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23. Carrier Phase Integer Ambiguity Resolution

Peter J.G. Teunissen

Global Navigation Satellite System (GNSS) carrier-
phase integer ambiguity resolution is the process
of resolving the carrier-phase ambiguities as inte-
gers. It is the key to fast and high-precision GNSS
parameter estimation and it applies to a great va-
riety of GNSS models that are currently in use in
navigation, surveying, geodesy and geophysics.
The theory that underpins GNSS carrier-phase
ambiguity resolution is the theory of integer in-
ference. This theory and its practical application is
the topic of the present chapter.
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Carrier-phase integer ambiguity resolution is the key to
fast and high-precision GNSS parameter estimation. It
is the process of resolving the unknown cycle ambigu-
ities of the carrier-phase data as integers. Once this has
been done successfully, the very precise carrier-phase
data will act as very precise pseudorange data, thus
making very precise positioning and navigation possi-
ble.

GNSS ambiguity resolution applies to a great va-
riety of current and future GNSS models, with ap-
plications in surveying, navigation, geodesy and geo-
physics. These models may differ greatly in complex-
ity and diversity. They range from single-receiver or
single-baseline models used for kinematic positioning
to multibaseline models used as a tool for studying geo-
dynamic phenomena. The models may or may not have
the relative receiver-satellite geometry included. They
may also be discriminated as to whether the slave re-
ceiver(s) is stationary or in motion, or whether or not
the differential atmospheric delays (ionosphere and tro-
posphere) are included as unknowns. An overview of

these models can be found in textbooks like [23.1–5]
and in the Chaps. 21, 25, and 26 of this Handbook.

The theory that underpins ultraprecise GNSS
carrier-phase ambiguity resolution is the theory of in-
teger inference [23.6, 7]. This theory of integer esti-
mation and validation is the topic of the present chap-
ter. Although the theory was originally developed for
Global Positioning System (GPS) [23.8–14], the the-
ory has a much wider range of applicability. Next to
the regional and global satellite navigation systems, it
also applies to other carrier-phase-based interferometric
techniques, such as Very Long Baseline Interferome-
try (VLBI) [23.15], Interferometric Synthetic Aperture
Radar (InSAR) [23.16], or underwater acoustic carrier-
phase positioning [23.17].

This chapter is organized as follows. In Sect. 23.1,
the mixed-integer GNSS model is introduced. It forms
the basis of all integer ambiguity resolution methods.
An overview of the various ambiguity resolution steps
is given, together with an evaluation of their contribu-
tion to the overall quality.

http://dx.doi.org/10.1007/978-3-319-42928-1_21
http://dx.doi.org/10.1007/978-3-319-42928-1_25
http://dx.doi.org/10.1007/978-3-319-42928-1_26
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In Sect. 23.2, the ambiguity resolution methods of
integer rounding (IR) and integer bootstrapping (IB)
are presented, together with practical expressions for
evaluating their ambiguity success rates. These methods
are the simplest methods available, but their perfor-
mance depends on the chosen ambiguity parametriza-
tion.

In Sect. 23.3 it is shown how the performance of
rounding and bootstrapping can be improved by us-
ing certain ambiguity parametrizations. This includes
a description of the decorrelating Z-transformation by
which these improvements can be realized. Various ex-
amples that illustrate the concepts involved are also
given.

The method of integer least-squares (ILSs) ambigu-
ity resolution is described in Sect. 23.4. This method is
optimal in the sense that it achieves the highest success

rate of all ambiguity resolution methods. The method
is however also more complex as it requires an integer
search over an ambiguity search space. It is shown how
to make the method numerically efficient by combining
the integer search with ambiguity decorrelation. Meth-
ods for computing or bounding the ILS success rate are
also given.

The concept of partial ambiguity resolution is pre-
sented in Sect. 23.5. It is an alternative to full ambiguity
resolution in case the resolution of all ambiguities can-
not be done with a sufficiently high success rate.

As wrongly fixed integer ambiguities can result in
unacceptably large positioning errors, it is important to
have rigorous testing methods in place for accepting
or rejecting the computed integer ambiguity solution.
These methods and their theoretical foundation are pre-
sented in Sect. 23.6.

23.1 GNSS Ambiguity Resolution

23.1.1 The GNSS Model

To formulate the GNSSmodel for ambiguity resolution,
we start with the observation equations for the pseudor-
ange (code) and carrier-phase observables. If we denote
the j-frequency pseudorange and carrier-phase for the
r-s receiver–satellite combination at epoch t as psr;j.t/
and 	s

r;j.t/ respectively, then their observation equations
can be formulated as [23.1–5],

psr;j.t/ D �sr.t/ +T
s
r .t/ + I

s
r;j.t/

+ cdtsr;j.t/ + e
s
r;j.t/ ;

's
r;j.t/ D �sr.t/ +T

s
r .t/ − I

s
r;j.t/

+ cıtsr;j.t/+�jN
s
r;j + �

s
r;j.t/ ; (23.1)

where �sr is the receiver–satellite range, Ts
r .t/ and Isr

are the tropospheric and ionospheric path delays, dtsr;j
and ıtsr;j are the pseudorange and carrier-phase receiver–
satellite clock biases, Ns

r;j is the time-invariant integer
carrier-phase ambiguity, c is the speed of light, �j is the
j-frequency wavelength, and esr;j, �

s
r;j are the remaining

error terms respectively.
The receiver–satellite range �sr in (23.1) is usually

further linearized in the receiver- or satellite-position
coordinates. As a result one obtains linear equations
that can be used to form a system of linear equations
for solving the unknown parameters of position, atmo-
sphere, clock and ambiguities. Hence, if we assume
the error terms esr;j and �sr;j in (23.1) to be zero-mean
random variables, the linear(ized) system of observa-
tion equations can be used to set up a linear model in

which some of the unknown parameters are reals and
others are integer. Such a GNSS model is an example
of a mixed-integer linear model.

We now define the general form of the mixed-
integer GNSS model.

Definition 23.1 Mixed-integer GNSS model
Let .A;B/ be a given m� .n+p/matrix of full rank and
let Qyy be a given m�m positive definite matrix. Then

y � N.Aa+Bb;Qyy/ ; a 2 Zn ; b 2 Rp (23.2)

will be referred to as the mixed-integer GNSS model.

The notation � is used to describe distributed as. The
m-vector y contains the pseudorange and carrier-phase
observables, the n-vector a the integer ambiguities, and
the real-valued p-vector b the remaining unknown pa-
rameters, such as, for example, position coordinates, at-
mospheric delay parameters (troposphere, ionosphere)
and clock parameters. As in most GNSS applications,
the underlying probability distribution of the data is as-
sumed to be a multivariate normal distribution.

23.1.2 Ambiguity Resolution Steps

The purpose of ambiguity resolution is to exploit the
integer constraints, a 2 Zn in (23.2), so as to get a better
estimator of b than otherwise would be the case. The
mixed-integer GNSS model (23.2) can be solved in the
following steps:
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1. Float Solution: In the first step, the integer nature
of the ambiguities is discarded and a standard least-
squares (LS) parameter estimation is performed. As
a result, one obtains the so-called float solution, to-
gether with its variance-covariance matrix,


Oa
Ob
�

� N
�


a
b

�
;



QOaOa QOaOb
QObOa QObOb

�	
: (23.3)

Other forms than batch least-squares – such as re-
cursive LS or Kalman filtering – may also be used
to come up with a float solution. Such choices will
depend on the application and on the structure of the
GNSS model.

2. Integer Solution: The purpose of this second step is
to take the integer constraints a 2 Zn (23.2) into ac-
count. Hence, a mapping I W Rn 7! Zn is introduced
that maps the float ambiguities to corresponding
integer values,

La D I.Oa/ : (23.4)

Many such integer mappings I exist. Popular
choices are integer rounding (IR), integer boot-
strapping (IB) and integer least-squares (ILS), see
Sects. 23.2 and 23.4.

3. Fixed Solution: In the final step, once La is accepted,
the ambiguity residual Oa− La is used to readjust the
float estimator Ob to obtain the so-called fixed esti-
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Fig. 23.1a,b Three-dimensional scatterplot of GPS position errors for short-baseline, dual-frequency instantaneous am-
biguity float solutions ((a); Ob) and corresponding ambiguity fixed position solutions ((b); Lb) (after [23.18]). Note the two
orders of magnitude difference in scale between the two panels. dE, dN, and dU denote the components of the position
errors in north, east and up direction

mator

Lb D Ob−QObOaQ
−1
OaOa.Oa− La/ : (23.5)

The fixed solution has a quality that is commensurate
with the high precision of the phase data, provided the
probability of La being the correct integer is sufficiently
high. Figure 23.1 illustrates the high gain in positioning
precision that can be achieved with successful ambigu-
ity resolution.

