given p-box. Section2 introduces the new characterization, while Sect. 3.2
studies the extremepoints of p-boxes.Due to space restrictions, proofs and side results
have been removed.

2 Extreme Points of Belief Functions

Given a space X = {x1, . . . , xn}, a basic probability assignment (bpa) is a function
m : P(X ) → [0, 1] satisfying m(∅) = 0 and

∑
B⊆X m(B) = 1. A bpa m defines a

belief Bel and a plausibility Pl function [9] by:

Bel(A) =
∑

B⊆A

m(B) and Pl(A) =
∑

B:A∩B �=∅
m(B) ∀A ⊆ X .

These two functions are conjugate since Bel(A) = 1 − Pl(Ac), and we can focus on
one of them. A focal set of the belief function Bel is a set E such that m(E) > 0, and
F will denote the set of focal sets. A belief function also induces a credal set

M(Bel) = {P Prob. | Bel(A) ≤ P(A) ∀A ⊆ X }.

Being convex, the set M(Bel) can be characterized by its extreme points,2 that
we will denote Ext(Bel). It is known [1, 3] that there is a correspondence between
the extreme points of a belief function and the permutations of the elements of X .

1For the sake of simplicity, we use the terminology “extreme points of a belief function” to refer to
the extreme points of the credal set associated with the belief function.
2Recall that an extreme point P of M(Bel) is a point such that, if P1, P2 ∈ M(Bel) and αP1 +
(1 − α)P2 = P for some α ∈ (0, 1), then P1 = P2 = P.
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The extreme point Pσ ∈ Ext(Bel) associated with the permutation σ of {1, . . . , n} is
given by

Pσ({xσ(i)}) = Bel({xσ(i), . . . , xσ(n)}) − Bel({xσ(i+1), . . . , xσ(n)}) (1a)

=
∑

E⊆Aσ
i

m(E) −
∑

E⊆Aσ
i+1

m(E) =
∑

xσ(i)∈E,E∩Aσ,C
i =∅

m(E) (1b)

where Aσ
i = {xσ(i), . . . , xσ(n)} and Aσ,C

i = {xσ(1), . . . , xσ(i−1)} is its complement, and
the convention Aσ

n+1 = Aσ,C
1 = ∅. However, we may have that Pσ1 = Pσ2 , as in gen-

eral not all permutation give rise to different extreme points, otherwise every belief
function would have n! extreme points. Equation (1b) tells us that an extreme point
is built iteratively, according to Algorithm 1.

Algorithm 1: Extreme point computation
Input: σ, (Bel), E = F
Output: Pσ

1 for k=1,…,n do
2 For all E ∈ E s.t. xσ(k) ∈ E, assign m(E) to Pσ({xσ(k)});
3 E ← E \ {E ∈ E|xσ(k) ∈ E}
4 end

Let us now introduce another way to characterize this extreme point. To do so, we
will denote by vi\A = |{E ∈ F |xi ∈ E, E ∩ A = ∅}| the number of focal sets having
xi as an element and having an empty intersection with A. Given a permutation σ,
we denote by vσ = (vσ

1 , . . . , vσ
n ) the vector such that

vσ
i = vi\Aσ,C

σ−1(i)
= |{E ∈ F |xi ∈ E, E ∩ {xσ(1), . . . , xσ(σ−1(i)−1)} = ∅}| (2)

and by V(Bel) the set of vectors obtained for all permutation. We will also denote
vA = (v1\A, . . . , vn\A). We then have the following result.

Proposition 1 Given Bel, if two permutations σ1,σ2 satisfy Pσ1 = Pσ2 , then
vσ1 = vσ2 .

Also note that any vector v ∈ V(Bel) can be associated with a permutation σ gen-
erating an extreme point (to see this, note the link between Eqs. (2) and (1b)), for
instance the permutation having generated it. Since by contraposition of Proposi-
tion 1, vσ1 �= vσ2 implies Pσ1 �= Pσ2 , V(Bel) is in bijection with Ext(Bel) (any vector
induces one and only one distinct extreme point). Given a vector v ∈ V(Bel), we can
easily determine a permutation generating it by using Algorithm 2.
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Algorithm 2: Permutation generating algorithm
Input: v ∈ V(Bel), E = F
Output: One permutation σ generating v

1 for k=1,…,n do
2 Define v s.t. vi = |{E ∈ E|xi ∈ E}| ;
3 Find i s.t. vi = vi\Aσ,C

k
/* Getting Aσ,C

k only requires σ(k − 1) */

4 Define σ(k) = i;
5 E ← E \ {E ∈ E|xσ(k) ∈ E}
6 end

Example 1 Consider a belief function Bel defined onX = {x1, x2, x3, x4}with focal
sets E1 = {x1, x2}, E2 = {x2, x3, x4}, E3 = {x3} and masses 0.2, 0.5 and 0.3, respec-
tively.Consider for example the permutationσ = (1, 2, 3, 4). It generates the extreme
point Pσ = (0.2, 0.5, 0.3, 0). Indeed, according to Algorithm 1, m(E1) is assigned
to x1, m(E2) to x2 and m(E3) to x3. Then, σ generates the vector v = (1, 1, 1, 0).
Algorithm 2 can then generate permutations (1, 2, 4, 3) or (1, 2, 3, 4), as in the first
iteration we only have v1 = v1\Aσ,C

1
= 1, meaning σ(1) = 1, and in the second itera-

tion we only have v2 = v2\Aσ,C
2

= 1, and so on ….
The extreme points of the belief function in this example, as well as the permu-

tations that generate them, can be seen in Table1.

Note that this new characterization in terms of “counting” vectors allows us to
derive new results about the extreme points of belief functions.

Proposition 2 Let Bel be a belief function on X = {x1, . . . , xn}. The number of
extreme points of Bel is n! if and only if {xi, xj} is a focal set for any i, j ∈ {1, . . . , n}
such that i �= j.

This proposition tells us when a belief function attains the maximal number of
extreme points, n!. Somehow surprising, the number of focal sets does not matter to

Table 1 Extreme points of the belief function of Example 1

Permutation Probability (vσ
1 , vσ

2 , vσ
3 , vσ

4 )

(1, 2, 3, 4) (1, 2, 4, 3) Pσ1 = (0.2, 0.5, 0.3, 0) (1, 1, 1, 0)

(1, 3, 2, 4) (1, 3, 4, 2) (3, 4, 1, 2) (3, 1, 2, 4)
(3, 1, 4, 2)

Pσ2 = (0.2, 0, 0.8, 0) (1, 0, 2, 0)

(1, 4, 3, 2) (1, 4, 2, 3) (4, 3, 1, 2) (4, 1, 3, 2)
(4, 1, 2, 3)

Pσ3 = (0.2, 0, 0.3, 0.5) (1, 0, 1, 1)

(2, 3, 1, 4) (2, 3, 4, 1) (2, 4, 1, 3) (2, 1, 3, 4)
(2, 1, 4, 3) (2, 4, 3, 1)

Pσ4 = (0, 0.7, 0.3, 0) (0, 2, 1, 0)

(3, 2, 1, 4) (3, 2, 4, 1) (3, 4, 2, 1) Pσ5 = (0, 0.2, 0.8, 0) (1, 0, 2, 0)

(4, 3, 2, 1) (4, 2, 3, 1) (4, 2, 1, 3) Pσ6 = (0, 0.2, 0.3, 0.5) (0, 1, 1, 1)
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attain the maximal number of extreme points, the only relevant focal sets are those
of cardinality two.

Proposition 3 Let Bel be a belief function on X = {x1, . . . , xn}. Denote by F the
family of focal sets of Bel. Let Bel′ be another belief function and let F ′ = F ∪ {E}
be the family of focal sets of Bel′, where E /∈ F . Then, Bel′ has at least as many
extreme points as Bel.

3 Extreme Points of p-Boxes

Before studying the extreme points of p-boxes, we need to make a small, useful
digression about a specific number sequence: the Pell numbers. Pell numbers form a
sequence that follows a recursive relationP0 = 0, P1 = 1, Pn = Pn−2 + 2Pn−1.

The first numbers are: 0, 1, 2, 5, 12, 29, 70, . . .. It is known that 2n−1 ≤ Pn ≤ n! for
any n ≥ 1. As we shall see, it turns out that the maximal number of extreme points
of p-boxes on X is Pn.

3.1 Basic Definitions

From now on we consider a totally ordered set X = {x1, . . . , xn} such that x1 <

· · · < xn. A probability box or p-box [4] (F, F) is a pair of cumulative distribution
functions F, F : X → [0, 1] such that F ≤ F. Here we interpret p-boxes as lower
and upper bounds of an ill-known cumulative distribution, that induce a credal set

M(F, F) = {P Prob. | F(x) ≤ FP(x) ≤ F(x) ∀x ∈ X },

where FP denotes the cumulative distribution function associated with the
probability P.

It is known that p-boxes are particular instances of belief functions (see
[10, 11] for details). That is, to any p-box we can associate a belief function such that
M(Bel) = M(F, F). The focal sets E1, . . . , Ek of this belief function are known to
be intervals3 ordered with respect to the order � between intervals such that

[a1, a2] � [b1, b2] ⇔ a1 ≤ b1, a2 ≤ b2.

That is, E1 ≺ E2 ≺ · · · ≺ Ek . For the reader interested in the way such focal sets can
be built, we refer to [5]. This is also a characterization, as any belief function whose
focal sets are ordered intervals will be equivalent to a p-box.

3By interval, we mean that all elements between minE and maxE are included in E.
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3.2 Extreme Points of a p-Box

We can easily provide first bounds over the number of extreme points of p-boxes.

Proposition 4 The maximal number of extreme points of a p-box on X = {x1, . . . ,
xn} (n > 2) lies in the interval [2n−1, n!).

The exact maximal number of extreme points of a p-box is reached for the follow-
ing family of p-boxes: the Pell p-boxes on X = {x1, . . . , xn} are those whose focal
sets are

{x1}, {xn}, {x1, x2}, {xn−1, xn},
∀i = 2, . . . , n − 1, {xi−1, xi, xi+1}, and either [xi−1, xi+2] or [xi, xi+1].

Theorem 1 If (F, F) is a p-box of the Pell family on X = {x1, . . . , xn}, its number
of extreme points is the Pell number Pn.

Theorem 2 The maximal number of extreme points of a p-box defined on X =
{x1, . . . , xn} is the Pell number Pn, and is reached if and only if the p-box is of the
Pell family.

3.3 Counting the Number of Extreme Points of a p-Box

In this section, we provide an algorithm to enumerate the extreme points of a given
p-box. This algorithm builds up a tree by incrementally assigning values vi to vec-
tors v ∈ V(Bel) as well as corresponding probability values. The ith level of the
tree corresponds to vi values, and each leaf then corresponds to a distinct extreme
point (whose values can be found back by going from the leaf to the root). Pseudo-
Algorithm 3 describes how children are created from a node having depth d < n. At a
given depth d, a node is created (Loop 4–14 ofAlgorithm 3) for each possible number
of focal elements that affect their masses to xd+1 (including 0), and the created node
receive the corresponding probability P(xd+1), the value vd+1 of the corresponding
permutation vector in V , and the update set of focal elements determining which
mass remains to be distributed to which elements. The whole tree can then be built
by applying this method recursively, until a depth n is reached. The root node (level
0) simply starts with E = F .
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Algorithm 3: Tree building algorithm
Input: Tree node with depth d < n and associated set E of focal elements
Output: Children of node

1 Nb ←
{
0 if {xd+1} /∈ E,

1 else.
;

2 Nb ← |{Ek ∈ E|xd+1 ∈ Ek}| /* Number of focal sets containing xd+1 */ ;
3 k ← infEk∈E k ;
4 for i = Nb, . . . , Nb do
5 P(xd+1) ← ∑i

j=Nb m(Ej+k−1) /* m(E0) = 0 */ ;

6 vd+1 ← i ;
7 �∗ ← max�{x� ∈ Ei+k−1} /* �∗ = d + 1 if Ek−1 */;
8 E∗ ← E;
9 foreach E ∈ E∗ such that xd+1 ∈ E do

10 E ← E \ {x1, . . . , x�∗ } ;
11 if E = ∅ then Remove E from E∗
12 end
13 foreach E ∈ E∗ such that xd+1 /∈ E do
14 if E \ {x1, . . . , x�∗ } �= ∅ then E ← E \ {x1, . . . , x�∗ }
15 end
16 Create children of depth d + 1 and associate P(xd+1), vd+1, E∗ to it. ;
17 end

Example 2 Consider a p-box (F, F) on {x1, x2, x3, x4}whose focal sets are given by:

E1 = {x1} E2 = {x1, x2, x3} E3 = {x1, x2, x3, x4} E4 = {x3, x4}
m 0.2 0.1 0.4 0.3

Following Algorithm 3 and starting at the root (level 0), at the first step we have
Nb = 1, Nb = 3, therefore the first level of the tree has three nodes (the root has three
children). For v1 = 3, P({x1}) = 0.7, the update gives E∗ = E4 = {x3, x4} = 0.3,
which is used to generate the node children. At the next level, only one node is
generated with v2 = 0, P({x2}) = 0, as Nb = Nb = 0 (no focal set contains x2), with
E∗ = E4 = {x3, x4} = 0.3. This node in turns generates two nodes, as Nb = 0 and
Nb = 1, and so on.

Figure1 illustrates the process in a synthetic way (as not all details are given, due
to lack of space), as well as the extreme points corresponding to leaves of the trees.
The development of the second level of the tree is given only for v1 = 1, to illustrate
the update of E (Lines 9–15 of Algorithm 3).
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Fig. 1 Algorithm for extracting the extreme points of Example 2

4 Conclusions

In this paper, we have characterized the maximal number of extreme points and have
provided an algorithm to enumerate them by means of the construction of a tree
structure.

There are still some interesting open problems, for instance we could try to extend
our present results to the multivariate case (bivariate p-boxes) [7]. Nevertheless, this
seems to be a hard problem because the connection between (univariate) p-boxes
and belief functions no longer holds in the bivariate case.
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Modelling the Dependence in Multivariate
Longitudinal Data by Pair Copula
Decomposition

Marta Nai Ruscone and Silvia Angela Osmetti

Abstract The aim of the work is to propose a new flexible way of modeling the
dependence between the components of non-normal multivariate longitudinal-data
by using the copula approach. The presence of longitudinal data is increasing in the
scientific areas where several variables are measured over a sample of statistical units
at different times, showing two types of dependence: between variables and across
time. We propose to model jointly the dependence structure between the responses
and the temporal structure of each processes by pair copula contruction (PCC). The
use of the copula allows the relaxation of the assumption of multinormality that is
typical of the usual model for multivariate longitudinal data. The use of PCC allows
us to overcome the problem of the multivariate copulae used in the literature which
suffer from rather inflexible structures in high dimension. The result is a new extremly
flexible model for multivariate longitudinal data, which overcomes the problem of
modeling simultaneous dependence between two ormore non-normal responses over
time. The explanation of the methodology is accompanied by an example.

1 Introduction

Longitudinal data show an increasing occurrence in many scientific research areas
where several response variables aremeasuredwith reference to a sample of statistical
units at different times. The advantage of this study is that it can provide information
about subject change, by collecting repeated measurements over time. In this type
of data, there are two types of dependence: between variables and over time. The
multivariate longitudinal models usually considered in the literature are based on
the normality assumption (e.g. [8, 9]). Unfortunately, the empirical evidence shows
that normality is certainly not a rule in practice. When the responses are not normal
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or when their marginal distributions are not in the same family, alternatives to the
multivariate normal models must be found. In order to relax the assumption of nor-
mality we introduce the use of the copula function to jointly model the dependence
structure between the variables and the temporal structure of each process in the
model. In particular, we propose a new model for multivariate non normal longitudi-
nal data based on a D-vine copula that is one of a wider class of vine decompositions
recently discussed in the context of graphical models (see [2]).We choose the D-vine
copula approach because it is an extremely flexible representation of a multivariate
distribution that uses bivariate copula (pair-copula) in a hierarchical manner. Smith
et al. [6] use D-vine copula to model the temporal dependence in univariate
longitudinal data (one variable observed for some subject over time). For
multivariate time series (T observations of a R-dimensional vector) Smith [7] sug-
gest modeling nonlinear serial and cross-sectional dependence by D-vine copula
model. In particular Smith reorder the observations of the multivariate series into
the univariate series of dimension T ∗ R and models the joint distribution of the
entire series by a D-vine copula of dimension T ∗ R. The component pair-copula
densities in the D-vine density are grouped together in blocks of pair-copulae used
to isolate cross-sectional and serial dependence of the multivariate series. Instead in
our work we model a multivariate longitudinal data (T observations
of a R-dimensional vector for a sample of n subject) by using a different D-vine cop-
ula approach. First we suppose that the dependence between the responses doesn’t
depend on the time. The proposed model considers two different levels of analysis.
Firstly each longitudinal series, corresponding to a given response over time, is mod-
eled separately using a pair copula decomposition. Secondly we select a multivariate
copula to describe the relations of the responses. Then we extend the model by also
supposing that the dependence structure across the variables changes over time. In
this approach we select the copula to capture the dependence between the R response
variables conditional to the past for each subject and then we model the serial depen-
dence by applying a PCC (in relation to the time) to each conditional distribution
of the responses. The result is a new flexible multivariate longitudinal model, which
overcomes the problem of modeling simultaneous dependence between two or more
non-normal responses over time. The paper is organized as follows. In Sect. 2 we
describe the copula and the D vine copula. In Sect. 3 we present our proposal by
supposing that the dependence between the responses does not change over time.
Then we extend the model by relaxing that assumption. Finally, we illustrate the
models by an example for two response variables.

2 Copulae and D-vine Copulae

Abivariate copula is a functionC : I 2 → I , with I 2 = [0, 1] × [0, 1] and I = [0, 1],
that, with an appropriate extension in R2 of the domain, satisfies all the properties
of a cumulative distribution function (cdf). In particular, it is the cdf of a bivariate
random variable (U, V ), with uniform marginal distributions in [0, 1]:
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Cλ(u, v) = P(U ≤ u, V ≤ v;λ), 0 ≤ u ≤ 1 0 ≤ v ≤ 1

where λ is a parameter measuring the dependence betweenU and V . The following
theorem by Sklar [5] explains the use of the copula in the characterization of a joint
distribution. Let (Y1,Y2) be a bivariate random variable with marginal cdfs FY1(y1)
and FY2(y2) and joint cdf FY1,Y2(y1, y2;λ), then a copula function always exists
Cλ(·, ·) with C : I 2 → I such that

FY1,Y2(y1, y2;λ) = Cλ

(
FY1(y1), FY2(y2)

)
, y1, y2 ∈ IR. (1)

If the marginal cdfs are continuous functions then the copulaC(·, ·) is unique. More-
over, if FY1(y1) and FY2(y2) are continuous the copula can be found inverting (1):

Cλ(u, v) = FY1,Y2(F
−1
Y1

(u), F−1
Y2

(v)), (2)

with u = FY1(y1) and v = FY2(y2). This theorem states that each joint cdf can be
expressed in terms of two separate but related issues: the marginal distributions and
the dependence structures between them. The dependence structure is described by
the copula. Equation (1) provides a generalmechanism to construct newbivariate cdfs
in a straightforwardmanner. Since in high dimension themultivariate copulae usually
used in the literature suffer from rather inflexible structure, alternative copula based
constructions of multivariate distributions have been suggested. In particular vine
pair-copula constructions (PCCs) have proven to be popular for the flexiblemodelling
of multivariate dependence in numerous situations. Important work includes [1–4],
while a recent overviewwas provided by [7]. In vine copulae the multivariate density
function is decomposed as the product of bivariate copula densities (pair-copulae)
on [0, 1]2 and the marginal density functions. In d-dimension let (Y1, . . . ,Yd)′ be a
random vector with joint cdf F and df f , respectively. Consider the decomposition:

f (y1, . . . , yd ) = f (yd |yd−1, . . . , y1) f (y1, . . . , yd−1) =
d∏

t=2

f (yt |yt−1, . . . , y1) f (y1),

(3)

where f (·|·) denotes the conditional density. Using Sklar’s theorem for conditional
bivariate densities, f (yt |yt−1, . . . , y1) becomes:

f (yt |yt−1 . . . , y1) = f (yt , y1|yt−1, . . . , y2)

f (yt |yt−1, . . . , y2)
(4)

= ct,1|t−1,...,2(F(yt |yt−1, . . . , y2), F(y1|yt−1, . . . , y2)) f (yt |yt−1, . . . , y2),

where F(. . . | . . . ) denotes a conditional cdf.
We adopt a simplification: for arbitrary distinct indices t, s, with t > s we use the

following abbreviation for a bivariate conditional copula density of Yt and Ys given
t − 1, . . . , s + 1

ct,s|t−1,...,s+1 := ct,s|t−1,...,s+1(F(yt |yt−1, . . . , ys+1), F(ys |yt−1, . . . , ys+1)). (5)
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Fig. 1 D-vine copula for 4
variables

Iteratively applying Sklar’s theorem as in (4) and discarding arguments of conditional
copulas, we obtain the following factorization for (3):

f (y1, . . . , yd) =
d∏

t=2

⎧
⎨

⎩

t−1∏

j=1

ct, j |t−1,..., j+1 f (yt )

⎫
⎬

⎭ f (y1), (6)

which is a product of d marginal densities and d(d − 1)/2 pair-copula densities.
The Eq. (6) can be recognised as D-vine model. D-vine copula is one of a wider
class of graphical models discussed by [2]. Bedford and Cooke [2] arrange the pair-
copula representation (6) using a sequence of nested trees with undirected edges,
which they call a regular vine. Edges in the trees indicate the indices used for the
conditional copula densities. Figure1 shows the tree representation of a D-vine in
four dimensions. It consists of trees arranged in three levels. An edge of a tree
corresponds to a pair copula density denoted by the edge label. The whole structure
is easy to construct and is helpful in understanding the corresponding PCC, that is:

c(F1(y1), . . . , F4(y4)) = c12 c23 c34 (7)

= c13|2 c24|3
= c14|23.

The D-vine is suitable for modeling the dependence in time series (see [6]).

3 Our Proposal

In this sectionwe suggest amodel formultivariate longitudinal data. First we suppose
the existence of a dependence between the responses invariant over time. Therefore,
the change over time of the distribution of the responses is due only to a change
of the marginal conditional (to the past) distributions of each responses and not to
the change of the dependence structure across the responses. The proposed model
considers two different levels of analysis. At first, a multivariate copula describes
the relations of the responses observed at a specific time. Then each longitudinal
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series, corresponding to a given response over time, is modeled separately using a
pair copula decomposition to relate the distributions of the variables describing the
observation given in different times. Then we extend the model by also supposing
that the dependence structure across the variables changes over time. Let Cλ be a
multivariate copula with parameter λ of the multivariate response variable

(Y(1),Y(2), . . . ,Y(R))

such that the joint cumulative distribution function (cdf) is

F(y(1), y(2), . . . , y(R)) = Cλ(F1(y(1)), F2(y(2)), . . . , FR(y(R))), (8)

and the joint density function (df) is

f (y(1), y(2), . . . , y(R)) = cλ(F1(y(1)), F2(y(2)), . . . , FR(y(R)))
R∏

r=1

fr (yr ). (9)

Since we consider longitudinal data each response is observed over time on a sample
of n subject. We model each continuous series which generates the longitudinal
data using a pair copula decomposition (as in [6]). In this way we decompose the
distribution of the process at certain point in time, conditional to the past, into the
product of a sequence of bivariate copula density andmarginal density. The advantage
is that themarginal distribution of the process at each point can bemodeled arbitrarily,
while the dependence over time is captured by a sequence of bivariate copulae.

Let (y1, y2, . . . , yT ) be the univariate series for the r -th response variable (we
adopt a simplification of the notation dropping the index r ), the joint density function
can be decomposed in a product of the conditional (to the past) distributions:

f (y1, y2, . . . , yT ) =
T∏

i=1

f (yt |yt−1, . . . , y1) f (y1).

By using a pair copula decomposition we have:

f (yt |yt−1, . . . , y1) =
t−1∏

j=1

ct, j (F(yt |yt−1, . . . , y j+1), F(y j |yt−1, . . . , y j+1); θt, j ) f (yt ),

where F(yt ) and f (yt ) are the cdf and the df of the marginal Yt and ct, j =
ct, j |t−1,t−2,..., j+1 are the pair copulae with parameters θt, j . Therefore, the joint distri-
bution of the process becomes a D-vine copula model of order T , which is a product
of T marginal densities and T (T − 1)/2 pair copula densities:



378 M. Nai Ruscone and S.A. Osmetti

f (y1, y2, . . . , yT ) =
T∏

t=2

⎡

⎣
t−1∏

j=1

ct, j (ut | j+1, u j |t−1; θt,s) f (yt )

⎤

⎦ f (y1), (10)

where ut | j+1 = F(yt |yt−1, . . . , y j+1) and u j |t−1 = F(y j |yt−1, . . . , y j+1).
By substituting (10) and the correspondent cumulative distribution function in (9)

we obtain the model for multivariate longitudinal data:

f (Y (1), Y (2), .., Y (R)) =
R∏

r=1

⎛

⎝
T∏

t=2

⎡

⎣
t−1∏

j=1

ct, j
(
u(r)t | j+1, u

(r)
j |t−1; θ

(r)
t,s

)
f (y(r)t )

⎤

⎦ f
(
y(r)1

)
⎞

⎠ ·

cλ

⎛

⎝
T∏

t=2

⎡

⎣
t−1∏

j=1

C(1)
t, j (u

(1)
t | j+1, u

(1)
j |t−1; θ

(1)
t,s )

⎤

⎦ · · · ,
T∏

t=2

⎡

⎣
t−1∏

j=1

C(R)
t, j (u

(R)
t | j+1, u

(R)
j |t−1; θ

(R)
t,s )

⎤

⎦

⎞

⎠ (11)

In (11) λ describes the dependence between the responses and θ(r)i, j describes the
dependence between the r -th response at time t and the one at time j . Finally, the
model can be extended by also supposing that the dependence structure across the
variables changes over time. We define the distribution of the R response variables
at time t conditional to their past. Let now y∗(r)

t = y(r)t |y(r)t−1, . . . , y
(r)
1 , we consider

the factorization:

f (y∗(1)
t , y∗(2)

t , . . . , y∗(R)
t ) =

R∏

r=2

[
fλt (y

∗(r)
t |y∗(r−1)

t , . . . , y∗(1)
t )

]
f (y∗(1)

t )

Then by applying the PCC (in relation to the time) to each conditional distribution
we define the joint distribution as the extension of the D-vinemodel in R dimensions.

f (y(1), y(2), . . . , y(R)) = (12)

=
R∏

r=1

⎧
⎨

⎩

T∏

t=2

⎡

⎣
t−1∏

j=1

ct, j (ut | j+1,u j |t−1; θt,s) fλt (y
∗(r)
t |y∗(r−1)

t , · · · , y∗(1)
t )

⎤

⎦

· fλ1(y
∗(r)
1 |y∗(r−1)

1 , · · · , y∗(1)
1 )

}

where ut | j+1 = F(y∗(r)
t |y∗(r−1)

t , . . . , y∗(1)
t ). The df fλt can also be defined by a PCC

(between the responses). In (12) λt describes the dependence between the responses
at time t and θ(r)i, j describes the dependence between the r -th response at time t and
the one at time j . Note that in both the proposedmodels we suppose that the response
at time t is independent of the past of the other variables. To illustrate the approach
we analyse a longitudinal data from the data set Diet1 with dimensions R = 2, T = 5
and n = 26.

1The dataset Diet is available on request to authors.
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Table 1 Copula and Ct :1,2 estimate between the responses at time t

Copula Family Par

C1:1,2 C 0.734

C2:1,2 N 0.253

C3:1,2 F 0.837

C4:1,2 J 1.189

C5:1,2 F −0.802

Example 1 In the data set Diet two response variables (Weight and Trigliceridies)
are observed on a sample of n=26 subjects during T = 5 years. A direct association
between the variables is possible. We apply the model described in Eq. (12). We
estimate the model by the ML methods. The code of the algorithm is based on
functions in the R packages CDVine and VineCopula.

A bivariate copula models is used previously to model the dependence between
the responses. Table1 show theMl estimate of the parameter λt :1,2 of the copula with
the best fit between the responses at time t . The copula is chosen among the principal
bivariate copulae implemented in the packages.

TwoD-vine copulae are applied tomodel the serial dependence of the two response
variables. In particular Fig. 2 shows the two D-vine trees that represent the PCC of
the conditional df f (Y (2)|Y (1)) and the one of the df f (Y (1)), respectively. The order
of the variables of the first tree follows the temporal order. The squares represent the
nodes, while the grey lines represent the arcs. The names of the nodes can be read in
the squares. The pair copula families are identified by the labels of the edges in the
considered trees and the values corresponding to pair copula parameters θt, j can be
read in the edge labels. The thicker the grey line the higher the dependence between
the variables represented by the nodes.

Fig. 2 D-vine PCC trees for f (y(2)|y(1)) and f (y(1)), respectively



380 M. Nai Ruscone and S.A. Osmetti

4 Conclusion

This paper suggests the employment of PCC to model multivariate longitudinal data
for capturing two types of dependence: between response variables at a given time
and over time. The use of the PCC allows the description of the complex pattern of
dependence of the multivariate longitudinal data and permits the construction of a
flexible high-dimensional model by using only bivariate copulae as building blocks.
The result is an extremly flexible model for multivariate longitudinal data, which
overcomes the problem of modeling simultaneous dependence between two or more
non-normal responses over time. However, the proposal can be extended by relaxing
the assumption that the response variables are independent of the past of the other
variables. Finally, a possible extension of this paper could be to extend the model to
longitudinal data in which the length T of the time series is not fixed but it varies from
subject to subject. This is a typical problem in medicine or in clinical trials where the
data are observed on patients over time. For example in cohort studies some patients
drop out or new patients enter in the study during the period of experiment.
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Predictability in Probabilistic Discrete Event
Systems

Farid Nouioua, Philippe Dague and Lina Ye

Abstract Predictability is a key property allowing one to expect in advance the
occurrence of a fault in a system based on its observed events. Existing works give a
binary answer to the question of knowing whether a system is predictable or not. In
this paper, we consider discrete event systems where probabilities of the transitions
are available.We showhow to take advantage of this information to performaMarkov
chain-based analysis and extract probability values that give a finer appreciation of
the degree of predictability. This analysis is particularly important in case of non
predictable systems.

1 Introduction

Faults diagnosability is a key property to increase the autonomy of nowadays sys-
tems. This property has been extensively studied in the last years. The seminal work
in [9] provided an algorithm to verify diagnosability in discrete event systems (DES)
represented by finite automata, based on the so-called deterministic diagnoser. Sub-
sequent works proposed polynomial algorithms, based on the twin plant approach
[6, 12]. Diagnosability ensures the ability to detect faults after their occurrences.
However, since it is not always easy to recover the system after the faults occurred,
a stronger property has to be considered: the ability to predict the faults before their
occurrences. This is very useful in practice since when the fault is predicted, appro-
priate measures may be taken to avoid its negative effects. In [4] the diagnoser and
the twin plant approaches have been adapted to verify predictability. The work in
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[5] concerns the predictability of patterns and that in [2] deals with timed DES. The
predictability of distributed DES has been studied in [11].

In the previous works, the decision about predictability tells simply either the
system is predictable or not. However, if a system contains only a low proportion
of traces where the fault cannot be predicted while a second one contains a much
greater proportion of such traces, it would be plausible to associate a measure of
non predictability that is more important in the latter system than in the former
one. This kind of measure may be beneficial in practice. For instance, it may be
better in some contexts to tolerate a system with a sufficiently low degree of non-
predictability than to add the missing sensors to ensure predictability which can be
very expensive. The work in [3] considers stochastic DESs and provides necessary
and sufficient conditions for the notion of AAS-predictability (asymptotically almost
sure predictability) which is the counterpart of the notion of AA-Diagnosability
introduced in [10]. In [1], the authors propose different variants of predictability
and diagnosability in stochastic DESs and show that checking diagnosability in
this setting is PSPACE-Complete while checking predictability is NLOGSPACE-
Complete. However the optimal size of both the diagnoser and the predictor remains
exponential.

The present paper extends the approach proposed in [8] for diagnosability of
probabilistic DES to deal with predictability. We propose a so-called light estimator
which is a probabilistic DES allowing us to analyze predictability by extracting an
appropriate Markov chain that explains the dynamics of the system. The results of
the asymptotic behavior of this chain determine probability values that help one in
quantifying the degree of non predictability.

The paper is organized as follows. The probabilistic model is presented in Sect. 2.
Section3 recalls the diagnoser-based approach for predictability. Section4 presents
the light estimator. Section5 is devoted to the probabilistic analysis. Finally, Sect. 6
concludes the paper.

2 Probabilistic Discrete Event Model

The model used in this paper is that of a probabilistic DES (PDES) which consists
of a classical DES enriched by probability values on its transitions.

Definition 1 A (PDES) is modeled by the structure Γ = (X,E, θ, x0) where X =
{x0, ..., xn−1} is a finite set of states (|X| = n), E = {e0, ..., em−1} is a finite set of
events (|E| = m), x0 is the initial state and θ : X × E × X −→ [0, 1] is a probabilistic
transition function: θ(x, e, x′) = α (0 ≤ α ≤ 1) is the probability that the event e
occurs in x and causes the transition of the system from state x to state x′. We
represent in the model all the possible transitions of the system in each state. Thus,
for each x ∈ X:

∑
y∈X

∑
e∈E θ(x, e, y) = 1.
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Fig. 1 a Example of a
probabilistic DES

To a PDES Γ = (X,E, θ, x0) we associate a classical DES G = (X,E, δ, x0)
where the transition function δ : X × E × X −→ {0, 1} is defined by: δ(x, e, x′) = 1
if θ(x, e, x′) > 0 and δ(x, e, x′) = 0 otherwise.

E∗ denotes the Kleene closure of E. δ extends to words s ∈ E∗ with s = a1 . . . ak
by: (x, s, x′) ∈ δ iff there is sequence of states xj0 , . . . , xjk such that xj0 = x, xjk = x′
and (xji−1 , ai, xji) ∈ δ for 1 ≤ i ≤ k.

We denote by L(G) ⊆ E∗ (or L when no ambiguity), the language generated
by G. L(G) is prefix closed. The set of events E is such that E = Eo ∪ Euo where
Eo (resp. Euo) contains the observable (resp. unobservable) events. Ef ⊆ Euo is the
subset of unobservable faulty events. Moreover, faults are partitioned into disjoint
sets corresponding to the different fault types: Ef = Ef1 ∪ · · · ∪ Efp . In the sequel,
we will focus, without loss of generality, on one fault type as in [12]. For the sake
of simplicity, we will denote by f each occurrence of the considered fault type. We
suppose also that L(G) is live (there is at least one transition from any state in the
system) and that there is no cycle in G with only unobservable events.

Example 1 Figure1 shows a PDES Γ = (X,E, θ, x0) where: X = {x0, x1, x2, x3,
x4, x5, x6}, Eo = {a, b, c}, Euo = {f , u} and Ef = {f }, the initial state is x0 and the
transition function is shown in Fig. 1.1

A word of L(G) is also called trace. The empty trace is denoted by ε. The post-
language of L(G) after a trace s is: L/s = {t ∈ E∗|st ∈ L}. The set of prefixes of a
word s is denoted by s.

P : E∗ −→ E∗
o is a projection function that erases from any trace its unobservable

events: P(σ) = ε if σ = ε or σ ∈ Euo, P(σ) = σ if σ ∈ Eo and P(sσ) = P(s)P(σ)

for s ∈ E∗ and σ ∈ E. P−1
L is the inverse projection: for any w ∈ E∗

o , P
−1
L (w) = {s ∈

L|P(s) = w}. It provides, for a sequence of observable events w, all traces of L(G)

whose projection is w.
sf denotes the final event of a trace s andΨ (f ) all traces ending in the fault event f :

Ψ (f ) = {s ∈ L|sf = f }.Wedefine:Xo = {x0} ∪ {x ∈ X |∃y ∈ X, ∃e ∈ Eo, δ(y, e, x) =
1}. Xo includes the initial state x0 and every state which is the target of at least one
transition labelled by an observable event.

Let L(G, x) denote the set of traces originating from x, Lo(G, x) the subset of
those traces of L(G, x) that end at the first observable event and Lσ(G, x) the subset

1To simplify figures, we represent a state name xi by its index i.
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of Lo(G, x) containing those traces that end at the observable event σ: Lo(G, x) =
{s ∈ L(G, x) | s = uσ, u ∈ E∗

uo,σ ∈ Eo},Lσ(G, x) = {s ∈ Lo(G, x) | sf = σ}.

3 The “Binary” Predictability

Intuitively, a fault is predictable iff, based on observed events, one can deduce its
occurrence, before it actually occurs.

Definition 2 [4] f is predictable iff: (∃n ∈ N)(∀s ∈ Ψ (f ))(∃t ∈ s)[(f /∈ t) ∧ P],
where the predictability condition P is: (∀u ∈ L)(∀v ∈ L/u)[(P(u) = P(t)) ∧ (f /∈
u) ∧ (‖v‖ ≥ n) ⇒ (f ∈ v)].
Let us now recall the notion of diagnoser.

Definition 3 A diagnoser is a deterministic automaton which is defined by Gd =
(Qd,Eo, δd, q0) where:

• Qd ⊆ 2Xo×{N,F}. A state of Qd is of the form: qd = {(x1, l1), . . . , (xk, lk)} where
xi ∈ Xo, li ∈ {N,F}; q0 = {(x0,N)} is the initial state of Gd ;

• Eo is the set of the observable events and
• δd : Qd × Eo −→ Qd is the transition function of the diagnoser defined by:

δd(q,σ) = ⋃
(x,l)∈q

⋃
s∈Lσ(G,x)

⋃
(x,s,x′)∈δ{(x′,LP(l, s))}whereLP : {N,F} × E∗ −→

{N,F} is a label propagation function defined by: if l = N and f /∈ s then
LP(l, s) = N else LP(l, s) = F.

A state q of Gd is f -uncertain if ∃(x, l), (x′, l′) ∈ q s.t. l = N and l′ = F. It is
f -certain (resp. normal) if ∀(x, l) ∈ q, l = F (resp. ∀(x, l) ∈ q, l = N).

We denote by QN the set of normal states of Gd . Let C be the set of normal
states having an immediate successor that is not normal. We call these states, the
critical states: C = {q ∈ QN |∃q′ = δd(q, o) such that o ∈ Eo and q′ /∈ QN }. We put
COK = {q ∈ C| all the accessible cycles from q contain only f -certain states} and
CKO = C \ COK . Then:

f is predictable iff CKO = ∅:, i.e., every accessible cycle from any state of C is
formed exclusively by f -certain states [4].

Example 1 (Cont) Figure2a depicts the diagnoser of the system presented in Exam-
ple1. We have: C = {{(3,N)}, {(3,N), (6,N)}}. While the only accessible cycle
from {3,N} is constituted from f -certain states, we may reach from {(3,N), (6,N)}
either a cycle of normal states or a cycle of f -certain states. The fault f is then not
predictable.
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(a) (b)

Fig. 2 a Diagnoser Gd b Simplified diagnoser G′
d

4 The Light Estimator

The light estimator (L-estimator) is constructed from a part of the diagnoser (hence-
forth called the simplified diagnoser) as follows:

Definition 4 Let Gd = (Qd,Eo, δd, q0) be a diagnoser. The simplified diagnoser is
defined by G′

d = (Q′
d,Eo, δ

′
d, q0) where Q

′
d = Qd \ B where B = {q ∈ Qd : q cannot

be accessible from q0 without passing by a state in C different from q} and δ′
d is the

restriction of δd to Q′
d .

G′
d is obtained from Gd by: (1) removing all the transitions originating from any

state q ∈ C then, (2) keeping only the part of the diagnoser that is accessible from
the initial state q0. Note that a state which is reachable both by passing by a state in
C and without passing by such a state is kept, but only the paths from q0 to that state
that do not contain any state from C are kept. Note also that critical states no longer
have outgoing transitions. Figure2b depicts the simplified diagnoser of the system
of Example1.

The light estimator represents explicitly the transitions between the sub-states of
the simplified diagnoser as well as their probability values.

Definition 5 The L-estimator is defined by H = (T ,E′
o,ψ, t0) where:

• Let q0, . . . , qm be the states of the simplified diagnoserG′
d such that q0 = {(x0,N)}.

The state space of H is: T ⊆ Xo × {N,F} × {0, . . . ,m} such that (x, l, i) ∈ T iff
(x, l) ∈ qi;

• t0 = (x0,N, 0) is the initial state;
• E′

o = Eo ∪ {α} where α /∈ Eo is a new event standing for any observable event.
This event is added to ensure a coherent definition of the L-estimator and will not
play any role in the following development;

• ψ : T × E′
o × T −→ [0, 1] is the probabilistic transition function of H. Let t =

(x, l, i) ∈ T such that qi /∈ C, t′ = (x′, l′, i′) ∈ T and σ ∈ Eo. ψ(t,σ, t′) �= 0 if and
only if there is a possible transition from t to t′. This corresponds to the case where
(qi,σ, qi′) ∈ δ′

d and there is at least some trace s ∈ Lσ(G, x) such that l′ = LP(l, s)
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Fig. 3 The light estimator

and (x, s, x′) ∈ δ. Let S be the set of all such traces:S = {s ∈ Lσ(G, x)|l′ = LP(l, s)
and (x, s, x′) ∈ δ}. Then, ψ(t,σ, t′) is the sum of the probabilities of transitions
from x to x′ by the different traces of S: ψ(t,σ, t′) = ∑

s∈S θ(x, s, x′). For each
state t = (x, l, i) of T such that qi ∈ C, we put ψ(t,α, t) = 1.

