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2. Time and Reference Systems

Christopher Jekeli, Oliver Montenbruck

Geodesy is the science of the measurement and
mapping of the Earth’s surface, and in this con-
text it is also the science that defines and realizes
coordinates and associated coordinate systems.
Geodesy thus is the foundation for all applications
of global navigation satellite system (GNSS). This
chapter presents the reference systems needed
to describe coordinates of points on the Earth’s
surface or in near space and to relate coordinate
systems among each other, as well as to some
absolute system, visually, a celestial system. The
topic is primarily one of geometry, but the geody-
namics of the Earth as a rotating body in the solar
system plays a fundamental role in defining and
transforming coordinate systems. Therefore, also
the fourth coordinate, time, is critical not only as
the independent variable in the dynamical theo-
ries, but also as a parameter in modern geodetic
measurement systems. Instead of expounding the
theory of geodynamics and celestial mechanics,
it is sufficient for the purpose of this chapter to
describe the corresponding phenomena, textu-
ally, analytically and illustratively, in order to give
a sense of the scope of the tasks involved in pro-
viding accurate coordinate reference systems not
just to geodesists, but to all geoscientists.
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2.1 Time

Everyone experiences time, but when pressed no one
can explain exactly what it is. Mathematically it can
be defined as a coordinate in a fourth dimension (as
did Einstein), or more traditionally, it is the indepen-
dent variable in our theories of motion. Indeed, the only
reason that we perceive time is that things change. We
have relatively easy access to units of time because
many of the changes that we observe are periodic. If
the changing phenomenon varies with uniform period,
then the associated time scale is uniform. Clearly, a de-
sirable property of a description and realization of time
is that its scale should be uniform at least in the local
frame. However, very few observed dynamical systems
have rigorously uniform time units. In the past, Earth’s

rotation provided the most suitable and evident phe-
nomenon to represent the time scale, with the unit being
a (solar) day [2.1]. It has been recognized for a long
time, however, that Earth’s rotation is not uniform (it
is varying at many different scales: daily, bi-weekly,
monthly, etc., and even slowing down over geologic
time [2.2, p. 607]). In addition to scale or units, an
origin must be defined for a time system, that is, a zero-
point, or an epoch, at which a value of time is specified.
Finally, whatever system of time is defined, it should be
accessible and, thereby, realizable, thus creating a time
frame. This distinction between a system and a frame is
explained in greater detail with respect to spatial coor-
dinates in Sect. 2.2.2.
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Prior to 1960, a second of time was defined as
1=86400 of a mean solar day (Sect. 2.1.3). Today (since
1960), a fundamental time scale is defined by the natu-
ral oscillation of the cesium atom and all time systems
can be referred or transformed to this scale. Specifically,
the SI (Système International) second is defined as fol-
lows [2.3, 4]:

The second is the duration of 9 192 631 770 periods
of the radiation corresponding to the transition be-
tween the two hyperfine levels of the ground state of
the cesium 133 atom.

This definition has been refined to specify that the
atom should be at rest (i. e., at temperature 0K) and at
mean sea level, thus independent of ambient radiation
effects and relativistic gravitational changes. Correc-
tions are applied to actual measurements to comply
with these requirements. The value of the SI second
was set to the previously (in 1956) adopted value of
a second of ephemeris time (ET) (Sect. 2.1.1), defined
as 1=31556 925:9747 of a mean tropical (solar) year,
being computed for the epoch, 1 January 1900, on
the basis of Newcomb’s theory of motion of the Earth
around the Sun [2.5].

Although the SI second now defines the fundamen-
tal time unit, one still distinguishes between systems
of time that have different origins and even different
scales depending on the application. Dynamic time is
the independent variable in the most complete theory
of the dynamics of the solar system. It is uniform by
definition. Mean solar time, or universal time (UT), is
the time scale based on Earth’s rotation with respect
to the Sun and is used for general civilian time keep-
ing. Finally, sidereal time is defined by Earth’s rotation
with respect to the celestial sphere. Within this section,
the various types of dynamic, atomic, and sidereal time
scales are described in further detail.

2.1.1 Dynamic Time

Newtonian (ephemeris time) and relativistic (barycen-
tric and terrestrial time (TT), etc.) concepts of dynamic
time generally refer to the time variable in the equa-
tions of motion describing the dynamical behavior of
the massive bodies of our solar system. As such, with
respect to the theory of general relativity, the dy-
namic time scale refers to a coordinate system and
thus represent a coordinate time (Chap. 5). Common
choices include the barycentric reference system (ori-
gin at the center of mass of the solar system) or the
geocentric reference system. The corresponding time
scales are thus designated as barycentric coordinate
time (TCB) and geocentric coordinate time (TCG).
Note that acronyms for time systems generally follow

the corresponding French names, for example, temps-
coordonnée barycentrique for Barycentric Coordinate
Time. Dynamic time defined in this way is the fourth
coordinate and transforms according to the theory of
general relativity as the fourth coordinate from one
point in space–time to another.

On the other hand, dynamic time has also been de-
fined as a proper time, the time associated with the
frame of the observer that a uniformly running clock
would keep and that describes observed motions in
that frame. Depending on the frame of the observer,
it is designated, for example, terrestrial dynamic time
(TDT), or barycentric dynamic time (TDB). In 1991,
the International Astronomical Union (IAU) renamed
TDT simply terrestrial time, referring to proper time at
the geoid (approximately mean sea level). However, in
2000 the IAU further recommended, due to uncertain-
ties in the realization of the geoid, that TT be redefined
as differing from TCG by a constant, specified rate. Its
relation to a proper time then more precisely depends on
the location and velocity of the observer’s clock in the
ambient gravitational field. Mathematical connections
to the coordinate times, TCB and TCG, and to TDB
may be found in Chap. 5 of this Handbook as well as
in [2.6, Chap. 10]. The realization of TT is atomic time
(Sect. 2.1.2), that is, its scale is the SI second. For calcu-
lations of Earth orientation (Sect. 2.5.1), the difference
between TT and TDB is usually neglected.

Prior to 1977, the dynamic time was called
ephemeris time. ET was based on the time variable in
the theory of motion of the Sun relative to the Earth –
Newcomb’s ephemeris of the Sun. This theory suffered
from the omission of relativistic theory, the dependence
on adopted astronomical constants that, in fact, show
a time dependency (such as the constant of aberration).
It also omitted the effects of other planets on Earth’s
orbit. The new dynamic time described above was con-
strained to be consistent with ET at their boundary;
specifically,

TT D ET at 1977 January 1:0003725�
1d 0h 00m 32:184s; exactly

�
: (2.1)

The extra fraction in this epoch was included since this
would make the point of continuity between the systems
exactly January 1.0, 1977, in International Atomic Time
(TAI) (Sect. 2.1.2).

The basic unit of dynamic time is the Julian Day,
equal to 86 400 SI seconds, which is close to our usual
day based on Earth rotation, but is uniform by defi-
nition. The origin of dynamic time, designated by the
Julian date, or Julian epoch, J0.0, is defined to be
Greenwich noon, 1 January 4713 BC. Julian days, by
convention, start and end when it is noon (dynamic
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time) in Greenwich, England, representing midday in
the usual meaning of a day starting and ending at mid-
night. Furthermore, there are exactly 365.25 Julian days
in a Julian year, or exactly 36 525 Julian days in a Ju-
lian century. With the origin as given above, the Julian
date, J1900.0, corresponds to the Julian day number,
2 415 021:0, being Greenwich noon, January 1, 1900;
and the Julian date, J2000.0, corresponds to the Julian
day (JD) number 2 451 545:0, being Greenwich noon,
January 1, 2000 (Fig. 2.1). Thus, the date with Ju-
lian day number 2 451 545:0 is also January 1.5, 2000.
Note that January 0.5, 2000 is really Greenwich noon
on December 31, 1999 (or December 31.5, 1999). For
practical reasons, a modified Julian day number

MJD D JD −2 400 000:5 ; (2.2)

is also defined relative to a new origin, which counts
days as starting at midnight in Greenwich.

2.1.2 Atomic Time Scales

Atomic time refers to the time scale defined and realized
by the oscillations in energy states of the cesium-133
atom, as defined in the introduction of this section.
The SI second thus is the unit that defines the atomic
time scale [2.3, 7]. Atomic time was not realized un-
til 1955 with the development of standardized atomic
clocks (Chap. 5). From 1958 through 1968, the Bureau
International de l’Heure (BIH) in Paris maintained the
atomic time scale. The origin, or zero point, for atomic
time has been chosen officially as 0h 0m 0s, January 1,
1958.

International Atomic Time was officially introduced
in January 1972. It was determined and subsequently
defined that on 0h 0m 0s, January 1, 1977 (TAI), the ET
epoch was 0h 0m 32:184s, January 1, 1977 (ET); thus, in
accord with (2.1),

TAI D TT−32:184 s : (2.3)

JD = 2,433,282.0

36525 Julian days

JD = 2,451,545.0 JD = 2,469,807.0

Jan 0.5
1950

Jan 1.5
1950

Jan 1.5
2000

Jan 0.5
2050

Dec 30.5
2049

= noon
Dec 31
1949

= noon
Dec 31
2049

... ...

Fig. 2.1 Julian Day numbers and their
relation to our current conventional
calendar

TAI is realized today by the Bureau International des
Poids et Mesures (BIPM), which combines data from
over 400 high-precision atomic clocks around the world
in order to maintain the SI-second scale as accurately
as possible. TAI is published and accessible as a cor-
rection to each time-center clock, but rather in terms of
coordinated universal time (UTC, Sect. 2.1.3), which is
civilian atomic time adjusted to be close to a time scale
based on Earth’s rotation.

In the United States, the official atomic time clocks
are maintained by the US Naval Observatory (USNO)
in Washington, DC, and by the National Institute of
Standards and Technology (NIST) in Boulder, CO,
USA. Within each such center several cesium beam
clocks are running simultaneously and averaged. Other
centers participating in the realization of TAI include
observatories in Paris, Greenwich, Moscow, Tokyo, Ot-
tawa, Wettzell, Beijing, and Sydney, among over 70
others. The comparison and amalgamation of the clocks
of participating centers around the world are accom-
plished by LORAN-C, satellite transfers (GNSS play-
ing the major role; Chap. 41), and actual clock visits.
Time offsets of individual laboratories and their uncer-
tainties are reported in the monthly issues of the BIPM
Circular T [2.8]. Worldwide synchronization for many
of the national laboratories is at the level of a few tens of
nanoseconds or better [2.9]. Since atomic time is com-
puted from many clocks, it is also known as a paper
clock or a statistical clock.

2.1.3 Sidereal and Universal Time,
Earth Rotation

Sidereal time represents the rotation of the Earth with
respect to the celestial sphere and reflects the actual ro-
tation rate of the Earth, plus effects due to the small
motion of the spin axis relative to space (precession
and nutation, Sect. 2.5.1). It is the angle on the equa-
tor between a particular terrestrial meridian and the
vernal equinox, ‡ , which is the point on the celestial
sphere where the Sun crosses the equator in Spring



Part
A
|2.1

28 Part A Principles of GNSS

as viewed by the Northern Hemisphere of the Earth.
Inasmuch as the equator has the same dynamics as
the spin axis, one distinguishes between apparent (or,
true) and mean sidereal time, the latter having the
effects of nutation removed. The amplitude of this ef-
fect is about 15:8 00, which corresponds to about 1 s of
time using the conversion, 15ı D 1 h. Greenwich ap-
parent sidereal time (GAST) is the angle from the true
(or, instantaneous) equinox to the Greenwich meridian
(Fig. 2.2).

Due to the precession of the spin axis and thus the
vernal equinox on the equator, sidereal time includes
a small rotation rate (about 7:1 � 10−12 rad=s) that is not
due to Earth rotation. For this reason, a new origin
point, ¢ , has been introduced and adopted in the late
1990s that better serves the determination of Earth’s
rotation rate. This so-called nonrotating origin is also
called the celestial intermediate origin (CIO) as ex-
plained in Sect. 2.5.2. A new angle, 
 , called the Earth
rotation angle (ERA), now represents true Earth rota-
tion (Fig. 2.2). The angle ˛.‡/D 
 −GAST, also called
the equation of origins (EO), today (2015) has a sig-
nificant value of about −12 0 due to the accumulated
precession since J2000. Expressions for evaluating the
EO at arbitrary epochs are provided in [2.6, 10].

UT is the time scale used for general civilian time
keeping and is based approximately on the diurnal
motion of the Sun. However, the Sun, as viewed by
a terrestrial observer does not move uniformly on the
celestial sphere. To create a uniform time scale requires
the notion of a fictitious, or mean Sun, and the corre-
sponding time is known as mean solar time (MT). UT
is defined as mean solar time on the Greenwich merid-
ian. The basic unit of UT is the mean solar day, being
the time interval between two consecutive transits of the
mean Sun across the meridian. The mean solar day has
24 mean solar hours and 86 400 mean solar seconds.

In comparison to sidereal time, the following ap-
proximate relations hold

1 mean solar day

D 24h 03m 56:5554s in sidereal time ; (2.4)

True (instantaneous) equator
(CIO)

(Greenwich meridian)σ
ϖ

GAST

θ

ϒ

Fig. 2.2 Relationship between GAST and the Earth rota-
tion angle, 
 , relative to the true vernal equinox, ‡

1 mean sidereal day

D 23h 56m 04:0905s in solar time : (2.5)

A mean solar day is longer than a sidereal day because
in order for the Sun to return to the observer’s meridian,
the Earth must rotate an additional amount due to its or-
bital advance (Fig. 2.3). Thus, also Earth’s rotation rate
is not equal to 2 =86 400 rad=s if s is a solar second.
Instead, the rate is, according to (2.5),

!˚ D 7:292115 � 10−5 rad=s : (2.6)

To determine !˚ (and its variations) from measure-
ments by terrestrial observers, one must account for the
fact that the observer’s reference meridian is associated
with a fixed pole, with respect to which the Earth’s
spin axis moves (polar motion, Sect. 2.5.3). In addi-
tion, Earth’s rotation is affected by other irregularities
of periodic and secular character (such as seasonal ef-
fects and the exchange of angular momentum between
the Earth and Moon) that are lumped into so-called
length-of-day variations. Universal time as a scale de-
rived from Earth’s rotation has thus been separated into:

UT0: Universal Time determined from observations
with respect to the meridian fixed to the reference
pole;

UT1: Universal Time determined with respect to the
meridian attached to the spin axis;

UT2: Universal Time UT1 corrected for seasonal vari-
ations.

Sun

Extra rotation needed to
complete 1 solar day

+Earth
ω

1 sidereal day (1 full rotation of the Earth)

Fig. 2.3 Geometry of sidereal and solar days
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UT2 is the best approximation of UT to a uniform
time, although it is still affected by small secular varia-
tions. However, as a matter of practical utilization it has
now been replaced by an atomic time scale (UTC, see
below).