23.1.3 Ambiguity Resolution Quality

To determine the quality of the fixed solution Lb (23.5),
we need to propagate the probabilistic properties of its
constituents:

1. Quality of float solution: The float solution is de-
fined as the minimizer of the unconstrained LS-
problem,

.Oa; Ob/ D arg min
a2Rn;b2Rp

ky−Aa−Bbk2Qyy
(23.6)

the solution of which follows from solving the nor-
mal equations

"
A>Q−1

yyA A>Q−1
yyB

B>Q−1
yyA B>Q−1

yyB

#"Oa
Ob

#
D
"
A>Q−1

yy y

B>Q−1
yy y

#
:

(23.7)
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Fig. 23.2a–c Two-dimensional pull-in regions of integer rounding (a), integer bootstrapping (b), and integer least-
squares (c)

This solution is given as

Oa D . NA>Q−1
yy

NA/−1 NA>Q−1
yy y

Ob D .B>Q−1
yyB/

−1B>Q−1
yy .y−AOa/ ; (23.8)

where NA D P?
BA, with orthogonal projector

P?
B D Im −B.B>Q−1

yyB/
−1B>Q−1

yy :

With the distributional assumptions of (23.2), the
distribution of the ambiguity float solution fol-
lows as the multivariate normal distribution Oa �
N.a;QOaOa/, with variance matrix

QOaOa D . NA>Q−1
yy

NA/−1 : (23.9)

The probability density function (PDF) of Oa is thus
given as

fOa.xja/
D 1p

det.2 QOaOa/
exp

�
−
1

2
jjx− ajj2QOaOa

	
:

(23.10)

Its shape is completely determined by the ambiguity
variance matrix QOaOa, which in its turn is completely
determined by the GNSS model’s design matrix,
.A;B/, and observation variance matrix Qyy. The
PDF of Oa is needed to determine the probability
mass function (PMF) of La in step 2.

2. Quality of integer solution: Since the integer map of
step 2, I W Rn 7! Zn, is a many-to-one map, differ-
ent real-valued vectors will be mapped to one and
the same integer vector. One can therefore assign
a subset, say Pz � Rn, to each integer vector z 2 Zn,

Pz D fx 2 Rn j z D I.x/g; z 2 Zn : (23.11)

This subset is referred to as the pull-in region of z.
It is the region in which all vectors are pulled to the
same integer vector z. The pull-in regions are trans-
lational invariant over the integers and cover the
whole space Rn without gaps and overlap [23.19].
Two-dimensional examples of pull-in regions are
shown in Fig. 23.2. They are the pull-in regions of
integer rounding, integer bootstrapping and integer
least-squares.
The PMF of La follows from integrating the PDF of Oa
over the pull-in regions. Since La D z 2 Zn iff Oa 2 Pz,
the PMF of La follows as

P.La D z/ D P.Oa 2 Pz/ D
Z

Pz

fOa.xja/dx : (23.12)

A two-dimensional example of an ambiguity PDF
and corresponding PMF is given in Fig. 23.3a,b.
Of all the probabilities of the PMF, the probability
of correct integer estimation, P.La D a/, is of par-
ticular importance for ambiguity resolution. This
probability is referred to as the ambiguity success
rate and it is given by the integral

Ps D P.La D a/ D
Z

Pa

fOa.xja/dx

D
Z

P0

fOa.xj0/dx ; (23.13)

where the last line follows from the translational
property fOa.x+ aja/ D fOa.xj0/ of the multivariate
normal distribution.
Note that the success rate Ps depends on the pull-in
region P0 and on the PDF fOa.xj0/. Hence, the suc-
cess rate is determined by the mapping I W Rn 7! Zn
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Fig. 23.3 (a) Gaussian probability density function (PDF)
fOa.xja/ with 2-D (hexagon) ILS pull-in regions. (b) Corre-
sponding probability mass function (PMF) P.LaILS D z/ of
ILS estimator. (c) Scatterplot of horizontal position errors
for float solution (gray dots) and corresponding fixed solu-
tion (green and red dots). In this case, 93% of the solutions
were correctly fixed (green dots), and 7% were wrongly
fixed (red dots) (after [23.18]) I

and the ambiguity variance matrix QOaOa, i. e., by the
choice of integer estimator and the precision of the
float ambiguities.
Due to the shape of the pull-in regions and the
nondiagonality of the ambiguity variance matrix,
the computation of the ambiguity success rate is
nontrivial. The evaluation of the multivariate inte-
gral (23.13) can generally be done through Monte
Carlo integration [23.20], see also Sect. 23.4.3. For
some important integer estimators we also have
easy-to-compute expressions and/or sharp (lower
and upper) bounds of their success rates available
(Sect. 23.2).

3. Quality of fixed solution: Once the integer solu-
tion is available, the fixed solution is computed as
in (23.5). This fixed solution has the multimodal
PDF [23.21]

fLb.x/ D
X
z2Zn

fOb.z/.x/P.La D z/ (23.14)

in which fOb.z/.x/ denotes the PDF of the conditional
LS-estimator

Ob.z/ D Ob−QObOaQ
−1
OaOa.Oa− z/;

normally distributed with mean and variance ma-
trix,

b.z/ D b−QObOaQ
−1
OaOa.a− z/ ;

QOb.z/Ob.z/ D QObOb −QObOaQ
−1
OaOaQOaOb : (23.15)

From (23.14) it follows that

fLb.x/ � fOb.a/.x/ � N.b;QOb.z/Ob.z// (23.16)

if

Ps D P.La D a/ � 1 : (23.17)

Thus if the success rate is sufficiently close to one,
the distribution of the fixed solution Lb can be ap-
proximated by the unimodal normal distribution
N.b;QOb.z/Ob.z// of which the precision is better than
that of the float solution Ob, QOb.z/Ob.z/ <QObOb.
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The relevance of ambiguity resolution and the need
to have sufficiently large success rates is illustrated in
Fig. 23.3c. It shows scatterplots of float positions (gray
scatter) and corresponding fixed positions (green/red
scatter). The small size of the green scatter shows
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the improvements that can be achieved over the float
solution if the ambiguities are correctly fixed. The
large red scatter indicates however that in this case
the success rate is not large enough (Ps D 93%) to

avoid some of the fixed positions being even poorer
than the float positions. This underlines the impor-
tance of working with sufficiently high success rates
only.

23.2 Rounding and Bootstrapping

23.2.1 Integer Rounding

The simplest integer estimator is rounding to the near-
est integer. In the scalar case, its pull-in regions (inter-
vals) are given as

Rz D
�
x 2 R

ˇ̌
ˇ jx− zj � 1

2



; z 2 Z : (23.18)

Any outcome of Oa � N.a 2 Z; �2
Oa /, that satisfies j Oa−

zj � 1=2, will thus be pulled to the integer z. We de-
note the rounding estimator as LaR and the operation of
integer rounding as d:c. Thus LaR D dOac and LaR D z if
Oa 2 Rz.

The PMF of LaR D dOac is given as

P.LaR D z/

D


˚

�
1 − 2.a− z/

2�Oa

	
+˚

�
1+ 2.a− z/

2�Oa

	
− 1

�
;

z 2 Z ;

(23.19)

where ˚.x/ denotes the normal distribution function,

˚.x/ D
xZ

−1

1p
2 

exp

�
−
1

2
v 2

	
dv :

The PMF becomes more peaked when �Oa gets
smaller. The success rate of scalar rounding follows
from (23.19) by setting z equal to a,

P.LaR D a/ D 2˚

�
1

2�Oa

	
− 1 : (23.20)

The behavior of the success rate as function of the am-
biguity standard deviation �Oa is shown in Fig. 23.4.
It shows that a success rate better than 99%, requires
�Oa < 0:20 cycle.

23.2.2 Vectorial Rounding

Scalar rounding is easily generalized to the vectorial
case. It is defined as the componentwise rounding of

Oa D .Oa1; : : : ; Oan/>, LaR D .dOa1c ; dOa2c ; : : : ; dOanc/>. The
pull-in regions of vectorial rounding are the multivari-
ate versions of the scalar pull-in intervals,

Rz D
�
x 2 Rn

ˇ̌
ˇ jc>

i .x− z/j � 1

2
; i D 1; : : : ; n



;

(23.21)

with z 2 Zn and where ci denotes the unit vector hav-
ing a 1 as its ith entry and zeros otherwise. Thus the
pull-in regions of rounding are unit-squares in two-
dimensional (2-D), unit-cubes in three-dimensional
(3-D), and so on (Fig. 23.2).

To determine the joint PMF of the components of
LaR, we have to integrate the PDF of Oa � N.a;QOaOa/
over the pull-in regions Rz. These n-fold integrals are
difficult to evaluate unless the variance matrix QOaOa is
diagonal, in which case the components of LaR are in-
dependent and their joint PMF follows as the product
of the univariate PMFs of the components. The cor-
responding success rate is then given by the n-fold
product of the univariate success rates.

In case of GNSS, the variance matrix QOaOa will be
fully populated, meaning that one will have to resort to
methods of Monte Carlo simulation for computing the
joint PMF. For the success rate, one can alternatively
make use of the following bounds.

Theorem 23.1 Rounding success-rate bounds
[23.22]
Let the float ambiguity solution be distributed as Oa �
N.a;QOaOa/, a 2 Zn. Then the rounding success rate can
be bounded from below and from above as

LB � P.LaR D a/ � UB ; (23.22)

where

LB D
nY

iD1



2˚

�
1

2�Oai

	
− 1

�
;

UB D
2
42˚

0
@ 1

2 max
iD1;:::;n

�Oai

1
A−1

3
5 : (23.23)
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Fig. 23.4 Scalar rounding success rate versus ambiguity standard deviation � in cycles

These easy-to-compute bounds are very useful for de-
termining the expected success of GNSS ambiguity
rounding. The upper bound is useful to quickly decide
against such ambiguity resolution. It shows that ambi-
guity resolution based on vectorial rounding cannot be
expected to be successful if already one of the scalar
rounding success rates is too low.

The lower bound is useful to quickly decide in favor
of vectorial rounding. If the lower bound is sufficiently
close to 1, one can be confident that vectorial rounding
will produce the correct integer ambiguity vector. Note
that this requires each of the individual probabilities in
the product of the lower bound to be sufficiently close
to 1.

