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Abstract. More and more data is being collected due to constant
improvements in storage hardware and data collection techniques. The
incoming flow of data is so much that data mining techniques cannot
keep up with. The data collected often has redundant or irrelevant fea-
tures/instances that limit classification performance. Feature selection
and instance selection are processes that help reduce this problem by
eliminating useless data. This paper develops a set of algorithms using
Differential Evolution to achieve feature selection, instance selection, and
combined feature and instance selection. The reduction of the data, the
classification accuracy and the training time are compared with the orig-
inal data and existing algorithms. Experiments on ten datasets of vary-
ing difficulty show that the newly developed algorithms can successfully
reduce the size of the data, and maintain or increase the classification
performance in most cases. In addition, the computational time is also
substantially reduced. This work is the first time for systematically inves-
tigating a series of algorithms on feature and/or instance selection in
classification and the findings show that instance selection is a much
harder task to solve than feature selection, but with effective methods,
it can significantly reduce the size of the data and provide great benefit.

Keywords: Differential evolution · Feature selection · Instance selec-
tion · Classification

1 Introduction

As hardware technology improves, more and more data is collected at a rate
machine learning and data mining techniques cannot deal with. Often the data
collected contains redundant or irrelevant features and instances [7,9,14,22,25],
which may slow down and hindering the learning process in many tasks such
as classification, reduce the learning performance, and/or learn complex models.
A pre-processing step is often needed to remove some of the irrelevant or even
noisy data, which can be achieved by feature selection (FS) for selecting only a
small subset of informative features, instance selection (IS) for selecting only a
small subset of representative examples/instances, or FS and IS for removing
useless or redundant features and instances [13,17]. However, FS and/or IS is a
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challenging problem due to two main reasons. The first is the large search space,
which grows exponentially with the total number of features and instances. The
second is that there are almost always interactions between features, which leads
to a complex search space with many local optima and a good fitness function
is often needed to guide the search in order to find a good solution. There have
been a large number of works on FS, but not much work on IS, or FS and IS [13].

Different search techniques have been used for FS, but existing algorithms
still suffer from the problem of stagnation in local optima. Evolutionary compu-
tation techniques are capable of searching large dimensions for solutions. Previ-
ous work has shown that various evolutionary computation techniques, such as
differential evolution (DE) [15], particle swarm optimization [1,11,19], genetic
algorithms [18,26] and others [2,8], achieve better performances than traditional
FS and IS approaches [20]. This research will be utilizing the DE approach. DE
is a simple but effective approach, which has been used for solving a wide range
of complex problems, especially the ones with a large search space [24]. Recent
works [3,21] also show its capabilities in solving FS problems, but its potential
on IS has not been fully investigated.

Based on the evaluation criteria or fitness functions, feature and/or IS
approaches can be grouped into wrapper approaches and filter approaches [23],
where wrappers involves training a learning/classification algorithm in each eval-
uation to use the accuracy to show how good the candidate solution is, and filters
are independent from any learning/classification algorithm. Due to the direct link
between the learning algorithm and the candidate solution, wrappers can often
achieve better accuracy than filters, but are computationally expensive. Filters
are often very fast, but may not achieve as high accuracy as wrappers [7].

DE has only been used for wrapper FS recently [4,5,12,21]. Compared with
the popularity and promising performance achieved by DE in other areas [6], the
potential of DE has not been fully investigated. Although most machine learning
tasks require FS and/or IS, classification is the area with the most applications,
which could be a good starting point for the investigation.

Goals. The aim of this research is to investigate the use of DE for data pre-
processing, which includes FS only, IS only, and FS and IS together. The pro-
posed methods are expected to reduce the size of the data and increase or at
least without significantly reducing the classification accuracy. More specifically,
the overall goal is broken down into the following objectives:

1. develop a new DE based FS algorithm for selecting a subset of features to
reduce the dimensionality and maintain or even increase the classification
performance,

2. develop a new DE based IS algorithm for selecting a small subset of represen-
tative instances to reduce the size of the data without significantly reducing
the classification accuracy,

3. develop a new DE based FS and IS algorithm to achieve FS and IS simulta-
neously, and
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4. investigate the performance increase of the new algorithms compared with
existing techniques.

