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21. Positioning Model

Dennis 0dijk
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21.1 Nonlinear Observation Equations

In this section, the nonlinear observations equations for
code and phase are reviewed, first for a single global or
regional navigation satellite system (GNSS or RNSS)
and after that the observation equations in case the
GNSS receiver tracks observations from more than one
constellation (the multiconstellation case).

21.1.1 Single-GNSS Observation Equations

Recall from Chap. 19, the nonlinear observation equa-
tions for j=1,...,fs frequencies of a certain GNSS
constellation S, at time of observation ¢ in the GNSS
system time. Then the observation equation for the code
or pseudorange from satellite s tracked by receiver r at
epoch ¢ can be given as

PO = p; (t.1-1) + T; (1)
e [di, (1) +d5 () + AL (1)]
—c[dr (1-7)-d' (i-)]
+ L) + €} (0) (21.1)

while the carrier-phase observation equation reads

01,0 = p} (1.1=7) +T(0)
+c [di (1) +8;(1) + A8 (1)]

—cldf (t-1)) -5 (t-7))]

— L)+ AN+ ) (1) (21.2)
The constellation identifier S is chosen in agree-
ment with the RINEX convention (Annex A Data
Formats) such that S € {G,R,E,C,J,1,...}, for GPS,
GLONASS, Galileo, BeiDou (BDS), QZSS, IRNSS,
etc. The notation in (21.1) and (21.2) is as follows

p;; Code/pseudorange observable (m)
@ Carrier-phase observable (m)

p;  Receiver—satellite range (m)

77 Signal travel time (s)

T}  Tropospheric delay (m)

c Velocity of light (m/s)

dt, Receiver clock error (s)

dr  Satellite clock error (s)

df g Receiver code hardware bias (s)
S g Receiver phase hardware bias (s)
AdS J Code interchannel bias (s)

Aé?® . Phase interchannel bias (s)

d’  Satellite code hardware bias (s)
6’ Satellite-phase hardware bias (s)
;' lonospheric coefficient

I Tonospheric delay (m)

A3 Wavelength (m)

N¢.  Carrier-phase ambiguity (cyc)
Random code noise (m)
Random carrier-phase noise (m).

The receiver hardware biases in (21.1) and (21.2),
denoted as dy;(t) and 87 (1), are in principle different
for each constellation (that is why they have a con-
stellation index S), even when the signals are tracked
on frequency bands that overlap between the constel-
lations [21.1], as for example GPS L1 and Galileo
El. These hardware biases are caused by various rea-
sons, including analog group delays in the frontend and
digital delays. The correlation process in the receiver
affects the resulting delays as well [21.2]. The differ-
ence in receiver hardware biases between signals of
different constellations is referred to as intersystem bias
(ISB) [21.3-5].

For constellations that transmit signals based on the
[frequency division multiple access (FDMA) technology
(Chap. 4), the frequency is different per channel. In case
of the GLONASS FDMA signals, the L1 frequency
equals f* = 1602+ «*(9/16) MHz (Chap. 8), where «*
denotes the channel number that can take on the follow-
ing integers: k* € {-7,-0,...,+5,+6}. The GLONASS
L2 frequency equals f3* = 1246+«°(7/16) MHz. In
case of FDMA signals, the code and phase observa-
tion equations are also contaminated by interchannel
biases (ICBs), denoted by Ad; (1) and Ag; ;(2). For sig-
nals that are based on the code division multiple access
(CDMA) technology, the frequency is identical for all
channels and the satellite index can thus be omitted.
Also no ICBs show up for CDMA signals: Ad; (1) =0
and Ag; (1) = 0.

It is emphasized that both satellite code bias and
phase bias in (21.1) and (21.2), denoted as dj’(t—rf)
and & (- 1;'), respectively, are, like the receiver hard-
ware biases, considered as additive parameters, that is,
they have a (net) plus sign in the observation equa-
tions (whereas the satellite clock has a minus sign).
The reason for doing so is to be consistent with the
convention adopted by the International GNSS Service
dGS) [21.6].

In the above observation equations, it has been
implicitly assumed that (frequency-dependent) offsets
between the center of mass of the satellite and the
satellite antenna reference point, as well as (frequency-
dependent) offsets between the receiver antenna refer-
ence point and the receiver’s point to be determined
by positioning, can be taken into account through ded-
icated terms on the right-hand side of the observation
equations. However, within the following discussion,
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the terms are not further considered for the ease of nota-
tion, and the receiver—satellite range p}(z, t—t}) is taken
common for both code and phase, as well as for all fre-
quencies.

In the code and phase-observation equations, the
dispersive (first-order) ionospheric delays are mapped
to one frequency, that is, I (1) = MSI *(1). Usually I:(7)
denotes the ionospheric delay for the first frequency,
such that the frequency-dependent ionospheric coeffi-
cient is defined as follows

2 2
7 /\? jS

From this definition, it follows that for the first fre-
quency (j = 1), the ionospheric coefficient equals u§ =
1. In case of GLONASS FDMA signals, although the
frequencies differ per channel, their (squared) L1-L2
ratio is independent of the channel, since in case of
dual-frequency GLONASS

(21.3)

ARs 2 Rs\ 2 9 2
R_ (%42 _ (N _
i-() -0s) -(G) - o
Note that for dual-frequency GPS u§ = (77/60)>

Effects that have not been accounted for in (21.1)
and (21.2) are, among others, phase-center offsets and
variations, phase wind-up (phase only), relativistic ef-
fects, a-priori tropospheric model, etc. (Chap. 19). For
the present chapter they are dropped from the observa-
tion equations to ease the notation and to focus on the
illustration of the basic positioning concepts.

21.1.2 Multi-GNSS Observation Equations

Constellation-Specific Time Frames
To derive the observation equations for multiple con-
stellations, for simplicity it is assumed that a multi-
GNSS receiver tracks data of two constellations, de-
noted as A and B. If the observations of system A are
collected at receiver time ¢, (this is the time tag in the
RINEX observation file), this (measured) receiver time
deviates from the (unknown) system time of the first
constellation * by means of a receiver clock error df,

(™) = A +dr. () . (21.5)
Note that for reasons of simplicity, we have ignored ef-
fects due to receiver hardware delays and other errors
like receiver noise and multipath in above expression.
Observations of system B that are collected at the same
receiver time 7, use different physical clocks to realize
their own GNSS system time [21.7]. However, they can

be expressed as function of the receiver clock error in
the system time of A

(8 = B +dr,(1%) = B +dr,(t*) - "B, (21.6)

with tAB = 1B — A the system time offset (thus: t,.(t*) =
1.(t®), see also Fig. 21.1). In case the first constella-
tion is GPS and the second is Galileo, this offset is also
known as GPS-to-Galileo time offset (GGTO) [21.8].
The time of transmission at a satellite of constellation
A, which is denoted using superscript s, reads, ignoring
satellite hardware delays

t (tA—rf)=tA—r,5+dts (tA—rf). (21.7)

For a satellite of constellation B, denoted by superscript
q, it reads

t‘](tB—rrq):tB—rf+dﬂ (tB—rrq). (21.8)

Converted to pseudoranges this yields for the two
constellations, now including atmospheric delays, hard-
ware delay parameters and noise terms

() = e[t =1 (" - 1)]
= p“;(tA - )+ Ts(tA)
+c [dn (1) +dX (%) + Ad ()]
-c [df(t -7)) —d?(t - r,)]
AIs(tA)+e (tA)
pf_j(tB) =c[t,(®) -1 (- 77)]
=pd (., -1+ TI(®)
+c [dr (1) =P + a7 (1) + Ad] (1))
—c[ar (i -7) —df] (®-19)]
+ P 1) + el (1)
(21.9)

Note that instead of the receiver clock in the time
system of B, we have used the receiver clock in the

ey b oaned A L Y I T ()

y t

I‘A

Fig. 21.1 Relation between time frames, receiver time, re-
ceiver clock error, and time offset of constellations A and B
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time system of A, together with the system time off-
set, making use of (21.6), from which follows that
dt, (%) = dt,(t*) —t*B. We can do something similar for
the receiver hardware bias of the observations of con-
stellations B, making use of the following definition of
the ISB
ISBXP (1. %) = [dP (%) - a2, ()]
+[Adl (%) - Ady ()] (21.10)

It is remarked that the interchannel terms only appear in
case one of the constellations is based on FDMA. In that
case, the ISB becomes satellite dependent; otherwise it
is receiver dependent. Based on the ISB reparameteri-
zation, the code-observation equation for constellation
B can be rewritten as

pf_j(rB) = p? (rB, P r,") + T;’(IB)
+c [dr (1) +d2 (1) + Ad ()]
+c[ISBP (%, %) - 1*P]
—c[di (®-<f)-d! (®-f)]
+ P (%) + el (1P
(21.11)

Compared to the code-observation equation of constel-
lation A (see first equation in (21.9)), its counterpart
for constellation B is now given as a function of the
receiver clock, receiver hardware bias, as well as ICB
(in case of GLONASS FDMA) of signals of constella-
tion A. Also the ionospheric delays for the signals of
constellation B can be expressed as ionospheric delays
on the first frequency of constellation A by setting the
ionospheric coefficient for B equal to 1 = (A?/A1)*.
For the phase-observation equation of constellation B
a similar derivation can be made. Advantage of the
formulation that involves an ISB parameter over the
original formulation is that under certain conditions it is
possible to calibrate the ISBs. When the ISB and also
the system time offset are known, the observations of
the two constellations can be processed as if they cor-
respond to one system.

The code observation equation (21.11) is written
as a function of the time stamps in two different sys-
tems, that is, #* and 8. For most GNSS systems, the
differences between the time systems are sufficiently
small, such that they may be neglected for the evalua-
tion of observables and parameters in (21.11). This also
holds for the purpose of the evaluation of the times of
transmission at the satellites (Sect. 21.4.1). For these
purposes from now on, we will simply use a common
t for the time stamps of different systems. However,

the system time offset that itself is present as param-
eter in (21.11), that is, B, may not be ignored in the
observation equations of the second constellation, since
it is multiplied by the velocity of light. For example,
the offset between GPS time (GPST) and Galileo sys-
tem time (GST) can be several tens of nanoseconds or
tens of meters (Chap. 9 or [21.9]). The offset between
QZSS time (QZSST) and GPST is less than two me-
ters [21.10]. The offset between IRNSS time (IRNSST)
and GPST can be up to 3m [21.11]. The difference
between GPST and GLONASS system time can be sev-
eral hundreds of nanoseconds (equivalent to hundreds
of meters). The intersystem time offsets are broadcast
as part of the navigation messages [21.12, 13] such that
a user can correct his observations. The offset between
GPST and GLONASS system time are broadcast as part
of the navigation message of the GLONASS-M satel-
lites [21.14]. Alternatively, the user can treat the offset
as unknown parameter in his processing.

Constellation-Specific Reference Frames
Besides that each GNSS constellation realizes its own
system time, its broadcast satellite positions are de-
fined in its own coordinate system, see Table 21.1 for
an overview. In order to solve multiconstellation posi-
tioning models, all satellite positions need to be defined
in one common reference frame. Otherwise, transfor-
mation parameters need to be estimated together with
the other model parameters. Although the realization of
the reference frames depends on the full deployment of
the ground-station network of new constellations, the
differences are expected to be small, as they are all
realizations of the International Terrestrial Reference
System (ITRS). WGS84 coincides with the ITRF at the
level of a few centimeters (Chap. 2). The difference
between GTRF and WGS84 is aimed at the level of
3 cm [21.15], while the offset between JGS and WGS84
is expected to be less than 2cm [21.10]. IRNSS uses
WGS84 as its coordinate system [21.16]. The differ-
ence between CGCS2000 and WGS84 is at the level of
a few centimeters. Also, the latest release PZ-90.11 of
the GLONASS reference frame is consistent with ITRF
at epoch 2011.0 at the centimeter level [21.17].

Table 21.1 Reference frames for GNSS—-RNSS constella-
tions

GNSS Reference frame

GPS World Geodetic System 1984 (WGS84)

GLONASS Parametry Zemli 1990 (PZ-90)

Galileo Galileo Terrestrial Reference Frame (GTRF)

BeiDou China Geodetic Coordinate System 2000
(CGCS2000)

QZSS Japanese Geodetic System (JGS)

IRNSS World Geodetic System 1984 (WGS84)
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For (multiconstellation) SPP (Sect. 21.3.5), of
which the positioning accuracy is at the 10 m level, it is
not needed to take the differences between the constel-
lation-specific reference frames into account. Also for
relative (short-baseline) positioning these differences
do not have to be taken into account, as they are, similar
to orbit errors, canceled out if the baseline is of re-

stricted length (Sect. 21.4.2). For PPP(-RTK) and long-
baseline applications (Sect. 21.3.7 and Sect. 21.4) one
can, however, not ignore these differences and they
need to be accounted for. It should be noted that in case
of precise IGS orbits, the satellite positions of the dif-
ferent constellations are all defined with respect to one
reference frame (i. e., ITRF; Chap. 33).

21.2 Linearization of the Observation Equations

Since the GNSS observation equations are nonlinear in
the parameters of interest, that is, the receiver position
coordinates, they need to be linearized. In this section,
the focus is on the linearization of the receiver—satellite
range.