Intuitively, a state t = (x, l, i) of H contains the relevant information about pre-
dictability. A trace w of observable events leading from t0 to t = (x, l, i) in H leads
in the simplified diagnoser from q0 to qi s.t. (x, l) ∈ qi. Moreover, in case qi ∈ CKO
(resp. qi ∈ COK ), the fault may or may not occur (resp. will necessarily occur) before
observing the next observable event after w and in any observed trace having w as
prefix, the fault cannot be predicted. Thus, as soon as a state t = (x, l, i) such that
qi ∈ C is reached, the decision about predictability can be taken independently from
the subsequent continuations. This explains the addition of the loop on each such
state with the probability 1. Figure3 shows the L-estimator of the system given in
Example1 (states from CKO (resp. COK ) are in bold (resp. dashed) line). Note that the
sum of the probabilities of all transitions issued from each state of H is 1.

5 Probabilistic Analysis

In this section, we show how to extract from the light estimator an homogeneous
and discrete Markov chain and then to exploit the well known results about the
asymptotic behaviors of such chains (for more details, see for example [7]) to obtain
a finer appreciation of predictability. We believe that such a refinement is very useful
in practice to deal with non-predictable systems.

To the light estimator H = (T ,E′
o,ψ, t0), we associate the homogeneous and

discrete time Markov chain {Mi, i = 0, 1...|T | − 1} where Mi is a random variable
whose value is the state of the system after the observation of a set of events. T is
the state space of the Markov chain. The transition matrix tr of the L-estimator is
defined by: ∀(t1, t2) ∈ T × T , trt1,t2 = ∑

σ∈E′
o
ψ(t1,σ, t2).
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Example 1 (Cont) Since from each couple of states (t, t′) of H there is at most
one transition from t to t′, the graphical representation of the Markov chain {Mi} is
obtained from Fig. 3 by just removing the observable events.

Now, from the study of the asymptotic behavior of the obtained Markov chain,
we can compute relevant probability values for classes of possibly infinite observed
traces of the system. This study follows the following steps:

• Classify the states of {Mi}. A class is a strongly connected component in the
graph of {Mi}; a class is persistent if each of its states has no successor outside it,
otherwise, it is transitory. Let ζ = {C1, . . . ,Ch} (resp. μ = {μ1, . . . ,μr}) be the
set of persistent (resp. transitory) classes.

• Put the transition matrix in the canonical form in which persistent classes are put
at the beginning. We obtain:

tr =

⎛

⎜⎜⎜⎝

Tr1 · · · 0 0
...

. . .
...

...

0 · · · Trh 0
R1 · · · Rh Q

⎞

⎟⎟⎟⎠

Tri is the matrix containing the transition probabilities inside the persistent class
Ci. R = [R1, . . . ,Rh] (resp.Q) contains the transition probabilities from transitory
to persistent (resp. to transitory) states.

• Compute the fundamental matrix N = (I − Q)−1 (I is the unit matrix of size:
|μ1| + · · · + |μr |) and the absorption matrix B = N .R. We have the following
results: the probability to be in a transitory state after an infinite number of steps
is 0; the probability of absorption in the persistent state j when we start from state
i is Bi,j. The absorption probability of a persistent class is then the sum of the
absorption probabilities of its states.

We suppose without loss of generality that the initial state t0 is the first transitory
state. Thus, we are interested only in the first rows of N and B.

The last step is to extract relevant probabilities from the Markov chain. Let {Mi}
be the Markov chain associated to a L-estimator and let N and B its fundamental
and absorption matrices respectively. Let Tko (resp. Tok) be the subset of persistent
classes whose states correspond to critical states of the diagnoser where the fault
is not predictable (resp. predictable), i.e. states t = (x, l, i) of the estimator where
qi ∈ CKO (resp. where qi ∈ COK ). Let Tnf be the subset of all the other persistent
classes, i.e. where the fault does not occur.

Then, we can define the following relevant probabilities: Pko (resp. Pok) is the
probability to follow a trace where the fault cannot be predicted (resp. surely occurs
and is predicted): Pko = ∑

c∈Tko

∑
t∈c(B)0,t (resp. Pok = ∑

c∈Tok

∑
t∈c(B)0,t). Pnf

is the probability to follow a trace where the fault surely does not occur. Pnf =∑
c∈Tnf

∑
t∈c(B)0,t = 1 − (Pko + Pok).
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Example 1 (Cont) In our example, the persistent classes are: C1 = {t2}, C2 = {t4},
C3 = {t6} and C4 = {t8, t9} where Tko = {C1,C2}, Tok = {C3} and Tnf = {C4}. The
first rows of the matrices N and B are:

N0 = ( t0 t1 t3 t5 t7
1 1

4
1
3

1
4

1
6

)
and B0 = ( t2 t4 t6 t8 t9

1
4

1
3

1
4

1
12

1
12

)

We obtain the values: Pko = 7/12, Pok = 1/4 and Pnf = 1/6. This means that
we have a probability of 7/12 (resp. 1/4) to be in a trace where the fault cannot be
predicted (resp. the fault will occur and it is predicted) and a probability of 1/6 to
be in a trace where the fault will not occur.

6 Conclusion

This paper investigated the use of information about probabilities of transitions in
a DES to refine the decision about fault predictability. In particular, the proposed
approach allows one to quantify the degree of non-predictability and accordingly to
deal in a more flexible way with non predictable systems.

We plan also to generalize the probabilistic-based approach to the pattern pre-
dictability, to distributed systems and to other DESs such as Petri nets.
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A Sandwich Theorem for Natural Extensions

Renato Pelessoni and Paolo Vicig

Abstract The recently introduced weak consistency notions of 2-coherence and
2-convexity are endowedwith a concept of 2-coherent, respectively, 2-convex natural
extension, whose properties parallel those of the natural extension for coherent lower
previsions. We show that some of these extensions coincide in various common
instances, thus producing the same inferences.

Keywords 2-convex lower previsions · Coherent lower previsions · Natural
extensions

1 Introduction

In a recent paper [4] we introduced two weak consistency concepts for conditional
lower previsions, 2-convexity and 2-coherence, studying their basic properties in
greater detail in [5]. Formally, 2-coherent and 2-convex conditional lower previsions
are a broad generalisation of the 2-coherent (unconditional) lower previsions in [6,
Appendix B]. Our main aim in introducing them was to explore the flexibility of the
betting scheme which underlies these and other consistency concepts (starting with
de Finetti’s subjective probability [1]), showing the capability of these previsions of
encompassing a number of different uncertainty models in a unified framework.

An important issue is also to detect which properties from stronger consistency
concepts are somehow retained by either 2-convexity or 2-coherence. As shown in
[4, 5], a very relevant feature of theirs is that they are endowed with, respectively,
a 2-convex and a 2-coherent natural extension. The properties of these extensions,
exemplified in Proposition1, are formally perfectly analogous to those of the nat-
ural extension for coherent lower previsions (following Williams’ coherence in the
conditional framework [7]) or the convex natural extension for convex conditional
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previsions [2]. In particular, when finite, they allow extending a lower prevision P
from its domain D to any larger D′ ⊃ D. Yet, when different natural extensions can
be applied to the same P , the results may differ also considerably (cf. the later Exam-
ple1 in Sect. 3). Since 2-coherence is weaker than coherence, inferences produced
by the 2-coherent natural extension will be generally vaguer than those guaranteed
by the coherent natural extension, and similarly with other instances. Actually, often
2-coherent or 2-convex natural extensions will be even too vague. This points out
a drawback of these weak consistency notions and is one reason why, in our view,
they should not be regarded as realistic candidates for replacing coherence or con-
vexity. Rather, we will show in this paper that they may be helpful precisely for
determining the coherent natural extension, or the convex natural extension. In fact,
after concisely presenting the necessary preliminary notions in Sect. 2, we show in
Sect. 3 that there are significant instances where some or all of the four extensions
we mentioned so far coincide. For this, the lower prevision P is initially defined
on a structured set X |B∅ (cf. Definition2) of conditional gambles, representing a
generalisation of a vector space to a conditional environment. Hence we are consid-
ering a special, but rather common, situation. In Proposition2 we give an alternative
expression for the coherent natural extension, which is later needed and generalises
a result in [6] (cf. Corollary1). After showing how to ensure finiteness for the rele-
vant natural extensions, Theorems2, 3 and 4 present instances where more different
extensions coincide. These results are discussed in the comment after Theorem4 and
in the concluding Sect. 4. Due to space constraints, some of the proofs are omitted.

2 Preliminaries

Let D be an arbitrary set of conditional gambles, that is, the generic element of
D is X |B, with X a gamble (a bounded random variable), and B non-impossible
event. A conditional lower prevision P : D → R is a real map which, behaviourally,
determines the supremum buying price P(X |B) of any X |B ∈ D. This means that
an agent should be willing to buy, or to bet in favour of, X |B, for any price lower
than P(X |B). The agent’s gain from the transaction/bet on X |B for P(X |B) is
IB(X − P(X |B)). Here IB is the indicator of event B. Its role is that of ensuring that
the purchased bet is called off and the money returned to the agent iff B does not
occur. In the sequel, we shall use the symbol B for both event B and its indicator IB .

A generic consistency requirement for P asks that no finite linear combination of
bets on elements ofD, with prices given by P , should produce a loss (bounded away
from 0) for the agent. We obtain different known concepts by imposing constraints
on the number of terms in the linear combination or on their coefficients si :

Definition 1 Let P : D → R be a given conditional lower prevision.

(a) P is a coherent conditional lower prevision onD iff, for allm ∈ N0,∀X0|B0, . . . ,

Xm |Bm ∈ D, ∀s0, . . . , sm ≥ 0, defining S(s) = ∨{Bi : si �= 0, i = 0, . . . ,m}
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and G = ∑m
i=1 si Bi (Xi − P(Xi |Bi )) − s0B0(X0 − P(X0|B0)), it holds,

whenever S(s) �= ∅, that sup{G|S(s)} ≥ 0.
(b) P is 2-coherent on D iff a) holds with m = 1 (hence there are two terms in G).
(c) P is convex onD iff a) holds with the additional convexity constraint

∑m
i=1 si =

s0 = 1.
(d) P is 2-convex onD iff c) holdswithm = 1, i.e., iff,∀X0|B0, X1|B1 ∈ D, we have

that, defining G2c = B1(X1 − P(X1|B1)) − B0(X0 − P(X0|B0)), sup(G2c|
B0 ∨ B1) ≥ 0.

(e) P is centered, convex or 2-convex, onD iff it is convex or 2-convex, respectively,
and ∀X |B ∈ D, we have that 0|B ∈ D and P(0|B) = 0.

Condition a), which is Williams’ coherence [7] in the structure-free version of [3],
is clearly the strongest one. Convexity is a relaxation of coherence, studied in [2].
Given P on D, the following relationships hold:

P coherent ⇒ P 2-coherent ⇒ P 2-convex
P coherent ⇒ P convex ⇒ P 2-convex.

(1)

The consistency concepts recalled so far can be characterised by means of axioms
on the special sets X |B∅ defined next:

Definition 2 Let X be a linear space of gambles and B ⊂ X a set of (indicators of)
events, such that Ω ∈ B and BX ∈ X ,∀B ∈ B,∀X ∈ X . Setting B∅ = B − {∅},
define X |B∅ = {X |B : X ∈ X , B ∈ B∅}.
Theorem 1 (Characterisation Theorems) Let P : X |B∅ → R be a conditional
lower prevision.

(a) P is coherent on X |B∅ if and only if [3, 7]

(A1) P(X |B) − P(Y |B) ≤ sup{X − Y |B}, ∀X |B,Y |B ∈ X |B∅.
(A2) P(λX |B) = λP(X |B),∀X |B ∈ X |B∅,∀λ ≥ 0.
(A3) P(X + Y |B) ≥ P(X |B) + P(Y |B), ∀X |B, Y |B ∈ X |B∅.
(A4) P(A(X − P(X |A ∧ B))|B) = 0,∀X ∈ X ,∀A, B ∈ B∅ : A ∧ B �= ∅.

(b) P is 2-coherent on X |B∅ if and only if (A1), (A2), (A4) and the following axiom
hold [5]:

(A5) P(λX |B) ≤ λP(X |B), ∀λ < 0.

(c) P is convex on X |B∅ if and only if (A1), (A4) and the following axiom hold [2,
Theorem 8]

(A6) P(λX + (1 − λ)Y |B) ≥ λP(X |B) + (1 − λ)P(Y |B),∀X |B,Y |B ∈
X |B∅,∀λ ∈]0, 1[.

(d) P is 2-convex on X |B∅ if and only if (A1) and (A4) hold [5].

Next we recall the definitions of the various natural extensions studied in this paper.
The term ‘natural extension’, without further qualifications, will denote the coherent
natural extension in Definition3, (a).
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Definition 3 (Various natural extensions) Let P : D → R be a conditional lower
prevision, and Z |A a conditional gamble.

(a) Define L(Z |A) = {α : sup{∑m
i=1 si Bi (Xi − P(Xi |Bi )) − A(Z − α)|A ∨ S(s)}

< 0, for some Xi |Bi ∈ D, si ≥ 0, i = 1, . . . ,m}, where S(s) = ∨m
i=1{Bi : si �=

0}. Then, the (coherent)natural extensionof P on Z |A is E(Z |A) = sup L(Z |A).
(b) Define L2(Z |A) putting m = 1 in L(Z |A). The 2-coherent natural extension of

P on Z |A is E2(Z |A) = sup L2(Z |A).
(c) Define Lc(Z |A) from L(Z |A), by adding the constraint

∑m
i=1 si = 1 in the

‘for some’ part. The convex natural extension of P on Z |A is Ec(Z |A) =
sup Lc(Z |A).

(d) Define L2c(Z |A) putting m = 1 in Lc(Z |A), i.e. L2c(Z |A) = {α : sup{B(X −
P(X |B)) − A(Z − α)|A ∨ B} < 0, for some X |B ∈ D}. Then, the 2-convex
natural extension E2c of P on Z |A is E2c = sup L2c(Z |A).

The properties of these four natural extensions are analogous [2, 3, 5]. Here we
state them for the 2-convex natural extension. For the properties of E , E2, Ec, replace
E2c and ‘2-convex’ with, respectively, E and ‘coherent’, E2 and ‘2-coherent’, Ec
and ‘convex’.

Proposition 1 Let P : D → R a conditional lower prevision, with D ⊂ D∗. If E2c
is finite on D∗, then

(a) E2c(Z |A) ≥ P(Z |A), ∀Z |A ∈ D.
(b) E2c is 2-convex on D∗.
(c) If P∗ is 2-convex on D∗ and P∗(Z |A) ≥ P(Z |A), ∀Z |A ∈ D, then P∗(Z |A) ≥

E2c(Z |A), ∀Z |A ∈ D∗.
(d) P is 2-convex on D if and only if E2c = P on D.
(e) If P is 2-convex on D, then E2c is its smallest 2-convex extension on D∗.

3 When Do Different Natural Extensions Coincide?

Given a lower prevision P onD, its natural extensions E , E2, Ec, E2c will generally
be different, and ordered (when finite) as follows.

Lemma 1 Given P : D → R, it holds that

E ≥ E2 ≥ E2c
E ≥ Ec ≥ E2c.

(2)

Proof It is easy to realise that (2) holds recalling (1), Definition3 and Proposition1.
For instance, Ec ≥ E2c because Ec, being convex (Proposition1, (b)), is also 2-
convex (cf. (1)), but then Ec ≥ E2c by Proposition1, (e). �

It may also be the case that some among E , E2, Ec, E2c are infinite. But even when
being finite, they may differ considerably, as illustrated by the next simple example.
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Example 1 LetD = {X}, where X may only take the values 0 and 1. Assign P(X) ∈
(0, 1), which is clearly coherent, hence 2-convex, on D. Its natural extension E on
{2X} is E(2X) = 2P(X) by (A2), because E is coherent on {X, 2X} and coincides
with P on X . However, E2c(2X) ≥ P(X) by (A1) and E2c(2X) = P(X) < E(2X)

is 2-convex. This can be checked directly using Definition1, (d). (There are only two
gains G2c to inspect.)

On ourway to establishwhenmore natural extensionsmay coincide,we preliminarily
tackle two issues: derive an alternative expression for the (coherent) natural extension,
and discuss how to hedge possibly non-finite extensions. We assume throughout that
the lower prevision P is initially assessed on some setX |B∅. As for the former issue,
the following proposition holds.

Proposition 2 Let P be coherent on X |B∅. Then, defining

L1(Z |A) = {α : sup{BX − A(Z − α)|A ∨ B} < 0,
for some X ∈ X , B ∈ B, with P(X |B) = 0 if B �= ∅}, (3)

L1(Z |A) = L(Z |A) and the natural extension of P on Z |A is

E(Z |A) = sup L1(Z |A). (4)

Proof We prove that L1(Z |A) = L(Z |A), with L1(Z |A) defined in (3), L(Z |A) in
Definition3 (a); taking their suprema gives then the thesis.

(i) L1(Z |A) ⊂ L(Z |A).
In fact, let α ∈ L1(Z |A). Then sup{BX − A(Z − α)|A ∨ B} < 0. If B = ∅,
then BX = 0, A ∨ B = A in the supremum argument, and α ∈ L(Z |A) (case
S(s) = ∅). If B �= ∅, then P(X |B) = 0 and writing the supremum as sup
{B(X − P(X |B)) − A(Z − α)|A ∨ B} < 0 it appears that again α ∈ L(Z |A).

(ii) L(Z |A) ⊂ L1(Z |A).
Let nowα ∈ L(Z |A) and, referring to the definition of L(Z |A),W = ∑m

i=1 si Bi

(Xi − P(Xi |Bi )) − A(Z − α).
If S(s) = ∅, then sup{−A(Z − α)|A} < 0 ensures thatα ∈ L1(Z |A) (case B =
∅).
If S(s) �= ∅, since P is coherent on X |B∅, we may apply (A2), (A3) and (A4)
in Theorem1 (a) to get

P(
∑

i :si �=0 si Bi (Xi − P(Xi |Bi ))|S(s)) ≥∑
i :si �=0 si P(Bi (Xi − P(Xi |Bi ))|S(s)) = 0.

(5)

Define Y = ∑
i :si �=0 si Bi (Xi − P(Xi |Bi )). Since P(Y |S(s)) ≥ 0 by (5), we

obtain

S(s)[Y − P(Y |S(s))] − A(Z − α) ≤ Y − A(Z − α) = W
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and hence

sup{S(s)[Y − P(Y |S(s))] − A(Z − α)|A ∨ S(s)} ≤
sup{W |A ∨ S(s)} < 0.

(6)

Nowput S(s) = B,Y − P(Y |B) = X , and note that P(X |B) = P(Y − P(Y |B)

|B) = P(Y |B) − P(Y |B) = 0, recalling P(Y − c|B) = P(Y |B) − c, a neces-
sary condition for coherence, at the second equality. Hence (6) may be rewritten
as

sup{BX − A(Z − α)|A ∨ B} < 0,

which proves that α ∈ L1(Z |A).

�

While (4) supplies a newalternative expression for E(Z |A), it is interesting to observe
that it boils down to a known result in the unconditional case, formally obtained
putting B = {Ω, ∅}, A = Ω in Proposition2.

Corollary 1 If P is coherent on a linear space X , then

E(Z) = sup{P(X) : X ≤ Z , X ∈ X }. (7)

In fact, Corollary1 is part of the statement of Corollary 3.1.8 in [6].
Turning to the second issue, we are interested in guaranteeing that the various

natural extensions considered are finite, i.e. neither −∞ nor +∞. Regarding E (or
E2), its finiteness is ensured if the lower prevision P to be extended is coherent
(or 2-coherent) [3, 5]. In the case of Ec or E2c, a sufficient condition [5] is that
P(0|A) = 0, for any additional Z |A we wish to extend P to. While this condition
is generally not necessary, it is nonetheless rather natural, but a 2-convex or convex
P does not necessarily fulfil it. In fact, it may be the case that 0|A ∈ X |B∅ and
P(0|A) �= 0, which we can avoid by restricting our attention to centered 2-convex
or convex previsions. But even doing so, as we will, it may happen that 0|A /∈ X |B∅

and, unlike the case of a coherent or 2-coherent P , P(0|A) = 0 is not the unique
(2-)convex extension of P . However, it holds that [2, 5]:

Proposition 3 Let P be centered 2-convex (alternatively, centered convex) on
X |B∅. Given 0|A /∈ X |B∅, the extension of P such that P(0|A) = 0 is 2-convex
(convex).

Proposition3 suggests that when extending a centered P fromX |B∅ toD∗ ⊃ X |B∅

we could consider first extending it to the set

(X |B∅)+ = X |B∅ ∪ {0|A : Z |A ∈ D∗}, (8)

putting P(0|A) = 0. Adding zeroes is harmless when considering the natural exten-
sion, in the sense of the following
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Lemma 2 Assign P on X |B∅ and let D∗ ⊃ X |B∅. Using the notation L(Z |A)

for the set L in Definition3 (a) when D there is replaced by X |B∅, we write
L+(Z |A) insteadwhenD = (X |B∅)+. Then L(Z |A) = L+(Z |A), and consequently
E(Z |A) = sup L(Z |A) = sup L+(Z |A),∀Z |A ∈ D∗.

Definition 4 Given X |B∅ ⊂ D∗, let P be defined on X |B∅, and on (X |B∅)+
putting P(0|A) = 0,∀0|A ∈ (X |B∅)+. Then, E+

c , E
+
2c are the convex, respectively

2-convex natural extension of P from (X |B∅)+ to D∗.

Theorem 2 Let P be coherent on X |B∅(⊂ D∗). Then, E(Z |A) = E+
2c(Z |A), ∀Z |

A ∈ D∗.

Proof By Definitions3 (d) and 4, E+
2c(Z |A) = sup L+

2c(Z |A), where

L+
2c(Z |A) = {α : sup{B(X − P(X |B)) − A(Z − α)|A ∨ B} < 0,

for some X |B ∈ (X |B∅)+}.

We show that L+
2c(Z |A) = L(Z |A).

In fact, if α ∈ L+
2c(Z |A), then clearly α ∈ L+(Z |A), hence α ∈ L(Z |A), because

L+(Z |A) = L(Z |A) by Lemma2.
Conversely, let α ∈ L(Z |A) = L1(Z |A), by Proposition2. Then, recalling (3),

two distinct situations may occur:

(a) sup{BX − A(Z − α)|A ∨ B} < 0, X ∈ X , B ∈ B∅, P(X |B) = 0. Rewriting
the supremum as sup{B(X − P(X |B)) − A(Z − α)|A ∨ B} < 0, then clearly
α ∈ L+

2c(Z |A).
(b) sup{−A(Z − α)|A} < 0. Since 0|A ∈ (X |B∅)+, the supremum may be also

written as sup{A(0 − P(0|A)) − A(Z − α)|A} < 0, fromwhich it is patent that
α ∈ L+

2c(Z |A).

Therefore, L+
2c(Z |A) = L(Z |A). The thesis follows taking the suprema. �

Theorem2 assures that the natural extension and the 2-convex natural extension
coincide, if P is coherent on X |B∅. Hence the 2-coherent natural extension E2
coincides with the former ones too, being sandwiched between them by Lemma1.

Another result of the same kind is

Theorem 3 Let P be centered convex on (X |B∅)+. Then, E+
c (Z |B) = E+

2c(Z |A),
∀Z |A ∈ D∗.
Finally, we can now establish the sandwich theorem:

Theorem 4 (Sandwich Theorem) Let P be coherent on X |B∅. Then E(Z |A) =
E2(Z |A) = Ec(Z |A) = E2c(Z |A),∀Z |A ∈ D∗.

Comment The Sandwich Theorem ensures that the simpler 2-convex natural
extension may be enough to compute the natural extension, or the convex natural
extension, in the special case that the starting set is X |B∅. This seems to suggest
that if P is initially assessed on a structured enough set and already coherent there,
only the rather weak properties of (centered) 2-convexity really matter and need to
be checked when looking for a least-committal coherent extension.
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4 Conclusions

The results of the previous section show that the weak consistency notion of
2-convexitymaybehelpful in the important inferential problemof extending coherent
or convex conditional (and unconditional) lower previsions. There remains to explore
how this could be exploited in operational procedures, and whether the results can
be applied to more general sets of conditional gambles than those in Definition2. In
our opinion, however, the present results already supply an additional motivation for
further studying the interesting notion of 2-convexity.
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Envelopes of Joint Probabilities with Given
Marginals Under Absolute Continuity
or Equivalence Constraints

Davide Petturiti and Barbara Vantaggi

Abstract The aim is to determine the envelopes of the class of joint probabilities
(provided it is not empty) with assigned marginals, under the constraint of absolute
continuity or equivalence with respect to a given reference measure.

1 Introduction

In many fields (such as economics, engineering and statistics) the pieces of informa-
tion coming from different sources need to be aggregated in order to draw inferences.
A distinguished problem is the so-called marginal problem in which, given the mar-
ginal distributions of some variables, one needs to establish whether there is a joint
probability having the assigned marginal distributions [9, 12]. This kind of problems
can occur, for instance, in the analysis of contingency tables, in mass transporta-
tion, in statistical matching and in misclassified variables problems. Recently, this
problem [4] (see also [2]) has been faced by looking for the existence of a bivariate
joint distribution having as marginals two given distributions and requiring some
further condition: (a) the joint distribution is absolutely continuous with respect to
a given measure, (b) the joint distribution is equivalent to a given measure. For the
two problems above some remarkable existence results have been established in [4],
under the logical independence assumption.

In this paper we consider the two aforementioned problems restricting to finite
probability spaces, but allowing for logical relations. In general, a joint probability
meeting condition (a) or (b), if it exists, is not unique. Here, we provide necessary
and sufficient conditions for such classes not to be empty and, in this case, we give
closed form expressions for their envelopes.
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Our results are interesting in order to draw inferences in multiple prior problems
(see [6]) having marginal information, and distinguishing between structural zeroes
(i.e., due to logical relations) and null probability events.

2 Finitely Additive Bivariate Marginal Problem

A set of events G = {Ei}i∈I can always be embedded into a minimal Boolean algebra
denoted as 〈G〉 and said the Boolean algebra generated by G.

A function P : G → [0, 1] is a coherent probability [8] if and only if, for every
n ∈ N, every Ei1 . . . ,Ein ∈ G and every real numbers s1, . . . , sn, the random gain
(where IE denotes the indicator of an event E)

G =
n∑

j=1

sj(IEij
− P(Eij )),

satisfies the following inequalities

min
Cr∈CB

G(Cr) ≤ 0 ≤ max
Cr∈CB

G(Cr),

where CB = {C1, . . . ,Cm} is the set of atoms of B = 〈{Ei1 . . . ,Ein}〉.
It is well-known that P is coherent if and only if there exists a finitely additive

probability P′ on 〈G〉 such that P′
|G = P. In general, the probability P′ is not unique

but there is a class of finitely additive probability measures extending P.
In the following we consider two finitely additive probability measures P1 on

A1 and P2 on A2, where A1 and A2 are arbitrary Boolean algebras whose events
are possibly linked by logical relations. The following theorem is a consequence of
Theorem 3.6.1 in [5].

Theorem 1 The assessment {P1,P2} on A1 ∪ A2 is coherent if and only if it holds

Ai ⊆ Aj =⇒ Pi(Ai) ≤ Pj(Aj), for every Ai ∈ Ai,Aj ∈ Aj, i �= j. (1)

In the case A1 and A2 are finite, condition (1) is equivalent to the one given in
Theorem 1 of [11] (which holds for more than two marginal probability spaces),
however, condition (1) is fairly easier to check.

Moreover, in the finite case, a probability P onB = 〈A1 ∪ A2〉 extending {P1,P2}
can be explicitly determined by solving the system with unknowns xij = P(Ci ∧
Dj) ≥ 0 for every Ci ∧ Dj ∈ CB

S :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
Ci∧Dj �=∅
j=1,...,m

xij = P1(Ci), i = 1, . . . , n,

∑
Ci∧Dj �=∅
i=1,...,n

xij = P2(Dj), j = 1, . . . ,m,
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where CA1 = {C1, . . . ,Cn} and CA2 = {D1, . . . ,Dm}, are the sets of atoms ofA1 and
A2, respectively, and CB = {Ci ∧ Dj �= ∅ : i = 1, . . . , n, j = 1, . . . ,m} is the set of
atoms of B.

The resolution of system S can be faced through a recursive procedure, which
progressively reduces the size of the two marginal assessments, as detailed below.

Up to a permutation, let h ∈ {1, . . . , n} be such that Ci ∧ ∨m−1
j=1 Dj �= ∅ for i =

1, . . . , h and Ci ∧ ∨m−1
j=1 Dj = ∅ for i = h + 1, . . . , n. Let Ã1 and Ã2 be two finite

Boolean algebras with sets of atoms CÃ1
= {C̃1, . . . , C̃h} and CÃ2

= {D̃1, . . . , D̃m−1}
such that C̃i ∧ D̃j = ∅ if and only ifCi ∧ Dj = ∅, for i = 1, . . . , h, j = 1, . . . ,m − 1.
Consider the probability measures P̃1 and P̃2 on Ã1 and Ã2, respectively, whose
distributions are P̃2(D̃j) = P2(Dj)

β
, for j = 1, . . . ,m − 1, P̃1(C̃i) = P1(Ci)−αi

β
, for i =

1, . . . , h, with β = P2(Dc
m) and ᾱ = (α1, . . . ,αn) a solution of the following system

S ′ :
{∑n

i=1 αi = P2(Dm),

hi ≤ αi ≤ ki for i = 1, . . . , n,

with ki = hi = 0 if Ci ∧ Dm = ∅, and ki = P1(Ci) − ∑
Dj⊆Ci

j=1,...,m−1
P2(Dj) and hi =

max

{
0,P1(Ci) − ∑

Dj∧Ci �=∅
j=1,...,m−1

P2(Dj)

}
otherwise. It is easily seen that condition (1)

implies that S ′ has solution, moreover, for any such ᾱ the global assessment {P̃1, P̃2}
on Ã1 ∪ Ã2 still satisfies (1).

Thus the problem reduces to solve a smaller system S related to {P̃1, P̃2}. In
particular, if the system S related to {P̃1, P̃2} has a solution (x̃ij), we get a solution
of the system S related to {P1,P2}, setting xij = βx̃ij for Ci ∧ Dj �= ∅, i = 1, . . . , h,
j = 1, . . . ,m − 1, and xim = αi for Ci ∧ Dm �= ∅, i = 1, . . . , n.

From now on we assume that {P1,P2} is coherent, moreover, denote B = 〈A1 ∪
A2〉 and consider

P = {P : P is a f.a. probability on B with P|Ai = Pi, i = 1, 2}.

The class P is a convex and compact subset of the space [0, 1]B endowed with the
product topology of pointwise convergence and the projection set on each element
of B is a (possibly degenerate) closed interval. The pointwise envelopes

P = minP and P = maxP,

are known as lower and upper probabilities, respectively [13].
The following result provides a closed form expression for the envelopes P and P

in terms of the Łukasiewicz t-norm TL and t-conorm SL defined (see [10]), for every
x, y ∈ [0, 1], as

TL(x, y) = max{0, x + y − 1} and SL(x, y) = min{1, x + y}.
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Theorem 2 If {P1,P2} onA1 ∪ A2 is coherent, then the lower and upper envelopes
P and P of the set P of coherent extensions of {P1,P2} on B are such that, for every
B ∈ B

P(B) = max {TL(P1(A1),P2(A2)) : A1 ∧ A2 ⊆ B,Ai ∈ Ai} ,
P(B) = min {SL(P1(A1),P2(A2)) : B ⊆ A1 ∨ A2,Ai ∈ Ai} .

Proof We prove the statement for P as that for P follows by duality. For every B ∈ B,
the fundamental theorem of probability [8] implies that

P(B) = min
{
P
F
(B) : F ⊆ A1 ∪ A2, cardF < ℵ0

}
,

where P
F
(B) is the upper bound for the probability of B obtained extending P|F on

F ∪ {B}. In particular, we can limit to finite subfamilies of the form F = A′
1 ∪ A′

2
withA′

i ⊆ Ai finite subalgebra, for i = 1, 2. Coherence implies (see also Theorem 1
in [11]) that

P
F
(B) = min{P1(A1) + P2(A2) : B ⊆ A1 ∨ A2,Ai ∈ A′

i}
= min{1,min{P1(A1) + P2(A2) : B ⊆ A1 ∨ A2,Ai ∈ A′

i}}
= min

{
SL(P1(A1),P2(A2)) : B ⊆ A1 ∨ A2,Ai ∈ A′

i

}
,

from which the thesis follows. �
If B is finite (and so alsoA1 andA2 are) with set of atoms CB = {B1, . . . ,Bs}, we

provide a necessary and sufficient condition for the existence of a joint probability
positive on B\{∅}.
Proposition 1 If A1 and A2 are finite, then there exists P ∈ P such that P(B) > 0
for every B ∈ B\{∅} if and only if the following condition holds

min
Br∈CB

P(Br) > 0. (2)

Proof Condition (2) is trivially necessary so we prove its sufficiency. For every
Br ∈ CB, there exists Pr ∈ P such that Pr(Br) = P(Br), thus by the finiteness of B
the strict convex combination P = 1

s

∑s
r=1 P

r is plainly an element of P positive on
B\{∅}. �

3 Absolute Continuity and Equivalence Constraints

In this section, we assume that the two Boolean algebras A1 and A2 are finite,
moreover, besides the two probability measures P1 and P2 on A1 and A2, consider
the reference measure μ : B → [0,+∞), whereB = 〈A1 ∪ A2〉 having set of atoms
CB = {B1, . . . ,Bs}.
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Denote with I = {B ∈ B : μ(B) = 0} the ideal of μ-null events in B, which is
the kernel of the canonical Boolean homomorphism f : B → B/I , where, for every
B ∈ B, B̃ = f (B) denotes the equivalence class induced by I. To avoid cumbersome
notation, in what follows denote B̃ = f (B) and Ãi = f (Ai), for i = 1, 2, for which
it trivially follows B̃ = 〈Ã1 ∪ Ã2〉.

As usual, we say that a probability measure P on B is absolutely continuous with
respect to μ, in symbol P � μ, if and only if, for every B ∈ B, μ(B) = 0 implies
P(B) = 0. Moreover, P is equivalent to μ, in symbol P ∼ μ, if and only if P � μ
and μ � P.

Assuming the coherence of {P1,P2}, consider the following subsets of the set P
of probability measures on B with marginals P1 and P2:

• P�μ = {P ∈ P : P � μ};
• P∼μ = {P ∈ P : P ∼ μ}.
As can be easily seen, the setP�μ is a closed subset of [0, 1]B, whileP∼μ is generally
not [4].

The problems described above have been posed in [4], where A1 and A2 are
assumed to be σ-fields of sets and B = A1 ⊗ A2, i.e., A1 and A2 are assumed to be
logically independent. A related problem, where the probabilities in P are asked to
be pointwise dominated by μ has been studied in [7].

In the following we give necessary and sufficient conditions for such sets not to
be empty and, in this case, we provide a closed form expression for their envelopes.

Theorem 3 The following statements are equivalent:

1. P�μ �= ∅;
2. Pi is constant on f −1(Ãi) ∩ Ai, for every Ãi ∈ Ãi, and defining P̃i(Ãi) = Pi(Ai)

for Ai ∈ f −1(Ãi) ∩ Ai, for i = 1, 2, {P̃1, P̃2} on Ã1 ∪ Ã2 is coherent.

Proof 1. =⇒ 2. If P�μ �= ∅ and P ∈ P�μ, then P is constant on every f −1(B̃), for
every B̃ ∈ B̃, and, in particular, Pi is constant on f −1(Ãi) ∩ Ai, for every Ãi ∈ Ãi,
for i = 1, 2. Defining P̃(B̃) = P(B) for B ∈ f −1(B̃) we get a probability on B̃ which
extends P̃1 and P̃2, and this implies the coherence of {P̃1, P̃2}.

2.=⇒1. IfPi is constant on f −1(Ãi) ∩ Ai, for every Ãi ∈ Ãi, P̃i is defined as above,
for i = 1, 2, and {P̃1, P̃2} is coherent, then there exists a probability P̃ on B̃ extending
{P̃1, P̃2}. Defining, for every B ∈ B, P(B) = P̃(B̃)we get a probability P on B which
extends {P1,P2} and is such that, for every B ∈ I, P(B) = P̃(B̃) = P̃(∅̃) = 0, thus
P ∈ P�μ and P�μ �= ∅. �

The following example shows an application of Theorem3.

Example 1 Let A1 and A2 be the finite Boolean algebras with sets of atoms
CA1 = {C1,C2,C3} and CA2 = {D1,D2,D3} with C1 ∧ D1 = ∅, and P1 and P2 the
probability measures onA1 andA2 such that P1(C1) = 1

2 , P1(Ci) = 1
4 , for i = 2, 3,

and P2(Dj) = 1
3 , for j = 1, 2, 3. Denote B = 〈A1 ∪ A2〉, whose set of atoms is

CB = {B12,B13,B21,B22,B23,B31,B32,B33}, where Bij = Ci ∧ Dj.
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If we consider the reference measure μ on B whose distribution on CB is such
that μ(Bi3) = 0, for i = 1, 2, 3, and 1 otherwise, then P�μ = ∅, since both ∅ andD3

belong to f −1(∅̃) ∩ A2, but P2(D3) > P2(∅).
On the other hand, if we consider the referencemeasureμ′ onBwhose distribution

on CB is such that μ′(B13) = μ′(B23) = 0 and 1 otherwise, then Pi is constant on
f −1(Ãi) ∩ Ai, for every Ãi ∈ Ãi, but P�μ′ = ∅, since {P̃1, P̃2} is not coherent as
D̃3 ⊆ C̃3 and P̃2(D̃3) > P̃1(C̃1). �

Theorem 4 If P�μ �= ∅, and P̃i on Ãi, for i = 1, 2, is defined as in Theorem3, then
the lower and upper envelopes P�μ = minP�μ and P

�μ = maxP�μ are defined,
for every B ∈ B, as

P�μ(B) = max
{
TL(P̃1(Ã1), P̃2(Ã2)) : Ã1 ∧ Ã2 ⊆ B̃, Ãi ∈ Ãi

}
,

P
�μ

(B) = min
{
SL(P̃1(Ã1), P̃2(Ã2)) : B̃ ⊆ Ã1 ∨ Ã2, Ãi ∈ Ãi

}
.

Proof Let P̃ be the set of probabilities on B̃ extending {P̃1, P̃2}. By the proof of
Theorem3, every probability P ∈ P�μ is in bijection with a probability P̃ ∈ P̃
and it holds, for every B ∈ B, P(B) = P̃(B̃). Hence, the conclusion follows by
Theorem2. �

In general, the fact P�μ �= ∅ does not imply P∼μ �= ∅.
Example 2 Let A1 and A2 be the finite Boolean algebras with sets of atoms CA1 =
{C1,C2,C3} andCA2 = {D1,D2,D3} such thatD3 ∧ (C1 ∨ C2) = C3 ∧ (D1 ∨ D2) =
D2 ∧ C1 = ∅ and P1 and P2 the probability measures on A1 and A2 such that
P1(C1) = P2(D1) = 1

2 , P1(Ci) = P2(Di) = 1
4 , for i = 2, 3. Consider B = 〈A1 ∪

A2〉, whose set of atoms is CB = {B11,B21,B22,B33}, where Bij = Ci ∧ Dj. Let μ
be the reference measure whose distribution on CB is constantly equal to 1. This
implies that B̃ = B, P̃i = Pi, for i = 1, 2, and P̃ = P .

The statement 2. of Theorem3 applies since {P1,P2} is coherent, so P�μ �= ∅
and it actually holds P�μ = {P} where P is such that

CB B11 B21 B22 B33

P 1
2 0 1

4
1
4

and this trivially implies P∼μ = ∅. �

Theorem 5 The following statements are equivalent:

1. P∼μ �= ∅;
2. P�μ �= ∅ and the upper envelope of the set P̃ of probabilities on B̃ extending

{P̃1, P̃2} satisfies (2).
Proof 1. =⇒ 2. If P∼μ �= ∅ then there is a probability P ∈ P�μ such that, for
every B ∈ B, P(B) = 0 if and only if B ∈ I. The probability P is in bijection with a
probability P̃ on B̃ which extends {P̃1, P̃2} and is positive on B̃\{∅̃}, thus condition
(2) holds.
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2. =⇒ 1. If P�μ �= ∅ and the upper envelope of the set P̃ satisfies (2), then there
is a probability P̃ ∈ P̃ which is positive on B̃\{∅̃}. The probability P̃ is in bijection
with a probability P on B such that, for every B ∈ B, P(B) = 0 if and only if B ∈ I,
thus P ∈ P∼μ. �

Theorems3 and 5 are related to Theorems 7 and 13 given in [4] and to results in
[1] and [3].