2 Proposed Algorithms

In this section, we will investigate the use of DE for FS, IS, as well as FS and
IS. Since feature and/or IS are binary tasks, i.e. either select or not, but DE was
originally proposed as a continuous search technique, a binary DE algorithm will
be needed. Different from most existing approaches using classification accuracy
to evaluate the fitness (i.e. wrapper approaches), we will develop a series of filter
algorithms based on the interclass and intraclass (IIC) measures to evaluate each
candidate solutions.

2.1 Binary Differential Evolution

In DE candidate solutions are represented by vectors, with various opera-
tors being performed on them at each generation. The operators can range
from mathematical functions such as addition, subtraction, or multiplication,
to genetic operators such as crossover and mutation. There are various versions
of DE in the literature [16]. One of the most promising one is DE/best/1, which
is used in this work. A DE/best/1 iteration is defined as such

v i,G+1 = x best,G + F.(x r1,G − x r2,G) (1)

where i indicates i-th solution in the population, G and G + 1 indicates the
current and next generations. F is a scale factor controlling the size of the
particle’s movement, and x r1,G and x r2,G are other random candidate solutions
chosen from the population such that x best,G �= x r1,G �= x r2,G. x best,G is the
current global best solution, which is a main feature of DE/best/1 that separates
it from other implementations such as DE/rand/1. As seen in the equations, the
current global best solution is a main factor, or the bases, of all new solutions. In
DE/rand/1, three solutions are chosen at random to generate the new solution.

An initial population of candidate solutions are randomly generated. In each
generation, a tentative new candidate solution, v i,G+1, is generated with the
equation above for each solution i of the population. x i,G+1 is updated to v i,G at
the G+1 generation if the fitness v i,G+1 is better than x i,G, i.e. an improvement
on the old solution. Otherwise x i,G+1 is the same as x i,G.

Due to similarities between DE and PSO, previous work on binary PSO
[10] can be used here. A conversion must be made from the continuous vector
representation of the candidate solutions to the binary solutions required for the
selection problems. The conversion is given by:

outputi,d =
{

1, if rand() < 1

1+e−xi,d

0 otherwise
(2)

where output is the d -th bit of the i -th solution, rand() is a random number
between 0 and 1, and x i,d is the d-th value of the i-th vector of the candidate
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Algorithm 1. Interclass Distance
1: for all classes do
2: find all instances belong to this class
3: construct mean instance from all instances belong to this class
4: find and store a representative set of instances (ReSs) of this class
5: end for
6: distance := 0
7: for all ReSs do
8: classDistance := 0
9: links := 0

10: for all other ReSs do
11: for all Instance i1 in ReS do
12: for all Instance i2 in other ReS do
13: classDistance += distanceBetween(i1,i2)
14: links += 1
15: end for
16: end for
17: end for
18: distance += classDistance / links
19: end for
20: interclass distance := distance / number of classes

solution, normalized by the sigmoid function. The values in output determine
the selection of features or instances.

2.2 Fitness Function

The fitness function is one of the key components in the proposed algorithms,
which is based on IIC measures. The IIC measures can be broken down to two
parts, which are the interclass distance and the intraclass spread.

Interclass Distance. The interclass distance is a measure of the separability
of classes in a dataset. The larger the distance, the further apart and separated
the classes are. Therefore, a big distance means that the classes are more dis-
tinguished and there is less overlap between classes, which is expected to have
a better classification performance. To achieve the goal of performing classifica-
tion, we propose to build a prototype, which is a mean instance, or centroid, for
each class based on a set of representative instances. The reasons for not using
all instances here are to avoid outliers and long computational cost.

