Fast Training of a Graph Boosting
for Large-Scale Text Classification

Hiyori Yoshikawa®™) and Tomoya Iwakura

Fujitsu Laboratories Ltd., Kawasaki, Japan
{y.hiyori,iwakura.tomoya}@jp.fujitsu.com

Abstract. This paper proposes a fast training method for graph classi-
fication based on a boosting algorithm and its application to sentimen-
tal analysis with input texts represented by graphs. Graph format is
very suitable for representing texts structured with Natural Language
Processing techniques such as morphological analysis, Named Entity
Recognition, and parsing. A number of classification methods which rep-
resent texts as graphs have been proposed so far. However, many of
them limit candidate features in advance because of quite large size of
feature space. Instead of limiting search space in advance, we propose two
approximation methods for learning of graph-based rules in a boosting.
Experimental results on a sentimental analysis dataset show that our
method contributes to improved training speed. In addition, the graph
representation-based classification method exploits rich structural infor-
mation of texts, which is impossible to be detected when using other
simpler input formats, and shows higher accuracy.

Keywords: Text classification + Feature engineering + Graph boosting

1 Introduction

Text classification is a fundamental task in Natural Language Processing (NLP)
and has applications to a wide variety of tasks including spam filtering, sentimen-
tal analysis, topic classification, and profile estimation. While bag-of-words are
widely used as features for classification, a number of researches show that using
richer structure of texts results in better performance (Kudo and Matsumoto
2004; Gee and Cook 2005; Matsumoto et al. 2005; Arora et al. 2010; Jiang
et al. 2010; Iwakura 2013). In other words, features incorporating additional
information about texts such as word dependencies, part of speech (POS) tags,
and named entity types have potential to be key features for classification.

A remarkable approach to classification using rich information of texts is to
represent the texts as graphs. Compared to the other formats such as bag-of-
words, n-grams and trees, graph format has strong power of expression enough
to incorporate almost any kinds of characteristics related to words or texts at
the same time. More precisely, the other formats listed above can be interpreted
as special cases of graphs: bag-of-words correspond to vertexes and n-grams
© Springer International Publishing Switzerland 2016

R. Booth and M.-L. Zhang (Eds.): PRICAI 2016, LNAT 9810, pp. 638-650, 2016.
DOI: 10.1007/978-3-319-42911-3_53

Fast Training of a Graph Boosting for Large-Scale Text Classification 639

to paths, and trees are graphs in themselves. For a sentimental analysis task,
for example, a key feature might be a combination of word order, dependency,
and sentiment polarity of each word. Classification methods with graph based
features have potential to achieve higher performance especially in such cases
that key features might be combinations of different kinds of characteristics. As
we refer to in Sect. 5, there are a number of works which use graph representation
of texts for text classification. Most of these existing methods convert inputs
into subgraph-based feature vectors and then apply a classification algorithm
for the vectors such as perceptron (Frank 1958) or Support Vector Machines
(SVMs) (Boser et al. 1992). Since the number of potential subgraphs tend to be
quite large and it is practically impossible to consider all of them, such methods
usually select a part of features in advance using a frequent pattern mining
algorithm such as gSpan (Yan and Han 2002). However, infrequent features are
sometimes important. Another approach is to deal with the problem as a graph
classification problem. One of the most popular graph classification algorithms
is perceptron or SVMs with graph kernels (Kashima et al. 2003), which works
without previous selection of subgraph features. Although such methods achieve
considerably high performance, they have some disadvantages. First, in learning
and classification it sometimes requires the calculation of graph kernels for a
large number of pairs of graphs. Second, it is difficult to see which subgraphs
have strong effect because features do not appear explicitly.

In this paper, we use a graph boosting algorithm originally proposed by
(Kudo et al. 2004) for text classification. This boosting method learns subgraph
based decision stumps as weak classifiers, and finally constructs a classifier as
a linear combination of the stumps. The calculation time for classification does
not depend on the size of training dataset but the size of rules, and rules are
represented explicitly by subgraphs that constitutes the classifier. In addition,
as Kudo et al. (2004) point out, the boosting based method can reflect slight
difference of structures of features, while kernel based methods are not good at
distinguishing features which have similar structures. It would be an important
property for text classification, since the difference of a single word may result in
opposite meaning of the whole sentence. A problem is that the graph boosting
method requires much learning time, despite using pruning methods suggested
in the original paper. We propose two approximation methods to improve train-
ing speed of the graph boosting: one is to divide subgraph features into some
buckets in order to limit search space of rules, and the other is to expand the
search space dynamically according to weak classifiers chosen in previous steps.
Experimental results show that our approximation makes it possible to improve
the classification accuracy much faster than the original algorithm.

