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Abstract. Traditional face recognition algorithms can achieve significant
performance under well-controlled environments. However, these algorithms
perform poorly when the resolution of the face images varies. A two-step
framework is proposed to solve the resolution problem through adopting
super-resolution (SR) and performing face recognition on the super-resolved
face images. However, such method usually has poor performance on recog-
nition tasks as SR focuses more on visual enhancement, rather than classification
accuracy. Recently, Coupled Mapping (CM) has been introduced into face
recognition framework across different resolutions, which learns a common
feature subspace for both high-resolution (HR) and low-resolution (LR) face
images. In this paper, inspired by maximum margin projection, we propose
Large Margin Coupled Mapping (LMCM) algorithm, which learns projections
to maximize the margin between distance of between-class subjects and distance
of within-class ones in the common space. Experiments on public FERET and
SCface databases demonstrate that LMCM is effective for low-resolution face
recognition.

Keywords: Coupled Mapping � Low-resolution face recognition � Large
Margin Coupled Mapping � FERET � SCface

1 Introduction

A great number of achievements have been made in the area of automatic face recog-
nition during last decades, especially under well-controlled circumstances. However, the
performance of face recognition system in real world always degrades dramatically
when the quality of input face images becomes poor, such as low-resolution. This is a
specific concern in surveillance environment where the target is far from the sensor,
resulting in low-resolution face images.

To solve the low-resolution (LR) problem, a two-step framework is proposed fol-
lowing the intuition offirst recovering lost detail information of LR face images and then
applying traditional face recognition algorithms on recovered face images. In fact, most
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proposed two-step algorithms of LR face recognition apply super-resolution
(SR) technique as the first step [1–5]. The super-resolved face images are then passed
to the second general face recognition pipe. Through the development of last decade,
there exists many SR algorithms to reconstruct high-resolution (HR) images from a
single LR image [1] or multiple LR images [2]. In many real-world face recognition
systems, the intuitive solution is interpolation which are simple and fast, such as
bilinear, cubic and so on. The learning-based super-resolution (LSR) algorithms [1, 3–5]
recently draw a lot of attention owing to its promising performance. Freeman et al. [1]
proposed a patch-wise Markov Random Field as the SR prediction model and recovered
HR images by MAP estimation. Baker and Kanade [3] proposed to recover the HR face
image from an input LR one by “face hallucination” model based on face priors. Liu
et al. [5] proposed to combine a holistic and a local model for SR reconstruction.
Inspired by locally linear embedding (LLE) [7], Chang et al. recovered the HR face
image from the spatial neighbors of its LR counterpart. Yang et al. [8] proposed to
incorporate sparse representation into SR framework which achieves outstanding per-
formance. However, these algorithms aim more at the effect of visual enhancement
rather than the performance of the specific face recognition task.

Recently, some algorithms avoiding an explicit SR stage have been introduced into
face recognition flow. Gunturk et al. [9] investigated to transfer from pixel domain to
eigenface domain for SR reconstruction. Hennings-Yeomans et al. [10, 11] integrated
the aims of SR and face recognition simultaneously through a joint objective function.
Although these methods improve the recognition rate, their speed even for the speed-up
version is slow due to an optimization procedure for each test image. To avoid the
super-resolution step, Coupled Mapping (CM) based methods are proposed for LR face
recognition. Li et al. [12] proposed Coupled Locality Preserving Mapping (CLPM)
based on CM for LR face recognition. Inspired by locality preserving methods [13, 14]
for dimensionality reduction, the CLPM brought in a penalty weighting matrix into the
objective function to preserve the local relationship of the original space. The CLPM
emphasized more on the objective of recognition rather than just reconstruction and
thus yielded a better performance. However, it ignored the label information of the
training set, which is vital for face recognition. To take advantage of label information,
some LDA-like algorithms were introduced into coupled mapping, such as Simulta-
neous Discriminant Analysis (SDA) [19], Coupled Marginal Fisher Analysis (CMFA)
[18]. In [17], Shi et al. first constructed local optimization for each training sample
according to the relationship of neighboring data points and then incorporated the local
optimizations together for building the global structure. However, these algorithms fail
to consider recognition and geometric information of training set simultaneously, thus
some valuable information is missing and performance is limited for challenging
problems [17].