21.2.1 Linearizing
the Receiver—Satellite Range

The GNSS observation equations are nonlinear in both
the receiver and satellite position. Using ¢ = #,(¢) —dt,(¢)
(see (21.5)), the receiver—satellite range can be written
as the following function

Pyt t=7)) = |r(t-7) —r.@0)||
= | [1:(0) - dt. (1) - )]

—r [t (1) —dr.(0)]| . (21.12)
The norm of a vector is defined as |- || = /()T ("),

where (-)T denotes a transposed vector (or matrix). The
satellite position vector reads r* = [x*,y*,z°]" and the
receiver position vector r, = [x,, y,, z,]T.

With the true GNSS time ¢ unknown, according to
Taylor’s theorem (Chap. 22) the receiver—satellite range
can be linearized with respect to the unknown receiver
position r,(f), satellite position r*(r—t’), and receiver
clock error dt,(t), as follows

i (1.1=2) = 1 (1 1=72) lo+ Mg (11-2)
(21.13)

The incremental receiver—satellite range is computed as

Aps(t1=70) = [Or 0 (. 1=7) o] Ar(2)
+ [B,s(,_rg)pf (t, t— rf) |0]-r Ar (t— rf)
+ 8dt,(t)pj (l, t— ‘L’:) |0Adlr(l‘) .
(21.14)

Here the incremental parameters are denoted as A(-) =
(-)=(-)|o, where (-) denotes the original parameter and

(-)|o its approximate value. For all positioning models
discussed in this chapter it is assumed that the satellite
positions are known, and need not be estimated in the
positioning model. This implies that Ar‘(r—1}) = 0.
Knowing the satellite positions means that they are
computed either from the broadcast ephemeris transmit-
ted in the navigation message, or from the more precise
ephemeris made available by the IGS (Chap. 33).

The derivative of the range with respect to the re-
ceiver position can be given as

[ (1=720) =rro(®)]
| (=) =rro)]

€00

Iy (1.1-7)) o=~

(21.15)

with e (¢) denoting the line-of-sight (LOS) vector of
unit length. The derivative of the range with respect to
the receiver clock error can be computed as

s (ni-1)| or
ot ade (1) |,

_’_9\.‘,_./
£ o0 !

Ou oy oy (£:1=77) lo =

(21.16)

The time derivative of the receiver—satellite range that
shows up here, denoted as p; (), is also referred to
as range rate. The time derivative of the time itself
with respect to the receiver clock error follows from
t = t,(t) — dt,(f). Summarizing, the linearized receiver—
satellite range can be compactly presented as

s 5 S T
Ap, (t, t— rr) =- [er.O(t)] Ar.(1)
=000 Adt (1) . (21.17)
The computation of the LOS vector e} (¢), as well as

the receiver—satellite range p’(t,7—t})|o, requires the
availability of the satellite position vector r*(1—1; ).

Z'Le | a1ed
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Also the range rate 0 ,(f) needs to be computed. How
this can be done is explained in the following subsec-
tions.

Computation of the Receiver—Satellite Ranges,

Satellite Positions, and Line-of-Sight Vectors
In the computation of the partial derivative in (21.15),
we need to evaluate the receiver—satellite range based
on the known satellite position, as well as the approx-
imate receiver position. The problem is that we do not
know the propagation time t} = p(¢,1—1))/c, since it
is itself a function of the unknown receiver—satellite
range. In addition, the satellite position must be cal-
culated at transmission time, since the satellite range
can change as much as 60 m from the time the signal
was transmitted, to the time the signal was received, ap-
proximately 0.07 s later. If the receiver time was used
instead, the error in computed range could be tens of
meters.

We follow the procedure for determining the travel
time and computation of the receiver—satellite range as
described in [21.18]. In (21.12), the receiver and satel-
lite position are assumed to be defined in an Earth-
centered inertial (ECI) coordinate system. However, we
want to use these positions given in an Earth-centered-
Earth-fixed (ECEF) coordinate system, such as WGS-
84 in case of GPS. Rewriting the receiver—satellite
range expression in ECEF coordinates yields [21.19]

Py (t1=7) = R (1= ) ricer (1- 7))
—R(N)r, rcer(?) “ .

The matrix R(T) describes the rotation from the ECEF
to the ECI coordinate system, which reads (Chap. 2)

(21.18)

+cos(wgT) +sin(wgT) O
—sin(wgT) +cos(wgT) O
0 0 1

R(T) =

(21.19)

Here T denotes the appropriate time argument and wg,
the Earth’s rotation rate (in rad/s) [21.18]. The inclusion
of this rotation can be understood, since the Earth has
rotated between the time of transmission and the time of
reception of the signal. Using the property of rotations
that R(z—t’) = R(9)R(-7}), the rotation at the time ¢
can be taken outside the norm in (21.18), such that the
receiver—satellite range expression becomes

oy (1.1-7)) = |R (=%)) ricer (1= 7)) = repcer(@)]) -
(21.20)

The signal travel time t} as well as the satellite po-
sition at the time of transmission rycgp(f—7;) can

now be determined using an iferative procedure. One
starts with evaluating (21.20) with ¢ =0 and com-
putes a new value of the travel time as t} = p’(#,7)/c.
This value is used to compute a refined estimate of the
receiver—satellite range. Usually three iterations are suf-
ficient to get differences between the receiver—satellite
ranges of the last two iterations within the order of
1078 m [21.18]. Based on the iterated signal travel time
and satellite position, the LOS vector is finally com-
puted as
R (=7)) Ficgr (1= 7)) = Fepcer(?)
IR (_":}Y) r]SECEF (t_ T;) _rr,ECEF(l) [
(21.21)

€, pcer(t) =

Note that e} p-gp(f) = R(-t)e;(f). The above proce-
dure requires approximate values for the receiver’s
position r, gcgp(f). These are available, provided that
the above iterative procedure is integrated inside the
Gauss—Newton iteration scheme (Chap. 22) to solve
the nonlinear single point positioning (SPP) model
(Sect. 21.3).

Computation

of the Receiver—Satellite Range Rate
The derivative of the receiver—satellite range with re-
spect to time can be computed from the projection of the
relative satellite-receiver velocity onto the LOS vec-
tor [21.18]

50 = [3 (" (=) =r,(0) T

e(1), (21.22)

ot

with ¥ and r, defined in the ECI frame. The time
derivative of the satellite position can be computed as
follows [21.20]

o (1-1) _or (t=) a(t-1)

or d(r-15) ot
a (t— p‘;(t,t—ff))
= (7)) ~—
= (r—rj)[l—@], (21.23)
Cc

where 7*(r— 7)) denotes the satellite’s velocity vector
in the ECI frame. The receiver’s velocity also appears
in (21.22) and is denoted equivalently as w =7r.(1),
also in the ECI frame. Using this, we obtain the follow-

ing expression for the range rate

[ (=) =i (0] e
et (-5)] g

IAGES (21.24)
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gThis expression has also been derived in [21.21]. To
evaluate it, the relative velocity of the GNSS satellite
with respect to the receiver is required, as well as the
relative geometry (line-of-sight). If we want to use ve-
locity vectors in the ECEF frame, then the following
relations hold between the vectors in the ECI and ECEF
frames

F(t-7) =R (- 7)) Frcer (1= 77)
+R(1=7)) riegr (1 7))
#,(1) = R(OF, cer(?) + R(f)rr,ECEF(f) .
(21.25)

The time derivative of the rotation matrix R(T)
in (21.19) can be given as

—sin(wgT) +cos(wgT) O
R(T) = wg | —cos(wgT) —sin(wgT) 0
0 0 0

(21.26)

Note that the following property holds for the ECEF to
ECI rotation matrix and its derivative

. O —Wg O
RT)'R(T)=|wg O 0. (21.27)
0 0 0

Using this result and with e} () = R(t)e; pcgp(?), the
range rate can be computed as follows from the vectors
defined in ECEF

i) = [vs (t_ f;) - vr(t)]—r €; gcpr() C (21.28)

B T}Y)]T € pcpr()

a)

with
' (1-7) =R (-7)) Fecer (1-7)

+© xR (=1)) rpcer (1= 7))
v,(t) = Fr.ecEr() + @ X FrECER(?) - (21.29)

Here use is made of the vector cross product x and
® = (0,0, w@)T. In case of a static receiver on Earth,
its velocity in the ECEF frame (#; gcgr(f)) equals zero,
while for receivers in motion it can be assessed from
positioning solutions at two epochs.

Local Coordinate System
Usually, the positioning model is solved for the posi-
tion in an ECEF system, that is, 7, gcgr(#). From now
on, we will omit ECEF in the notation of the position
and LOS vectors in this chapter, implicitly assuming
they are with respect to the ECEF system. In addition,
for the sake of interpretation of the position it is often
convenient to work with another coordinate frame, that
is, a local system which is centered at an assumed or
approximate position, denoted as r;, of the point we
would like to determine.

The x-axis of this local system is directed east, the
y-axis directed north, and the z-axis is pointing up-
ward and perpendicular to the local ellipsoidal surface
(Fig. 21.2). Hence, this coordinate system is referred to
as an east—north-up system. The coordinates of a point r
in this system are denoted as r; = [E,, N, U,]" (omit-
ting the time stamp ¢). Such an east-north-up system is
very practical for observers on or close to the Earth’s
surface, mainly for computation of dilution of precision
(DOP) measures (Sect. 21.3.6), as well as for altitude-
constrained (2-D) positioning. The ECEF coordinates

b)

=

Fig. 21.2a,b East-north-up (ENU) local coordinate frame: (a) situated in the ECEF (xyz) frame with origin at r, 0 and

(b) local ENU coordinates of point r
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of point r, denoted as r,, can now be transformed to  For the carrier-phase it can be given as
their east—north-up counterparts as follows
-
. ] Agy (1) =~[e;()] Ar(n)+ AT (2)
ri =R, (5 —<Pr) R; (5 +/\r) [rr—rro] . (21.30) +[e=pi(r)] Adr(z)
' o +c[A8)()+ AANS (1]
The product of the rotation matrices is elaborated as
—c[Aadr (t-1)) - A5 (t-7))]
S S
R (——(,00) R (—+AO) - AL@) + A AN+ (1)
X B r 2\ r (21.34)
—sinA? cos A9 0
= | —sin §09 cos ,\(r) —sin (pﬁ) sin ,\(r) +COS §09 The approximate values for the parameters that are
+cos @’ cosA?  +cos@sin A0 +sing” needed in the linearization of the GNSS observa-
(21.31) tion equations can usually be set to zero, if the lin-
' earized model is solved using Gauss—Newton iteration
o 0 01T ) (Chap. 22). In case of zero approximate values for the
Here r.o=[x),),2)] denotes the approximated ynknown parameters, we can omit the A symbol in
ECEF position of point r and [¢?, 12, h%] its correspond-  their notation. In order to limit the amount of iterations,

ing ellipsoidal coordinates. When working with ENU
coordinates, the LOS vectors should be changed ac-
cordingly

e =R (5-¢)R(5+2) el

21.32
> 3 ( )

with e‘;yl the LOS vector defined in the local ENU frame.

21.2.2 Linearized Observation Equations

Based on the expression for the linearized receiver—
satellite range in (21.17) the observed-minus-computed
counterparts of the observation equations (21.1)
and (21.2) can be given as follows, first for code

ApS (1) =~ [e()]" Ar 0+ AT ()
+[c=pi(n] Adt (1)
+c[Ady (1) + AN ()]
~e[dr (1) - Ad (i-)]
+US AL (1) +€) (1) -

(21.33)

21.3 Point Positioning Models

The simplest positioning strategy is the one in which
(single-frequency) pseudorange (code) observations
measured by one receiver are processed to solve its po-
sition, given the positions of the GNSS satellites and
their clock errors as computed from either the broadcast
navigation message or precise (IGS) products. Some-

in case of high-precision applications nonzero approxi-
mate values are used for the receiver position (these are
usually available from SPP preprocessing, Sect. 21.3.4).

In both linearized code and phase-observation equa-
tions, the coefficient for the receiver clock error is
c—pi(¢), that is, the speed of light minus the range
rate, where the range rate is due to the linearization of
the receiver—satellite range. As shown in the previous
subsection, this range rate depends on the speed of the
receiver. We can compute it based on approximate val-
ues of the receiver’s position and velocity, which can
be obtained from a SPP solution at a previous epoch.
Maximum range rate values for a static receiver on
Earth is about 700 m/s, but for a spaceborne receiver
in low-Earth orbit this is much higher, about 8000 m/s
(Chap. 32). On the other hand, these values of the range
rate are still very small compared to the speed of light
c. And if the linearized model is solved in an itera-
tive manner, in practice the results will be the same
after several iterations are made compared to the results
based on the observation equations neglecting the range
rate [21.18]. In the positioning models treated in this
chapter, we will therefore not include the range rate in
the coefficients for the receiver clock error in the design
matrix.

times ionospheric corrections can also be computed
using information in the navigation message, or by an
externally provided model. This strategy is referred to
as single point positioning (SPP), and its solution is of-
ten referred to as navigation solution. SPP can also be
carried out based on dual- or multifrequency code ob-
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servations, thereby eliminating the ionospheric delays.
Point positioning based on (single- or multifrequency)
code and phase data, as well as precise products for or-
bits and clocks, is known as precise point positioning
(PPP). Figure 21.3 visualizes the concept of point posi-
tioning.