Algorithm 1 shows how the interclass distance is calculated. For each class,
a mean instance, or centroid, is constructed. The mean instance is a feature
vector that each value is the mean of all instances belonging to that class. A
representative set of instances are the ones nearest to the constructed mean
instance, which is found to represent the class. Each representative set has a size
of 10 % of the total number of instances belonging to that class plus one, i.e.
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Algorithm 2. Intraclass Spread
1: {Part 1: Calculating spread of each feature}
2: for all features do
3: featureSpread := 0
4: for all class do
5: featureSpread += σf,c

6: end for
7: end for
8: {Part 2: Calculating overall spread}
9: intraclass spread := 0

10: for all featureSpread do
11: intraclass spread += featureSpread
12: end for

the mean instance. The representative sets are used to calculate the Euclidean
distance between classes, which can be seen from Lines 1–5 in Algorithm 1. Then,
the Euclidean distance between the representative sets are found. The average
distance between two classes is defined as the average distance of each instance
in one representative set to each instance in the other representative set. The
average is taken here due to the different numbers of instances belonging to each
class. In Lines 10–17, the average distance between two classes is calculated for
between every class. Then the average of the averages between every two classes
is used as the distance between all classes as shown in Line 20.

The following equations provides a mathematical form of this calculation.

Distance =

∑a�=b
Ca,Cb∈C

∑
i∈Ca

∑
j∈Cb

|i−j|
|Ca|×|Cb|

|C| , (3)

where C is the set of all representative sets, Ca, Cb are any two different repre-
sentative sets, and i, j are individual instances.

Intraclass Spread. The intraclass spread is a measure of how spread out a
particular class is. The further spread a class is, the more likely it is to overlap
with other classes, providing a more cohesive representation of the class. There-
fore a smaller spread is preferred. The spread of a class is given by the spread of
its features, particularly by all the feature values of the instances in each class.
This allows easier calculation, but does not change the total spread of a given
dataset due to the associative properties of addition.

The spread of a particular feature is given by the sum of the standard devia-
tion of each class’s set of values for that feature. The spread of the set of features
is given by the sum of each feature’s spread.

Spread =
∑
f∈F ′

σf , where σf =
∑
c∈C

σf,c (4)

where F ′ is a set of features, c is an instance belonging to the class C, and σf,c

is the standard deviation of the values representing feature f in class c.
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Fitness Function. To achieve good classification performance, ideally, the intr-
aclass spread should be minimized and the interclass distance should be max-
imized. Therefore, a (minimization) fitness function is formed and shown by
Eq. 5.

Fitness =
Spread + α.|F |

Distance
(5)

where |F | is the number of features, and α is a coefficient. The constant α.|F |
is added to the spread in the numerator to control the weight ratio between
the spread and the distance. A smaller constant would give more weight to the
spread, and a larger constant gives more weight to the distance. This also means
that the number of features selected in FS can be controlled, as the number of
features directly affect the spread and distance, i.e. intraclass spread wants fewer
selected features, whereas interclass distance wants more features. Therefore, by
adjusting the weights of spread and distance, the number of features can be
adjusted.

2.3 New Algorithms

We will investigate the use of DE for FS, IS, as well as FS and IS together.
Since the fitness function, Eq. 5, eventually shows how well different classes can
be separated, it is used in all the three algorithms, to form IIC-FS, IIC-IS, and
IIC-FIS, for FS, IS, and FS and IS, respectively.

The goal of the three algorithms are the same, i.e. minimizing the fitness
value. They all follow the basic DE process. The key difference between them
is the representation since the candidate solutions are different, i.e. a subset of
features, a subset of instances, and a subset of instances with selected features
only for IIC-FS, IIC-IS, and IIC-FIS, respectively. In IIC-FS, the representation
of each individual in DE is a m-dimensional boolean vector for a dataset with m
features, where each dimension determines whether the corresponding feature is
selected. 1 means the feature is selected and 0 otherwise. In IIC-IS, the represen-
tation is a n-dimensional boolean vector for a dataset with n instances, where
each dimension determines whether the corresponding instance is selected. In
IIC-FIS, the representation is a (n+m)-dimensional boolean vector, where each
dimension determines whether the corresponding feature or instance is selected.