The rest of the paper is organized as follows. In Sect. 2 we define the prob-
lem setting, and refer to the graph boosting method. In Sect.3 we show two
approximation methods to calculate weak classifiers efficiently. Section4 shows
experimental results, Sect. 5 discusses the relation to related works, and Sect. 6
concludes this paper.

640 H. Yoshikawa and T. Iwakura

2 Preliminary

2.1 Problem Setting

In this paper, we focus on binary text classification problems. We are given a set
of texts T' = (t1,ta,...,tNn), each of which is associated with a class label y; €
{£1} (i =1,...,N). Generally, the class labels are defined based on particular
characteristics of the texts such as topics, sentiment, or profiles of writers. The
task is to induce a classifier which assigns labels to new texts.

We solve this problem as a graph classification problem by representing the
input texts as graphs with NLP techniques to extract syntactic and semantic
structure of the original texts. Then the problem reduces to the task to induce
a classifier which assigns labels to graphs made from new texts.

2.2 Boosting Based Graph Classification

Our algorithm is based on the graph based classification method by (Kudo et al.
2004). As a boosting method we adopt an improved AdaBoost proposed by
(Schapire and Singer 1999), since it showed higher accuracy than the boosting
algorithm used in (Kudo et al. 2004). We call the algorithm Boost-K. Here we
summarize the idea of the general boosting method and Boost-K.

Boosting is one of the well-known meta-algorithms for ensemble learning.
Boosting sequentially learns K (> 0) weak classifiers and finally constructs a
classifier as the linear combination of the weak classifiers. Let h; be the weak
classifier obtained at the jth iteration (j = 1,2,...,K). Then we eventually
obtain the final classifier consisting of the weak classifiers as:

K
fla) = sen | 3o hy(a) | 1)

At each iteration in a typical boosting algorithm, a weak classifier is trained
to minimize the current weighted error rate. When the classifier is updated by
a weak classifier, the weight is recalculated so that misclassified examples have
larger weight and correctly classified ones have smaller weight. In this way, the
classifier is efficiently trained focusing on the misclassified examples at previous
steps.

Boost-K classifies graphs based on their subgraphs. The weak classifiers are
decision stumps each of which reflects existence of a particular subgraph in a
graph. For a subgraph ¢ and a real number « (confidence value), the subgraph-
based decision stump is defined as:

__JoaifgCx
h<g,a) (x) := {0 otherwise ’ ®

Fast Training of a Graph Boosting for Large-Scale Text Classification 641

where g C = means the graph g is the subgraph of the graph x.! At each iteration
J, the boosting algorithm chooses a weak classifier h; = h,. ;) with:

N
(9, ;) = arg min Y _ & exp(—yih(g.a) (i), (3)

(g,a) i=1

where dg is the weight for the input graph z; at the current iteration j.? The
right hand side is minimized for a particular g by choosing:

_ 1 Dj,+1(g)
a=glos (Dgyl(g)) ’ @

where D;.(9) == N, d/I(g C 2 Ay = %) (* € {£1}) with the indicator
function I(-). As shown in (Iwakura and Okamoto 2008), we can minimize (3)
by maximizing the following gain function, or gain simply:

sainy(9) = |y/Dia(0) — /D5 1(0).)

At every step, the algorithm choose a weak classifier which maximizes (5) and
then the weight d = (dy,ds,...,dy) is updated by:

"t = dl exp(—yihg, a0, (@) (6)

and then normalized to satisfy Zi\il d; =1.

2.3 Efficient Calculation of Weak Classifiers

At each step in the above boosting algorithm, we need to find a weak clas-
sifier that maximizes the gain function (5). Generally, the number of possible
subgraphs is so large that it is practically impossible to calculate gains for all
subgraph features. Thus we need some efficient ways to find the most appro-
priate subgraph feature. Boost-K addresses this problem based on the following
two ideas, both of which do not affect the result of learning.