21.3.1 Computation of the Satellite Clocks
and Hardware Code (Group) Delays

In case of point positioning the satellite clock offsets
need to be known. In case broadcast ephemeris (SPP)
are used they can be computed using a polynomial
model of which the coefficients are transmitted in the
navigation message (see also the Interface Control Doc-
uments or ICDs). For GPS, Galileo, BeiDou, QZSS,
and IRNSS the broadcast satellite clock can be calcu-
lated as the following second-order polynomial [21.22]

a0 = i 13+ (1)
va) (t-13)" + ALy (1) | (21.35)

with S € {G, E, C,J,I}. The coefficients of the polyno-
mial are denoted as ap, aj, and aj, representing the
offset, drift, and aging of the clock, and 7}, denotes the
reference time of the clock data, which is also broad-
cast in the navigation message. The last part of the
satellite clock corrections, denoted as Az, (¢), is a rela-
tivistic correction, because the satellite clock is moving

Fig. 21.3 Point positioning based on 4 GNSS satellites: 7,
denotes the receiver position vector, r° the satellite posi-
tion vector, e; the line-of-sight unit vector, cdt, the receiver
clock error, and p7, the code or pseudo-range observation

with respect to the receiver. This correction, which de-
pends on the eccentric anomaly, has been discussed in
Chap. 19. In the point-positioning algorithm the above
clock offset polynomial needs to be evaluated at the
time of transmission, that is, f — 7}

GPS, Galileo, QZSS, and IRNSS
In case of GPS, Galileo, QZSS, and IRNSS, the broad-
cast satellite clock correction in fact corresponds to the
ionosphere-free combination of dual-frequency code
observations, see also Chap. 20 for this linear combi-
nation

dri(t) = dtip(t) = dr’ (1) = dip (1) . (21.36)
Here dj(¢) denotes the ionosphere-free combination of
satellite hardware biases and is defined as

S S

A IIL S /J/ S
diF(t) =3 2 S dl (t) -3 ! S dZ (t)
M3 1

2
S

=d' )+ < [d1(n - d5(0)].
DCB, (1)
forj=1,2. (21.37)

The ionospheric coefficients corresponding to the two
frequencies involved in the combination are denoted as
wS and u5 (21.3), where S € {G, E,J,1}. Note that the
ionosphere-free coefficients can also be given as func-
tion of the frequencies, that is,

S Sy2
I ()
S : S = s 21 5, and
My — Ky (fl) _(fz)
woo_ B
-t ()2 -(R)?

The frequency-difference between the satellite hard-
ware biases in (21.37), that is, dj(r)—-d5(z), is also
known as differential code bias (DCB) [21.6], or inter-
frequency bias (IFB) [21.3]. While for GPS (and QZSS)
the ionosphere-free satellite clock applies to the L1 and
L2 frequencies, in case of Galileo the broadcast satellite
clock corresponds to either the ionosphere-free combi-
nation of E1+ES5a, or to the combination of E1+ES5b.
Depending on the Galileo service that is used (Chap. 9),
it follows which navigation message type and which
ionosphere-free clock is transmitted: E1+E5a in case
of the freely accessible navigation message (F/NAV)
in the open service and EI+E5b in case of the in-
tegrity navigation message (I/NAV) in the safety-of-life
service [21.23]. In case of IRNSS the ionosphere-free
clock refers to the S-band and L5 frequencies [21.24].
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Single-frequency SPP users employing the broad-
cast satellite clock offset cannot directly use the iono-
sphere-free satellite clock, but they need to apply
another correction, the so-called timing group delay
(TGD) difference between the two frequencies, which
is defined as [21.25]

S
Ts — /"Ll ds _ ds
GD(t) - S S [ l(t) Z(t)] .
Hy =) ~————

(21.38)

DCBS, (1)

Remind that the ionospheric coefficients read ,u? =1
and ,ug = (Ag/)k?)z. Thus, the TGD is a scaled ver-
sion of the DCB. Note that the Galileo ICD speaks of
BGD (broadcast group delay) instead of TGD. Using
the group delays, the combination of satellite clock and
hardware delay for the first two frequencies can be re-
constructed as

S
dr;(r)—“—’STéD(t) =dr()-d'(1),j=1,2. (21.39)
1251
In case of GPS users employing the L1 C/A code in-
stead of the P1 code another correction should be taken
into account, which accounts for the difference in hard-
ware biases between the P1 and C/A code

dt(t) - T§p (t) + DCB; (1) = dr* (1) —di(r) , (21.40)

with DCB(¢) = d} () — d:(7) the DCB between the P1
and C/A code, where d!(t) denotes the hardware bias
of the C/A code. This P1-C/A DCB is typically of
the order of 2ns (60cm) [21.26]. This correction is
however not transmitted in the GPS legacy navigation
message (i.e., the NAV message, modulated on the
C/A code), but is transmitted in the modernized civil-
ian NAV (CNAV) messages modulated on the L2C and
L5 signals, together with additional group delay cor-
rections that are referred to as intersignal corrections
(ISCs) [21.27,28].

BeiDou (BDS)
In case of BeiDou the broadcast satellite clock is not
referring to an ionosphere-free combination, but to the
single-frequency B3 signal [21.29]

del.(t) = dr’(r) - d5(1) . (21.41)

Single-frequency SPP users that use either the B1 or
B2 frequency cannot directly use this broadcast satellite
clock offset, but need to apply a TGD, depending on the
frequency they use

Top, (1) = di () - d5(1)

Tp, (1) = d5(t) - d5(t) . (21.42)

The BeiDou navigation message provides both these
TGDs. Single-frequency B1 and B2 SPP users should
apply the respective TGD such that

dig (1) = Tgp, (1) = dr' (1) = di (1) .

die(t) = Tgp, (1) = d* (1) = dy(t) . (21.43)

Dual- or multifrequency BeiDou users can compute
their ionosphere-free clock offsets

s ug
dit(t) — ———=Topn () + ——=Ton (1),
C Mg_'ulc GD; Mg_'ulc GD,
(21.44)
for B1+B2, and
e
(1) - ————Tép, () (21.45)
M3 = M
for B1+B3.
GLONASS

In case of GLONASS, the satellite clock offset is based
on the L1 frequency and is calculated as follows from
the navigation message [21.30]

diy (1) = ag(te.) +aj(t—15) . (21.46)
where it is noted that in the GLONASS ICD the ref-
erence time of the clock data is referred to as #;. In
contrast to GPS, Galileo, and BeiDou, the clock offset
is for GLONASS computed as a first-order polyno-
mial, where it is remarked that the broadcast parameters
ap and aj not only account for the satellite clock
offset and drift, but also for relativistic effects. A sep-
arate compensation for these effects is, therefore, not
needed [21.31]. For GLONASS, the difference between
satellite hardware delays on the L1 and L2 frequencies
is broadcast as well [21.30]

At (1) =d5(1)—di(1) . (21.47)
The combination of satellite clock and hardware delay
on GLONASS L1 is then obtained as follows

dey (t) = dr’ () - di(1) , (21.u48)
while its counterpart on the GLONASS L2 frequency is
reconstructed as

deg(t) — At (t) = dr’ (1) - d5(¢) . (21.49)
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21.3.2 Some Remarks on the TGDs/DCBs

The DCB or TGD is initially determined by the satellite
manufacturer before launch and can be revised by the
GNSS’s control segment [21.22]. For GPS, since 1999
JPL determines improved TGD values (as a byprod-
uct of their ionospheric mapping) that are uploaded
to the GPS satellites [21.32]. The size of these DCBs
(for GPS/GLONASS) is less than 15ns (4.5m) [21.27],
while for BeiDou less than 20 ns [21.33], and are nor-
mally very stable in time (at least over one day) [21.34,
35]. In case precise satellite clocks are used (PPP), these
clocks are also based on the ionosphere-free combina-
tion [21.36] and hence single-frequency users should
correct for the DCBs. Precise satellite DCBs are made
available on a regular (daily) basis by the IGS, as part
of their global ionospheric map (GIM) product [21.37].
As the constellation-mean value of the DCBs is set
by IGS convention to zero [21.6], whereas the GPS
broadcast group delays are referenced to an empirical
absolute hardware bias [21.25], there is an offset be-
tween the DCBs based on the broadcast group delays
and those published by the IGS. Galileo determines
the group delay as part of the orbit determination and
time synchronization (ODTS) process and, like GPS,
applies a zero-mean condition to the whole constella-
tion [21.33].

21.3.3 Computation/Estimation
of the Atmospheric Errors

In case of single-frequency point positioning (SPP
or PPP) the GNSS observations may be a-priori cor-
rected for the ionospheric delays. These corrections
can be calculated using the models broadcast in the
navigation message, such as the Klobuchar model for
GPS [21.38], or the NeQuick model for Galileo [21.39].
Otherwise, more precise ionospheric corrections can be
extracted from GIM as produced by the IGS. In case
of multifrequency point positioning, ionospheric cor-
rections are not required, since the ionospheric delays
can be estimated or eliminated from the data them-
selves. However, estimation (or elimination) weak-
ens the model, which results in longer times for the
solution to converge, so for fast multifrequency po-
sitioning (precise) ionospheric corrections are essen-
tial.

The tropospheric delays can usually be largely cor-
rected for using models such as the Saastamoinen
model [21.40]. If needed, residual tropospheric de-
lays can be estimated in the model. For more de-
tailed information on atmospheric models, we refer to
Chap. 6.

21.3.4 Single-Constellation SPP Model

Direct (Analytical) SPP Solution

It is possible to compute a SPP solution based on four
pseudoranges (in case of one constellation) in analyti-
cal (or closed) form, based on the nonlinear observation
equations and without linearization/iteration and the
need for approximate values. The closed-form solution
can also be used to serve for fast computation of the ap-
proximate receiver position. We refer to the literature,
where several approaches have been proposed [21.41—
43].

Single-Frequency SPP Model
In general, with more than four satellites, say mg satel-
lites, tracked by a receiver, the SPP model of single-
frequency (linearized) pseudorange (code) observation
equations can be given for a single epoch as, making
use of the calculated satellite orbits and clocks, satellite
hardware delays and atmospheric delays

Aﬁ}.j(t)
Ef|

APy (1)

e

Ap, (0

“le;]" 1
_ . . Arr(l‘) (21 50)
- : | Ledsd (0 ] '

@) 1
Jo

Here E() denotes the expectation operator and a tilde
is used to denote the pseudorange observable that is
corrected for orbit, clock, hardware biases, and atmo-
spheric delays. A usual choice for SPP is j =1, that
is, the first frequency (in case of GPS: L1 C/A), but
the model can be solved for other frequencies as well.
Matrix Jy of dimension mg x 4 denotes the Jacobian
(Chap. 22) or design matrix, which can be written in
the following compact form

Jo =[G} (1), um] (21.51)

Matrix G3(1) = [-el(¢),...,—e™(t)]" of dimension
ms X 3 contains the LOS unit direction vectors, while
the mg-vector of ones is defined as u,,, = (1,..., nr.
Unknown parameters in the SPP model are the receiver
position vector Ar,(¢f) and the receiver clock error
dt, j(t). This estimable receiver clock is a combination
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of the true receiver clock error plus the (frequency-de-
pendent) receiver hardware delay, as both terms cannot
be separated, that is,

S _ S
dr);(t) = di,(1) +d;; . (21.52)

Here it is assumed that the receiver hardware bias is
stable in time, such that it can be denoted without time
stamp. It is noted that in case of GLONASS, the inter-
channel hardware biases are so small compared to the
noise of the pseudorange observations [21.31] that for
the purpose of SPP they can be neglected. If the SPP
model is solved in an iterative least-squares sense, the
approximate receiver position can be taken zero (corre-
sponding to the center of the Earth). After convergence,
this yields the least-squares estimators 7,(¢) and di> ().
The redundancy of an observation model is de-
fined as the number of observables minus the number
of estimable parameters. For the single-frequency SPP
model it reads mg— (3+ 1) = mg —4 (satellites). From
this it follows that the model is solvable for mg > 4.

Dual-Frequency SPP Model
In the presence of dual-frequency data, instead of mod-
eling the ionospheric delays, a common procedure is to
take the ionosphere-free combination to eliminate the
ionospheric delays from the data and basically solve
the single-frequency SPP model as in (21.50) but then
based on the ionosphere-free observations and param-
eters. Table 21.2 shows the numerical values of the
ionosphere-free coefficients for selected dual-frequency
combinations of GPS (and QZSS), GLONASS, Galileo,
BeiDou, and IRNSS observables.

Instead of working with ionosphere-free combina-
tions, in a dual-frequency situation one could also work
with a model that is, like the single-frequency model
in (21.50), based on the uncombined observables, but

Table 21.2 Numerical values of ionosphere-free coeffi-
cients for several dual-frequency combinations of GPS
(L#), GLONASS (G#), Galileo (E#), BeiDou (B#), and
IRNSS (S+L5) observables

2 2
Signals " = (fls) “ = <f2s )
S_,S s 2 s 2 I"S_I"s s 2 S 2
m ) -() () -03)
L1+L2 2.5457 1.5457
LI1+L5 2.2606 1.2606
G1+G2 2.5312 1.5312
El1+E5a 2.2606 1.2606
E1+E5b 2.4220 1.4220
EI1+E5 2.3380 1.3380
BI1+B2 2.4872 1.4872
BI1+B3 2.9437 1.9437
S+L5 1.2868 0.2868

which models the ionospheric delays as additional pa-
rameters. This model can, however, not be used directly
in a least-squares adjustment, as its design matrix is
rank deficient, which means that some of its columns
are linear dependent. The rank deficiency can be over-
come by application of the S-system or datum theory
(see Chap. 22 for a general description of the theory
of rank-defect least-squares). This means that instead
of the original parameters as above, only certain linear
combinations of parameters are estimable. However,
the design matrix corresponding to these linear param-
eter combinations is of full rank.