In IIC-FS, as the instances do not change, each feature has a particular
intraclass spread value associated with it that also does not change. These values
only need to be calculated once. Training times are improved since each feature’s
spread is stored in memory and is simply read for each fitness evaluation, as
opposed to recalculating each value every time it is needed. Therefore the first
part of Algorithm 2 is only performed once at the beginning. Further evaluations
only need to perform the second part. The same cannot be achieved for interclass
distances, as changing the dimensions (features) of instances also changes their
relative distances. Therefore Algorithm 1 is performed in full for every fitness
evaluation for FS. In IIC-IS and IIC-FIS, due to the changing instances, and
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thus both the spread and distances of the data, both algorithms’ calculations
are performed in full for every fitness evaluation.

In addition, since DE has never been used for IS, and FS and IS, we investi-
gate two wrapper based methods using KNN as the classification algorithm to
evaluate the classification performance as the fitness function for IS only (KNN-
FS), and for FS and IS (KNN-FIS). Both KNN-FS and KNN-FIS are also new
to some extent.

3 Experiment Design

The proposed algorithms are run against 10 datasets taken from the UCI machine
learning repository shown in Table 1. These datasets are selected to represent
a range of feature and instance counts, as well as being widely used datasets
such that the new algorithms can be compared against existing ones. Data is
normalized as they are loaded, ensuring that distance and standard deviation
measures are on the same scale for all features.

Table 1. Experiment datasets

Dataset NO. of features NO. of instances NO. of classes α

Wine 13 178 3 0.4

Australian 14 690 2 2

Zoo 17 101 7 0.65

Vehicle 18 846 4 0.38

German 24 1000 2 0.16

Wbcd 30 569 2 0.27

Ionosphere 34 351 2 0.2

Lung 56 32 2 0.41

Sonar 60 208 2 0.2

Movementlibras 90 360 15 1.2

For each selection process, 30 runs are conducted for each dataset. The DE
has a population of 80 candidate solutions, and is run for 100 generations. Since
an optimal solution cannot be easily determined and classification rate is not
part of the training process, there is no early stopping criteria. The data is
resplit every 10 runs for a total of 3 different splits per dataset. The split is done
randomly, with each instance having a 70 % chance of being used for training,
and 30 % chance of being used for testing.

In ICC-FS, IIC-IS and IIC-FIS, a search was conducted before the experi-
ments for α. The coefficient values for α in Table 1 were found to give a similar
number of features to KNNFS and were used for the experiments. IIC-FIS has
two specific implementations. The first one, marked with “200”, is run with 200
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candidate solutions of DE instead of 80. This is to accommodate for the larger
search space due to the dimension size being the sum of number of features and
instances. The second, marked with “ICC-Half”, uses a modified KNN for classi-
fication after using IIC-FS to reduce the features. This modified KNN only uses
half the instances. For each class, the centroid, or mean instance, is calculated
from every instance of that class in the training set. Then half the instances
of that class, the half closest to the centroid, are used in the KNN for classi-
fication. Although only the features are selected in the training process, this
modified KNN selects instances, putting it under FS and IS. In KNN-FS, KNN-
IS, and KNN-FIS, the average classification accuracy of a 10-fold validation on
the training set is used as the fitness value, where 10-fold validation is used to
make sure that no FS bias is involved and the test set is completely unseen for
the FS methods.

After the DE generations, the solutions with the best fitness are evaluated
for its classification accuracy on the test set, where KNN (K = 5) is used as the
classifier. A non-parametric test, the Mann?-Whitney U test, is then used to
compare the testing accuracy and number of features/instances selected by the
IIC measure against using all features, as well as the standard KNN technique.

4 Results and Discussions

Tables 2, 3, and 4 show the results of the three sets of experiments. Table 2
shows the results of the FS using KNN-FS, and IIC-FS. The first two columns
show the dataset name and the methods. The third column shows the average
and standard deviation of the number of selected features. The fourth column
shows the average, standard deviation, and best accuracy on the test sets. The
column “Test 1” shows the statistical significance tests between the method in
the corresponding row against All, where “�”, “�”, and “=” means the corre-
sponding method is significantly better than, worse than, and similar to that
of All, respectively. The column “Test 2” shows the same information against
KNN-FS. Note that “better” means larger for accuracy, but means smaller for
the number of features. The last column shows the average training time for a
single run, where the number is shown in seconds. Table 3 shows the results of
IS, and Table 4 shows the results of FS and IS together, where the meanings of
symbols are the same as in Table 2.