Theorem 6 If P∼μ �= ∅, then it holds

P∼μ = inf P∼μ = P�μ and P
∼μ = supP∼μ = P

�μ
.

Proof We need to prove the statement for P∼μ since the one for P
∼μ

follows by
duality. By Theorem5, it holds P∼μ �= ∅ if and only if P�μ �= ∅ and the upper
envelope of P̃ satisfies (2). Moreover, every probability in P�μ is in bijection with
a probability in P̃ and, in particular, every probability in P∼μ is in bijection with a
probability in P̃ which is positive on B̃\{∅̃}. The set P̃ is a convex compact subset
of [0, 1]B̃ endowed with the product topology of pointwise convergence such that,
projB̃(P̃) = [πB̃,πB̃] ⊆ [0, 1], for every B̃ ∈ B̃.

We show that the pointwise infimum of the set of positive probabilities in P̃
coincides with the pointwise infimum of the whole P̃ . Let P̃ ∈ P̃ be positive on
B̃\{∅̃} and fix B̃ ∈ B̃ for which we have πB̃ ≤ P̃(B̃). If πB̃ = P̃(B̃) then the statement
trivially holds, otherwise, supposeπB̃ < P̃(B̃) and let Q̃ ∈ P̃ be such that Q̃(B̃) = πB̃.
For every ε ∈ (πB̃, P̃(B̃)), the strict convex combination P̃ε = αQ̃ + (1 − α)P̃ with

α = P̃(B̃)−ε
1−πB̃

is a probability in P̃ which is positive on B̃\{∅̃} and such that P̃ε(B̃) = ε,
and this concludes the proof. �

Since the class P∼μ is not necessarily closed, its envelopes could not be attained
pointwise by any of its elements, as shown in the following example.

Example 3 Let A1 and A2 be the logically independent finite Boolean algebras
with sets of atoms CA1 = {C1,C2,C3} and CA2 = {D1,D2,D3}, and P1 and P2

the probability measures on A1 and A2 such that P1(C1) = P1(C2) = P1(C3) = 1
3 ,

P2(D1) = P2(D3) = 1
4 and P2(D2) = 1

2 . Consider B = 〈A1 ∪ A2〉 which has set of
atoms CB = {Bij = Ci ∧ Dj : i, j = 1, 2, 3}, and let μ be the reference measure on
B whose distribution on CB is such that μ(Bii) = 0 for i = 1, 2, 3 and 1 otherwise.

The algebras Ã1 and Ã2 have sets of atoms CÃ1
= {C̃1, C̃2, C̃3} and CÃ2

=
{D̃1, D̃2, D̃3} such that C̃i ∧ D̃i = ∅̃ for i = 1, 2, 3. The statement 2. of Theorem3
applies since {P̃1, P̃2} is coherent, so P�μ �= ∅ and it actually holds P�μ ={
Pγ : γ ∈ [

0, 1
6

]}
where each Pγ ∈ P�μ is such that

CB B11 B12 B13 B21 B22 B23 B31 B32 B33

Pγ 0 1
3 − γ γ 1

12 + γ 0 1
4 − γ 1

6 − γ 1
6 + γ 0

Simple computations show that the upper envelope of the set P̃ of probabilities
extending {P̃1, P̃2} on B̃ satisfies (2), so by Theorem5 we have that P∼μ �= ∅ and
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it actually holds P∼μ = {
Pγ ∈ P�μ : γ ∈ (

0, 1
6

)}
. Finally, it is trivially seen that

P�μ = P∼μ and P
�μ = P

∼μ
. �
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Square of Opposition Under Coherence

Niki Pfeifer and Giuseppe Sanfilippo

Abstract Various semantics for studying the square of opposition have been pro-
posed recently. So far, only [14] studied a probabilistic version of the squarewhere the
sentences were interpreted by (negated) defaults.We extend this work by interpreting
sentences by imprecise (set-valued) probability assessments on a sequence of condi-
tional events. We introduce the acceptability of a sentence within coherence-based
probability theory.We analyze the relations of the square in terms of acceptability and
show how to construct probabilistic versions of the square of opposition by forming
suitable tripartitions. Finally, as an application, we present a new square involving
generalized quantifiers.

1 Introduction

There is a long history of investigations on the square of opposition spanning over
twomillenia [1, 19]. A square of opposition (SOP) represents logical relations among
basic sentence types in a diagrammatic way. The basic sentence types, traditionally
denoted by A (universal affirmative: “Every S is P”), E (universal negative: “No
S is P”), I (particular affirmative: “Some S are P”), and O (particular negative:
“Some S are not P”), constitute the corners of the square, and the logical relations—
contradiction, contrarity, subalternation, and sub-contrarity—form the diagonals
and the sides of the square. Recently, the square has been investigated from various
semantic points of view (see, e.g., [1, 9]). The present paper deepens the probabilistic
analysis of theSOPunder coherence given in [14].After preliminary notions (Sect. 2),
we introduce, based on g-coherence, a (probabilistic) notion of sentences and their
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acceptability and show how to construct squares of opposition under coherence from
suitable tripartitions (Sect. 3). Then, we present an application of our square to the
study of generalized quantifiers (Sect. 4). Section5 concludes the paper by some
remarks on future work.

2 Preliminary Notions

Given two events E and H , with H �= ⊥, the conditional event E |H is defined
as a three-valued logical entity which is true if EH (i.e., E ∧ H ) is true, false
if EH is true, and void if H is false. Given a finite sequence of n ≥ 1 conditional
eventsF = (E1|H1, . . . , En|Hn), we denote byP any preciseprobability assessment
P = (p1, . . . , pn) on F , where p j = p(E j |Hj ) ∈ [0, 1], j = 1, . . . , n. Moreover,
we denote by Π the set of all coherent precise assessments on F . The coherence-
based approach to probability and to other uncertain measures has been adopted
by many authors (see, e.g., [2–4, 6–8, 10, 12, 16, 17, 21–23]); we therefore recall
only selected key features of coherence in this paper. We recall that when there
are no logical relations among the events E1, H1, . . . , En, Hn involved in F , that is
E1, H1, . . . , En, Hn are logically independent, then the setΠ associatedwithF is the
whole unit hypercube [0, 1]n . If there are logical relations, then the set Π could be a
strict subset of [0, 1]n . As it is well knownΠ �= ∅; therefore, ∅ �= Π ⊆ [0, 1]n . If not
stated otherwise, we do not make any assumptions concerning logical independence.

Definition 1 An imprecise, or set-valued, assessment I on a family of conditional
events F is a (possibly empty) set of precise assessments P on F .

Definition1 states that an imprecise (probability) assessment I on a sequence of
n conditional events F is just a (possibly empty) subset of [0, 1]n ([11, 13, 14]).
For instance, think about an agent (like Pythagoras) who considers only rational
numbers to evaluate the probability of an event E |H . Pythagoras’ evaluation can
be represented by the imprecise assessment I = [0, 1] ∩ Q on E |H . Moreover, a
constraint like p(E |H) > 0 can be represented by I =]0, 1].

Given an imprecise assessment I we denote by I the complementary imprecise
assessment of I, i.e. I = [0, 1]n \ I. We now recall the notions of g-coherence and
total coherence in the general case of imprecise (in the sense of set-valued) probability
assessments [14].

Definition 2 (g-coherence) Given a sequence of n conditional events F . An impre-
cise assessment I ⊆ [0, 1]n on F is g-coherent iff there exists a coherent precise
assessment P on F such that P ∈ I.
Definition 3 (t-coherence) An imprecise assessment I on F is totally coherent
(t-coherent) iff the following two conditions are satisfied: (i) I is non-empty; (ii) if
P ∈ I, then P is a coherent precise assessment on F .
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Definition 4 (t-coherent part) Given a sequence of n conditional eventsF . LetΠ be
the set of all coherent assessments on F . We denote by π : ℘([0, 1]n) → ℘(Π) the
function defined by π(I) = Π ∩ I, for any imprecise assessment I ∈ ℘([0, 1]n).
Moreover, for each subset I ∈ ℘([0, 1]n) we call π(I) the t-coherent part of I.

Of course, if π(I) �= ∅, then I is g-coherent and π(I) is t-coherent.

3 From Imprecise Assessments to the Square of Opposition

In this section we consider imprecise assessments on a given sequenceF of n condi-
tional events. In our approach, a sentence s is a pair (F , I), where I ⊆ [0, 1]n is an
imprecise assessment on F . We introduce the following equivalence relation under
t-coherence:

Definition 5 Given two sentences s1 : (F , I1) and s2 : (F , I2), s1 and s2 are equiv-
alent (under t-coherence), denoted by s1 ≡ s2, iff π(I1) = π(I2).
Definition 6 Given three sentences s : (F , I), s1 : (F , I1), and s2 : (F , I2). We
define: s1 ∧ s2 : (F , I1 ∩ I2) (conjunction); s1 ∨ s2 : (F , I1 ∪ I2) (disjunction); s :
(F , I), where I = [0, 1]n \ I (negation).

Remark 1 As the basic operations among sentences are defined by set-theoretical
operations, they inherit the corresponding properties (including associativity, com-
mutativity, De Morgan Laws, etc.). Moreover, as π(I1 ∩ I2) = π(I1) ∩ π(I2), by
setting s∗

1 = (F ,π(I1)), s∗
2 = (F ,π(I2)) and (s1 ∧ s2)∗ : (F ,π(I1 ∩ I2)), it follows

that (s1 ∧ s2) ≡ (s1 ∧ s2)∗ ≡ s∗
1 ∧ s∗

2 . Likewise, s1 ∨ s2 ≡ (s1 ∨ s2)∗ ≡ s∗
1 ∨ s∗

2 .

As we interpret the basic sentence types involved in the SOP by imprecise proba-
bility assessments on sequences of conditional events,wewill introduce the following
notion of acceptability, which serves as a semantic bridge between basic sentence
types and imprecise assessments:

Definition 7 A sentence s : (F , I) is (resp., is not) acceptable iff the assessment I
on F is (resp., is not) g-coherent, i.e. π(I) is not (resp., is) empty.

Remark 2 If s1 ∧ s2 is acceptable, then s1 is acceptable and s2 is acceptable.However,
the converse does not hold, indeed s1 : (E |H, {1}) is acceptable and s2 : (E |H), {0})
is acceptable, but s1 ∧ s2 : (E |H,∅) is not acceptable (as π(∅) = ∅).
Definition 8 Given two sentences s1 : (F , I1) and s2 : (F , I2), we say, under coher-
ence: s1 and s2 are contraries iff the sentence s1 ∧ s2 is not acceptable1; s1 and s2 are
subcontraries iff s1 ∧ s2 is not acceptable; s1 and s2 are contradictories iff s1 and s2
are both, contraries and subcontraries; s2 is a subaltern of s1 iff the sentence s1 ∧ s2
is not acceptable.

1Some definitions of contrariety additionally require that “s1 and s2 can both be acceptable.” For
reasons stated in [14], we omit this additional requirement. Similarly, mutatis mutandis, in our
definition of subcontrariety.



410 N. Pfeifer and G. Sanfilippo

Remark 3 We observe that s1 ∧ s2 is not acceptable iff Π ∩ (I1 ∩ I2) = ∅, which
also amounts to say that Π ∩ I1 ⊆ Π ∩ I2. Moreover, if s1 is not acceptable, that
is Π ∩ I1 = ∅, then any sentence s2 is a subaltern of s1. For instance, the sentence
s1 : (E |E, 1) is not acceptable and then any sentence s2 : (E |E, I), whereI ⊆ [0, 1],
is a subaltern of s1.

Definition 9 Let sk : (F , Ik), k = 1, 2, 3, 4, be four sentences. We call the ordered
quadruple (s1, s2, s3, s4) a square of opposition (under coherence), iff the following
relations among the four sentences hold:

(a) s1 and s2 are contraries, i.e., π(I1) ∩ π(I2) = ∅;
(b) s3 and s4 are subcontraries, i.e., π(I3) ∪ π(I4) = Π ;
(c) s1 and s4 are contradictories, i.e., π(I1) ∩ π(I4) = ∅ and π(I1) ∪ π(I4) = Π ;

s2 and s3 are contradictories, i.e., π(I2) ∩ π(I3) = ∅ and π(I2) ∪ π(I3) = Π ;
(d) s3 is a subaltern of s1, i.e., π(I1) ⊆ π(I3);

s4 is a subaltern of s2, i.e., π(I2) ⊆ π(I4).
Remark 4 Based on Definition9, we observe that in order to verify if a quadruple
of sentences (s1, s2, s3, s4), where sk : (F , Ik) and k = 1, 2, 3, 4, is a SOP, it is nec-
essary and sufficient to check that the quadruple (s ′

1, s
′
2, s

′
3, s

′
4), where s

′
k = (F , I ′

k),
I ′
k = π(Ik), is a SOP. Then, we say that two squares (s1, s2, s3, s4) and (s ′

1, s
′
2, s

′
3, s

′
4)

coincide iff π(Ik) = π(I ′
k) for each k. Moreover, based on Definition9, we observe

that (s1, s2, s3, s4) is a SOP iff (s2, s1, s4, s3) is a SOP.

Definition 10 An (ordered) tripartition of a set S is a triple (D1,D2,D3), where
D1, D2, and D3 are subsets ofS, such that the following conditions are satisfied: (i)
Di ∩ D j = ∅, i �= j for all i, j = 1, 2, 3; (ii); D1 ∪ D2 ∪ D3 = S.

Theorem 1 Given any sequence of n conditional events F and a quadruple (s1, s2,
s3, s4) of sentences, with sk : (F , Ik), k = 1, 2, 3, 4. Define D1 = π(I1), D2 =
π(I2), and D3 = π(I3) ∩ π(I4). Then, the quadruple (s1, s2, s3, s4) is a SOP if
and only if (D1,D2,D3) is a tripartition of (the non-empty set) Π such that:
π(I3) = D1 ∪ D3, π(I4) = D2 ∪ D3.

Proof (⇒). We assume that D1 = π(I1), D2 = π(I2), and D3 = π(I3) ∩ π(I4).
Of course, Di ⊆ Π , i = 1, 2, 3. We now prove that: (i) D1 ∩ D2 = ∅; (i i) D3 =
Π \ (D1 ∪ D2). (i) From condition (a) in Definition9, as s1 and s2 are contraries,
it follows that D1 ∩ D2 = ∅. (i i) We first prove that D3 ⊆ Π \ (D1 ∪ D2). This
trivially follows when D3 = ∅. If D3 �= ∅, then let x ∈ D3 = π(I3) ∩ π(I4). As
x ∈ π(I3), from condition (c) in Definition9, we obtain x /∈ π(I2). Likewise, as
x ∈ π(I4), from condition (c) in Definition9, we obtain x /∈ π(I1). Then, x ∈ Π

and x /∈ (π(I1) ∪ π(I2)), that is x ∈ Π \ (D1 ∪ D2). We now prove that Π \ (D1 ∪
D2) ⊆ D3. This trivially follows when Π \ (D1 ∪ D2) = ∅. If Π \ (D1 ∪ D2) �= ∅,
let x ∈ Π \ (π(I1) ∪ π(I2)). As x ∈ Π \ π(I1), from condition (c) in Definition9,
we obtain x ∈ π(I4). Likewise, as x ∈ Π \ π(I2) from condition (c) in Definition9,
we obtain x ∈ π(I3). Then, x ∈ (π(I3) ∩ π(I4)) = D3. Therefore (D1,D2,D3) is a
tripartition of Π . By our assumption, π(I1) = D1 and π(I2) = D2. We observe that
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π(I3) ∩ D3 = D3; moreover, from conditions (c) and (d), we obtain π(I3) ∩ D2 =
π(I3) ∩ π(I2) = ∅ and π(I3) ∩ D1 = π(I1) ∩ π(I3) = π(I1) = D1; then π(I3) =
π(I3) ∩ (D1 ∪ D2 ∪ D3) = D1 ∪ D3. Likewise, we observe that π(I4) ∩ D3 = D3;
moreover, from conditions (c),(d) in Definition9, we obtain D1 ∩ π(I4) = π(I1) ∩
π(I4) = ∅ and D2 ∩ π(I4) = π(I2) ∩ π(I4) = π(I2) = D2; then π(I4) = π(I4) ∩
(D1 ∪ D2 ∪ D3) = D2 ∪ D3.

(⇐) Assume that (D1,D2,D3), where D1 = π(I1), D2 = π(I2), D3 = π(I3) ∩
π(I4), is a tripartition of Π such that D1 ∪ D3 = π(I3) and D2 ∪ D3 = π(I4),
we prove that the quadruple (s1, s2, s3, s4) satisfies conditions (a), (b), (c), and
(d) in Definition9. We observe that π(I1) ∩ π(I2) = D1 ∩ D2 = ∅, which coin-
cides with (a). Condition (b) is satisfied because π(I3) ∪ π(I4) = D1 ∪ D3 ∪ D2 ∪
D3 = Π . Moreover, π(I1) ∩ π(I4) = D1 ∩ (D2 ∪ D3) = ∅ and π(I1) ∪ π(I4) =
D1 ∪ (D2 ∪ D3) = Π ; likewise,π(I2) ∩ π(I3) = D2 ∩ (D1 ∪ D3) = ∅ andπ(I2) ∪
π(I3) = D2 ∪ (D1 ∪ D3) = Π . Thus, the conditions in (c) are satisfied. Finally,
π(I1) = D1 ⊆ D1 ∪ D3 = π(I3) and π(I2) = D2 ⊆ D2 ∪ D3 = π(I4) which sat-
isfy conditions in (d). �

A method to construct a SOP by starting from a tripartition of Π is given in the
following result (see also [9]).

Corollary 1 Given any sequence of n conditional events F and a tripartition
(D1,D2,D3) ofΠ , then the quadruple (s1, s2, s3, s4), with sk : (F , Ik), k = 1, 2, 3, 4
and π(I1) = D1, π(I2) = D2, π(I3) = D1 ∪ D3, π(I4) = D2 ∪ D3 is a SOP.

Proof The proof immediately follows by observing π(I3) ∩ π(I4) = D3 and by the
(⇐) side proof of Theorem1. �

The following result allows to construct a SOP by starting from a tripartition of
the whole set [0, 1]n:
Corollary 2 Given a tripartition (B1,B2,B3) of [0, 1]n, let I1 = B1, I2 = B2,
I3 = B1 ∪ B3, and I4 = B2 ∪ B3. For any sequence of n conditional events F , the
quadruple (s1, s2, s3, s4), where sk : (F , Ik), k = 1, 2, 3, 4, is a SOP.

Proof Let F be any sequence of n conditional events and Π be the associated
set of all coherent precise assessments. We set Di = π(Bi ), i = 1, 2, 3. Of course,
(π(B1),π(B2),π(B3)) is a tripartition of Π . Moreover, π(I1) = D1, π(I2) = D2,
π(I3) = D1 ∪ D3, π(I4) = D2 ∪ D3. Then, by applying Corollary1 we obtain that
(s1, s2, s3, s4) is a SOP. �

Traditionally the SOP can be constructed based on the fragmented SOP which
requires only the contrariety and contradiction relations (which goes back to Aristo-
tle’s De Interpretatione 6–7, 17b.17–26, see [19, Sect. 2]). This result also holds in
our framework:

Theorem 2 The quadruple (s1, s2, s3, s4) of sentences, with sk : (F , Ik), k = 1, 2,
3, 4, is a SOP iff relations (a) and (c) in Definition9 are satisfied.
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Proof (⇒) It follows directly from Definition9. (⇐) We prove that (d) and (b) in
Definition9 follow from (a) and (c). If π(I1) = ∅, then of course π(I1) ⊆ π(I3).
If π(I1) �= ∅, let x ∈ π(I1) ⊆ Π , from (a) it follows that x /∈ π(I2), and since
(c) requires π(I2) ∪ π(I3) = Π , we obtain x ∈ π(I3). Thus, π(I1) ⊆ π(I3); like-
wise, π(I2) ⊆ π(I4). Therefore, (d) is satisfied. Now we prove that (b) is satisfied,
i.e. π(I3) ∪ π(I4) = Π . Of course, π(I3) ∪ π(I4) ⊆ Π . Let x ∈ Π . If x /∈ π(I3),
then, x ∈ π(I2) from (c). Moreover, from (d), x ∈ π(I4). Then,Π ⊆ π(I3) ∪ π(I4).
Therefore, (b) is satisfied. �

Remark 5 Given two sentences s1 and s2 that are contraries, then the quadruple
(s1, s2, s2, s1) is a SOP.

4 Square of Opposition and Generalized Quantifiers

Let F be a conditional event P|S (where S �= ⊥) and (B1(x),B2(x),B3(x)) be
a tripartition of [0, 1], where B1(x) = [x, 1], B2(x) = [0, 1 − x], B3 =]1 − x, x[
and x ∈] 12 , 1]. Consider the quadruple of sentences (A(x), E(x), I (x), O(x)), with
A(x) : (P|S, IA(x)), E(x) : (P|S, IE(x)), I (x) : (P|S, II (x)), O(x) : (P|S, IO(x)),
where IA(x) = B1 = [x, 1], IE(x) = B2 = [0, 1 − x], II (x) = B1 ∪ B3 =]1 − x, 1],
andIO(x) = B2 ∪ B3 = [0, x[. By applyingCorollary2with (s1, s2, s3, s4) = (A(x),
E(x), I (x), O(x)), it follows that (A(x), E(x), I (x), O(x)) is a SOP for any
x ∈] 12 , 1] (see Fig. 1). We recall that in presence of some logical relations between
P and S the set Π could be a strict subset of [0, 1]. In particular, we have
the following three cases (see, [15, 16]): (i) if P ∧ S �= ⊥ and P ∧ S �= S, then
Π = [0, 1]; (ii) if P ∧ S = S, then Π = {1}; (iii) if P ∧ S = ⊥, then Π = {0}.
The quadruple (A(x), E(x), I (x), O(x)), with the threshold 1

2 < x ≤ 1, is a SOP
in each of the three cases. In particular we obtain: case (i) π(IA(x)) = IA(x),
π(IE(x)) = IE(x),π(II (x)) = II (x), and π(IO(x)) = IO(x); case (ii): π(IA(x)) = {1},

Fig. 1 Probabilistic
SOP defined on the
four sentence types
(A(x), E(x), I (x), O(x))
with the threshold x ∈] 12 , 1]
(see also Table1). It provides
a new interpretation of the
traditional SOP (see, e.g.,
[19]), where the corners are
labeled by “Every S is P”
(A), “No S is P” (E), “Some
S is P” (I), and “Some S is
not P” (O)
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Table 1 Probabilistic interpretation of the sentence types A, E , I , and O involving generalized
quantifiers Q defined by a threshold x (with x ∈] 12 , 1]) on the subject S and predicate P and
the respective imprecise probabilistic assessments IA(x), IE(x), II (x), and IO(x) on the conditional
event P|S (above).When x = 1,we obtain our probabilistic interpretation of the traditional sentence
types A, E , I , and O (below)

Sentence Probability constraints Assessment on P|S
A(x) : (Q≥x S are P) p(P|S) ≥ x IA(x) = [x, 1]
E(x) : (Q≥x S are not P) p(P|S) ≥ x IE(x) = [0, 1 − x]
I (x) : (Q>1−x S are P) p(P|S) > 1 − x II (x) =]1 − x, 1]
O(x) : (Q>1−x S are not P) p(P|S) > 1 − x IO(x) = [0, x[
A(1) : (Every S is P) p(P|S) = 1 IA = [1, 1]
E(1) : (No S is P) p(P|S) = 1 IE = [0, 0]
I (1) : (Some S is P) p(P|S) > 0 II =]0, 1]
O(1) : (Some S is not P) p(P|S) > 0 IO = [0, 1[

π(IE(x)) = ∅,π(II (x)) = {1}, and π(IO(x)) = ∅; case (iii): π(IA(x)) = ∅, π(IE(x)) =
{1},π(II (x)) = ∅, and π(IO(x)) = {1}. We note that in cases (ii) and (iii) we obtain
degenerated squares each, where—apart from the contradictory relations—all rela-
tions are strengthened. Specifically, both contrary and the subcontrary become con-
tradictory relations. Moreover, both subalternation relations become symmetric. As
by coherence p(P|S) + p(P|S) = 1, a sentence s : (P|S, I) is equivalent to the
sentence s ′ : (P|S, I), where I = [0, 1] \ I. Table1 presents generalization of basic
sentence types A(x), E(x), I (x), and O(x) involving generalized quantifiers Q. The
generalized quantifiers are defined on a threshold x > 1

2 . The value of the thresh-
old may be context dependent and provides lots of flexibility for modeling various
instances of generalized quantifiers (like “most”, “almost all”). In the extreme case
x = 1we obtain the probabilistic interpretation under coherence of the basic sentence
types involved in the traditional SOP (A, E, I, O) (see [13, 14]).

5 Concluding Remarks

Based on tools developed in Sect. 3, we can construct a hexagon of opposition by
starting from a square (see, e.g., [5]). More precisely, given a SOP (s1, s2, s3, s4),
by setting A = s1, E = s2, I = s3, O = s4, U = s1 ∨ s2, Y = s3 ∧ s4, the tuple
(A, E, I, O,U,Y ) defines a hexagon of opposition, which we will elaborate in
another paper. Moreover, we note the square presented in Sect. 4 can serve as a
new rationality framework for investigating generalized quantifiers, which are psy-
chologically much more plausible compared to the traditional logical quantifiers,
as the latter are either too strict (∀) or too weak (∃) for formalizing everyday life
sentences (see [18, 20, 21]).
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Testing of Coarsening Mechanisms:
Coarsening at Random Versus Subgroup
Independence

Julia Plass, Marco E.G.V. Cattaneo, Georg Schollmeyer
and Thomas Augustin

Abstract Since coarse(ned) data naturally induce set-valued estimators, analysts
often assume coarsening at random (CAR) to force them to be single-valued. Using
the PASS data as an example, we re-illustrate the impossibility to test CAR and
contrast it to another type of uninformative coarsening called subgroup independence
(SI). It turns out that SI is testable here.

Keywords Coarse data ·Missing data · Coarsening at random (CAR) ·Hypothesis
testing · Likelihood-ratio test

1 The Problem of Testing Coarsening Mechanisms

Traditional statistical methods dealing with missing data (e.g. EM algorithm, impu-
tation techniques) require identifiability of parameters, which frequently tempts ana-
lysts to make the missing at random (MAR) assumption [8] simply for pragmatic
reasons without justifications in substance (e.g. [6]). Since MAR is not testable (e.g.
[9]), this way to proceed is especially alarming.

Looking at the problem in a more general way, incomplete observations may be
included not only in the sense of missing, but also coarse(ned) data. In this way,
additionally to fully observed and unobserved, also partially observed values are
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considered.1 In the context of coarse data, the coarsening at random (CAR) assump-
tion (e.g. [5]) is the analogue of MAR. Although the impossibility of testing CAR
is already known from literature, providing an intuitive insight into this point will
be a first goal of this paper. Apart from CAR, we focus on another, in a sense dual,
assumption that we called subgroup independence (SI) in [11]. In our categorical
setting (cf. Sect. 2), SI not only makes parameters identifiable, but is also testable
as demonstrated here. Thus, we elaborate the substantial difference in the testability
of CAR and SI and start with illustrating both assumptions by a running example
based on the PASS data in Sect. 2 [14]. In Sect. 3 we sketch the crucial argument
of the estimation and show how the generally set-valued estimators are refined by
implying CAR or SI. Testability of both assumptions is discussed in Sect. 4, where
a likelihood-ratio test is suggested for SI.

2 Coarsening Models: CAR and SI

Throughout this paper, we refer to the case of a coarse categorical response variable
Y and one precisely observed binary covariate X . The results may be easily trans-
ferred to cases with more than one arbitrary categorical covariates by using dummy
variables and conditioning on the then emerged subgroups. For sake of concise-
ness, the example refers to the case of a binary Y , where coarsening corresponds to
missingness, but all results are applicable in a general categorical setting.

We approach the problem of coarse data in our setting by distinguishing between
a latent and an observed world: A random sample of a categorical response vari-
able Y1, . . . ,Yn with realizations y1, . . . , yn in sample space ΩY is part of the
latent world. The basic goal consists of estimating the individual probabilities
πxy = P(Yi = y|Xi = x) given the precise values of a categorical covariate X with
sample space ΩX . Unfavorably, the values of Y can only be observed partially and
thus the realizations y1, . . . , yn of a sample Y1, . . . ,Yn of a random object Y within
sample space ΩY = P(ΩY ) \ ∅ constitute the observed world, with yi � yi .2 A con-
nection between both worlds, and thus between πxy and pxy = P(Yi = y|Xi = x),
is established via an observation model governed by the coarsening parameters
qy|xy = P(Yi = y|Xi = x,Yi = y) with y ∈ ΩY , y ∈ ΩY , and x ∈ ΩX . As the
dimension of these coarsening parameters increases considerably with |ΩX | and
|ΩY |, for reasons of conciseness, we mainly confine ourselves to the discussion of
the example with ΩX = {0, 1}, ΩY = {a, b}, and thus ΩY = {{a}, {b}, {a, b}},
where “{a, b}” denotes the only coarse observation, which corresponds to a missing
one in this case. Assuming only error-freeness, we generally refrain from making
strict assumptions on qy|xy . In contrast to this, under CAR and SI the coarsening
parameters are strongly restricted.

1When dealing with coarse data, it is important to distinguish between epistemic data imprecision,
considered here, and ontic data imprecision (cf. [2]).
2This error-freeness implies that Y is an almost sure selector of Y (in the sense of e.g. [10]).
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Table 1 Data of the PASS example

UBII Income Observed counts Total counts

0 {a} n0{a} = 38 n0 = 518

{b} n0{b} = 385

{a, b} n0{a,b} = 95

1 {a} n1{a} = 36 n1 = 87

{b} n1{b} = 42

{a, b} n1{a,b} = 9

Heitjan and Rubin [4] consider maximum likelihood estimation in coarse data
situations by deriving assumptions simplifying the likelihood. These assumptions—
CAR and distinct parameters—make the coarsening ignorable (e.g. [8]). The CAR
assumption requires constant coarsening parameters qy|xy , regardless which true
value y is underlying subject to the condition that it matches with the fixed observed
value y. The strong limitation of this assumption is illustrated by the running example
generally introduced in the following box.

Running example (Table1 shows the summary of the data)

• German Panel Study “Labour Market and Social Security” [14]
(PASS, wave 5, 2011)

• Y : income < 1000e (a) or ≥ 1000e (b) ⇒ y ∈ {a, b}
• Y: some respondents give no suitable answer ({a, b}: y = a or y = b)

⇒ y ∈ {{a}, {b}, {a, b}} ⇒ coarse answer {a, b} is missing observation
• X : receipt of Unemployment Benefit II (UBII), x ∈ {0 (no), 1 (yes)}

Referring to the example, under CAR, which coincides here with MAR,3 the prob-
ability of giving no suitable answer is taken to be independent of the true income
category in both subgroups split by UBII, i.e.

q{a,b}|0a = q{a,b}|0b and q{a,b}|1a = q{a,b}|1b.

Generally, CAR could be quite problematic in this context, as practical experiences
show that reporting missing or coarsened answers is notably common in specific
income groups (e.g. [7]).

If the data are missing not at random (MNAR) [8], commonly the missingness
process is modelled by including parametric assumptions (e.g. [4, 8]) or a cautious

3The PASS data provide income in different levels of coarseness induced by follow-up questions
for non-respondents. For sake of simplicity, we consider only the income question explained in the
box, but the study provides also coarse ordinal data in the general sense.
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procedure is chosen ending up in set-valued estimators (cf. e.g. [3, 11, 17]). For the
categorical case, there is a special case of MNAR, in which single-valued estima-
tors are obtained without parametric assumptions. For motivating this case, one can
further differentiate MNAR, distinguishing between the situation where missingness
depends on both the values of the response Y and the covariate X and the situation
where it depends on the values of Y only. Referring to the related coarsening case,
the latter case corresponds to SI investigated in [11]. This independence from the
covariate value shows, beside CAR, an alternative kind of uninformative coarsening.

Again, one should use this assumption cautiously: Under SI, giving a coarse
answer is taken to be independent of the UBII given the value of Y , i.e.

q{a,b}|0a = q{a,b}|1a and q{a,b}|0b = q{a,b}|1b.

Mostly, this turns out to be doubtful, as the receipt of the UBII influences the income,
which typically has an impact on the non-response to the income question.

3 Estimation: General Approach, CAR and SI

This section recalls some important aspects of an approach developed in [11] by
sketching the basic idea of the therein considered cautious, likelihood-based estima-
tion technique. The resulting estimators are not only given for the general case, but
also when the assumptions in focus are included.

To estimate (πxy)x∈ΩX ,y∈ΩY of the latent world, basically three steps are
accomplished. Firstly, we determine the maximum likelihood estimator (MLE)
( p̂xy)x∈ΩX ,y∈ΩY in the observedworld. Since the counts (nxy)x∈ΩX ,y∈ΩY aremultino-
mially distributed, the unique MLE is obtained by the relative frequencies of the
respective categories, coarse categories treated as own categories. Secondly, we
connect the parameters of both worlds by a mapping Φ. For the binary case with
x ∈ {0, 1} one obtains Φ : [0, 1]6 → [0, 1]4 with

Φ

⎛

⎝
πxa

q{a,b}|xa
q{a,b}|xb

⎞

⎠=
(

πxa · (1 − q{a,b}|xa)
(1 − πxa) · (1 − q{a,b}|xb)

)
=

(
px{a}
px{b}

)
. (1)

Thirdly, by the invariance of the likelihood under parameter transformations, wemay
incorporate the parametrization in terms of πxy and qy|xy into the likelihood of the
observed world. Since the mappingΦ is generally not injective, we obtain set-valued
estimators π̂xy and q̂y|xy , namely

π̂xa ∈
[
nx{a}
nx

,
nx{a} + nx{a,b}

nx

]
, q̂{a,b}|xy ∈

[
0,

nx{a,b}
nx{y} + nx{a,b}

]
, (2)
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with x ∈ {0, 1} and y ∈ {a, b}. Points in these sets are constrained by the relation-
ships inΦ. In the spirit of themethodology of partial identification [9], these setsmay
be refined by including assumptions about the coarsening justified from the applica-
tion standpoint. Very strict assumptions may induce point identified parameters, as
estimation under CAR or SI in the categorical case shows.4

Including CAR, i.e. restricting the set of possible coarsening mechanisms to
q{a,b}|xa = q{a,b}|xb with x ∈ {0, 1}, induces an injective mapping Φ leading to the
point-valued estimators

π̂CAR
xa = nx{a}

nx{a} + nx{b}
, q̂C AR

{a,b}|xa = q̂C AR
{a,b}|xb = nx{a,b}

nx
. (3)

Thus, under this type of uninformative coarsening, π̂xa corresponds here to the pro-
portion of {a}-observations in subgroup x ignoring all coarse values and q̂{a,b}|xa =
q̂{a,b}|xb is the proportion of observed {a, b} in subgroup x .

Under rather weak regularity conditions, namely π0a �= π1a , π0a /∈ {0, 1}, and
π1a /∈ {0, 1} for x ∈ {0, 1}, also under SI the mapping Φ becomes injective (cf. [12])
in our categorical setting. Hence, point-valued estimators

π̂SI
xa = nx{a}

nx

n0 n1{b} − n0{b} n1
n0{a} n1{b} − n0{b} n1{a}

,

q̂ S I
{a,b}|xa = n0{a,b} n1{b} − n0{b} n1{a,b}

n0 n1{b} − n0{b} n1
,

q̂ S I
{a,b}|xb = n0{a,b} n1{a} − n0{a} n1{a,b}

n0 n1{a} − n0{a} n1

(4)

are obtained, provided they are well-defined and inside [0, 1].

4 Testing

Due to the substantial bias of π̂xy if CAR or SI are wrongly assumed (cf. e.g. [12]),
testing these assumptions is of particular interest. Although it is already established
that it is not possible to test whether the CAR condition holds (e.g. [9]), it may be
insightful, in particular in the light of Sect. 4.2, to address this impossibility in the
context of the example.

4Identifiability may not only be obtained by assumptions on the coarsening: e.g. for discrete graph-
ical models with one hidden node, conditions based on the associated concentration graph are used
in [13].
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Fig. 1 Since the relationships expressed via Φ in (1) have to be met, only specific points
from the set-valued estimators in (2) are combinable, ranging from (π̂xa, q̂{a,b}|xa, q̂{a,b}|xb)
to (π̂xa, q̂{a,b}|xa, q̂{a,b}|xb) with the CAR case always included

4.1 Testing of CAR

Acloser consideration of (3) already indicates thatCARcannever be rejectedwithout
including additional assumptions about the coarsening. This point is illustrated in
Fig. 1 by showing the interaction between points in the intervals in (2). Thus, this
uninformative coarsening—in the sense that all coarse observations are ignored—is
always a possible scenario included in the general set-valued estimators in (2).

Exemplary for subgroup 0, under CAR we obtain π̂CAR
0a = 0.09, q̂C AR

{a,b}|0a =
q̂C AR

{a,b}|0b = 0.18, which may not be excluded from the general estimators π̂0a ∈
[0.07, 0.26], q̂{a,b}|0a ∈ [0, 0.71] and q̂{a,b}|0b ∈ [0, 0.20] unless further assumptions
as e.g. “respondents from the high income group tend to give coarse answers more
likely” are justified.

Nevertheless, there are several approaches that show how testability of CAR is
achieved by distributional assumptions (e.g. [5]), e.g. the naive Bayes assumption
[6], or by the inclusion of instrumental variables (cf. [1]).

4.2 Testing of SI

Applying the estimators in (4) to the example, one obtains π̂SI
0a = 0.42, π̂SI

1a = 0.40,
q̂ S I

{a,b}|0a = q̂ S I
{a,b}|1a = −0.04, and q̂ S I

{a,b}|0b = q̂ S I
{a,b}|1b = 0.20 partly outside [0, 1].

This shows that there are data situations that might hint to (partial) incompatibil-
ity with SI. In general for the categorical case, a statistical test for the following
hypotheses can be constructed:

H0 : qy|xy = qy|x ′ y for all y ∈ ΩY , x, x ′ ∈ ΩX , y ∈ ΩY ,

H1 : qy|xy �= qy|x ′ y for some y ∈ ΩY , x, x ′ ∈ ΩX , y ∈ ΩY .
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Fig. 2 The impact on Λ of two substantially differing data situations is illustrated

As test statistic we can use the likelihood ratio (e.g. [16])

Λ(y1, . . . , yn, x1, . . . , xn) = supH0
L(ϑ||y1, . . . , yn, x1, . . . , xn)

supH0∪H1
L(ϑ||y1, . . . , yn, x1, . . . , xn)

,

here with ϑ = (π0a,π1a, q{a,b}|0a, q{a,b}|1a, q{a,b}|0b, q{a,b}|1b)T .5 In fact, recent simu-
lation studies corroborate the decrease of Λ with deviation from SI (cf. [12]). The
sensitivity ofΛwith regard to the test considered here is also illustrated informally in
Fig. 2 by depicting Φ in (1) for two data situations, where only the second one gives
evidence against SI. The gray line symbolizes all arguments satisfying SI, while the
bold line represents all arguments maximizing the likelihood (i.e. all values in (2)
compatible with each other). The intersection of both lines represents the values in
(4), and if it is included in the domain of Φ (cf. first case of Fig. 2), the same max-
imal value of the likelihood is obtained regardless of including SI or not, resulting
in Λ = 1. An intersection outside the domain (cf. second case of Fig. 2) induces a
lower value of the likelihood under SI, also reflected in Λ < 1. For the example one
obtains Λ ≈ 0.93 and thus there is a slight evidence against SI based on a direct
interpretation of the likelihood ratio, while setting a general decision rule depending
on a significance level α remains as an open problem.

5 Conclusion

We focused on the testability of CAR and SI by investigating the compatibility of the
estimators (3) and (4) with the observed data.While CAR is generally not testable, SI
may be tested and a “pure likelihood” approach was proposed. To obtain a statistical
test for SI at a fixed level of significance α, we want to determine the (asymptotic)
distribution of −2 logΛ under H0 next, which is expected to deviate from the χ2-
distribution of the standard case. Furthermore, a generalized version of SI—in the

5While the denominator of Λ can be obtained using any values in (2) compatible with each other,
the numerator must in general be calculated by numerical optimization. Alternatives to this statistic
include a test decision based on uncertainty regions [15].
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sense of assuming particular coarsening parameters to be known multiples of each
other—will allow for a more flexible application of this hypothesis test.
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Two-Sample Similarity Test
for the Expected Value of Random Intervals

Ana B. Ramos-Guajardo and Ángela Blanco-Fernández

Abstract The similarity degree between the expectation of two random intervals is
studied by means of a hypothesis testing procedure. For this purpose, a similarity
measure for intervals is introduced based on the so-called Jaccard index for convex
sets. The measure ranges from 0 (if both intervals are not similar at all, i.e., if they
are not overlapped) to 1 (if both intervals are equal). A test statistic is proposed and
its limit distribution is analyzed by considering asymptotic and bootstrap techniques.
Some simulation studies are carried out to examine the behaviour of the approach.