In this paper, we propose a novel algorithm called Large Margin Coupled Mapping
(LMCM) for LR face recognition, which takes both recognition information of the
training data and the local geometric relationship of face image pairs into account to
maximize the distance of between-class pairs and minimize the distance of within-class
pairs in the common subspace. With appropriate constraints, the new-defined opti-
mization problem could be solved in an analytical close-form. So it can be fast enough
for real time applications.
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The remaining of this paper is organized as follows. Section 2 demonstrates the LR
face recognition problem and the formulation of CM. Section 3 describes the details of
our proposed algorithm LMCM. Section 4 shows experimental results on FERET and
SCface databases. Section 5 draws conclusions of this paper.

2 Low Resolution Face Recognition

In the scenario of LR face recognition, the task could be simplified to find an appro-
priate distance measure between a LR face image li and a HR one hj, i.e.,
dij ¼ dist li; hj

� �
. Here, li 2 R

m; i ¼ 1; 2; . . . ; Np and hj 2 R
M ; j ¼ 1; 2; . . . ; Ng,

(m < M) represent the m-dimension feature vectors of the LR query images and the
M-dimension HR ones registered in the gallery set, respectively. Due to the dimension
mismatch of the feature vectors of LR and HR face images, some common distances
(e.g. Euclidean distance) obviously cannot be applied directly. To deal with this
problem, traditional two-step algorithms based on explicit SR attempt to find a map-
ping, fSR: Rm 7!R

M , to project the LR image into the target HR space, and then directly
calculate the distance in the HR space:

dij ¼ dist fSR lið Þ; hj
� � ð1Þ

Different from the two-step algorithms, CM based methods intend to establish two
coupled mappings: fL: Rm 7!R

n for LR face images and fH : RM 7!R
n, to project both

the LR and HR feature vectors into a common feature space. Here, n represents the
dimensionality of the new common feature space. Then the distance can be measured
by:

dij ¼ dist fL lið Þ; fH hj
� �� � ð2Þ

Now the critical problem is to pursue an ideal common feature space. For
low-resolution face recognition, the objective of CM algorithm is that the projections of
LR and HR face image of the same subject should be as close as possible in the new
common feature space. Let fL lð Þ ¼ PT

L l and fH hð Þ ¼ PT
Hh be linear mappings, respec-

tively, where PL and PH are two projection matrices with size of m� n and M � n.
This principle is formulated as the following objective function:

JCM PL;PHð Þ ¼
XNt

i¼1
PT
L li � PT

Hhi
�� ��2 ð3Þ

Nt represents the number of the training images.
We use L ¼ l1; l2; . . . ; lNt½ � and H ¼ h1; h2; . . . ; hNt½ � to denote the original LR

and HR feature vectors in the training set, respectively. Equation (3) can be refor-
mulated as
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JCM PL;PHð Þ ¼ tr PT
LL� PT

HH
�� ��2� �

ð4Þ

where trð�Þ is the matrix trace operator. Furthermore, using some deductions of linear
algebra, Eq. (4) can be rewritten as

JCM PL;PHð Þ ¼ tr
PL

PH

� �T
L 0
0 H

� �
I �I
�I I

� �
L 0
0 H

� �T
PL

PH

� � !
ð5Þ

We can further let P ¼ PL

PH

� �
, Z ¼ L 0

0 H

� �
and A ¼ I �I

�I I

� �
, where I is the

identity matrix. Finally, we can get a compact form as

JCM PL;PHð Þ ¼ tr PTZAZTP
� � ð6Þ

PL and PH can be obtained by minimizing Eq. (6). The details of the optimization
procedure can be referred to [12].

3 Proposed LMCM

The CM algorithm described above obtains the projection matrices following the cri-
teria that the distance between each LR face image and the corresponding HR one
should be as close as possible. However, it only takes advantage of part of verification
information of the training data, e.g. the face image pairs belonging to the same subject.
In this paper, we draw an inspiration from Maximum Margin Projection (MMP) [16]
and propose LMCM algorithm for LR face recognition, which seeks linear coupled
mappings to force a margin between the distance of between-class subjects and the
distance of within-class ones in the common feature space, as shown in Fig. 1. To
achieve this, we utilize the verification information along with local geometry and
identification information of the training data.