Based on the (corrected) pseudorange observables,
the full-rank dual-frequency SPP model can be given as

=([20))

Arp(1)
=[GZ@ s “i’ms] cdiy(t) . (21.53)
GO uwg 3Ly P )

The estimable ionospheric delay parameters are stored
as vector if ® = [7,1 ®,... ,7;”5 ()] 7. Inside the design
matrix, I, denotes the identity matrix of dimension ms,
while vector u,,; and matrix Gf (1) are the same as in the
single-frequency model.

Apart from the receiver position, the estimable re-
ceiver clock and ionospheric parameters have the fol-
lowing interpretation

S
(1) = dty (1) +d5, + ——DCBS, ,
Mo = My
N 1
I'(n)=I(1) - ——— c¢DCB} |, . (21.54)
My — 1y '

Here use is made of the following definition of a re-
ceiver DCB between the two frequencies

DCB§.12 :drs.l_drS.Z' (21.55)

Thus, the receiver DCB is not an estimable parameter in
this model, but shows up as a bias in the interpretation
of both the receiver clock and ionospheric parameters.
This bias gets, however, eliminated when the obser-
vation equations are reconstructed from the estimable
parameters, since for the first frequency it holds that

cdiy () + py () = e[t () +d2 |+ nS L) .
(21.56)

For the second frequency it holds that

cdB () + pSI () = c[dt (1) +d | |+ uSI(t)

rl

—cDCB} |, = c[dt, () +d>, | + uSIE(7) . (21.57)
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We remark that the estimable receiver clock parameter
in the dual-frequency SPP model can be rewritten as an
ionosphere-free receiver clock

di (1) = dt, (1) +d5 1y (21.58)
Here dfy = denotes the ionosphere-free combination of
the receiver code delays of the two frequencies (similar
to that for the satellite code delays, see (21.37)).

The redundancy of the dual-frequency SPP model
reads 2mg — [3 + 1 + mg] = mg — 4, which means that the
model is solvable if mg > 4, which is similar to the sin-
gle-frequency SPP model.

21.3.5 Multiconstellation SPP Model

This subsection focuses on the combined multiconstel-
lation SPP model. Like with the single-constellation
SPP model, first one frequency per constellation is as-
sumed, followed by two frequencies per constellation.
These frequencies between the constellations may be
identical, but can also be different.

SPP Model: One Frequency per Constellation
Suppose we have pseudorange data from fwo constel-
lations, denoted as GNSS A tracking single-frequency
data of my satellites and GNSS B tracking single-
frequency data of myg satellites. We can set up the fol-
lowing combined SPP model

P, (1)
=([20))
Ar,(1)

= [Gﬁ(t) Uma 0} cdt?,(1)

(21.59)
(}lr3 (t) Upg  Upg ISBAB

The data of both constellations have the receiver coor-
dinates in common, as well as the receiver clock, which
is defined to be relative to the system time of constel-
lation A. For the observations of constellation B an
additional parameter shows up, which is the ISB

ISB}Y = [d}—d}]-1"". (21.60)
Compared to the ISB definition given in (21.10), the
interchannel terms are not present in the above equa-
tions, as they may be neglected for the purpose of SPP.
Another difference is that in addition to the difference
in receiver hardware delays of the signals of the two
constellations, the estimable ISB parameter in case of
SPP is biased by the time offset between the constella-
tions, that is, #*B (21.11). The reason is that it cannot
be separated from the hardware delays difference and

therefore it is only estimable lumped to them. If this
time offset is known (e.g., computed from the naviga-
tion message), it disappears from the interpretation of
the ISB parameter. We furthermore remark that even if
the frequencies of the signals of both constellations are
identical (e.g., GPS L1 and Galileo E1), these ISBs do
not cancel out [21.1,44]. Instead of solving an ISB pa-
rameter, one may also introduce a receiver clock error
corresponding to the second constellation in the SPP
model. The following relating then holds between the
receiver clocks and the ISB

dry (1) = dr},(1) +1SBP

= di (1) +dy;— 1" (21.61)
Based on this, another definition of the ISB can be given
as
AB A

ISBY? = dip (1) —di (1) (21.62)
that is, the difference of the estimable receiver clocks
of the two constellations. Instead of parameterizing
these constellation-specific receiver clocks, the ISB-
parametrization is more advantageous in the event it is
possible to calibrate the ISB. In that case, the ISB can
be assumed known and the observations of constellation
B are corrected for it, such that the multiconstellation
SPP model becomes

£ ([2P5OT) _[GHD ][ Ar:)
(o)) =16 ] lo]
(21.63)

with the ISB-corrected observables denoted as

p”(t) = p”(t) Uy C ISB‘;}B.

In the ISB-corrected model the observations of constel-
lations A and B have the same parameters in common,
and the dual-constellation model becomes equivalent
to a single-constellation SPP model, but now based on
mp +mg satellites.

The redundancy of the combined SPP model based
on one frequency per system reads, if the ISB is un-
known, ma +mp—5. This means that mp +mpg > 5,
and this can be satisfied by different combinations
of satellites. In case of more than two constella-
tions, model (21.59) is extendable with one combined
ISB/time-offset parameter for each constellation that is
added. The multiconstellation redundancy then reads in
general ) ;_, m;— (3+s), where s denotes the number
of constellations. In the case the ISB/time-offsets can
be assumed known, the multiconstellation redundancy
increases to > ;_, m; — 4.
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SPP Model: Two Frequencies per Constellation
The multiconstellation SPP model for two frequencies
per constellation can be set up by modeling iono-
spheric delays as unknown parameters, as done in the
single-constellation case in (21.53). In this case, the es-
timable parameters are, next to the receiver coordinates,
an ionosphere-free clock for constellation A, as well
as ionospheric delays per constellation that are biased
by constellation-specific DCBs (21.54). In addition, an
ISB parameter is parameterized, however in this case it
is the ionosphere-free ISB parameter, defined as

AB B A AB
ISB. ¢ = [dr, w—d,. IF] -1

=|: I & - uy de:I
py—pp " pS-ppt

_[ H’? dAl_ H’IA dAz]
py—pt o ph -t

B

(21.64)

This ionosphere-free ISB corresponds to the definition
given by [21.3,7].

21.3.6 Precision and DOP

The impact of the receiver—satellite geometry (captured
in matrix Gf (1) in case of a single constellation) on the
precision of the receiver position obtained using SPP
is usually described using the DOP concept [21.45].
The 4 x4 cofactor matrix (variance matrix exclud-
ing the variance factor) of the receiver position and
receiver clock of the single-constellation single-fre-
quency model can analytically be given as [21.46]

S
C?(t)
() €, L+ e

(1) mg 7
(21.65)

C3, e ()
(.]OTJ()yl = “

This cofactor matrix is based on the design matrix of
the SPP model given as in (21.51) and where

ms

1
=S _ s
70 = ?:1:8’(’)

denotes the mean LOS vector over all satellites. The 3 x
3 cofactor matrix of the receiver position is given as

ms 1
Cy = (Z [e)(1) -2} ()] [e;(r) —Ef(z)]T) ,

s=1

(21.66)

From this last expression, one can see that if the satellite
LOS vectors differ a lot from each other and from their
mean, that is, when €% (1) —& (f) is large, this is favorable
for the precision with which the receiver position can be
determined.

DOP values can now be computed based on the di-
agonal elements of the cofactor matrix of the receiver
position. If r(f) = [E,N,U]" denotes the position in
a local east—north-up frame, then the following DOPs
can be calculated

_ |2, 2,22
GDOP = \/CE+CN+60+C

cdff‘/. ’
— 2 2 2
PDOP = '/CE+CN+C£/’
2 2
HDOP = ‘/ci;J“CN’

VDOP = ,/020. (21.67)
Here

2 2 2

Cio and et

denote the diagonal elements of C;(¢) for the position,
whereas

2
C S
cdt,‘ j

denotes the diagonal element of (21.65) for the receiver
clock. GDOP stands for geometric dilution of precision,
PDOP for position dilution of precision, HDOP for hor-
izontal dilution of precision, and VDOP for vertical
dilution of precision. Unfavorable geometries, however,
may lead to poor receiver precision and in some un-
fortunate cases even the position cannot be determined
(geometry singularities). For example, when the end
points of the LOS vectors describe a plane (all satel-
lites lie on the surface of a cone) [21.47]. In that case
the DOPs are infinitely large.

In case of multiconstellation positioning, it is also
possible to calculate DOP values. If we assume two
constellations, A and B, then these DOPs are com-
puted based on the dual-constellation model (21.59), for
which the receiver position cofactor matrix follows as

Cioy = [(Cﬁ(;))il + (C?(r))il:l

that is, the inverse of a sum of the inverse cofactor
matrices according to (21.66) that correspond to each
individual constellation. From this expression, it easily
follows that the dual-constellation DOPs are smaller (or
in the worst case: equal) than their single-constellation

-1
, (21.68)
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counterparts. In case both ISB and time offset are a pri-
ori known, the receiver position cofactor matrix follows
from model (21.63) as

ma+mg -1
Gy = ( ¥ [0 -2.00] [ei(z)—amr) ,

s=1

(21.69)

with the mean LOS vector taken over both constella-
tions, that is,

MA+mB

> 1 5
e,(t) = m Z e,(t) .

s=1

The DOP values based on this model are even smaller
than those based on (21.68).

As an example, Fig. 21.4 depicts PDOP values
for a certain receiver—satellite geometry of four GPS
and four Galileo satellites. Besides constellation-spe-
cific PDOPs, the PDOPs are shown for the combined
GPS+Galileo model assuming a receiver clock and ISB
parameter (similar to assuming a receiver clock per con-
stellation), as well as PDOPs when only one receiver
clock parameter is assumed for both GPS and Galileo
(ISBs known). The PDOPs of the combined model with
one receiver clock are the smallest, as this model is
the strongest, although in Fig. 21.4 the PDOPs of this
model tend to become equal to the PDOPs of the model
with two receiver clocks, but this is due to the actual
geometry in this example.

a)

270
Q
Yo
(=]
6

Oy - ..

O BN

Fig. 21.4a,b Skyplot (a) and PDOP values (b), based on 4 Galileo-IOV and 4 GPS satellites, above 10 deg cut-off

21.3.7 PPP Model

If, in addition to the pseudoranges, also the carrier-
phase observations are employed for point positioning,
in combination with the use of precise (IGS) products,
we speak of PPP [21.48,49]. For the full details and in-
tricacies of the PPP technique, we refer to Chap. 25;
here we will restrict ourselves to an overview of the
single-frequency and multifrequency PPP models based
on one constellation, as to compare to their SPP coun-
terparts. Figure 21.5 visualizes the procedure for PPP,
where in the first step a reference network (e.g., the
IGS network) determines (satellite-dependent) param-
eters that are in a second step transmitted to the users.
In the third step a user applies this correction informa-
tion which enables PPP.

PPP users employing the precise (IGS) products
should be aware that the precise satellite clocks are
based on the ionosphere-free combination, similar to
the broadcast satellite clock for most constellations. In
case of single-frequency PPP, therefore, corrections for
the satellite DCBs are required, but these are also pro-
vided by the IGS or its analysis centers. In addition,
as single-frequency PPP users cannot form the iono-
sphere-free dual-frequency combination, ionospheric
corrections are essential and these can be obtained from
the IGS as well, in the GIM format.

Concerning the tropospheric delays, in addition
the a-priori model corrections, for precise positioning
applications it may be necessary to parameterize (resid-
ual) tropospheric delays. A common procedure is to

PDOP

5.0

4.5

4.0

35 \_/

3.0

2.5

200 T m—— — — — ==

1.5

— GPS
L0 — Galileo
0.5 —— GPS+G@Galileo (1 receiver clock + 1 ISB)
. — — - GPS+Galileo (1 receiver clock)
0.0 >
50 100 150 200

Epoch (30s)

elevation in Perth, Australia, for 04:05-6:00 GPST on 20 March 2013. For the combined GPS+Galileo case, distinction
is made between the PDOPs based on model (21.59) and model (21.63)
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Fig. 21.5a-c Visualization of the PPP(-RTK) concept: (a) CORS (global or regional) network determines GNSS param-
eters; (b) satellite-dependent parameters are uploaded by the network and downloaded by a user; (c) the user applies the
corrections to his data, enabling single-receiver precise positioning

map the residual tropospheric delays to local zenith,
that is,

T3(0) = T} (D) +m(OTL(0)

with T7 (¢) the a-priori tropospheric correction, m;(t)
the mapping function, and 77 the zenith tropospheric
delay (ZTD). An example of an accurate tropospheric
mapping function is Niell’s mapping function [21.50].

GLONASS PPP (and also RTK) requires a-priori
correction of the receiver- and frequency-dependent in-
terchannel or interfrequency biases, at least for the
phase data, that is, AS,SJ.. In [21.51], a table is presented
with interchannel corrections for GLONASS receivers
of nine different manufacturers. Here we assume that
the data are a-priori corrected for these biases, such
that GLONASS data can be processed using the gen-
eral models we present here.

Due to a lack of space, the PPP models discussed
here are restricted to one GNSS constellation only. PPP
models for multiple constellations can however be de-
veloped along similar lines as the multiconstellation
SPP model in Sect. 21.3.5. For notational convenience,
from now on the system identifier S will be omitted in
a single-constellation case.