23.2.3 Integer Bootstrapping

Integer bootstrapping is a generalization of integer
rounding; it combines integer rounding with sequential
conditional least-squares estimation and as such takes
some of the correlation between the components of the
float solution into account. The method goes as follows.
If Oa D .Oa1; : : : ; Oan/>, one starts with Oa1 and as before
rounds its value to the nearest integer. Having obtained
the integer of the first component, the real-valued esti-
mates of all remaining components are then corrected
by virtue of their correlation with Oa1. Then the second,
but now corrected, real-valued component is rounded
to its nearest integer. Having obtained the integer value
of this second component, the real-valued estimates of
all remaining n−2 components are then again corrected
by virtue of their correlation with the second compo-
nent. This process is continued until all n components
are taken care of. We have the following definition.

Definition 23.2 Integer bootstrapping
Let Oa D .Oa1; : : : ; Oan/> 2 Rn be the float solution and let
LaB D .LaB;1; : : : ; LaB;n/> 2 Zn denote the corresponding
integer bootstrapped solution. Then

LaB;1 D dOa1c ;
LaB;2 D dOa2j1c D dOa2 − �21�−2

1 .Oa1 − LaB;1/c ;
:::

LaB;n D dOanjNc D dOan −
n−1X
jD1

�n;jjJ�−2
jjJ
�OajjJ − LaB;j

�c ;

(23.24)

where OaijI is the least-squares estimator of ai condi-
tioned on the values of the previous I D f1; : : : ; .i− 1/g
sequentially rounded components, �i;jjJ is the covari-
ance between Oai and OajjJ , and �2

jjJ is the variance of OajjJ .
For i D 1, OaijI D Oa1.

As the definition shows, the bootstrapped estimator can
be seen as a generalization of integer rounding. The
bootstrapped estimator reduces to integer rounding in
the case where correlations are absent, i. e., in the case
where the variance matrix QOaOa is diagonal.

In vector-matrix form, the bootstrapped estimator
(23.24) can shown to be given as [23.23],

LaB D dOa+ .L−1 − In/.Oa− LaB/c ; (23.25)
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with L the unit lower triangular matrix of the triangular
decompositionQOaOa D LDL>. As the diagonal matrix

D D diag
�
�2
a1 ; : : : ; �

2
anjN

�

is not used in the construction of the bootstrapped esti-
mator, bootstrapping takes only part of the information
of the variance matrix into account. Although the di-
agonal matrix D is not used in (23.25), it is needed to
determine the bootstrapped success rate.

23.2.4 Bootstrapped Success Rate

To determine the bootstrapped PMF, we first need the
bootstrapped pull-in regions. They are given as

Bz D
�
x 2 Rn j j c>

i L
−1.x− z/ j � 1

2
; i D 1; : : : ; n



;

(23.26)

with z 2 Zn and where ci denotes the unit vector hav-
ing a 1 as its ith entry and zeros otherwise. They are
parallelograms in 2-D (Fig. 23.2).

The bootstrapped PMF follows from integrating the
multivariate normal distribution over the bootstrapped
pull-in regions. In contrast to the multivariate integral
for integer rounding, the multivariate integral for boot-
strapping can be simplified considerably. As shown by
the following theorem, the bootstrapped PMF can be
expressed as a product of univariate integrals.

Theorem 23.2 Bootstrapped PMF [23.22]
Let Oa � N.a 2 Zn;QOaOa/ and let LaB be the bootstrapped
estimator of a. Then

P.LaB D z/ D
nY

iD1

"
˚

 
1 − 2l>i .a− z/

2�OaijI

!

+˚

 
1 + 2l>i .a− z/

2�OaijI

!
− 1

#
; (23.27)

with z 2 Zn and where li is the ith column vector of the
unit upper triangular matrix .L−1/>.

As a direct consequence of the above theorem, we have
an exact and easy-to-compute expression for the boot-
strapped success rate.

Corollary 23.1 Bootstrapped success rate
Let Oa � N.a 2 Zn;QOaOa/. Then the bootstrapped success
rate is given as

P.LaB D a/ D
nY

iD1

"
2˚

 
1

2�OaijI

!
− 1

#
: (23.28)

This is an important result as it provides a simple way
for evaluating the bootstrapped success rate.

When comparing the performance of bootstrapping
with rounding, it can be shown that the success rate of
bootstrapping will never be smaller than that of round-
ing [23.22],

P.LaB D a/ 	 P.LaR D a/ : (23.29)

Thus bootstrapping is a better integer estimator than
rounding.

Despite the fact that we have the above exact and
easy-to-compute formula for the bootstrapped success
rate, an easy-to-compute upper bound of it would still
be useful if it would be Z-invariant. Such an upper
bound can be constructed when use is made of the Z-
invariant ADOP (ambiguity dilution of precision).

Theorem 23.3 Bootstrapped success-rate invariant
upper bound [23.24]
Let Oa � N.a, QOaOa/, a 2 Zn, Oz D ZOa and ADOP D
det.QOaOa/

1
2n . Then

P.LzB D z/ �


2˚

�
1

2ADOP

	
− 1

�n
(23.30)

for any admissible Z-transformation.

Thus if the upper bound is too small, we can immedi-
ately conclude, for any ambiguity parametrization, that
bootstrapping nor rounding will be successful.
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23.3 Linear Combinations

23.3.1 Z-transformations

Although the integer estimators LaR and LaB are easy
to compute, they both suffer from a lack of invari-
ance against integer reparametrizations or so-called
Z-transformations.

Definition 23.3 Z-transformations [23.25]
An n� n matrix Z is called a Z-transformation iff
Z;Z−1 2 Zn�n, i. e., if the entries of the matrix and its
inverse are all integer.

Z-transformations leave the integer nature of in-
teger vectors invariant. It can be shown that the two
conditions, Z;Z−1 2 Zn�n, are equivalent to the two
conditionsZ 2 Zn�n and det.Z/ D ˙1. Hence, the class
of Z-transformations can also be defined as

Z D fZ 2 Zn�n j jZj D ˙1g : (23.31)

Thus, Z-transformations are volume-preserving trans-
formations. This implies that the determinant of
the ambiguity variance matrix is invariant for Z-
transformations: jQOzOzj D jZQOaOaZ>j D jQOaOaj.

By saying that an estimator lacks Z-invariance, we
mean that if the float solution is Z-transformed, the in-
teger solution does not transform accordingly. That is,
rounding/bootstrapping and transforming do generally
not commute,

LzR ¤ ZLaR and LzB ¤ ZLaB if Oz D ZOa : (23.32)

This is illustrated in Fig. 23.5 for integer rounding and
in Fig. 23.6 for integer bootstrapping. Also the success
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a) b)

Fig. 23.5a,b 2-D IR pull-in regions
and 50 000 simulated zero-mean float
solutions. (a) Original ambiguities Oa
[cycles]; (b) Z-transformed ambigu-
ities Oz D ZOa [cycles]. Red dots will
be pulled to wrong integer solutions,
while green dots will be pulled to the
correct integer solution (after [23.18])

rates of rounding and bootstrapping lack Z-invariance,

P.LzR D z/ ¤ P.LaR D a/ ;

P.LzB D z/ ¤ P.LaB D a/ : (23.33)

This is also very clear from Figs. 23.5 and 23.6.
Since the scatterplot of Oa is much more elongated
than that of Oz D ZOa, the rounding pull-in region is
a much poorer fit of the original scatterplot than of
the transformed scatterplot. This is also true for the
bootstrapped pull-in regions, even though the shape of
the bootstrapped pull-in region changes with the Z-
transformation. Note that the two figures also illustrate
the workings of inequality (23.29), i. e., that bootstrap-
ping outperforms rounding. The bootstrapped pull-in
regions have a better fit of the scatterplot, original as
well as transformed, than the pull-in region of rounding.

The question is now whether the above-identified
lack of invariance means that rounding and bootstrap-
ping are unfit for GNSS integer ambiguity resolution?
The answer is no, by no means. Integer rounding and
bootstrapping are valid ambiguity estimators, and they
are attractive, because of their computational simplic-
ity. Whether or not they can be successfully applied in
any concrete situation, depends solely on the value of
their success rates for that particular situation.

23.3.2 (Extra) Widelaning

Since the performance of rounding and bootstrapping
depends on the chosen ambiguity parameterization, it
would be helpful to know how to improve their per-
formance by choosing suitable Z-transformations. The
simplest such Z-transformations are the so-called wide-
laning transformations. Examples of widelaning trans-
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a) b)
Fig. 23.6 2-D IB pull-in regions
(original and transformed) and 50 000
simulated zero-mean float solutions.
(a) Original ambiguities Oa [cycles];
(b) Z-transformed ambiguities Oz D ZOa
[cycles]. Red dots will be pulled to
wrong integer solutions, while green
dots will be pulled to the correct
integer solution (after [23.18])

formations are


z1
z2

�
D


1 −1
0 1

�

a1
a2

�
(23.34)

for the dual-frequency case, and

2
4
z1
z2
z3

3
5D

2
4
0 1 −1
1 −1 0
0 0 1

3
5
2
4
a1
a2
a3

3
5 (23.35)

for the triple-frequency case. These transformations
are referred to as widelaning, since they can be in-
terpreted to form carrier-phase observables with long
wavelengths. To see this, consider the carrier-phase
transformation

N	i D
Pf

jD1 Zij�
−1
j 	jPf

jD1 Zij�
−1
j

; i D 1; : : : ; f ; (23.36)

in which 	j denotes the double-differenced (DD)
carrier-phase observable on frequency j D 1; : : : ; f ,
�j its wavelength and Zij the ijth-entry of the Z-
transformation matrix. With this transformation, the
system of f DD carrier-phase observation equations

	i D � −�iI +�iai ; i D 1; : : : ; f (23.37)

transforms to a system with similar structure, namely

N	i D � − N�iI + N�izi ; i D 1; : : : ; f ; (23.38)

with � the DD nondispersive range plus tropospheric
delay, I the DD ionospheric delay on the first frequency,
�i and N�i the original and transformed ionospheric
coefficient, �i and N�i the original and transformed
wavelength, and ai and zi the original and transformed
ambiguity.