1 Introduction

Interval data derive from experimental studies involving ranges, fluctuations, subjec-
tive perceptions, censored data, grouped data, and so on [5, 6, 9]. Random intervals
(RIs) have been shown to model and handle suitably such kind of data in different
settings [2, 3, 10, 11].

The Aumman expectation of a RI is also an interval and inferences concerning
the Aumann expectation and, especially, hypothesis tests for the expected value of
random intervals have been previously developed in the literature [4, 8]. Additionally,
tests relaxing strict equalities have been also carried out as, for instance, inclusion
tests for the Aumann expectation of RIs [12], or similarity tests for the expected
value of an RI and a previously fixed interval [13].

The aim of this work is to develop a two-sample test for the similarity of the
expectations of two RIs. The similarity measure to be considered is based on the
classical Jaccard similarity coefficient for classical convex sets [7], which can
be seen as a ratio of the Lebesgue measure of the intersection interval and the
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Lebesgue measure of the union interval [14]. A statistic to solve the test is intro-
duced, and its asymptotic and bootstrap limit distributions are theoretically analyzed.
The development of bootstrap techniques allows us to approximate the sampling dis-
tribution of the statistic in practice, since the asymptotic one depends on unknown
parameters in general. Finally, simulation studies are developed to show the empirical
behaviour of the procedure.

2 Preliminary Concepts

Fromnowon, letKc(R) denote the family of non-empty closed and bounded intervals
inR. An interval A ∈ Kc(R) can be characterized by either its (mid, spr) representa-
tion (i.e., A = [midA ± sprA], withmidA ∈ R themid-point or centre and sprA ≥ 0
the spread or radius of A) or its (inf, sup) representation (i.e., A = [inf A, sup A]).

The usual interval arithmetic is based on theMinkowski’s addition and the product
by a scalar. It is expressed in terms of the (mid, spr) representation as A1 + λA2 =
[(midA1 + λmidA2) ± (sprA1 + |λ|sprA2)], for A1, A2 ∈ Kc(R) and λ ∈ R.

The Lebesgue measure of A ∈ Kc(R) is given by λ(A) = 2sprA. Obviously, the
Lebesguemeasure of the empty set isλ(∅) = 0. In addition, the Lebesguemeasure of
the intersection between A and B, λ(A ∩ B), for any A, B ∈ Kc(R) can be expressed
as follows [14]:

max
{
0,min

{
2sprA, 2sprB, sprA + sprB − |midA − midB|

}}
. (1)

A measure of the degree of similarity between two intervals A, B ∈ Kc(R) can
be defined according to the Jaccard coefficient [7] as

S(A, B) = λ(A ∩ B)

λ(A ∪ B)
. (2)

This similarity measure fulfils that S(A, B) = 0 iff A ∩ B = ∅, S(A, B) = 1 iff
A = B, and S(A, B) ∈ (0, 1) iff A ∩ B �= ∅ and A �= B. As an example, the similar-
ity measure of two intervals A and B is 1/2 whenever both intervals are overlapped
and the length of A is the double than the length of B, or viceversa.

Random variables modelling those situations in which intervals on Kc(R) are
provided as outcomes are called random intervals (RIs). Given a probability space
(Ω,A, P), an RI is a Borel measurable mapping X : Ω → Kc(R) w.r.t. the well-
known Hausdorff metric on Kc(R) [10]. It is equivalently shown that X is an RI if
both midX, sprX : Ω → R are real-valued random variables and sprX ≥ 0 a.s.-[P].

Whenever midX, sprX ∈ L1(Ω,A, P), it is possible to define the Aumann
expected value of X [1]. In terms of classical expectations it is expressed as
E([midX ± sprX ]) = [E(midX) ± E(sprX)]. Let {Xi }ni=1 be a simple random sam-
ple of X . The corresponding sample expectation of X is defined coherently in terms
of the interval arithmetic as X = (1/n)

∑n
i=1 Xi , and it fulfils X = [midX ± sprX ].
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3 Similarity Test for the Expected Values of Two RIs

Let (Ω,A, P) be a probability space, and X,Y : Ω −→ Kc(R) be two RIs such that
sprE(X) > 0 and sprE(Y ) > 0. Some mild conditions are assumed to guarantee the
existence of the involved moments and to avoid trivial situations (as, for instance,
the singularity of the covariance matrix). Thus, X and Y are supposed to belong to
the following class of random intervals:

P =
{
X : Ω → Kc(R) | σ2

midX < ∞, 0 < σ2
sprX < ∞

∧ (Cov(midX, sprX))2 �= σ2
midXσ2

sprX

}
.

Given d ∈ [0, 1], the aim is to test

H0 : S(E(X), E(Y )) ≥ d versus H1 : S(E(X), E(Y )) < d. (3)

The alternative one-sided and two-sided tests (that is, those analyzing if the Jaccard
index of the expectations equals d or if it is greater than or equal to d) could be
analogously studied. We focus our attention in (3) since it seems to be the most
appealing for practical applications. From (1) and (2) it is straightforward to show
that the null hypothesis of the test (3) can be equivalently expressed as

H0 : max
{
d sprE(Y ) − sprE(X), d sprE(X) − sprE(Y ),

(1 + d) |midE(X) − midE(Y )|
+ (d − 1) (sprE(X) + sprE(Y ))

}
≤ 0.

(4)

The resolution of the test is addressed below by considering an asymptotic
approach. Let {Xi }ni=1 and {Yi }ni=1 be two samples of random intervals being indepen-
dent and identically distributed as X and Y , respectively. The test statistic is defined
as

Tn = √
nmax

{
d sprYn − sprXn, d sprXn − sprYn,

(1 + d)
∣∣midXn − midYn

∣∣ + (d − 1)
(
sprXn + sprYn

) }
.

(5)

From now on, let us consider the bivariate normal distributions Z = (z1, z2)T ≡
N2

(
0,Σ1

)
andU = (u1, u2)T ≡ N2

(
0,Σ2

)
, whereΣ1 is the covariance matrix for

the random vector (midX, sprX) and Σ2 is the corresponding one for (midY, sprY ).
The limit distribution of the statistic Tn under H0 is analyzed in the following result.

Theorem 1 For n ∈ N, let {Xi }ni=1 and {Yi }ni=1 be simple random samples from X
and Y , respectively. Let Tn be defined as in (5). If X,Y ∈ P , then:
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(a) Whenever sprE(X) = d sprE(Y ) and midE(X) − midE(Y ) = (1 − d)sprE(Y ), it is ful-
filled that

Tn
L−→ max{du2 − z2, (1 + d)(z1 − u1) + (d − 1)(z2 + u2)}. (6)

(b) Whenever sprE(X) = d sprE(Y ) and −midE(X) + midE(Y ) = (1 − d)sprE(Y ), it is
fulfilled that

Tn
L−→ max{du2 − z2, (1 + d)(u1 − z1) + (d − 1)(z2 + u2)}. (7)

(c) Whenever d sprE(X) = sprE(Y ) andmidE(X) − midE(Y ) = (1 − d)

d
sprE(Y ), it is ful-

filled that

Tn
L−→ max{dz2 − u2, (1 + d)(z1 − u1) + (d − 1)(z2 + u2)}. (8)

(d) Whenever d sprE(X) = sprE(Y ) and −midE(X) + midE(Y ) = (1 − d)

d
sprE(Y ), it is

fulfilled that

Tn
L−→ max{dz2 − u2, (1 + d)(u1 − z1) + (d − 1)(z2 + u2)}. (9)

Proof The statistic Tn can be equivalently expressed as Tn=√
nmax{A,B,C}, where

A = d
(
sprYn − sprE(Y )

) + d sprE(Y ) − sprE(X) + sprE(X) − sprXn , B =
d

(
sprXn − sprE(X)

) + d sprE(X) − sprE(Y ) + sprE(Y ) − sprYn and C =(1 +
d)

∣∣midXn − midE(X) + midE(X) − midE(Y ) + midE(Y ) − midYn
∣∣ + (d − 1)(

sprXn − sprE(X) + sprE(X) + sprE(Y ) − sprE(Y ) + sprYn
)

(a) If sprE(X) = d sprE(Y ) andmidE(X) − midE(Y ) = (1 − d)sprE(Y ), the sec-
ond term and the negative form of the third term diverge in probability to−∞ as
n → ∞ by the Central Limit and the Slutsky’s theorems. Finally, the Continuous
Mapping and the Central Limit Theorems for real variables lead to (6).
Similar reasonings can be taken into account in the other three situations:

(b) If sprE(X) = d sprE(Y ) and −midE(X) + midE(Y ) = (1 − d)sprE(Y ), the
second term and the positive form of the third term diverges in probability to
−∞ as n → ∞;

(c) If d sprE(X) = sprE(Y ) and midE(X) − midE(Y ) = (1 − d)

d
sprE(Y ), the

first term and the negative form of the third term diverges in probability to
−∞ as n → ∞;

(d) If d sprE(X) = sprE(Y ) and −midE(X) + midE(Y ) = (1 − d)

d
sprE(Y ), the

first term and the negative form of the third term diverges in probability to −∞
as n → ∞.

�
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Remark 1 As in the real framework, other situations under H0 being different than
the ones shown in Theorem 1 (which are the ’worst’ or ’limit’ situations under H0)
lead the statistic Tn to converge weakly to a limit distribution which is stochastically
bounded for one of those provided in the theorem.

Since the limit distribution of Tn depends on X and Y , we can consider the
following (X,Y )-dependent distribution for the theoretical analysis of the testing
procedure (see [13]):

T ′
n = max

{√
n

(
d

(
sprYn − sprE(Y )

) + sprE(X) − sprXn
)

+min
(
0, n1/4(sprYn − sprXn)

)
,√

n
(
d

(
sprXn − sprE(X)

) + sprE(Y ) − sprYn
)

+min
(
0, n1/4(sprXn − sprYn)

)
,√

n
(
(1 + d)

(
midXn − midE(X) + midE(Y ) − midYn

)

+ (d − 1)
(
sprXn − sprE(X) + sprYn − sprE(Y )

) )

+min
(
0, n1/4(midXn − midYn)

)
,√

n
(
(1 + d)

(
midE(X) − midXn − midE(Y ) + midYn

)

+ (d − 1)
(
sprXn − sprE(X) + sprYn − sprE(Y )

) )

+min
(
0, n1/4(midYn − midXn)

) }
.

(10)

As in [13], the inclusion of min
(
0, n1/4(sprYn − sprXn)

)
(and so for mids) in T ′

n
are useful to determine the terms on its expression having relevance depending on
each situation considered under H0. The consistency and the power of the test are
shown in Theorem 2.

Theorem 2 Let α ∈ [0, 1] and k1−α be the (1 − α)-quantile of the asymptotic dis-
tribution of T ′

n. If H0 in (4) is true, then it is satisfied that

lim sup
n→∞

P
(
T ′
n > k1−α

) ≤ α,

and the equality is achieved whenever conditions in a), b), c) and d) in Theorem 1
are fulfilled. In addition, if H0 is not true, then

lim
n→∞ P

(
T ′
n > k1−α

) = 1.

As an immediate consequence of Theorem 2, the test which rejects H0 in (4) at the
significance level α whenever T ′

n > k1−α is asymptotically efficient and consistent.
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3.1 Bootstrap Test

Since the asymptotic limit distribution is not easy to handle in practice, a residual
bootstrap approach is proposed. Let X and Y be two RIs such that sprE(X) > 0 and
sprE(Y ) > 0, and let {Xi }ni=1 and {Yi }ni=1 be two simple random samples drawn from
X and Y , respectively. Let us consider bootstrap samples for X and Y , i.e. {X∗

i }ni=1
and {Y ∗

i }ni=1 being chosen randomly and with replacement from {Xi }ni=1 and {Yi }ni=1,
respectively. The bootstrap statistic is based on the expression of T ′

n and it is defined
as follows:

T ∗
n = max

{√
n

(
d

(
sprY ∗

n − sprYn
) + sprXn − sprX∗

n

)

+min
(
0, n1/4(sprYn − sprXn)

)
,√

n
(
d

(
sprX∗

n − sprXn
) + sprYn − sprY ∗

n

)

+min
(
0, n1/4(sprXn − sprYn)

)
,√

n
(
(1 + d)

(
midX∗

n − midXn + midYn − midY ∗
n

)

+ (d − 1)
(
sprX∗

n − sprXn + sprY ∗
n − sprYn

) )

+min
(
0, n1/4(midXn − midYn)

)
,√

n
(
(1 + d)

(
midXn − midX∗

n + midY ∗
n − midYn

)

+ (d − 1)
(
sprX∗

n − sprXn + midY ∗
n − midYn

) )

+min
(
0, n1/4(midYn − midXn)

) }
.

(11)

The different asymptotic distributions of T ∗
n are (almost sure) the ones provided

in Theorem 1 for Tn , under the same conditions, and the consistency of the bootstrap
procedure is straightforwardly derived. The distribution of T ∗

n is approximated in
practice by means of the Monte Carlo method.

4 Simulations

The empirical behaviour of the bootstrap test is shown by simulation. Two different
situations are considered: in the first one the mid and spr components of the two
independent RIs X and Y are independently generated. In the second situation, it is
allowed that those components have certain level of dependence each other. The two
situations are described as follows:

• Situation 1: midX ≡ N (2, 5), sprX ≡ U (1, 3); midY ≡ N (3, 5), sprY ≡
U (1, 5).

• Situation 2: midX ≡ U (2, 6), sprX ≡ midX/2; midY = sprY ≡ U (1, 5).

It is straightforward to show that the theoretical situation 1 satisfies the conditions (a)
of Theorem 1, and the situation 2 is under conditions (b). Besides, S(E(X), E(Y )) =
2/3 in both cases.
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Table 1 Empirical size of the two-sample similarity bootstrap test in Situations 1 and 2

n�100 · α Situation 1 Situation 2

1 5 10 1 5 10

10 2.27 6.88 10.64 2.38 7.36 11.85

30 1.60 4.60 9.54 1.89 5.73 10.31

50 1.35 4.96 10.59 1.44 5.32 10.46

100 1.27 5.06 10.35 1.22 5.18 10.24

200 0.95 4.89 9.88 1.1 5.12 9.8

The bootstrap test proposed in Sect. 3.1 has been run for 10000 simulations with
1000 bootstrap replications each to test H0 : S(E(X), E(Y )) ≥ 2/3 versus H1 :
S(E(X), E(Y )) < 2/3, for several significance levels α and different sample sizes.
Results are gathered in Table1. They show that the empirical sizes of the test are in
both cases quite close to the expected nominal significance levels even for moderate
sample sizes. Specifically, the approximation to the nominal significance level is
more conservative in the first situation than in the second one. The slight differences
appreciated in the two situations may be due to the diverse nature of the distributions.

Finally, a small empirical study to show the power of the proposed test has
been developed. Specifically, midX in Case 1 has been chosen to have distributions
N (1, 5), N (0, 5) and N (−1, 5), respectively. In these cases, the bootstrap approach
for α = 0.05 and n = 50 lead to p-values of 0.153, 0.381 and 0.692, respectively,
and, therefore, in this case the power of the test approximate to 1 as the distribution
of X moves further away from the null hypothesis.

5 Conclusions and Open Problems

A hypothesis test for checking the similarity between the expected value of two
RIs has been introduced. A test statistic has been proposed and its limit distribution
has been analyzed by means of both asymptotic and bootstrap techniques. Some
simulation studies have been carried out to show the suitability of the bootstrap
approach for moderate/large sample sizes.

As future work, theoretical and empirical comparisons between different sim-
ilarity indexes should be developed. The power of the proposed test may also be
theoretically analyzed as well as the sensitivity of the test when different distribu-
tions are chosen. Other versions of the test statistic involving the covariance matrix
can be studied. Finally, the proposed test could be extended to more than two RIs
and to the fuzzy framework.
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Handling Uncertainty in Structural Equation
Modeling

Rosaria Romano and Francesco Palumbo

Abstract This paper attempts to propose an overviewof a recentmethod named par-
tial possibilistic regression path modeling (PPRPM), which is a particular structural
equation model that combines the principles of path modeling with those of possi-
bilistic regression to model the net of relations among variables. PPRPM assumes
that the randomness can be referred to the measurement error, that is the error in
modeling the relations among the observed variables, and the vagueness to the struc-
tural error, that is the uncertainty in modeling the relations among the latent vari-
ables behind each block. PPRPM gives rise to possibilistic regressions that account
for the imprecise nature or vagueness in our understanding phenomena, which is
manifested by yielding interval path coefficients of the structural model. However,
possibilistic regression is known to be a model sensitive to extreme values. That is
way recent developments of PPRPM are focused on robust procedures for the detec-
tion of extreme values to omit or lessen their effect on the modeling. A case study on
the motivational and emotional aspects of teaching is used to illustrate the procedure.

Keywords Interval-valued data · Possibilistic regression · SEM · Extreme values

1 Introduction

Path Analysis (PA) represents a widely used tool in exploratory and confirmatory
statistical analysis to describe direct dependencies among set of variables [10]. A spe-
cial class of PA is represented by Structural Equation Models (SEM) [4], which aim
to estimate a network of causal relationships among latent variables (LVs) defined
by blocks of manifest variables (MVs). The relations among the LVs define the
structural model, whereas the relations between each LV and its own block of MVs
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define themeasurement model. The common features of PA and SEM are that: (i) two
ormore sets of variables are involved; (ii) at least one of these variables is latent. SEM
are generally divided into two categories, according to the estimation procedure [21]:
covariance based SEM (CBSEM) and variance based SEM (VBSEM). CBSEM esti-
mates the model parameters through a unique estimation of the Variance-Covariance
matrix. Under the usual assumptions, estimation is achieved via Maximum Like-
lihood (ML) approach. VBSEM estimation is a two-step procedure. Partial Least
Squares Path Modeling (PLSPM) is the most largely used approach for VBSEM
that partially estimates the outer model parameters and the inner model parameters
alternatively [22]. Each block is estimated independently and the procedure stops
when the convergence is reached. Albeit the original proposal is based on ordinary
least squares estimation for both the outer and the inner model parameters, several
different approaches have been proposed. In particular some alternatives are based
on the least absolute deviation (LAD) regression. For sake of space, we skip any
discussion on the model interpretation in CBSEM and VBSEM and we focus on the
model residuals.

The model goodness of fit in CBSEM is evaluated by comparing the observed
Variance-Covariance matrix and the estimated one. In VBSEM the attention is
focused on the residual, defined as the deviation between the estimated and the
observed dependent variable. In such a case, we deal with two different sources
of residuals: the outer model and the inner model residuals. Outer model residuals
are interpretable using the usual reading-key, but the inner model residual cannot.
Inner model residuals represent the model inadequacy in describing the relation-
ships between the latent variables. Recalling George Box: “All models are wrong
but some are useful”, so the model inadequacy can be described by the vagueness of
its parameters. The possibilistic theory approach allows us to take into account the
vagueness by interval-valued parameters.

Recently, a new method named Partial Possibilistic Regression Path Modeling
(PPRPM) [14–16] has been proposed as an alternative to the classical PLSPM. As
discussed in [15], PPRPM is aiming at dealing with the two sources of uncertainty
in the VBSEM: (a) the measurement error related to the relations between each LV
and its own block of items, (b) the structural error related to the relations among
the LVs. The former is generally defined as any deviation from the true value of a
variable that arises in the measurement process. The latter is something different: it
originates from the relationships between variables that are latent and not directly
measured. PPRPM assumes that the randomness can be referred to themeasurement
error and the vagueness to the structural error. The main idea is that variability in
structural model is not caused by the error but by the intrinsic variety of the systems
output.

PPRPM differently minimizes the two error components. The randomness is min-
imized in the same way as the classical PLSPM approach based on classical linear
regressions, but using the least absolute values instead of the least squares. The
vagueness is minimized by the Possibilistic Regression (PR) [19], which consid-
ers this type of uncertainty as included in the range of model parameters, defined
as interval-valued data [1], i.e. range of values denoted in terms of midpoint and
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range. The estimation procedure consists in solving a problem whose objective is to
minimize the range of the interval-valued parameters. This choice allows us to take
into account the vague relations among the LVs, on the one hand, and on the other
hand, the use of the least absolute values allows us to get a more robust estimate of
the LV scores and ensures consistency between the minimization procedure of the
two error components. In fact, PPRPM estimation process is an L1 norm problem
that independently minimizes the sum of the absolute values of the residuals in the
measurement model and the sum of all the ranges of the interval-valued coefficients
in the structural model.

PR was introduced by Tanaka and Watada [20], who established their idea on
the basis of possibility theory [23]. Since then different approaches have been pro-
posed to cope with vagueness in regression analysis. For the sake of simplicity they
can be grouped into two broad categories: Fuzzy Least Square Regression (FLSR)
and Possibilistic Regression (PR). Two papers can be considered seminal for each
approach, whilemany others have proposed further developments. Diamond’s papers
[7, 8] introduced the FLSR approach (see also [5, 6]) which has been extended to
the interval data analysis [2, 3, 12] and to symbolic data analysis [9]. The paper by
Tanaka and Asai [18] introduced the PR approach. We refer the reader to the book
by Tanaka and Guo [19] for an exhaustive overview of possibilistic data analysis.

Despite the new developments, Tanaka’s approach remains the benchmark as a
model for handling vagueness in case of crisp data. That is way PR is used in PPRPM
to model structural relations. But it is excessively sensitive to extreme values leading
to broad interval outputs that may make results inaccurate for a useful interpretation.

This proposal aims to propose an overview of the use of PPRPM. Recent develop-
ments focus on a robustifying procedure to PPRPM, where according to [17] extreme
values are detected to omit or lessen their effect.

The paper is organized as follows: Sect. 2 shortly introduces the interval data
notation, summarizes thePPRPMand illustrates a procedure to handle extremevalues
in PR; Sect. 3 shows an example on real data.

2 Partial Possibilistic Regression Path Modeling

Interval-valued data represent a special case of fuzzy data, generally defined in terms
of extreme values (lower and upper bound) or midpoint and range. A rigorous study
of interval data is given by Interval Analysis [1]. In this framework, an interval value
is a bounded subset of real numbers [x] = [x, x]:

[x] = {x ∈ R| x ≤ x ≤ x}, (1)
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where x and x are the lower and upper bound, respectively. Alternatively the
range/midpoint notation is defined as:

r(x) = |x − x | c(x) = 1

2
|x + x |,

where r(x) and c(x) refer to the range and the midpoint, respectively. For sake of
short notation, the set {c(x); r(x)} can also be noted as x̃ (or {c, r}).

PRdefines the relation between one dependent variableY and a set ofM predictors
X1, X2, . . . , XM , observed on N statistical units, through a linear function holding
interval valued coefficients [20]

Y = ω̃1X1 + · · · + ω̃m Xm + · · · + ω̃M XM , (2)

where ω̃m denotes the generic interval-valued coefficient in terms of midpoint and
range: ω̃m = {cm; rm}. It is worth noting that there is no error term in Eq.2, since
the interval-valued coefficients ω̃m embed it. PR aims to minimize the sum of the
interval coefficient ranges

min
∑M

m=1

(∑N
n=1 rm |xnm |

)
, (3)

under the following linear constraints

∑M
m=1 cmxnm + ∑M

m=1 rm |xnm | ≥ yn,
∑M

m=1 cmxnm − ∑M
m=1 rm |xnm | ≤ yn, ∀n = 1, . . . , N , (4)

satisfying the following conditions: (i) rm ≥ 0; (ii) cm ∈ R. Constraints in (4) guaran-
tee the inclusion of the whole given data in the estimated boundaries. In a geometric
view, where statistical units are represented as points in the �M+1 space, the optimal
solution ensures the inclusion of the whole given data set in the estimated boundaries
with the minimum range of parameters.

PPRPM estimation process is an L1 norm problem that independently minimizes
the sum of the absolute values of the residuals in the measurement model and the
sum of all the ranges of the interval-valued coefficients in the structural model.
The algorithm computes the latent variables’ scores alternating the outer and inner
estimation till convergence. The procedure starts on centered (or standardized) MVs
by choosing arbitrary weightswph . In the external estimation, the LV is estimated as
a linear combination of its own MVs:

vh ∝
Ph∑

p=1

wphxph = Xhwh, (5)

where vh is the standardized outer estimation of the LV ξh and the symbol ∝ means
that the left-hand side of the equation corresponds to the standardized right-hand
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side. In the internal estimation, the LV is estimated by considering its links with the
other adjacent H ′ latent variables:

ϑh ∝
H ′∑

h′=1

ehh′vh′ , (6)

where ϑh is the standardized inner estimation of the LV ξh and the inner weights,
according to the so called centroid scheme [11], are equal to the sign of the correlation
between the outer estimate vh of the hth LV and the outer estimate of the h′ LV vh′

connected with vh .
These first two steps allow us to update the outer weights wph . The weight wph

is the regression coefficient in the median regression of the pth MV of the hth block
xph on the inner estimate of the hth LV ϑh :

xph = wphϑh + εph . (7)

The algorithm iterates till convergence and it is demonstrated to be convergent for
one and two-block models. However, for multi-block models, convergence is always
verified in practice. After convergence, structural (or path) coefficients are estimated
through PR among the estimated LVs.

ξ j = β̃0 j +
∑

h:ξh→ξ j

β̃h jξh, (8)

where ξ j ( j = 1, . . . , J ) is the generic endogenous (dependent) LV and β̃h j is the
generic interval path coefficient or equivalently [β

h j
,βh j ] = [chj ± ahj ], interrelat-

ing the hth exogenous (independent) variable to the j th endogenous one. The higher
the midpoint coefficient the higher the contribution to the prediction of the endoge-
nous LV, while the higher the range coefficient the higher the imprecision in the
relation among the considered LVs.

As discussed in Sect. 1, PR is sensitive to extreme values. A recent contribution
[17] has shown a procedure to handle outliers in PR. The proposed approach has
been implemented in PPRPM. The robustifying procedure begins once PPRPM have
reached convergence. Each structural equation is undergone to the following steps:

1. run the OLS on all of the LV’s scores;
2. if the amount of R-square is ≥0.8 go to step 6, else go to step 3;
3. In turn, from first to end, put away one observation and fit a curve by OLS to the

other remaining data, while keeping the corresponding R-square in each phase;
4. delete the observations by ignorance of which the maximum of R-square is

reached;
5. implement OLS to the new data and go back to step 2;
6. substitute fn = Ỹ (xn) computed by the final OLS;
7. implement the PR.



436 R. Romano and F. Palumbo

3 Example

The case study investigates some dimensions that affect the quality of teaching in
high school. In particular, we examined the motivational and emotional aspects of
teachers depending on: (a) the type of high school; (b) their working position; (c)
the gender; (d) the socio-cultural context in which the teacher operates. The MESI
(Motivation, Emotions, Strategies, Teaching) questionnaire was used in [13], which
consists of six psychometrics scales that investigate job satisfaction, practices, teach-
ing strategies, emotions, self-efficacy, and incrementality. According to theoretical
assumptions, we propose an empirical framework (see Fig. 1) for analyzing the rela-
tionships among four out of six scales composing the MESI. In our simplified MESI
model, the attention is focused on the relations between satisfaction and emotions,
and satisfaction and self-efficacy. Results are shown in Table1. As can be seen,
there is no relation between satisfaction and self-efficacy, since the path coefficient
is equal to 0. Teach-emotions is positively related to satisfaction with a path coeffi-
cient equal to 0.69, which means that when a teacher is satisfied he/she feels more
frequently positive emotions while teaching. Both satisfaction and teach-emotions
are good predictors of role-emotions, with path coefficients equal to 0.39 and 0.22,
respectively. In other words, when a teacher is satisfied he/she feels more frequently
positive emotions also in his/her role as a teacher. In addition, the increase in positive

Fig. 1 Structural model of
the MESI questionnaire: the
model considers the relations
between satisfaction and
emotions, and satisfaction
and self-efficacy

Table 1 PLSPM and PPRPM structural model results

Relations PLSPM path R2 PPRPM path IC

Satisfaction >
self-efficacy

0.21 0.05 {0.0; 0.0} 0.77

Satisfaction >
teach-emotions

0.60 0.37 {0.69; 0.23} 0.88

Satisfaction >
role-emotions

0.27 0.59 {0.39; 0.0} 0.80

Teach-emotions
> role emotions

0.56 {0.22; 0.16}
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emotions while teaching also increases positive emotions in the role of teacher. It is
worth noting that some relations indicate a certain imprecision. This holds for the
relationship between satisfaction and teach-emotions, whose path coefficient has a
range equal to 0.23, and the relationship between the latter and the role-emotion,
whose path coefficient has a range equal to 0.16. In Table1 the results of the PPRPM
are also compared with those of the classical PLSPM. In particular, the table shows
the values of the path coefficients and of the goodness of fit indexes. As can be seen,
PPRPM results are consistent with the results obtained on the classical single val-
ued parameters model. The weak relationship between satisfaction and self-efficacy
highlighted by a path coefficient close to zero in the PPRPM approach, is underlined
by the low value of the R2 index in PLSPM. The coefficient between satisfaction
and teach-emotions is very similar in the two approaches, but PPRPM also provides
information on the uncertainty of the relation. In other words, the range of the coeffi-
cient shows that the variation in the opinions of the respondents with respect to these
two scales is not sufficient to arrive at a precise measurement of the dependent rela-
tionship between the two scales. Finally, both approaches show that role-emotions
depend on the satisfaction and teach-emotions, but the PPRPM approach highlights
the fact that there is a greater margin of imprecision in the second relation (higher
range).

4 Concluding Remarks

This paper has shown how the proposed procedure can be considered a valid alterna-
tive to the classical SEM for analyzing ordinal subjective data. In this paper, PPRPM
permits to appreciate how much the inner model (structural model) relationships are
vague. However, it is well known that models based on PR are sensitive to outliers.
In such a context, the present proposal has implemented the procedure proposed by
[17]. For sake of space we did not discuss any detail about the procedure implemen-
tation. It requires subjective choices of the thresholds for the detection of the outliers.
Current research are focused on alternative approaches to cope with such a issue.
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Detecting Inconsistencies in Revision
Problems

Fabian Schmidt, Jörg Gebhardt and Rudolf Kruse

Abstract When dealing with complex knowledge, inconsistencies become a big
problem. One important aspect of handling inconsistencies is their detection. In this
paper we consider approaches to detect different types of inconsistencies that may
occur in the formulation of revision problems. The general discussion focuses on the
revision of probability distributions. In our practical analysis, we refer to probability
distributions represented as Markov networks.

1 Introduction

One important aspect of maintaining knowledge for knowledge based systems is
the ability to react to changes in beliefs quickly and frequently. Therefore, methods
have been developed to properly adapt knowledge to new beliefs. One important
aspect of proper adaptation is formulated in the principle of minimal change [9],
which states that in order to incorporate given new beliefs, only absolutely necessary
changes have to be made in a knowledge base. This means, after the incorporation of
the new beliefs, the knowledge base should be as close to the original one as possible,
in an information theoretic sense. The revision operation has been introduced as a
belief change operation that applies new beliefs respecting this principle [7]. From
the perspective of knowledge based systems, further properties a revision operation
should satisfy have been formulated as postulates in [1, 5, 13]. How to approach
revision algorithmically has been outlined in [6], and computational considerations
have been made in [18]. Our work focuses on the revision of probability distribu-
tions as it has been introduced in [10]. In this context the revision operation has been
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successfully implemented for Markov networks [2, 11] using iterative proportional
fitting [21, 23]. This method is well known in the area of statistics and shows bene-
ficial properties for our context. Markov networks are a suitable tool to decompose
high-dimensional probability spaces into a number of smaller low-dimensional prob-
ability distributions. They belong to a group of techniques called graphical models
[15, 16, 19, 24].

The growing complexity and interconnectedness of knowledge bases and an
increasing number of new beliefs lead almost inevitably to inconsistencies in the
formulation of revision problems. In almost any type of knowledge based sys-
tems, inconsistencies render the underlying upon useless and should consequently
be addressed. In this contribution we focus on inconsistencies during the revision of
probability distributions. This is amulti-facet problem and different aspects of it have
been introduced in [22]. Furthermore, two types of inconsistencies and a revision
control algorithm have been described in [12].

In thisworkwe focus on the important aspect of detecting the presence of inconsis-
tencies in a given revision problem. In Sect. 2 of this paper, wewill formally introduce
the revision operation, specify what a revision problem is, and define revision incon-
sistencies. Section3 then discusses how the problem of detecting inconsistencies can
be approached, deals with different classes of possible solutions as well as a short
analysis on the usability of the given classes in our scenario. In Sect. 4 we look at the
detection of inconsistencies from the point of view of an application using Markov
networks. Section5 then concludes the paper and provides some ideas for future
research.

2 Fundamentals

In this section we will describe the revision operation, define the revision problem,
and specify what inconsistencies are in that context.

2.1 The Revision Operation

This work focuses on the revision of probability distributions and we therefore define
it in this context.

As mentioned before, the goal of (probabilistic) revision is to compute a poste-
rior probability distribution which satisfies given new distribution conditions, only
accepting a minimal change of the quantitative interaction structures of the underly-
ing prior distribution.

More formally, in our setting, a revision operation (see [2, 12]) operates on a joint
probability distribution P(V ) on a set V = {X1, . . . , Xn} of variables with finite
domains Ω(Xi ), i = 1, . . . , n. The purpose of the operation is to adapt P(V ) to new
sets of beliefs. The beliefs are formulated in a so-called revision structure Σ =
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(σs)
S
s=1. This structure consists of revision assignments σs , each of which represents

a lowdimensional (conditional) probability assignment. The pair (P(V ),Σ) is called
revision problem.

The result of the revision, and solution to the revision problem, is a probability
distribution PΣ(V ) which

• satisfies the revision assignments (the postulated new probabilities)
• preserves the probabilistic interaction structure as far as possible.

By preserving the interaction structure we mean that, except from the modifi-
cations induced by the revision assignments in Σ , all probabilistic dependencies
of P(V ) are to be invariant. This requirement ensures that modifications are made
according to the principle of minimal change.

It can be proven (see, e.g. [2]) that in case of existence, the solution of the revision
problem (P(V ),Σ) is uniquely defined. This solution can be determined using itera-
tive proportional fitting [23, 24]. Starting with the initial probability distribution, this
process adapts the initial probability distribution iteratively, one revision assignment
at the time, and converges to a limit distribution that solves the revision problem,
given there are no inconsistencies.

2.2 Inconsistencies in the Context of the Revision Operation

Inconsistencies in the context of revising probability distributions have been analysed
in [12], and two types of inconsistencies of revision problems have been distin-
guished, which are inner inconsistencies and outer inconsistencies, respectively.

Inner consistency of a revision structure Σ is given, if and only if a probability
distribution exists that satisfies the revision assignments of Σ ; otherwise we refer to
inner inconsistencies of Σ .

In Fig. 1, a simple example is shown where the given revision assignments con-
tradict each other and hence do not form a single probability distribution. The filled
entries in the left table represent the revision assignments. In the right table conse-
quences for the rest of the table are shown and one conflict is highlighted.

Given that there is a probability distribution that satisfies Σ , it is still possible
that due to the zero probabilities of P(V ) the revision problem (P(V ),Σ) is not

Fig. 1 Inner inconsistency
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Fig. 2 Outer inconsistency

solvable. This is the case when one of those zero values would need to be modified
in order to satisfy the revision assignments. Such a modification of the interaction
structure of P(V ) is not permitted during a revision operation. Therefore, a second
type of inconsistency is defined as follows:

Given that Σ has the property of inner consistency, the revision problem
(P(V ),Σ) shows the property of outer inconsistency, if and only if there is no
solution to the revision problem.

Figure2 illustrates an outer inconsistency. In the left table again the numbers
represent revision assignments. This time there are additional circles representing
zero values that cannot be changed during the revision operation. As before, the right
table shows consequences for the remaining table entries as well as an inconsistency.

3 Detection

Detecting the presence of inconsistencies amounts to calculating the posterior prob-
ability given some evidence and is therefore NP-hard [3, 25]. Hence, to determine
consistency we have to attempt the construction of a posterior probability distrib-
ution. If the construction is successful, the revision problem shows the property of
consistency. This is true for both types of inconsistencies we defined earlier. In fact
both problems can be transformed into one another. If one can solve the first problem,
one can solve the second problem by adding revision assignments representing the
zero values. The second problem is actually a generalisation of the first one - there
are simply no zero values present. Hence, by solving the second problem one can
solve the first one as well.

From this observation, we can infer that both problems have roughly the same
degree of complexity, where the first problem most likely needs less effort to calcu-
late. In the literaturewe found twogeneral approaches to construct a high dimensional
probability distribution from lower dimensional probability statements, namely algo-
rithms that find either an approximating solution or exact solutions if there is one.
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3.1 Approximative Algorithms

There is a whole class of algorithms for finding entropy maximising solutions based
on the uniform distribution. More specifically, for Markov networks there are, for
example, parameter estimation methods based on maximum likelihood and maxi-
mum entropy [8, 15, 20]. Thesemethods are potentially faster than the exact methods
and always give a result (either the exact one in case of consistency or an approx-
imation in case of inconsistencies). In order to use this kind of methods to detect
inconsistencies, one can follow a two-step process:

1. Create a candidate probability distribution
2. Check whether all revision assignments (and zero values) are satisfied

The first step is potentially faster than using an exact method. The second step,
which becomes necessary because we don’t knowwhether we have an exact solution
or an approximation, may require a significant number of checks.

3.2 Exact Algorithms

Methods based on iterative proportional fitting that do not use approximations to
speed up the process find entropy maximising solutions, can be based on any prob-
ability distribution, not just the uniform distribution. However, in case of inconsis-
tencies there are multiple limit distributions satisfying different subsets of revision
assignments. A single unique solution can only be obtained in the case of consis-
tency. In addition to this disadvantage, they are potentially slower since they are not
sacrificing accuracy for performance.

From a mathematical point of view, detecting inconsistencies with these methods
is straightforward. In case of consistency the iterative proportional fitting converges
towards a single unique probability distribution, which then also solves the revision
problem. Otherwise, it will find multiple limit distributions, each of which is satis-
fying a different subset of revision assignments. In practice, the problem is to decide
which of the two cases is present.

3.3 Further Remarks

In practical applications, detection is often embedded in the process of revising
probability distributions. For that reason, it is interesting to analyse whether the
constructed distributions already sufficiently solve the actual revision problem.

The approximative methods always deliver a distribution, even if inconsistencies
are present. This is a useful property for working with real world problems. However,
those methods maximise entropy towards the uniform distribution which is not what
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we need in our application. We found approaches in the literature that ,theoretically,
would make those methods maximise towards a specific non-uniform distribution
[4]. However, that would entail adding a large number of constraints to indicate all
the deviations of the wanted prior distribution from the uniform distribution. We
believe that the necessary effort then neglects the performance advantage due to the
additional constraints.

The exact methods work with any kind of prior probability distribution and max-
imise entropy against those. If they find a unique solution, it is also a suitable solution
for our revision problem. If inconsistencies are present, no unique solution can be
obtained. Nevertheless, for the revision of Markov networks, an approach has been
proposed in [14], that can resolve inconsistencies in a way that the resulting dis-
tribution solves the revision problem that is information theoretically closest to the
original problem.

4 Practical Application Using Markov Networks

In our practical application we use Markov networks to efficiently represent proba-
bility distributions. In this application the detection of inconsistencies is not a sep-
arate processing step, but it is embedded in an overall revision control mechanism
that detects inconsistencies, removes them and finally calculates the solution for the
(then possibly) modified revision problem. Consequently, we use an exact approach
based on iterative proportional fitting and the automatic elimination of inconsisten-
cies proposed in [14].

Since we use the revision of Markov networks we can leverage the benefits of
a decomposed probability distribution. This is done implicitly through the revision
algorithm, which uses propagation. The propagation algorithm as described in [17]
efficiently exploits the decomposition.

As mentioned previously, the problem of detecting inconsistencies in this setting
is to decide whether the algorithm converges towards a single distribution or is
oscillating between multiple competing distributions.

We identified several interconnected challenges when trying to decide whether
convergence is reached. In industrial applications any algorithm has to deliver a result
within a reasonable amount of time. Consequently, the number of iterations is usually
limited. Therefore, after that limit, the algorithm has to decide whether convergence
will be reached or not.We use ameasure based on the sum of the differences between
revision assignments and their actual value in the distribution. This method works
well in many cases. However, we still have problems when the process converges
slowly, or runs into a local minimum.
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5 Conclusion

Detecting inconsistencies in revision problems is an important topic when using
revision to adapt knowledge to new beliefs. In this work we discussed different
approaches to detect inconsistencies in revision problems when using probabilistic
revision. Both presented types of inconsistencies can be detected using very similar
approaches. In this work we analysed two different classes of methods to detect
inconsistencies using constructive approaches. Both classes have their advantages
and disadvantages. In our setting we prefer the exact methods since, with slight
modifications, they allow us to use the detection and elimination of the occurring
inconsistencies in one step, and at the same time, they provide a usable solution to
our revision problem.However, under different requirements approximativemethods
can potentially be better suited.