Single-Frequency PPP Model

In case of single-frequency PPP it is assumed that iden-
tical offsets for the satellite clock and hardware bias
apply to both code and phase observations, as well as
a-priori corrections for tropospheric and ionospheric
delays. Provided that the satellite clock offsets are based
on the ionosphere-free combination (as is the case with
precise IGS products), the offset terms for code and
phase then can be given as

op, (1) =¢ |:df1YF (r-7))+ leijﬂl DCBi2i|

= T3o(0) = 1413 (D)

0g;,; tH=c |:dth (r-7))+ leijm

=T o () + L3 (1) - (21.70)

DCB{Z}

Like the receiver hardware biases, it is assumed that the
satellite hardware biases are stable such that they can be
kept as time constants in the model. The DCBs (differ-
ence of satellite hardware biases) are needed to convert
the ionosphere-free satellite clocks to the clocks plus
hardware bias for the required frequency. It is remarked
that in case of GPS the code corresponds to the C/A
code (j = 1), we also need to subtract the P1-C/A DCB
(i.e., DCBi.) from the code correction. Applying the
above offsets to the single-frequency code and phase
observations yields the (linearized) full-rank single-fre-
quency PPP model as given in Table 21.3 (top row).
The corrected (observed-minus-computed) code
and phase observables then read Ap,;(f) = Ap, (1) +
pt, (t) and A, (1) = Ag.j(1) +0g: (1), respectively.
Precise satellite orbits are used to calculate the LOS
vectors in geometry matrix G,(¢) and to compute ap-
proximate values for the receiver—satellite ranges, used
in the linearization. In this PPP model, the (residual)
ZTD parameter is combined with the position parame-
ters in the four-dimensional vector x,(f), defined as

X0 =[on@", TX0] (21.71)

In addition, the LOS vectors and tropospheric map-
ping coefficients are stored in the m x 4 matrix G,(¢) =
[gl(n),...,g"(®]", with the 4 x 1 geometry vector g*(7)
now consisting of the LOS vector, plus the tropospheric
mapping function coefficient, which is defined as

g = [_e;(t)]. (21.72)

mi (o)

Besides the receiver position, unknown parameter for
both code and phase is the (biased) receiver clock d7.(¢),
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Table 21.3 Full-rank undifferenced PPP models and their estimable parameters. Note: SF = single-frequency; DF = dual-fre-

quency
Model Notation and interpretation of estimable parameters
x,(t)
SF PPP ionosphere-corrected ~ E (|:§"; ’rJJ ((?) i|) = |:g:8 Z: u(l, Ajocmi| c{tgrril)

Ty

The following parameters are estimable (j € {1, 2}):

dir(l) = dtr(t) +dr,j

N — S c
Nr.j_( rj+_

xr(tl)
Ap,(n) G(m) 0  wy 0wl 0 0 7| ()
AP, j(t) G, (1) 0 wy 0 L, 0  AC,||cdi(®)
SF PPP ionosphere-float E = cdty (1)
{A@,J(mJ L 0 G 0w 0l oJ i)
£, (1) 0 G 0 w0 -l ACu]| i)
N,
The following parameters are estimable (j € {1,2} and i = 1, 2):
di () = diy () + [d,J+5,J+—( P+ [@!’—d;’])]
~ A
B = E(t) + ziwc[drj-srj- & (Nﬁj+§j [sjf’-dﬂ)]
Ts ? P p_p
W= (g [3-4])- (g [ -])
x,(1)
N 0) G® um 0 0 L, 0 0 cdin (1)
Apy o (1) G() uwm O 0 pol, 0 @l
DF PPP ionosphere-float E = cbr
{Aér"l([)J \‘Gr(t) Up uUn 0 -, AC, OJ 1.0
A‘ﬁr,z(l) G, () up 0 wn  —p2ly 0 A2C Nr,l
Nr.2

The following parameters are estimable (j = 1, 2):

d?r(t) = dtr(t) +dr,IF

gr.j =6rj— [dr.IF 1 =Ll M e

I‘(t) =0t -

Mgy = (M5, 5

of which its interpretation is identical to that of single-
frequency SPP.

The phase observables in the PPP model introduce
their own specific parameters, which are a receiver-
phase bias and phase ambiguity parameters. Unfor-
tunately these parameters cannot be estimated inde-
pendently, as their columns are linear dependent. To
overcome this rank deficiency (of size 1), a choice
is to estimate the between-satellite differences of the
(biased) ambiguity parameters, instead of their undif-

DCB, 12}

% (Nf.j + AL_I [8'17 _dfF DCBIfz})

J MZ Ml

770 ¢ [DCBY, + DCBy 2]

D p P P
[5/v dip = Mz Ml DCBA]Z:D - (NTJ+ % |:5/ —dip - #2—#1 DCBIZ])

ferenced counterparts, that is, the estimable ambiguity
parameter is N,‘ in Table 21.3, for s=1,...,m and
where s # p. With this reparameterization, there is thus
one ambiguity parameter less estimable, since we form
between-satellite differences with respect to the pth
satellite. This arbitrarily chosen satellite is referred to
as pivot satellite. Thus, the (m — 1)-vector of estimable
ambiguities reads

N,X,:[Nl, LN N’”] . (21.73)

rj’" rg r
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In the PPP design matrix in Table 21.3 this vector is
multiplied by the m x (m— 1) matrix C,,, which is de-
fined as

Lot 0

0 (le(nz—p))

Im—p

This matrix can be regarded as the identity matrix of
dimension m having its p-th column removed. A con-
sequence of parameterizing between-satellite ambigu-
ity differences for undifferenced observables is that it
should be somewhere compensated by the other es-
timable parameters. In this case the estimable receiver-
phase bias parameter, that is, §,; in Table 21.3, gets
biased by the ambiguity plus hardware biases corre-
sponding to the pivot satellite.

Although the ambiguities N;; have the property of
being integer, in the PPP model they are not estimable
as such, because of the lumping of the satellite-phase
and code hardware delays to them (Table 21.3). The
consequence is that for every epoch of data the num-
ber of phase observations equals the number of phase
parameters they introduce, which means that the phase
data do not contribute to the estimation of the receiver
position, which is thus fully governed by the (less pre-
cise) code observables. However, this situation changes
in multiepoch mode; in that case the phase data start
to contribute to the solution of the receiver position
(as their estimable ambiguity parameters are time con-
stant). The longer this time span, the more it is governed
by the phase data; after a certain time the position
precision will have converged to a certain level. The
redundancy of this multiepoch, single-frequency PPP
model equals m—5+ (k—1)(2m—>5), with k denoting the
number of epochs. Note that for a single epoch (k = 1)
this redundancy reduces to m—5, which is 1 less than
the redundancy of its SPP counterpart. This is due to
the parameterization of the ZTD in the PPP model.

In the absence of ionospheric corrections, single-
frequency PPP is still possible, thereby making use of
the opposite sign of the ionospheric delays for code
and phase. In this case the model is, however, not
solvable based on a single epoch of data, as there are
too many unknown parameters. Based on rwo epochs,
however, the full-rank single-frequency PPP model is
presented in Table 21.3 (second row). The estimable
ambiguity parameters of this ionosphere-float model
(as ionospheric delays are unknown parameters) have
the same interpretation as in the single-frequency iono-
sphere-corrected PPP model, but the estimable receiver
clock has a completely different interpretation; in the

C,= (21.74)

ionosphere-float case it is biased by the receiver bias,
as well as the pivot satellite ambiguity and hardware
biases (there is no estimable receiver bias parameter).
The estimable ionospheric parameter is biased by hard-
ware delays and (pivot satellite) ambiguities as well.
Based on a minimum of two epochs, the redundancy
of this single-frequency, ionosphere-float PPP model
equals m—9, requiring this model a large number of
9 satellites to be solvable. This redundancy is, how-
ever, based on the parameterization of different receiver
positions for both epochs (i.e., a kinematic solution).
If the receiver can be assumed static and the ZTD is
assumed time constant, the model becomes stronger
since x,(t;) = x,(t2), increasing the redundancy with 4
to m—>5, which is identical to the redundancy of the sin-
gle-epoch, single-frequency, ionosphere-corrected PPP
model.

Subject to the availability of precise GNSS orbits,
clocks, DCBs, and ionosphere products, the position-
ing accuracy of single-frequency PPP is typically at
decimeter level after a few minutes of convergence
time [21.52].

Dual-Frequency PPP Model
In the dual-frequency PPP case, the ionospheric delays
are assumed as unknown parameters and therefore no
ionospheric corrections are incorporated. In that case
DCBs are not needed as well. The correction terms for
code and phase are in that case equivalent and read

Op n= 0} 1 (t) = cdtiy (t— r,s) =Tiy() . (21.75)

Like in the single-frequency GPS case, if the first fre-
quency corresponds to the C/A code (j = 1), we need
to subtract the P1-C/A DCB (i.e., DCB;.) from the
code correction. The linearized full-rank model for the
dual-frequency PPP case is given in Table 21.3 (bottom
row).

The estimability and interpretation of the code-re-
lated parameters (i.e., receiver position and clock) in
this dual-frequency PPP model is exactly the same as
in the dual-frequency SPP model (21.54) and (21.58).
As a consequence of the absence of the satellite DCB
corrections in the dual-frequency PPP model, satellite
DCBs get lumped to the estimable ionospheric parame-
ters and hence its interpretation becomes a combination
of the true ionospheric delay plus satellite and receiver
DCBs (Table 21.3). The ambiguity parameters also get
biased by the satellite DCBs.

The phase-ambiguity parameters are in the dual-
frequency PPP case estimable as between-satellite dif-
ferenced parameters (relative to pivot satellite p), simi-
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lar as in the single-frequency PPP model; however the
interpretation between the dual- and single-frequency
cases differs (Table 21.3). In both cases, the ambigui-
ties are not integer estimable.

The redundancy of the dual-frequency PPP model
equals m—5+ (k—1)(3m—15), which for a single epoch

21.4 Relative Positioning Models

In this section, we discuss the differential or relative
GNSS positioning models, in which observations of
more than one receiver are combined such that errors
that are common between the receivers can be elimi-
nated or reduced. Another important advantage is that
in a relative measurement setup the carrier-phase am-
biguities can be estimated to integer values, thereby
greatly improving the positioning accuracy. The mod-
els in this section are restricted to the single-epoch case.
For all relative positioning models it is assumed that
in case of FDMA constellations interchannel bias cor-
rections are a-priori corrected and do not show up in
the observation equations. As with the models for PPP,
the discussion of the relative positioning models in this
chapter will be restricted to a single GNSS constellation
only.

21.4.1 Principle of DGNSS and (PPP-)RTK

The typical accuracy of (single-constellation) SPP is
in the order of 10 m. This accuracy is basically due
to the uncertainty in the orbits, satellite clocks, and
atmospheric delays. Despite the developments of PPP
during the past decade, the technique of differential
GNSS (DGNSS) has already been applied for decades
to improve this positioning accuracy through eliminat-
ing or significantly removing errors that are common
for receivers simultaneously tracking data of the same
GNSS satellites. More details about DGNSS and ser-
vices based on this concept can be found in Chap. 26.
Here, we will briefly review the principle of DGNSS,
following the discussion in [21.12].

Satellite Clock Evaluation
Due to the difference in travel time between two or
more receivers in a relative positioning setup, the satel-
lite clock and satellite hardware delay are evaluated at
(slightly) different times of transmission, that is, # -7}
for the reference receiver, denoted using subscript 1,
and r—1t} for the other (rover) receiver, denoted us-
ing subscript r (Fig. 21.6). This difference in travel

(k = 1) reduces to m— 5, similar to the previously dis-
cussed single-frequency PPP models. The positioning
accuracy of dual-frequency (GPS) PPP can reach cen-
timeter level, however only after a convergence time
(based on the constant ambiguity terms) of typically
more than 30 min [21.52].

time, that is, |7} — 7{], is at most 19 ms (for one receiver
experiencing the satellite in zenith and the other re-
ceiver experiencing the same satellite at zero degrees
elevation) [21.18]. This means that the difference in
transmission time, that is, |(1—1y) — (t— 7))/, is at most
19ms as well. Assuming that the satellite clock drifts
with a rate of at most 107! s/s (Chap. 5), this means
that after 19 ms the satellite clock (in terms of distance)
has changed with c- 1071191073 & 0.06 mm, which
is negligible compared to the precision of the phase and
code observations. Thus, we may safely assume that for
the purpose of evaluation of the satellite clock at the

Ionosphere

T; Troposphere

Baseli
; aseline A
1 r
Fig. 21.6 Relative GNSS positioning: two receivers (ref-
erence 1 and rover r) quasi-simultaneously receive signals
from satellite s at time . On their ways, they propagate

through the atmosphere (ionosphere and atmosphere), af-
fecting their travel times (denoted as 77 and ;)
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time of transmission

dr'(t—-}) =dr (t-1)) = dr'(t-7°) . (21.76)
Code-Dominated DGNSS Positioning

Recall the (nonlinear) code observation equation (21.1).

Its expectation can be given as

E(p (1) = p; (1.1 =7)) + T3(0) + 11;(1)
+cldt.(t) +d,j]

—cldr (1-7)-d'] . (21.77)

Now assume a reference receiver r = 1, which is sta-
tioned at a known location. Based on this known po-
sition together with the known position of the satellite
(computed from the ephemeris), the range pj(¢,1—1})
can be computed. Subtracting the observed pseudor-

ange from this computed range yields the pseudorange
corrections (PRC) for satellite s

PRC} (1) = pj (t.1—7) —p} ;(0) .

Applying these pseudorange corrections to the pseudo-
ranges of a user r yields, making use of (21.76)

E(p(0) = p; (t.1=7)) + T1,(0) + 111, (1)
+ C[d[lr(l‘) + dlrj] .