The relation between the original and transformed
wavelengths is given as

N�i D
0
@

fX
jD1

Zij�
−1
j

1
A

−1

; i D 1; : : : ; f : (23.39)

If we now substitute the entries of the above widelaning
transformation (23.35), together with the wavelengths
of GPS (or Galileo or BeiDou), we obtain the values of
the transformed wavelengths ( N�1 D �ew; N�2 D �w; N�3 D
�3) as given in Table 23.1, which indeed are larger than
the original wavelengths.

The rationale for aiming at longer wavelengths is
that a larger ambiguity coefficient N�i improves the pre-
cision with which the ambiguity zi can be estimated.
However, this reasoning is only valid of course if all
other circumstances remain unchanged under the trans-
formation. This is not really the case with the above
carrier-phase transformation (23.36), since the variance
matrix of 	i, i D 1; : : : ; f , will generally differ from that
of the transformed N	i, i D 1; : : : ; f . Nevertheless, the
above simple widelaning transformations, (23.34) and
(23.35), are still useful as they can often be seen as an
easy first step in improving the precision of the float
ambiguities.

23.3.3 Decorrelating Transformation

In general the widelaning approach is quite limited in
finding suitable Z-transformations. We now describe
a general method, due to [23.14], for finding such trans-
formations. The method can be applied to any possible
integer GNSS model and it has generally a significantly
improved performance over widelaning [23.26–28].

Since it is the ambiguity variance matrix that com-
pletely determines the ambiguity success rate (23.13),
the method takes the ambiguity variance matrix QOaOa
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Table 23.1 GPS, Galileo and BeiDou original, widelane (w) and extra widelane (ew) wavelengths (cm)

Wavelength GPS Galileo BeiDou
a1 L1 19:0 E1 19:0 B1 19:2
a2 L2 24:4 E6 23:4 B3 23:6
z3 D a3 L5 25:5 E5a 25:5 B2 24:8
z2 D a1 − a2 Lw 86:2 Ew 101:1 Bw 102:4
z1 D a2 − a3 Lew 587:0 Eew 292:8 Bew 488:9

as its point of departure. The aim is to find a Z-
transformation that decorrelates the ambiguities as
much as possible, i. e., that makes the transformed am-
biguity variance matrix QOzOz D ZQOaOaZ> as diagonal as
possible. The rationale of this approach is that an am-
biguity parametrization with diagonal variance matrix
is optimal in the sense that then no further success-rate
improvements of rounding and bootstrapping are possi-
ble through reparametrization.

The degree of decorrelation of a variance matrix is
measured by its decorrelation number. Let

ROaOa D Œdiag.QOaOa/�−1=2QOaOaŒdiag.QOaOa/�−1=2

be the correlation matrix ofQOaOa. Then the decorrelation
number is defined as [23.26]

rOa D
p

jROaOaj .0 � rOa � 1/ : (23.40)

In two dimensions it reduces to

rOa D
q
.1− �2Oa/ ;

with �Oa being the ambiguity correlation coefficient.
Hence, a two-dimensional ambiguity variance matrix is
diagonal if and only if rOa D 1. It can be shown that this
also holds true for the higher-dimensional case. Since
jROaOaj D jQOaOaj=.Qn

iD1 �
2
Oai/j and jQOzOzj D jQOaOaj, we have

rOz 	 rOa , �2
Oz1 : : : �

2
Ozn � �2

Oa1 : : : �
2
Oan : (23.41)

Hence, the ambiguity decorrelation number increases
if the product of ambiguity variances decreases. We
now show how to construct such decorrelating Z-
transformation for the two-dimensional case. For the
higher-dimensional case, see for example [23.27, 28].

We minimize the product �2
Oa1�

2
Oa2 in an alternating

fashion, i. e., we start by keeping the first variance un-
changed and reduce the second variance. Then we keep
the second, now reduced, variance unchanged and re-
duce the first variance. This process is continued until
no further reduction in the product of variances is pos-
sible anymore.

In the sequence of alternating reductions, the fol-
lowing type of transformations are applied

…2G˛ D


˛ 1
1 0

�
; (23.42)

where

G˛ D


1 0
˛ 1

�
; …2 D



0 1
1 0

�
: (23.43)

With G˛, the variance of the second ambiguity is re-
duced, while with …2, the order of the two ambiguities
is interchanged. Once the order is interchanged, a trans-
formation likeG˛ can again be applied to further reduce
the product of variances.

The value of ˛ is determined in each step of the se-
quence as follows. With G˛, the variance of the second
ambiguity becomes

ŒG˛QOaOaG>
˛ �22

D ˛2�2
Oa1 + 2˛�Oa2 Oa1 + �

2
Oa2

D �2
Oa2 − �

2
Oa1
�
.�Oa2 Oa1�

−2
Oa1 /

2 − .˛ +�Oa2 Oa1�
−2
Oa1 /

2
�
:

(23.44)

This shows that the variance of the transformed ambi-
guity is minimal for ˛ D −�Oa2 Oa1�−2

Oa1 . As this is not an
integer in general, it would not produce an admissi-
ble transformation when substituted intoG˛ of (23.43).
Therefore, instead of using the real-valued minimizer
−�Oa2 Oa1�−2

Oa1 for ˛ in G˛ , its nearest integer is used as
approximation, ˛ D −d�Oa2 Oa1�−2

Oa1 c. This still gives a re-
duction in the variance of the second ambiguity, since

.�Oa2 Oa1�
−2
Oa1 /

2 > .˛ + �Oa2 Oa1�
−2
Oa1 /

2

if

j�Oa2 Oa1�
−2
Oa1 j > 1

2
;

i. e., if

d�Oa2 Oa1�
−2
Oa1 c ¤ 0 :

The construction of the decorrelation transformation is
summarized in the following definition [23.26–28].

Definition 23.4 Decorrelating Z-transformation

Let Q.1/ D QOaOa andQ.i+1/ D ZiQ.i/Z>
i , i D 1; : : : ; k+2.

Then the two-dimensional decorrelating Z-transforma-
tion is given as the product

Z D ZkZk−1 : : :Z1 ; (23.45)
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Table 23.2 2-D example of rounding and bootstrapping on original and Z-transformed ambiguities

ZD
�

4 −3
−1 1

�

OaD
�
2:23
2:51

�

, QOaOa D
�
0:1680 0:2152
0:2152 0:2767

�

OzD
�
1:39
0:28

�

, QOzOz D
�
0:0135 0:0043
0:0043 0:0143

�

Original ambiguities, 
Oa D 0:96 Transformed ambiguities, 
Oz D 0:31

Rounding LaR D Œ2; 3�> LzR D Œ1; 0�>

Bootstrapping La.1/B D Œ2; 2�>, La.2/B D Œ3; 3�> Lz.1/B D Œ1; 0�>, Lz.2/B D Œ1; 0�>

where

Zi D


˛i 1
1 0

�
; Q.i/ D



�2
1 .i/ �12.i/

�21.i/ �2
2 .i/

�

and

˛i D −d�21.i/�−2
1 .i/c ;

with ˛k+1 D ˛k+2 D 0.

After the above decorrelating transformation is applied,
the correlation coefficient of the transformed ambigu-
ities will never be larger than 0.5 in absolute value.
This can be seen as follows. If ˛k+1 D ˛k+2 D 0, then
�21.k + 2/ D �21.k + 1/ and �2

1 .k +2/ D �2
2 .k + 1/, and

therefore

�2Oz D �21.k + 1/2

�2
1 .k + 1/�

2
2 .k + 1/

� 1

4
: (23.46)

Geometrically, the above sequence of transforma-
tions in the product of Z (23.45) can be given the
following useful interpretation. Consider the confidence
ellipse of Oa. Its shape and orientation is determined by
QOaOa. The part G˛1 of Z1 then pushes the two horizon-
tal tangents of the ellipse inwards, while at the same
time keeping fixed the area of the ellipse and the lo-
cation of the two vertical tangents. Then G˛2…2 of the
product Z2Z1 pushes the two vertical tangents of the el-
lipse inwards, while at the same time keeping fixed the
area of the ellipse and the location of the two horizon-
tal tangents. This process is continued until no further
reduction is possible. Since the area of ellipse is kept
constant at all times .jQOaOaj D jQOzOzj/, whereas the area
of the enclosing rectangular box is reduced in each step,
it follows that not only the diagonality of the ambiguity
variance matrix is reduced, but also that the shape of the
ellipse is forced to become more circular.

For further computational details on how such
Z-transformations can be constructed, we refer
to [23.14, 27–29] and the references cited therein. Also
see [23.30–34].

23.3.4 Numerical Example

The following two-dimensional numerical example
compares rounding with bootstrapping and illustrates

their dependence on the chosen ambiguity parametriza-
tion. The float solution has been computed from a dual-
frequency, ionosphere-fixed geometry-free model for
two receivers, two satellites, and two epochs, in which
an undifferenced phase standard deviation of 3mm and
an undifferenced code standard deviation of 10 cm is
assumed.