In the future our findings need to be verified by running tests on data from different
real world applications. Furthermore, although we did not find an approach to test for
inconsistencies other than to attempt the construction of a probability distribution,
there might be techniques in areas like statistics that obtain a solution faster and with
less calculation. Additionally, the problems with slow convergence and local minima
are of interest.
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Tukey’s Biweight Loss Function for Fuzzy
Set-Valued M-estimators of Location

Beatriz Sinova and Stefan Van Aelst

Abstract The Aumann-type mean is probably the best-knownmeasure for the loca-
tion of a random fuzzy set. Despite its numerous probabilistic and statistical proper-
ties, it inherits from the mean of a real-valued random variable the high sensitivity to
outliers or data changes. Several alternatives extending the concept of median to the
fuzzy setting have already been proposed in the literature. Recently, the adaptation
of locationM-estimators has also been tackled. The expression of fuzzy-valued loca-
tion M-estimators as weighted means under mild conditions allows us to guarantee
that these measures take values in the space of fuzzy sets. It has already been shown
that these conditions hold for the Huber and Hampel families of loss functions. In
this paper, the strong consistency and the maximum finite sample breakdown point
when the Tukey biweight (or bisquare) loss function is chosen are analyzed. Finally,
a real-life example will illustrate the influence of the choice of the loss function on
the outputs.

Keywords Random fuzzy set · Robustness · Location M-estimator · Bisquare loss
function · Biweight loss function

1 Introduction

Random fuzzy sets (fuzzy random variables in Puri and Ralescu’s sense [10]) are an
appropriate mathematical model to formalize numerous real-life experiments char-
acterized by an underlying imprecision. In order to analyze them statistically, a wide
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range of methods has been proposed during the last years. Unfortunately, most of this
methodology is based on the Aumann-type mean, which is a well-known location
measure for random fuzzy sets that fulfills many convenient properties from both the
statistical and probabilistic points of view, but it presents a high sensitivity to outliers
or data changes. With the aim of providing a more robust central tendency measure,
several extensions of the concept of median have already been published. However,
this paper focuses on the more recent and more general M-estimation approach.

Kim and Scott [9] have studied M-estimators in the kernel density estimation
context, but their theory remains valid for Hilbert-valued random elements. The
space of fuzzy sets can be isometrically embedded into a convex cone of a Hilbert
space, which allowed us to adapt some of their results to the fuzzy-valued case in
Sinova et al. [12]. Although only the one-dimensional case (random fuzzy numbers)
has been specified in [12], location M-estimators can be analogously defined for
random fuzzy sets and studied as in this paper.

Sufficient conditions are provided in Sinova et al. [12] to guarantee that the adap-
tation of Kim and Scott’s results is valid, that is, that location M-estimators belong
to the convex cone of the Hilbert space. Among the loss functions satisfying such
assumptions, Huber’s and Hampel’s loss functions were analyzed in [12] to prove
the strong consistency of the corresponding M-estimators and show that the maxi-
mum finite sample breakdown point is attained. Another well-known family of loss
functions, Tukey’s biweight (also referred to as the bisquare function), is considered
in this paper. Apart from checking that the sufficient conditions also hold for this
choice, the strong consistency of the Tukey location M-estimator is established and
its finite sample breakdown point is derived. Proofs are based on the same sketches
included for the one-dimensional case in Sinova et al. [12].

In Sect. 2, location M-estimators for random fuzzy sets are introduced and the
Representer Theorem, which expresses them as weighted means under certain suffi-
cient conditions, is recalled. In Sect. 3, the choice of Tukey’s biweight loss function
is analyzed in terms of the strong consistency of the resulting estimator and its finite
sample breakdown point. A real-life example in Sect. 4 illustrates the influence of
the choice of the loss function on the outputs. Finally, some concluding remarks are
provided in Sect. 5.

2 Location M-estimators for Random Fuzzy Sets

In this section, location M-estimators are adapted to summarize the central ten-
dency of random fuzzy sets. M-estimation, firstly introduced by Huber [7], is a
well-established approach that yields robust estimators. The key idea behind them is
to restrict the influence of outliers by substituting the square of “errors” in methods
like least squared andmaximum likelihood for a (usually less rapidly increasing) loss
function applied to the errors of the data. The loss function, denoted by ρ, is usually
assumed to vanish at 0 and to be even and non-decreasing for positive values.
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Let p ∈ N, F∗
c (Rp) denote the space of bounded fuzzy sets and D represent a

metric defined on F∗
c (Rp) × F∗

c (Rp) whose associated norm fulfills the parallelo-
gram law (which allows the isometrical embedding of F∗

c (Rp) into the convex cone
of a Hilbert space).

Definition 1 Let (Ω,A, P) be a probability space and X : Ω → F∗
c (Rp) an asso-

ciated random fuzzy set. Moreover, let ρ be a continuous loss function, and
(X1, . . . ,Xn) a simple random sample from X . Then, the fuzzy M-estimator of
location is the fuzzy set-valued statistic ̂̃gM [(X1, . . . ,Xn)], given, if it exists, by

̂̃gM [(X1, . . . ,Xn)] = arg min
g̃∈F∗

c (Rp)

1

n

n∑

i=1

ρ(D(Xi , g̃)).

Now, a result by Kim and Scott [9] is adapted to the fuzzy-valued case. The Rep-
resenter Theorem (Theorem 1) is crucial for the particularization of Kim and Scott’s
theory aboutM-estimation for the kernel density estimation problem to random fuzzy
sets. The conditions they assume to ensure the existence of M-estimates of location
allow us to express the M-estimates as weighted means of the sample elements and,
consequently, to assure that the M-estimates are indeed fuzzy set-valued statistics.

Theorem 1 Consider the metric space (F∗
c (Rp), D). Let (X1, . . . ,Xn) be a simple

random sample from a random fuzzy set X : Ω → F∗
c (Rp) on a probability space

(Ω,A, P). Moreover, let ρ be a continuous loss function which satisfies the assump-
tions

• ρ is non-decreasing for positive values, ρ(0) = 0 and limx→0 ρ(x)/x = 0,
• Let φ(x) = ρ′(x)/x and φ(0) ≡ limx→0 φ(x), assuming that φ(0) exists and is
finite.

Then, the M-estimator of location exists and it can be expressed as

̂̃gM [(X1, . . . ,Xn)] =
n∑

i=1

ωi · Xi

with ωi ≥ 0,
∑n

i=1 ωi = 1. Furthermore, ωi ∝ φ(D(Xi , ̂̃gM [(X1, . . . ,Xn)])).
In Sinova et al. [12], the well-known Huber and Hampel families of loss functions

were used to compute M-estimators. Recall that the Huber loss function [8] is given
by

ρH
a (x) =

{
x2/2 if |x | ≤ a
a(|x | − a/2) otherwise,



450 B. Sinova and S. Van Aelst

with a > 0 a tuning parameter, while the Hampel loss function [5] corresponds to

ρa,b,c(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2/2 if |x | < a

a(|x | − a/2) if a ≤ |x | < b

a(|x | − c)2

2(b − c)
+ a(b + c − a)

2
if b ≤ |x | < c

a(b + c − a)

2
if c ≤ |x |,

where the nonnegative parameters a < b < c allow us to control the degree of sup-
pression of large errors. The smaller their values, the higher this degree. Note that the
Huber loss function is convex and puts less emphasis on large errors compared to the
squared error loss. On the other hand, Hampel’s loss function is not convex and can
better cope with extreme outliers, since observations far from the center (|x | ≥ c)
always contribute in the same way to the loss.

Anotherwell-known family of loss functions is theTukey biweight or bisquare [1],
given by:

ρT
c (x) =

{
c2/6 · (1 − (1 − (x/c)2)3) if |x | ≤ c

c2/6 otherwise,

with tuning parameter c > 0. This loss function shares with Hampel’s one that it is
not convex anymore and the contribution of large errors (|x | ≥ c) to the loss does
not change anymore. Therefore, the benefit of the Tukey loss function is to combine
the better performance of Hampel’s loss function regarding extreme outliers with the
simplicity of an expression depending on just one tuning parameter, like the Huber
loss function.

It can be easily checked that the family ρT
c of loss functions fulfills all the required

conditions: they are differentiable, non-decreasing for positive values and even, they
vanish at 0, limx→0 ρT

c (x)/x = 0, φT
c (0) ≡ limx→0 φT

c (x) exists and is finite.
Therefore, all the properties derived from the Representer Theorem in

Sinova et al. [12] also hold when the Tukey biweight loss function is chosen. In
particular, it can be highlighted that Tukey M-estimators of location are translation
equivariant, but not scale equivariant in general. With the aim of avoiding the exces-
sive influence of the measurement units on the outputs, due to the lack of scale
equivariance unless ρ is a power function, the tuning parameters will be selected
based on the distribution of the distances to the center. That is, we first compute an
initial robust estimator of location (e.g., the impartial trimmedmean as in Colubi and
González-Rodríguez [2] or, if p = 1, the 1-norm median in Sinova et al. [11]) and
then, the distances between each observation and this initial estimate are calculated.
Our recommendation is to use the 1-norm median as initial estimate when analyzing
random fuzzy numbers, since its computation is not complex and this measure does
not depend on the existence or not of outliers in the sample to provide us with a good
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initial estimate. The impartial trimmed mean (see Colubi and González-Rodríguez
[2]) presents the disadvantage of requiring to fix the trimming proportion “a priori”
and, in case there are no outliers, the initial estimate could be a bit far from the real
center of the sample distribution. The choice for the tuning parameters a, b and cwill
be, along this paper, the median, the 75th and the 85th percentiles of those distances,
following Kim and Scott’s suggestion [9].

Regarding the practical computation of Tukey M-estimators of location, recall
that the standard iteratively re-weighted least squares algorithm (see, for example,
Huber [7]) can provide us with an approximation as in [12]:

Step 1 Select initial weights ω(0)
i ∈ R, for i ∈ {1, . . . , n}, such that ω(0)

i ≥ 0 and∑n
i=1 ω(0)

i = 1 (which is equivalent to choose a robust estimator of location
to initialize the algorithm).

Step 2 Generate a sequence {̃gM
(k)}k∈N by iterating the following procedure:

g̃M
(k) =

n∑

i=1

ω(k−1)
i Xi , ω(k)

i = φT
c (D(Xi , g̃

M
(k)))∑n

j=1 φT
c (D(X j , g̃

M
(k)))

.

Step 3 Terminate the algorithm when

| 1n
∑n

i=1 ρT
c (D(Xi , g̃

M
(k+1))) − 1

n

∑n
i=1 ρT

c (D(Xi , g̃
M
(k)))|

1
n

∑n
i=1 ρT

c (D(Xi , g̃
M
(k)))

< ε,

for some desired tolerance ε > 0.

3 Specific Properties of Fuzzy-Valued Location
M-estimators Based on Tukey Biweight Loss Function

The strong consistency of fuzzy number-valuedM-estimators of locationwas studied
in Sinova et al. [12] for specific loss functions: ρ being either non-decreasing for
positive values, subadditive and unbounded or the Huber or Hampel loss function
(independently of the values of the tuning parameters). However, this result can
be generalized to cover any bounded loss function and, in consequence, the Tukey
biweight choice.

Theorem 2 Consider the metric space (Fc(A), D), with A a non-empty compact
convex set ofRp and D topologically equivalent to the mid/spr-based L2 distance D�

θ

(see Trutschnig et al. [13] for details concerning this metric). Let X : Ω → Fc(A)

be a random fuzzy set associated with a probability space (Ω,A, P). Under any of
the following assumptions:

• ρ is non-decreasing for positive values, subadditive and unbounded,
• ρ , for positive values, has linear upper and lower bounds with the same slope,
• ρ is bounded,
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and whenever the associated M-location value

g̃M(X ) = arg min
Ũ∈Fc(A)

E
[
ρ

(
D(X , Ũ )

)]

exists and is unique, the M-estimator of location is a strongly consistent estimator
of g̃M(X ), i.e.,

lim
n→∞ D(̂̃gM [(X1, . . . ,Xn)], g̃M(X )) = 0 a.s. [P].

It should be clarified that it is very common in practice to fix a bounded referential,
as is the case for the fuzzy rating scale (see Hesketh et al. [6]) when p = 1.

With respect to the robustness of the location M-estimators based on the Tukey
biweight loss function, their finite sample breakdown point, for short fsbp (Donoho
and Huber [3], Hampel [4]) has been computed. The fsbp represents the smallest
fraction of sample observations that needs to be perturbed to make the distances
between the original and the contaminated M-estimates arbitrarily large.

Theorem 3 Consider the metric space (F∗
c (Rp), D). Let X : Ω → F∗

c (Rp) be a
random fuzzy set associated with a probability space (Ω,A, P) and let (̃x1, . . . , x̃n)
be a sample obtained fromX . Moreover, let ρ be a continuous loss function fulfilling
the assumptions in Theorem 1, upper bounded by certain C < ∞ and satisfying

ρ

(
max

1≤i, j≤n
D(̃xi , x̃ j )

)
<

n − 2� n−1
2 �

n − � n−1
2 � − 1

· C,

and such that the corresponding sample M-estimate of location is unique. Then the
finite sample breakdown point of the corresponding location M-estimator is exactly
1
n � n+1

2 �, where �·� denotes the floor function.

4 Real-Life Example

A real-life example now illustrates fuzzy-valued location M-estimators.

Example 68 fourth grade students from Colegio San Ignacio (Oviedo, Spain) have
been asked to answer some questions from the joint Student questionnaire TIMSS
(Trends in InternationalMathematics and Science Study)—PIRLS (Progress in Inter-
nationalReadingLiteracyStudy) survey using a fuzzy rating scale (Hesketh et al. [6]).
To simplify the instructions given to the nine-and-ten-year-old students, only trape-
zoidal fuzzy numbers have been considered. This study is going to be limited to the
item that represents the degree of agreement with the statement “studying mathe-
matics is harder than any other subject”.

Location M-estimators based on Huber, Hampel and Tukey loss functions have
been computed using the mid/spr-based L2 distance D�

θ=1/3, where � denotes the
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Fig. 1 In black, Huber
(solid line), Hampel (dashed
line) and Tukey (dash-dot
line) M-estimates for the
fuzzy-valued data (in grey)
from Example
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Lebesgue measure on [0, 1] (see Trutschnig et al. [13]). The 1-norm median in [11]
has been considered as the initial robust estimator for the selection of the tuning
parameters and the initialization of the algorithm to approximate the M-estimates.

The outputs for the three M-estimates have been displayed in Fig. 1.
As shown in Sinova et al. [12], when analyzing trapezoidal fuzzy numbers, any

loss function fulfilling the conditions stated for the Representer Theorem provides
us with an M-estimate of trapezoidal shape too.

Notice that the aim of this example is just to illustrate the computation of fuzzy-
valued M-estimators and the influence the choice of the loss function has on the
outputs, but not to provide a comparison of the different loss functions. On one hand,
there are no outliers in the answers given by the students and, on the other hand, the
best choice of ρ also depends on different factors (e.g., the weight we wish to assign
to the outliers in each specific example or the selection of the tuning parameters).

5 Concluding Remarks

The Tukey biweight or bisquare family of loss functions has been used in order to
compute fuzzy set-valued M-estimators of location through the Representer Theo-
rem. The strong consistency and the robustness of this choice have been given. In
future research, it would be interesting to develop a sensitivity analysis on how the
selection of the involved tuning parameters affect the computation of M-estimators,
as well as a deeper study of other families of loss functions for which the Representer
Theorem still holds.
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Technical Gestures Recognition
by Set-Valued Hidden Markov Models
with Prior Knowledge

Yann Soullard, Alessandro Antonucci and Sébastien Destercke

Abstract Hidden Markov models are popular tools for gesture recognition. Once
the generative processes of gestures have been identified, an observation sequence
is usually classified as the gesture having the highest likelihood, thus ignoring pos-
sible prior information. In this paper, we consider two potential improvements of
such methods: the inclusion of prior information, and the possibility of considering
convex sets of probabilities (in the likelihoods and the prior) to infer imprecise, but
more reliable, predictions when information is insufficient. We apply the proposed
approach to technical gestures, typically characterized by severe class imbalance. By
modelling such imbalances as a prior information, we achieve more accurate results,
while the imprecise quantification is shown to produce more reliable estimates.

1 Introduction

In this paper we are concerned with classification tasks where one wants to identify
gestures (a popular computer vision task [4]) as well as errors in incorrectly executed
gestures. We assume the possible gestures belong to a set C := {c1, . . . , cM } and
denote as C the variable taking values in C. A gesture recognition algorithm then
aims at assigning the correct value c∗ ∈ C to a given sequence. With few exceptions
[5], gestures are regarded as multivariate time series, say (o1, . . . , oT ), with ot ∈
R

F the joint observation of the F features extracted from the t-th frame, for each
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t = 1, . . . , T . Technical gestures are quite specific, as they are based on particular
movements, they require specific skills and they should be executed with a high level
of precision. Examples of technical gestures can be found in many domains such as
sport (e.g., the forehand of a tennis player), manufacturing (e.g., doing a welding),
or handicraft (e.g., the movements of a potter), just to cite a few.

Technical gestures are confronted with specific problems. First, due to the fact
that most learning data have to be collected from experts (e.g., if in a later employee
training stage, wewant to recognizewell and badly performed gestures), the obtained
data sets are typically small and imbalanced. Those data can also be quite noisy,
as measurements are often performed in working environments. Also, when the
recognitionmodel is used to decide if a task or a gesture has been performed correctly,
a recognition error might have a significant economic impact (e.g. the manufacturing
of a defective part or an interruption in the production line). This is why considering
tools able to account for this imbalance or this lack of data is important.

Hidden Markov Models (HMMs, [9]) are probabilistic graphical models that can
easily cope with multivariate time series, and are therefore often used for gesture
recognition [2, 6]. As they are generative models usually trained with maximum-
likelihood estimates, HMMs are less prone to over-fitting than their discriminative
counterparts [10].However, they can still suffer frombadparameters estimationwhen
the training examples do not fit well the true data distribution [3]. To gain reliability
in the learning, a recent paper [1] proposed a set-valued quantification of the HMM
parameters inspired by the theory of imprecise probabilities, for which polynomial-
time inference algorithmshavebeen also developed [7].With those impreciseHMMs,
evidential information might not be sufficient to unequivocally recognize the per-
formed gesture, and sets of candidate gestures might be obtained instead. Section2
contains background information about imprecise methods and HMMs.

Fig. 1 Pictures of mold cleaning in a work environment (top left) and in the experimental station of
a virtual environment (top right). Expected positions and inclinations of a blower during a technical
gesture with a movement from the right to the left (bottom)
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Such approaches take care of the limited amount of available data, while the
imbalances over the classes (a typical issue for data of this kind) are neglected by
implicitly assuming a uniform marginal distribution over the gestures. The main
methodological contribution of this paper, explained in Sect. 3, is a procedure to add
prior information about the classes, that can itself be imprecise and represented as a
convex set of probability mass functions. The methodology is validated in Sect. 4 on
technical gestures performed in an aluminum foundry. This real-world application is
part of a training system in a virtual environment for tasks related to mold cleaning
(Fig. 1).

2 Background

Imprecise Probability. Let C denote the class variable associated to the gesture
and C the M possible values. If the uncertainty about C is described by a probability
mass function P , the task of deciding the actual value ofC , assuming zero/one losses,
returns:

c∗
P := argmax

c∈C
P(c) . (1)

In many cases single probability mass functions might be unable to provide a reliable
uncertaintymodel.Assume for instance that, among three possible gestures, an expert
is telling us that c1 is at least as probable as c2,which is in turn at least as probable as c3.
Deciding that P(C) = [0.7, 0.2, 0.1] is a better model than P ′(C) = [0.6, 0.3, 0.1]
from this information alone is questionable. In such situations, credal sets, i.e.,
closed convex sets of probability mass functions, can offer a more cautious, hence
reliable, uncertainty model. In our case, a credal set over C, denoted K (C), will
be specified by a finite number of linear constraints, or equivalently by its (finite)
set of extreme points. In the expert example with three gestures, we can consider
the credal set K (C) defined by the constraints P(c1) ≥ P(c2) ≥ P(c3), together
with non-negativity and normalization, or equivalently, by listing the extreme points
P1(C) = [1, 0, 0], P2(C) = [ 12 , 1

2 , 0], and P3(C) = [ 13 , 1
3 ,

1
3 ] (Fig. 2). The general-

Fig. 2 A credal set
modeling uncertainty about a
gesture with three options
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ization of Eq. (1) to credal sets can be achieved in many ways. Here we consider the
maximality criterion, which returns the following sets of optimal classes:

C∗
K := {c′ ∈ C : � c′′ ∈ C s. t. P(c′′) > P(c′)∀ P(C) ∈ K (C)} . (2)

Non-optimal classes are therefore those such that, for each element of the credal set,
there is another class with strictly higher probability.
Hidden Markov Models (HMMs). HMMs [9] are popular probabilistic descriptions
of time series with many applications in speech recognition and computer vision, to
name but a few. HMMs assume the observation O t is generated by a paired state
variable Xt , for each t = 1, . . . , T , with T the length of the sequence. State variables
are in turn assumed to be generated by a Markov chain process. All state variables
take their values from a spaceX of cardinality N . An HMM specification comprises
an initial state probability mass function P(X1), a N × N state transition probability
matrix P(Xt+1|Xt ), and a (usually normal) distribution for each observation with
mean and covariance indexed by the corresponding state, say μ(Xt ) and σ(Xt ).
We consider stationary models with the values of the parameters independent of t .
HMMs give a compact specification of the joint density:

P(x1, . . . , xT , o1, . . . , oT ) := P(x1)
T−1∏

t=1

P(xt+1|xt )
T∏

t=1

Nμ(xt )
σ(xt )

(ot ) . (3)

By marginalizing the states in Eq. (3) we obtain the likelihood of a sequence
P(o1, . . . , oT ). This can be achieved in O(T N 2) time by a message propagation
algorithm [9]. HMMs are trained using an Expectation-Maximization approach, the
Baum-Welch algorithm, detecting a local maximum of the likelihood defined by the
joint probabilities of the training sequences and of their classes. Classification can
then be achieved by: (i) training a HMM per class; and then (ii) assigning to a test
sequence (o1, . . . , oT ) the class associated to the HMMgiving the highest likelihood
to the sequence, i.e.,

c∗ := argmax
c∈C

P(o1, . . . , oT |c) , (4)

where notation P(. . . |c) is used for the density corresponding to theHMMassociated
to class c. Here no prior probabilities over the classes are supposed to be available,
i.e., a uniform distribution over them is implicitly assumed.

As Baum-Welch estimates might be unreliable, for instance when using few data
or short sequences, imprecise probabilities have been proposed to mitigate this unre-
liability in the HMM quantification [1]. An HMMwith imprecise parameters can be
learned from a sequence by combining the Baum-Welch algorithm with the impre-
cise Dirichlet model (IDM, [11]). In this model, P(X1) is replaced by a credal set
K (X1) and P(Xt+1|xt ) with K (Xt+1|xt ) for each xt . As shown in [7], the bounds
[P(o1, . . . , oT |c), P(o1, . . . , oT |c)] of the likelihood with respect to those credal
sets can be computed with the same time complexity as the precise computation.
The classification scheme in Eq. (4) can then be extended to set-valued HMMs by
comparing the likelihood intervals and then deciding the optimal ones as in Eq. (2).
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3 HMM-Based Classification with Prior Knowledge

If prior knowledge about the classes is available in the form of a mass function P(C),
the likelihood-based classification scheme in Eq. (4) becomes:

c∗ = argmax
c∈C

P(o1, . . . , oT |c) · P(c) , (5)

which corresponds to a comparison of the posterior probabilities

P(c|o1, . . . , oT ) ∝ P(o1, . . . , oT |c) · P(c) . (6)

A proper assessment of the prior mass function is clearly crucial in this Bayesian
framework. Yet, the elicitation of qualitative or quantitative expert prior knowledge
suffers from the same issues discussed in Sect. 2, and a credal set K (C) might offer
a more reliable model of the prior knowledge about C . We therefore consider a
twofold generalization of Eq. (5) to imprecise probabilities inwhich P(C) is replaced
by a credal set K (C), and the sequence likelihoods P(o1, . . . , oT |c) are replaced
by their lower/upper bounds learned from the training data. The optimal classes
can be therefore obtained by applying the criterion in Eq. (2) to the, imprecisely
specified, posterior probabilities in Eq. (6). To achieve that in practice, given two
classes c′, c′′ ∈ C, we evaluate whether the posterior probability for c′′ is always
greater than that of c′, i.e.,

min
P(C)∈K (C)

P(o1,...,oT |C)∈[P(o1,...,oT |C),P(o1,...,oT |C)]

P(o1, . . . , oT |c′′) · P(c′′)
P(o1, . . . , oT |c′) · P(c′)

> 1 . (7)

wherewe assume the denominator strictly positive. If the above inequality is satisfied,
class c′ is removed from the set of optimal labels. The set of optimal options C∗

K is
obtained by iterating the test in Eq. (7) for any pair of classes, and removing from
C the dominated options. The optimization with respect to the imprecisely specified
likelihoods is trivial and allows to rewrite Eq. (7) as follows:

min
P(C)∈K (C)

P(o1, . . . , oT |c′′) · P(c′′)
P(o1, . . . , oT |c′) · P(c′)

> 1 . (8)

As K (C) can be expressed by linear constraints, the task in Eq. (8) is a linear-
fractional task, which can be reduced to a linear program and solved in polynomial
time w.r.t. the number of classes M by a linear solver.
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4 Empirical Validation

We test the proposed approach on six technical gesture data sets (Table1). The TG
and TGE datasets refer respectively to classification of types of gestures and types of
errors (for specific gestures). The gestures are performed in an aluminium foundry
and refer to a workstation where a technician cleans a mold (Fig. 1). The technician
performs several tasks with different tools such as a compressed-air blower, a scraper
and a pistol. Motion capture is performed by markers attached to the tools and the
user’s body. Markers are tracked by infrared cameras and, at each time frame, 3D
positions and orientations are extracted. Such raw features may not directly provide
a good modelling of the gesture. Following [8], we compute high-level features such
as velocities, pairwise distances and angles to enrich the description.

To train HMMs as in Eq. (3), we run the Baum-Welch algorithm with a maximum
of 25 iterations before convergence and three states for the hidden variables (i.e.,
N = 3). For the imprecise quantification we set s = 4 for the parameter determining
the imprecision level (in term of missing observations) in the IDM. The accuracy
(i.e., the percentage of properly classified gestures) describes the performance of
the precise classifiers. We say that an imprecise classifier is indeterminate when
more than one class is returned as output. To characterize the output of an imprecise
classifier we use its determinacy (i.e., percentage of determinate outputs) and output
size (i.e., average number of classes in output when indeterminate). The performance
is described in termsof single accuracy (i.e., accuracywhen the output is determinate)
and set accuracy (i.e., percentage of indeterminate outputs including the true class).
For a direct comparison with precise classifiers we compare the accuracy with the u80
utility-basedmeasure. This is basically a positive correction (namely 1.2(q − 1)/q2),
advocated in [12], of a discounted accuracy giving 1/q to a classifier returning q
options if one of them is correct, and zero otherwise.

The proposed method is intended to achieve robustness when coping with small
datasets. Accordingly, we adopt a (fivefold) cross validation scheme with one fold
for training, and the rest for testing. In Fig. 3, we compare the accuracies of the
approaches based on the likelihood (Eq. (4)) and the posterior (Eq. (6)) with the
u80 for the imprecise posterior. The precise prior is obtained from the distribution

Table 1 Number of features, classes, and samples per class in the benchmark

Dataset F M Samples for
c1/ . . . /cm

TG1 15 4 320/160/224/287

TG2 15 4 192/320/256/287

TG3 18 4 100/100/40/20

TGE1 19 4 57/36/45/33

TGE2 4 3 15/30/20

TGE3 4 3 20/10/15
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Fig. 3 Accuracies of the
likelihood (white) and
posterior (gray) comparison
against the u80 of the
imprecise posterior (black)

Table 2 Performance of the classifier in the precise and imprecise posterior case

Dataset Precise
accuracy (%)

Single
accuracy (%)

Set accuracy
(%)

Determinacy
(%)

Output size

TG1 67.3 70.3 80.8 93.0 2.1

TG2 69.7 71.5 78.8 93.7 2.1

TG3 94.7 95.0 100.0 97.9 2.0

TGE1 38.0 40.7 58.7 96.2 2.0

TGE2 70.0 71.1 76.7 94.6 2.0

TGE3 67.3 71.1 100.0 93.6 2.0

over the classes of the training data. The prior credal set is similarly obtained by
the IDM (s = 4). Introducing the prior has a positive effect which is only modest
in the precise case and more notable in the imprecise case. A deeper analysis of
the imprecise model based on the posterior is in Table2. Remarkably, the classifier
achieves high determinacies and, when indeterminate, only two classes are typically
returned. The single accuracies are higher than the accuracies of the precise models
(i.e., when determinate the imprecise classifier outperforms the precise methods).
Finally, on two datasets, when indeterminate the imprecise classifier returns always
two classes and one of them is always the correct one.

5 Conclusions and Outlooks

Anewclassification algorithm formultivariate time series is proposed. The sequences
are described by HMMs, and the likelihoods returned by these models are combined
with a prior distribution over the classes. A robust modeling based on an imprecise-
probabilistic quantification of theHMMparameters and the prior is shown to produce
more reliable classification performance, without compromising the computational
efficiency. Such an approach allows to deal with small and imbalanced datasets. We
obtain a set of predicted labels when the information is not sufficient to recognize the
performed gesture. An application to technical gesture recognition in an industrial
context is reported. As future work, we want to apply our approach to sequences of
gestures, by also achieving a segmentation of the various gestures.
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Time Series Modeling Based on Fuzzy
Transform

Luciano Stefanini, Laerte Sorini and Maria Letizia Guerra

Abstract It is well known that smoothing is applied to better see patterns and under-
lying trends in time series. In fact, to smooth a data set means to create an approxi-
mating function that attempts to capture important features in the data, while leaving
out noises. In this paper we choose, as an approximation function, the inverse fuzzy
transform (introduced by Perfilieva in Fuzzy Sets Syst 157:993–1023, 2006 [3]) that
is based on fuzzy partitioning of a closed real interval into fuzzy subsets. The empir-
ical distribution we introduce can be characterized by its expectiles in a similar way
as it is characterized by quantiles.

1 Basic Mathematical Tools

All the main following results come from the seminal paper [3] and from the papers
[7, 8] and [11]. A fuzzy partition (P,A) for a real compact interval [a, b] is build by a
decomposition P = {a = x1 < x2 < · · · < xn = b} of [a, b] into n − 1 subintervals
[xk−1, xk], k = 2, . . . , n and by a family A = {A1,A2, . . . ,An} of n fuzzy numbers
identified by the membership functions A1(x),A2(x), . . . ,An(x) for x ∈ [a, b] satis-
fying some properties:

1. each Ak : [a, b] −→ [0, 1] is continuous with Ak(xk) = 1, Ak(x) = 0 for x /∈
[xk−1, xk+1];

2. for k = 2, 3, . . . , n − 1, Ak is increasingon [xk−1, xk]anddecreasingon [xk, xk+1];
A1 is decreasing on [a, x2]; An is increasing on [xn−1, b];

3. for all x ∈ [a, b] the following partition-of-unity condition holds
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n∑

k=1

Ak(x) = 1.

Given a continuous function f : [a, b] −→ R and a fuzzy partition (P,A) of [a, b],
the direct Fuzzy transform (F-transform) of f with respect to (P,A) is the following
n-tuple of real numbers F = (F1,F2, . . . ,Fn)

T where

Fk =
∫ b
a f (x)Ak(x)dx
∫ b
a Ak(x)dx

=
∫ xk+1

xk−1
f (x)Ak(x)dx∫ xk+1

xk−1
Ak(x)dx

, k = 1, 2, . . . , n (1)

Given the direct fuzzy transform (F1,F2, . . . ,Fn)
T of a continuous function f :

[a, b] −→ R on a fuzzy partition (P,A), the inverse F-transform (iF-transform) is
the continuous function f̂F : [a, b] −→ R given by

f̂F(x) =
n∑

k=1

FkAk(x) for x ∈ [a, b]. (2)

The inverse F-transform function f̂F : [a, b] −→ R is an approximating function
of f on [a, b].

If f : [a, b] −→ R is a continuous function then, for any positive real ε, there
exists a fuzzy partition (Pε,Aε) such that the associated F-transformFε = (F1,ε,F2,ε,

. . . ,Fnε,ε)
T and the corresponding iF-transform f̂Fε

: [a, b] −→ R satisfies

∣∣f (x) − f̂Fε
(x)

∣∣ < ε for all x ∈ [a, b].

The most important property is that:

∫ b

a
f (x)dx =

∫ b

a
f̂F(x)dx

implying the existence of an accurate smoothing technique that preserves the areas.
We can then define an r-partition in the following way.
Let r ≥ 1 be a fixed integer number; a fuzzy r-partition of [a, b] is given by a pair

(P,A(r)) where P = {a = x1 < · · · < xn = b} is a decomposition of [a, b], and A(r)

is a family of n + 2r − 2 continuous, normal, convex fuzzy numbers

A
(r) = {A(r)

k : [a, b] −→ [0, 1]|k = −r + 2, . . . , n + r − 1}

such that

a. for k = 1, 2, . . . , n, A(r)
k is a continuous fuzzy number with A(r)

k (xk) = 1 and
A(r)
k (x) = 0 for x /∈ [xk−r, xk+r];

b. for k = 1, 2, . . . , n, A(r)
k is increasing on [xk−r, xk] and decreasing on [xk, xk+r];
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Fig. 1 Generalized parametric fuzzy partition r = 2

c. for k = −r + 2, . . . , 0, A(r)
k is decreasing on [xk, xk+r];

d. for k = n + 1, . . . , n + r − 1, A(r)
k is increasing on [xk−r, xk];

e. for all x ∈ [a, b], the partition-of-r condition holds
∑n+r−1

k=−r+2 A
(r)
k (x) = r.

The integer r ≥ 1 will be called the bandwidth of the partition (P,A(r)) and the
effect of the smoothing is higher when the bandwidth is greater than 1, in fact for
r = 1 the smoothing has no effect.

In the same way, when r = 2, we obtain the fuzzy 2-partition (P,A(2)) that is
shown in the following figure when we take under consideration 2 intervals before
and 2 intervals after (Fig. 1):

At this level, the direct F(r)-transform based on the generalized fuzzy r-partition
(P,A(r)) can be introduced and it is defined by the vector F(r) = (F(r)

1 ,F(r)
2 , . . . ,

F(r)
n )T , where

F(r)
k = 1

I (r)k

∫ b

a
f (x)A(r)

k (x)dx for k = 1, 2, . . . , n (3)

I (r)k =
∫ b

a
A(r)
k (x)dx. (4)

The iF(r)-transform function (of bandwidth r) is

f̂ (r)(x) = 1

r

n∑

k=1

F(r)
k A(r)

k (x). (5)

On the other hand, the iF(r)-transform function f̂ (r)(x)has the structure of amoving
average of the values {F(r)

j , j = 1, . . . , n}; when F(r)
k = 0 if k < 1 or k > n, we have

f̂ (r)(x) = 1

r

k+r∑

j=k−r

F(r)
j A(r)

j (x), (6)
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i.e., aweighted averageofF(r)
k−r, . . .,F

(r)
k , . . .,F(r)

k+r withweights
A(r)
k−r(x)
r , . . ., A

(r)
k (x)
r , . . .,

A(r)
k+r(x)
r .
The main properties of the F(r)-transform are analogues to the properties of the

standard F-transform.

2 Quantile and Expectile Smoothing

Consider a real-valued random variable ξ; a given r-quantile ξ (r) (where r plays
now a different role) means that the probability that an observation is less than ξ (r) is
r, with r ∈ ]0, 1[. Given a set of T observations yt , t = 1, . . . ,T , the sample quantile
ξ (r) can be obtained as the solution to minimize the function

Sr (ξ) =
∑

yt<ξ

(1 − r) (ξ − yt) +
∑

yt≥ξ

r (yt − ξ) ≥ 0.

If r = 1
2 , then the r-quantile gives the median of the (empirical) distribution, i.e.

the minimizer of the functional

S1/2 (ξ) =
T∑

t=1

|yt − ξ| ≥ 0.

However,.a distribution can be also characterized by its expectiles that minimize
a quadratic functional and so they work like mean values or by its quantiles that
minimize the absolute value of the difference.

The expectiles are defined in a similar way as for quantiles except that they are
defined by tail expectations and by using the mean instead of the median. Quantiles
have a strong intuitive appeal, but expectiles are easier to compute and expectile
approach is probably more interesting because the related operator is differentiable
while for the quantile this is not true.

The efficiency of expectiles is clear when smoothing small data sets; in fact, least
asymmetricallyweighted squaresmake use of the distance to data points in estimating
a curve. Quantile smoothing only knows whether an observation is below or above
the curve while expectiles are much more sensitive to outliers than quantiles.

The sample expectile μ (r) can be obtained as the solution to minimize the fol-
lowing function

Sr (μ) =
T∑

t=1
xt<μ

(1 − r) (xt − μ)2 +
T∑

t=1
xt>μ

r (xt − μ)2 .
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If r = 1
2 we obtain the mean value μe of the observations

μe = argmin
μ
S 1

2
(μ) = 1

2

T∑

t=1

(xt − μ)2

μe = 1

T

T∑

t=1

xt

The expectile F-transform, for a fixed generalized fuzzy r-partition (P,A(r)) and
for a given value of r ∈]0, 1], can be defined as the minimizer of the following
operators, for k = 1, . . . , n,

Φk,r (F) =
∫ b

a
wr (x) (f (x) − F)2 A(r)

k (x) dx

where

wr (x) =
{

r if f (x) ≤ F
1 − r if f (x) > F

;

The quantile F-transform, for a fixed generalized fuzzy r-partition (P,A(r)) and for
a given value of r ∈]0, 1], can be defined as the minimizer of the following operators,
for k = 1, . . . , n,

Ψk,r (F) =
∫ b

a
wr (x) |f (x) − F|A(r)

k (x) dx

If α = 1 we obtain Φk,0.5 (F).
The minimization of Φ−

k,α (F) and Φ+
k,α (F) produces, respectively F−

k,α and F+
k,α

so that
[
F−
k,α,F+

k,α

]
is the α-cut of Fk .

As a consequence, the iF-transform of f is fuzzified by:

f̂ (x) = 1

r

n∑

k=1

FkA
(r)
k (x)

with the corresponding α-cuts expressed as:

[̂
f (x)

]
α

= [̂
f −
α (x) , f̂ +

α (x)
]
α

(7)

=
[
1

r

n∑

k=1

F−
k,αA

(r)
k (x) ,

1

r

n∑

k=1

F+
k,αA

(r)
k (x)

]

When α = 1 we obtain the standard F-transform and the corresponding iF
transform.
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The discrete case can be handled in a similar way as for the standard discrete
F-transform. The expectiles, in the discrete case, are obtained by minimizing the
following functions:

Φ−
k,α (F) =

m∑

k=1

w−
α (ti) (f (ti) − F)2 A(r)

k (ti)

where

w−
α (ti) =

{
α
2 if f (ti) ≤ F

1 − α
2 if f (ti) > F

Φ+
k,α (F) =

m∑

k=1

w+
α (ti) (f (ti) − F)2 A(r)

k (ti)

where

w+
α (ti) =

{
1 − α

2 if f (ti) ≤ F
α
2 if f (ti) > F

Consider that, for fixed values w±
α (ti) = wi, the minimizer Fk,α is obtained by

Fk,α =
∑m

k=1 wif (ti)A
(r)
k (ti)

∑m
k=1 wiA

(r)
k (ti)

, k = 1, . . . , n

and an iterative procedure can be adopted, similar to the one described above.

Fig. 2 α-cuts of a fuzzy-valued function by F-transform (m = 501, n = 101, r = 6) α =
0.01, 0.25, 0.5, 0.75, 1.0
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In Fig. 2 the performance of the expectile smoothing approximation with
F-transform is illustrated when f (ti) = 5e−0.5t2i sin2(πti) + 2zi, ti ∈ [0, 2], i =
1, . . . ,m, where zi ∈ N(0, 1).

The data are represented by points and 9 curves are generated, corresponding to
the values of α = 0.01, 0.25, 0.5, 0.75, 1.0; it is to be remarked that for any value of
α ∈]0, 1] we can obtain the α−cut

[
F−
k,α,F+

k,α

]
of Fk , k = 1, 2, . . . , n. The curves

are then constructed by inverse F-transform.

3 Examples

In order to show how the F-transform can be used for expectile smoothing, we apply
the proposed estimation on one financial time series. The number n of subintervals
in the fuzzy partition (P,A(r)) are approximately m

5 and the bandwidth r is estimated
by generalized cross validation. In all cases, for simplicity, the basic functions Ak(x),
defined on the intervals [xk−r, xk+r], are obtained by translating and rescaling the
same symmetric triangular fuzzy number T0, defined on [−1, 1] and centered at the
origin, with membership

T0(t) =
⎧
⎨

⎩

1 + t if t ∈ [−1, 0]
1 − t if t ∈ [0, 1]
0 otherwise

.