In terms of the SI second, the mean solar day is
given by

1d .MT/D 86 400 s −
��

n
; (2.7)

where

�� D UT1 −TT (2.8)

is the difference over a period of n days between UT1
and dynamic time. The length-of-day variation is the
time-derivative of�� . From observational records over
the centuries it has been found that the secular variation
in the length of a day (rate of Earth rotation) currently
is approximately +1:4ms per century [2.2, p. 607].

All civilian clocks in the world are now set with
respect to an atomic time standard since atomic time
is much more uniform than solar time and more eas-
ily realized through time transfer by satellite signals.
Yet, there is still a desire (particularly, in the astronomic
community) that civil time should correspond to solar
time; therefore, a new atomic time was defined that ap-
proximates UT. This atomic time is called Coordinated
Universal Time (UTC) and implemented in accord with
Recommendation TF.460 of the International Telecom-
munication Union (ITU) [2.11]:

UTC is the time scale maintained by the BIPM, with
assistance from the IERS, which forms the basis of
a coordinated dissemination of standard frequen-
cies and time signals. It corresponds exactly in rate
with TAI but differs from it by an integral number of
seconds. The UTC scale is adjusted by the insertion
or deletion of seconds (positive or negative leap sec-
onds) to ensure approximate agreement with UT1.

Initially, UTC was adjusted so that jUT2 −UTCj<
0:1 s. As of 1972, the requirement for the correspon-
dence between UTC and UT was relaxed to

jUT1−UTCj< 0:9 s : (2.9)

The adjustments, called leap seconds, are introduced ei-
ther January 1 or July 1 of any particular year.

Up to 2015, leap seconds have, on average, been
introduced approximately once every 1:5 years (Ta-
ble 2.1). Following an earlier adjustment in July 2012,
the UTC−TAI amounts to −36 s since mid 2015. The

Table 2.1 UTC leap seconds introduced since 1972. The
table provides the integer seconds difference between UTC
and TAI along with the starting date of applicability (af-
ter [2.12])

Since UTC −TAI
(s)

Since UTC −TAI
(s)

1 Jan 1972 −10 1 Jan 1988 −24
1 Jul 1972 −11 1 Jan 1990 −25
1 Jan 1973 −12 1 Jan 1991 −26
1 Jan 1974 −13 1 Jul 1992 −27
1 Jan 1975 −14 1 Jul 1993 −28
1 Jan 1976 −15 1 Jul 1994 −29
1 Jan 1977 −16 1 Jan 1996 −30
1 Jan 1978 −17 1 Jul 1997 −31
1 Jan 1979 −18 1 Jan 1999 −32
1 Jan 1980 −19 1 Jan 2006 −33
1 Jul 1981 −20 1 Jan 2009 −34
1 Jul 1982 −21 1 Jul 2012 −35
1 Jul 1983 −22 1 Jul 2015 −36
1 Jul 1985 −23 1 Jan 2017 −37

history of UTC relative to TAI and other time scales
is schematically shown in Fig. 2.4 based on tabulated
data of the United Sates Naval Observatory (USNO)
in [2.12]. The decision to introduce new leap seconds
is taken by the International Earth Rotation and Refer-
ence Systems Service (IERS) and announced within the
IERS Bulletin C.

The lengthening of a day by about 1:4ms per cen-
tury as measured by Earth’s slowing rate of rotation
implies that the UT1 clock continues to run more and
more behind the TAI clock. It has been determined that
the mean solar day today is actually about 86 400:0027
SI seconds long, since the SI second was originally
identified with the ET second based on the motion of
the mean Sun at Newcomb’s time in the nineteenth cen-
tury. Indeed, 86 400 SI seconds exactly equaled a mean
solar day in 1820, or 1:95 centuries (cy) ago. This dis-
parity between the scales of the defined SI second and
the current mean solar day has an accumulative effect
that adds, on the average, about 1:4ms=d=cy� 1:95 cy,
or about 1 s to UT1 during the course of a year; hence,
the introduction of the leap seconds. The difference,
DUT1 D UT1−UTC, is broadcast along with UTC so
that users can determine UT1.

The relationships among the various atomic time
scales are illustrated along with dynamic time in
Fig. 2.4. There is current debate [2.13–15] about the
need to maintain the small difference between UTC
and UT1 considering the technical inconveniences and
inefficiencies (if not outright difficulties) this imposes
on the many modern civilian telecommunications sys-
tems and other networks that rely on a precise time
scale.



Part
A
|2.1

30 Part A Principles of GNSS

ET TDT TT

32.184 s

1.4228 s

0.1 s steps

10.0 s UTC
19.0 s

Leap second steps
(1.0 s)

UT1

UTC

GPS and Galileo Time

33.0 s

BeiDou
Time

t – TAI

0

Origin for
UTS

Dynamic time

TAI

Jan 1.0
1958

Origin
for TAI

Jan 1.0
1961

1967

Atomic
second

adopted as
SI second

Jan 1.0
1972

TAI
officially
adopted

Jan 1.0
1977

TDT
adopted

Jan 6.0
1980

Origin for
GPS and
Galileo

time

1991

TDT
identified

as a proper
time TT

2000

TT
redefined

with respect
to TCG

Jan 1.0
2006

Origin for
BeiDou

time

2015

Fig. 2.4 Relationships between atomic time scales and dynamic time (indicated leap seconds are schematic only). For
the acronyms, see the text

2.1.4 GNSS System Times

Satellite navigation systems provide user coordinates
derived from distance measurements that are based on
the propagation time of the transmitted signals. Thus,
all these systems rely on very accurate clocks and time
standards. To meet the needs of internal time syn-
chronization and dissemination, each GNSS maintains
a specific system time. The time systems of the four
global navigation satellite systems, Global Positioning
System (GPS), GLONASS, Galileo, and BeiDou, are all
based on the SI second and atomic time similar to TAI.
However, they are realized by different clock ensem-
bles and have different origins and offsets with respect
to TAI [2.16].

GPS time (GPST) is the system time employed by
the United States’ Global Positioning System. Since
1990, it is formed as a composite clock from atomic
clocks within the GPS Control Segment (including
both the Master Control Station and the Monitoring
Stations) as well as the atomic frequency standards on-
board the GPS satellites [2.17, 18]. Each of these clocks
contributes to the resulting time scale with a specific

weight based on the observed variance of the respec-
tive clock [2.19]. Using common view time transfer,
GPS time is steered to deviate by at most 1�s [2.20]
from UTC(USNO), that is, the realization of UTC
maintained by the United States Naval Observatory. In
practice, the GPS−UTC(USNO) offset is much smaller
than the specified range and achieves representative val-
ues at the level of 20 ns [2.21]. In order to provide GPS
users with access to UTC, a forecast value of the offset
between both time scales is transmitted as part of the
navigation message.

The origin of GPS time, as noted in Fig. 2.4, is Jan-
uary 6.0, 1980 UTC(USNO). However, GPS time is not
adjusted by leap seconds to slow down with UT and it
is thus permanently offset (late) by a constant amount
from TAI

t .GPS/D TAI − 19 s : (2.10)

At the same time, it is offset from (ahead of) UTC by
varying amounts depending on the number of intro-
duced leap seconds. Note that (2.10) describes only the
nominal (integer second) offset between GPS time and
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TAI, but neglects additional fractional offsets (typically
at the level of tens of nanoseconds) related to different
realization of the two time scales.

GLONASS Time (GLST) is the only GNSS time
scale that actually follows the ITU recommendation
[2.11] to align a disseminated time scale with UTC. Its
origin is chosen as January 1.0, 1996 in the UTC(SU)
time system, that is, the Russian (formerly Soviet
Union, SU) realization of UTC maintained by the In-
stitute of Metrology for Time and Space in Moscow.
Besides incorporating leap seconds, GLST is always 3 h
ahead of UTC because of the time zone difference be-
tween Greenwich and Moscow. Thus,

t .GLONASS/D UTC+3 h : (2.11)

Again, this relation does not account for fractional
second offsets resulting from the independent real-
ization of both time scales. GLST is obtained from
an ensemble of hydrogen-masers in the GLONASS
ground segment and synchronized to UTC(SU) using
two-way time transfer with a specified tolerance of
1�s [2.22]. Following a consolidated effort to improve
the alignment of GLST with UTC, the difference of

the two time scales has improved from several hun-
dred ns [2.23] to a few tens of ns as of the second half
2014 [2.24].

Both the Galileo System Time (GST, [2.25, 26]) and
BeiDou time (BDT; [2.27]) exhibit a constant offset
from TAI. The origin for Galileo time, for consistency,
is defined to be identical to that of GPS Time, but the
origin for the BeiDou time system has been chosen as
January 1.0, 2006 UTC. Thus,

t .Galileo/D TAI − 19 s ; (2.12)

t .BeiDou/D TAI − 33 s : (2.13)

Both time scales are generated from atomic clocks in
the respective control segments and steered to UTC via
time transfer and clock comparison with other UTC lab-
oratories. GST is specified to differ by less than 50 ns
(2�) from UTC [2.25, 28] while a maximum offset of
100 ns applies for BeiDou [2.23, 29].

Similar to Galileo, continuous time scales with
a fixed −19 s offset from TAI are also adopted by
the Japanese Quasi-Zenith Satellite System (QZSS)
and the Indian Regional Satellite Navigation System
(IRNSS/NAVIC).

2.2 Spatial Reference Systems

To establish coordinates of points requires that we set
up a coordinate system with origin, orientation, and
scale defined in such a way that all users have access
to these. Before the establishment of GNSS, the most
accessible reference for coordinates from a global per-
spective was the celestial sphere of stars that were used
not only for charting and navigation, but also served as
a fundamental system to which other terrestrial coordi-
nate systems could be oriented. Still today, the celestial
reference system is used for that purpose and may be
thought of as the ultimate in reference systems. At the
next level, we define coordinate systems attached to the
Earth with various origins (and perhaps different ori-
entations and scale). Thus, there are two fundamental
tasks: (1) to establish an external coordinate system of
the local universe that presumably remains fixed in the
sense of no rotation; and (2) to establish a coordinate
system attached to the rotating and orbiting Earth, and
in so doing to find the relationship between these two
systems.

2.2.1 Coordinate Systems

The Cartesian system of coordinates, x; y; z, is cer-
tainly the easiest from a mathematical perspective and

it plays a central role in defining modern reference sys-
tems. However, because the Earth is nearly spherical
and by extension our geocentric view of the heavens
takes on a spherical character, spherical coordinates
are essential as many geodetic concepts rely on di-
rections and distances. Indeed, the latitude/longitude
concept will always have the most direct appeal for
terrestrial applications (surveying, near-surface navi-
gation, positioning, and mapping). Figure 2.5 shows
the relationship between the Cartesian coordinates and
spherical coordinates, comprising latitude, 	, longi-
tude, �, and radius, r, and given by

x D r cos	 cos� ;

y D r cos	 sin� ;

z D r sin	 : (2.14)

The inverse relationship is

	 D tan−1
 

zp
x2 + y2

!
;

�D tan−1
�y
x

�
;

r D
p
x2 + y2 + z2 : (2.15)
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z

r

x

y

λ

ϕ

Fig. 2.5 Spherical coordinates

Already by the middle of the eighteenth century,
it was established by measurements that the Earth
is flattened at the poles and assumes an elliptical
shape [2.30], specifically an ellipsoid of revolution, de-
fined as the surface generated by rotating an ellipse
about its minor axis. It is also known as a spheroid
(to distinguish it from a tri-axial ellipsoid). Essential
parameters of the ellipsoid are its size and shape that
may be defined by the semi-major and semi-minor axis
lengths, a and b (Fig. 2.6). Other shape parameters in-
clude the flattening

f D a− b

a
; (2.16)

a

E

b N

z
h

x

ϕ

Fig. 2.6 Ellipsoidal geometry and geodetic coordinates.
Dots on the x-axis denote focal points of the ellipse, which
represents the meridian plane

the first and second eccentricities

e2 D a2 − b2

a2
and e02 D a2 − b2

b2
; (2.17)

as well as the linear eccentricity E D ae.
With respect to an ellipsoid with given parame-

ters, the geodetic coordinates are defined as illustrated
in Fig. 2.6 and include the geodetic latitude, ', the
geodetic longitude, � (not shown, but identical to the
spherical longitude), and the geodetic height, h, along
the line that is normal, or perpendicular, to the ellipsoid.
The relationship between geodetic coordinates and the
global Cartesian coordinates is

x D .N + h/ cos' cos� ;

y D .N + h/ cos' sin� ;

z D �
N
�
1 − e2

�
+ h
�
sin' ; (2.18)

where

N D ap
1 − e2 sin2 '

: (2.19)

is the radius of curvature of the ellipsoid in the direction
perpendicular to the elliptical meridian plane.

An inverse relationship can be formulated for z ¤ 0
that requires a numerical iteration on the geodetic lati-
tude,

' D tan−1
"

zp
x2 + y2

�
1+

e2N sin '

z

	#
; (2.20)

where the initial latitude that assumes the point is on the
ellipsoid (h D 0),

'.0/ D tan−1
"

zp
x2 + y2

�
1 +

e2

1 − e2

	#
; (2.21)

serves to yield convergence to micro-arcsecond accu-
racy within three iterations for heights less than 20 km.
The height then follows from

h D
�p

x2 + y2
�
cos' + z sin' − a

q
1 − e2 sin2 ' ;

(2.22)

and the longitude is given by the second equation of
(2.15).

A noniterative relationship is derived by [2.31]
based on the solution to a quartic equation; see
also [2.32]. The performance and computational effi-
ciency of different analytical and iterative algorithms
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for the conversion of Cartesian to geodetic coordinates
is, furthermore, compared in [2.33].

A number of ellipsoids have been established on the
basis of geodetic measurements, extending historically
from surveyed arc lengths along meridians to modern
best fits to mean sea level using satellite altimetry. One
of the earliest ellipsoids was computed by Airy in 1830,
having semi-major axis, a D 6 377 563:396m, and flat-
tening, f D 1=299:324964. The current internationally
adopted ellipsoid is part of the Geodetic Reference Sys-
tem of 1980 (GRS80) and has parameter values given
by

aGRS80 D 6 378 137m ;

fGRS80 D 1

298:257222101
: (2.23)

The equatorial radius was determined from satellite al-
timetry and the flattening was derived from the second-
degree zonal harmonic coefficient (dynamic form fac-
tor, J2) of the Earth’s gravitational potential [2.34]. The
parameter values of other ellipsoids determined and
used in the past may be found in [2.30]. The parame-
ter estimates of the best fitting, or mean Earth ellipsoid
(MEE) in the mean tide system are [2.35]

aMEE D 6 378 136:72˙ 0:1m ;

fMEE D 1

298:25231˙ 0:00001
: (2.24)

The GRS80 values are constants, while the MEE values
are estimates with a standard deviation and do not con-
stitute an accepted reference ellipsoid.When publishing
geodetic coordinates, '; �; h, it is always important to
specify the associated ellipsoid on which they depend.