Verification Information with Local Geometry: Under this scenario, verification
information lies in the distance between face image pairs: ones of identical subjects
tend to have small distance and ones of different subjects tend to have large distance.

In order to discover both discriminant and geometrical structures of the face images,
we construct two graphs, within-class graph Gw and between-class graph Gb. In graph
Gw, face images share the same identities are connected, while in graph Gb, face images
belong to different subjects are connected. Let Ww and Wb represent the weight
matrices of Gw and Gb, respectively. As HR feature is considered to have more dis-
criminant information, we build these weight matrices in the original HR image space.
We define them as the following form

Ww;ij ¼ e�
hj�hi2k k2

r ; if hi; hj connected in Gw

0

(
ð7Þ
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Wb;ij ¼ e�
hj�hi2k k2

r ; if hi; hj connected in Gb

0

(
ð8Þ

where r is the mean distance between each pair of face images in the training data.
Now, consider the problem of mapping LR and HR face images into a common

subspace so that the connected face images of Gw stay as close as possible, while the
connected face images of Gb stay as far as possible. Let PL and PH represent projection
matrices. A reasonable criterion for learning the projection matrices is to optimize the
following objective functions:

min
PL ;PH

X
i;j

PT
L li � PT

Hhj
�� ��2

2Ww;ij þ PT
L li � PT

L lj
�� ��2

2Ww;ij þ PT
Hhi � PT

Hhj
�� ��2

2Ww;ij ð9Þ

max
PL;PH

X
i;j

PT
L li � PT

Hhj
�� ��2

2Wb;ij þ PT
L li � PT

L lj
�� ��2

2Wb;ij þ PT
Hhi � PT

Hhj
�� ��2

2Wb;ij ð10Þ

where Ww and Wb represents the weight matrices of Gw and Gb respectively. The
objective function (9) constructed on the within-class graph Gw imposes a large penalty
if neighboring face images of the identical subject in original space are mapped far
apart. Similarly, the objective function (10) constructed on the between-class graph Gb

imposes a large penalty if neighboring face images belonging to different subjects are

Fig. 1. Overview of the proposed LMCM algorithm. Different shapes represent different
subjects.
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mapped close together. The ultimate goal of these objectives is to force a margin
between face feature vectors of different subjects.

Following some simple algebraic steps, the objective function (9) can be reduced to
the following matrix form

min
PL ;PH

Tr PT
LL 2DL

w þDH
w �Ww �WT

w

� �
LTPL þPT

HH DL
w þ 2DH

w �Ww �WT
w

� �
HTPH

� �
� Tr PT

LLWwH
TPH þPT

HHW
T
wL

TPL
� � ð11Þ

where DL
w ¼Pj Ww;ij and DH

w ¼Pi Ww;ij.
Similarly, the objective function (10) can be reduced to a similar matrix form

max
PL;PH

Tr PT
LL 2DL

b þDH
b �Wb �WT

b

� �
LTPL þPT

HH DL
b þ 2DH

b �Wb �WT
b

� �
HTPH

� �
� TrðPT

LLWbH
TPH þPT

HHW
T
b L

TPLÞ ð12Þ

where DL
b ¼

P
j Wb;ij and DH

b ¼Pi Wb;ij.
Similar deduction with (5) to (6), we can rewrite Eqs. (11) and (12) as follows

min
PL ;PH

TrðPTZAwZ
TPÞ ð13Þ

max
PL;PH

TrðPTZAbZ
TPÞ ð14Þ

where P ¼ PL

PH

� �
, Z ¼ L 0

0 H

� �
, Aw ¼ 2DL

w þDH
w �Ww �WT

w �Ww

�WT
w DL

w þ 2DH
w �Ww �WT

w

" #
,

Ab ¼ 2DL
b þDH

b �Wb �WT
b �Wb

�WT
b DL

b þ 2DH
b �Wb �WT

b

� �
.