The time series in Fig. 3 is the daily London Gold Fixing, the usual benchmark
for the gold price; it also provides a published benchmark price that is widely used

Fig. 3 α-cuts of a fuzzy-valued function by F-transform (m = 1317, n = 250, r = 3) α =
0.01, 0.25, 0.5, 0.75, 1.0
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as a pricing medium by producers, consumers, investors and central banks. The
m = 1317 observations cover the period from June 2007 to August 2012.

The introduced smoothing technique may represent a good alternative to the most
popular ones, for example LOWESS (Locally Weighted Scatterplot Smoothing),
because it always producesmonotonic behaviors and the algorithmic implementation
is simple while the integral is preserved.

In addition, using an appropriate (generalized) fuzzy partition, the α-cuts[
F−
k,α,F+

k,α

]
of Fk have the same smoothing property inherited from F-transform,

with a “degree of smoothness” depending on the bandwidth of the partition.
The preliminary results encourage to further work in the study and applications

of F-transform as a tool to obtain a fuzzy-valued interpretation of a time series.
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Back to “Reasoning”

Marco Elio Tabacchi and Settimo Termini

Abstract Is rigor always strictly related to precision and accuracy? This is a fun-
damental question in the realm of Fuzzy Logic; the first instinct would be to answer
in the positive, but the question is much more complex than it appears, as true rigor
is obtained also by a careful examination of the context, and limiting to a mechani-
cal transfer of techniques, procedures and conceptual attitudes from one domain to
another, such as from the pure engineering feats or the ones of mathematical logic
to the study of human reasoning, does not guarantee optimal results. Starting from
this question, we discuss some implications of going back to the very concept of rea-
soning as it is used in natural language and in everyday life. Taking into account the
presence—from the start—of uncertainty and approximation in one of its possible
forms seems to indicate the need of a different approach from the simple extension
of tools and concepts from mathematical logic.

1 Introduction

Had the format allowed it, a possible, albeit very long, subtitle to this paper could have
been: “There aremore things in theworld of fuzzy logic (with respect to the possibility
of picking up relevant aspects of reasoning) than in formalizedmathematical logics.”
The previous sentence does not fit well with the role of a subtitle, but can perhaps
play a role for clarifying the aims of the present paper. First of all, let us stress that we
are using the term reasoning to discuss the informal (but rigorous) use of the term.
What could be the content and the scope, for instance, of an invitation—when facing
a difficult problem—of this kind: let us discuss about it (equivalent of let us reason
about it).Wewant to stress that the use of reason here, as a sort of synonym of discuss
presents the two following features: (a) The procedure followed along the dialogue
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is presumed to be very rigorous without any sloppiness neither in the presentation of
the problem nor regarding the argumentation. (b) One does not think that this piece
of reasoning—i.e., piece of discussion—will be formalized, and for the simple fact
that no advantage could be envisaged from a possible formalization. We can have
rigor without formalization, as is well known: this is what usually happens to human
beings in their act of reasoning. Let us outline the plan of the paper. In the following
Sect. 2 we discuss the relationship among rigor, precision and accuracy. In Sect. 3, we
relate these considerations with the heritage of mathematical logic to any modelling
of reasoning. In Sect. 4 we ask which notions are really important in a “reasoning
context”, in which uncertainty, fuzziness, vagueness are important players of the
game, looking for meaningful aspects of the real processes of reasoning, embedded
by complex constraints which impede too harsh simplifications. We are confident
that this impure setting is what allows creativity, adaptations and the like, by easily
allowing to switch from one context to another one. Conclusions will follow.

2 Rigor, Precision and Accuracy

Let us ask a question: “Is rigor always strictly related to precision and accuracy?”One
would, perhaps, be induced to immediately answer Yes. However, under reflection,
it is clear that the situation is, by far, much more complex. True rigor is obtained
also by a careful examination of the context in which we move and the mechanical
transferring of techniques, procedures and conceptual attitudes from one domain to
another one can produce undesirable results. Moreover a local increase of precision
and accuracy can imbalance all the system, producing a collapse of the equilibrium
among the parts and, as a consequence, worst results. We think that we should take
into account a useful lesson which starting, at least, from Aristotle arrives to Karl
Popper. A forgotten lesson, we would say. Let us observe that it is surely good to take
inspiration from “good practices” and, in particular, to see what is the behaviour of a
successful discipline in relation to both precision and rigor, and model our action in
another domain accordingly. However we must be careful in not applying the recipe
in a disastrous way by a mechanical transferring of the original methodology, guided
by just a few rules. The good aspect is to take as a guiding example the fields and
disciplines in which a high level of rigor has been obtained. The bad aspect is to force
the same methods in an uncritical way to very different domains, something which
can produce unpleasant results when there is a very simplified and, in some cases,
sloppy use of very beautiful and sophisticated constructions designed for completely
different aims. To this aim it would be useful to always recall Aristotle’s comment:
“It is the mark of an educated man to look for precision in each class of things
just so far as the nature of the subject admits.” And, to reinforce what he has in
mind, he continues by saying: “it is evidently equally foolish to accept probable
reasoning from a mathematician and to demand from a rhetorician scientific proofs.”
(Nicomachean Ethics, book I Chapter3, translated byW.D. Ross) The fact is, as Karl
Raimund Popper writes, that “both precision and certainty are false ideals. They are
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impossible to attain, and therefore dangerously misleading if they are uncritically
accepted as guides. The quest for precision is analogous to the quest for certainty, and
both should be abandoned.” [13, p. 22] Maybe such harsh affirmation of a principle
can shock the listener, but what follows underlines the importance of the point: “I
do not suggest, of course, that an increase in the precision of, say, a prediction, or
even a formulation, may not sometimes be highly desirable. What I do suggest is that
it is always undesirable to make an effort to increase precision for its own sake—
especially linguistic precision—since this usually leads to loss of clarity…” [13, p.
22] (italics ours). His conclusion is that “one should never try to be more precise
than the problem situation demands.” [13, p. 22] Somehow this statement is parallel
to the previously mentioned Aristotle’s. We shall try with his help to understand
better the situation. An increase in the clarity with which we present a problem is
always useful and welcome. However this clarity is not always related to an increase
in the precision with which we describe parts of our problem. This can be so if this
increase in the accuracy of a certain measurements is useful (to be sure that there are
no harmful bacteria in a throat, or for choosing between two theories). But in itself
increasing accuracy and precision is not a virtue, while the increase in clarity when
posing a problem is always desirable. What could be the origin of this desire to look
for “precision for its own sake”? What is the origin of this attitude? This is, perhaps,
connected to the tendency, denounced above, of transferring in a mechanical way,
rigorous approaches which elsewhere have worked well. Maybe this is due to the
successes of mathematics in physics and the success of physics when it began to use
mathematics to develop the intuitions of the way in which the world works. It seems
to us that Popper describes in a clear way a situation very similar to the questions we
aim to discuss here: to argue against the uncritical development of logical modelings
along the classical paths of mathematical logic, presenting them as a contribution
to the forging of tools useful for applications—also in presence of uncertainty and
approximations—in particular when such approaches are intended to be applied in
computational intelligence.

3 Rigor and the Legacy of Mathematical Logic

These kinds of investigations can be very interesting and pose very challenging ques-
tions. The point we aim to focus, then, has nothing to do either with their legitimacy
or with the value of the results obtained in themselves. The point we pose is their
(claimed) useful role in applications. Just to clarify what we have in mind, let us see
what Hajek wrote in [8], a contribution to a comprehensive volume (“A Companion
to Philosophical Logic”) inwhich he defends the respectability of Fuzzy logic—from
the point of view of the logician—when it is adequately interpreted. After writing
at the beginning “In spite of several successful applications, the logician may (and
should) ask: is this really a logic? Does it have foundations, mathematical and/or
philosophical? I shall try to give a positive answer to this question, at least as mathe-
matical foundations are concerned” (p. 595). And he concludes the paper by writing:
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“Fuzzy logic in the narrow sense is a logic, a logic with a comparative notion of
truth. It is mathematically deep, inspiring and in quick development. […] The bridge
between fuzzy logic in the broad sense and pure symbolic logic is being built and
the results are promising.” (p. 604).

Let’s go back to the beginning of this same paper. Introducing the difference of
Fuzzy logic in a broad and narrow sense, Hajek writes: “It turned out that one has
to distinguish two notions of fuzzy logic. It was again Zadeh who coined the terms
’fuzzy logic in broad (or wide) and narrow sense’: In a broad sense, the term ‘fuzzy
logic’ has been used as synonymous with ‘fuzzy set theory and its applications’, …
in the emerging narrow sense, fuzzy logic is understood as a theory of approximate
reasoning based on many-valued logic. Zadeh […] stresses that the questions of
fuzzy logic in the narrow sense differ from usual questions of many-valued logic and
concern more questions of approximate inferences than those of completeness, etc.;
with full admiration toZadeh’s pioneering and extensivework […] a logicianwill first
study classical logical questions on completeness, decidability, complexity, etc. of the
symbolic calculi in question and then try to reduce the question of Zadeh’s agenda to
questions of deduction as far as possible” (p. 596). Let us, finally, look at a few other
observations borrowed from another—relatively recent—paper by the same Hajek
coauthored with Paris and Shepherdson [9]. The authors, all mathematical logicians
by trade, arrive at an interesting conclusion when they write: “our results appear to
document the fact that fuzzy logic, taken seriously, is not just applied logic but may
well be considered a branch of philosophical logic (since it offers a rich formal model
of consequence under vagueness) as well as of mathematical logic (since it brings
problems demanding non-trivial mathematical solutions).” [9, p. 341] We advance
the opinion that “fuzzy logic, taken seriously”, that is what is usually called “fuzzy
mathematical logic”, independently from the importance and value of its results, is
not at all an applied logic and has, in practice, nothing to dowith applications (and, as
a consequence,with a general explicatum, in Carnap’s sense, of the informal notion of
reasoning). It cannot provide, in fact, any truehelp for applications in situationswhere
uncertainty and fuzziness play a inavoidable role at least for the following two simple
reasons: (1) the crucial concepts of mathematical logic, soundness and completeness
lose their crucial role (at least for applications) when we are concerned from the
start with a pervasive presence of uncertainty and imprecision. (2) Secondly, all this
complex (and wonderful) machinery complicates (if taken seriously) any approach
to solve any non trivial problem. This fact should be afforded, anyway, if we think
that the approach can produce better results, but this is not the case in view of point 1
above (as well as with the experience done). The crucial points of mathematical logic
are not motivated by original, general aspects of the informal notion of reasoning.
Its agenda—when it was conceived—was different, and was different since it was
dictated by the needs of the Hilbert program: to look for certainty. There was the need
of an important insurance: to avoid unpleasant situations (the paradoxes), when the
mathematicians were doing their job of “searching proofs” also in the new territories
beyond the frontier opened to them by Cantor. The same can be said also for “fuzzy
mathematical logic” which has modelled itself on the same standards of classical
mathematical logic. But—from the point of view of applications and the modeling of
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reasoning in real life situations—the search for a rigorous “approximate certainty”—
as we could call it—looks peculiar. Let us observe that we have not (and shall not)
discuss the problem of probabilistic reasoning. This could seem strange at first sight.
We thought about it; however, after a reflection we realized that the point we wanted
to focus was the development of models of reasoning based on mathematical logic
(when uncertainty and imprecision are added). Probabilistic reasoning takes into
account from the start the presence of uncertainty, and so the approaches based on
probabilistic considerations represent and are a different chapter of this story. Of
course, along the way of constructing a (general) theory of reasoning these nuances
should be considered. But, at the moment we want concentrate to this specific aspect
of the problem.For clarity reasonswe shall, however, in the brief additional comments
which follows, indicate a few connectionswith probabilistic attitudeswhich naturally
emerge.

4 Focus on a Few New Crucial Notions

For brevity let us boldly say that in trying to construct a general theory of reasoning in
a fresh way there is no need of looking for pivoting notions. In the case of Hilbert the
questions of soundness and completeness were essential. In the case of everyday’s
(although rigorous) use of reasoning, the situation is different. It can happen, of
course, that we meet the emergence of new ideas upon which it is useful to pay
attention. But it seems that it is not useful to start from them. At the moment we
shall limit ourselves to comment on a few remarks of von Neumann [11]. It can be
helpful, in future, to rethink a few considerations done by Bellmann and Zadeh [4]
on the notion of “locality”. It is well known that von Neumann in his last years was
deeply involved in cybernetic questions and the design of computers, and pondered
over logic and the way in which it could be modified for being used in the new
emerging fields. In particular he wished for logic a development that could allow the
use of methods over the continuum and of mathematical analysis. Now we can say
that—in its general lines—this project has been at least partly realized, although we
do not know whether the present accomplishments have been done in the direction
he had in mind. We refer to the introduction of generalized connectives in fuzzy
logic starting from the seminal paper by Trillas on negation [19] (and the subsequent
generalization of other connectives [1]).

We must remember that von Neumann also gave thought to another crucial ques-
tion, the presence of error and the way of treating it. Can we affirm that this has
something to do with the questions we are discussing now? Let us consider now an
apparently different question. All logical systems have developed themselves with
the idea in mind that a particular and careful attention should be paid to the fact that,
in a sense, there is a flow of truth when applying correct rules. A truth “transmit-
ted” from axioms, or other intermediate steps to the conclusions searched for. This
is used, in Italian, in the title of a remarkable book about logic by Bellissima and
Pagli [3], a wordplay on the mainly religious concept of “received truth.” Now, it
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seems to us that in reasoning with partial information, this beautiful metaphor is no
more valid. There is really nothing to be rigourously transmitted, unless we consider
not the transmission of truth, but the way in which uncertainty plays its game. In
this case we could also use the image of how uncertainty flows from the premises
to the conclusions for taking into account the way in which uncertainty impact on
our way of drawing conclusions. This is the place in which probability (probabilis-
tic rules and concepts) can play an essential role. The uncertainty present, in fact,
must be quantitatively represented and modelled through one of the available theo-
ries and approaches which appear to correspond better to the specific situation taken
into account [5–7]. One should consider in this context also psychological aspect of
the empirical phenomenon of reasoning which can be useful to develop and enrich
computational intelligence models [2, 12]. However, the most adequate setting for
studying the flow and control of the uncertainty present is one in which onemust look
to a subtle play of checks and balances between old and new information and the way
in which these changes have an impact on some new questions. It is really something
that has to do with von Neumann suggestion that we must take error seriously and
treat it through thermodynamical methods. In this context it seems interesting to look
at the connection between fuzzy sets and subjective probability found by Coletti and
Scozzafava (see [5]) as well as to remember that the logical (extended) connective
used by Mamdani (see e.g. [10]) in his applications of fuzzy techniques to control
theory is more similar to a correlation than a true logical implication.

5 As a Sort of (Provisional) Conclusion

Theword “conclusion” is not very apt for the sort of considerations and remarks done
in the present paper. The comments which follow, then, have only the aim of focusing
the small steps forwards have beendone (in our view) in order to face the problemwith
a better awareness. The considerations done in the last Section allow to proceed along
the way of asking the crucial questions of Computational intelligence, something we
have discussed in the past [14–18, 21], without the burdensome legacy of something
which appears to be improper. The challenging question of constructing a unified and
unifying approach (and also truemodels) to intelligent behaviour of both humans and
artifacts remains more difficult than it can superficially appear (and appeared at the
birth of Cybernetics). Also the possibility of formalizing vagueness in a easy way, as
proposed anddoneby fuzzy sets theory, presents still unansweredquestions.However
we must get rid of rigidities which do not strictly belong to the main problem. A
step forward can be done—we think—if, when trying to model reasoning, we look
at mathematics and logic in a new way. New means, first of all, in a way similar to
the one in which people looked at mathematics and logic before Hilbert programme
was started. Limitation theorems have been wonderful intellectual achievements, but
for what regards such questions, as the modelling of aspects of intelligent behaviour,
they indicate the existence of “boundaries”, not suggestions for grasping essential
features of these new domains of Nature we want to understand and model. We
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need a completely new start, not an adaptation of the technical results of classical
mathematical logic. Lotfi Zadeh was right in distinguishing fuzzy logic in the narrow
sense and in the wide sense. However, fuzzy logic in the wide sense is not the
answer. To recognize that uncertainty, vagueness, fuzziness and imprecision all play
an essential role in intelligent behaviour forces us to afford the problem of modeling
“reasoning” in a completely fresh way. By starting from the informal idea as used,
rigorously with respect to the intended field, in all the contexts of human life and use
of natural language [20], one should proceed, through an experimental study, to pick
up its meaningful features and proceed along the ways that could help deepening our
understanding of this crucial notion.
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Lexicographic Choice Functions
Without Archimedeanicity

Arthur Van Camp, Enrique Miranda and Gert de Cooman

Abstract We investigate the connection between choice functions and lexicographic
probabilities, by means of the convexity axiom considered by Seidenfeld et al. (Syn-
these 172:157–176, 2010 [7]) but without imposing any Archimedean condition.
We show that lexicographic probabilities are related to a particular type of sets of
desirable gambles, and investigate the properties of the coherent choice function
this induces via maximality. Finally, we show that the convexity axiom is necessary
but not sufficient for a coherent choice function to be the infimum of a class of
lexicographic ones.

Keywords Choice functions · Lexicographic probabilities · Archimedeanicity ·
Maximality

1 Introduction

A prominent decision model under uncertainty is that of choice functions [5]. To
be able to deal with imprecise information, Seidenfeld et al. proposed an axiomati-
sation of coherent choice functions in [7] that generalised Rubin’s [5] to allow for
incomparability. They also established a representation theorem of coherent choice
functions by means of probability/utility pairs.

From an imprecise probabilities perspective, choice functions can be seen as a
more general model than sets of desirable gambles, because preferences are not
uniquely determined by pairwise comparisons between options. We investigated this
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idea in [10], and in particular we studied the connections between choice functions
and the notions of desirability and indifference. In order to do so, we applied the
above-mentioned axiomatisation [7] to gambles instead of horse lotteries, and also
removed two axioms: (i) the Archimedean one, because it prevents choice functions
from modelling the preferences captured by coherent sets of desirable gambles;
and (ii) the convexity axiom, because that is incompatible with maximality as a
decision rule, something that is closely tied inwith coherent sets of desirable gambles.
Although this alternative axiomatisation is more general, it also has the drawback of
not leading to a Rubinesque representation theorem, or in other words, to a strong
belief structure [2].

In the present paper, we add more detail to our previous findings [10] by inves-
tigating in more detail the implications of the convexity axiom, while still letting
go of archimedeanicity. We show that, if a Rubinesque representation theorem were
possible, it would involve lexicographic probabilities, but that unfortunately such
a representation is not generally guaranteed. In establishing this, we derive some
properties of coherent choice functions in terms of their so-called rejection sets.

The paper is organised as follows: in Sect. 2, we provide the basics of the theory
of choice functions that we need for the rest of the paper. The connection with lexico-
graphic probabilities and the connection with a representation theorem is addressed
in Sect. 3. Some additional comments and remarks are provided in Sect. 4. Due to
limitations of space, many of the proofs have been omitted.

2 Coherent Choice Functions

Consider a finite possibility space X in which a random variable X takes values.
We denote by L the set of all gambles—real-valued functions—on X . Typically, a
gamble f (X) is interpreted as an uncertain reward: if the actual outcome turns out to
be x in X , then the subject’s capital changes by f (x). For any two gambles f and g,
we write f ≤ g when f (x) ≤ g(x) for all x in X , and we write f < g when f ≤ g and
f �= g. We collect all gambles f for which f > 0 in L>0.

For a subset O of L, we define its positive hull as posi(O) := {∑n
k=1 λkfk :

n ∈ N,λk ∈ R>0, fk ∈ O
} ⊆ L, and its convex hull as CH(O) := {∑n

k=1 αkfk :
n ∈ N,αk ∈ R≥0,

∑n
k=1 αk = 1, fk ∈ O

} ⊆ L, whereR>0 (R≥0) is the set of all pos-
itive (non-negative) real numbers. For any two subsets O1 and O2 of L and any λ in
R, we let λO1 := {λf : f ∈ O1} and O1 + O2 := {f + g : f ∈ O1, g ∈ O2}.

We denote byQ the set of all non-empty finite subsets of L. Elements O ofQ are
the option sets amongst which a subject can choose his preferred options.

Definition 1 A choice function C is a mapC : Q → Q ∪ {∅} : O 
→ C(O) such that
C(O) ⊆ O.

The interpretation is that a choice function C selects the set C(O) of ‘best’ options in
the option set O. Our definition resembles the one commonly used in the literature
[1, 7, 9], except for a (also not unusual) restriction to finite option sets [6, 8].
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Equivalently to a choice function C, we consider its rejection function R, defined
R(O) := O \ C(O) for all O in Q. It returns the gambles that are not selected by C.

In this paper, we focus on coherent choice functions.

Definition 2 We call a choice function C on Q coherent if for all O,O1,O2 in Q,
f , g in L and λ in R>0:

C1. C(O) �= ∅;
C2. if f < g then {g} = C({f , g});
C3. a. if C(O2) ⊆ O2 \ O1 and O1 ⊆ O2 ⊆ O then C(O) ⊆ O \ O1;

b. if C(O2) ⊆ O1 and O ⊆ O2 \ O1 then C(O2 \ O) ⊆ O1;

C4. a. if O1 ⊆ C(O2) then λO1 ⊆ C(λO2);
b. if O1 ⊆ C(O2) then O1 + {f } ⊆ C(O2 + {f }).

These axioms are a subset of the ones studied by Seidenfeld et al. [7], translated
from horse lotteries to gambles. We have not included the Archimedean axiom,
which makes our definition more general. This is important in order to make the
connection with the sets of desirable gambles we recall below.

In this paper, we intend to investigate in some detail the implications of an addi-
tional axiom in [7], namely

C5. if O ⊆ O1 ⊆ CH(O) then C(O) ⊆ C(O1) for all O and O1 in Q,

also referred to as the convexity axiom. One useful property we shall have occasion
to use further on is the following:

Proposition 1 Let C be a choice function on L satisfying C3a, C4a and C5. Then
for any n ∈ N, f1, f2, . . . , fn ∈ L and λ1,λ2, . . . λn ∈ R>0:

0 ∈ C({0, f1, f2, . . . , fn}) ⇔ 0 ∈ C({0,λ1f1,λ2f2, . . . ,λnfn}).

For two choice functions C and C′, we call C not more informative than C′—and
we writeC 
 C′—ifC(O) ⊇ C′(O) for allO inQ. The binary relation
 is a partial
order, and for any collection C ′ of choice functions, its infimum inf C ′ exists, and
is given by inf C ′(O) = ⋃

C∈C′ C(O) for all O in Q. Coherence is preserved under
arbitrary infima [10, Proposition 3], and it is easy to show that so is convexity:

Proposition 2 For any collection C ′ of choice functions that satisfy C5, its infimum
inf C ′ satisfies C5 as well.

One important way of defining coherent choice functions is by means of sets
of desirable gambles. This connection is explored in some detail in [10]. A set
of desirable gambles D is simply a subset of the vector space of gambles L. The
underlying idea is that a subject finds every gamble f in her set of desirable gambles
strictly better than the status quo—she has a strict preference for the uncertain reward
f over 0. As we did for choice functions, we pay special attention to coherent sets of
desirable gambles, see for instance [3] for a detailed discussion.
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Definition 3 ([3]) A set of desirable gambles D is called coherent when D =
posi(D ∪ L>0) and 0 /∈ D. We collect all coherent sets of desirable gambles in the
set D̄.

We may associate with any D ∈ D̄ a strict partial order �D on L, by letting f �D
g ⇔ 0 �D g − f ⇔ g − f ∈ D, so D = {f ∈ L : 0 �D f }; see for instance [3]. This
correspondence is one-to-one.

Wemay also associatewith a coherent set of desirable gamblesD a choice function
CD based on maximality. For any O in Q, we let CD(O) be the set of gambles that
are undominated, or maximal, in O:

CD(O) := {f ∈ O : (∀g ∈ O)g − f /∈ D} = {f ∈ O : (∀g ∈ O)f ��D g}.

Interestingly, the coherent choice function CD associated with a coherent set of
desirable gambles D need not satisfy C5:

Proposition 3 Forany coherent set of desirable gamblesD, its corresponding choice
function CD satisfies C5 if and only posi(Dc) = Dc.

3 Lexicographic Choice Functions

Let D̄L := {D ∈ D̄ : posi(Dc) = Dc}. It follows from [4, Proposition 6] that a set of
gambles D ∈ D̄L induces a linear prevision—an expectation operator with respect
to a finitely additive probability—by means of the formula PD(f ) := sup{μ ∈ R :
f − μ ∈ D} for all f inL. We can make an even tighter connection with the so-called
lexicographic probabilities.

A lexicographic probability system is an �-tuple p = (p1, . . . , p�) of proba-
bility mass functions on X . We associate with p its expectation operator Ep =
(Ep1 , . . . ,Ep�

), and its preference relation ≺ on L:

f ≺ g ⇔ Ep(f ) <L Ep(g) for all f and g in L,

where <L denotes the usual lexicographic order between �-tuples.

Proposition 4 Given a lexicographic probability system (p1, . . . , p�), the set of
desirable gambles D := {f ∈ L : 0 ≺ f } associated with the preference relation ≺
is an element of D̄L. Conversely, given a set of desirable gambles D in D̄L, its asso-
ciated preference relation �D is a preference relation based on some lexicographic
probability system.

Because of this result, we refer to the elements of D̄L as lexicographic sets of desir-
able gambles, and call the elements of C̄L := {CD : D ∈ D̄L} lexicographic choice
functions.
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We gather from the discussion in Sect. 2 that the infimum of any set of lexico-
graphic choice functions satisfies Axioms C1–C5. The central question that remains
now, is whether any choice function that satisfies Axioms C1–C5 is, conversely,
an infimum of lexicographic choice functions. Such a representation result would
make lexicographic choice functions fulfil the role of ‘dually atomic’ choice func-
tions in our theory without the Archimedean axiom, in analogy with the theory with
an Archimedean axiom [7], where the dually atomic choice functions are the ones
induced by probability mass functions—see [2] for the terminology. In other words,
we study the following:

Is, in parallel with the result in [7], every choice function C that satisfies
AxiomsC1–C5 an infimumof lexicographic choice functions, or in otherwords,
is C(O) = ⋃{C′(O) : C′ ∈ C̄L,C 
 C′} for all O in Q?

We now show that this is not the case. In our counterexample, we focus on a
binary space X = {a, b}. It follows from the axioms of coherence that any coherent
choice function C on a binary possibility space X can be determined by two sets: its
associated set of desirable gambles DC := {f ∈ L : {f } = C{0, f }} and a so-called
rejection set K, which consists of the gambles g in LII and h in LIV which, taken
alone, do not allow us to reject 0, but taken together, do allow us to reject 0:

0 ∈ C({0, g}), 0 ∈ C({0, h}), and 0 ∈ R({0, g, h}).

Here LII := {h ∈ L : h(a) < 0 and h(b) > 0} constitutes the second, and LIV :=
{h ∈ L : h(a) > 0 and h(b) < 0} the fourth quadrant, in the two-dimensional vec-
tor space L.

In order to construct our counterexample, consider some increasing subset K of
R>0 × R<0, and use it to define a special choice function CK , with rejection function
RK , as follows. First of all, for any option set O, we let 0 ∈ RK({0} ∪ O) if and only
if

O ∩ L>0 �= ∅ or (∃λ1,λ2 ∈ R>0)(∃(ρ1, ρ2) ∈ K){λ1(−1, ρ1),λ2(1, ρ2)} ⊆ O.

(1)
Of course, this will define a choice function CK uniquely, provided that we require
that CK should satisfy Axiom C4b, because then, for any O ∈ Q and any f ∈ O:

f ∈ RK(O) ⇔ 0 ∈ RK({0} ∪ O′), (2)

where O′ := (O − {f }) \ {0}.
Proposition 5 Any choice function CK that is defined by Eqs. (1) and (2) satisfies
Axioms C1, C2, C3a, C4a and C4b.

As far as C5 is concerned, we have established the following:
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κ1

κ2

1 2

−1

−2
K

Fig. 1 The rejection set K that defines the choice function CK in Proposition 7

Proposition 6 Consider any increasing K ⊆ R>0 × R<0. For the choice function
CK onX = {a, b}defined byEqs. (1) and (2), the following statements are equivalent:
(i) CK satisfies C5.
(ii) (∀(κ1,κ2) ∈ R>0 × R<0)(κ1 + κ2 > 0 ⇒ (κ1,κ2) ∈ K).

Now, let us consider the set K as depicted in the figure above (Fig. 1).
Let CK be the choice function associated with this set by means of Eqs. (1) and

(2). It follows from the discussion above that this CK satisfies Axioms C1, C2, C3a,
C4a, C4b and C5. Let us show that it also satisfies Axiom C3b.

Proposition 7 CK satisfies Axiom C3b. As a consequence, it is a coherent choice
function that satisfies C5.

Proof It can be checked that Axiom C3b is equivalent to

(∀O ∈ Q,∀g ∈ O){0, g} ⊆ R(O) ⇒ 0 ∈ R(O \ {g}).

So assume that {0, g} ⊆ RK(O). Then g ∈ RK(O) and there are (κ1,κ2) ∈ K such
that {λ1(−1,κ1),λ2(1,κ2)} ⊆ O for some λ1 and λ2 in R>0.

If g �= λ1(−1,κ1) and g �= λ2(1,κ2) then 0 ∈ RK(O \ {g}) and we are done, so
assume that g = λ1(−1,κ1) or g = λ2(1,κ2).

If g = λ1(−1,κ1), then 0 ∈ RK(O − {g}), so there are (κ′
1,κ

′
2) ∈ K such that {g +

λ′
1(−1,κ′

1), g + λ′
2(1,κ

′
2)} ⊆ O for some λ′

1 and λ′
2 in R>0, implying that {(−λ1 −

λ′
1,λ1κ1 + λ′

1κ
′
1), (−λ1 + λ′

2,λ1κ1 + λ′
2κ

′
2)} ⊆ O.

We now have a number of possibilities for the K defined in the figure above.
First of all, (λ1κ1+λ′

1κ
′
1

λ1+λ′
1

,κ2) ∈ K under any of the following conditions:

(i) κ2 > −1;
(ii) κ2 ∈ (−2,−1] (so κ1 ≥ 1) and κ′

1 ≥ 1;
(iii) κ2 = −2 (so κ1 > 1) and κ′

1 ≥ 1;
(iv) κ2 < −2 (so κ1 > 2) and κ′

1 ≥ 2.

So, in any of these cases, we see that 0 ∈ RK({(−1, λ1κ1+λ′
1κ

′
1

λ1+λ′
1

)}, 0, (1,κ2)), and there-

fore also 0 ∈ R({g + λ′
1(−1,κ′

1), 0,λ2(1,κ2)}), by Proposition 1. Since λ′
1(−1,κ′

1)�= 0, we infer from Axiom C3a that indeed 0 ∈ RK(O \ {g}).
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The remaining two possibilities are:

(v) κ2 ≤ −1 (so κ1 ≥ 1) and κ′
1 < 1 (so κ′

2 > −1);
(vi) κ2 < −2 (so κ1 > 2) and κ′

1 ∈ [1, 2) (so κ′
2 ≥ −2).

There are now three possible cases.
If λ1 = λ′

2, then λ1κ1 + λ′
2κ

′
2 = λ1(κ1 + κ′

2) > 0 and therefore also (−λ1 + λ′
2,

λ1κ1 + λ′
2κ

′
2) > 0, whence 0 ∈ RK({0, (−λ1 + λ′

2,λ1κ1 + λ′
2κ

′
2)}), by Axiom C2.

If λ1 < λ′
2, then (κ′

1,
λ1κ1+λ′

2κ
′
2

−λ1+λ′
2

) ∈ K, and therefore also

0 ∈ RK

({
(−1,κ′

1), 0, (1,
λ1κ1 + λ′

2κ
′
2

−λ1 + λ′
2

)
})

Proposition 1 now guarantees that also

0 ∈ RK({(−λ′
1,λ

′
1κ

′
1), 0, (−λ1 + λ′

2,λ1κ1 + λ′
2κ

′
2)}).

Since (−λ′
1,λ

′
1κ

′
1) �= g = (−λ1,λ1κ1)—because κ1 ≥ 1 and κ′

1 < 1, or κ1 > 2 and
κ′
1 < 2, we infer from Axiom C3a that 0 ∈ RK(O \ {g}).
Finally, if λ1 > λ′

2, then (
λ1κ1+λ′

2κ
′
2

λ1−λ′
2

,κ′
2) ∈ K, implying that

0 ∈ RK

({
(−1,

λ1κ1 + λ′
2κ

′
2

λ1 − λ′
2

), 0, (1,κ′
2)

})
.

Proposition 1 now guarantees that also

0 ∈ RK({(−λ1 + λ′
2,λ1κ1 + λ′

2κ
′
2), 0, (λ

′
2,λ

′
2κ

′
2)}).

Since (−λ1 + λ′
2,λ1κ1 + λ′

2κ
′
2) �= g = (−λ1,λ1κ1), becauseλ′

2 �= 0, we infer from
Axiom C3a that indeed 0 ∈ RK(O \ {g}).

The proof of the case that g = λ2(1,κ2) is similar. �

To see that our CK is not an infimum of lexicographic choice functions, we use
the following property:

Definition 4 Consider a coherent choice function C and its rejection set K. Then
C is called weakly Archimedean if for all f ∈ LII and g ∈ LIV with posi({f , g}) ∩
L≥0 = ∅:

(∀ε ∈ R>0)(0 ∈ R({f + ε, 0, g}) ∩ R({f , 0, g + ε})) ⇒ 0 ∈ R({f , 0, g}).

Weuse this namebecause the property is a strictlyweaker version of theArchimedean
condition in [7, Axioms 3a and 3b]; it still fulfils the role of a continuity condition,
but is weak enough to be still compatible with desirability, a non-Archimedean strict
preference.
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Proposition 8 An infimum of a non-empty set of lexicographic choice functions is
weakly Archimedean.

We now see that our choice function CK from Proposition 7 is not an infimum
of lexicographic choice functions, because it is not weakly Archimedean: note that
{(1 + ε,−2), (1,−2 + ε)} ⊆ K for all ε > 0, while (1,−2) /∈ K.

4 Discussion

We have studied to which extent it is possible to have a theory of coherent choice
functions that (i) as a special case allows for choosing themaximal options in the strict
binary preference expressed by the notion of desirability in imprecise probabilities—
meaning that we must remove the Archimedean axiom, and that (ii) includes lexi-
cographic probability systems as its basic building blocks. We have shown that such
a theory can perfectly well incorporate the convexity axiom from [7], but that this
additional axiom is not strong enough to warrant a representation theorem where
every choice function is an infimum of lexicographic ones. It is still an open problem
to uncover additional axioms that will guarantee such representation. We suspect
that our weak archimedeanicity will play an important role in solving it.

Acknowledgments The research reported in this paper has been supported by project TIN2014-
59543-P.

References

1. Aizerman M (1984) New problems in the general choice theory. Soc Ch Welf 2:235–282
2. De Cooman G (2005) Belief models: an order-theoretic investigation. Ann Math Art Intell

45:5–34
3. De Cooman G, Quaeghebeur E (2012) Exchangeability and sets of desirable gambles. Int J

App Reason 53:363–395
4. Miranda E, Zaffalon M (2010) Notes on desirability and coherent lower previsions. Ann Math

Art Intell 60:251–309
5. Rubin H (1987) A weak system of axioms for “rational” behavior and the nonseparability of

utility from prior. Stat Risk Model 5:47–58
6. Schwartz T (1972) Rationality and the myth of the maximum. Noûs 6:97–117
7. Seidenfeld T, Schervisch M, Kadane J (2010) Coherent choice functions under uncertainty.

Synthese 172:157–176
8. Sen A (1971) Choice functions and revealed preference. Rev Econ Stud 38:307–317
9. Sen A (1977) Social choice theory: a re-examination. Econometrica 45:53–89
10. Van Camp A, De Cooman G, Miranda E, Quaeghebeur E (2015) Modelling indifference with

choice functions. In: Proceedings of ISIPTA’15, pp 305–314



Composition Operator for Credal Sets
Reconsidered

Jiřina Vejnarová

Abstract This paper is the second attempt to introduce the composition operator,
already known from probability, possibility, evidence and valuation-based systems
theories, also for credal sets.We try to avoid the discontinuitywhichwas present in the
original definition, but simultaneously to keep all the properties enabling us to design
compositional models in a way analogous to those in the above-mentioned theories.
These compositional models are aimed to be an alternative to Graphical Markov
Models. Theoretical results achieved in this paper are illustrated by an example.

1 Introduction

In the second half of 1990s a new approach to efficient representation of multidi-
mensional probability distributions was introduced with the aim to be alternative to
Graphical Markov Modeling. This approach is based on a simple idea: a multidi-
mensional distribution is composed from a system of low-dimensional distributions
by repetitive application of a special composition operator, which is also the reason
why such models are called compositional models.

Later, these compositional models were introduced also in possibility theory [7,
8] (here the models are parameterized by a continuous t-norm) and almost ten years
ago also in evidence theory [3, 4]. In all these frameworks the original idea is kept,
but there exist some slight differences among these frameworks.

In [9] we introduced a composition operator for credal sets, but due to the problem
of discontinuity it needed a revision. After a thorough reconsideration we decided to
present a new proposal avoiding this discontinuity. The goal of this paper is to show
that the revised composition operator keeps the basic properties of its counterparts in
other frameworks, and therefore it will enable us to introduce compositional models
for multidimensional credal sets.
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This contribution is organized as follows. In Sect. 2 we summarise the basic con-
cepts and notation. The new definition of the operator of composition is presented in
Sect. 3, which is devoted also to its basic properties and an illustrative example.

2 Basic Concepts and Notation

In this section we will briefly recall basic concepts and notation necessary for under-
standing the contribution.

2.1 Variables and Distributions

For an index setN = {1, 2, . . . , n} let {Xi}i∈N be a system of variables, eachXi having
its values in a finite set Xi and XN = X1 × X2 × · · · × Xn be the Cartesian product
of these sets.

In this paperwewill deal with groups of variables on its subspaces. Let us note that
XK will denote a group of variables {Xi}i∈K with values inXK = ×i∈KXi throughout
the paper.

Any group of variables XK can be described by a probability distribution (some-
times also called probability function)

P : XK −→ [0, 1],

such that ∑

xK∈XK

P(xK) = 1.

Having two probability distributions P1 and P2 of XK we say that P1 is absolutely
continuous with respect to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition of the composition operator.

2.2 Credal Sets

A credal setM(XK) describing a group of variables XK is usually defined as a closed
convex set of probability measures describing the values of this variable. In order
to simplify the expression of operations with credal sets, it is often considered [5]
that a credal set is the set of probability distributions associated to the probability
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measures in it. Under such consideration a credal set can be expressed as a convex
hull (denoted by CH) of its extreme distributions (ext)

M(XK) = CH{ext(M(XK))}.

Consider a credal M(XK). For each L ⊂ K its marginal credal set M(XL) is
obtained by element-wise marginalization, i.e.

M(XL) = CH{P↓L : P ∈ ext(M(XK))}, (1)

where P↓L denotes the marginal distribution of P on XL.
Besides marginalization we will also need the opposite operation, called vacuous

extension. Vacuous extension of a credal set M(XL) describing XL to a credal set
M(XK) = M(XL)

↑K (L ⊂ K) is the maximal credal set describing XK such that
M(XK)

↓L = M(XL).
Having two credal sets M1 and M2 describing XK and XL, respectively (assum-

ing that K,L ⊆ N), we say that these credal sets are projective if their marginals
describing common variables coincide, i.e. if

M1(XK∩L) = M2(XK∩L).

Let us note that if K and L are disjoint, then M1 and M2 are always projective, as
M1(X∅) = M2(X∅) ≡ 1.

2.3 Strong Independence

Among the numerous definitions of independence for credal sets [1] we have chosen
strong independence, as it seems to be the most appropriate for multidimensional
models.

We say that (groups of) variables XK and XL (K and L disjoint) are strongly
independent with respect toM(XK∪L) iff (in terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ M(XK),P2 ∈ M(XL)}.

Again, there exist several generalizations of this notion to conditional indepen-
dence, see e.g. [5], but as the following definition is suggested by the authors as the
most appropriate for the marginal problem, it seems to be a suitable concept also in
our case, since the operator of composition can also be used as a tool for solution of
a marginal problem, as shown (in the framework of possibility theory) e.g. in [8].

Given three groups of variables XK ,XL and XM (K,L,M be mutually disjoint
subsets ofN , such thatK andL are nonempty),we say thatXK andXL are conditionally
independent given XM under global setM(XK∪L∪M) (to simplify the notation we will
denote this relationship by K ⊥⊥ L|M) iff
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M(XK∪L∪M)
= CH{(P1 · P2)/P

↓M
1 : P1 ∈ M(XK∪M),P2 ∈ M(XL∪M),P

↓M
1 = P↓M

2 } .