Local coordinates in the vicinity of a point P are
Cartesian with the third axis along the ellipsoid normal

w (geodetic zenith)

x

v
(North) Q

u (East)

y

Geodetic meridian

z

P

λP
ϕP

Fig. 2.7 Local Cartesian coordinates, u; v ;w

as illustrated in Fig. 2.7. For a right-handed system, the
first axis points East and the second North. However,
a left-handed system, such as North-East-Up, is also
common. Local coordinates .u; v ;w /> of a point Q in
a system centered at P are related to the global Cartesian
coordinate differences .�x;�y; �z/> of Q with respect
to P according to

0
@
u
v
w

1
AD E

0
@
�x
�y
�z

1
A (2.25)

with

E D
0
@

− sin� + cos� 0
− sin' cos� − sin' sin� + cos'
+ cos' cos� + cos' sin� + sin '

1
A :

(2.26)

Here, the latitude ' and longitude � refer to the ref-
erence point P. The inverse relationship is obtained by
premultiplying both sides by the transpose of the rota-
tion matrix since it is orthogonal.

The elevation angle E of Q relative to P and the cor-
responding azimuth angle A (measured clockwise from
North to East) are given by

tanA D u

v

sinE D wp
u2 + v 2 +w 2

: (2.27)

These formulas relate global Cartesian coordinate dif-
ferences, as might be obtained by GNSS, to local
determinations of angles and distances. If those angles
are referenced to the local plumb line, rather than the
ellipsoidal normal, one needs to account for this deflec-
tion of the vertical. For a distance of 1 km and a vertical
deflection of 30 00, the effect on the global Cartesian co-
ordinate differences is of the order of a few centimeters
or decimeters.

Celestial coordinates refer to the location of objects
(e.g., stars) projected onto the celestial sphere. By def-
inition, the celestial sphere has no particular radius as
the coordinates define only directions. The center of
the sphere is defined to be at the origin of a Carte-
sian coordinate system, and the celestial coordinates are
called declination (ı) and right ascension (˛), analo-
gous to latitude and longitude. As such, the relationship
to Cartesian coordinates is the same as in (2.14) and
(2.15) with unit radius (r D 1). The origins for decli-
nation and right ascension require particular definitions
associated with a reference system. This is discussed
further in Sect. 2.4.
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2.2.2 Reference Systems and Frames

There is an important conceptual difference between
a reference system for coordinates and a reference
frame that applies throughout the discussion of coordi-
nate systems in geodesy. Loosely recognized in defining
and creating geodetic datums in the past, it was formal-
ized by [2.36] (see also [2.37, Chap. 9] and [2.6]):

� A reference system is a set of prescriptions and
conventions together with the modeling required to
define at any time a triad of coordinate axes.� A reference frame realizes the system by means of
coordinates of definite points that are accessible di-
rectly by occupation or by observation.

A simple example of a reference system is the set of
three mutually orthogonal axes that are aligned with the
Earth’s spin axis, a prime (Greenwich) meridian, and
a third direction orthogonal to these two in the right-
handed sense. That is, a system defines how the axes
are to be established (e.g., orthogonality), what theo-

ries or models are to be used (e.g., what is meant by
a spin axis), and what conventions are used (e.g., how
the prime meridian is to be chosen). A simple example
of a frame is a set of points globally distributed whose
coordinates are given mutually consistent numbers in
the reference system. That is, a frame is the physical
realization of the system defined by actual coordinate
values of actual points in space that are accessible to
anyone. A frame cannot exist without a system, and
a system is of no practical value without a frame.

Although the explicit difference between frame and
system was articulated fairly recently in geodesy, the
concepts have been embodied in the terminology of
a geodetic datum that can be traced to the eighteenth
century and earlier [2.30]. Indeed, the definition of a da-
tum today refers specifically to the conventions that
establish how a coordinate system is attached to the
Earth – its origin, its orientation, and its scale. In this
sense, the definition of a datum has not changed. The
meaning of a datum within the context of frames and
systems is explored in more detail in Sect. 2.3.2.

2.3 Terrestrial Reference System

Geodetic control at local, regional, national, and inter-
national levels has been revolutionized by the advent
of satellite systems, particularly GNSS that provide ac-
curate positioning capability to terrestrial observers at
all scales, where, of course, the GPS has had the most
significant impact. The terrestrial reference systems
and frames for geodetic control have evolved corre-
spondingly over the last few decades. Countries and
continents around the world are revising, redefining,
and updating their fundamental networks to take advan-
tage of the high accuracy, the ease of establishing and
densifying the control, and critically important, the uni-
formity of the accuracy and the connectivity of the con-
trol that can be achieved basically in a global setting.

2.3.1 Traditional Geodetic Datums

The traditional geodetic datum was defined somewhat
loosely by today’s standards as a set of constants and
prescriptions that specify a coordinate system for the
purpose of geodetic control [2.38]. Because of the fun-
damental differences in respective measurement tech-
niques, control was divided between horizontal and
vertical datums.

Horizontal datums (Fig. 2.8) required the defini-
tion of an origin point (a marker on the Earth’s surface
with defined geodetic latitude and longitude; or, equiv-
alently, a constraint within a network that essentially

fixed the origin), as well as a mapping surface, an
ellipsoid with defined parameters. Orientation of the
ellipsoid was defined to be parallel to the astronomic
system of the celestial sphere (Sect. 2.4). It was real-
ized by accurate measurements of azimuth with respect
to celestial north and by accounting for the deflection
of the vertical in astronomic determinations of coordi-

Topographic surface

Origin point

Ellipsoid

x

z

y

h0

λ0

ϕ0

Fig. 2.8 Traditional horizontal geodetic datum. Geodetic
surveys on the topographic surface relative to an origin
point are reduced to a mapping surface, the ellipsoid, with
proper preservation of its orientation relative to an astro-
nomic system
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nates. A vertical datum (Fig. 2.9) was similarly defined
by the height at an origin point and prescriptions for the
reference surface through that point and the associated
heights relative to the surface.

In the United States, horizontal control was estab-
lished in the latter half of the nineteenth century for
the Eastern United States and advanced with the west-
ward economic expansion to create the North American
Datum of 1927 (NAD27) with origin point at Meades
Ranch in the centrally located state of Kansas. In
1983, the horizontal datum was redefined to be geo-
centric (origin at the now practically accessible center
of mass of the Earth by tracking Earth-orbiting satel-
lites), referred to the GRS80 ellipsoid, and readjusted
with the inclusion of satellite Doppler observations
and other space techniques such as very long base-
line interferometry (VLBI [2.39, 40]). The new North
American Datum of 1983 (NAD83), already incorpo-
rating three-dimensional coordinates, assumed a fully
three-dimensional character with each new realization
that was adjusted by including continuously operating
reference stations (CORS [2.41]). The CORS network
is a cooperative endeavor among the US government
(National Geodetic Survey) and academic and pri-
vate institutions that creates precise geodetic control
throughout the United States and several worldwide sta-
tions using GNSS data. New realizations of NAD83
were adjusted as the CORS network expanded and were
designated NAD83(CORS93), NAD83(CORS94), and
NAD83(CORS96). Including also additional regional
high-accuracy GPS networks that were adjusted to fit
the NAD83(CORS96) frame, it became the geometric
part of the National Spatial Reference System, des-
ignated NAD83(NSRS2007). This was readjusted in
2011, yielding the realization NAD83(2011) with co-
ordinates and their velocities (Sect. 2.3.4) given for
the epoch t0 D 2010:0. The reference system definition
is currently (2015) in revision to bring the realization
closer to the International Terrestrial Reference Frame
(ITRF) (Sect. 2.3.2).

The vertical datum in the United States similarly
evolved from an adjustment of coast-to-coast leveling
networks constrained to zero height at various tide-
gauge stations at mean sea level. This National Geode-

Vertical datum, A Vertical datum, BMean Sea Level

P

H A
P P0

Ellipsoid

Q0

Q

H B
Q

Fig. 2.9 Traditional vertical geodetic
datum, representing an equipotential,
or level, surface in Earth’s gravity
field. Since mean sea level is not truly
level, different vertical datums tied
to mean sea level are not mutually
consistent

tic Vertical Datum of 1929 (NGVD29) was replaced in
1988 with a readjustment of existing and new leveling
data and a tie to the International Great Lakes Datum of
1985 (IGLD85) whose origin is a single point on the St.
Lawrence River in the province of Québec, resulting in
the North American Vertical Datum of 1988 (NAVD88).
Vertical control in the United States and Canada is
now undergoing a fundamental redefinition to eliminate
continent-wide error trends by defining the reference,
not by any particular origin point, but by a model for
the Earth’s gravity potential. This new geopotential ref-
erence system already exists for Canada as of 2013, and
is scheduled to be in place for the United States by the
early 2020s.

Similar progress in geodetic control is occurring in
other regions of the world, for example, in Europe and
South America, where in some cases progress is more
difficult due to the varied and heterogeneous datums es-
tablished in the pre-satellite era.

While geodetic control is now essentially three-
dimensional within a single reference system and
frame, such as NAD83(NSRS2007), vertical datums
continue to be vitally important since they define a dif-
ferent kind of height, one that is based on gravity poten-
tial, rather than pure geometry. The geopotential-based
heights are needed for any application in hydrology
since they indicate the natural flow of water.

The conversion between ellipsoidal heights, h, ob-
tained from coordinates in the modern geodetic refer-
ence system and heights,H, in a vertical datum requires
a model for the geoid undulation, or geoid height, N,
defined as the vertical separation between the geoid and
the ellipsoid (Fig. 2.10)

N D h−H −N0 : (2.28)

The geoid is the equipotential surface that closely
approximates global mean sea level and the geoid undu-
lation is determined from gravity measurements [2.42].
High-degree and high-order spherical harmonic gravita-
tional potential models such as EGM2008 can provide
global geoid undulations with an accuracy of 10 cm or
better as shown in [2.43]. In addition, a constant offset,
N0, must be determined between the geoid and the ver-
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Topographic surface

Mean Earth Ellipsoid

h H

N0

N

Vertical datum

Geoid

Fig. 2.10 The relationship between heights with respect to
a vertical datum and the ellipsoid

tical datum, as well as a possible difference between the
best-fitting MEE and the ellipsoid of the reference sys-
tem. This offset can reach several decimeters in value.

The geoid undulation itself covers a range of
roughly ˙100m with positive peak values in the North
Atlantic and Indonesian region and a minimum near the
Southern tip of India (Fig. 2.11). GNSS do not have di-
rect access to geoid-related (mean sea level) heights but
can only obtain the height with respect to a reference
ellipsoid from the navigation solution. For conversion
of ellipsoidal heights to mean sea level, a database
of precomputed geoid undulations can be used within
a GNSS receiver. As an example, [2.44] provides tabu-
lar geoid heights on a 10ı � 10ı longitude/latitude grid.
The geoid height at any user location can then be ob-
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Fig. 2.11 Geoid heights relative to the Earth ellipsoid (courtesy of Th. Fecher)

tained through interpolation using a weighted average
of the nearest four grid points with a root-mean-square
accuracy of better than 4m. Higher accuracy would re-
quire a finer grid and a more accurate geoid model, such
as EGM2008.

2.3.2 Global Reference System

The definition of a global terrestrial reference system
(or, terrestrial reference system, TRS) began in earnest
with the advent of Earth-orbiting satellites that enabled
a realization of the center of mass and thus a natu-
ral origin for the coordinate system. Other names are
conventional terrestrial reference system and geocen-
tric terrestrial reference system. The roots of efforts to
define a global system, however, can be traced back
to the turn of the last century. In 1899, the Interna-
tional Latitude Service (ILS) was established by the
International Association of Geodesy (IAG) to conduct
astronomic latitude observations that monitor the mo-
tion of Earth’s rotation axis relative to the Earth (polar
motion, Sect. 2.5.3). By observing and disseminating
this motion, latitudes and longitudes obtained by ob-
serving the stars could be corrected so that they refer to
a fixed global terrestrial system.

In 1960, it was decided at the General Assembly
of the International Union of Geodesy and Geophysics
(IUGG) to adopt as terrestrial pole the average of the
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positions of the true celestial pole on the Earth during
the period 1900–1905 (a 6 year period over which the
Chandler period of 1.2 years would repeat five times;
Sect. 2.5.3). This average was named the Conventional
International Origin (CIO).

The global reference meridian, or, origin for longi-
tudes, originally defined astronomically as the meridian
through the Greenwich observatory, near London, Eng-
land, was realized by an average, as implied by the
longitudes of many observatories around the world, cor-
rected for polar motion and length-of-day variations.

These early conventions and procedures to define
and realize a terrestrial reference system addressed
astronomic directions only; no attempt was made to de-
fine a realizable origin, although implicitly it could be
considered as geocentric. In 1984, the BIH, responsible
until this time for monitoring the pole and the Green-
wich meridian, defined the BIH Conventional Terres-
trial System (CTS) (or also BTS) based on satellite laser
ranging (SLR), VLBI, and other space techniques.With
the inclusion of satellite observations, an (indirectly)
accessible geocentric origin of the system could now be
defined. New and better satellite and VLBI observations
became available from year to year, and the BIH pub-
lished new realizations of its system: BTS84, BTS85,
BTS86, and BTS87. With the orientation of the TRS
now defined by geometric satellite and space observa-
tions, the origin of geodetic longitudes, to be consistent
with its astronomic counterpart (maintained for conti-
nuity in time keeping), is now about 102m to the east
of the Greenwich Observatory, which accounts for the
local deflection of the vertical [2.45].

In 1988, the functions of monitoring the pole and
the reference meridian were turned over to the newly es-
tablished International Earth Rotation Service (IERS).
The time service, originally also under the BIH, now
resides with the BIPM. The new reference pole real-
ized by the IERS, called the International Reference
Pole (IRP), was adjusted to fit the BIH reference pole
of 1967 – 1968 and presently is consistent with the CIO
to within ˙0:03 00 (1m).

The IERS, renamed in 2003 to International Earth
Rotation and Reference Systems Service (retaining the
same acronym), is responsible for defining and realiz-
ing both the International Terrestrial Reference System
(ITRS) and the International Celestial Reference Sys-
tem (ICRS). In each case, an origin, an orientation, and
a scale are defined among other conventions for the
system. The system is then realized as a frame by the
specification of these datum parameters and the coor-
dinates of points worldwide. Since various observing
systems (analysis centers and techniques) contribute to
the overall realization of the reference system and since
new realizations are obtained recurrently with improved

observation techniques and instrumentation, the trans-
formations among various realizations of the system are
of paramount importance. Especially, if one desires to
combine data referring to realizations of different ref-
erence systems, or to different realizations of the same
system, it is important to understand the coordinate re-
lationships so that the data are combined ultimately in
one consistent coordinate system.