(21.78)

(21.79)

Here the corrected pseudorange reads

73,0 = P} () + PRCS, (1)

Furthermore, between-receiver differenced unknown
parameters are denoted as (-);, = (-),— (-);. Thus, be-
sides the elimination of satellite clocks and hardware
delays, users employing the pseudorange corrections
may significantly reduce the errors due to tropospheric
and ionospheric delays. For sufficiently short distances,
these differential atmospheric errors are so small (due
to the spatial correlation of the atmosphere), compared
to the measurement precision of the code data, that
they may be neglected and disappear as unknown pa-
rameters. The combined differential receiver clock and
hardware delay, that is, c[dt,.(f) +d,,;(t)], can be re-
garded as a receiver clock error to be solved by the user
using a model which has the same structure as the SPP
model discussed in the previous section.

Next to the pseudorange corrections, in practice
usually also so-called range-rate corrections (RRC) are
determined and transmitted (in real-time) to users, as to
account for the difference between the time of determi-
nation of the corrections at the reference station (fy) and
the time the corrections are applied by the users (¢)

PRC, /(1) = PRC, (1)) + (t - 10)RRC, ;(t9) , (21.80)

where 1 -1y is referred to as latency. It will be clear that
the accuracy of the pseudorange corrections improves
for smaller latencies.

Using the above concept of DGNSS, the positioning
accuracy can be improved to 1-2m. The accuracy can
be improved further (to submeter level) by using car-
rier-phase smoothing (Chap. 20), but its performance is
limited due to local receiver bias (multipath) and spatial
decorrelation of the atmosphere.

Phase-Dominated DGNSS (RTK or PPP-RTK)
Positioning
For the carrier-phase observations, we can apply a sim-
ilar technique as for code. The expectation of the
(nonlinear) phase-observation equation reads (21.2)

E(¢3,0) = 9} (1.1= 1) + T30 = w3 (1)
+cldt (1) + 8, ]+ 4N ;

—cldr (1-7))-8] . (21.81)

For a reference receiver 1, we can subtract the observed
carrier-phase from the computed range, which yields
the phase-range corrections (PRC) for satellite s

PRC, (1) = pj (t.1—1{) -0} ;1) .

These phase-range corrections are in a next step applied
to correct the carrier-phases of the user r, corresponding
to the same satellite s

E(@,(0) = p} (1,1 =7)) + T},(1) = 3, (1)

+eldt (1) + 81,4 + 4Ny, -

(21.82)

(21.83)

Here the corrected carrier-phase reads ¢; (1) = ¢; (1) +
PRC;, ;(2). If the latency of the corrections equals zero,
DGNSS positioning with phase (and code) is better
known as the real-time kinematic (RTK) positioning
technique. The accuracy of RTK positioning is at cen-
timeter level (or better), provided that the carrier-phase
ambiguities can be resolved to their integer values. We
remark that the corrected phase-observation equations
cannot be directly used for positioning as the system is
(as with PPP) rank deficient. How to deal with this is
discussed in Sect. 21.4.4.

In practice, under average ionospheric conditions,
the differential atmospheric errors can be neglected for
distances between the receivers up to about 10km, and
the positioning method is referred to as short-base-
line RTK. Satellite orbit errors can also be ignored
for these short distances (Sect. 21.4.2). RTK based on
GPS is a proven positioning concept and when GPS is
combined with other constellations even more promis-
ing results are obtained (e.g., [21.53] for RTK based
on GPS with Galileo and [21.54] for GPS combined
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with BeiDou). Extending the RTK technique to longer
distances is possible, but then the differential atmo-
spheric errors and orbit errors need to be taken into
account (long-baseline RTK) [21.55,56]. In case of
network RTK corrections for the atmospheric delays
are estimated from a network of surrounding reference
stations and transmitted to users. More details about
(network) RTK positioning can be found in Chap. 26.
The technique of PPP-RTK [21.57] (or PPP-AR; AR =
Ambiguity Resolution) also relies on correction infor-
mation provided by a reference network, but the main
difference with network RTK is that with PPP-RTK the
correction are provided in the parameter space, while
in case of network RTK the corrections are in the ob-
servation space. PPP-RTK is discussed in further detail
in Sect. 21.4.5.

21.4.2 Impact of Orbit Errors

When linearizing the GNSS observation equations, the
satellite positions are held fixed to their values as com-
puted (per receiver) in the SPP processing. The accu-
racy of satellite positions computed from the broadcast
ephemeris is at the level of a few meters, while based
on precise ephemeris this is (for new constellations: ex-
pected) at the level of 5—10cm [21.58]. Errors in these
fixed satellite positions may negatively impact the esti-
mated receiver position. If we denote the errors in the
satellite position as vector Ar’, then its effect on the
relative baseline is upper bounded according to the fol-
lowing rule-of-thumb [21.59]

o I 0
0] ar o) = o

with e3,.(f) = e)(t) —e](¢) the between-receiver differ-
enced LOS vector, r,(f) =r,(f) —r;(7) the relative re-
ceiver position (baseline) vector, and r}.(t) = r°(¢)—r,(t)
the receiver—satellite position vector. For example, the
impact of an orbit error of 2m on a baseline of 100km
is at most only 1 cm (assuming a 20000 km receiver—
satellite range). The above upper bound can also be
used to assess the effect of differences in reference
frames of the satellite positions in a multiconstellation
case.

For longer baselines (and network-RTK or PPP-
RTK) precise ephemeris should be used, restricting the
impact of orbit errors on the receiver position.

lAF@)] , (21.84)

21.4.3 lonosphere-Fixed/Weighted/Float
Models

Differential ionospheric delays generally become larger
for increasing baseline lengths. To flexibly apply the

models to a whole range of baseline lengths, the rela-
tive models presented in this section are presented for
three different versions regarding the presence of the
differential ionospheric delays.

For sufficiently short baselines the ionosphere-fixed
model is presented, in which the differential iono-
spheric delays are absent. This corresponds to the
assumption that the absolute ionospheric delays for
a certain satellite are equal for all receivers, as they in-
tersect the ionosphere in the same part, that is, I{(f) =
I (t) = I’(¢) (Fig. 21.7). For longer baselines the size of
the differential ionospheric delays may be within cer-
tain bounds such that knowledge can be incorporated
in the form of (soft) constraints. The resulting model
is referred to as the ionosphere-weighted model. For
even longer baselines, when we do not have any a-priori
knowledge on the differential ionospheric delays, the
ionospheric delays are assumed as completely unknown
parameters. This is the ionosphere-float model. This
terminology concerning the tuning of the ionospheric
delays is adopted from [21.60].

21.4.4 Undifferenced Relative Positioning
Models

In this subsection, the relative positioning model is pre-
sented based on the original undifferenced, uncombined
observation equations for code and phase. The link with
the models based on differenced observations will be

[onosphere

short long
= Baseline =

—

Fig. 21.7 Visualization of propagation of GNSS signals
through the ionosphere. Signals of receivers that are rel-
atively close to each other travel through similar parts of
the ionosphere, while more remote receivers experience
a more different ionospheric delay

625

h°lz | @ Med


http://dx.doi.org/10.1007/978-3-319-42928-1_26

626 PartD

GNSS Algorithms and Models

h'Le | a Med

made later on in this chapter. An important advantage
of the undifferenced model is that it is more flexible
than differenced; this flexibility has been recognized
already for a long time [21.18,61-64]. For example,
satellites that are only visible by some of the receivers
in the network can still be used, while differencing al-
gorithms can only process those satellites that are in
view by all receivers. Another important advantage of
the undifferenced model is that temporal constraints can
be incorporated to parameters that would have been
eliminated when differencing, for example, clocks or
hardware delays. The undifferenced models that are
presented in this section are assumed to be valid for
anetwork of n GNSS receivers. By simply setting n = 2
the results for a single-baseline model are obtained.

Rank-Deficient Undifferenced Model
As with the undifferenced models for point position-
ing (Sect. 21.3), also for the relative positioning model
based on undifferenced observations it is not possible
to estimate all parameters uniquely because the system
of observation equations is rank deficient. To overcome
this rank deficiency, as in the case of the point po-
sitioning models, we apply the theory of S-systems
(Chap. 22), resulting in linear combinations of parame-
ters that are estimable. There is, however, not a unique
way to choose the estimable linear combinations; in the-
ory there are infinite possibilities. Different choices lead
to different interpretations of the estimable parameters.

One choice leads to the so-called distinct clocks
model, for which a receiver clock as well as a satellite
clock parameter becomes estimable for each frequency
for all code and phase data [21.18, 65]. Another choice
results in a full-rank undifferenced model in which
common receiver clock and satellite clock parameters
become estimable. This is the so-called common clocks
model [21.66,67]. This model is reviewed here, as its
estimable parameters have a clear link with those pre-
sented in the previous sections for SPP and PPP. The
common clocks model as presented here applies to
a general case of f > 2 frequencies.

Regional Networks
For distances between the receivers that are smaller than
about 500km usually not the position and ZTD of all
receivers are estimated in absolute sense by means of
relative models, as the LOS vectors of the different re-
ceivers with respect to the same satellite become close
to parallel, resulting in poorly estimable absolute posi-
tions and ZTDs [21.68]. In the extreme case, if the LOS
vectors are assumed to be equivalent for the different re-
ceivers, that is, g1 () = --- = g5 (1) = g°(¢) (21.72), this
causes an additional rank deficiency in the network
model. A common procedure to overcome this addi-

tional rank deficiency is to estimate the position and
ZTD of all receivers relative to that of one of receivers
(i. e., the so-called pivot receiver).

Common Clocks Undifferenced Model
The estimable parameter functions corresponding to the
common clocks model have been derived in [21.69]
and are presented in Table 21.4. To differentiate the
estimable parameters from their original counterparts,
the estimable ones are denoted using a tilde. Concern-
ing the interpretation, it can first of all be seen that all
estimable parameters are a function of their original pa-
rameter, but biased by one or more other parameters.
These other parameters are frequently the parameters
corresponding to the pivot receiver and/or pivot satellite
(for both we selected the first receiver and first satellite,
denoted using a 1 subscript or superscript, but this could
be any other receiver and satellite in the network).

The estimable receiver/ZTD parameters (X,(¢)) are
absolutely estimable for global networks and relatively
estimable in case of a regional network. Absolutely is
put between quotes here, as the receiver positions are
still relative with respect to the satellite positions that
are held fixed. The presence of the pivot receiver’s po-
sition+ZTD is however compensated by their presence
in the estimable satellite clock (d7(f)) from a regional
network. This compensation holds for all biases present
in a certain estimable parameter. Note that the estimable
satellite clock can be written as a combination of iono-
sphere-free satellite clock, minus the ionosphere-free
clock of the pivot receiver, plus (in case of a regional
network) the pivot receiver’s position and/or ZTD.

If the ionosphere is assumed to be float instead
of fixed/weighted, this causes an additional rank de-
ficiency, which leads to differences in interpretation
of the estimable receiver clock (dt, (1)), receiver phase
and code delay (§,; and d,j, respectively), as well as
the estimable ionospheric delay (I()). Note the subtle
difference in the interpretation of the estimable iono-
spheric delay between the ionosphere-weighted and
ionosphere-float models: in the first case the DCB of
the pivot receiver appears (i. e., DCBj 1), while in the
second case it is the DCB corresponding to the receiver
for which the ionospheric delay parameter is considered
(i. e., DCB, 1,). Furthermore, note that the interpretation
of the ionospheric delay in case the ionosphere is float is
exactly the same as the estimable ionospheric delay pa-
rameter of the dual-frequency PPP model in Table 21.3,
if no satellite DCB corrections are applied.

Special attention needs the estimable satellite code
delay parameter (d;). From Table 21.4 it follows that
it is estimable as a modernized DCB (i. e., frequency j
relative to frequency 1), however, with respect to the
(traditional) DCB between the first two frequencies.
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Table 21.4 Estimable undifferenced parameters for the common clocks relative positioning model. Note: the (modernized) re-

ceiver DCB is defined as DCB,. () = d..1(t) —d,;j(t), while the (modernized) satellite DCB is defined as DCB‘L- () =di()-d'(®)

Estimable parameter
Receiver position/ZTD

Notation and interpretation
0 =x0) -x1()
N——

if regional network

Receiver clock

Receiver-phase delay

Receiver-code delay d, j =—[DCB,.1; —DCBy 1]+

M2 —

di (1) = [dt, (t) + dy.1] = [dty (1) +d1 1]+

Conditions

r>1(r > 2 reg. net)

A A
SrJ = |:5r,j_dr,1 ap ?!er‘]:| = |:51J'—d1,1 aF ?!Nll‘]]

M~ K
"

= [DCB;.12 —DCB; 2] r=2
M2 — M1
if ionosphere float
it
5T e, 1, - DCB 1] r>2j>1
M2 — 1
if ionosphere float

[DCB;.12 ~DCBy 12] r>2j>2

(7 = 3 iono float)

if ionosphere float

Satellite clock dr (1) = [drY () —dISF] — [dt1 (2) +dy 5] -[g* (0] Tx1 () s>1
D e ——
if regional network
Satellite-phase delay gjs = [815 —dp— ﬁDCB‘i2 + %Ni]] + [81J —dyF - ﬁDCBl,lz} s=1j=1
. ~s s MK ) M=t .
Satellite-code delay d; =- [DCBL. - ﬁDCBiz} - |:DCB1v1j - ﬁDCBHz} s>1j>3
F(t) - ﬁ ¢[DCB$, +DCBj 12| if ionosphere-fixed
Tonospheric delay B(t)y = { I5(t) - ﬁc [DCBY, +DCBy 12| if ionosphere-weighted (> 1) s>1
I(t) - ﬁ ¢[DCB3, +DCB,.1»] if ionosphere-float (r > 1)

Phase ambiguities NfJ = [NfJ _ij] - [er‘/- —NIIJ}
This whole satellite-dependent DCB term is also rel-
ative to a similar DCB term, but then for the pivot
receiver. As a consequence, satellite code parameters
are only estimable when at least three frequencies are
used (i. e., if j > 3, thus for example not in the legacy
dual-frequency GPS case).