This definition is a generalisation of stochastic conditional independence: if
M(XK∪L∪M) is a singleton, thenM(XK∪M) andM(XL∪M) are also (projective) sin-
gletons and the definition reduces to the definition of stochastic conditional indepen-
dence.

3 Composition Operator

In this section we will introduce a new definition of composition operator for credal
sets. The concept of the composition operator is presented first in a precise probability
framework, as it seems to be useful for better understanding to the concept.

3.1 Composition Operator of Probability Distributions

Now, let us recall the definition of composition of two probability distributions [2].
Consider two index sets K,L ⊂ N . We do not put any restrictions on K and L; they
may be but need not be disjoint, and one may be a subset of the other. Let P1 and P2

be two probability distributions of (groups of) variables XK and XL; then

(P1 � P2)(XK∪L) = P1(XK) · P2(XL)

P2(XK∩L)
, (2)

whenever P1(XK∩L) � P2(XK∩L); otherwise, it remains undefined.
It is specific property of composition operator for probability distributions—in

other settings the operator is always defined [3, 8].

3.2 Definition and Example

Let M1 and M2 be credal sets describing XK and XL, respectively. Our goal is to
define a new credal set, denoted by M1 � M2, which will be describing XK∪L and
will contain all of the information contained inM1 and, as much as possible, inM2.

The required properties are met by Definition 1 in [9].1 However, that definition
exhibits a kind of discontinuity and was thoroughly reconsidered. Here we decided
to propose the following one.

1Let us note that the definition is based on Moral’s concept of conditional independence with
relaxing convexity.
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Definition 1 For two credal setsM1 andM2 describing XK and XL, their composi-
tionM1 � M2 is defined as a convex hull of probability distributions P obtained as
follows. For each couple of distributions P1 ∈ M1(XK) and P2 ∈ M2(XL) such that
P↓K∩L
2 ∈ argmin{Q2 ∈ M2(XK∩L) : d(Q2,P

↓K∩L
1 ), distribution P is obtained by one

of the following rules:

[a] if P↓K∩L
1 � P↓K∩L

2

P = P1 · P2

P↓K∩L
2

,

[b] otherwise
P ∈ ext{P↑K∪L

1 }.

Function d used in the definition is a suitable distance function (e.g. Kullback-
Leibler divergence, total variation or some other f-divergence [6]).

Let us note, that this definition of composition operator does not differ from the
original one [9] in case of projective credal sets, as in this case the only distributions in
M1 � M2 are those satisfying P = (P1 · P2)/P

↓K∩L
2 , where P↓K∩L

1 = P↓K∩L
2 . How-

ever, it differs in the remaining cases. Let us illustrate the application of the operator
in case [a] by an example.

Example 1 Let

M1(X1X2) = CH{[0.2, 0.8, 0, 0], [0.1, 0.4, 0.1, 0.4],
[0.25, 0.25, 0.25, 0.25], [0, 0, 0.5, 0.5]},

and

M2(X2X3) = CH{[0, 0.3, 0, 0.7], [0.2, 0.1, 0.4, 0.3],
[0.5, 0, 0.5, 0], [0.2, 0.3, 0.2, 0.3]},

be two credal sets describing binary variables X1X2 and X2X3, respectively. These
two credal sets are not projective, as M1(X2) = CH{[0.2, 0.8], [0.5, 0.5]}, while
M2(X2) = CH{[0.3, 0.7], [0.5, 0.5]}. Therefore M2(X2) ⊂ M1(X2). Definition 1
in this case leads (using total variation) to

(M1 � M2)(X1X2X3)

= CH{[0, 0.3, 0, 0.7, 0, 0, 0, 0], [0.2, 0.1, 0.4, 0.3, 0, 0, 0, 0],
[0, 0.1, 0, 0.3, 0, 0.2, 0, 0.4], [0.07, 0.03, 0.17, 0.13, 0.13, 0.07, 0.23, 0.17],
[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0], [0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],
[0, 0, 0, 0, 0.5, 0, 0.5, 0], [0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]
[0, 0.2, 0, 0.8, 0, 0, 0, 0], [0.13, 0.07, 0.46, 0.34, 0, 0, 0, 0],
[0, 0.1, 0, 0.4, 0, 0.1, 0, 0.4], [0.07, 0.03, 0.23, 0.17, 0.07, 0.03, 0.23, 0.17]}.
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On the other hand

(M2 � M1)(X1X2X3)

= CH{[0, 0.3, 0, 0.7, 0, 0, 0, 0], [0.2, 0.1, 0.4, 0.3, 0, 0, 0, 0],
[0, 0.1, 0, 0.3, 0, 0.2, 0, 0.4], [0.07, 0.03, 0.17, 0.13, 0.13, 0.07, 0.23, 0.17],
[0.25, 0, 0.25, 0, 0.25, 0, 0.25, 0], [0.1, 0.15, 0.1, 0.15, 0.1, 0.15, 0.1, 0.15],
[0, 0, 0, 0, 0.5, 0, 0.5, 0], [0, 0, 0, 0, 0.2, 0.3, 0.2, 0.3]},

which differs from (M1 � M2)(X1X2X3). ♦
This difference deserves an explanation.M2 � M1 is smaller (more precise) than

M1 � M2, which corresponds to the idea that we want M2 � M1 to keep all the
information contained inM2. Therefore, we do not consider those distributions from
M1 not corresponding to any from M2, although these distributions are taken into
account when composing M1 � M2.

This is an example of a typical property of the operator of composition—it is not
commutative. The next subsection is devoted to other basic properties.

3.3 Basic Properties

In the following lemma we prove that this composition operator possesses basic
properties required above.

Lemma 1 For two credal setsM1 andM2 describing XK and XL, respectively, the
following properties hold true:

1. M1 � M2 is a credal set describing XK∪L.
2. (M1 � M2)(XK) = M1(XK).
3. M1 � M2 = M2 � M1 iffM1(XK∩L) = M2(XK∩L).

Proof 1. To prove that M1 � M2 is a credal set describing XK∪L it is enough to
take into consideration that it is the convex hull of probability distributions on
XK∪L, which is obvious from both [a] and [b] of Definition 1.

2. As marginalization of a credal set is element-wise, it is enough to prove that for
any P ∈ (M1 � M2)(XK∪L), P↓K = P1 ∈ M1(XK) holds. But it immediately
follows in case [a] from the results obtained for precise probabilities (see e.g. [2]).
In case [b] it is obvious, as anyP belongs to a vacuous extension ofP1 ∈ M1(XK)

to XK∪L.
3. First, let us assume that

(M1 � M2)(XK∪L) = (M2 � M1)(XK∪L).
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Then also its marginals must be identical, particularly

(M1 � M2)(XK∩L) = (M2 � M1)(XK∩L).

Taking into account 2. of this lemma we have

(M1 � M2)(XK∩L) = (
((M1 � M2)(XK∪L))↓K

)↓K∩L

= ((M1 � M2)(XK))
↓K∩L

= (M1(XK))
↓K∩L = M1(XK∩L)

and similarly
(M2 � M1)(XK∩L) = M2(XK∩L),

from which the desired equality immediately follows.

Let, on the other hand,M1(XK∩L) = M2(XK∩L). In this case only [a] of Defini-
tion 1 is applied and for any distributionP of (M1 � M2)(XK∪L) there existP1 ∈
M1(XK) andP2 ∈ M2(XL) such thatP

↓K∩L
1 = P↓K∩L

2 andP = (P1 · P2)/P
↓K∩L
2 .

But simultaneously (due to projectivity) P = (P1 · P2)/P
↓K∩L
1 , which is an ele-

ment of (M2 � M1)(XK∪L). Hence

(M1 � M2)(XK∪L) = (M2 � M1)(XK∪L),

as desired. ��
The following theorem, proven in [9], expresses the relationship between strong

independence and the operator of composition. It is, together with Lemma 1, the
most important assertion enabling us to introduce multidimensional models.

Theorem 1 Let M be a credal set describing XK∪L with marginals M(XK) and
M(XL). Then

M(XK∪L) = (M↓K � M↓L)(XK∪L)

iff
(K \ L) ⊥⊥ (L \ K)|(K ∩ L).

This theorem remains valid also for this, revised definition, asM(XK) andM(XL)

are marginals of M(XK∪L), and therefore only [a] (for projective distributions) is
applicable.
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4 Conclusions

We presented revised version of composition operator for credal sets. This definition
seems to be satisfactory from the theoretical point of view; it satisfies the basic
required properties and, in contrary to the original one, it avoids discontinuity.

It seems to be a reasonable tool for construction of compositional multidimen-
sional models. Nevertheless, many problems should be solved in the near future.
From the theoretical point of view it is the relationship to probabilistic and evidential
compositions operators. From the practical viewpoint it is the problem of effective
finding of the nearest probability distributions (if there is no projective).
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A Nonparametric Linearity Test for a
Multiple Regression Model with Fuzzy Data

Dabuxilatu Wang

Abstract A linearity test for a multiple regression model with LR-fuzzy responses
and LR-fuzzy explanatory variables is considered. The regression model consists of
severalmultiple regressionmodels from response center or spreads to the explanatory
centers and spreads. A multiple nonparametric regression model to be employed as
a reference in the testing approach is estimated, and with which the linearity of the
regression model is tested. Some simulation example is also presented.

Keywords LR-fuzzy random variables · Nonparametric regression model ·
Linearity test

1 Introduction

In investigating the relationship between random elements, regression analysis
enables to seek for some complex effect of several random elements upon another.
Regression techniques have long been relevant to many fields [1, 7]. The random
elements considered actually in many practical applications in public health, med-
ical science, ecology, social or economic and financial problems sometimes involve
vagueness, so the regression problems have to face with such a mixture of fuzziness
and randomness. Under the least squares methods a bivariate linear regression model
[8] with n-dimensional fuzzy random sets has been estimated, and a multiple lin-
ear regression model with LR-response variable and crisp explanatory variables or
with both LR-fuzzy response and explanatory variables is proposed in [4, 5], respec-
tively. In [6] a linearity test for a simple linear model with both interval-valued input
and output has been given. In [3] a linearity test for a simple linear model with a
LR-response variable and a crisp explanatory variable was proposed under a non-
parametric method. However, such a linearity test has not been applied for a multiple
regression model with fuzzy data [5].
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In this paper, we focus on a nonparametric linearity test for a multiple linear
regression model with LR-fuzzy number-valued inputs and outputs.

2 Preliminaries

Let R be the set of all real numbers. A fuzzy set on R is defined to be a mapping
u : R → [0, 1] satisfying following conditions:

(1) uα = {x|u(x) ≥ α} is a closed bounded interval for each α ∈ (0, 1], i.e. uα =
[inf uα, sup uα].

(2) u0 = supp u is a closed bounded interval.
(3) u1 = {x|u(x) = 1} is nonempty.

where supp u= cl{x|u(x) > 0}, cl denotes the closure of a set. Such a fuzzy set is also
called a fuzzy number. ByF(R)we denote the set of all fuzzy numbers, with Zadeh’s
extension principle the arithmetic operation ∗ onF(R) can be defined by (u ∗ v)(t) =
sup{t1,t2:t1∗t2=t}{min(u(t1), v(t2))}, u, v ∈ F(R), t, t1, t2 ∈ R, ∗ ∈ {⊕,�,�}, where
⊕,�,� denote the addition, subtraction and scalarmultiplication among fuzzy num-
bers, respectively.

The followingparametric class of fuzzynumbers, the so-calledLR-fuzzynumbers,
are often used in applications:

u(x) =
{
L(m−x

l ), x ≤ m
R( x−m

r ), x > m

Here L : R
+ → [0, 1] and R : R

+ → [0, 1] are given left- continuous and non-
increasing function with L(0) = R(0) = 1. L and R are called left and right shape
functions, m the central point of u and l > 0, r > 0 are the left and right spread of u.
An LR-fuzzy number is abbreviated by u = (m, l, r)LR. An LR-fuzzy number is said
to be symmetric if L(x) = R(x) and l = r. It has been proven that:

(m1, l1, r1)LR ⊕ (m2, l2, r2)LR = (m1 + m2, l1 + l2, r1 + r2)LR

a � (m, l, r)LR =
⎧
⎨

⎩

(am, al, ar)LR, a > 0
(am,−ar,−al)RL, a < 0

(0, 0, 0), a = 0

Let L(α) := sup{x ∈ R|L(x) ≥ α},R(α) := sup{x ∈ R|R(x) ≥ α}. Then for
u = (m, l, r)LR,uα = [m − lL(α),m + rR(α)], α ∈ [0, 1].AnLR-fuzzy randomvari-
able [7] on the probability space (Ω,A,P) is defined as a measurable mapping
X : Ω → FLR(R), X(ω) = (xm(ω), xl(ω), xr(ω))LR, ω ∈ Ω , in brief we denote X
as X = (xm, xl, xr)LR, where xm, xl, xr are three real-valued random variables with
P{xl ≥ 0} = P{xr ≥ 0} = 1.
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We will employ the distance between fuzzy numbers u and v proposed by [1, 7]
by the L2 metric δ2,

δ2(u, v) :=
( ∫ 1

0

∫

S0
(Suα

(x) − Svα
(x))2μ(dx)dα

)1/2
,

whereμ is a normalized Lebesguemeasure,S0 = {−1, 1}, Suα
(x) denotes the support

function of u. For ui = (mi, li, ri)LR, i = 1, 2, δ22(u1, u2)=(m1 − m2)
2 + 1

2L2(l1 −
l2)2 + 1

2R2(r1 − r2)2 − L1(m1 − m2)(l1 − l2) + R1(m1 − m2)(r1 − r2), where L2 =∫ 1
0 L2(α)dα,R2 = ∫ 1

0 R2(α)dα,L1 = ∫ 1
0 L(α)dα,R1 = ∫ 1

0 R(α)dα. And for the sym-
metric ui = (mi, li)L, i = 1, 2, δ22(u1, u2) = (m1 − m2)

2 + L2(l1 − l2)2.
For LR-f.r.v.’s X = (xm, xl, xr)LR, Y = (ym, yl, yr)LR the expectation and variance,
covariance are defined as follows, E(X) := (

E(xm),E(xl),E(xr)
)
LR, Var(X) :=

E(δ22(X,E(X))) = Varxm + 1
2L2Varxl + 1

2R2Varxr − L1Cov(xm, xl) + R1Cov(xm,

xr),Cov(X,Y) := ∫ 1
0 (Cov(inf Xα, inf Yα) + Cov(supXα, supYα))dα = L2Cov(xl,

yl) − L1(Cov(xl, ym) + Cov(xm, yl)) + 2Cov(xm, ym) + R1(Cov(xm, yr) + Cov(xr,
ym)) + R2Cov(xr, yr).

3 The Nonparametric Linearity Test for the Multiple
Regression Model with LR-Fuzzy Data [5]

In [8] a bivariate linear regression model with n-dimensional fuzzy random sets is
estimated. However, the linearity test for this model has not been considered. It is
difficult to consider such a test from the estimatedmodel intuitively.Wemay consider
one dimensional case where the fuzzy random variable (f.r.v.) is with a parametric
form, the LR-f.r.v., and the bivariate consideration can also be extended to the mul-
tiple case. Let Ỹ = (Ym,Yl,Yr)LR be a response LR-f.r.v., X̃1 = (Xm

1 ,Xl
1,X

r)LR, · · ·
X̃p = (Xm

p ,Xl
p,X

r
p)LR be p explanatory LR-f.r.v.’s. On which we have observations

{Ỹi, X̃1i, X̃2i, . . . , X̃pi}, i = 1, . . . , n. A linear relationship between Ỹ and X̃1, . . ., X̃p

has been approximated by a multiple linear regression model between the response
center or response spreads and the explanatory centers and spreads in [5], i.e. the
model ⎧

⎪⎨

⎪⎩

Ym = Xa
′
m + bm + εm,

g(Yl) = Xa
′
l + b1 + εl,

h(Yr) = Xa
′
r + br + εr,

(1)

under the condition that the shape functionsL,R are predetermined as fixed functions.
Where g, h are two invertible functions g : (0,+∞) → R and h : (0,+∞) → R,
which can be used for transformation of the concerned spread variables [4, 5].
X = (Xm

1 ,Xl
1,X

r
1, · · · ,Xm

p ,Xl
p,X

r
p) is the vector of length 3p of all the compo-

nents of the explanatory variables, am = (a1mm, a1ml, a
1
mr, · · · , apmm, apml, a

p
mr), al =
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(a1lm, a1ll, a
1
lr, · · · , aplm, apll, a

p
lr), ar = (a1rm, a1rl, a

1
rr, · · · , aprm, aprl, a

p
rr) are vectors of

length 3p of the unknown parameters related to X . εm, εl, εr are real valued ran-
dom variables with E(εm|X) = E(εl|X) = E(εr |X) = 0.

On the other hand, the above relationship may be allowed to be in a nonparametric
model as follows, ⎧

⎨

⎩

Ym = fm(X) + εm,

g(Yl) = fl(X) + εl,

h(Yr) = fr(X) + εr,

(2)

where εm, εl, εr are real valued random variables with mean 0 and variance σ 2. For
the parameters estimation of the models in (1) we refer to [5] under the metric δ2.

Concerning model in (2), the functions fm, fl, fr could be estimated by means
of nonparametric smoothing. In the s-variate nonparametric regression model Yi =
F(t1i, · · · , tsi) + εi, i = 1, · · · , n, F is a s-variate real valued function to be esti-
mated, εi are i.i.d. with mean 0, variance σ 2, (t1i, · · · , tsi) has a density function f
with a support set A. Considering kernel product, bt1 , . . . , bts denote the bandwidths,
the support set of the kernel function K is [−1, 1], then the estimate of F is

F̂(t1, . . . , ts) =
∑n

i=1 Yi
∏s

j=1 K(
tj−vji
btj

)

∑n
i=1

∏s
j=1 K(

tj−vji
btj

)
,

where (v1i, . . . , vsi) denotes points within the range of distance h to point (t1, . . . , ts)
[9]. Then, we have the kernel estimates for fm, fl, fr ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂m(X) =
∑n

i=1 Y
m
i

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

∑n
i=1

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

,

f̂l(X) =
∑n

i=1 g(Y
l
i )

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

∑n
i=1

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

,

f̂r(X) =
∑n

i=1 h(Y
r
i )

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

∑n
i=1

∏p
j=1 K(

Xmji −Xmj
bmj

)K(
Xlji−Xlj

blj
)K(

Xrji−Xrj
brj

)

,

(3)

In this case, we have employed the same vector (bm1 , bl1, b
r
1, . . . , b

m
p , blp, b

r
p) for the

three regressionmodels because our aim is not to estimate such parameters. Nonethe-
less, in general, different smoothing parameters vectors can also be considered. Also
the selection for the kernel function is not emphasized as the estimates are similar
numerically for different kernel functions [9].
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Remark 1 In general, an LR-fuzzy number is determined by five elements: the shape
functions L and R, and the center value m, two spreads l, r. In the regression analy-
sis for LR-fuzzy data, it may be positive to consider completely the relationship
between the five elements of the response LR-fuzzy data and the five elements of the
explanatory LR-fuzzy data.

4 A Linearity Bootstrap Test

For the both models in (1) and (2), the residual sum of squares can be defined as

SSE =
n∑

i=1

δ22(Ỹ
T
i ,

̂̃YT
i ), (4)

where Ỹ T
i = (Ym

i , g(Yl
i ), h(Y

r
i )),

̂̃YT
i = (Ŷm

i , ̂g(Yl
i ), ĥ(Y

r
i )), i = 1, · · · , n.

The null hypotheses as follows need to be tested,

H0 :

⎧
⎪⎨

⎪⎩

fm(X) = Xa
′
m + bm,

fl(X) = Xa
′
l + b1,

fr(X) = Xa
′
r + br,

(5)

against the alternative

H1 : fm(X), fl(X), fr(X) are smooth and non-linear functions.

We use the test statistic

Tn = SSE0 − SSE1

SSE1
, (6)

where SSE0 is the residual sum of squares under H0 according to the model in
(1) and SSE1 is the residual sum of squares according to the model in (2), where
̂̃YT
i = (Ŷm

i , ̂g(Yl
i ), ĥ(Y

r
i )) = (̂fm(X), f̂l(X), f̂r(X)) are the values estimated by means

of kernel functions in (3).

Remark 2 In this paper we use a Gaussian kernel K(X−w
b ) = 1√

2πb
exp( (X−w)2

2b2 ).

The smoothing parameter b here can be allowed to be fixed since the level of the test
is unaffected by this value. Suitable values of b are from 1/n to 1/2 times the range
of the X-values. Note that the power of the test could be affected by the selection of
smoothing parameter [9].
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Based on the approaches [2, 3], we generate B bootstrap samples from a bootstrap
population fulfilling the null hypothesis in (5) by means of residual approach. The
bootstrap statistic is given by

T∗
n = SSE∗

0 − SSE∗
1

SSE∗
1

.

The bootstrap algorithm is summarized as follows:
Step 1: Compute the values â

′
m, â

′
l, â

′
r, b̂m, b̂l, b̂r and Tn.

Step 2: Compute the residuals emi = Ym
i − b̂m − Xiâ

′
m, e

l
i = g(Yl

i ) − b̂l − Xiâ
′
l, e

r
i =

h(Yr
i ) − b̂r − Xiâ

′
r .

Step 3: Generate a bootstrap sample of the form

{(X1,Z
m
1 = Ŷm

1 + emi1 ,Z
l
1 = ̂g(Yl

1) + eli1 ,Z
r
1 = ĥ(Yr

1 ) + eri1), · · · , (Xn,Z
m
n = Ŷm

n +emin ,

Zl
n = ĝ(Yl

n) + elin ,Z
r
n = ĥ(Yr

n ) + erin)},
where {i1, i2, . . . , in} is random sample of the integers 1 through n, Ŷm

i = b̂m + Xiâ
′
m,

̂g(Yl
i ) = b̂l + Xiâ

′
l, ĥ(Y

r
i ) = b̂r + Xiâ

′
r, i = 1, 2, · · · , n and compute the value of the

bootstrap statistic T∗
n .

Step 4: Repeat the step 3 a large number B of times to get a set of B estimators,
denoted by {T∗

n1, · · · ,T∗
nB}.

Step 5: Approximate the bootstrap p-value as the proportion of values in {T∗
n1, . . . ,

T∗
nB} being greater than Tn.

5 A Simple Simulation Example

Assume that given a data collection, inwhich the pulse frequencyY , diastolic pressure
X1 and systolic pressure X2 for 11 patients with heart disease are recorded. Based on
the experts experience we summarize them with the symmetric fuzzy data approach,
the artificially processed data given in Table1. Based on the data in Table1, we obtain
the parameters estimators as follows for a simple case of (1) with g = h = ln, where
the centers of Y are explained only in terms of centers of X1,X2, the left spreads of
Y are explained only by the left spreads of X1,X2, and the right spreads of Y are
explained only by the right spreads of X1,X2.
âm = (0.3337, 0.1648), b̂m = 21.1603; âl = (0.0154, 0.0372), b̂l = 2.1932; âr =
(0.0154, 0.0372), b̂r = 2.1932 and based on which we compute the residuals ε̃ =
(εm, εl, εr) as the results shown in Table2. Furthermore, we have considered two
gaussiankernelswith the smoothingparametersb1 = range(Xm

1 )/2,b2 = range(Xm
2 )/2,

we obtain
SSE0 = 725.8062, SSE1 = 1622.0,Tn = −0.5525.

Taking a bootstrap sample from the obtained residuals set as a new random sam-
ple, based on which SSE∗

0 and SSE∗
1 can be carried out, and then the corresponding
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Table 1 A set of symmetric triangular fuzzy data for heart disease

i Pulse frequency Diastolic pressure Systolic pressure

1 (56, 12, 12) (95, 5, 5) (60, 10, 10)

2 (66, 6, 6) (110, 20, 20) (80, 10, 10)

3 (73, 17, 17) (160, 20, 20) (95, 5, 5)

4 (91, 21, 21) (126, 16, 16) (94, 14, 14)

5 (63, 9, 9) (95, 5, 5) (60, 10, 10)

6 (85, 15, 15) (145, 15, 15) (95, 15, 15)

7 (69, 6, 6) (80, 20, 20) (145, 5, 5)

8 (86, 14, 14) (145, 15, 15) (83, 7, 7)

9 (87,11, 11) (150, 40, 40) (90, 20, 20)

10 (91, 5, 5) (159, 21, 21) (100, 10, 10)

11 (93, 7, 7) (130, 20, 20) (89, 11, 11)

Table 2 Computational results of the residuals

i (εm, εl, εr) i (εm, εl, εr)

1 (−6.7498, −0.0033, −0.0033) 7 (−2.7523, −0.2794, −0.2794)

2 (−5.0513, −0.4654, −0.4654) 8 (2.7748, 0.4165, 0.4165)

3 (−17.2083, 0.762, 0.762) 9 (0.9527, 0.0767, 0.0767)

4 (12.3023, 0.5769, 0.5769) 10 (0.3014, −0.6324, −0.6324)

5 (0.2502, −0.291, −0.291) 11 (13.7915, −0.3485, −0.3485)

6 (−0.2028, 0.1879, 0.1897)

T∗
n . Repeat above procedure B = 10000 times, then we will obtain a set consists of

10000 elements T∗
n . The bootstrap p-value can be carried out, p = 0.1346, thus, for

the ordinary nominal significance levels α = 0.01, α = 0.05 and α = 0.1, we have
to make rejection of the null hypothesis, there are no obvious linear relationship
between response center and explanatory centers, and so is for response spread and
explanatory spreads. In general, such results could be affected by the factors such as
selected distances, kernel functions as well as the smoothing parameters.

Conclusion: In this paper, we consider a linearity test for a special simple case for
the model presented in [8]. In which some multiple linear regression model with LR-
fuzzy response and LR-fuzzy explanatory variables proposed by [5] is employed.
A multiple nonparametric regression model is estimated, which is employed as a
reference in the testing approach. Following [3], a bootstrap procedure is suggested
and with which the linearity of the regression model is tested. In the future, it is
important to propose a suitable linearity test for the two-variate linear regression
model with n-dimensional fuzzy random sets in [8].
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Treat a Weak Dependence Among Causes
and Lives in Insurance by Means of Fuzzy
Sets

Dabuxilatu Wang and Tengteng Wang

Abstract In this paper, we apply the copulas and fuzzy sets to approximate the
dependencies in causes and lives,where under each cause of decrement the decrement
times of the lives are assumed to beweak dependence.We propose utilizing amixture
of both randomness and fuzziness to describe the concept of weak dependence.
An application is considered for a general symmetric status of multiple life under
dependent causes of decrement.

Keywords Weak dependency · Survival function · Copulas

1 Introduction

In a multiple life model, the survival times of the lives may be influenced by the
common economic/physical environment (such as earthquake, diseases, etc.), which
makes the decrement times of lives no longer independent. For example, clinical
studies demonstrate that there are some sense of weak positive dependence relations
between the decrement times of a married couple [1]. On the other hand, in the
multiple decrement model, the decrement causes may be mutually dependent. For
instance, the dependency between “death” and “injury”. Therefore, there are maybe
various unknown dependent relationships among the causes and lives in the con-
cerned insurance models. Carriere [2] proposed dependent decrement theory based
on dependent competing risks analysis, in which the survival of the single life under
multiple dependent decrement causes is modelled by means of the copulas. A useful
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nonparametric estimation on the net survival functions based on the observations
of crude survivals was proposed. Kaishev et al. [3] modeled the joint distribution
of competing risks survival times using copulas, which improved the dependent
decrement theory [2] in its methodology. Dimitrova et al. [4] further consider the
same problems in [3] under a causes elimination condition. A popular and unrealistic
assumption in amultiple lifemodel is that the considered decrement times of the lives
are independent. However, in real world the decrement times of the lives under one
of the decrement cause could be dependent in much complicated way, for instance,
the way of weak dependence, etc. Ribas [1] pointed out that in most real situation
the decrement times of the lives are nearer to the independency. However, here the
“nearer to the independency” does not mean a complete independency, there is some
sense of weak dependence among the lives from the view of sampling observation.

This paper is organized as follows. In Section one, we introduce some background
information. In Section two, some preliminaries around the basic concepts are intro-
duced. In Section three, a simple model for multiple life under dependent decrements
is considered. In Section four, we consider an application of the models to multiple
life insurance policy.

2 Preliminaries

In this section, we will introduce some notions such as weak dependence, survival
function and copula.

The dependent multiple decrements models for the case of one life have been
investigated extensively ([2, 3]). Here it is assumed that the life (or individual) aged
x � 0 may withdraw by any one of the m causes, which means that at birth, the
individual is assigned times T1, . . . ,Tm, 0 � Tj < ∞, j = 1, . . . ,m, representing
individual’s potential decrement time. We can only observe the min(T1, · · · ,Tm),
and T1, · · · ,Tm are unobservable. Real-life actuarial applications indicate that the
causes of decrement tend to be dependent. Their joint distribution function is denoted
by F(t1, · · · , tm) = P(T1 ≤ t1, · · · ,Tm ≤ tm), which is assumed to be absolutely
continuous. Their joint survival function is denoted by S(t1, · · · , tm) = P(T1 >
t1, · · · ,Tm > tm), which is absolutely continuous, where tj ≥ 0, for j = 1, · · · ,m.
The overall survival function of an individual aged x ≥ 0 is defined through ran-
dom variable min(T1, · · · ,Tm) as S(t) := S(t, · · · , t) = P(T1 > t, · · · ,Tm > t) =
P(min(T1, · · · ,Tm) > t). The crude survival function S( j)(t) is defined as S( j)(t) =
P(min(T1, . . . ,Tm) > t,min(T1, · · · ,Tm) = Tj), which represents the probability
that the observable decrement time exceeds t under the known cause Tj, and in prac-
tice which can be captured by the sampling observation. The net survival function
S

′( j)(t) is defined as S
′( j)(t) = P(Tj > t), and in reality we can not obtain it through

a direct observation, only can we observe min(T1, · · · ,Tm).
The joint survival function S(x1, · · · , xn) via an appropriate copula [5, 6] C is

said to be the survival copula of the random vector (X1, · · · ,Xn).
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Lemma 2.1 ([2, 3]) The joint survival function can be expressed by the unique
survival copula, i.e., S(x1, · · · , xn) = C(S

′(1)(x1), · · · , S′(n)(xn)).

Lemma 2.2 ([2]) The crude survival function possesses following relation with
the joint survival function, S(j)(t) = ∫ +∞

t −Sj(r, · · · , r)dr, where Sj(r, · · · , r) =
∂
∂tj
S(t1, · · · , tn)

⏐⏐⏐
tk=r,∀k

.

The Kendall’s τ is defined as the probability of concordance minus the probabil-
ity of discordance: τ := P[(X1 − X2)(Y1 − Y2) > 0] − P[(X1 − X2)(Y1 − Y2) < 0],
where (X1,Y1) and (X2,Y2) are independent and identically distributed random
vectors. Furthermore, If X and Y are continuous random variables whose copula
is C, then the population version of Kendall’s τ for X and Y can be given by
τ = 4

∫ ∫
[0,1]×[0,1] C(u, v)dC(u, v) − 1 = 3 − 4

∫ 1
0 K(t)dt, where K(t) is the distri-

bution function of the random variable C(u, v), and the random variables u, v are
uniformly distributed on [0, 1]. Kendall’s τ can be used for description of the strength
of dependence in copulas. For some special copulas such as Gumbel’s copula, Clay-
ton’s copula and Frank’s copula, the independence between random variables con-
cerned with the copulas can be equivalent to that their corresponding Kendall’s τ
taken value of zero [3, 5–7].

The notion of the weak dependence aforementioned for describing the lower
strength of dependence of the decrement times of lives is hard to define in precise
with the probability setting, since here theword “weak” is a vague (fuzzy) description.
As that proposed in [7] this concept could be expressed by some special fuzzy set k̃
(a membership function) defined on a domain [−ε, ε], i.e. k̃ : [−ε, ε] → [0, 1]; τ →
k̃(τ ) ∈ [0, 1], the domain is assumed to be the set of possible values (close to zero)
of the Kendall’s τ that defined through the three kinds of copulas aforementioned,
where ε is a small positive real number. In otherwords, the notion “weak dependence”
means a fuzzy Kendall’s τ symmetrically around zero, for which the membership
function is not unique, one can construct the membership functions depend on the
real context of the dependence. For instance, an expert may think that based on
his/her own experiences the considered two random variables are weak dependent
with different levels if their Kendall’s τ takes values in the range [−0.05, 0.05], and
the fuzzy Kendall’s τ symmetrically around zero is selected to be a fuzzy set k̃, a
trapezoidal fuzzy set on the interval [−0.05, 0.05], or simply some discrete fuzzy set
as k̃ = {(τ ,μ) : τ ∈ [−ε, ε],μ ∈ [0, 1]}, which represent kinds of expressions for
the weak dependence.

3 A Simple Model for Multiple Life Under Dependent
Decrements

Consider n lives aged x1, x2, · · · , xn, where each of the n lives is exposed tom depen-
dent causes of decrement denoted by I = {1, 2, · · · ,m}. Then, all possible decre-
ment times are the mn different decrement times shown in Table1. The assumption
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Table 1 mn decrement
variables

x1 x2 . . . xn

T1 T1(x1) T1(x2) . . . T1(xn)

T2 T2(x1) T2(x2) . . . T2(xn)

T3 T3(x1) T3(x2) . . . T3(xn)
.
.
.

.

.

.
.
.
. . . .

.

.

.

Tm Tm(x1) Tm(x2) . . . Tm(xn)

of dependencies of the m causes makes the m decrement time variables in each
column of Table1 become a random vector of m-dimension with dependent com-
ponents, Txj := (T1(xj), · · · ,Tm(xj)), j = 1, · · · , n. and we are able to observe only
min Txj := min{T1(xj), · · · ,Tm(xj)}, j = 1, · · · , n. Based on the description about
the relation of individuals in previous section, we may assume that under each cause
the decrement times of the n lives are also dependent, then the n decrement time vari-
ables of each row in Table1 can be viewed as a latent random vector of n-dimension
with dependent components, Ti := (Ti(x1), · · · ,Ti(xn)), i = 1, · · · ,m.

Based on Lemmas2.1 and2.2, it holds

d

dt
S(j)l (t) = Cjl(S

′(1)
1 (t), · · · , S′(1)

n (t), · · · , S′(m)
1 (t), · · · , S′(m)

n (t)) × dS
′(j)
l (t)

dt
.

where Cjl(u11, · · · , umn) = ∂
∂ujl

C(u11, · · · , umn) for j = 1, · · · ,m, l = 1, · · · , n.

3.1 The Case Where the Decrement Times of the Lives Are
Weak Dependent

Based on the notion of the weak dependence of two random variables introduced in
Sect. 2, we consider two lives x, y under dependent decrement causes {1, 2, · · · ,m}.
Assume that for each cause i ∈ {1, 2, · · · ,m}, the latent continuous decrement times
variables Ti(x),Ti(y) are weak dependent, then their relation could be described by
some fuzzyKendall’s tau k̃i defined on the interval [−εi, εi], the set of possible values
of the crisp Kendall’s τi symmetrically around zero concerning the three kinds of
copulas aforementioned, i.e.

k̃i = {(τi,μi) : τi ∈ [−εi, εi],μi ∈ [0, 1]},

note that there exists some positive invertible function hi such that τi = hi(θi), where
θi is the parameter of the copula Ci(u, v; θi) that is used for modeling the depen-
dence between Ti(x) and Ti(y) and determine the Kendall’s τi, and θi = h−1

i (τi),
i ∈ {1, 2, · · · ,m}. We propose to define the corresponding fuzzy parameter θ̃i of
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fuzzy Kendall’s tau k̃i symmetrically around zero as a set

θ̃i := {(h−1
i (τi),μi) : h−1

i (τi) = θi ∈ (0, h−1
i (εi)),μi ∈ [0, 1]},

and the copula with fuzzy parameter θ̃i as a set

Ci(u, v; θ̃i) := {Ci(u, v; θi) : (θi,μi) ∈ θ̃i}.

We also note that we could only observe min Tx,min Ty, the obstacle of identifia-
bility make us not able to estimate the parameters θi intuitively based on observations
[3], sometimes we have to assign special values to them based on predefined values
of τi.

Assume that there exists a copula C which could be used for modeling the depen-
dence among the causes of decrement, and moreover, assume that the compositions
of copulas C(C1, · · · ,Cm) could be used to model the dependencies existed in both
lives and causes.

Theorem 3.1 If the latent continuous decrement times Ti(x),Ti(y) are weak depen-
dent for each i, i = 1, 2, · · · ,m, then the observable decrement timesmin Tx,min Ty

are also weak dependent.

Proof Wedenote the joint distribution andmarginal distribution functions of (min Tx,

min Ty) by Fmin Tx,min Ty
, Fmin Tx

and Fmin Ty
, respectively. By Sklar theorem [5, 6]

there exists a copula C such that Fmin Tx,min Ty
(t1, t2) = C(Fmin Tx

(t1),Fmin Ty
(t2))

= C(1− Sx(t1, · · · , t1), 1− Sy(t2, · · · , t2)) = C(1−C1(ST1(x)(t1), · · · , STm(x)(t1)),
1−C2(ST1(y)(t2), · · · , STm(y)(t2))), where Sx, Sy are survival functions andC1,C2 are
survival copulas. When
C1(ST1(x)(t1), · · · , STm(x)(t1)) = ST1(x)(t1) = C1(ST1(x)(t1), 1, · · · , 1),
C2(ST1(y)(t2), · · · , STm(y)(t2)) = ST1(y)(t2) = C2(ST1(y)(t2), 1, · · · , 1), we have
Fmin Tx,min Ty

(t1, t2)=C(1 − ST1(x)(t1), 1 − ST1(y)(t2)), which means that the copula
C is a copula modeling a weak dependent relation. �

If the conditions of Theorem 3.1 are fulfilled, then using the copulas’ composi-
tions we are able to approximate the weak dependence between min Tx and min Ty

extensively, i.e. constructing a set of copulas

{C(Fmin Tx
,Fmin Ty

; θmin), (θmin,μmin) ∈ θ̃min},

where Fmin Tx
,Fmin Ty

are the distribution, expressed by some copulas, of min Tx,

min Ty, respectively. θ̃min is the corresponding fuzzy parameter induced from the
fuzzy Kendall’s tau symmetrically around zero for describing the weak dependency
between min Tx and min Ty.
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4 An Application to Multiple Life Insurance Policy

As illustrated in [8], we define the status u by means of the residual non-decrement
time Tu. By tpu we denotes the conditional probability that the status u still exists at
time t, given that the status u existed at time 0. A general symmetric status denoted
by u(k) means that the status u(k) fails at the (n − k + 1)th withdrawal. We now
consider the computation of the non-decrement probability tpu(k) of the general sym-
metric status for the observable decrement time variables min Tx1 , min Tx2 , · · · ,
min Txn of the n lives, which depends upon the joint distribution of the random vec-
tor (min Tx1 ,min Tx2 , · · · , min Txn). Note that, the non-decrement probability of
min Txj can be derived by some (survival) copula Cj that is used for modeling the
dependencies of the decrement causes j, j = 1, 2, · · · , n. i.e.

tpmin Txj
: = Smin Txj

(t) = P(min{T1(xj),T2(xj), · · · ,Tm(xj)} > t)

= Cj(ST1(xj)(t), · · · , STm(xj)(t)).

where STi(xj)(t) := S
′(i)
xj (t) is the net survival function of individual xj under decrement

cause i, which need to be estimated via solving differential equations aforementioned
based on data of the crude survival functions S(i)xj (t).

Let the event {min Txj > t} be denoted by tBj, j = 1, 2, · · · , n. SettSk :=∑
Jk∈CL(n,k) P(tBj1 ,t Bj2 , · · · ,t Bjk ), k = 1, 2, · · · , n. Here Jk := {j1, j2, · · · , jk} and

CL(n, k) denotes the class of allCk
n subsets of {1, 2, · · · , n}with k different elements,

k = 1, 2, · · · , n.By the Sklar theorem P(tBj1 ,t Bj2 , · · · ,t Bjk ) can be derived by some
copula C. Then, tSk := ∑

Jk∈CL(n,k) C(Smin Txj1
(t), · · · ,Smin Txjk

(t)), k = 1, 2, · · · , n,
and the Schuette-Nesbitt formula [8], tpu(k) = ∑n

w=k(−1)w−kCk−1
w−1

∑
Jw∈CL(n,w)

C(Smin Txj1
(t), · · · , Smin Txjw

(t)).

In the following we consider a 5-lives group under 3 dependent causes of decre-
ment. The copulas for modeling the dependency among lives could be

(1) Frank copula (Fc): C(u1, · · · , un) = − 1
θ
ln[1 +

∏n
i=1(e

−θui−1)
(e−θ−1)n−1 ];

(2) Generalized Clayton copula (GCc): C(u1, · · · , un) = [u−θ
1 + · · · + u−θ

n − n +
1]− 1

θ ;
(3) Independent copula (Ic):C(u1, · · · , un) = ∏n

i=1 ui.Where θ is the copula’s para-
meter taken values in (0,+∞).