The ITRS is defined by an orthogonal triad of
right-handed, equally scaled axes with the following ad-
ditional conventions:

1. The origin is geocentric, that is, at the center of
mass of the Earth (including the mass of the oceans
and atmosphere). Because measurement precision
has reached the level of detecting variations in the
center of mass due to terrestrial mass redistribu-
tions, the origin is defined as an average location
of the center of mass and referred to an epoch.

2. The scale is defined by the SI meter, which is based
on an adopted speed of light in vacuum and is con-
nected to the definition of the SI second (Sect. 2.1).

3. The orientation is defined by the directions of the
IRP and the reference meridian as given for 1984 by
the BIH. Since it is nowwell established that Earth’s
crust (on which observing stations are located) is
divided into tectonic plates that exhibit motion of
the order of centimeters per year, it is further stip-
ulated that the time evolution of the orientation of
the reference system has no residual global rotation
with respect to the crust (no-net-rotation condition).
That is, even though the points on the crust, through
which the system is realized, move with respect to
each other, the net rotation of the system with re-
spect to its initial definition should be zero.

The realization of the ITRS is the International
Terrestrial Reference Frame (ITRF) and requires that
three origin parameters, three orientation parameters,
and a scale parameter must be identified with ac-
tual values. Each new ITRF of the system is named
with the year that corresponds to the last available
data incorporated in its realization. As of this writ-
ing (2015), the latest frame is ITRF2008 [2.46], and
ITRF2013 is in preparation. The seven parameters
are not observable without conventions (see below)
and their specification is formulated by the IERS in
terms of constraints imposed on the solution of coor-
dinates from observations. Moreover, the constraints
are cast in the form of a seven-parameter similarity
transformation (commonly known as Helmert trans-
formation) from an a priori given frame to the real-
ized frame. The seven parameters include three trans-
lation parameters, Ti, that realize the origin; three
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angle parameters, Ri, that realize the orientation;
and, a scale change parameter, D, that realizes the
scale
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(2.29)

where the translation and rotation parameters are de-
fined in Fig. 2.12. For example, if the origin of an
existing frame is known to be the geocenter, then the
next realization, based on new observations, can be
related to the previous frame by constraining the trans-
lation to be zero. The transformation given by (2.29)
is a linear approximation where, because of the small
values of the transformation parameters, the neglect of
second- and higher order terms affects coordinates at
the subnanometer level.

Because these datum (transformation) parameters
are determined for points on the Earth’s crust (crust-
based frame), and because the Earth as a whole is
a dynamic entity, the parameters are associated with an
epoch, t0, and, today, are supplemented with rates of
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Fig. 2.12 Transformation parameters between coordinate
frames. The similarity transformation (2.29) yields the co-
ordinates of a point in a new frameRto that originates from
the old frameRfrom through translation of the origin by −Ti
(i D 1; 2; 3) and a left-handed rotation about the i-th axis
by angle Ri. Rotation angles Ri comply with IERS con-
ventions, whereas rotation angles "i D −Ri (corresponding
to right-handed rotations), are used by the US National
Geodetic Survey

change, making the total number of parameters equal
to 14. Thus, the i-th transformation parameter, ˇi, is
a function of time,

ˇi .t/D ˇ0;i + P̌
0;i .t − t0/ ; (2.30)

and the 14 parameters are ˇ0;i and P̌
0;i with i D 1; : : : ; 7.

Whether the origin of a coordinate system is im-
plied by a marker on the Earth’s surface or accessed
via distance measurements to Earth-orbiting satellites,
it is defined by a convention, just like all other parts of
the coordinate system. As such it is not, a priori, an ob-
servable quantity like a distance or an angle. This is the
classic datum defect problem, well known in all types
of surveying, where observations of distances and an-
gles must ultimately be related to a point or direction
that is fixed or defined by convention.

With satellite techniques, on the other hand, there is
the advantage of knowing that the center of mass is the
centroid for all orbits. Hence, the center of mass of the
Earth serves as a natural origin point that, in theory, is
accessible. That is, if the orbit is known, distance ob-
servations from points on the Earth’s surface to points
on the orbit are in a geocentric system, by definition.
Due to observational error not all origin realizations,
however, are identical as obtained by different anal-
ysis centers that, moreover, process different satellite
data (such as satellite and lunar laser ranging [2.47, 48],
GNSS [2.49], and Doppler data [2.50]). Generally, the
most precise methods are based on SLR.

For the first ITRFs in the early 1990s, it was custom-
ary to relate all frames realized by particular analysis
centers and/or satellite techniques to one of the SLR
solutions from the Center for Space Research (CSR) in
Austin, Texas, which was considered to be the best so-
lution that accesses the center of mass and thus realizes
the origin. The origins of solutions (i. e., realized coor-
dinate systems) from other techniques, such as Doppler
and GPS, were related by IERS to the ITRF origin
through a translation determined by using stations that
are common to both the CSR and the other solutions.
For later ITRFs, a weighted average of selected SLR
and GPS solutions was used to realize the origin. The
origin of ITRF2000 was realized by a weighted average
of the most consistent SLR solutions submitted to the
IERS. With ITRF2005 and ITRF2008, the IERS used
a time series over 13 years and 26 years, respectively, of
reprocessed SLR data at selected, globally distributed
sites to realize the origin.

Similarly, the scale was realized for the early ITRFs
by the SLR solutions from the CSR analysis center,
with the scale of other solutions transformed accord-
ingly. For later realizations of scale, SLR was combined
with VLBI, which accurately determines coordinate
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differences of stations separated by large distances (sev-
eral 1000 km) using observed directions to quasars [2.6,
Chap. 4.2.2].

Satellite and space observational techniques contain
no information on the absolute longitudinal orientation
of a system. This orientation has no obvious natural
reference and is completely arbitrary (the Greenwich
meridian). One might argue that the orientation of the
equatorial plane (or, equivalently, the polar direction),
like the center of mass, is a natural reference that
is accessible indirectly from astronomic observations,
VLBI, and satellite tracking. However, the polar direc-
tion is complicated, a result of both polar motion with
respect to the Earth’s crust (Sect. 2.5.3), and preces-
sion and nutation with respect to the celestial sphere
(Sect. 2.5.1). Besides this, the stations on the Earth’s
crust, which ultimately realize the ITRS, are in con-
stant motion due to plate tectonics. Thus, the adopted
convention for realizing the orientation of the ITRS is
to ensure that each successive realization after 1984 is
aligned with the orientation defined by the BIH in 1984
(with some early adjustments for different solutions of
the Earth orientation parameters (Sect. 2.5.1)).

The methods of combining different solutions and
introducing the constraints needed to address the datum
defect (i. e., specifying origin, scale, and orientation)
have become increasingly complicated as more data
are assimilated and analysis centers employ different
weighting schemes to account for the various obser-
vational accuracies. Relevant details may be found in
the IERS Conventions of 2003 and 2010 and references
therein, specifically also publications by [2.51, 52] and
their references.

The model for the coordinates of any of the observ-
ing stations participating in the realization of ITRS is
given by

x.t/D x0 + .t − t0/v 0 +
X
i

�xi.t/ ; (2.31)

where x0 and v 0 are the vectors of the coordinates
of the observing station and its velocity, defined for
a particular epoch, t0. These are solved on the basis
of observed coordinates, x.t/, at time, t, using some
type of observing system (e.g., SLR). The quantities,
�xi, are corrections applied by analysis centers to ac-
count for various, short wavelength, local geodynamic
effects, such as solid Earth tides, ocean loading, and at-
mospheric loading (Sect. 2.3.5), with the objective of
accounting for the nonconstant velocities. Details for
the corresponding recommended models are provided
by the IERS Conventions 2010 [2.6, Chap. 7]. The co-
ordinate vector, x0, and the linear velocity, v 0, for each
participating station is provided by IERS as a result of

the assimilation of all data, and these represent the con-
sequent realization of ITRS at epoch t0.

In the past, the linear velocity was modeled
largely by the NNR-NUVEL1A tectonic plate motion
model [2.32, 53, 54]. Thus,

v 0 D vNUVEL1A + ıv 0 ; (2.32)

where vNUVEL1A is the velocity given as a set of rotation
rates for the major tectonic plates, and ıv 0 is a resid-
ual velocity for the station. The major tectonic plates
and site velocities predicted from a plate motion model
are illustrated in Fig. 2.13. The newest ITRFs (since
ITRF2000) appear to indicate significant departures of
the station velocities v 0 from the NNR-NUVEL1A
model [2.55], which, however, does not impact the in-
tegrity of the ITRF.

2.3.3 Terrestrial Reference Systems
for GNSS Users

The various navigation satellite systems have adopted
specific reference systems for the provision of orbit
information to their users. While the associated realiza-
tionsmay traditionally exhibit small offsets with respect
to each other, GNSS providers are making continued
effort to align the respective realizations with current
versions of the ITRF.

In case of the US Global Positioning System,
the World Geodetic System 1984 (WGS84, [2.56])
serves as the basis for orbit determination and broad-
cast ephemeris generation in the GPS control seg-
ment. WGS84 is the equivalent of the ITRS for
the US Department of Defense (and includes also
a global gravitational model). It is the evolution of
previous reference systems, WGS60, WGS66, and
WGS72 [2.57]. The corresponding reference frame for
WGS84, as originally realized in 1987 on the ba-
sis mostly of satellite Doppler observations, agreed
approximately with NAD83. The next realization, des-
ignated WGS84(G730), made use of observations from
12 GPS stations around the world and was aligned
with the ITRF92 to an accuracy of about 20 cm in
all coordinates. Here, G730 refers to GPS week 730
(Jan. 1994), the reference epoch of the WGS84 real-
ization. Subsequent versions, known as WGS84(G873),
WGS84(G1150) [2.58], and WGS84(G1674) [2.59],
achieved continual improvements and are consistent,
respectively, with ITRF94, ITRF2000, and ITRF2008
at the level of 10, 2, and 1 cm accuracy.

For the Russian Global’naja Nawigatsionnaja Sput-
nikowaya Sistema (GLONASS), the PZ-90 (Parametry
Zemli – 90) system is employed. PZ-90 follows the
same principles as the ITRS andWGS84, but is realized
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Fig. 2.13 Tectonic plates and predicted site velocities

through different reference stations and measurements.
While the initial release of PZ-90 exhibited meter-level
offsets from WGS84, the consitency was notably im-
proved in 2007 with introduction of PZ-90.2 [2.60].
In early 2014, the GLONASS Control Segment fi-
nally switched to PZ-90.11 [2.61, 62], which offers
a centimeter-level agreement with the latest ITRF ver-
sions.

Next to WGS84 and PZ-90, independent ref-
erence systems/frames are also employed for the
BeiDou (China Geodetic Coordinate System 2000,
CGS2000 [2.63]) as well as the European Galileo nav-
igation system (Galileo Terrestrial Reference Frame,
GTRF [2.64]).

2.3.4 Frame Transformations

The parameters of the Helmert similarity transforma-
tion (2.29) are determined in a weighted least-squares
adjustment of the transformation model for the differ-
ences between coordinates of the same points in two
frames. Table 2.2 lists the transformation parameters
among the various IERS (and BIH) terrestrial refer-
ence frames since 1984. Due to the linear nature of
the transformation, the reverse transformation is ob-
tained by simply reversing the signs of the parameters.
Also, the parameter values for a transformation between
nonsuccessive frames are simply the accumulated val-
ues between the frames. However, especially for the
later frames, the epoch of their validity must be con-
sidered. Rates of the parameters are given only since
1993 and (2.30) yields transformation parameters for

other than the listed epoch. Using the last row of Ta-
ble 2.2 as an example, the translation in x between
ITRF2005 and ITRF2008 at the epoch t D 2000:0 is
given by

T1.t/D T1.t0/+ PT1 � .t − t0/
D 0:05 cm− 0:03 cm=y � .−5 y/
D 0:20 cm : (2.33)

On the other hand, each of the determined parameters
also has an associated uncertainty (given by the IERS,
but not listed in Table 2.2, which should be properly
included in any such calculation).

Table 2.3 lists transformation parameters from the
original realization of WGS84 to ITRF90 as pub-
lished by the IERS [2.65], as well as from recent
ITRFs to NAD83(CORS96) as published by the Na-
tional Geodetic Survey [2.67]. There is no origin, scale,
and orientation change between NAD83(2011) and
NAD83(CORS96). Again, uncertainties in the param-
eters are not listed. Also, the more recent realizations
WGS84 are essentially equivalent to the correspond-
ingly contemporary ITRF (Sect. 2.3.3).

Resolutions 1 and 4 of the 1991 IAG General As-
sembly [2.68] recommend that regional high-accuracy
reference frames be tied to an ITRF, where such frames
associated with large tectonic plates may be allowed to
rotate with these plates as long as they coincide with an
ITRF at some epoch. This procedure was adopted for
NAD83, which for the conterminous United States and
Canada lies (mostly) on the North American tectonic
plate. This plate has global rotational motion estimated
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Table 2.2 Transformation parameters among ITRF and BTS frames for use with the 7/14-parameter Helmert model
(2.29) and (2.30). Time-dependent transformation parameters are provided from ITRF93 onward. Based on data
from [2.6, 65, 66]

From To T1j PT1

(cm)
(cm/y)

T2j PT2

(cm)
(cm/y)

T3j PT3

(cm)
(cm/y)

R1j PR1

(0:001 00)
(0:001 00=y)

R2j PR2

(0:001 00)
(0:001 00=y)

R3j PR3

(0:001 00)
(0:001 00=y)

Dj PD
(10−8)
(10−8 =y)

t0

BTS84 BTS85 +5:4 +2:1 +4:2 −0:9 −2:5 −3:1 −0:5 1984
BTS85 BTS86 +3:1 −6:0 −5:0 −1:8 −1:8 −5:81 −1:7 1984
BTS86 BTS87 −3:8 +0:3 −1:3 −0:4 +2:5 +7:5 −0:2 1984
BTS87 ITRF0 +0:4 −0:1 +0:2 0:0 0:0 −0:2 −0:1 1984
ITRF0 ITRF88 +0:7 −0:3 −0:7 −0:3 −0:2 −0:1 +0:1 1988
ITRF88 ITRF89 +0:5 +3:6 +2:4 −0:1 0:0 0:0 −0:31 1988
ITRF89 ITRF90 −0:5 −2:4 +3:8 0:0 0:0 0:0 −0:3 1988
ITRF90 ITRF91 +0:2 +0:4 +1:6 0:0 0:0 0:0 −0:03 1988
ITRF91 ITRF92 −1:1 −1:4 +0:6 0:0 0:0 0:0 −0:14 1988
ITRF92 ITRF93 −0:2 −0:7 −0:7 −0:39 +0:80 −0:96 +0:12 1988