Hence, the computations are based on the double-
differenced (DD) phase- and code-observation equa-
tions

	i.t/ D �.t/+�iai + e	i .t/ ;

pi.t/ D �.t/+ epi.t/ ; (23.47)

with i D 1; 2 and t D t1; t2.
The original and transformed float solution, Oa and

Oz D ZOa, and their variance matrices, QOaOa and QOzOz, are
given in Table 23.2, together with the decorrelating
transformation matrix Z. It is constructed as

Z D


−3 1
1 0

�

−1 1
1 0

�
D


4 −3
−1 1

�
: (23.48)

This transformation decorrelates .�Oa D 0:96 versus
�Oz D 0:31) and significantly improves the precision of
the ambiguities (Table 23.2). Also note that the first step
in the construction of Z consists of widelaning.

Table 23.2 also contains six integer solutions, two
based on rounding and four based on bootstrapping.
Rounding of Oa gives

LaR D

d2:23c
d2:51c

�
D


2
3

�
;

while bootstrapping of Oa gives

La.1/B D
"

d2:23c
d2:51− 0:2152

0:1680 .2:23− 2/c

#
D


2
2

�
;

when starting from the first ambiguity, and

La.2/B D
"

d2:23− 0:2152
0:2767 .2:51− 3/c
d2:51c

#
D


3
3

�
;

when starting from the second ambiguity. These solu-
tions together with their counterparts in the transformed
domain can be found in Table 23.2.
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Note that all three solutions in the original domain,
LaR, La.1/B and La.2/B , are different, while their counter-
parts in the transformed domain are the same and all
equal to Œ1; 0�>. Also note that when the solution in the
transformed domain is back-transformed to the original
domain, again a different solution is obtained, namely,

La0
R D Z−1LzR D



1
1

�
: (23.49)

In Table 23.3, the success rates of the different so-
lutions are given. Note the big differences between the
success rates of the transformed ambiguities and orig-
inal ambiguities. The success rates of the transformed
ambiguities are all very close to 1. This is due to
the high precision of the transformed float solution Oz
(Table 23.2). Also note that the success rates of La.1/B and

Table 23.3 Bootstrapped success rates and rounding suc-
cess rate lower bound for the ambiguity solutions of
Table 23.2

Success rate Original Transformed
ambiguities ambiguities

Lower bound
rounding

0:51171 0:99995

Bootstrapping
(1st ambiguity)

0:77749 0:99997

Bootstrapping
(2nd ambiguity)

0:65816 0:99996

Lz.1/B are larger than those of their counterparts La.2/B
and Lz.2/B . This is due to the fact that in this example the
first ambiguity is more precise than the second ambi-
guity. Thus bootstrapping should always start with the
most precise ambiguity.

23.4 Integer Least-Squares

In this section we discuss the integer least-squares (ILS)
ambiguity estimator. It has the best performance of all
integer estimators. However, in contrast to rounding and
bootstrapping, an integer search is needed for its com-
putation.

23.4.1 Mixed Integer Least-Squares

Application of the least-squares principle to model
(23.2), but now with the integer ambiguity constraints
included, gives

.LaLS; LbLS/ D arg min
a2Zn;b2Rp

k y−Aa−Bb k2Qyy
:

(23.50)

This is a nonstandard least-squares problem due to the
integer constraints a 2 Zn [23.14].

To solve (23.50), we start from the orthogonal de-
composition

jjy−Aa−Bbjj2Qyy
D

jjOejj2Qyy
+ jj Oa− ajj2QOaOa + jjOb.a/− bjj2QOb.a/Ob.a/

; (23.51)

where Oe D y−AOa−BOb, with Oa and Ob the float solution,
i. e., the unconstrained least-squares estimators of a and
b respectively. Furthermore,

Ob.a/ D Ob−QObOaQ
−1
OaOa.Oa− a/ ;

and

QOb.a/Ob.a/ D QObOb −QObOaQ
−1
OaOaQOaOb :

Note that the first term on the right-hand side of (23.51)
is constant and that the third term can be made zero
for any a by setting b D Ob.a/. Hence, the mixed-integer
minimizers of (23.50) are given as

LaLS D arg min
z2Zn

jj Oa− zjj2QOaOa ;

LbLS D Ob.LaLS/ D Ob−QObOaQ
−1
OaOa.Oa− LaLS/ : (23.52)

In contrast to rounding and bootstrapping, the ILS
principle is Z-invariant. For Oz D ZOa, we have

LzLS D ZLaLS and LbLS D Ob−QObOzQ
−1
OzOz .Oz− LzLS/ :

(23.53)

Hence, application of the ILS principle to ZOa gives the
same result as Z times the ILS estimator of a. Also LbLS
is invariant for the integer reparametrization.

The Z-invariance of the ILS principle also implies
that the same success rate is obtained, i. e., P.LzLS D
z/ D P.LaLS D a/. This is illustrated in Fig. 23.7. The
number of green dots in the original scatterplot is ex-
actly the same as the number of green dots in the
transformed scatterplot.

When we compare Fig. 23.7 with Figs. 23.5 and
23.6, we note that the ILS pull-in region gives a better fit
to the scatterplot than those of rounding and bootstrap-
ping, thus indicating that ILS has a higher success rate.
And indeed we have the following optimality property
of the ILS estimator.
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Fig. 23.7a,b 2-D ILS (original
and transformed) pull-in regions and
50 000 float solutions. (a) Original am-
biguities Oa [cycles]; (b) Z-transformed
ambiguities Oz D ZOa [cycles]. Red
dots will be pulled to wrong integer
solutions, while green dots will be
pulled to the correct integer solution

Theorem 23.4 ILS Optimality [23.35]
Let Oa � N.a;QOaOa/. Then the integer least-squares esti-
mator

LaLS D arg min
z2Zn

jj Oa− zjj2QOaOa

has the largest success rate of all integer estimators. Fur-
thermore

P.LaR D a/ � P.LaB D a/ � P.LaLS D a/ : (23.54)

This result shows that there exists a clear ordering
among the three most popular integer estimators. In-
teger rounding (IR) is the simplest, but it also has the
poorest success rate. Integer least-squares (ILS) is the
most complex, but also has the highest success rate of
all. Integer bootstrapping (IB) sits in between. It does
not need an integer search as is the case with ILS, and it
does not completely neglect the information content of
the ambiguity variance matrix as IR does.

The ordering (23.54) is illustrated by the empiri-
cal success rates in Table 23.4 for the cases shown in
Figs. 23.5–23.7.

23.4.2 The ILS Computation

In this section the computation of the ILS solution
(23.52) is presented. The two main parts of its compu-
tation are (a) the integer ambiguity search, and (b) the

Table 23.4 The percentages of correctly IR-, IB- and ILS-
estimated ambiguities in original and transformed domain
for the cases shown in Figs 23.5–23.7

Success rate IR (%) IB (%) ILS (%)
Original Oa 23 29 97
Transformed Oz 95 96 97

ambiguity decorrelation. Although the ILS solution can
in principle be computed on the basis of only (a), the
decorrelation step is essential in the case of GNSS for
improving the numerical efficiency of (a). This is par-
ticularly true in case of short observation time spans.
Then the DD ambiguities turn out to be highly corre-
lated due to the small change over time in the relative
receiver–satellite geometry.

Integer Ambiguity Search
In contrast to rounding and bootstrapping, an integer
search is needed to compute the ILS ambiguity solution

La D arg min
z2Zn

jj Oa− zjj2QOaOa : (23.55)

The search space is defined as

�a D fa 2 Zn j jj Oa− ajj2QOaOa � �2g ; (23.56)

where �2 is a to-be-chosen positive constant. This el-
lipsoidal search space is centered at Oa, its elongation is
governed byQOaOa and its size is determined by �2. In the
case of GNSS, the search space is usually extremely
elongated due to the high correlations between the
carrier-phase ambiguities. Since this extreme elonga-
tion hinders the computational efficiency of the search,
the search space is first transformed to a more spherical
shape by means of a decorrelating Z-transformation,

�z D
n
z 2 Zn j jjOz− zjj2QOzOz � �2

o
; (23.57)

where Oz D ZOa and QOzOz D ZQOaOaZ>.
In order for the search to be efficient, one would like

the search space to be small such that it contains not too
many integer vectors. This requires the choice of a small
value for �2, but one that still guarantees that the search
space contains at least one integer vector. After all, �z
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has to be nonempty to guarantee that it contains the ILS
solution LzLS. Since the easy-to-compute (decorrelated)
bootstrapped estimator gives a good approximation to
the ILS estimator, LzB is a good candidate for setting the
size of the search space,

�2 D jjOz− LzBjj2QOzOz : (23.58)

In this way one can work with a very small search space
and still guarantee that the sought-for ILS solution is
contained in it. If the rounding success rate is suffi-
ciently high, one may also use LzR instead of LzB.