The first idea, which is by (Kudo et al. 2004), is to search subgraphs on a
canonical search space based on gSpan algorithm (Yan and Han 2002). gSpan is
an efficient method to enumerate subgraphs which appear in a given graph set
frequently. The key idea is to retain subgraphs by DFS codes. A DFS code is
constructed by running depth-first search (DFS) in a search space called DFS
Code Tree. A node of the DF'S Code Tree corresponds to a 5-tuple (¢, 7,4, 1 5, ;)
which represents an edge of a subgraph. Here ¢ and j are the vertex indexes
of endpoints of e, and l;, I;, and [; ; are labels of the vertices 7 and j, and the
edge {i,j}, respectively. By running depth-first search in the DFS Code Tree,

! In (Kudo et al. 2004), a weak classifier is defined to return —c« if g x. Considering
the results of preliminary experiments, we decided to use the above definition instead.
2 We may omit the iteration index j when no confusion can arise.

642 H. Yoshikawa and T. Iwakura

we obtain a DFS code as a sequence of the tuples. Since DFS codes have a
lexicographic order, we can use the minimum DFS code as the ‘canonical’ code
of a graph. When we find that the current DFS code is not minimum, we can
‘prune’ the search space to avoid the redundant search. In this way, we can
efficiently enumerate all subgraphs.

The second idea, which is also rooted in (Kudo et al. 2004), is to use an upper
bound of gain functions. The following is a key observation:

{i:g Casyi=y}C{i:gCa,yi=y} (V¢ 29). (7)

That is, a graph ¢’ appears in a graph x; only if its subgraph g appears in ;.
Then the following is directly derived from the definition (5): for every graph ¢’
which contains g, the gain gain(g’) is bounded by:

ule)i=mx (/D1 0) /D). ®

In the depth-first traversal of a DFS Code Tree, the graphs are referred to
starting from a single edge graph?®, and then larger graphs are referred to as
the search reaches deeper levels. Using the above observation, we can avoid
redundant searches for larger graphs: we can prune the search space when we
find that the upper bound does not exceed the current maximal gain.

3 Approximation Methods for More Efficient Learning

Despite the processes described above, it still takes much time to search for
subgraph features in a large graph set. In addition to the above methods, we
adopt two other approximation methods for further efficient learning.

3.1 Dividing Features into Buckets

The first method is to divide features into some buckets, whose idea comes
from (Iwakura and Okamoto 2008). They show that distribution of feature into
hundreds of buckets results in almost the same or sometimes higher accuracy.
We adopt F-dist-like distribution, that is, distribution of features in ascending
order based on their frequencies. This distribution keeps average frequencies in
each bucket roughly the same. Since it is practically impossible to enumerate all
possible subgraph features, we modify the method to adapt to our situation as
follows.

1. Count frequency of each vertex label in the graph set.
2. Sort vertex labels according to their frequency.
3. Put the vertex labels into b(> 0) buckets in order of their frequency.

3 With a slight modification, we can start searches from single node graphs so that
the result may contain single node feature graphs.

Fast Training of a Graph Boosting for Large-Scale Text Classification 643

4. In the jth iteration we search only for the subgraphs whose start point (id 0
in the DFS Code) has the label in the (j%b)th bucket, where (j%b) means
the remainder of j divided by b.

In this way, one can expect that the total frequency of the feature subgraphs
searched in each iteration become roughly the same.

When applying this method, using only the minimum DFS codes results in
excessive limitation of the search space, since the search space depends on the
first vertex in DF'S codes. Thus we omit minimum DFS code tests when applying
this approximation. Note that a subgraph feature can appear in more than two
buckets. The experimental results in Sect.4 show that the method reduce the
calculation time even though it omits minimum DFS code tests.

3.2 Smaller Rule Priority

The search space of weak classifiers expand explosively with size of subgraphs
to search. Usually, however, only a small fraction of subgraph features are sig-
nificant. In order to avoid unnecessary search, we limit the search space based
on the following hypothesis: when a large subgraph feature is important, some
of its subgraphs are also important. To realize this idea, we propose to apply
the idea of (Freund 1999) to the graph boosting algorithm. (Freund 1999) learns
alternating decision tree by boosting. Starting from a set of the simplest rules,
the algorithm extends the search space according to the result of each step of
boosting. We apply the learning method to our situation of learning subgraph
based decision stumps as follows:

1. Initialize H as the set of all single node graphs.
2. For each jth iteration, do the following:
(a) Search for the best weak classifier h(, ;) with g; € H.
(b) Update H by H — HU{¢ | g; € ¢,|¢'|e = |gjle + 1}, where |z|g

indicates the number of edges in .