−0:29 +0:04 +0:08 −0:11 −0:19 +0:05 0:0
ITRF93 ITRF94 −0:6 +0:5 +1:5 +0:39 −0:80 +0:96 −0:04 1988

0:29 −0:04 −0:08 +0:11 +0:19 −0:05 0:0
ITRF94 ITRF96 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1997

0:0 0:0 0:0 0:0 0:0 0:0 0:0
ITRF96 ITRF97 0:0 0:0 0:0 0:0 0:0 0:0 0:0 1997

0:0 0:0 0:0 0:0 0:0 0:0 0:0
ITRF2000 ITRF2005 −0:01 +0:08 +0:58 0:0 0:0 0:0 −0:040 2000

+0:02 −0:01 +0:18 0:0 0:0 0:0 −0:008
ITRF2005 ITRF2008 +0:05 +0:09 +0:47 0:0 0:0 0:0 −0:094 2005

−0:03 0:00 0:00 0:0 0:0 0:0 0:0

Table 2.3 Transformation parameters for other terrestrial reference frames for use with the 7/14-parameter Helmert
model (2.29) and (2.30). Note that "1 D −R1, "2 D −R2, "3 D −R3 (after [2.62, 65, 67])

From To T1j PT1

(cm)
(cm/y)

T2j PT2

(cm)
(cm/y)

T3j PT3

(cm)
(cm/y)

"1j P"1
(0:001 00)
(0:001 00=y)

"2j P"2
(0:001 00)
(0:001 00=y)

"3j P"3
(0:001 00)
(0:001 00=y)

Dj PD
(10−8)
(10−8 =y)

t0

WGS72 ITRF90 −6:0 +51:7 +472:3 +18:3 −0:3 −547:0 +23:1 1984
WGS84a ITRF90 −6:0 +51:7 +22:3 +18:3 −0:3 +7:0 +1:1 1984
PZ-90 PZ-90.02 −107 −3 +2 0 0 −130 −22 2002
PZ-90.02 WGS-84(1150) −36 +8 +18 0 0 0 0 2002
PZ-90.11 ITRF2008 −0:3 −0:1 0:0 +0:019 −0:042 +0:002 0:0 2010
ITRF96 NAD83(CORS96) +99:1 −190:7 −51:3 +25:8 +9:7 +11:7 0:0 1997

0:0 0:0 0:0 +0:053 −0:742 −0:032 0:0
ITRF97 NAD83(CORS96) +98:9 −190:7 −50:3 +25:9 +9:4 +11:6 −0:09 1997

+0:07 −0:01 +0:19 +0:067 −0:757 −0:031 −0:02
ITRF2000 NAD83(CORS96) +99:6 −190:1 −52:2 +25:9 +9:4 +11:6 +0:06 1997

+0:07 −0:07 +0:05 +0:067 −0:757 −0:051 −0:02

a original realization; for more recent realizations, see text.

according to the NNR-NUVEL1A model [2.54] by the
rates

˝x D +0:000258 � 10−6 rad=y D +0:053mas=y

˝y D −0:003599 � 10−6 rad=y D −0:742mas=y

˝z D −0:000153 � 10−6 rad=y D −0:032mas=y

(2.34)

which explain the rotation parameter rates between
NAD83 and ITRF in Table 2.3.

Coordinates of a control point in any particular
frame are listed in terms of the Cartesian vector x0 and
a velocity Px0, both at a given epoch t0 so that at any
other epoch the coordinates within that frame are

x .t/D x0 + v 0 .t − t0/ : (2.35)
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Transformation between frames and epochs requires
consideration of both the point velocity within a frame
and the velocity of the transformation parameters. Thus,

xfrom .t0/
ˇ0! xto .t0/

Px0! xto .t/ ; (2.36)

or, also,

xfrom .t0/
Pxfrom.t0/! xfrom .t/

ˇ.t/! xto .t/ : (2.37)

Transformations (2.36) and (2.37) are equivalent if the
point and frame velocities are related according to

Pxto D Pxfrom + PT + PDxfrom + P�xfrom ; (2.38)

where

� D
0
@

0 −R3 +R2

+R3 0 −R1

−R2 +R1 0

1
A ; (2.39)

which is the time derivative (neglecting second and
higher order terms) of (2.29).

For most points within a regional frame, such as
NAD83, the within-frame velocity of a point is small
compared to the velocity of that same point in the ITRF,
since, in this example, most of the velocity within the
ITRF is due to the motion of the North American plate,
and the NAD83 rides along with that plate. However,
points on another plate within the NAD83 frame, such
as points on the West Coast that are on the Pacific Plate,
experience significant motion within the frame.

2.3.5 Earth Tides

Because the Earth is not a rigid body, the coordinates
of points on its surface change in time in response to
forces that deform its crust. The largest of these is due
to the gravitational attractions of the Sun and Moon,
which not only create the familiar periodic motion of
the ocean tides, but also deform any point on (or be-
low) the elastic Earth. The resulting periodic motion is
called the Earth tide or body tide. Furthermore, because
of the ocean tides, there is a secondary loading effect
that deforms the crust especially at points near coastal
areas. These tidal deformations are part of the correc-
tions �xi .t/ in (2.31).

In addition to the tide-induced corrections, there
are other environmental effects, such as subsidence or
uplift due to natural geophysical effects (earthquakes,
post-glacial rebound) or anthropogenic activities (sub-
surface mineral and water extraction), and due to local
hydrological effects (seasonal, secular, and episodic

changes). These are site specific and dependent on local
models.

The starting point for computing the tidal effect is
the tidal potential, which accounts for the relative grav-
itational attraction of the Sun and Moon (other bodies
have negligible effect). It is defined as the residual po-
tential after removing the potential associated with the
gravitational acceleration that is constant at all material
points of the Earth. Assuming that the gravitational ef-
fect of a celestial body,B (e.g., the Sun,ˇ, or Moon, �),
may be approximated as that of a point mass at location,
.rB; 	B; �B/, in the terrestrial reference system, the prin-
cipal tidal potential at .r; 	; �/ and time t is given by
[2.2, p. 132]

V.B/.r; 	; �; t/D GMB

5rB

�
r

rB

	2

�
2X

mD0

P2;m.sin	/P2;m.sin	B/ cos.mtB/ ;

(2.40)

where G is Newton’s gravitational constant, MB is the
mass of the body, NP2;m is a second-degree, m-th order,
fully normalized, associated Legendre function [2.42]
and

tB D tG‡ +�−˛B (2.41)

is the hour angle of the body, combining �, the Green-
wich sidereal time, tG‡ , and the right ascension, ˛B D
tG‡ +�B, of the body (Fig. 2.16). The coordinates,
rB; 	B; ˛B, and tG‡ are functions of time describing both
the orbit of the body around the Earth and Earth rota-
tion.

Equation (2.40) separates the long-period tides
(m D 0) that have annual, semiannual, monthly, and
fortnightly periods due to the orbital motion of the Earth
and Moon, and the diurnal (m D 1) and semidiurnal
(m D 2) tides due to Earth’s rotation. In fact, (2.40) is
an approximation that includes only the second-degree
harmonics of the potential. Including third-degree har-
monics, having the much smaller factor, .r=rB/

3, and
Legendre functions, NP3;m, m D 0; 1; 2; 3, would intro-
duce terdiurnal periods.

The tidal potential includes a permanent tide poten-
tial that is the average over time. Only the m D 0 term
contributes and is calculated by averaging 	B .t/ over
one orbit assuming rB is constant [2.69],

V.B/perm.r; 	/

D 3

8

GMBr2

r2B

�
3 sin2 	 − 1

� �
�
sin2 "−

2

3

	
; (2.42)



Time and Reference Systems 2.3 Terrestrial Reference System 43
Part

A
|2.3

where " is the obliquity of the ecliptic (Sect. 2.4).
Since the potential is a scalar function, the law of
superposition says that the tidal potential due to all bod-
ies is the sum of the individual tidal potentials; thus,
V D V� +Vˇ.

The tidal deformation of points on the Earth de-
rives heuristically from the elasticity of the Earth and
Hooke’s law, which states that a displacement of the
end of an elastic spring (the Earth’s surface in this case)
is linearly proportional to an applied force (the gravita-
tional pull by the body). The gravitational pull (per unit
mass) is the gradient of the potential; and, as a vector
it creates a three-dimensional deformation in the radial
and locally horizontal directions (Fig. 2.7),

0
@
�u
�v
�w

1
AD

0
BBBBBB@

`2
a

g0

@V

r cos	@�

`2
a

g0

@V

r@	
h2
2

a

g0

@V

@r

1
CCCCCCA
; (2.43)

where Earth’s equatorial radius, a, and an average value
of Earth’s gravity, g0, are introduced so that the spring
constants, h2, `2, are dimensionless (the subscript refers
to the second-degree model of the tidal potential). In-
deed, h2 was postulated by A.E.H. Love in 1909 and
has become known as a Love number. The factor of 2
is included here since Love originally assumed simple
proportionality to the tidal potential. In fact, for points
on a spherical Earth, @V=@r D 2V=a; see also [2.70] for
a definition in terms of vector spherical harmonics that
is adopted by the IERS. Likewise, `2 is called a Shida
number, although both are now generically called Love
numbers.

The displacements given by (2.43) include a com-
ponent due to the permanent tide, (2.42); but, such
a displacement is time invariant and cannot be observed.
Although the IAG in 1984 recommended that station
coordinates not be corrected for the permanent tidal de-
formation, the continuing practice is to apply the full
tidal effect, thus placing the coordinates in a tide-free
system, rather than the recommendedmean-tide system,
which only has time-varying components removed [2.6,
p. 108].

Nominal values for the Love numbers are [2.6]

h2 D 0:61 and `2 D 0:085 ; (2.44)

which yield, with the corresponding astronomical con-
stants for the Moon and Sun, a permanent deformation

at the equator of �w .0/
�

D 5:5 cm and �w .0/
ˇ D 2:5 cm.

The diurnal variations with respect to these mean values
and the simple model above amount to less than 20 cm
for the Moon and less than 10 cm for the Sun.

The Love numbers depend strongly on the density
and elastic properties of the Earth, including its liquid
core, and to a lesser extent on its ellipticity and changes
in Earth orientation (nutation and polar motion). In
particular, the resonance with the nearly diurnal free
wobble (free core nutation, Sect. 2.5.3) is significant
and illustrates that the Love numbers are also frequency
dependent. The simple model has been extended with
various levels of sophistication to account for the de-
formations observed with VLBI; see [2.70–72], and
references therein, and [2.6] that summarizes the rec-
ommended formulas.

The secondary effect on station positions, due to
ocean loading, depends on the ocean tide model and
is computed using a convolution of ocean tide height
with a Green’s function [2.73]. The effect can be sev-
eral percent of the body tide effect within continents
and several 10% near the coast [2.30]. Another source
of variable loading comes from the atmospheric tides
resulting from the diurnal heating by the Sun. These
mm-to-cm effects can be computed from corresponding
atmospheric tidal models based on worldwide baromet-
ric data.

The centrifugal acceleration associated with Earth’s
rotation changes at a point with changes in the direc-
tion of the rotation axis with respect to the crust (and
thus the terrestrial reference system). This implies a fur-
ther deformation for an elastic Earth with the periods of
polar motion (Sect. 2.5.3). It is called the pole tide al-
though the source is not an external gravitational field.
The centrifugal acceleration, ac D rVc, may be asso-
ciated with a centrifugal potential, Vc, whose residual
relative to V.0/c D 0:5!2˚

�
x2 + y2

�
, is shown by [2.71] to

be, in first-order approximation

ıVc D −
!2˚
2

r2 sin 2	
�
xp cos�− yp sin�

�
; (2.45)

where xp; yp are the coordinates of the pole in the TRS
(Sect. 2.5.3), measured in radians. This has the same
form as the second-degree tidal potential (2.42) due to
an extraterrestrial body; and, the corresponding crustal
deformation is given by (2.43). Since

ˇ̌
xp
ˇ̌
;
ˇ̌
yp
ˇ̌� 0:2 00

relative to the current mean position, the vertical vari-
ation is of the order of 0:6 cm. The effect of ocean
loading due to the pole tide, again, is site and ocean-
basin model dependent and at the level of a millimeter
[2.6, Chap. 7].
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2.4 Celestial Reference System

Throughout history and today the ultimate reference
system for positioning and navigation on and near the
Earth, as well as within our solar system is an astro-
nomic system. Its modern manifestation is the celestial
reference system (CRS). By definition, it is an inertial
system, which means that it is in free fall in the grav-
itational field of the universe and does not rotate. It is
a system in which the laws of physics in the context
of the theory of general relativity hold without requir-
ing corrections for rotations. For geodetic purposes the
CRS serves as the primal reference for positioning since
it has no dynamics. Conversely, it is the system with re-
spect to which we study the dynamics of the Earth as
a rotating body. And, finally, it serves, of course, also as
a reference system for astrometry.

The celestial reference frame (CRF) is the realiza-
tion of the CRS based on a set of coordinates of objects
on the celestial sphere. For this purpose the origin of
the celestial sphere, and thus the CRS, is defined to be
the barycenter of the solar system, which is the center
of mass, as realized by the orbits of the planets. When
appropriate or necessary, one also makes the distinction
between the CRS and the geocentric celestial reference
system (GCRS).

The origins, or zero points, of the celestial coor-
dinates, declination and right ascension, have changed
definition with a fundamental redefinition of the CRS
in 1998. Prior to this time, the definition of the celes-
tial reference system was tied directly to the dynamics
of the Earth, whereas, today it is defined almost com-
pletely independent of the Earth, although the differ-
ence in realizations is defined to be minimal for the sake
of continuity. The traditional system refers to two nat-
ural directions, the mean direction of Earth’s spin axis,
or the north celestial pole (NCP), and the direction of
the north ecliptic pole (NEP), which is perpendicular to
the mean ecliptic plane defined by Earth’s orbit around
the Sun (Fig. 2.14).

A point where the ecliptic crosses the celestial equa-
tor on the celestial sphere is called an equinox. At the

ε

North ecliptic pole (NEP)

Mean ecliptic plane Spring

North celestial pole (NCP)Summer
Celestial equator

Winter

Vernal equinox
(First Point of Aries)

Sun

ϒ
Fig. 2.14 Mean ecliptic plane (seasons
are for the Northern Hemisphere).
and natural directions for the celestial
reference system

vernal equinox, ‡ , the Sun crosses the celestial equa-
tor from south to north as viewed from the Earth. It is
the point on the Earth’s orbit when Spring starts in the
Northern Hemisphere. The angle between the celestial
equator and the ecliptic is the obliquity of the ecliptic,
approximately "D 23:44ı.