For the actual search, the quadratic form jjOz− zjj2QOzOz
is first written as a sum-of-squares. This is achieved by
using the triangular decompositionQOzOz D LDL>,

jjOz− zjj2QOzOz D
nX

iD1

.OzijI − zi/2
�2
ijI

� �2 : (23.59)

This sum-of-squares structure can now be used to set
up the n intervals that are used for the search. These
sequential intervals are given as

.Oz1 − z1/2 � �2
1�

2 ;

.Oz2j1 − z2/2 � �2
2j1

�
�2 −

.Oz1 − z1/2
�2
1

	
;

:::

.Oznj.n−1/;:::;1 − zn/2 � �2
nj.n−1/;:::;1

�
 
�2 −

n−1X
iD1

.OzijI − zi/2
�2
ijI

!
:

(23.60)

To search for all integer vectors that are contained in
�z, one can now proceed as follows. First collect all in-
tegers z1 that are contained in the first interval. Then for
each of these integers, one computes the corresponding
length and center point of the second interval, followed
by collecting all integers z2 that lie inside this second
interval. By proceeding in this way to the last interval,
one finally ends up with the set of integer vectors that
lie inside �z. From this set one then picks the ILS solu-
tion as the integer vector that returns the smallest value
for jjOz− zjj2QOzOz .

Various refinements on this search, with further ef-
ficiency improvements such as search space shrinking,
are possible, see for example [23.27–29, 36, 37].

Ambiguity Decorrelation
To understand why the decorrelating Z-transformation
is necessary to improve the efficiency of the search,

consider the structure of the sequential intervals (23.60)
and assume that they are formulated for the original,
nontransformed DD ambiguities of a single-baseline
GNSSmodel. The DD ambiguity sequential conditional
standard deviations �OaijI , i D 1; : : : ; n, will then show
a large discontinuity when going from the third to the
fourth ambiguity.

As an example consider a single short baseline,
with seven GPS satellites tracked, using dual-frequency
phase-only data for two epochs separated by two sec-
onds. Figure 23.8 shows its spectrum of sequential
conditional standard deviations expressed in cycles,
original as well as transformed. Note the logarithmic
scale along the vertical axis. Since seven satellites were
observed on both frequencies, we have twelve double-
differenced ambiguities and therefore also twelve con-
ditional standard deviations. The figure clearly shows
the large drop in value when passing from the third to
the fourth DD standard deviation, i. e., from �Oa3j2;1 to
�Oa4j3;2;1 . With the short time span, the DD ambiguities
are namely poorly estimable, i. e., have large standard
deviations, unless already three of them are assumed
known, since with three DD ambiguities known, the
baseline and remaining ambiguities can be estimated
with a very high precision. Thus with �Oa1 , �Oa2j1 and
�Oa3j2;1 large, the first three bounds of (23.60), when for-
mulated for the DD ambiguities, will be rather loose,
while those of the remaining 9 inequalities will be very
tight. As a consequence one will experience search
halting. Of many of the collected integer candidates that
satisfy the first three inequalities of (23.60), one will not

0.01

0.1

1
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100

12108642
i

σâi|I, σẑi|I (cyc)

Fig. 23.8 Original and transformed (flattened) spectra
of sequential conditional ambiguity standard deviations,
�OaijI and �OzijI , i D 1; : : : ; 12, for a seven-satellite, dual-
frequency, short GPS baseline (after [23.27])
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be able to find corresponding integers that satisfy the re-
maining inequalities.

This inefficiency in the search is eliminated when
using the Z-transformed ambiguities instead of the DD
ambiguities. The decorrelating Z-transformation elim-
inates the discontinuity in the spectrum of sequential
conditional standard deviations and, by virtue of the
fact that the product of the sequential variances re-
mains invariant (i. e., volume is preserved), also reduces
the large values of the first three conditional vari-
ances.

In essence, the n-dimensional Z-transformation is
constructed from two-dimensional decorrelating trans-
formations as presented in Sect. 23.3.3. In two dimen-
sions, the decorrelation achieves �2Oz � 1=4 (23.46) and
therefore

�2
Oz2j1 D �2

Oz2.1 − �
2
Oz / 	 3

4
�2

Oz2 	 3

4
�2

Oz1 ; if �2
Oz1 � �2

Oz2 :

Now let OaijI and Oai+1jI play the role of Oa1 and Oa2 in the
two-dimensional case. Then the decorrelation would
achieve

�2
Ozi+1jI+1 D �2

Ozi+1jI .1 −�
2
Oz / 	 3

4
�2

Ozi+1jI

and thus

�2
Ozi+1jI+1 	 3

4
�2

OzijI (23.61)

for �2
OzijI � �2

Ozi+1jI . This shows that the originally large gap
between �OaijI and �Oai+1jI+1 , for i D 3, gets eliminated to
a large extent, since now �Ozi+1jI+1 cannot be much smaller
than �OzijI . Through a repeated application of such two-
dimensional transformations, the whole spectrum of
sequential conditional standard deviations can be flat-
tened. In the case of Fig. 23.8 the transformed spectrum
is flattened to a level slightly less than 0:2 cycles, while
the original level for the DD standard deviations was
more than 100 cycles.

The above described ILS procedure is mechanized
in the GNSS LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment) method. For more informa-
tion on the LAMBDA method, we refer to [23.14,
27–29, 37].

The following are examples for which one can see
the LAMBDA method at work in a variety of different
applications. Examples of such applications are baseline
and network positioning [23.38–43], satellite formation
flying [23.44–46], InSAR and VLBI [23.15, 16], GNSS
attitude determination [23.47–50] and next-generation
GNSS [23.51–53].

23.4.3 Least-Squares Success Rate

We have seen that the 2-D pull-in regions of rounding
and bootstrapping are squares and parallelograms re-
spectively. It follows that those of ILS are hexagons.
The ILS pull-in region of z 2 Zn consists by definition
of all those points that are closer to z than to any other
integer vector in Rn,

Lz D fx 2 Rn j jjx− zjj2QOaOa

� jjx−ujj2QOaOa ;8u 2 Zng; z 2 Zn :

By rewriting the inequality, we obtain a representation
that more closely resembles the ones of rounding Rz

and bootstrapping Bz (23.21), (23.26),

Lz D
�
x 2 Rn j j w j � 1

2
jjujjQOaOa ; 8u 2 Zn



;

(23.62)

with z 2 Zn and

w D u>Q−1
OaOa.x− z/

jjujjQOaOa
(23.63)

the orthogonal projection of .x− z/ onto the direction
vector u. This shows that the ILS pull-in regions are
constructed from intersecting banded subsets centered
at z and having width jjujjQOaOa . One can show that at
most 2n − 1 of such subsets are needed for construct-
ing the pull-in region. Note that Lz D Rz when QOaOa is
diagonal.

The ILS PMF is given as

P.LaLS D z/ D
Z

Lz

fOa.xja/dx : (23.64)

To obtain the ILS success rate, set z D a.

Simulation
Due to the complicated geometry of the ILS pull-in re-
gions, methods of Monte Carlo simulation are needed
to evaluate the multivariate integral (23.64). Note that
a is not needed for the computation of the success rate.
Thus one may simulate as if Oa has the zero-mean distri-
bution N.0;QOaOa/. Also recall that the ILS success rate
is Z-invariant, P.LzILS D Za/ D P.LaILS D a/. This prop-
erty can be used to one’s advantage when simulating.
Since the simulation requires the repeated computation
of an ILS solution, one is much better off doing this for
a decorrelated Oz D ZOa, than for the original Oa.

The first step of the simulation is to use a ran-
dom generator to generate n-independent samples from



Carrier Phase Integer Ambiguity Resolution 23.5 Partial Ambiguity Resolution 677
Part

D
|23.5

the univariate standard normal distribution N.0;1/, and
then collect these in an n-vector s. This vector is trans-
formed as Gs, with G equal to the Cholesky factor of
QOzOz D GG>. The result is a sample Gs from N.0;QOzOz/,
and this sample is used as input for the ILS estimator.
If the output of this estimator equals the null vector,
then it is correct, otherwise it is incorrect. This simu-
lation process can be repeated N number of times, and
one can count how many times the null vector is ob-
tained as a solution, say Ns times, and how often the
outcome equals a nonzero integer vector, say Nf times.
The approximations of the success rate and fail rate fol-
low then as

Ps � Ns

N
and Pf � Nf

N
: (23.65)

Further details on the success-rate simulation can be
found in [23.18, 54, 55].

Lower and Upper Bounds
Instead of using simulation, one may also consider us-
ing bounds on the success rate. The following theorem

gives sharp lower and upper bounds on the ILS success
rate.

Theorem 23.5 ILS success-rate bounds
Let Oa � N.a;QOaOa/, a 2 Zn, Oz D ZOa and cn D
. n2$ . n2 //

2=n=
 , with $ .x/ the gamma function.
Then

P.LzB D z/ � P.LaILS D a/ � P

�
�2
n;0 � cn

ADOP2

	

(23.66)

for any admissible Z-transformation and where �2
n;0 de-

notes a random variable having a central chi-square
distribution with n degrees of freedom.

The upper bound was first given in [23.56], albeit with-
out proof. A proof is given in [23.24]. The lower bound
was first given in [23.22, 35]. This lower bound (af-
ter decorrelation) is currently the sharpest lower bound
available for the ILS success rate. A study on the perfor-
mances of the various bounds can be found in [23.18,
54, 57, 58].

23.5 Partial Ambiguity Resolution

When the precision of the float ambiguity solution is
poor, reliable integer estimation is not possible, i. e., the
success rate will be too low. Instead of relying on the
float solution and collecting more data, it might still be
possible to reliably fix a subset of ambiguities, referred
to as partial ambiguity resolution (PAR) [23.59].