Concerning the phase ambiguities (IV,‘ ), they are
estimable as double-differenced (DD) parameters, and
thus integer valued, with respect to the network’s pivot
receiver and pivot satellite. By means of integer ambi-
guity resolution (Chap. 23), the network parameters can
be estimated with the highest possible precision.

Based on the estimable undifferenced parameter
functions, the system of full-rank GNSS network ob-
servation equations can be given as follows

E(Ap; (1) = g}y (0" %.(t) + c[di (1) + ]
—cldP () -d)+ (D), r=1,
E(AgS,(0)) =gl (1) %.(0) +cldF (1) +,.]
—c [dis (1) - sj] — L)+ N2
r>1,

(21.85)

[E (50 -5 @) =E@0-L0).r>2].

r>2s>2j>1

Note that the between-receiver ionospheric constraints,
which are included in the form of pseudo observa-
tion equations, only appear in case the ionosphere is
weighted (that is why we denote them using square
brackets).

The redundancy of the undifferenced network
model reads in the ionosphere-fixed/weighted cases
(m-1f(m-1)-4n+(k—1)[n(2fm—-1)-(2m—1)—4n],
where the 4 reflects the estimation of both positions and
ZTD parameters in the network. In case of a regional
network, the 4n is to be replaced by 4(n—1). In the iono-
sphere-float case it reads (n—1)(f—1)(m—1) —4n+ (k-
D) [n({2f = 1}m—1) = (m— 1) — 4n], requiring one more
frequency.

21.4.5 PPP-RTK Models

As discussed in Sect. 21.3.7, (standard) PPP is possible
by applying satellite positions and clocks that are de-
termined by a (global) reference network (and satellite
DCBs in case of single-frequency PPP). This infor-
mation is not sufficient for the single-receiver GNSS
user to resolve the ambiguities in his carrier-phase
observations to integer values, which is needed for
high-precision PPP based on short convergence times.
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The information that is lacking for integer ambiguity
resolution enabled PPP (PPP-RTK or PPP-AR) are cor-
rections for satellite phase and code biases, since these
parameters hamper the estimable PPP ambiguities from
being integer (Table 21.3).

If the reference network adopts an undifferenced
model formulation, the crucial satellite phase and code
bias information is among the estimable parameters. We
emphasize that the choice of a common clocks network
model (as done in the previous subsection) is not a pre-
requisite for PPP-RTK; the network may also adopt
another S-system. In fact, the user does not even need to
know the S-system of the network as he can equally ap-
ply corrections determined by networks that are based
on different S-systems [21.69]. However, if the refer-
ence network adopts the common clocks model, the
estimable satellite clocks are ionosphere-free parame-
ters and this allows a direct comparison with the clocks
of, for example, the IGS.

In the literature, other network models can be found
that serve as basis for the generation of PPP-RTK cor-
rections [21.35,70-72]. Usually these network models
are not based on strictly undifferenced observables, but
on linear combinations between observables, of which
the ionosphere-free and Melbourne—Wiibbena combi-
nations (Chap. 20) are frequently used. Consequently
the hardware delay and ambiguity parameters estimated
using these linear combinations of observables are in
the form of wide-lane and narrow-lane combinations.
One-to-one transformation formulas between the cor-
rections of various PPP-RTK approaches are presented
in [21.73].

As with the discussion of the models for PPP, in
the following we make a distinction between PPP-RTK
models without ionospheric corrections (ionosphere-
float PPP-RTK model) and those including ionospheric
corrections (ionosphere-corrected PPP-RTK model).

lonosphere-Float PPP-RTK Model
In the absence of ionospheric corrections, the PPP-RTK
corrections for code and phase are the satellite clock
as well as satellite code and phase-delay parameters
from the common clocks network (and tropospheric and
other corrections)

op, (1) = c [dP (1)=& ]-T3,(0) ,

oy, =c [af?(t) -S;] “T30(0) . (21.86)
Here Eljs is only applied in case j > 3, that is, for code
observations at a third or higher frequency. Thus, in the
legacy dual-frequency GPS case it is not applied, but

it is for the third frequency observations transmitted by
the Block IIF GPS satellites.

If the PPP-RTK user adopts — like the network —
a common clocks model, the estimable user parame-
ters plus their interpretation automatically follow from
Table 21.4 by regarding receiver r to be the user re-
ceiver, instead of a network receiver. The difference is
that there are no satellite clock as well as satellite phase
and code bias parameters for the user, as these are cor-
rected for. However, the interpretation of the estimable
user’s position+ZTD, receiver clock, phase delay, code
delay, ionospheric delay, and ambiguity parameters is
as given in the table, for the case the ionosphere is float.
The only difference in the interpretation of the user pa-
rameters may be the pivot satellite, showing up in the
estimable phase delays and ambiguities. It is namely
not needed that the user should adopt the same pivot
satellite as the network; this can be any of the satellites
he has in view.

For the PPP-RTK user’s position and ZTD it means
that in case of a regional network they are — like for
the network receivers — estimable relative to those of
the pivot receiver in the network. In case the network
pivot receiver’s position is held fixed in the processing
(a usual assumption in case of CORS networks, i.e.,
Ar(t) = 0), the estimable user’s position is not rela-
tive to the network’s pivot receiver; however the user’s
estimable ZTD parameter still is, that is,

() =T/ (0 - T{ (1) .

The estimable PPP-RTK user’s ambiguity is also
relative, with respect to the network pivot receiver’s am-
biguity and with respect to an arbitrarily chosen pivot
satellite p

Ny = [V -v1 )= [V -w7 ] (21.87)
for s #p and j > 1. It is estimable as a double-dif-
ferenced ambiguity and thus standard ambiguity res-
olution (LAMBDA) is applied to estimate the integer
PPP-RTK ambiguities. Usually a three-step-procedure
is followed to solve the position based on the integer
ambiguities (Chap. 23).

If the (corrected) pseudorange and carrier-phase
observables of, in general, f frequencies are denoted
as vectors Ap,(f) and A@,(t), respectively, the full-
rank undifferenced, multifrequency PPP-RTK model is
given in Table 21.5 (second row). It is emphasized that
the receiver code bias parameters (d,j) only show up in
case of triple- or higher frequency (i.e., j > 3) and are
absent in a dual-frequency case.

lonosphere-Corrected PPP-RTK Model
The ionosphere-float PPP-RTK approach of which the
model was presented in the previous section requires
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Table 21.5 Full-rank undifferenced multifrequency (MF) PPP-RTK models

MEF PPP-RTK (ionosphere-corrected; f > 1):

RGN
cdiy (1)
R 2| el
10 G® uwy 0 ... 0 0 0 0 0 »
N0 G Wy Uy ... O 0 0 0 0 :
: . ) o a}’,vf
ell 26,50 | |2 |G ww 0 ... w, 0 0 0 0 o5y
A,y (1) G umw O ... 0 u, 0 MCn ... 0
. . . . Cgr,f
LAG, (1) 1G(®) uw O ... 0 0 w0 XC ]| g,
L Nr,f .
MEF PPP-RTK (ionosphere-float; f > 2)
X:(1)
cdt, (t)
5 cdr3
M AB ()] G(H) uw O ... 0 0 0w, 0 0 7 .
Apy (1) G@® uxw 0 ... 0 0 0 wl, 0 0 :
Aﬁr,} (1) G(t) um um ... 0 0 0 J75) o 0 0 cdy g
: C : : : 81
EVN 2ps0 | | TG0 wn 0 ... wm 0 0 wl, 0 0 :
A(pr,l () G:(t) um 0 cee 0 Um 0 Ly, MCp o ... 0 Cgryf
: S : : : . L
LAg, ¢(1) ] LG,(®)) wuw, O ... 0 0 uy  —ply 0 ... &G, N,
r,
Nr,f
a relatively long time before the ambiguities have con-  basis, can be given as
verged and the integers can be resolved. To speed
this up, it is essential to incorporate ionospheric cor- E@) =hi [¢),....L®)] . (21.88)

rections. Global reference networks (such as the IGS
network) provide ionospheric corrections in the form
of GIMs. Although these global ionospheric corrections
may serve standard PPP, for PPP-RTK, aiming at cen-
timeter level precision, they are not precise enough.
More precise ionospheric corrections can be generated
by a regional reference network that better captures the
spatial variation of the ionospheric delays than a global
network.

A way to generate these regional ionospheric cor-
rections is by means of Kriging interpolation [21.74]
of the estimated ionospheric delays at the network re-
ceivers to the approximate location of the user [21.67].
The interpolation, carried out on a satellite-by-satellite

Here h; denotes the n-vector performing the interpola-
tion over the n network receivers and I (¢) denotes the
interpolated ionospheric delay at the (approximate) lo-
cation of the user. The entries of the interpolation vector
depend on the assumed spatial coherence of the iono-
sphere, as well as on the distances of the PPP-RTK user
with respect to the network receivers. A property of the
Kriging interpolation vector is that its entries add up
to 1 (.e., h;un = 1). At first sight there seems to be
a problem to perform the interpolation, as it is based
on the original, unbiased ionospheric delays, while the
ionospheric parameters that are estimable are biased
by other parameters. Fortunately this is not a prob-
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lem, and the interpolation should simply be based on
the estimable biased ionospheric parameters. If the net-
work model is in the ionosphere-float common clocks
S-system, the interpolation of the estimated network
ionospheric corrections can then be written as

. 1
56 = ()~ ———¢ [DCB}, + DCB; o]
M2 = K

(21.89)

Thus, the interpolated ionospheric correction the PPP-
RTK user should apply can be interpreted as the inter-
polated ionospheric delay itself, plus the satellite DCB
(the interpolation does not affect this since it is the same
for all receivers), minus the interpolated receiver DCB,
that is,

DCB;.12 = h] [DCBy 2....,DCB, o] .
The presence of the satellite DCB as a bias of the in-
terpolated ionospheric corrections means that the user
does not have to explicitly correct for it, as is the case
when, for example, GIM-based ionospheric corrections
are used.

The PPP-RTK corrections for code and phase can
now be given as

op, (1) = ¢ [dP (1)) =] = T} o (1) = B2 (1)
0, () = ¢ [dF ()-8 | -T2 0+ wTi(0) . (2190

It is assumed that the expectation of the user’s predicted
ionospheric delay corresponds to its true ionospheric
delay, that is,

E (L) =E(L(n).

Like with the ionosphere-float PPP-RTK model, if in
the ionosphere-corrected case the user adopts a com-
mon clocks model as well, his estimable position/ZTD,
receiver clock, receiver hardware bias, and ambiguity
parameters follow from Table 21.4 by regarding re-
ceiver r to be the user receiver. Important to emphasize
is that the ionosphere-float DCB parameters within the
estimable receiver clock as well as receiver phase/code

delay apply in this case as well, with the difference that
DCB,. 1, should be replaced by its network-interpolated
counterpart DCB; j,. Important consequence is that the
estimable receiver code DCB is already estimable for
two frequencies (i. e., j > 2) instead of three.

The PPP-RTK model for the ionosphere-corrected
case is given in Table 21.5 (first row). Note that as the
ionospheric delays are corrected for there are no iono-
spheric parameters. Furthermore, the receiver code de-
lays are estimable from the second frequency onward,
in contrast to the ionosphere-float PPP-RTK model,
where they are estimable only from the third frequency
and higher. In the single-frequency (f = 1) case, the
model reduces to the PPP model given in Table 21.3
(SF-PPP ionospheric-correction).

21.4.6 Link Between PPP-RTK and PPP

If the full-rank PPP-RTK design matrix in Table 21.5 is
considered for two frequencies (i.e., f = 2), such that
the part for the receiver code biases disappears, it is
exactly identical to the full-rank design matrix corre-
sponding to dual-frequency standard PPP (Table 21.3)
(DF PPP iono-float). Although the interpretation of
the parameters differs between PPP and PPP-RTK, the
solution of PPP and PPP-RTK with the ambiguities
treated as float are identical. Hence, standard PPP can
be considered as a special case of PPP-RTK. In rela-
tion to this, it follows from th~e interpretations that the
satellite phase biases, that is, 8;, exactly correct for the
bias that is inside the PPP ambiguities in order to make
them become PPP-RTK ambiguities and thus integer.
Thus, in general

ATS C Iz % \TS
[N;~j]PPP_ If [81 _8117] = [NVJ]PPP-RTK - (21.91)
Here [N‘,‘ jlppp denotes the estimable PPP ambiguity
of which its interpretation is given in Table 21.3
and [Nf _j]ppp_RTK denotes the estimable integer PPP-
RTK ambiguity as in (21.87). Thus, when the es-
timable between-satellite differenced satellite phase
bias is subtracted from the estimable PPP ambigui-
ties, the estimable integer PPP-RTK ambiguities are
obtained.
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21.5 Differenced Positioning Models

Differencing techniques are traditionally applied in
GNSS processing to reduce the amount of unknowns
and observations. However, they may also result in
a loss of information, for example, in the multiepoch
case incorporating temporal constraints on parameters
which would otherwise be eliminated by means of
differencing. This section briefly presents the differ-
enced versions of the single-constellation positioning
models presented earlier in this chapter. Although not
discussed in detail, we mention that differencing causes
(mathematical) correlation between the differenced ob-
servations and this should be appropriately taken into
account through the variance—covariance matrix of the
observations.