Identification Information as Regularization Term: The identification information
classifies the face image into one of the subjects, which encourages the algorithm to
learn projection matrix that can map each face image into its own cluster. In this paper,
we take advantage of identification information by minimizing the within-class scatter.
In learning projection matrices PL and PH , we aim to solve the following optimization
problem:

min
PL;PH

SW ð15Þ

where SW represents the within-class scatter. As the overall mean of the training
data is zero, the definitions of the scatter matrix are formulated as:

SW ¼
X

i
ðxi � li;cÞðxi � li;cÞT ð16Þ
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where xi is the n-dimension feature projected by high or low resolution face images into
the new common space, li;c is the mean of the projected feature with class label of c
which xi belongs to. With some linear algebra, Eq. (16) can be rewritten in the fol-
lowing matrix form:

SW ¼ X � Uð Þ X � Uð ÞT ð17Þ

where U is the n� 2Nt mean matrix with column li;c, and X is the n� 2Nt data matrix
with column xi. Let K be a C � C diagonal matrix with element Ki. These matrices can
be represented by PL and PH as:

U ¼ PTZDK�1DT ð18Þ

X ¼ PTZ ð19Þ

where P ¼ PL

PH

� �
, Z ¼ L 0

0 H

� �
and D ¼ dij

	 

2Nt�C with

dij ¼
1; if xi 2 class j

0; if xi 62 class j

(
ð20Þ

With (18) and (19), Eq. (17) can be rewritten as:

SW ¼ PTZðI � DK�1DTÞðI � DTK�1DÞZTP ð21Þ

In this paper, the identification information is taken as a regularization term. This is
the main difference between our proposed algorithm and CMFA in [18], where identity
matrix is taken as the regularization term in the denominator. And the identification
term is a key factor for performance improvement. Finally, the optimization problem
with objective functions (13) and (14) reduces to

max
PL;PH

TrðPTZAbZTPÞ
TrðPTZAwZTPþ nSWÞ ð22Þ

where n is the balance factor between the verification and identification information. In
the experiments below, this factor is set to 0.05;

The coupled projection matrices PL and PH that maximize the objective function
(22) can be obtained by solving the generalized eigenvalue problem

ZAbZ
T

� �
P ¼ kðZAwZ

T þ nZð�DK�1DTÞðI � DTK�1DÞZTÞP ð23Þ

After obtaining the projection matrices PL and PH , we mapped both LR and HR
images into the common space and utilize Euclidean norm to measure the distance of
each image pair, as described in (24).
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Dis ¼ PT
L li � PT

Hhi
�� ��2 ð24Þ

For each probe image, we take as its identity the subject with the smallest distance
in the gallery. We use True Positive Identification Rate (TPIR), also refer to as Rank-1
Identification Rate in this circumstances, to measure the performance of our proposed
method, as defined in the following

TPIR ¼ #ðcorrect idetified imagesÞ
#ðprobeÞ ð25Þ

4 Experimental Results

To evaluate effectiveness of the proposed method, we applied our methods on two
public databases: FERET [6] and SCface [15]. Performance is measured by rank-1
identification rate. Before projection, the gray pixel distribution of one image is nor-
malized to have average intensity 0, standard deviation 1 and unit norm.

4.1 Experimental Result on FERET Database

We follow the same test protocol as [17] when we conduct experiments on a subset of
FERET database. The subset (ba, bd, be, bf, bg, bj, bk) contains 200 subjects with
variations of illumination (bk), expression (bk) and pose (bd, be, bf, bg). We choose 50
subjects for training and the rest 150 subjects are used for test. In the test phase, 4 images
of each subject are selected as gallery and the remaining as the probe. In the experiment,
the HR face images and corresponding LR ones are scaled with resolution of 32 � 32
and 8 � 8. Figure 2 shows some of the HR (top row) and LR (bottom row) face images
in FERET database. To evaluate our proposed LMCM algorithm, we compare it with
CLPM [12], SDA [19], CMFA [18] and the algorithm proposed in [17].