That is, the algorithm searches for only subgraph features which contains g; and
larger than g; by one edge for subgraphs g; chosen in previous iterations.

4 Experiments

To evaluate the proposed method, we used the Amazon review data created by
(Blitzer et al. 2007). This dataset contains customer review texts for products
available at Amazon. Table1 shows the product categories we used and the
size of each dataset. For each category, we picked positive (4.0 or more score)
reviews and negative (2.0 or less score) reviews and learned binary classifiers that
distinguish between positive and negative reviews. The construction of graphs
from input texts is described in Sect. 4.1. In addition to the above approximation,
we also limit the search space to the subgraph features whose size (number of
edges) are no more than ms € {0, 1,2, ...}, where ms = 0 means the search space
is limited to single node subgraph features. We implemented the algorithm by
C++.

644 H. Yoshikawa and T. Iwakura

Table 1. Used categories in Amazon review data. ‘#Train’ and ‘#Test’” mean the
number of training and test data.

Category #Train #Test
positive | negative || positive | negative
video 27489 5074 3054 563
electronics 16165 4544 1796 504
kitchen-housewares 14164 3708 1573 411
toys-games 9522 2312 1057 256
apparel 7111 1216 790 135
camera-photo 5679 990 630 109

4.1 Construction of Input Graphs

Here we describe how we construct graph features from input texts. We construct
a graph from each input text, and finally obtain a set of graphs whose number
equals that of input texts. From now we call a graph corresponding to a text a
feature graph.

For a word w, let p,, be the POS tag and n,, be the named entity type of w.
Let us write an input text as ¢ = wyws ... w;, where w; (1 < ¢ <) is the i-th
word of the text. The set of vertices of a feature graph consists of some of the
following vertices:

— % : the vertex corresponding to the surface form of the word w; (i = 1,...,1),
— v, the vertex corresponding to the POS of w; (i =1,...,1),

— vl: the vertex corresponding to the named entity type of w; (i € {1,...,1}),
which appears only if w; is a part of a named entity,

— vg: the vertex representing the start of the input text, and

— vr: the vertex representing the end of the input text,

whose labels correspond to w;, puw,, Muw,, [S] and [T], respectively. Every edge
corresponds to order or dependency of words. Edges with the label ORDER are
between vi and vif! (x,%x € {w,p,n}) if such nodes exist (i = 1,...,1 — 1),
vs and v}, and vl and vy (x € {w,p,n}). In addition, each pair of vertices v’,
and vJ, which has a dependency relation has an edge with a label corresponding
to the kind of relation. For graph construction, we used SENNA (Collobert et
al. 2011; Collobert 2011)*. In this paper, we call a graph which has all the
above vertexes and edges ‘type A’, a graph which has only the information of
words and order ‘type B’, a graph which has only the information of words
and dependencies ‘type D’, and a graph which has the information of words,
order and dependencies ‘type BD’. Figure 1 shows an example of a feature graph

* To convert the output of SENNA into tree format, we used Penn2Malt 0.2 (http://
stp.lingfil.uu.se/~nivre/research/Penn2Malt.html) with the following options: head
rules in (http://stp.lingfil.uu.se/~nivre/research/headrules.txt), deprel 1, and
punctuation 1.

http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
http://stp.lingfil.uu.se/~nivre/research/headrules.txt

Fast Training of a Graph Boosting for Large-Scale Text Classification 645

Fig. 1. An example of a feature graph corresponding to a sentence “Hank Azaria was
just awful”.

(type A) made from a sentence in a negative review in ‘video’ category, “Hank
Azaria was just awful”. Words in the vertices and on the edges indicate the labels
of the vertices and edges. The edges on which no word appears have the label
ORDER.

We also constructed other kinds of graphs: ‘type Bs’. These graphs con-
tain information about sentimental polarity of words. We append polarity to
the words according to SentiWordNet 3.0 (Baccianella et al. 2010). We simply
append ‘Sent:p’, ‘Sent:n’, or ‘Sent:pn’ labels to a word if it has non-zero positive,
negative, or both score in SentiWordNet 3.0. The polarity of words is expressed
as corresponding vertices: if a word w; has positive, negative, or both polar-
ity, we append a corresponding node v, vi, or vhy with the label ‘Sent:p’,
‘Sent:n’, or ‘Sent:pn’ respectively and connect these nodes and other nodes vJ,
(j € {1,...,1}) according to word order. ‘Type Bs’ graphs are constructed by
adding polarity nodes to ‘type B’ graphs. Note that ‘type Bs’ graphs do not
contain dependency edges.