4.1 Results of Feature Selection

According to Table 2, it can be seen that comparing IIC-FS with All, the number
of features is reduced to around one third of the total number of features. With
the reduced feature subsets, IIC-FS achieved better or at least similar classifica-
tion accuracy than using all the original features on nine out of the ten datasets.
The results show that proposed IIC-FS can be successfully used for FS to evolve
a small number of features, which can maintain or even increase the classification
performance.
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Table 2. Experimental results for feature selection

Dataset Method NO. of Features Accuracy Test 1 Test 2 Average

Mean (Std) Best Acc Size Acc Size Time

Wine All 13 0.948 (0.03) 0.979

KNN-FS 6.4 (1.13) 0.936 (0.05) 0.98 = � 566.57

IIC-FS 5.3 (0.47) 0.959 (0.02) 0.981 = � = � 5.47

Aus. All 14 0.859 (0.01) 0.867

KNN-FS 5.47 (0.94) 0.867 (0.02) 0.903 = � 8652.8

IIC-FS 2.9 (0.66) 0.858 (0.01) 0.862 = � = � 95.67

Zoo All 17 0.909 (0.05) 0.946

KNN-FS 9 (1.58) 0.938 (0.04) 1 = � 264.7

IIC-FS 8.33 (1.42) 0.904 (0.03) 0.968 = � � = 2.27

Vehicle All 18 0.667 -0 0.667

KNN-FS 8.6 (1.54) 0.693 (0.03) 0.751 � � 20937.43

IIC-FS 8.63 (1.22) 0.645 (0.04) 0.719 � � � = 125.27

German All 24 0.697 (0.01) 0.709

KNN-FS 10.4 (1.92) 0.715 (0.03) 0.766 � � 43018.27

IIC-FS 8.67 (1.99) 0.718 (0.02) 0.759 � � = � 413.1

WBCD All 30 0.959 (0.01) 0.969

KNN-FS 13.2 (2.16) 0.956 (0.02) 0.982 = � 18815.8

IIC-FS 14.13 (1.93) 0.952 (0.01) 0.982 = � = = 189

Ionos. All 34 0.839 (0.01) 0.843

KNN-FS 9.8 (2.50) 0.876 (0.03) 0.933 � � 8652.6

IIC-FS 10.57 (2.03) 0.852 (0.02) 0.899 � � � = 87.17

Lung All 56 0.747 (0.04) 0.8

KNN-FS 23 (4.34) 0.707 (0.09) 0.923 = � 129.53

IIC-FS 24.27 (2.88) 0.719 (0.08) 0.846 = � = = 2.7

Sonar All 60 0.809 (0.06) 0.895

KNN-FS 26.07 (2.80) 0.792 (0.05) 0.895 = � 9331.53

IIC-FS 26.33 (3.46) 0.798 (0.06) 0.912 = � = = 148

Movement libras All 90 0.707 (0.03) 0.745

KNN-FS 38.9 (6.15) 0.699 (0.04) 0.764 = � 51255.67

IIC-FS 39.37 (4.23) 0.682 (0.05) 0.764 = � = = 154.37

Comparing IIC-FS with KNN-FS, the number of features and the classifi-
cation performance are similar in most of the cases, with three cases of IIC-FS
selecting a smaller feature subsets and KNN-FS achieving better classification
accuracy. KNN-FS is expected to achieve better accuracy since it is a wrapper
approach while IIC-FS is a filter approach.

In terms of the training time, there is a huge difference between IIC-FS with
KNN-FS, where IIC-FS always used a substantial shorter time (48 to 167 times
faster) than KNN-FS, with the Vehicle dataset having the biggest difference.