21.5.1 Single Differencing

Differencing the observations with respect to a chosen
pivot satellite removes the receiver-dependent parame-
ters from the models (Fig. 21.8a). This section presents
the between-satellite differenced versions of the SPP,
PPP, and PPP-RTK models.

Between-Satellite Differenced SPP Model
Taking the differences of the code observables between
satellite s and (pivot) satellite p, the single-differenced,
single-frequency SPP model (21.50) becomes

E (D, Ap, (1) = [D,G.(t)] Ar,(1). (21.92)

Here the (m— 1) x m (transposed) differencing matrix is
defined as

DT — |:Ip,1 —Up-1 0 ] )

" 0 -u,p Ly
A property of this differencing matrix is that D u,, = 0.
In the dual-frequency case in which atmospheric delays
are estimated, see (21.53) for the undifferenced dual-

frequency SPP model, its between-satellite differenced
counterpart becomes

£ ([Pnlpr a0

D, AP, (1)
_[DIG(t) L] [ Ar ()
B D;ln—G,(l‘) J153 P} D;;r(l) ’

(21.93)

(21.94)

The between-satellite differenced ionospheric delay,
which is denoted as vector D;I,(t), is free of the re-
ceiver DCB term, which appears in the undifferenced
case (21.54).

Between-Satellite Differenced

Multiconstellation SPP Model
In the presence of observations of two constellations,
the SPP model in its undifferenced form was given
in (21.59), assuming one frequency per constellation.
In this case, the between-satellite differencing can be
carried out in different ways. A first way is to choose
a pivot satellite for each constellation and difference
the observations corresponding to its own constellation-
specific pivot satellite. A second way is to difference
the observations of both constellations to one common
pivot satellite.

In the first case, using a pivot satellite for each con-
stellation, the between-satellite differenced model reads
simply

o ([Pm 25507\ _[ D, G0
D Apr (1) )‘ D) GP()Ar(r)]

(21.95)

Here ms and mp denote the number of satellites for
constellation A and B, respectively. Compared to its
undifferenced counterpart in (21.59), the receiver clock
common for both constellations, as well as the ISB pa-
rameter for the observations of constellation B, have
been eliminated. In the second case, where the obser-
vations of both are differenced with respect to the pivot
satellite selected from constellation A, the between-
satellite differenced model reads

~A
(07 [ 2200))
( avms | ApP (o)

= [ore (656)] ()] s

(21.96)

Here DIA +my, denotes the (ma +mp — 1) X (ma +mg) dif-
ference matrix. Due to the differencing between con-
stellations the ISB parameter is not eliminated. Both
models (21.95) and (21.96) are however equivalent
in terms of redundancy and positioning solution. Al-
though model (21.96) has one parameter more than
model (21.95), it has also one more observation. How-
ever, the situation changes if the ISB can be assumed
known. In that case, the observations of constellation B
can be corrected for it such that model (21.96) reduces to

APy (0)
E (D;Aﬂng [Aﬁ?j(t)/:l)

e (5 e

(21.97)
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Fig. 21.8a-d Various differencing strategies: (a) between-satellite single differencing; (b) between-receiver single dif-

ferencing; (c) double differencing; (d) triple differencing

As a consequence, the above ISB-corrected model can
be considered as a single-constellation model, similar
to (21.92), but now with ma + mp satellites.

Between-Satellite Differenced PPP(-RTK)
Model
In case of single-constellation, single-frequency (iono-
sphere-corrected) PPP(-RTK), between-satellite differ-
encing results in the following observation (Table 21.3)

T ~
D, Ag, (1)
_ [DIGr(t) 0 } [x;(t)]
D;,EGr(t) AjImfl Nr.j '
Here use is made of the property that D;Cm =1,..
We remark that the interpretation of the estimable am-

biguity parameters does not change as a consequence
of the between-satellite differencing, because in the

(21.98)

undifferenced model they are already estimable as be-
tween-satellite differences, see Table 21.3 in case of
PPP and (21.87) in case of PPP-RTK.

In the multifrequency case, with the ionospheric
delays as unknown parameters, the between-satellite
differencing applied to the PPP-RTK model in Ta-
ble 21.5 results in the model presented in Table 21.6.

21.5.2 Double and Triple Differencing

Double-Differenced Relative Positioning

Model
For the Relative Positioning models, as discussed in
Sect. 21.4, between-satellite differencing can be applied
as well, as to remove the receiver-dependent parameters
from the models. Alternatively, since multiple receivers
are involved that observe the same satellites, one may
difference the observations of the same satellite be-
tween each receiver and a chosen pivot receiver. This
is between-receiver differencing (Fig. 21.8b), which
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Table 21.6 Full-rank, between-satellite differenced, ionosphere-float, multifrequency, PPP-RTK model
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removes the satellite-dependent parameters from the
models. This means that both receiver-dependent and
satellite-dependent parameters can be eliminated by
either taking the between-receiver difference of two be-
tween-satellite differences, or taking the between-satel-
lite difference of two between-receiver (Fig. 21.8c). As
a consequence one obtains the well-known double-dif-
ferenced positioning model.

In case the ionosphere is float, the double-differ-
enced model has the same structure as the between-
satellite differenced PPP-RTK model in Table 21.6,
but instead of single-differenced observables the ob-
servables are double differenced. In addition, the iono-
spheric parameters are estimated as double differences
as well (the estimable ambiguities are already double
differenced in the full-rank between-satellite differ-
enced model). For a double-differenced model, it is
implicitly assumed that the network or baseline is of
regional size such that the geometry matrices in the
design matrix are identical for all receivers, that is,
G(t) =--- = G,(¢) = G(¢), and relative position/ZTD
parameters are estimated, that is, X,(t) = x,(r) —x (¢).

Triple-Differenced Relative Positioning Model
From the double-differenced model, one could go one
step further, by taking differences of two double dif-
ferences in time, so as to eliminate the ambiguity

parameters from the relative positioning model (pro-
vided that no cycle slips have occurred between the
two epochs). As a result one obtains the triple-differ-
enced model (Fig. 21.8d). However, triple differencing
removes the possibility of taking advantage of the in-
teger nature of these double-differenced ambiguities,
which is the key requirement for obtaining high-preci-
sion positions. Other drawbacks of triple differencing is
that it is only possible to estimate the receiver’s position
change in time and that it creates time correlation be-
tween the observations. Therefore it not recommended
to base the relative positioning model on triple-differ-
enced observations.

21.5.3 Redundancy
of the Differenced Models

The redundancy (number of observations minus num-
ber of estimable parameters) of the differenced models
is exactly identical to those of the undifferenced ver-
sions of the models, as the models are reduced with the
same number of estimable parameters as observations.
This, however, only applies to the single-epoch case.
In the multiepoch case the redundancy of the undiffer-
enced models start to outperform that of the differenced
models if temporal constraints on the parameters are in-
cluded [21.69].

21.6 The Positioning Concepts Related

This chapter provided an overview of the models un-
derlying the various positioning concepts. We end this
chapter with a summary of how these positioning con-
cepts are related to each other. Figure 21.9 presents in
a schematic way the various positioning concepts. They
basically differ in the way whether they are dominated
by either code data or phase data, and at the scale the
correction data are provided by the reference stations.

21.6.1 Global Positioning: SPP/PPP

At a global scale, absolute positioning can be realized
by means of SPP or PPP. In case of SPP, based on
code observations, global reference network data are
employed in the form of the broadcast navigation data.
In other words, the orbits, clocks, and atmospheric data
that are broadcast by the GNSS satellites are products
that are determined by the GNSS ground control net-
work. PPP employs phase observations in addition to
code, as well as precise corrections for orbit, clocks,
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Fig. 21.9 GNSS-based positioning concepts: SPP versus
PPP that are both based on products provided by global
reference network data (fop); network DGNSS versus net-
work RTK that are both based on products provided by
regional reference network data (middle); single-baseline
DGNSS versus single-baseline RTK that are both based on
local reference station data (bottom). PPP-RTK can be re-
garded as a method that is conceptually equivalent to PPP,
but provides the positioning accuracy of network/wide-
area RTK

and ionosphere, which are also products of a global ref-
erence network (e.g., the IGS network).

21.6.2 Regional Positioning:
Network DGNSS/RTK

At a more regional scale, covering an area with a radius
of typically 500 km or less, we have the code-dominated
network DGNSS technique, versus the phase-domi-
nated network RTK technique, where positioning is
done relative to a network of reference stations [21.75].
Correction data are determined by the network and

transmitted to users operating within the coverage area
of the network. Network DGNSS is also known as
wide-area DGNSS [21.76]. In case of network RTK the
network processing is based on ambiguity resolution
(Chap. 23) as to provide the most precise corrections
to users, who employ ambiguity resolution themselves
as to obtain positions with centimeter level accuracy.
In practice several network-RTK implementations exist
(Chap. 26). Crucial to the performance of both net-
work DGNSS and network RTK are the (quality of
the) corrections for the differential ionospheric delays,
which are determined by the network over the coverage
area.

21.6.3 Local Positioning:
Single-Baseline DGNSS/RTK

At a local scale, the reference data are provided by
a single reference station, located in the vicinity of the
user receiver, such that the differential ionospheric de-
lays can be neglected. This leads to code-dominated
single-baseline DGNSS, and phase-dominated single-
baseline RTK, the latter method relying on phase in-
teger ambiguity resolution. RTK positioning is also
referred to as carrier-phase based DGNSS for which
the differential ionospheric delays may be neglected for
baseline lengths up to about 10 km (under average iono-
spheric conditions). The maximum baseline distance of
single-baseline DGNSS, which is at most about 100 km,
is longer than for single-baseline RTK, since the noisier
code data allow more residual differential ionospheric
delays than the precise phase data in case of RTK. Ex-
tending the operational distance of single-baseline RTK
is possible, up to hundreds of kilometers [21.55], how-
ever then the ionospheric delays need to be modeled
as unknown parameters, leading to longer convergence
times.

21.6.4 Global/Regional Positioning:
PPP-RTK

PPP-RTK can be considered as a mixture of PPP and
RTK: it is conceptually PPP, but based on resolving the
integer phase ambiguities as to as to obtain the position-
ing accuracy of (network) RTK. PPP-RTK can either
be based on global or regional network products, where
satellite phase bias corrections are crucial for integer
ambiguity resolution and therefore centimeter level ac-
curacy. In the absence of these satellite phase biases,
PPP-RTK reduces to standard PPP. In a triple- or higher
frequency case also satellite code bias corrections are
required. Essential to fast integer ambiguity resolu-
tion are precise ionospheric corrections. In contrast to
network RTK, in case of PPP-RTK the correction infor-
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Table 21.7 Typical values for GPS positioning accuracy, convergence time, and coverage area for different positioning
concepts. Note: SF = single-frequency; DF = dual-frequency

Positioning concept Accuracy (1-sigma)

SF SPP <10m
SF PPP (GIM-based) 1-2dm
DF PPP < 1ldm
(ionosphere-float)

Single-baseline (code-based) 1-5m
DGNSS

Wide area DGNSS 0.5-2m
SF RTK-short baseline < ldm
DF RTK-short baseline < ldm
Network RTK < 1ldm
SF PPP-RTK < 1dm
(precise iono corrections)

DF PPP-RTK < 1dm
(ionosphere-float) < 1dm

mation is provided to the user in the parameter or state
space, whereas in case of network RTK this is in the
observation space [21.57]. A drawback of transmitting
the corrections in the observation space is that a higher
update rate is required than for corrections in the pa-
rameter space, as some parameters are (almost) time
constant.

21.6.5 Accuracy of the Positioning Concepts

The attainable positioning accuracy using the concepts
in the left column of Fig. 21.9 is driven by the precision
of the pseudorange data, while the accuracy of the con-
cepts in the right column is driven by the carrier-phase
precision. Table 21.7 summarizes typical values of the
accuracy, which can be obtained using the discussed
positioning concepts. These numbers hold after a cer-
tain (convergence) time that is needed for the position
to attain a certain accuracy. The positioning accuracy of
single-frequency (GPS) PPP incorporating global iono-

References

Convergence time Coverage area

Instantaneous Global

< 10 min Global
30 min (static) Global
60 min (kin.)

Instantaneous Regional/local
Instantaneous Regional
10 min Local
Instantaneous to few min Local

< 10 min Regional
< 10 min Regional
30 min (static) Global
90 min (kin.) Regional

spheric corrections is typically at decimeter level within
a few minutes [21.77]. The positioning accuracy of
dual-frequency (GPS) PPP can reach centimeter level
however only after a convergence time that may last
for more than 30min [21.52]. Decimeter-level accu-
racy of dual-frequency (GPS) PPP after a convergence
of 40 min was demonstrated for a kinematic receiver
in [21.78]. A similar level of accuracy of dual-fre-
quency PPP based on convergence times of 10-30 min
was demonstrated by [21.79]. The positioning accuracy
of single-baseline DGNSS (DGPS) is 1-5m and can
be obtained instantaneously. With network or wide-area
DGPS the accuracy lies in the range 0.5-2m [21.80].
In case of dual-frequency integer ambiguity resolution
enabled PPP centimeter-level accuracy is feasible af-
ter about 30 min in case of a static receiver, and about
90 min in case of a kinematic receiver [21.81]. The
convergence time of tens of minutes in case of dual-
frequency PPP and PPP-RTK is due to the presence of
the ambiguities, next to the ionospheric delays.
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