Table 2 shows the average number of vertices and edges of training graphs in
each category.

4.2 Results

Calculation Time and Accuracy. We conducted a preliminary experiment
to evaluate the effect of the proposed approximation. We used ‘camera-photo’
category from Amazon review dataset. The input is a graph set of type A and
we set ms = 3. We compared the calculation time and accuracy (F-measure
for the ‘negative’ label) for 4 types of algorithms. The algorithm ‘orig’ is the
original graph boosting method with no approximation, ‘B1000’ uses only the
former approximation with bucket size 1,000, ‘S’ uses the latter approximation,
and ‘B1000S’ uses both. The result in Fig. 2 shows that the two approximation
methods contribute to improvement of accuracy in much shorter time than the
original algorithm.

646 H. Yoshikawa and T. Iwakura

Table 2. The average number of vertices and edges of training graphs in each category.
Ave(V) and Ave(E) mean the average number of vertices and edges of the graphs,
respectively.

type B type D type BD
Category Ave(V)|Ave(E)|Ave(V)|Ave(E)|Ave(V)|Ave(E)
video 184.78] 183.78| 184.78| 137.49| 184.78| 321.27
electronics 122.49| 121.49| 122.49] 96.18| 122.49| 217.68
kitchen-housewares|| 104.02| 103.02| 104.02| 81.17| 104.02| 184.19
toys-games 106.27| 105.27| 106.27| 79.32| 106.27| 184.60
apparel 70.54| 69.54| 70.54| 53.69| 70.54| 123.24
camera-photo 148.34| 147.34| 148.34| 116.60| 148.34| 263.94
type A type Bs
Ave(V)[Ave(E)|Ave(V)[Ave(E)
video 379.51| 920.62| 245.70| 305.63
electronics 246.51| 593.17| 166.11| 208.73
kitchen-housewares|| 207.88| 497.07| 142.86| 180.70
toys-games 212.78| 506.06| 142.64| 178.00
apparel 140.44| 333.57| 97.36| 123.18
camera-photo 298.66| 718.98| 202.20| 255.06
1 T T T T T T T Orig AH
S —X—
o e =¥ § N B1000 —X—
0.8 - =5 DS T RS B1000S —H—
72
g 06f ‘ 4
w 0.4 " -
|
0.2 f
|
/
0 500 1000 1500 2000 2500 3000 3500 4000
time(s)

Fig. 2. Effect of the approximation methods

Accuracy Obtained from Different Graph Types. Table3 shows the
results of boosting algorithms measured by F-measure for the ‘negative’ label.
All classifiers are trained through 10,000 iterations with the two approximation
methods. We again devided the features into 1,000 buckets. The results show that
the graph inputs which include structural information (type BD, type A, and
type Bs) performs better than inputs which do not in the most categories. This
indicates that some subgraph features with structural information contribute
considerably to improved accuracy. Especially, in the most cases the graphs of

Fast Training of a Graph Boosting for Large-Scale Text Classification 647

Table 3. F-measures for the ‘negative’ label. The underlined score indicates the best
score of the category. ‘Ranking average’ means the averaged ranking about F-measures
for each graph type. ‘#Best’ or ‘#Worst’ indicates the number of categories each type
of graph achieved the best or the worst scores, respectively.

(single vertices, | type B, ms = 0 | type B, ms = 3 |type A, ms =0 |type D, ms =3

strings or trees) | (bag-of-words) (n(< 4)-grams)