The direction of the vernal equinox defines the
traditional origin for right ascension and the celes-
tial equator is the origin for declination, as shown in
Fig. 2.15. The system of celestial coordinates is also
known as the equatorial right ascension system. The
first and third axes of this system are, respectively, the
directions of the vernal equinox and the NCP, which
are perpendicular since the vernal equinox lies in the
equatorial plane. The second axis is perpendicular to
the other two axes so as to form a right-handed system.
The intersection of the celestial sphere with the plane
that contains both the third axis and a celestial object is
called the hour circle of the object (Fig. 2.16). The right
ascension system is the basis for the celestial reference
system, where one must further fix the axes since both
the vernal equinox and the NCP are dynamic directions
that vary in time due to gravitational effects on Earth’s
rotational direction and its orbit.

The relationship between the right ascension and
longitude on the Earth is illustrated in Fig. 2.16 un-
der the assumption that the terrestrial pole and the NCP
have the same direction (Sect. 2.5.1). The name, hour
circle, refers to the convention that the right ascension
of an object is also given in terms of a sidereal time
interval (Sect. 2.1.3), where 15ı of right ascension is
equivalent to 1 h of sidereal time.

In order to define a reference system, it was nec-
essary to establish the theory of motion of the NCP
and the equinox, called the theory of nutation and pre-
cession (Sect. 2.5). Moreover, the realization of the
reference system was stamped with an epoch for which
it was valid; it was typical to determine a new real-
ization every 25 years to reflect the dynamics of the
reference system, as well as any updates in the theories
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Fig. 2.15 Celestial coordinates, ˛, ı, in the equatorial right
ascension system

of motion [2.5, p. 167]. The last such realization was
the FK5 (Fundamental Catalog No. 5) of stars referring
to the best computed equinox and NCP for the epoch,
J2000. The origins of right ascension and declination
were determined indirectly from an adjustment of ob-
served coordinates of celestial objects and their proper
motions (in other words, the equinox is not observed
directly).

The change in definition of the CRS adopted by the
International Astronomical Union (IAU) in the 1990s
was enabled by the then established history of very
accurate observations of quasars (quasi-stellar radio
sources) using the technique of Very Long Baseline In-
terferometry (VLBI, [2.39, Chap. 11.1]). Since these
beacons are at such great distances that no proper mo-
tion can be detected, that is, they have no perceptible
rotation on the celestial sphere, they may be used to de-
fine an inertial system.

This new definition of the CRS represents a change
as fundamental as that which transferred the origin of
the regional terrestrial reference system (i. e., the hor-
izontal geodetic datum) from a monument on Earth’s
surface to the geocenter. By relying strictly on geo-
metrically defined points on the celestial sphere, the
definition of the CRS has changed from a dynamic sys-
tem to a kinematic (or geometrical) system. The axes
of the celestial reference system are still (close to) the
NCP and vernal equinox, but are not defined dynami-
cally in connection with Earth’s motion. Rather they are
tied to the defining set of quasars whose coordinates are
given with respect to these axes. Moreover, there is no
need to define an epoch of reference, because (presum-
ably) these directions will never change in inertial space
(at least in the foreseeable future of mankind).

The IERS officially created the International Ce-
lestial Reference System (ICRS) starting in 1998 based
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Celestial equator

Celestial
object

Greenwich meridian

NCP

t G
Ƴ

α

ω

λ

δ

t

+

*

ϒ

Fig. 2.16 Relationship between right ascension and lon-
gitude (idealized without polar motion). The meridian of
a terrestrial point and the Greenwich meridian rotate rela-
tive to the vernal equinox due to Earth’s rotation rate, !˚.
The hour angle, tG‡ , is also the Greenwich sidereal time

on 212 defining sources, which then also constitute the
realization of the system, the International Celestial
Reference Frame (ICRF). An additional 396 candi-
date or other less well observed sources were used as
additional ties to the reference frame. The origin of
the ICRS is defined to be the center of mass of the
solar system (barycentric system) and is realized by
observations of planets and other bodies in the solar
system (such as the Jet Propulsion Laboratory (JPL)
development ephemerides) in the framework of the the-
ory of general relativity. These dynamical planetary
ephemerides are aligned with the ICRF to high accu-
racy [2.6, Chap. 3].

By Recommendation VII of the 1991 IAU Gen-
eral Assembly, the NCP and equinox of the ICRS
are supposed to be close to the mean dynamical pole
and equinox of J2000.0. Furthermore, the adopted
pole and equinox for ICRS should be consistent with
the directions realized for FK5. Specifically, the ori-
gin of right ascension for FK5 was originally de-
fined on the basis of the mean right ascension of 23
radio sources from various catalogs, with the right
ascension of one particular source fixed to its FK4
value, transformed to J2000.0. Similarly, the FK5 pole
was based on its J2000.0 direction defined using the
1976 precession and 1980 nutation series (Sect. 2.5).
The FK5 directions are estimated to be accurate to
˙50mas (milli-arcsec) for the pole and ˙80mas for
the equinox; and, it is now known, from improved ob-
servations and dynamical models, that the ICRS pole
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and equinox are close to the mean dynamical equinox
and pole of J2000.0, well within these tolerances.
The precise transformation to a dynamical system is
a frame bias that is included in the modern formu-
lations of the transformations between the celestial
and terrestrial reference frames (Sect. 2.5). This bias
is well determined and of the order of 10mas [2.6,
74].

As the VLBI measurements of the quasars improve,
the orientation of the ICRF will be adjusted with the
constraint that it has no net rotation with respect to pre-
vious realizations (analogous to the ITRF). The original
realization is designated ICRF1; and, it was extended
in 1999 and again in 2002 with additional objects ob-

served by VLBI, totaling 667 and 717, respectively.
The next significant realization, designated ICRF2, was
constructed in 2009, where now 295 quasars define the
system (being more stable and better distributed in the
sky than for ICRF1), and which also includes 3119 sec-
ondary extragalactic sources.

Aside from VLBI, the principal realization of the
ICRS is through the Hipparcos catalog, based on re-
cent observations of some 120 000 well-defined stars
using the Hipparcos (High Precision Parallax Collect-
ing Satellite), optical, orbiting telescope. This catalog
is tied to the ICRF with an accuracy of about 0:6mas
in each axis. Additional catalogs for up to 100 million
stars are described by [2.6].

2.5 Transformations Between ICRF and ITRF

The transformation from the CRF to the terrestrial refer-
ence frame requires an understanding of the dynamics
of Earth rotation and its orbital motion, as well as the
effects of observing celestial objects on a moving and
rotating body such as the Earth. Even though the new
definition of the celestial reference system (Sect. 2.4) no
longer relies on models for the dynamics of the Earth’s
pole and the vernal equinox, but because the terrestrial
system is fixed to the Earth, any transformation between
celestial and terrestrial frames still does depend explic-
itly on these dynamics.

The description of the transformation, comprising
Earth orientation parameters, has also changedwith the
adoption of the new system definition. Here, both the tra-
ditional description and the modern transformation are
treated, where the traditional one is perhaps a bit more
accessible in terms of physical intuition, whereas, the
latter tends to hide these concepts. Furthermore, the new
approach implements certain nuances necessary for an
unambiguous definition of Earth rotation. Thus, the fol-
lowing starts with the traditional approach and evolves
into the modern transformation formulas.

The theoretical description of Earth’s dynamics in
inertial space requires a system of time, and dynamic
time, being theoretically the most uniform in scale
(Sect. 2.1) is the natural choice. Because many of the
dynamics vary on scales of years or longer, the time
variable, � , is expressed typically as a (unit-less) frac-
tion of a Julian century relative to a fixed epoch

� D t − t0
36 525

; (2.46)

where t0 D 2451545:0 is the Julian day number for
J2000.0 and t is the Julian day number of the epoch of
date.

2.5.1 Orientation of the Earth in Space

The gravitational interaction of the Earth with the other
bodies of the solar system, including primarily the
Moon and the Sun, but also the planets, cause Earth’s
orbital motion to deviate from the simple Keplerian mo-
tion of two point masses in space. Also, because the
Earth is not a perfect homogeneous sphere, its rota-
tion is affected likewise by the gravitational action of
the bodies in the solar system. If there were no other
planets (only the Earth/Moon system) then the orbit of
the Earth/Moon system around the Sun would be es-
sentially a plane fixed in space. This plane defines the
ecliptic (Sect. 2.4). But the gravitational forces of the
planets cause this ecliptic plane to behave in a dynamic
way, called planetary precession.

If the obliquity of the ecliptic were zero (or the
Earth were not flattened at its poles), then there would
be no gravitational torques due to the Sun, Moon, and
planets acting on the Earth’s bulging equator. But since
"¤ 0 and f ¤ 0, these celestial bodies (primarily, the
Sun and Moon) do cause a precession of the equator
and, hence, the pole, that is known as luni-solar pre-
cession and nutation, depending on the period of the
motion [2.75]. That is, the equatorial bulge of the Earth
and its tilt with respect to the ecliptic allow the Earth
to be torqued by the gravitational forces of the Sun,
Moon, and planets, since they all lie approximately on
the ecliptic plane. Planetary precession together with
luni-solar precession is known as general precession.

The complex dynamics of the precession and nu-
tation is a superposition of many periodic motions
originating from the myriad of periods associated with
the orbital dynamics of the corresponding bodies. Con-
ventionally, the period of 18.6 years associated with
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the longest lunar cycle separates nutation from pre-
cession, where the latter can be described virtually as
a secular motion of the pole and equinox owing to
their fundamental respective periods of about 25 800
and 28 100 years. The periods of nutation depend pri-
marily on the orbital motion of the Moon relative to the
orbital motion of the Earth. The most recent models for
nutation also contain short-periodic effects due to the
relative motions of the planets. In terms of transforma-
tions, precession has been viewed as an accumulation
of mean motion over a time interval, whereas, nutation
is thought of as the correction, or residual, that trans-
forms from the mean to the true location of the pole
and equinox at a particular instant in time.

The theory for determining the motions of the co-
ordinate reference directions was developed by Simon
Newcomb at the turn of the twentieth century. Its ba-
sis lies in celestial mechanics and involves the n-body
problem for planetary motion, for which no analytical
solution exists. Instead, iterative, numerical procedures
have been developed and formulated [2.76].

Precession
Planetary precession may be described by two angles,
A and Ă, where the subscript, A, refers to the accu-
mulated angle from some fixed epoch, t0, to some other
epoch, t. Figure 2.17 shows the geometry of the mo-
tion of the ecliptic due to planetary precession from t0
to t. The pictured ecliptics and equator are fictitious in
the sense that they are affected only by precession, but
not nutation, and as such are called mean ecliptic and
mean equator. The angle, A, is the angle between the
mean ecliptics at t0 to t; while, Ă is the ecliptic lon-
gitude of the point, M, on the celestial sphere, which
identifies the axis of rotation of the ecliptic due to plan-
etary precession. The vernal equinox at t0 is denoted by
‡0. Expressions for A and Ă are truncated time series
based on the celestial dynamics of the planets.

The luni-solar precession, on the other hand, also
depends on the geophysical parameters of the Earth.
Due to the more complicated nature of the Earth’s shape
and internal constitution, no analytic formula based on
theory has been used for this part of the precession.
Instead, Newcomb gave an empirical parameter, (now)

Mean ecliptic at t

Mean ecliptic at t0

Mean equator at t0

ϒ 0

ε0

M

�A

ΠA

Fig. 2.17 Planetary precession

called Newcomb’s precessional constant, based on ob-
served rates of precession. In fact, this constant rate
is not strictly constant, as it depends slightly on time
through a general relativistic term called the geodesic
precession [2.77]. Newcomb’s precessional constant
depends on Earth’s moments of inertia and enters in the
dynamical equations of motion for the celestial equator
due to the gravitational torques of the Sun and Moon.

Figure 2.18 shows the accumulated angles of plan-
etary and luni-solar precession near the vernal equinox.
The precession angles,  A and �A, respectively, de-
scribe the motion of the mean vernal equinox along
the mean ecliptic (luni-solar precession) and along the
mean equator (planetary precession).

Due to their virtually secular variation over the near
term (few thousands of years), the planetary and luni-
solar precessional angles are expressed as polynomials
in time, formulated with a certain set of adopted con-
stants and a dynamical theory. The developments of
Newcomb and his contemporaries was reformulated
and extended in precision by [2.77] based on constants
adopted by the IAU. This was further extended in preci-
sion and updated in 2000 and again in 2006 by the IAU
based on the works of [2.58, 78]. The resulting model,
designated the IAU 2006 precession, includes, for ex-
ample, expressions

 A D 5038:48150700� − 1:079006900�2

− 0:0011404500�3 + � � �
�A D 10:55640300� − 2:381429200�2

− 0:0012119700�3 + � � � ; (2.47)

for the angles  A and �A, where � is given by (2.46)
and where fourth- and fifth-order terms are omitted here
for brevity. The linear parts then give the instantaneous
rates of precession at t0. The rate of luni-solar preces-
sion of the vernal equinox along the mean ecliptic is

Mean ecliptic at t

Mean ecliptic at t0

Mean equator at t0

Mean equator at t

ϒ 0

ϒ

ε0

ε

�A
ΠA

χA

ΨA

Fig. 2.18 General precession of the vernal equinox. Plane-
tary precession along the mean equator is indicated by the
angle, �A, and  A denotes the luni-solar precession along
the mean ecliptic (not to scale)
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approximately

d

d�
 A

ˇ̌
ˇ̌
�D0

� 50:4 00=y ; (2.48)

and the planetary precession of‡ along the mean equa-
tor is approximately

d

d�
�A

ˇ̌
ˇ̌
�D0

� 0:106 00=y : (2.49)

Combined the vernal equinox has a rate on the
mean equator of about .50:4 00=y � cos "0/ − 0:106 00=y D
46:1 00=y, which prompted the recently revised defini-
tion of Earth rotation angle that removes this from
the defined origin for right ascension in the instanta-
neous celestial coordinate system and thus indicates
pure Earth rotation rate (Sect. 2.1.3).

Luni-solar precession is by far the largest compo-
nent of general precession and causes the Earth’s spin
axis to precess with respect to the celestial sphere and
around the ecliptic pole with a period of about 25 800
years. Expressions similar to (2.47) for other angles
(e.g., the obliquity of the ecliptic, ") are given by [2.78].

One way to determine the changes in celestial coor-
dinates due to the effect of general precession of the
coordinate frame is with the use of the precessional
elements, �A, zA, 
A, defined in Fig. 2.19. Let the coor-
dinates of a point on the celestial sphere be ˛0; ı0 at t0,
and due to precession of the frame, they become ˛m; ım
at epoch, t. In terms of unit vectors, define these points

Mean equator at t0

Mean equator at t

ϒ 0

ϒ

θA

θA

P0

P

zA

zA

90°

90°
Q

ζA

ζA

Ascending node 
of the equator

Fig. 2.19 Traditional precessional elements, �A, zA, 
A, for
the coordinate frame at epoch, t, relative to the frame at t0

as

r0 D
0
@
cos˛0 cos ı0
sin˛0 cos ı0

sin ı0

1
A (2.50)

and rm, analogously. Then, the transformation between
the two frames is achieved by the rotations

rm D R3.−zA/R2.+
A/R3.−�A/ r0
D Pr0 (2.51)

where it is noted that the great circle arc, 1P0PQ, inter-
sects both mean equators of t0 and of t at right angles
because it is an hour circle with respect to both poles, P0
and P. Rj

�
j̨
�
denotes the usual orthogonal rotation ma-

trix for a rotation by the angle, j̨, about the j-th axis of
a right-handed Cartesian coordinate system (Table 2.4).
P is called the precession transformation matrix.