The key issue is then the selection of the subset
such that on the one hand the corresponding success
rate will exceed a user-defined threshold, while at the
same time it will result in a significant precision im-
provement of the position estimates. The first condition
is important in order to prevent large positioning errors
due to wrong fixing occurring. The second condition is
optional, although it is obvious that PAR will only be
beneficial if indeed the baseline precision is improved.
Many options would be possible to select a subset of
ambiguities to be fixed in the case of fixing the full set
(FAR, fullset ambiguity resolution) is not possible or
needed. Several approaches have been proposed in the
literature in which it is first tried to fix only the (extra)
widelane ambiguities in the case where two or more fre-
quencies are being used [23.60–63]. Other ideas are to
include only ambiguities with variances below a cer-
tain level, or ambiguities from satellites at a minimum
elevation, with a minimum required signal-to-noise ra-
tio, or which are visible for a certain time [23.59, 64].

Yet another strategy is to fix only (linear combinations
of) ambiguities for which the best and second-best so-
lutions are consistent [23.65]. A disadvantage of most
of the PAR strategies is that the choice of the subset is
not based on the success rate and/or precision improve-
ment of the baseline solution. Moreover, some of the
strategies involve an iterative procedure in which many
different subsets are evaluated. This may require long
search times.

The approach already proposed in [23.59] is easy
to implement and does allow for choosing a mini-
mum required success rate Pmin. The idea is to fix
only the largest possible subset of decorrelated ambi-
guities, such that this success rate requirement can be
met

kY
iD1

"
2˚

 
1

2�OzijI

!
− 1

#
	 Pmin : (23.67)

Hence, only the first k entries of z will be fixed, and
the corresponding subset will be denoted as zS. Adding
more ambiguities implies multiplication with another
probability, which by definition is smaller than or equal
to 1. Hence, k will be chosen such that the inequality
in (23.67) holds, while a larger k (i. e., larger subset)
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Fig. 23.9a,b Example of benefit of PAR for a 50 km baseline with a minimum required success rate of 99:9%. (a) Num-
ber of fixed ambiguities. (b) Baseline precision of float and partially fixed solutions

would result in a too low success rate. The correspond-
ing precision improvement can be evaluated as well
with

QLbLb D QObOb −QObOzSQOzS OzSQOzS Ob : (23.68)

The uncertainty in the fixed subset solution can be ig-
nored due to the high success rate requirement. An
example of the benefit of PAR is shown in Fig. 23.9.
It is an example of a dual-frequency 50 km baseline
with eight GPS satellites tracked. The total number of
ambiguities is thus equal to 14, and remains constant

for the whole timespan. Figure 23.9a shows the num-
ber of fixed ambiguities as function of the number of
epochs based on recursive estimation. In this case full
ambiguity resolution (FAR) is only possible after 36
epochs, but with PAR the number of fixed ambiguities
gradually increases. For both PAR and FAR the mini-
mum required success rate is set to 99:9%. The effect
on the baseline precision is shown in the bottom panel.
Both the precision of the vertical and horizontal base-
line components start to improve with respect to the
corresponding float precision as soon as a subset of the
ambiguities is fixed.

23.6 When to Accept the Integer Solution?

So far no explicit description of the decision rule for
accepting or rejecting the integer solution was given.
In this section a flexible class of such rules is pre-
sented.

23.6.1 Model- and Data-Driven Rules

When do we accept the integer ambiguity solution La? It
was shown in Sect. 23.1.3 that working with the integer
solution La only makes sense if the ambiguity success
rate P.La D a/ is sufficiently large or, equivalently, the
fail rate P.La ¤ a/ is sufficiently small. Otherwise there
would exist unacceptable chances of ending up with
large errors in the fixed solution Lb (Fig. 23.3).

The above suggests the following decision rule for
computing an outcome of the ambiguity resolution pro-
cess,

outcome D
(

La 2 Zn if P.Oa … Pa/ � P0 ;

Oa 2 Rn otherwise :

(23.69)

Thus with this rule the integer solution La is only ac-
cepted if the fail rate is smaller than a user-defined
thresholdP0. Otherwise it is rejected in favor of the float
solution Oa. This is a model-driven rule, as the outcome
is solely dependent on the strength of the underlying
model. The actual data, i. e., the actual float solution Oa
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itself, does not play a role in the decision. Only its PDF,
through the probability P.Oa … Pa/, affects the decision.

Instead of the model-driven rule (23.69), also
a data-driven decision rule can be used. Such rules are
of the form

outcome D
(

La 2 Zn if T .Oa/ � �0 ;

Oa 2 Rn otherwise ;
(23.70)

with testing function T W Rn 7! R and user-selected
threshold value �0 	 0. Thus in this case the integer so-
lution La is accepted when T .Oa/ is sufficiently small;
otherwise, it is rejected in favor of the float solution Oa.
This rule is data driven, as the actual value of the float
solution is used in the evaluation of T .Oa/.

In practice one usually uses a data-driven rule. Dif-
ferent choices for the testing function T are then still
possible. Examples include those of the ratio test, the
difference test and the projector test. Each of these tests
can be shown to be a member of the class of integer
aperture (IA) estimators as introduced in [23.66–68].
A review and evaluation of these tests can be found in
[23.54, 69–71].

The advantage of the data-driven rules over the
model-driven rule (23.69) is the greater flexibility that
they provide to the user, in particular with respect to
the fail rate. With the data-driven rule, users can be
given complete control over the fail rate, irrespective
the strength of the underlying GNSS model. This is im-
possible with the model-driven rule.

23.6.2 Four Ambiguity Resolution Steps

By including the test (23.70) into the ambiguity resolu-
tion process, its four steps become:

1. Float solution: Compute the float solution Oa 2 Rn

and Ob 2 Rp.
2. Integer solution: Choose an integer map I W Rn 7!

Zn and compute the integer solution La D I.Oa/. Since
the user has no real control over the success rate
Ps D P.La D a/, confidence cannot be assured if one
relies solely on the outcome La of this second step.
This is why the next step is needed. The role of
the ambiguity acceptance test is namely to provide
confidence in the integer outcomes of ambiguity
resolution.

3. Accept/reject integer solution: Choose a testing
function T W Rn 7! R, with threshold �0, and exe-
cute the test. Accept La ifT .Oa/ � �0, otherwise reject
in favor of the float solution Oa.

4. Fixed solution: Compute the fixed solution Lb if the
integer solution La is accepted, otherwise stick with
the float solution Ob.

Due to the inclusion of the above ambiguity ac-
ceptance test, the quality of the outcome of the above
four-step procedure will be different from that of the
three-step procedure discussed in Sect. 23.1.2. We now
determine the quality of the above four-step procedure.

23.6.3 Quality of Accepted Integer Solution

The integer La D z is the outcome of the above step 3
(23.70) if both the conditions

Oa 2 Pz and T .Oa/ � �0 (23.71)

are satisfied. Thus

La D z iff Oa 2 ˝z D Pz \˝ ; (23.72)

with acceptance region

˝ D fx 2 Rnj T .x/ � �0g : (23.73)

The intersecting region˝z D Pz \˝ is called the aper-
ture pull-in region of z. The aperture pull-in regions are,
just like the pull-in regions Pz, translational invariant:
˝z D ˝0 + z. The (green and red) ellipse-like regions
of Fig. 23.10 are examples of such aperture pull-in re-
gions. This figure also visualizes and summarizes which
of the test outcomes are correct and which are not.

The outcome of the ambiguity acceptance test is
correct if it is either the correct integer or a float solu-
tion that otherwise would be pulled to a wrong integer.
The first happens when Oa 2 ˝a, the second when Oa 2
˝c n .Pa n˝a/. The outcome is wrong if it is either the
wrong integer or a float solution that otherwise would
be pulled to the correct integer. The first happens when
Oa 2 ˝ n˝a, the second when Oa 2 Pa n˝a.

Once accepted by the test, the distribution of the in-
teger La becomes a conditional PMF. Hence, instead of
(23.12), we now have

P.La D zj Oa 2 ˝/ D P.Oa 2 ˝z/

P.Oa 2 ˝/
: (23.74)

Similarly, since the fixed solution is now only com-
puted if La is accepted, its multimodal PDF is, instead
of (23.14), given as

fLb.x/ D
X
z2Zn

fOb.z/.x/P.La D zj Oa 2 ˝/ : (23.75)

As a wrong integer outcome, i. e., La ¤ a, can result in
large position errors (Fig. 23.3), it is of importance that
sufficient confidence can be provided in the correct-
ness of the integers as determined by the ambiguity
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Fig. 23.10 Aperture pull-in regions ˝z � Pz and the four
types of outcome: success (green), detection (light green),
false alarm (orange) and failure (red) (after [23.71])

acceptance test. This confidence is described by the
probability of successful fixing

PSF D P.La D aj Oa 2 ˝/ D P.Oa 2 ˝a/

P.Oa 2 ˝/
: (23.76)

This is the conditional version of the unconditional suc-
cess rate (23.13). It can be further expressed in the
probability of success, PS D P.Oa 2 ˝a/, and the prob-
ability of failure, PF D P.Oa 2 ˝ n˝a/, as

PSF D PS

PS +PF
: (23.77)

From this important relation it follows that the user can
now be given control over the probability of successful
fixing. If, through an appropriate choice of the tolerance
value �0 in (23.70), the aperture of ˝0 is chosen to be
sufficiently small, then PF � 0 and therefore PSF � 1,
which, with (23.76) and (23.75), results in the peaked
distribution fLb.x/ � fOb.a/.x/.

Thus with the inclusion of the ambiguity acceptance
test, the user is given control over the quality of the in-
teger outcome and thereby over the quality of the fixed
solution Lb. This control is absent when only the three
ambiguity resolution steps of Sect. 23.1.2 are used.