In summary, the proposed ICC-FS methods can be successfully used for FS.
As a filter approach, IIC-FS is able to achieve similar FS performance to the
wrapper method, KNN-FS, but the computational time is much shorter.
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Table 3. Experimental results for instance selection

Dataset Method NO. of instances Accuracy Test 1 Test 2 Average

Mean(Std) Best Acc Size Acc Size Time

Wine All 128 (3.61) 0.948 (0.031) 0.979

KNN-IS 50.9 (5.82) 0.943 (0.031) 1 = � 255.33

IIC-IS 47.57 (6.02) 0.943 (0.02) 0.98 = � = = 3.2

Australian All 487.67 (10.97) 0.859 (0.009) 0.867

KNN-IS 209.47 (20) 0.862 (0.015) 0.888 = � 4327.37

IIC-IS 209.9 (20.52) 0.862 (0.021) 0.898 = � = = 40.17

Zoo All 69.67 (5.51) 0.909 (0.046) 0.946

KNN-IS 31.83 (6.79) 0.856 (0.043) 0.968 � � 120.2

IIC-IS 26.13 (4.03) 0.817 (0.079) 0.968 � � = � 0.03

Vehicle All 596 (10.54) 0.667 (0) 0.667

KNN-IS 277 (25.63) 0.62 (0.032) 0.699 � � 11258.87

IIC-IS 255.13 (22.4) 0.629 (0.037) 0.707 � � = � 35.07

German All 704 (14.53) 0.697 (0.009) 0.709

KNN-IS 311.77 (25.42) 0.711 (0.019) 0.756 � � 26422.23

IIC-IS 300.47 (25.19) 0.7 (0.022) 0.745 = � = = 275.43

WBCD All 400 (10.39) 0.959 (0.011) 0.969

KNN-IS 185.2 (20.76) 0.957 (0.013) 0.975 = � 11477.57

IIC-IS 168.67 (14.59) 0.946 (0.013) 0.969 � � � � 149.47

Ionosphere All 241.33 (8.62) 0.839 (0.005) 0.843

KNN-IS 104.5 (13.01) 0.86 (0.017) 0.892 � � 5608.13

IIC-IS 99.77 (8.6) 0.707 (0.057) 0.866 � � � = 59.07

Lung All 21.67 (2.52) 0.747 (0.045) 0.8

KNN-IS 6.77 (2.39) 0.647 (0.038) 0.7 � � 32.77

IIC-IS 2.5 (0.9) 0.693 (0.124) 0.9 = � � � 1.63

Sonar All 147.67 (3.51) 0.809 (0.063) 0.895

KNN-IS 63.4 (9.05) 0.678 (0.054) 0.817 � � 4899.07

IIC-IS 57.23 (6.88) 0.668 (0.058) 0.767 � � = � 68.33

Movement libras All 247 (9.85) 0.707 (0.033) 0.745

KNN-IS 122.7 (9.62) 0.511 (0.057) 0.6 � � 36993.93

IIC-IS 87.37 (8.68) 0.42 (0.045) 0.482 � � � � 143.6

4.2 Results of Instance Selection

Table 3 shows the results of IS, where both KNN-IS and IIC-FS are newly inves-
tigated in this paper. The results show that both KNN-IS and IIC-IS selected
only a much smaller number of instances compared with the total number of
instances on all the datasets. Although the number of instances to be selected
by IIC-IS was not controlled, the number of instances selected by IIC-FS is sig-
nificantly smaller than that of KNN-IS on six out of the ten datasets, and similar
on the other four datasets. Compared to using all instances, both KNN-IS and
IIC-IS performed significantly better or similar in around half of the cases, but
in general the difference is not too big, and the best accuracy of KNN-IS and
IIC-IS is often better than using all instances. This is different from the good
performance of their corresponding FS methods, as shown in Table 2. This is not
too surprised given that IS could change the original pattern and distribution
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of the data, which is probably why there has been much more work on FS than
IS, although IS can benefit classification in many ways as FS. We will further
investigate effective IS methods in the future.

Regarding the training times, both KNN-IS and IIC-IS have a faster training
time than their respective FS counterparts as shown in Table 2. This is due to the
highly reduced number of instances in each fitness evaluation, resulting in fewer
calculations of the distances between instances. Once again the IIC technique
is much faster than the KNN technique. The speed increase ranges from 20–
321 times faster. The Zoo dataset is a special case, most of the training times
where recorded as 0 (seconds) since the entire training process took less than
one second. This results in an extremely low average training time, which was
4000 times faster than KNN-IS.