The precessional elements for the IAU 2006
model [2.78, 81] are given by

�A D 2:65054500 + 2306:08322700�

+ 0:298849900�2 + 0:0180182800�3

− 0:597100 � 10−6�4 − 3:17300 � 10−7�5
zA D −2:650545300 + 2306:077181300�

+ 1:0927348300�2 + 0:01826837300�3

− 28:59600 � 10−6�4 − 2:90400 � 10−7�5

A D 2004:19190300� − 0:429493400�2

− 0:04182200�3 − 7:08900 � 10−6�4
− 1:27400 � 10−7�5 ; (2.52)

where, however, these expressions do not include the
frame bias introduced with the change in celestial ref-
erence system definition (Sect. 2.4).

Nutation
The nutations, also called astronomic nutations, de-
scribe the dynamics over the shorter periods, and, in-
deed, they are modeled as a series of sines and cosines.
As a correction to the mean frame at the epoch of date, t,
the transformation for nutation yields coordinates in the
true or instantaneous frame. This true frame is called
the intermediate frame in transformations between the
celestial and terrestrial frames and is discussed in more
detail in Sect. 2.5.4.

Since the nutations are primarily due to the luni-
solar attractions, they are modeled firstly in terms of the
ecliptic coordinates of the Sun and Moon. Traditionally,
the nutations are expressed by two angles, �" and � ,
that, respectively, describe the change (from mean to
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Table 2.4 Elementary rotation matrices. Multiplication of a coordinate vector referred to a frame Rfrom by matrix Ri

provides the coordinates of the same vector in a frame Rto, which is obtained from Rfrom by a right-handed rotation by
angle ˛ about the i-th axis (after [2.79, 80])

Rotation about x-axis: Rotation about y-axis: Rotation about z-axis:

R1.˛/D
0
@
1 0 0
0 + cos˛ + sin ˛
0 − sin ˛ + cos˛

1
A R2.˛/D

0
@
+ cos˛ 0 − sin ˛

0 1 0
+ sin ˛ 0 + cos ˛

1
A R3.˛/D

0
@
+ cos ˛ + sin˛ 0
− sin˛ + cos ˛ 0

0 0 1

1
A

true) in the tilt of the equator with respect to the mean
ecliptic, and the change (again, from mean to true) of
the equinox along the mean ecliptic (Fig. 2.20). There
is no need to transform from the mean to the true eclip-
tic since only the dynamics of the true equator are of
interest. The true vernal equinox,‡T , is always defined
to be on the mean ecliptic.

The nutation in longitude, � , is primarily caused
by the ellipticities of the Earth’s and Moon’s orbits. The
nutation in obliquity, �", is mainly due to the Moon’s
orbital plane being out of the ecliptic (by about 5:145ı).
Models for the nutation angles are given in the form

� D
nX

iD1

�
ai sinAi + a0

i cosAi
�

�"D
nX

iD1

�
bi cosAi + b

0
i sinAi

�
; (2.53)

where each amplitude, ai; a0
i; bi; b

0
i, is a linear function

of � and the angle

Ai D n`;i`+ n`0;i`
0 + nF;iF + nD;iD+ n˝;i˝ ; (2.54)

represents a linear combination of fundamental argu-
ments (Delaunay variables, [2.82]) of the solar and
lunar orbits:

` Mean anomaly of the Moon,
`0 Mean anomaly of the Sun,
F Mean longitude of the Moon minus the mean longi-

tude of the Moon’s ascending node,
D Mean elongation of the Moon from the Sun,
˝ Mean longitude of the ascending node of the Moon.

Mean ecliptic at t

Mean equator at t

True equator at t

ϒ T

ϒ
εε +∆ε

∆ψ sin ε

∆ψ

Fig. 2.20 Nutation elements, �" and � 

The corresponding arguments are introduced for the
planetary orbits in an expanded theory. The integer mul-
tipliers, n`;i; : : : ; n˝;i, specify how these variables are
combined in the argument, Ai.

The theory and series developed by [2.76] in-
cluded n D 69 terms for � and n D 40 terms for
�". The subsequent theory and series [2.83] adopted
by the IAU in 1980, which included modifications for
a nonrigid Earth model [2.71] had n D 106 terms. The
IAU1980 nutation model was replaced in 2003 by the
new nutation model of [2.58], designated IAU2000A
(2000B is an abbreviated, less precise version). This
model accounts for the mantle anelasticity, the effects
of ocean tides, electromagnetic couplings between the
mantle, the fluid outer core, and the solid inner core, as
well as various nonlinear terms not previously consid-
ered.

A slight revision of the model due to the new IAU
2006 precession model is designated the IAU2000AR06

nutation model, which has 1320 terms for� and 1037
terms for�" ([2.6] and [2.84, Tables 5.3a,b]). Table 2.5
summarizes the largest of the nutation amplitudes and
associated variables and parameters according to this
model. The corresponding expressions for the Delau-
nay variables as low-order polynomials in � are also
given in [2.6, p. 67]. The periods of the nutations may
be computed from the linear coefficients of the re-
sulting polynomial expressions for the angle, Ai. The
high-index angles, Ai, also include the longitudes of the
planets. The frame bias (Sect. 2.4) is already incorpo-
rated in Table 2.5.

Figure 2.21 depicts the motion of the pole due to
the dominant luni-solar precession combined with the
largest of the nutation terms. This diagram also defines
the nutational ellipse that describes the extent of the
true motion with respect to the mean motion. The semi-
axis of this ellipse that is orthogonal to the mean motion
is the principal term in the nutation in obliquity and
is also known as the constant of nutation. The values
for it and for the other semi-axis, given by � sin "
(Fig. 2.20), can be inferred from Table 2.5. The total
motion of the pole on the celestial sphere is due to the
superposition of the general precession and all the nu-
tations.

The transformation at the epoch of date, t, from the
mean frame to the true frame, referring to Fig. 2.20, is
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Table 2.5 The dominant terms of the IAU2000AR06 series for nutation in longitude and obliquity, referred to the mean
ecliptic of date. � , as defined in (2.46) denotes the number of Julian centuries since 1.5 Jan 2000. Note that the index i
does not correspond to the order of the IAU �" components.

i Period (d) ai (10−6 00) bi (10−6 00) n`;i n`0;i nF;i nD;i n˝;i

1 6798:4 −17 206 424:18 −17 418:82� +9 205 233:10 +883:03� 0 0 0 0 +1
2 182:6 −1 317 091:22 −1369:60� +573 033:60 −458:70� 0 0 +2 −2 +2
3 13:7 −227 641:81 +279:60� +97 846:10 +137:40� 0 0 +2 0 +2
4 3399:2 +207 455:40 −69:80� −89 749:20 −29:10� 0 0 0 0 +2
5 365:3 +147 587:70 +1181:70� +7387:10 −192:40� 0 +1 0 0 0
6 27:6 +71 115:90 −87:20� −675:00 +35:80� +1 0 0 0 0
7 121:7 −51 682:10 −52:40� +22 438:60 −17:40� 0 +1 +2 −2 +2
8 13:6 −38 730:20 +38:00� +20 073:00 +31:80� 0 0 +2 0 +1
9 9:1 −30 146:40 +81:60� +12 902:60 +36:70� +1 0 +2 0 +2

Luni-solar precession

Mean motion of pole

∆ε, constant 
of nutation = 9.2"

True motion of pole

Mean
ecliptic
pole

Nutational ellipse

18.6 y = 6.2'

∆ψ sin ε
= 6.86"

∆ψ
ε

Fig. 2.21 Dominant components of the combined general
precession and nutation of the pole on the celestial sphere

accomplished with the following rotations,

r D R1.−"−�"/R3.−� /R1."/ rm
D N rm (2.55)

where " is the mean obliquity at epoch, t, and the true
right ascension and declination are related to r as in
(2.50).

The combined transformation due to precession and
nutation from the epoch, t0, to the current epoch, t,
is given by the combination of equations (2.51) and
(2.55),

r D NP r0 : (2.56)

The IAU 2006/2000A precession–nutation model is
accurate to about 0:3mas. For those seeking the high-
est accuracy and temporal resolution, small corrections

(called celestial pole offsets) obtained from continu-
ing VLBI observations, may be applied to the nutation
series. For example, the most recent model does not
contain the diurnal motion due to the free-core nutation
(FCN) caused by the interaction of the mantle and the
rotating fluid outer core ([2.75]; see also Sect. 2.5.3).
The IERS publishes differential elements in longitude,
ı , and obliquity, ı", that can be added to the elements
implied by the nutation series

� D� .model/ + ı 

�"D�" .model/+ ı" : (2.57)

2.5.2 New Conventions

The new definition of the celestial reference system
(CRS, Sect. 2.4) was prompted not only by the ability
to realize the system geometrically with accurate VLBI
observations, but also by a critical analysis of the sys-
tem conventions for the origin of right ascension [2.85,
86]. Specifically, by avoiding a dynamical definition of
the CRS axes, there is no particular reason to use the
vernal equinox on the mean ecliptic as an origin of
right ascensions, especially because even in the mean
it is a dynamical point on the celestial sphere. That is,
as an origin point it rotates about the NCP due to the
precessional rotation of the ecliptic. This must then be
corrected when considering the rotation of the Earth
with respect to inertial space (Greenwich sidereal time,
or the hour angle at Greenwich of the vernal equinox;
Sect. 2.1.3).

In 2000, the IAU adopted a set of resolutions that
precisely adhered to a new, more accurate, and simpli-
fied way of dealing with the transformation between the
celestial and terrestrial reference systems. The IERS,
in 2003, similarly adopted the new methods based on
these resolutions [2.87]. These were reinforced with
IAU resolutions in 2006 and adopted as part of the IERS
Conventions 2010. The true NCP, previously also called
the celestial ephemeris pole (CEP) with a resolution of
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the IAU in 1979, now is called the celestial intermedi-
ate pole (CIP), thus identifying it as a transition between
celestial and terrestrial reference frames. The new con-
ventions also revised the origin for right ascension in
this intermediate frame so as to eliminate residual ro-
tations not associated with Earth rotation, while also
ensuring continuity with the previously defined origin.
These profoundly new definitions solidify the paradigm
of kinematics (rather than dynamics) upon which the
celestial reference system is based. In addition, the de-
scription of precession and nutation is now combined in
a single transformation from t0 to t.

Suppose that the instantaneous pole, P, on the ce-
lestial sphere coincides with the reference pole, P0, at
some fundamental epoch, t0. At the epoch of date, t, the
position of P then has celestial coordinates as shown in
Fig. 2.22. These coordinates are the co-declination, d,
and the right ascension, E, with respect to the reference
origin,˙0. The true or instantaneous equator (the plane
perpendicular to the axis through P) at time, t, intersects
the reference equator (associated with P0) at two nodes
that are 180ı apart. The hour circle of the node, N, is
orthogonal to the great circle arc bP0P. Therefore, the
right ascension of the ascending node of the equator is
90ı plus the right ascension of the instantaneous pole, P.
The origin for right ascension at the epoch of date, t, is
defined kinematically under the condition that there is
no rotation rate of the instantaneous coordinate frame
about the pole due to precession and nutation. This is
the concept of the nonrotating origin (NRO), which, as
origin for right ascensions on the instantaneous equator,
is now called the CIO; denoted as ¢ in Fig. 2.22).

Rather than successive transformations involving
precessional elements and nutation angles, the transfor-
mation is more direct in terms of the coordinates, d and
E. The additional parameter s defines the instantaneous
origin of right ascension as an NRO (see below). Anal-
ogous to (2.51) and (2.55),

r D R3.−s/R3.−E/R2.d/R3.E/ r0

D Q>r0 ; (2.58)

which is easily derived by considering the succes-
sive rotations as the origin point transforms from the
reference origin, †0, to the instantaneous origin, ¢
(Fig. 2.22). Equation (2.58) not only replaces (2.56), but
also incorporates the new conventions for defining the
intermediate origin in right ascension (it is no longer the
true vernal equinox). The IERS Conventions 2003 (and
later) define the transformation matrix, Q, as a rotation
from the system of the instantaneous pole and origin to
the reference system.

The total rotation rate of the pole, P, in inertial space
is due to the rates in the coordinates, d;E, and in the

Instantaneous pole

Instantaneous equator at t

Reference 
equator

P0 (reference pole)
E

E N

d

d

P

n n0

m

s + E
90°

90°σ

Σ0

Fig. 2.22 Coordinates of the instantaneous pole in the ce-
lestial reference system

parameter, s. Defining three noncolinear unit vectors,
n0, m, n, as shown in Fig. 2.22, the total rotation rate
may be expressed as

� D n0 PE +mPd − n � PE + Ps� ; (2.59)

where the dots denote time derivatives. Now, s is cho-
sen so that the total rotation rate, � , has no component
along n. That is, s defines the origin point, ¢ , on the in-
stantaneous equator that has no rotation rate about the
corresponding polar axis (it is thus a nonrotating ori-
gin). This condition is formulated as� �n D 0, meaning
that there is no component of the total rotation rate
along the instantaneous polar axis. Since n �m D 0 and
n � n0 D cos d, (2.59) implies that

Ps D .cos d −1/ PE : (2.60)

Defining coordinates

0
@
X
Y
Z

1
AD

0
@
sin d cosE
sin d sinE
cos d

1
A ; (2.61)

it is easily shown that

Q D
0
@
1 − aX2 −aXY X
−aXY 1 − aY2 Y
−X −Y 1 − a.X2+Y2/

1
AR3.s/

(2.62)
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where a D 1=.1+ cos d/. Furthermore, since

X PY − Y PX D − PE �Z2 − 1
�
; (2.63)

(2.60) integrates to

s D s0 −

tZ

t0

X PY − Y PX
1 + Z

dt ; (2.64)

where s0 D s.t0/ is chosen so as to ensure continuity
with the previous definition of the origin point at the
epoch January 1, 2003.

Expressions for X and Y can be obtained directly
from the precession and nutation equations [2.86]. For
the latest IAU 2006/2000A precession–nutation mod-
els [2.6],

X D −0:01661700 + 2004:19189800�

− 0:429782900 �2 − 0:1986183400�3

− 0:00000757800 �4 − 0:000005928500�5

+
nX

iD1

�
ei sinAi + e

0
i cosAi

�

Y D −0:00695100 − 0:02589600 �

− 22:407274700 �2 + 0:0019005900 �3

+ 0:00111252600 �4 − 0:000000135800 �5

+
nX

iD1

�
fi sinAi + f

0
i cosAi

�
; (2.65)

where � is given by (2.46), the coefficients, ei, e0
i, fi, f

0
i

are polynomials in � , and the angles, Ai, are given by
(2.54) including, for the higher indices, i, expressions
for the longitudes of the planets (see Tables 5.2a,b in the
electronic supplement [2.84] to the IERS Conventions
2010 [2.6]).