Assume that a group of five lives aged x1, · · · , x5 respectively are exposed to
the dependent decrement causes d, w, i, the probabilities of decrement can refer
to [8, 9], where d, w, i represent “death”, “withdraw during occupation”, “injury”,
respectively.

Assume that the dependency of the causes d, w, i can be modelled by copula
GCc or Fc, then solving the non-linear differential equations that model the relation
between the crude and net survival functions via theMathematica built-in functions
NDSolve, we may illustrate solution net survival with the curves shown in Fig. 1.
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Fig. 1 The curves of the net
survival under Clayton
copula

Since each individual of the 5-lives could be affected by all causes d, w, i, the
copulas are assumed to be same, C1 = C2 = C3 = C4 = C5, for simplicity, here
we choose the common copula to be GCc and assign its parameter θ = 2, as the
strength of dependence among the three causes seems stronger than that of indepen-
dence relation. Thenwe obtain the probabilities pmin Tx1

= 0.9925, pmin Tx2
= 0.9573,

pmin Tx3
= 0.9228, pmin Tx4

= 0.9187, pmin Tx5
= 0.9100, where x1 = 35, x2 = 38,

x3 = 40, x4 = 42, x5 = 45.
Theprobabilitiespu(k), k = 1, 2, 3, 4, 5 that eachgeneral symmetric status exceeds

1year under the copulas aforementioned can be carried out. The dependence among
lives is assumed to be weak dependent, where the parameter θ of the concerned
copulas to be valued in [0.01, 1] with membership degree μ(θ) = 1 − θ. Results are
shown in Table2.

The results from Table2 show that for the Fc, GCc, each pu(i), i = 1, 2, 3, 4 is a
decreasing function of θ, and pu(5) is a increasing function of θ, θ ∈ [0.01, 1]. The
interval value of each pu(i), i = 1, 2, 3, 4 for the Fc and GCc includes all of values
with all different membership values, it accurately describe the characteristics of the
weak dependence by means of fuzzy sets. The right end point of each interval with
membership 0.99 seems to almost equal to the values of the Ic, which means that
using Ic maybe appropriate, meanwhile the other values in each interval with some
membership values seems to smaller than the values of the Ic, which means that
using Ic may bring an underestimation on risks. One may accurately estimate the
risk depending on some confident membership value. u(5) is a join survival status
for 5 lives, values in the interval of pu(5) for Fc, GCc, are bigger than the values of
the Ic, it may overestimate the risks with some sense of risk defence.

Table 2 Comparisons of probabilities pu(k), k = 1, 2, 3, 4, 5 under copulas (θ ∈ [0.01, 1],μ(θ) =
1 − θ, the superscripts represent the times number 9 repeated, e.g. 0.9487 = 0.999987.)

pu(1) pu(2) pu(3) pu(4) pu(5)

Fc [0.9487, 0.966] [0.9348, 0.944] [0.92368, 0.92765] [0.95085, 0.96138] [0.70083, 0.71579]

GCc [0.9479, 0.966] [0.9316, 0.944] [0.92077, 092762] [0.94114, 0.96122] [0.70102, 0.72876]

Ic 0.967 0.9441 0.927682 0.9614866 0.7006897
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Conclusions:We consider the case where the decrement times of the considered
multiple life are weak dependent under each decrement cause, while the decrement
causes are also dependent. Somemultivariate copulas combined with fuzzy Kendall’
τ are employed to model such dependencies.
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A Portfolio Diversification Strategy via Tail
Dependence Clustering

Hao Wang, Roberta Pappadà, Fabrizio Durante and Enrico Foscolo

Abstract We provide a two-stage portfolio selection procedure in order to increase
the diversification benefits in a bear market. By exploiting tail dependence-based
riskymeasures, a cluster analysis is carried out for discerning between assets with the
same performance in risky scenarios. Then, the portfolio composition is determined
by fixing a number of assets and by selecting only one item from each cluster.
Empirical calculations on the EURO STOXX 50 prove that investing on selected
assets in trouble periods may improve the performance of risk-averse investors.

1 Introduction

In recent years, financial markets have been characterized by an increasing global-
ization and a complex set of relationships among asset returns. Moreover, it has been
recognized that the linkages among different assets vary across time and that their
strength tends to increase especially during crisis periods. The presence of a stronger
dependence when markets are experiencing losses, is of utmost interest from a risk
manager perspective. In fact, it has been recognized that investors can reduce the risk
of their portfolios through diversification, i.e. allocating their investments in various
classes and/or categories that would move in different ways in response to the same
event.
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In order to provide a suitable diversification of a portfolio that takes into account
the occurrence of extreme scenarios, various clustering techniques for multivariate
time series have been proposed in the literature, mainly based on measures of associ-
ation like Pearson correlation coefficient (see, e.g., [13]). Recently, such techniques
have also been applied in order to group financial time series that are similar in
extreme scenarios by using tail dependence coefficients (see, e.g., [2, 3] and [7]), or
conditional measures of association, like Spearman’s correlation, as done in [6]. For
an alternative approach, see also [9, 10].

The aimof this contribution is to exploit recent tail-dependence clusteringmethods
in order to select a weighted portfolio in a group of assets. In particular, it will
be shown how the adoption of fuzzy clustering methodology (see, e.g., [8] and
references therein) may provide some advantages in terms of both performance and
computational tractability of the model.

2 The Clustering Procedure

Several clustering procedures are based on the choice of a suitable dissimilarity mea-
sure that expresses the relations among the financial time series of the asset returns
under consideration. Following previous approaches, we present here a procedure to
group time series based on their tail behaviour, as done in [6]. This methodology is
summarized below.

Consider a matrix of d financial time series (xit )t=1,...,T (i = 1, 2, . . . , d) repre-
senting the log–returns of different financial assets. We assume that each time series
(xit )t=1,...,T is generated by the stochastic process (Xt ,Ft ) such that, for i = 1, . . . , d,

Xit = μi (Zt−1) + σi (Zt−1)εi t , (1)

where Zt−1 depends on Ft−1, the available information up to time t − 1, and the
innovations εi t are distributed according to a distribution function Fi for each t .
Moreover, the innovations εi t are assumed to have a constant conditional distribution
Fi (with mean zero and variance one, for identification) such that for every t the joint
distribution function of (ε1t , . . . , εdt ) can be expressed in the form C(F1, . . . , Fd)

for some copula C . Such a general model includes many multivariate time series
models presented in the literature (see, for instance, [14]).

Then the following steps can be performed in order to divide the time series
into sub-groups such that elements in each sub-group have strong tail dependence
between each other.

1. Choose a copula-based time series model in order to describe separately the
marginal behavior of each time series and the link between them.

2. Estimate a (pairwise) tail dependence measure among all the time series.
3. Define a dissimilarity matrix by using the information contained in the tail depen-

dence matrix.



A Portfolio Diversification Strategy via Tail Dependence Clustering 513

4. Apply a suitable cluster algorithm for grouping time series according to the tail
behavior.

Steps 1–3 described above have been discussed in details in [6]. Here (and in the
following illustration), these steps are specified in the following way:

1. We fit an appropriate ARMA-GARCH model to each univariate time series and,
using the estimated parameters, we construct the standardized residuals that are
helpful in determining the joint distribution of the innovations.

2. As ameasure of tail dependence,weuse the conditional Spearman’s correlationρα

that expressed the Spearman’s correlation between two random variables X and Y
given that they are both under their α–quantile (here, α = 0.10). The estimation
is based on the procedure described in [4, 5].

3. Once the conditional Spearman’s correlation has been computed for all pairs
extracted from the time series, we transform it through a monotonic function f
in such a way that the obtained dissimilarity between two time series is small
when their tail dependence is high, and monotonically increases when their tail
dependence decreases. Thus, for i, j = 1, . . . , d, we define Δ = (

Δi j
)
whose

elements are given by

Δi j =
√
2(1 − ρ̂

i j
α ), (2)

where ρ̂
i j
α is the conditional Spearman’s correlation between time series i and j .

Starting from the dissimilarity matrix defined in (2), we can perform a cluster
analysis by different techniques. Here we focus on a fuzzy clustering algorithm, i.e.
the fanny algorithm by [12], since it allows to quantify the degree of membership
of an object to the different clusters by means of a coefficient, which ranges from
0 to 1. In order to determine the optimal number k of clusters, we use the average
silhouette index [11], which reflects the within-cluster compactness and between-
cluster separation of a clustering.

Fanny algorithm aims to minimize the objective function

k∑

v=1

∑n
i, j=1 m(i, v)rm( j, v)rΔi j

2
∑n

j=1 m( j, v)r

where n is the number of involved time series, k is the number of clusters, r > 1 is the
membership exponent (usually, r = 2), m(i, v) the membership of time series i to
cluster v, and Δi j is the dissimilarity between the time series i and j . The algorithm
returns the membership degree of each time series i to any cluster. Obviously, if a
crisp assignment of each time series to only one cluster is necessary, then one could
proceed according to the highest membership degree.
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3 The Portfolio Selection

Once the cluster analysis is carried out for identifying assets with the same perfor-
mance during risky scenarios, a portfolio selection procedure can be implemented
by fixing the number of assets per portfolio equal to the number of clusters, and
by selecting only one item from each cluster. The rationale is that, since assets in
different clusters are weakly associated with each other (in risky periods), then they
form a well-diversified portfolio. This idea has been used, for instance, in [2, 3] and
is slightly modified here by exploiting the advantages of fuzzy clustering.

Specifically, suppose that n time series have been classified by means of the
procedures described in Sect. 2 into k ≥ 2 groups. Let m(i, v) be the membership
degree of time series i to cluster Cv . The selection algorithm goes as follows:

The portfolio selection algorithm

1. Fix T ∈ [0, 1], which represents a cut-off value for the degree of membership to
a cluster.

2. For i = 1, 2, . . . , n, assign the time series i to the cluster Cv if it holds that
m(i, v) = maxv′=1,...k m(i, v′).

3. For each cluster Cv (v = 1, . . . k), remove the element j in Cv provided that
m( j, v) < T . The resulting clusters are denoted by Dv (v = 1, . . . , k). Notice
that some Dv can be empty.

4. Determine all possible portfolios composed by (at most) k assets obtained by
selecting exactly one asset from each element of {D1, . . . , Dk}.

5. For these portfolios, calculate the optimal weights assigned to each of its assets
by Minimum Conditional-Value-at-Risk (CVaR) strategy.

6. Select the Minimum CVaR portfolio with the lowest CVaR value.

Some comments are needed here.
Step 3 guarantees that we only focus on those assets that can be assigned to a given

cluster with a membership degree larger than T . It avoids the selection of assets that
are likely to be associated with more than one cluster (and, hence, tend to downgrade
the effects of diversification).

Step 4 is usually computationally expensive; however, the computational burden
can be limited by a careful selection of the cut-off value T . In particular, this aspect
highlights the main difference between the proposed algorithm and the methodology
discussed in [2].

Step 5 suggests a portfolio selection procedure that focuses on extreme events
and, hence, is coherent with the tail dependence approach developed here (see also
[3]). Specifically, the procedure optimizes the CVaR, defined as the expected loss
exceeding VaRβ (for more details, see [15]). Below, we set β = 0.10.

For the illustration of the algorithm, we consider time series related to EURO
STOXX 50 stock index and its components in the period from January 2, 2003 to
July 31, 2011. Moreover, as out-of-sample period, we will show the performance of
our procedure in the period from August 1, 2011 to September 9, 2011. The period
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Table 1 Cluster composition of the EUROSTOXX50 constituents by using conditional Speaman’s
correlation ρα with α = 0.1 and fanny algorithm. The assets whose maximal membership degree
is smaller than 0.90 are denoted in bold

Cluster

1 D.DTEX E.IND D.SAPX F.EI D.BAYX F.UBL D.BMWX

F.CRFR D.RWEX

2 F.SQ.F F.FTEL F.OR.F H.ASML F.EX.F F.BSN

3 E.BBVA D.ALVX H.ING D.MU2X E.SCH F.TAL F.BNP

D.BASX E.REP I.ENEL I.ENI D.DBKX F.SGE

4 E.TEF F.GSZ H.MT M.NOK1 CRGI D.EONX F.AIR

B.ABI E.IBE

5 F.QT.F F.GOB H.PHIL D.SIEX I.ISP H.UNIL I.UCG

I.G F.MIDI D.DAIX F.LVMH F.DG.F D.VO3X

has been selected due to the fact that EURO STOXX 50 was experiencing severe
losses (see Fig. 2).

We preliminary apply a univariate Student-t ARMA(1,1)-GARCH(1,1) model to
each time series of log–returns of the constituents of the index to remove autocorre-
lation and heteroscedasticity from the data and compute the standardized residuals.

Then, we compute the conditional Spearman’s ρα (here we select α = 0.10) for
all pairs of times series. By means of the procedures illustrated in Sect. 2, we deter-
mine a dissimilarity matrix and apply the fanny algorithm. According to the average
silhouette index, the optimal number of cluster, k, is set equal to 5 (we run different
algorithms with k = 2, 3, . . . , 8).

Table1 presents the cluster composition of the portfolio, when each asset is
assigned to a cluster in a crisp way. Moreover, we highlighted in bold all the assets
whose maximal membership degree is smaller than T = 0.90.

Thus, we run the portfolio selection algorithm by considering all the assets (i.e.
by setting T = 0) or by considering the assets whose maximal membership degree is
larger than T = 0.90). All the possible 82134 portfolios composed by 5 assets, such
that each asset belongs to a different cluster, are calculated and visualized in Fig. 1,
where the 25872 possible portfolios obtained by adopting the threshold T = 0.90
are colored in grey. As can be seen, the minimal CVaR portfolios generated by the
algorithm with T = 0 and T = 0.90 coincide; however, the latter is obtained under
a smaller computational effort.

In order to verify the performance of the methodology in an out-of-sample com-
parison, we consider the period from August 1, 2011 to September 9, 2011 as out-
of-sample period, and compare the performance of the minimum CVaR portfolios
obtained from our algorithm (with T = 0 and T = 0.90) with, respectively, the min-
imum variance portfolio and the minimum CVaR portfolio built from the whole set
of assets, the equally weighted portfolio (obtained by assigning the same weight to
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Fig. 1 Portfolio
CVaR–Portfolio Expected
Return plot of 5-asset
portfolios generated at Step 4
of the portfolio selection
algorithm. i highlights the
portfolio frontier obtained
from our algorithm with
T = 0 (black) and T = 0.90
(gray)
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each asset) and the benchmark index EURO STOXX 50. As it can be seen in Fig. 2,
the performance of the portfolios selected from the proposed algorithm is better
than the benchmark and outperforms the global minimum variance portfolio. This
seems to confirm the idea that, when markets are experiencing a period of losses, a
diversification strategy could be beneficial.
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4 Conclusions

We have introduced a procedure aiming at selecting a portfolio from a group of assets
in such a way that the assets are diversified in their tail behavior. The procedure
exploits some features of fuzzy clustering algorithms. It is intended to be used by an
investor to have more insights into the relationships among different assets in crisis
periods.

Although these preliminary findings are promising, further analysis is necessary
to assess the validity of the procedures. First, more benchmark datasets should be
analyzed to assess the real usefulness of the proposed algorithm. Second, different tail
dependence measures and/or clustering procedures (in particular, fuzzy c–medoids
algorithms [1]) should be considered. Finally, as kindly suggested by one of the
reviewers, in order to mitigate the computational burden, it could be also convenient
to rank all the possible portfolios according to the sum of the membership degrees of
their components and, hence, select the top p portfolios (p should be decided by the
user) for further analysis. All these aspects will be the object of future investigations.
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An Upper Bound Estimation About the
Sample Average of Interval-Valued Random
Sets

Xia Wang and Li Guan

Abstract In this paper, we give an upper bound estimation about the probability of
the event that the sample average of i.i.d. interval-valued random sets is included in
a closed set. The main tool is Cramér theorem in the classic theory of large deviation
principle about real-valued random variables.

1 Introduction

As we know, the theory of large deviation principle (LDP) deals with the asymp-
totic estimation of probabilities of rare events and provides exponential bound on
probability of such events. In 1999, Cerf [1] proved LDP for sums of i.i.d. compact
random sets in a separable type p Banach space with respect to the Hausdorff dis-
tance dH , which is called Cramér type LDP. For the Cramér type LDP, it considered
the probability of the event that the sample average of i.i.d. random variables belongs
to a closed set and an open set. However, in our paper, we consider the probability
of the event that the sample average of i.i.d. interval-valued random sets is included
in a closed set in R, and give an upper bound estimation. The main tool is Cramér
theorem in the classic theory of large deviation principle about real-valued random
variables. Finally, we give an example about our main result.

The paper is structured as follows. Section2 will give some preliminaries about
interval-valued random sets. Our main results and proofs will be made in Sect. 3, and
we give an example.
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2 Preliminaries

Throughout our paper, we assume that (Ω,A, P) is a complete probability space.
Let Kkc(R) be the family of all non-empty compact convex subsets of R, in fact,
the element of non-empty compact convex subsets of Kkc(R) has the following
form: [a, b], a < b. Let A = [A1, A2] and B = [B1, B2] be two non-empty compact
convex subsets ofR and let λ ∈ R

+,we can define addition and scalar multiplication
by

A + B = {a + b : a ∈ A, b ∈ B} = [A1 + B1, A2 + B2],
λA = {λa : a ∈ A} = [λA1,λA2].

The Hausdorff distance on Kkc(R) is defined by

dH (A, B) = max
{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}
,

where d(a, B) = infb∈B |a − b|.
Nowwe give the definition of interval-valued random sets. An interval-valued ran-

dom set is a measurable mapping from the probability space (Ω,A, P) to the space
(Kkc(R),B(Kkc(R)))whereB(Kkc(R)) is the Borel σ-field ofKkc(R) generated by
theHausdorff distance dH . In fact, An interval-valued random set X has the following
form: [X (l), X (r)], where X (l), X (r) are real random variables and X (l) ≤ X (r).

3 Main Results

Before we give our main theorem, we first show the following proposition.

Proposition 1 Let X1 = [X (l)
1 , X (r)

1 ], X2 = [X (l)
2 , X (r)

2 ], · · · , Xn = [X (l)
n , X (r)

n ] be
i.i.d. interval-valued random sets. Then X (l)

1 , X (l)
2 , · · · , X (l)

n are i.i.d. random vari-
ables and X (r)

1 , X (r)
2 , · · · , X (r)

n are also i.i.d. random variables.

Remark In fact, the result in this Proposition is already known in set-valued set
theory, but here, we still want to give a most elementary proof method for this
Proposition.

Proof Hereweonly need to prove that X (l)
1 , X (l)

2 , · · · , X (l)
n are i.i.d. randomvariables.

For this aim, it is enough to prove that the following equations hold for any x, y ∈ R,

P{X (l)
1 ≤ x, X (l)

2 ≤ y} = P{X (l)
1 ≤ x}P{X (l)

2 ≤ y}; (1)

P{X (l)
1 ≤ x} = P{X (l)

2 ≤ x}. (2)

In view of conditions given in this proposition: X1 = [X (l)
1 , X (r)

1 ], X2 = [X (l)
2 , X (r)

2 ]
are i.i.d. interval-valued random sets, so we have
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P{X1 ∈ A, X2 ∈ B} = P{X1 ∈ A}P{X2 ∈ B},
P{X1 ∈ A} = P{X2 ∈ A},

for any closed set A and B of the space (Kkc(R), dH ).

Now we take A = {[a, b] : a ≤ x, b ≥ a}, B = {[a, b] : a ≤ y, b ≥ a}.
One hand, the sets A, B are closed sets in the space (Kkc(R), dH ). Here, we only
prove A is a closed set of the space (Kkc(R), dH ). In fact, for any x0 ∈ A, let
x0 = [a0, b0],where a0 ≤ x, b0 ≥ a0. InR, there exists an ∈ R, such that an ≤ x and
an ↗ a0. Then [an, b0] ∈ A and dH ([an, b0], [a0, b0]) = a0 − an → 0, as n → ∞.

So A is a closed set of the space (Kkc(R), dH ). On the other hand, {X1 ∈ A} =
{X (l)

1 ≤ x}, {X2 ∈ B} = {X (l)
2 ≤ y}, {X2 ∈ A} = {X (l)

2 ≤ x}, then (1) and (2) have
been proved.

Now, we present our main theorem.

Theorem 1 Let X1 = [X (l)
1 , X (r)

1 ], X2 = [X (l)
2 , X (r)

2 ], · · · , Xn = [X (l)
n , X (r)

n ]be i.i.d.
interval-valued randomsets satisfying Eeλ(l)|X (l)

1 | < ∞ for someλ(l) > 0,and Eeλ(r)|X (r)
1 | <

∞ for some λ(r) > 0. Then for any closed set C ⊂ R, we have

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ⊂ C} ≤ −(inf
x∈C I (l)(x) ∨ inf

x∈C I (r)(x)), (3)

where

I (l)(x) = sup
λ∈R

{λx − log EeλX (l)
1 },

I (r)(x) = sup
λ∈R

{λx − log EeλX (r)
1 }.

Proof

P{1
n

n∑

i=1

Xi ⊂ C} = P{[1
n

n∑

i=1

X (l)
i ,

1

n

n∑

i=1

X (r)
i ] ⊂ C}

= P{1
n

n∑

i=1

X (l)
i ∈ C,

1

n

n∑

i=1

X (r)
i ∈ C}

≤ P{1
n

n∑

i=1

X (l)
i ∈ C} ∧ P{1

n

n∑

i=1

X (r)
i ∈ C}.
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Then

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ⊂ C}

≤ lim sup
n→∞

1

n
log P{1

n

n∑

i=1

X (l)
i ∈ C} ∧ lim sup

n→∞
1

n
log P{1

n

n∑

i=1

X (r)
i ∈ C}. (4)

By Proposition 1, we know X (l)
1 , X (l)

2 , · · · , X (l)
n are i.i.d. random variables and

X (r)
1 , X (r)

2 , · · · , X (r)
n are i.i.d. random variables, and since these random variables

satisfy Eeλ(l)|X (l)
1 | < ∞ for some λ(l) > 0, and Eeλ(r)|X (r)

1 | < ∞ for some λ(r) > 0,
then by the following Cramér theorem of classic theory of large deviation principles
(see cf. [2, p.27 Theorem 2.2.3] or Appendix of this paper), then we have

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

X (l)
i ∈ C} ≤ − inf

x∈C I (l)(x), (5)

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

X (r)
i ∈ C} ≤ − inf

x∈C I (r)(x). (6)

Then combine (4), (5) and (6), we obtain (3).

Corollary 1 Let X1 = [X (l)
1 , X (r)

1 ], X2=[X (l)
2 , X (r)

2 ], · · · , Xn = [X (l)
n , X (r)

n ] be i.i.d.
interval-valued random sets satisfying Eeλ(l)|X (l)

1 | < ∞ for some λ(l) > 0, and
Eeλ(r)|X (r)

1 | < ∞ for some λ(r) > 0. Then for any a, b ∈ R, a ≤ b, we have

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ⊂ [a, b]} ≤ −( inf
x∈[a,b] I

(l)(x) ∨ inf
x∈[a,b] I

(r)(x)),

where

I (l)(x) = sup
λ∈R

{λx − log EeλX (l)
1 },

I (r)(x) = sup
λ∈R

{λx − log EeλX (r)
1 }.

Remark From this Corollary, we know, under the case of real-valued random vari-
ables, this result is coherent with the Cramér theorem in the classic theory of large
deviation principle about real-valued random variables.

Corollary 2 Let X1 = X (l)
1 = X (r)

1 , X2 = X (l)
2 = X (r)

2 , · · · , Xn = X (l)
n = X (r)

n and

satisfy Eeλ(r)|X (r)
1 | < ∞ for some λ(r) > 0. Then for any closed set C ⊂ R, we have
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lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ∈ C} ≤ − inf
x∈C I (l)(x),

where

I (l)(x) = sup
λ∈R

{λx − log EeλX (l)
1 }.

Corollary 3 Let X1 = X (l)
1 = X (r)

1 , X2 = X (l)
2 = X (r)

2 , · · · , Xn = X (l)
n = X (r)

n and

satisfy Eeλ(r)|X (r)
1 | < ∞ for some λ(r) > 0. Then for any a, b ∈ R, a ≤ b, we have

lim sup
n→∞

1

n
log P(

1

n

n∑

i=1

Xi ∈ [a, b]) ≤ − inf
x∈[a,b] I

(l)(x),

where

I (l)(x) = sup
λ∈R

{λx − log EeλX (l)
1 }.

Example In Theorem 1, let X (l)
1 , X (l)

2 , · · · , X (l)
n be i.i.d random variables with the

exponential distribution with parameter 1 and X (r)
i = X (l)

i + 1
2 , Xi = [X (l)

i , X (r)
i ],

i = 1, 2, · · · , n. Then we can get

I (l)(x) = x − 1 − log x, x > 0; I (r)(x) = x − 3

2
− log (x − 1

2
), x >

1

2
.

Now take C = [2, 3], so inf
2≤x≤3

I (l)(x) = 1 − ln 2 ≈ 0.69897, inf
2≤x≤3

I (r)(x) = 0.5 −
log 1.5 ≈ 0.094535, inf

2≤x≤3
I (l)(x) ∧ inf

2≤x≤3
I (r)(x) = 0.5 − 5 log 1.5 ≈ 0.094535,

then

lim sup
n→∞

1

n
log P(

1

n

n∑

i=1

Xi ⊂ [2, 3]) ≤ −0.094535.
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Appendix

Cramér theorem: Let X1, X2, · · · , be i.i.d random variables and satisfy Eeλ|X1| <

∞ for some λ > 0. Then for any closed set F ⊂ R, we have
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lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ∈ F} ≤ − inf
x∈F I (x),

and for any open set G ⊂ R, we have

lim sup
n→∞

1

n
log P{1

n

n∑

i=1

Xi ∈ G} ≥ − inf
x∈G I (x),

where

I (x) = sup
λ∈R

{λx − log EeλX1}.
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On Asymptotic Properties of the Multiple
Fuzzy Least Squares Estimator

Jin Hee Yoon, Seung Hoe Choi and Przemyslaw Grzegorzewski

Abstract Themultiple fuzzy linear regressionmodel with fuzzy input–fuzzy output
is considered. Assuming that fuzzy inputs and fuzzy outputs are modeled by trian-
gular fuzzy numbers, we prove the consistency and asymptotic normality of the least
squares estimators.

1 Introduction

The least squares method is the most widely used statistical technique to find
unknown parameters of a regression model. However, there are many situations
where observations for regression model cannot be described accurately. To record
such data we need some approach to handle the uncertainty. Zadeh [31] introduced
the concept of fuzzy sets to model imprecision or vagueness. Then Tanaka et al. [26]
considered fuzzy regression analysis. Diamond [6] introduced fuzzy least squares
estimation for triangular fuzzy numbers. Some authors have discussed the situation
where both input and output are fuzzy [1, 2, 6, 13–17, 19, 20, 25, 27]. The others
have studied the fuzzy model with crisp parameters [1, 6, 8, 16, 17, 19]. For situa-
tions where data has an error structure which is assumed in model, Diamond [7] and
Näther [18, 21–23] introduced the fuzzy best linear unbiased estimators (FBLUEs).
Kim et al. [17] established the asymptotic properties of fuzzy least squares estimators
(FLSEs) in the case of a simple fuzzy linear regression model. Due to the complex-
ity of expression of the least squares estimators some authors use α-level sets to
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express the estimators [24, 25], while others separate the estimators into three parts:
the mode and two spreads [4, 5, 18, 30]. Moreover, some authors do not express
the formulas for the desired estimators but they found the estimates directly from the
normal equations [6, 19]. To overcome these problems the triangular fuzzy matrix
and suitable operations were defined in our previous studies [28, 29]. In this con-
tribution we continue the examination of the fuzzy least squares estimator obtained
there, focusing on its asymptotic properties.

The paper is organized as follows: in Sect. 2 we introduce basic notation and
recall some facts used later in the contribution. In Sect. 3 we discuss the regression
model proposed by Yoon and Choi [28, 29]. Then, in Sect. 3 we prove the asymptotic
properties of the fuzzy least squares estimator dedicated to fuzzy inputs and fuzzy
outputs modeled by triangular fuzzy numbers.

2 Preliminaries

Let FT denote a family of all triangular fuzzy numbers. Each A ∈ FT can be repre-
sented by an ordered triple, i.e. A = (la, a, ra), where a is the mode of A, while la and
ra denote the lower and the upper bound of the support of A, respectively. Besides
well-known basic operations on fuzzy numbers some other operations defined inFT

are sometimes useful. Let us recall here a few concepts proposed in [28]. From now
on let us assume that FT denote a family of all triangular fuzzy numbers defined on
the non-negative real numbers R∗.

Definition 1 Let X = (lx, x, rx) and Y = (ly, y, ry) be any triangular fuzzy numbers.
Then

X � Y = lxly + xy + rxry, (1)

X ⊗ Y = (lxly, xy, rxry). (2)

Clearly, the output of (1) is a real number, while the output of (2) belongs to
FT . Based on Zadeh’s extension principle [31] it is known that 〈m1, l1, r1〉LR ⊕
〈m2, l2, r2〉 = 〈m1 + m2, l1 + l2, r1 + r2〉, and

λ〈m, l, r〉LR =

⎧
⎪⎨

⎪⎩

〈λm, λl, λr〉LR if λ > 0,

〈λm,−λr,−λl〉LR if λ < 0,

〈0, 0, 0〉LR if λ = 0.

Further on we’ll also need some operations defined on the matrices.

Definition 2 A triangular fuzzy matrix (t.f.m.) is a matrix whose elements are tri-
angular fuzzy numbers. For given two n × n triangular fuzzy matrices Γ̃ = [Xij]
and Λ̃ = [Yij] their addition Γ̃ ⊕ Λ̃ is defined by the n × n t.f.m. Σ̃ = [Zij], where
Zij = Xij ⊕ Yij. Moreover, two products Γ̃ � Λ̃ and Γ̃ ⊕ Λ̃, the product of crisp
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matrix A = [aij] and t.f.m. Γ̃ and the scalar multiplication kΓ̃ , where k ∈ R, are
defined as follows

Γ̃ � Λ̃ = [
n∑

k=1

Xik � Ykj], Γ̃ ⊗ Λ̃ = [
n⊕

k=1

Xik ⊗ Ykj],

ÃΓ̃ = [
n⊕

k=1

aikXkj], kΓ̃ = [kXij].

We denote by MR∗ the set of all n × n real crisp matrices with nonnegative ele-
ments and let MFT be the set of all fuzzy element matrices on FT . Of course,
Γ̃ ⊕ Λ̃, Γ̃ ⊗ Λ̃, ÃΓ̃ ∈ MFT and Γ̃ � Λ̃ ∈ MR∗ . We can also define the following
three types of fuzzy scalar multiplications of a crisp matrix.

Definition 3 For given X∈FT , Ã = [aij] ∈ MR∗ and Γ̃ = [Xij] ∈ MFT , we define
three fuzzy scalar multiplications, XA, X � Γ̃ and X ⊗ Γ̃ , where

XÃ = [aijX], X � Γ̃ = [X � Xij], X ⊗ Γ̃ = [X ⊗ Xij]. (3)

Finally, we will consider the convergence defined as follows.

Definition 4 For X = (lx, x, rx), Y = (ly, y, ry) ∈ FT we say that X −→ Y if lx →
ly, x → y and rx → ry. Moreover, for Γ̃ = [Xij], Λ̃ = [Yij] ∈ MFT we say that
Γ̃ −→ Λ̃ if Xij → Yij for all i, j = 1, . . . , n.

We end this section by citing some theorems concerning the Central Limit The-
orem (CLT) and Strong Law of Large Numbers (SLLN) for martingales [10] which
will be useful in the proof of the main result in this contribution.

Theorem 1 (Hajék-Sidăk CLT) Let {Xn} be a sequence of i.i.d. random variables
(r.v.’s) with mean μ and finite variance σ2. Let {cn} be a sequence of real vectors
cn = (cn1, · · · , cnn)

t . If

(
max
1≤i≤n

c2ni

) (
n∑

i=1

c2ni

)−1

−→ 0 as n → ∞,

then

Zn =
∑n

i=1 cni(Xi − μ)

σ2
∑n

i=1 c2ni

L−→ N (0, 1) ,

where the notation
L−→ stands for convergence in law.

Theorem 2 (SLLN for martingales) Let Sn = ∑n
i=1 Xi, n ≥ 1, be a martingale such

that E|Xk|p < ∞ for k ≥ 1 and 1 ≤ p ≤ 2. Suppose that {bn} is a sequence of positive
constants increasing to ∞ as n → ∞, and

∑n
i=1 E[X2

i ]/b2
i < ∞. Then Sn/bn

a.s.−→ 0,

where the notation
a.s.−→ means converges almost surely.
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Theorem 3 (Courant-Fisher minimax theorem) For any n × n real symmetric
matrix A its eigenvalues λ1 � . . . � λn satisfy

λk = min
dim(C)=k

max||x||=1,x∈C
< Ax, x >, (4)

where C is a subspace of Rn.

3 Fuzzy Least Squares Estimation

Throughout this paper we consider the following linear regression model with fuzzy
inputs and fuzzy outputs

Yi = β0 ⊕ β1Xi1 ⊕ . . . ⊕ βpXip ⊕ Φi, i = 1, . . . , n, (5)

whereXij = (lxij , xij, lxij ) andYi = (lyi, yi, ryi), j = 1, . . . , p,whileβj denote unknown
crisp regression parameters to be estimated from the observations of Yi and Xij.
Moreover, let Φi, i = 1, . . . , n, denote fuzzy error terms which express both ran-
domness and fuzziness allowing negative spreads [3, 8, 17], i.e. Φi = (θl

i, εi, θ
r
i ),

where θl
i, εi, θ

r
i are crisp random variables. We suggest the following assumptions to

be satisfied by these random variables.

Assumption A

(A1) εi are i.i.d. r.v.’s such that E(εi) = 0 and V ar(εi) = σ2
ε < ∞.

(A2) θr
i , θl

i are i.i.d. r.v.’s such that E(θr
i ) = 0, E(θl

i) = 0, V ar(θr
i ) = σ2

r < ∞ and
V ar(θl

i) = σ2
l < ∞.

(A3) εi, θr
i and θl

i are mutually uncorrelated.

Defining the following design matrix X̃ = [(lxik , xik, rxik )]n×(p+1), where

X̃ =
⎡

⎢⎣
(1, 1, 1) (lx11 , x11, rx11) · · · (lx1p , x1p, rx1p)

...
...

. . .
...

(1, 1, 1) (lxn1 , xn1, rxn1) · · · (lxnp , xnp, rxnp)

⎤

⎥⎦ ,

and a vector ỹ = [(lyi , yi, ryi)]n×1 = [(ly1 , y1, ry1), · · · , (lyn , yn, ryn)]t and assuming
that det(X̃t � X̃) 
= 0, by [28] we obtain the following least squares estimator

β̂ = (X̃t � X̃)−1X̃t � ỹ. (6)

The following facts will be later useful.
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Lemma 1 (see [29]) Let Γ̃m×n ∈ MFT and ỹn×1 = [Yj] = [(lyj , yj, ryj )] ∈ MFT ,
where j = 1, . . . , n. Then

V ar(Γ̃ � ỹ) = (Γ̃ ⊗ Σ̃) � Γ̃ t (7)

= σ2
Φ � (Γ̃ ⊗ Γ̃ t).

Assuming V ar(lyj ) = σ2
lyj

, V ar(yj) = σ2
yj

and V ar(ryj ) = σ2
ryj

, the matrix Σ̃n×n ∈
MFT has diagonals Σ̃jj = (σ2

lyj
,σ2

yj
,σ2

ryj
) = (σ2

l ,σ
2
ε ,σ

2
r ) = σ2

Φ , while Σ̃jl =
(0, 0, 0) for j, l = 1, . . . , n and j 
= l.

Theorem 4 (see [29]) Let β̂ be the least squares estimator (6). Then

V ar(β̂) = σ2
Φ �

(
(X̃t � X̃)−1(X̃t ⊗ X̃)(X̃t � X̃)−1

)
. (8)

4 Asymptotic Properties

To prove asymptotic properties of our estimator the following additional assumption
are required besides Assumption A given in Sect. 4.

Assumption B.

(B1) max
1≤i≤n

(
x̃i

t
(Xt � X̃)−1

)
� x̃i → 0 as n → ∞, where x̃i

t denotes the i-th row of

X̃.
(B2) n(X̃t � X̃)−1(X̃t ⊗ X̃)(X̃t � X̃)−1 → Π̃ as n → ∞ for some Π̃ ∈ MFT .

Now we are able to formulate the main result of this contribution.

Theorem 5 If model (5) satisfies Assumption A and Assumption B then the least
squares estimator β̂ is asymptotically normal, i.e.

√
n

(
β̂n − β

)
L−→ Np+1

(
0, σ2

Φ � Π̃
)

, (9)

where σ2
Φ = (σ2

l ,σ
2
ε ,σ

2
r ).

Proof By (6) one can find that

β̂n = (X̃t � X̃)−1(X̃t � ỹ) =
(
(X̃t � X̃)−1X̃t

)
� ỹ

= (X̃t � X̃)−1X̃t � (X̃β + Φ) = β + (X̃t � X̃)−1(X̃t � Φ)

= β +
(
(X̃t � X̃)−1X̃t

)
� Φ,

so, consequently, β̂n − β =
(
(X̃t � X̃)−1X̃t

)
� Φ.
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Let λn ∈ Rp+1(λn 
= 0) be an arbitrary but fixed vector. Moreover, let Zn =
λn

t(β̂n − β) = C̃n
t � Φ ∈ R, where C̃n = X̃(X̃t � X̃)−1λn ∈ MFT . If we denote

C̃n
t = [Cn1, · · · , Cnn], where Cn1, · · · , Cnn ∈ FT , then by [28]

n∑

i=1

Cni � Cni = C̃t
n � C̃n

=
(
λt

n(X̃
t � X̃)−1X̃t

)
�

(
X̃(X̃t � X̃)−1λn

)

= λt
n(X̃

t � X̃)−1(X̃t � X̃)(X̃t � X̃)−1λn

= λt
n(X̃

t � X̃)−1λn.

We claim that C̃n satisfies the regularity condition of Theorem 2. Then we can
obtain the asymptotic distribution of Zn.

Let x̃t
i be the ith row of X̃ . Then we get Cni = xt

i(X̃
t � X̃)−1λn. Since Cni ∈ FT

we have Ct
ni = Cni. Hence

Cni � Cni = Ct
ni � Cni

= (λt
n(X̃

t � X̃)−1xi) � (xt
i(X̃

t � X̃)−1λn)

= λt
n(X̃

t � X̃)−1(xi � xt
i)(X̃

t � X̃)−1λn.

Therefore, by Theorem 3 and [28]

sup
λn

λt
n(X̃

t � X̃)−1(x̃i � x̃i
t
)(X̃t � X̃)−1λn

λt
n(X̃

t � X̃)−1λn

(10)

becomes
chmax[(X̃t � X̃)−1(x̃i � x̃i

t
)] =

(
x̃i

t
(X̃t � X̃)−1

)
� x̃i,

where chmax(Q) stands for the largest characteristic value of matrix Q. Thus,

sup
λn

max
i

Cni � Cni∑n
i=1 Cni � Cni

= max
i

sup
λn

λt
n(X̃

t � X̃)−1(x̃i � x̃i
t
)(X̃t � X̃)−1λn

λt
n(X̃

t � X̃)−1λn

= max
i

(
x̃i

t
(X̃t � X̃)−1

)
� x̃i,

which, by assumption (B1), converges to 0 as n → ∞. It means that

max
1≤i≤n

Cni � Cni∑n
i=1 Cni � Cni

→ 0
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as n → ∞. So, by Theorem 1, we obtain

Zn = λn
t(β̂n − β)

L−→ N (0, 1) .

On the other hand one may notice that

V ar
(√

n(β̂n − β)
)

= nσ2
Φ �

(
(X̃t � X̃)−1(X̃t ⊗ X̃)(X̃t � X̃)−1

)

−→ σ2
Φ � Π̃,

as n → ∞ (by assumption (B2)). Thus,

√
n

(
β̂n − β

)
L−→ Np+1

(
0, σ2

Φ � Π̃
)

,

which completes the proof. �

5 Conclusions

Asymptotic theory often makes it possible to carry out the analysis which cannot
be obtained within a finite sample theory. In this paper we proved some asymptotic
properties of estimators in themultiple fuzzy input-output regressionmodel.Wewere
focused especially on consistency and asymptotic normality of those estimators. To
reach the goal we have introduced a suitable matrix, called triangular fuzzy matrix,
and applied some operations provided in our previous studies (see [28, 29]).

Although the aforementioned asymptotic properties were discussed only for fuzzy
inputs and outputs modeled by triangular fuzzy numbers, they could be easily
extended to trapezoidal fuzzy numbers or LR-fuzzy numbers by defining adequate
fuzzy matrices and corresponding operations. Moreover, after constructing suitable
mathematical tools further research should be undertaken to examine the analogous
results in another models, like the regression model with fuzzy parameters or crisp-
input and fuzzy-output regression model.
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