Category

video 0.882 0.886 0.864 0.878

electronics 0.795 0.824 0.793 0.809

kitchen- 0.755 0.789 0.803 0.806

housewares

toys-games 0.746 0.731 0.737 0.741

apparel 0.694 0.776 0.725 0.732

camera-photo 0.847 0.822 0.804 0.814

Average 0.787 0.804 0.787 0.798

Ranking average | 4.67 3.17 5.83 4.5

#Best 1 1 0 0

#Worst 2 0 3 0

(general graphs) | type BD, ms = | type A, ms =3 | type Bs, ms =3 | SVM with gSpan,
3 type A, ms =3

video 0.881 0.885 0.892 0.753

electronics 0.823 0.822 0.820 0.765

kitchen- 0.768 0.837 0.816 0.739

housewares

toys-games 0.724 0.757 0.770 0.683

apparel 0.724 0.771 0.778 0.680

camera-photo 0.810 0.825 0.816 0.746

Average 0.788 0.816 0.815 0.728

Ranking average | 5.33 2.33 2.17 -

#Best 0 1 3 -

Worst 1 0 0 -

type Bs performs better than others. We emphasize that such a kind of represen-
tation of texts is not possible by strings or trees but by graphs. Figure 3 shows
the examples of extracted features.

Comparing to SVM with Graph Mining. The last column of the Table 3
shows the results of Li-regularized Li-loss SVM implemented in Classias
(Okazaki 2009). The feature vectors for SVM are frequent subgraphs in the
training datasets. To make the vectors, we conducted gSpan with minimum sup-
port 0.01. The input graphs are type A with ms = 3. The displayed results
are the best ones among different coefficients ¢ € {0.01,0.05,0.1,0.5,1, 5,10} for
L;-regularization. The total training time (including gSpan and SVM) for the
category ‘camera-photo’ is 1,036.3 s, while the boosting with the two approxi-
mation almost converges within 1,000s (See Fig.2). The fact that all the results

648 H. Yoshikawa and T. Iwakura

(positive)

G ® e

DEP DEP

(negative)
DEP OO OINGD
O THENTD

Fig. 3. Examples of extracted features.

of SVM are below those of boosting suggests that feature selection with frequent
subgraph mining scrapes off not only unneccesary features but also significant
ones.

5 Related Works

There is a number of researches which use graph based features for text classi-
fication. Matsumoto et al. (2005) combine word sub-sequences and dependency
sub-trees for sentiment classification. Jiang et al. (2010) represent texts as graphs
by combining word sequences and syntactic trees. Arora et al. (2010) introduce
graph based features representing several linguistic annotations for sentiment
classification. This method uses not only unigrams and subgraphs but also newly
defined features constructed by combining original features. Because of the large
feature space, all of these methods choose features by some mining methods
in advance and apply vector based learning algorithms such as perceptron and
SVMs. Our method need not mine features previously, since the boosting algo-
rithm find significant subgraph features from the whole search space automat-
ically. The proposed method also has an advantage of easy parameter tuning.
The parameters are only number of iteration, maximal size of subgraphs and
bucket size, while the mining based algorithms need to decide both parameters
for mining such as minimum frequency and for learning algorithms.

A boosting based classification of semi-structured text has already been pro-
posed by (Kudo and Matsumoto 2004). However, the method is applicable only
to tree formats, while our algorithm runs on any graph sets. It enables us to
make use of rich structure of text more flexibly.

Recent improvement of graph boosting algorithms includes attacks on
extended problem settings (Pan et al. 2015a; Wu et al. 2015) and on imbalanced
data in the real world (Pan et al. 2015b) and use of additional information (Fei
and Huan 2014; Pan et al. 2016). Pan et al. (2015a, 2015b, 2016) and Wu et
al. (2015) take similar approaches in that they explore subgraph-based weak
classifiers using gSpan and pruning by gain upper bound as we referred to in
Sect. 2.3. In addition, Pan et al. (2015a) solves linear programming to minimize
the risk function like gBoost (Saigo et al. 2009) and accelerates this step for

Fast Training of a Graph Boosting for Large-Scale Text Classification 649

large scale graphs. These methods can easily be combined with our approxima-
tion methods, since our approximation method modifies only the selection step
of the discriminative subgraph features.

6 Conclusion

In this paper, we proposed a graph boosting based text classification and efficient
approximation methods for the calculation of weak classifiers. The experimental
results show that our algorithm extracts significant subgraph features efficiently.
Our algorithm helps guess what kinds of information are significant for classifiers.
In the case of Amazon review data, the information of sentimental tags seems
to be important. It is possible to add any other kinds of nodes or edges to the
input graph. It is also a future work to combine our methods with some other
text classification methods including the recently-proposed ones we refer to in
Sect. 5.