Table 1 presents the experiment results of LMCM algorithm on FERET database.
Our method with 53-D features achieves the recognition rate of 90.00 %, which is
higher than 55.22 % for CLPM, 72.09 % for SDA, 75.98 % for CMFA and 80.90 % for
coupled mapping method used in [17]. The main reason lies in that our method takes
more advantage of the supervised information of the training set than other methods.
There are two main differences between CMFA and our proposed algorithm. First, we
construct the weight matrices Ww and Wb in a different way, which can capture more
discriminant information compared to the method applied in CMFA. Second, we use
within-class scatter as the regularization term instead of identical matrix, which can take
advantage of the identification in the training data. Our proposed LMCM algorithm also
shows its high capability to handle different variations, such as pose and expression,
except for low resolution. Table 2 is the test time for each image pair.
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4.2 Experimental Result on SCface Database

To show the real recognition performance of our LMCM algorithm under the
surveillance circumstances, the SCface database is chosen as a new set to illustrate the
recognition performance of LMCM. SCface is a database of static images of human
faces [15] captured by surveillance cameras. Images were taken in uncontrolled indoor
environment using five video surveillance cameras at three different distances. The
database contains 4,160 face images (in visible and infrared spectrum) of 130 subjects,
as shown in Fig. 3. Face images from different cameras and distances mimic the
real-world conditions. The subset used contains images from surveillance cameras
cam1–cam5: (I) distance of 2.6 m (i.e., LR), and (II) distance of 1.0 m (i.e., HR). The
resolution of the processed images is 48 � 48 and 16 � 16 for the HR and LR,
respectively.

For this experiment, the protocol of [17] is implemented. All subjects are used for
training and test. In the experiment, LMCM is compared with CLPM, SDA, CMFA
and Coupled Mapping Method in [17]. For SCface database, 80 subjects are selected to
define the training set. The rest of 50 subjects are used as the test set. This procedure is
repeated 10 times. The average results are presented in Table 3. Overall, the rank 1
recognition rates are much lower compared to the FERET database due to the real

Fig. 2. HR (Top row) and LR (Bottom row) face images from FERET database

Table 1. Rank 1 performance on FERET database. The values are rank-1 identification rate (%)

Algorithm Rank 1 performance (%)

CLPM [12] 55.22 [17]
SDA [19] 72.09 [17]
CMFA [18] 75.98 [17]
Coupled mapping method [17] 80.90 [17]
Proposed LMCM 90.00

Table 2. Test time for each LR and HR image pair

CPU Memory Environment Time
(microsecond)

Intel(R) Core(TM)
i5-4200U @1.60 GHz

4.00 GB Windows 10
Matlab 2015B

7.3
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world challenges posed in SCface database. We can see from the results that our
proposed LMCM algorithm improves the LR face recognition significantly on SCface
database. The main reason lies in that LMCM learns the discriminant information
between HR and LR face images to force a margin between the projection of identical
and different subjects according to recognition information. Compared to other algo-
rithms in Table 3, our proposed algorithm apparently can capture more such dis-
criminant feature for LR face recognition (Table 4).

5 Conclusion

In this paper, we propose a novel algorithm to solve low-resolution face recognition
problem without SR procedure. Our method projects both the HR and LR face images
into a new common feature subspace by maximizing the distance of features with
different labels and minimizing the distance of features with identical label. The
objective function attempts to force a margin between different subjects using both the
identification and verification information. Experimental results on FERET and SCface

Fig. 3. Examples of face images of one subject with one camera and 3 different distances

Table 3. Experiment on SCface. The values are rank-1 identification rate (%)

Algorithm Rank 1 performance (%)

CLPM [12] 29.12 [17]
SDA [19] 40.08 [17]
CMFA [18] 39.56 [17]
Coupled mapping method [17] 43.24 [17]
Proposed LMCM 60.40

Table 4. Test time for each LR and HR image pair

CPU Memory Environment Time
(microsecond)

Intel(R) Core(TM)
i5-4200U @1.60 GHz

4.00 GB Windows 10
Matlab 2015B

8.5
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databases show that our proposed method can achieve promising performance. In the
future, applying nonlinear mappings by kernel methods and using more discriminative
features instead of raw intensity will be studied.
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