In summary, the two IS methods cannot in most cases maintain or increase
the classification performance, although it can substantially reduce the size of
the data. The speed of the algorithms is very fast, much faster than the FS meth-
ods. How to maintain the speed and simultaneously increase the classification
performance is an interesting direction for future work.

4.3 Results of Feature and Instance Selection

Table 4 shows the results for the FS and IS experiments, where “200” is used to
represent the implementation of IIC-FIS with 200 generations, and “IIC-Half”
is used to represent the version of IIC-FIS with the KNN implementation. All
the three methods on this set of experiments are new in this work.

The results from Table 4 show that both the number of features and the
number of instances have been significantly reduced, but the price is the lower
classification performance, especially on the large datasets. IIC-200 selected sig-
nificantly more features than KNN-FIS on every dataset, and they are similar
in the number of instances on most datasets. IIC-Half has a similar number of
features selected on seven of the ten datasets as KNN-FIS, and a similar clas-
sification performance. Compared to using all feature and instances, KNN-FIS
achieves a better classification accuracy on three datasets, and worse on six. Both
IIC-200 and IIC-Half achieves similar results on three (Wine and German for
both, then Australian for 200 and Zoo for IIC-Half) datasets. Neither achieves
a significantly better result than using all features and instances.

For the training time, the IIC methods have a much faster time than the
KNN based method. Although the improvement here is not as high as in FS and
IS, with the range of reduction at 4–80 times faster.

4.4 Analysis on the Computational Time

The ICC methods are orders of magnitude faster than KNN-FIS in terms of the
training time while still achieving similar results. According to Tables 2, 3 and
4, the average training speed is roughly 4–400 times faster (on average 120 times
faster) using IIC than the KNN technique. This is due to the number of distance



A Differential Evolution Approach to FS and IS 599

Table 4. Experimental results for feature and instance selection

Dataset Method Features used Instances used Accuracy Test 1 Test 2 Average

mean(Std) Acc Ins Feas Acc Ins Feas Time

Wine All 13 128(3.61) 0.948(0.03)

KNN-FIS 7.17(2.13) 52(5.62) 0.935(0.04) = � � 84.9

IIC-200 10.93(1.17) 54.93(7.98) 0.94(0.04) = � � = � = 5

IIC-Half 6.97(1.13) 66.67(1.27) 0.941(0.03) = � � = = � 4.07

Aus. All 14 487.67(10.97) 0.859(0.01)

KNN-FIS 7.03(1.77) 207.57(21.50) 0.866(0.02) � � � 1563.4

IIC-200 11.1(1.18) 223.17(23.03) 0.858(0.02) = � � = � � 63.57

IIC-Half 4.7(1.29) 245(4.32) 0.813(0.03) � � � � � � 86.23

Zoo All 17 69.67(5.51) 0.909(0.05)

KNN-FIS 8.43(1.85) 31.17(6.18) 0.835(0.04) � � � 38.1

IIC-200 12.57(1.74) 30.77(4.16) 0.836(0.08) � � � = � = 1.13

IIC-Half 8(1.26) 40.67(2.54) 0.916(0.04) = � � � = � 1.33

Veh. All 18 596(10.54) 0.667 -0

KNN-FIS 9.5(1.85) 283.03(19.67) 0.652(0.04) � � � 4082

IIC-200 15(1.84) 287.9(24.69) 0.627(0.03) � � � � � = 78.2

IIC-Half 9.57(1.14) 301.33(4.18) 0.572(0.03) � � � � = � 104.17

Germ. All 24 704(14.53) 0.697(0.01)

KNN-FIS 9.97(2.24) 316.5(28.43) 0.712(0.03) � � � 7683.53

IIC-200 15.93(2.08) 326.63(21.46) 0.696(0.02) = � � � � = 273.7

IIC-Half 10.47(2.21) 353.67(6.23) 0.687(0.04) = � � � = � 397.47

WBCD All 30 400(10.39) 0.959(0.01)