23.6.4 Fixed Failure-Rate Ratio Test

In practice, different testing functions T are in use. Ex-
amples are those of the ratio test, the difference test or
the projector test [23.12, 38, 72–76]. Here we describe
the popular ratio test.

With the ratio test the ILS solution La is accepted iff

TR.Oa/ D jjOa− Lajj2QOaOa
jj Oa− La0jj2QOaOa

� �0 ; (23.78)

with 0< �0 � 1 and

La D arg min
z2Zn

jj Oa− zjj2QOaOa ;

La0 D arg min
z2Zn;z¤La

jj Oa− zjj2QOaOa : (23.79)

The ratio test tests the closeness of the float solution to
its nearest integer vector. If it is close enough, the test
leads to acceptance of La. If it is not close enough, then
the test leads to rejection in favor of the float solution Oa.

The origin-centered aperture pull-in region of the
ratio test is given as [23.70]

˝R;0 D
n
x 2 Rnj jjxjj2QOaOa � �0jjx− zjj2QOaOa

o

D
�
x 2 Rnj jjx+ �0

1 − �0
zjj2QOaOa

� �0

.1 − �0/2
jjzjj2QOaOa



(23.80)

for all z 2 Zn n f0g. This shows that the aperture pull-in
region is equal to the intersection of all ellipsoids with
centers −Œ�0=.1− �0/�z and radius Œ

p
�0=.1− �0/�jjzjjQOaOa .

Figure 23.11 shows two two-dimensional examples of
the geometry of such aperture pull-in regions.

It is clear that the size or aperture of the pull-in re-
gion˝R;0 determines the largest ratio TR one is willing
to accept. The threshold value �0 can be used to tune this
aperture. Smaller values corresponds to smaller aper-
tures and thus smaller failure rates PF. In the case where
the threshold is taken equal to its maximal value �0 D 1,
the aperture pull-in regions become equal to the ILS
pull-in regions, in which case the integer solution is al-
ways accepted. In such a case, the ratio test would be
obsolete and can be discarded.
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Fig. 23.11a,b Geometry of two-
dimensional aperture pull-in region
(brown) of the ratio test as constructed
from intersecting circles (a) and
ellipses (b) (after [23.70])

On the Choice of the Critical Value
The question is now how to choose the critical value �0.
Different values have been proposed in the literature, all
based on empirical results. Typical values reported for
�0 are 1

3 ,
1
2 , and

2
3 [23.3, 72, 75, 77]. The different values

are already an indication that there is not one specific
value that will always give the best performance. Care
should therefore be exercised to consider these values
generally applicable.

In [23.71, 78] it has been shown that the traditional
usage of the ratio test, that is, with a fixed critical �0-
value, often results in either unacceptably high failure
rates or is overly conservative. In the case of the next
generation multifrequency, multi-GNSS models, for in-
stance, the increase in strength of the models, due to,
for example, more frequencies and more satellites, im-
plies that the �0-values can be chosen larger than the
currently used fixed values. Thus for strong models, the
fixed �0-values currently in use are often too conserva-
tive, so that the false alarm rates are unnecessarily high,
while the failure rates are very close to zero. For weak
models, on the other hand, the currently used fixed �0-
values are often too large, so that the fixed solution is
often wrongly accepted, thus resulting in high failure
rates. These problems can be overcome if the ratio test
is made adaptive to the strength of the underlyingGNSS
model.

It was therefore proposed in [23.67, 70, 71] to re-
place the fixed critical-value approach by the more
flexible fixed failure-rate approach. With this approach,
the user is given control over the failure rate for their
particular application. Hence, depending on the require-
ments of the application (e.g., high, medium or low
integrity), the user chooses a fixed value for the failure
rate, say PF D 0:1%, and then computes the corre-
sponding critical value �0. The value of �0 will then
adapt itself, in dependence on the underlying model
strength, to ensure that the specified failure rate is in-
deed achieved (Fig. 23.12). In this way each project

or experiment can be executed with an a priori speci-
fied and guaranteed failure rate. The numerical proce-
dure for computing �0 from PF is described in [23.71]
and is implemented in the LAMBDA-package (ver-
sion 3).

23.6.5 Optimal Integer Ambiguity Test

As mentioned, the ratio test is not the only test with
which the integer ambiguities can be validated. Hence,
the fixed failure-rate approach can be applied to these
other tests as well. Such work would then also be able
to compare the performance of these tests and answer
the question of which of the traditional tests, such as
ratio test, difference test or projector test, performs
best.

Instead of restricting attention to current tests, one
can also take a more fundamental approach and try to
determine an optimal test from first principles. This
is the approach taken in [23.67, 68]. It resulted in the
constrained maximum success-rate (CMS) test and the
minimum mean penalty (MMP) test.

Constrained Maximum Success-Rate (CMS) Test
So far we considered fixed failure-rate ambiguity val-
idation with an a priori given testing function T or
an a priori given aperture pull-in region ˝0. Instead of
working with a predefined T or ˝0, we now relax the
situation and ask for which T or˝0 the success rate PS

is maximized, given a user-defined failure rate PF. The
answer is given by the following theorem.

Theorem 23.6 Optimal integer ambiguity test
[23.68]
Let fL�.x/ and fO�.x/ be the PDFs of the ambiguity resid-
ual vectors L� D Oa− La and O� D Oa− a respectively. Then
the solution to

max
˝0

PS subject to given PF (23.81)
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Fig. 23.12a–c A two-dimensional illustration of three different cases of integer ambiguity ratio-test validation. The green
and red dots result in correct and incorrect integer outcomes respectively, while the blue dots result in the float solution
as outcome. The first case (a) has poor performance, while the other two (b,c) have good performance. In the first case,
due to an inappropriately chosen critical value �0, the aperture pull-in region is too large thus producing too many wrong
integer solutions. In the other two cases, the fixed failure-rate approach (PF D 0:1%) was used, thus resulting in critical
values that adapt to the strength of the underlying model. As the second case (b) corresponds to a weaker model than
the third case (c), its aperture pull-in region is smaller thus producing more float solutions than in the third case. Both
however have the same guaranteed small failure rate (after [23.79])

is given by the aperture pull-in region

Ő 0 D
�
x 2 P0 j fO�.x/

fL�.x/
	 �



; (23.82)

with P0 the ILS pull-in region of the origin and � (0<
� < 1) the aperture parameter chosen so as to satisfy the
a priori fixed failure rate PF.

The PDFs of the ambiguity residuals are given as
[23.80, 81],

fL�.x/ D
X
z2Zn

fO�.x+ z/p0.x/ ;

fO�.x/ / exp

�
−
1

2
jjxjj2QOaOa

	
; (23.83)

with p0.x/ the indicator function of P0, i. e., p0.x/ D 1
if x 2 P0 and p0.x/ D 0 otherwise.

Note, since the PDFs fO�.x/ and fL�.x/ differ less,
when P.La D a/ " 1, then the difference between the op-
timal aperture pull-in region Ő 0 and the ILS pull-in
region P0 will also differ less when the ILS success rate
increases. In the limit, all integer solutions will be ac-
cepted, since then Ő 0 D P0.

Minimum Mean Penalty (MMP) Test
This is also an optimal integer ambiguity acceptance
test. The MMP test is based on the idea of penalizing
certain outcomes of the test. The penalties, for example
costs, are chosen by the user and can be made depen-
dent on the application at hand. Different penalties are

assigned to different outcomes: a success penalty pS if
Oa 2 ˝a (green area in Fig. 23.10), a failure penalty pF
if Oa 2 ˝ n˝a (red area in Fig. 23.10), and a detection
penalty pD if Oa 2 ˝c n .Pa n˝a/ (light green area in
Fig. 23.10).

With this assignment, a discrete random variable,
the penalty p, is constructed. It has three possible out-
comes, p D fpS; pF; pDg. We may now consider the
average of the discrete random variable p, the average
penalty E.p/, which is a weighted sum of the individ-
ual penalties, with the weights being equal to the three
probabilities PS, PF, and PD

E.p/ D pSPS + pFPF + pDPD : (23.84)

The MMP test is defined as the one having the smallest
mean penalty. It follows from solving the minimiza-
tion problem min˝0 E.p/ [23.67]. The solution is again
given by (23.82), but now with the aperture parameter
given as

� D pF − pD
pF − pS

: (23.85)

Note that increasing the failure penalty pF increases �
and contracts the aperture pull-in region Ő 0. This is as
it should be, since a contracting Ő 0 reduces the occur-
rences of wrong integer solutions.

The Computational Steps
It is gratifying to see that the above two optimization
principles provide the same structure for the optimal
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ambiguity test. It implies, somewhat in analogy with the
pairing of least-squares estimation and best linear unbi-
ased estimation, that the same procedure can be given
two different interpretations of optimality.

The steps for computing the CMS and MMP test
are:

1. Compute the ILS ambiguity solution

La D arg min
z2Zn

jj Oa− zjj2QOaOa : (23.86)

2. Construct the ambiguity residual L� D Oa− La and com-
pute the PDF ratio

R.L�/ D fO�.L�/
fL�.L�/ : (23.87)

This outcome provides a measure of confidence in
the solution. The larger the ratio, the more confi-
dence one has. Note that the ratio can be seen as an
approximation to the success fix-rate PSF.

3. Determine the aperture parameter �, either from the
user-defined fail rate in the case of CMS, or from
(23.85) in the case of MMP. Output the integer so-
lution La if R.L�/ 	 �, otherwise the outcome is the
float solution Oa. Both La and R.L�/ can be computed
efficiently with the LAMBDA method.
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