The corresponding series expression for the param-
eter s includes all terms larger than 0:5�as (micro-
arcsec), as well as the constant s0

s D −
1

2
XY + 94+ 3808:65 �

− 122:68 �2 − 72574:11 �3

+
X
k

Ck sin˛k +
X
k

Dk sinˇk

+
X
k

Ek� cos �k +
X
k

Fk�
2 sin 
k .�as/ :

(2.66)

The coefficients Ck, Dk, Ek, Fk and the arguments, ˛k,
ˇk, �k, 
k, are elaborated by [2.6, p. 59]. Values of s

are less than 0:01 00 (until the early 2030s) and can be
ignored for transformations at that level of accuracy.

The transformation formulas (2.65) and (2.66) yield
an accuracy of about 0:3 � 10−3 00 in the position of
the pole and incorporate the frame bias described in
Sect. 2.4.

2.5.3 Polar Motion

The previous sections describe Earth’s orientation from
the celestial perspective – how the direction of an axis,
such as the spin axis, progresses in time on the celestial
sphere due to precession and nutation. From the terres-
trial view, however, the spin axis and various other axes
associated with Earth’s rotation and geometry also ex-
hibit motion with respect to the Earth’s crust due to the
natural dynamics of the rotation. Euler’s equations de-
scribe the motion of the principal (geometric) axes for
a rigid body, but because the Earth is partially fluid and
elastic, the motion of these axes is not accurately pre-
dictable.

The details of the theoretical and mathematical
developments of the dynamics equations for elastic ro-
tating bodies may be found in [2.37]. These dynamics
are influenced both by the internal composition and
fluid characteristics of the Earth (nonforced, or free mo-
tion) and external gravitational torques that deform the
Earth (forced motion). For example, the free motion of
the principal axis (also called figure axis) corresponding
to Earth’s polar axis of symmetry has a circular diurnal
motion relative a mean fixed location (mean Tisserand
axis) with radius of about 60m. The spin and angular
momentum axes, on the other hand, have an order of
magnitude smaller motion due to their greater stability,
or relative insensitivity to Earth’s deformation.

The change in direction of an axis, such as the
instantaneous spin axis, of the Earth with respect to
the surface of the Earth is called polar motion (also
wobble). The motion is described by local coordinates,
xp,yp, with respect to the reference pole of the terrestrial
reference system. Figure 2.23 shows the polar motion
coordinates for the CIP; note the defined direction of
y, which is opposite to the y-axis of the right-handed
system of Fig. 2.7. Viewed as horizontal Cartesian co-
ordinates, their values change by only a few meters over
several years; typically they are given by the subtended
central angle, where 1 00 corresponds approximately to
30m on the Earth’s surface.

The principal component of polar motion is the
Chandler wobble. This is basically the free Eulerian
motion which would have a period of about 304 days,
based on the moments of inertia of the Earth, if the
Earth were a rigid body. Due to the elastic yielding of
the Earth, resulting in displacements of the maximum
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Fig. 2.23 Polar motion coordinates

moment of inertia, this motion has a longer period of
about 430 days. S. C. Chandler observed and analyzed
this discrepancy in the period in 1891; and, Newcomb
gave the dynamical explanation [2.79, p. 80], thus also
proving that the Earth is, in fact, not a rigid body. The
period of this main component of polar motion is called
the Chandler period; its amplitude is about 0:2 arcsec.
Other components of polar motion include the approxi-
mately annual signal due to the redistribution of masses
by way of meteorological and geophysical processes,
with an amplitude of about 0:05−0:1 00, and the nearly
diurnal free wobble, due to the slight misalignments of
the rotation axes of the mantle and liquid outer core
(also known as the free core nutation, with magnitude
of about 0:1−0:3 � 10−3 00 and period of about 430 days
with respect to the celestial sphere). Finally, there is
the so-called polar wander, which is the secular mo-
tion of the pole. During 1900–2000, Earth’s spin axis
wandered about 0:004 00 per year in the direction of the
280ı meridian. Figure 2.24 shows the polar motion for
the period 2000–2010, and also the general drift for the
last 110 years.

If re is a unit vector that defines a geocentric di-
rection of a point in the terrestrial reference system in
terms of spherical coordinates

re D
0
@
cos� cos	
sin� cos	

sin	

1
A ; (2.67)

then the transformation from the terrestrial reference
pole to the instantaneous, or intermediate pole (CIP),
is given with appropriate rotations by

ri D R1.yp/R2.xp/ re
D W re (2.68)

Just as the instantaneous celestial system has a non-
rotating origin for right ascension, one may define an
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Fig. 2.24 Polar motion from 2000 to 2010, and polar wan-
der since 1900. Polar motion coordinates are obtained from
IERS and are smoothed to obtain the trend

instantaneous terrestrial system that has a nonrotating
origin for longitudes, called the Terrestrial Interme-
diate Origin (TIO). In this way, the only difference
between the instantaneous celestial and terrestrial sys-
tems is Earth’s rotation; the polar axes are the same.

With a derivation completely analogous to that for
the precession–nutation matrix, Q, the polar motion
matrix is

W D R3.−s
0/

�
0
@
1 − a0x2p a0xpyp −xp
a0xpyp 1 − a0y2p yp
xp −yp 1 − a0.x2p + y2p/

1
A ;

(2.69)

where a0 D 1=2+
�
x2p + y

2
p

�
=8. The parameter s0 defines

the location of the TIO on the instantaneous equator
through an expression that is analogous to (2.66). By
neglecting terms of second and higher orders, the exact
equation (2.69) is approximately equal to

W D R3.−s0/R1.yp/R2.xp/ : (2.70)

Furthermore, s0 is significant only because of the largest
components of polar motion and an approximate model
is given by

s0 D −0:001500
�
a2c
1:2

+ a2a

	
� ; (2.71)

where ac and aa are the amplitudes, in arcsec, of the
Chandler wobble (O.0:2 00/) and the annual wobble
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(O.0:05 00//. Hence, the magnitude of s0 is of the order
of 0:1 � 10−3 arcsec.

The polar motion coordinates are tabulated by the
IERS as part of the Earth Orientation Parameters (EOP)
and predicted on the basis of observations, such as from
VLBI and satellite ranging. Thus, W is a function of
time, but there are no analytic models for polar motion
as there are for precession and nutation. For the high-
est precision, the polar motion coordinates should be
amended to include motions corresponding to nutations
and tidal effects [2.6, Chaps. 5 and 8] with periods less
than 2 days in the GCRS in order to comply with the
definition of the intermediate pole.

2.5.4 Transformations

It is the current convention to formulate the transforma-
tion between celestial and terrestrial reference systems
via an intermediate system. This intermediate, or true,
or epoch-of-date system describes either precession and
nutation when transformed from the celestial refer-
ence system, or polar motion and Earth rotation when
transformed from the terrestrial reference system. As
a dynamical system it is not a reference system since
coordinates in this system vary significantly in time. For
this reason, the intermediate system has also been called
an ephemeris system. The newer intermediate nomen-
clature, more descriptive of the system’s function, was
adopted through a number of resolutions by the IAU
during 2000–2006.

The ideal choice of the intermediate system largely
falls on the choice of polar axis since the choice for
the origin of the intermediate right ascension is now
fixed by the nonrotating origin. In 1979 this pole was
defined as having no motions with periods less than 2
days either with respect to the celestial or the terrestrial
reference systems. The 2-day restriction on periods was
consistent with the observational capability at the time
to resolve such motions. The Celestial Ephemeris Pole
(CEP), thus defined, divided the observable polar mo-
tion and predictable precession/nutations.

With improved VLBI observational techniques and
data processing, shorter periods of motion could be
discerned and in 2000 the IAU resolved to refine the
definition of the intermediate pole. The newly named
celestial intermediate pole (CIP) by definition, like the
CEP, moves on the celestial sphere with periods greater
than 2 days (frequencies less than ˙0:5 cycles per side-
real day, cpsd). This includes all the conventional pre-
dictable precessions and nutations produced by external
gravitational torques on the Earth. Also included are the
observed polar motions within ˙ 0:5 cpsd of Earth’s di-
urnal rotation frequency (the diurnal retrograde band)
since it can be shown that they are equivalent to nu-

tations with periods larger than 2 days. The terrestrial
motions of the CIP, on the other hand, are defined
to be those with frequencies outside the diurnal ret-
rograde band. They not only include the conventional
polar motions, such as the Chandler wobble, but also
the high-frequency nutations, which are equivalent to
polar motions outside this band. For additional details
on these conventions, see [2.78, 88] and [2.75, p. 86].

It has been argued [2.89] that the intermediate pole
is not essential in the transformation between the ter-
restrial and the celestial frame and that a combination
of model and observations in a single transformation
avoids much confusion and debate about the definition
of the CIP. However, with current conventions the prac-
tical transformation between celestial and terrestrial
reference frames combines the transformations (2.58)
and (2.68) with Earth rotation,

rTRS D W>R3.
/Q>rCRS ; (2.72)

where 
 is the Earth rotation angle (Sect. 2.1.3). This
is called the CIO method of transformation, referring
to the new convention of defining the origin for right
ascension in the intermediate celestial system by the
nonrotating origin. Alternatively, the so-called equinox
method, uses the Greenwich sidereal time for the angle
of Earth’s rotation and the traditional precession and nu-
tation series, given by (2.56)

rTRS D W>R3.GAST/NPB rCRS : (2.73)

where a small rotation, B, is included to account for the
frame bias.

Equations (2.72) and (2.73), of course, can be re-
versed to obtain coordinates in the CRF from coordi-
nates in the terrestrial reference frame by noting that
each rotation matrix is orthogonal – its inverse is its
transpose

rCRS D QR>
3 .
/WrTRS (2.74)

and

rCRS D B>P>N>R>
3 .GAST/WrTRS : (2.75)

In applying the transformation (2.72), or (2.73), to ob-
served points on the celestial sphere, it is important to
consider any observational effects on the celestial co-
ordinates of objects, such as actual, or proper motion
(e.g., of stars), parallax due to the observer’s changing
position relative to the barycenter, and aberration due
to the velocity of the observer relative to the barycen-
ter. These effects are of primary interest for directional
(e.g., optical or VLBI) observations of celestial bodies
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but of limited relevance for GNSS data processing. For
a detailed description, interested readers are referred
to [2.5].

No matter whether the equinox method or the CIO
method is adopted, the CRF-to-TRF transformation is
characterized by extremely lengthy series expansions
of the respective rotation angles. In order to facilitate
the correct and consistent application of the conven-
tional transformation, all relevant coefficients are made
available in electronic form [2.84] by the IERS. Fur-
thermore, various computer implementations of the
transformations (or selected aspects thereof) are of-

fered by the IAU, the IERS, and individual authors.
Such software may be applied directly, as a reference
for validating independent implementations, or simply
for better understanding of the underlying transforma-
tion concepts. Common examples include, for example,
the IAU Standards of Fundamental Astronomy (SOFA,
[2.90]) and the AstroRef package of [2.74]. Computa-
tional and implementation issues of the transformations
are addressed in [2.91, 92]. Among others, the authors
highlight the benefit of interpolating from a grid of pre-
computed values, when evaluating the transformation
for a dense set of nearby epoch values.

2.6 Perspectives
This chapter has introduced the basic concepts of mod-
ern space–time reference systems and frames that have
jointly been developed by astronomers and geodesists
as a basis of their work. They enable a concise descrip-
tion of the Earth’s motion in space and the location
of objects on or near the Earth. Users of global navi-
gation satellite systems are inevitably confronted with
the issue of coordinates and reference systems, when
it comes to the exchange and proper understanding of
measured positions. Since GNSS provides essentially
four-dimensional observations, with time as the fourth
component of the navigation solution, the underlying
concepts and conventions of time measurements are
therefore equally important in all aspects of GNSS nav-
igation.

Different GNSSs such as GPS, GLONASS, Bei-
Dou, and Galileo have historically employed different
time frames (realized by independent atomic clocks)
and spatial reference frames (realized by different fun-
damental reference stations and partly different tech-
niques). This affects the satellite orbit and clock infor-
mation provided to the users and impacts a consistent
navigation solution based on observations of multiple
GNSS constellations. Fortunately, much progress has
been achieved over the past decade. Individual frame
realizations as used by the various GNSSs today ex-
hibit centimeter-level differences that are well below
the typical meter level accuracy of broadcast naviga-
tion information. Still, however, systematic time offsets
(at the 10−100 ns level) between GNSS-specific time
scales need to be carefully considered in the position-
ing and taken into account in the employed algorithms
(Chap. 21).

Considering the high-level of accuracy that can
today be achieved through carrier-phase-based GNSS
positioning techniques, users are confronted with the
fact that the Earth’s crust is far from solid and itself
subject to permanent changes. This includes both long-

term changes such as tectonic plate motion (Sect. 2.3.2)
but also periodic site shifts due to solid Earth and ocean
tides (Sect. 2.3.5). Even though differential GNSS po-
sitioning techniques (Chap. 26) can offer (relative)
accuracies down to the millimeter level, their use is
largely unaffected by such intricate details. Undiffer-
enced, precise point positioning (PPP) techniques, in
contrast, aim at providing absolute positions in a global
reference frame. Here, a proper understanding of the
underlying frame definitions and the consistent applica-
tion of conventional corrections (e.g., for frame motion
or tides) in the PPP software becomes an essential as-
pect of the GNSS data processing (Chap. 25). Similarity
transformations between different regional and global
frames (Sect. 2.3.4) or the transition between ellipsoidal
and geoid heights (Sect. 2.3.1) are likewise important
aspects of GNSS surveying (Chap. 35) and geodesy
(Chap. 36).

While most precise GNSS users can confine them-
selves to a proper understanding of terrestrial reference
systems and frames, the relation betwen celestial and
terrestrial frames as discussed in Sect. 2.5 is likewise
of relevance for various specific aspects of GNSS data
processing. This includes, for example, the generation
of GNSS precise orbit products (Chap. 34) and the
GNSS-based precise orbit determination of satellites in
low Earth orbit (Chap. 32). Satellite orbits and their
equations of motion are most naturally expressed in
a celestial frame, while the locations of GNSS moni-
toring stations are best described in a terrestrial frame.
Conventional relations for the CRF-to-TRF transforma-
tion are essential for consistency of products obtained
by individual analysis centers. On the other hand, the
joint adjustment of satellite orbits, site locations, and
Earth orientation parameters has become a vital part of
space geodesy (Chap. 36) and contributes to a continued
improvement of references frames and the understand-
ing of Earth rotation.
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