KNN-FIS 14.23(2.99) 186.13(17.47) 0.947(0.02) � � � 4215.1

IIC-200 21.13(2.87) 185.33(16.04) 0.95(0.01) � � � = � = 178.67

IIC-Half 14.83(2.52) 201.33(4.57) 0.941(0.01) � � � = = � 215.87

Ionos. All 34 241.33(8.62) 0.839(0.01)

KNN-FIS 14.53(2.96) 106.97(12.08) 0.864(0.03) � � � 1633.83

IIC-200 19.63(2.24) 105.33(11.30) 0.763(0.04) � � � � � = 61.27

IIC-Half 11.93(2.42) 122.33(3.36) 0.708(0.04) � � � � � � 116.47

Lung All 56 21.67(2.52) 0.747(0.04)

KNN-FIS 23.87(3.66) 6.23(2.06) 0.647(0.04) � � � 10.37

IIC-200 27.73(4.70) 2.43(1.07) 0.704(0.12) � � � � � � 1.87

IIC-Half 24.6(3.63) 12.67(1.27) 0.715(0.09) � � � � = � 2.27

Sonar All 60 147.67(3.51) 0.809(0.06)

KNN-FIS 26.57(4.32) 64.07(9.66) 0.722(0.05) � � � 1648

IIC-200 30.53(4.07) 61.43(6.37) 0.679(0.05) � � � � � = 62.03

IIC-Half 26.3(4.46) 75.67(1.27) 0.707(0.04) � � � = = � 86

Move. libras All 90 247(9.85) 0.707(0.03)

KNN-FIS 43.77(5.77) 125.67(9.83) 0.497(0.06) � � � 11808.07

IIC-200 54.17(5.11) 108.67(9.77) 0.46(0.05) � � � � � � 190.83

IIC-Half 40.3(4.02) 135.33(4.18) 0.553(0.04) � � � � � � 142.63

calculations between instances, a costly operation, is much lower in IIC than
KNN.

Assuming instances are equally distributed between classes, for each fitness
evaluation the number of calculations between values in IIC can be roughly
calculated by the following equation:

n + 0.01
(n

c

)2

.
c(c − 1)

2
, (6)
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Fig. 1. Number of distance calculations in KNN and IIC

where c ∈ [1, n] is the number of classes and n is the number of instances.
The initial n at the beginning is to find the distance from each instance to its
mean instance to identify the representative set. The second part is the distance
calculations between representative set. A fully connected graph (where each
vertex is a class representative set) has c(c−1)

2 edges, with each edge consisting of
0.1n

c ×0.1n
c calculations. This is largest at c = 2 for all n > 2, giving n+0.0025n2

calculations.
For the KNN based techniques, each evaluation requires 10 × 0.9n × 0.1n

(0.9n2) distance calculations. This is from the 10-fold cross validation, where
in each fold 10 % of instances are compared with the other 90 %. So the rough
number of calculations is

n + 0.0025n2 > 0.9n2 for all n > 1, (7)

Figure 1 shows the number of distance calculations in KNN and IIC when the
number of instances is 10 and 100. One can see that even at only 10 instances,
KNN has greatly separated from IIC. When there is 100 instances, IIC is negli-
gible compared to KNN. Note that are more than 100 instances in the training
set in all but two datasets.

5 Conclusions and Future Work

The goal of this paper was to investigate the use of DE for feature and/or IS in
classification, which a new binary DE algorithm and a new fitness function. The
experiments and comparisons on ten datasets show that the proposed DE based
FS algorithm is successful in terms of the number of features, the classification
accuracy and the training time. However, when the IS task involved, the algo-
rithms are good at reducing the size of the data, but the classification accuracy
may suffer, which is a critical problem. The reason for this is due to the large
search space, which is also probably why there has been much more work on FS
than IS.

This paper investigates a series of different feature and/or IS methods, which
have not been done before. Although it is only a preliminary work, the findings
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are very useful, especially when both feature selection and instance selection are
becoming increasingly important for big data tasks. There is still a lot of work
should be done in this filed. For example, a novel representation of solutions
is needed, which can effectively reduce the search space and also form a more
smooth landscape to be more easily searched. A computationally cheap fitness
measure is also of key component, especially on datasets with a large number of
features and instances. We will focus on these directions in the future.
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