References

Arora, S., Mayfield, E., Rosé, C.P., Nyberg, E.: Sentiment classification using auto-
matically extracted subgraph features. In: Proceedings of the NAACL HLT 2010
Workshop on Computational Approaches to Analysis and Generation of Emotion in
Text, pp. 131-139 (2010)

Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In: Proceedings of Seventh Inter-
national Conference on Language Resources and Evaluation, pp. 2200-2204 (2010)

Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders:
domain adaptation for sentiment classification. In: Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pp. 440-447 (2007)

Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algorithm for optimal margin clas-
sifiers. In: Proceedings of the Fifth Annual ACM Conference on Computational
Learning Theory, pp. 144-152 (1992)

Collobert, R.: Deep learning for efficient discriminative parsing. In: International Con-
ference on Artificial Intelligence and Statistics (2011)

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Nat-
ural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493-2537
(2011)

Fei, H., Huan, J.: Structured sparse boosting for graph classification. ACM Trans.
Knowl. Discov. Data 9, 1-22 (2014)

Frank, R.: The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psycholog. Rev. 65, 386-408 (1958)

Freund, Y.: The alternating decision tree algorithm. In: Proceedings of the Sixteenth
International Conference on Machine Learning, pp. 124-133 (1999)

Gee, K.R., Cook, D.J.: Text classification using graph-encoded linguistic elements. In:
Proceedings of the Eighteenth International Florida Artificial Intelligence Research
Society Conference, pp. 487492 (2005)

Iwakura, T.: A boosting-based algorithm for classification of semi-structured text
using frequency of substructures. In: Proceedings of 9th International Conference
on Recent Advances in Natural Language Processing, pp. 319-326 (2013)

650 H. Yoshikawa and T. Iwakura

Iwakura, T., Okamoto, S.: A fast boosting-based learner for feature-rich tagging and
chunking. In: Proceedings of Twelfth Conference on Computational Natural Lan-
guage Learning, pp. 17-24 (2008)

Jiang, C., Coenen, F., Sanderson, R., Zito, M.: Text classification using graph mining-
based feature extraction. Knowl-Bas. Syst. 23, 302-308 (2010)

Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs.
In: Proceedings of the Twentieth International Conference on Machine Learning, pp.
321-328 (2003)

Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification.
Adv. Neural Inf. Process. Syst. 17, 729-736 (2004)

Kudo, T., Matsumoto, Y.: A boosting algorithm for classification of semi-structured
text. In: Proceedings of 9th Conference on Empirical Methods in Natural Language
Processing, pp. 301-308 (2004)

Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word
sub-sequences and dependency sub-trees. In: Ho, T.B., Cheung, D., Liu, H. (eds.)
PAKDD 2005. LNCS, vol. 3518, pp. 301-311. Springer, Heidelberg (2005)

Okazaki, N.: Classias: a collection of machine-learning algorithms for classification
(2009). http://www.chokkan.org/software/classias/

Pan, S., Wu, J., Zhu, X.: CogBoost: boosting for fast cost-sensitive graph classification.
IEEE Trans. Knowl. Data Eng. 27, 2933-2946 (2015)

Pan, S., Wu, J., Zhu, X., Long, G., Zhang, C.: Boosting for graph classification with
universum. Knowl. Inf. Syst. 47, 1-25 (2016)

Pan, S., Wu, J., Zhu, X., Zhang, C.: Graph ensemble boosting for imbalanced noisy
graph stream classification. IEEE Trans. Cybern. 45, 940-954 (2015)

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gBoost: a mathematical
programming approach to graph classification and regression. Mach. Learn. 75, 69—
89 (2009)

Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated pre-
dictions. Mach. Learn. 37, 297-336 (1999)

Wu, J., Pan, S., Zhu, X., Cai, Z.: Boosting for multi-graph classification. IEEE Trans.
Cybern. 45, 430-443 (2015)

Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: Proceedings of
2002 IEEE International Conference on Data Mining, pp. 721-724 (2002)

http://www.chokkan.org/software/classias/

	Fast Training of a Graph Boosting for Large-Scale Text Classification
	1 Introduction
	2 Preliminary
	2.1 Problem Setting
	2.2 Boosting Based Graph Classification
	2.3 Efficient Calculation of Weak Classifiers

	3 Approximation Methods for More Efficient Learning
	3.1 Dividing Features into Buckets
	3.2 Smaller Rule Priority

	4 Experiments
	4.1 Construction of Input Graphs
	4.2 Results

	5 Related Works
	6 Conclusion
	References

