
On Partial Features in the DLF Family
of Description Logics

David Toman(B) and Grant Weddell

Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
{david,gweddell}@cs.uwaterloo.ca

Abstract. The DLF family of description logics are fragments of first
order logic with underlying signatures based on unary predicate sym-
bols, called atomic concepts, and unary function symbols interpreted as
total functions, called features. We show how computational properties
relating to a key reasoning service for dialects of this family are pre-
served when (a) unary function symbols are now interpreted as partial
functions, and when (b) a concept constructor is admitted that can char-
acterize circumstances in which partial functions become total.

1 Introduction

The DLF family of description logics (DLs) have been designed primarily to sup-
port reasoning tasks about object relational data sources. This includes the CFD
sub-family that admitsPTIMEalgorithms formanyof these tasks.Unlike theusual
case of role-based DLs [1], dialects in this family are feature-based, that is, are frag-
ments of first order logic with underlying signatures that replace binary predicate
symbols, called roles, with unary function symbols, interpreted as total functions,
called features. Since features are intended to capture the notion of an attribute in
a data source, a column for a relational table for example, this practice has led to
some cognitive incongruity: one must reconcile that every attribute is fundamen-
tally defined for every object and introduce protocols for indirectly saying when an
attribute is or is not meaningful for various kinds of objects.

In this paper, we show how computational properties of DLs in the DLF
family are preserved when they are modified to address such incongruity. This
modification is as follows. First, features, now called partial features, are instead
interpreted as partial functions, and second, a concept constructor is added that
makes it possible to refer to all objects that have a value for a given partial
feature. The added constructor yields to an ability for any of the DLs to define
cases in which partial functions become total functions, such as to say that every
employee has a salary, or, for two of the DLs considered, to define cases in which
partial functions are not meaningful, such as to say that departments do not
have a salary.

We consider the particular problem of reasoning about logical implication for
three representative members of the DLF family: DLFD [5–7], CFD [3,8] and
CFD∀

nc [9,10]. The first is a very expressive dialect for which logical implication is
c© Springer International Publishing Switzerland 2016
R. Booth and M.-L. Zhang (Eds.): PRICAI 2016, LNAI 9810, pp. 529–542, 2016.
DOI: 10.1007/978-3-319-42911-3 44

530 D. Toman and G. Weddell

EXPTIME-complete, while the remaining two are also members of the CFD fam-
ily and therefore have PTIME decision procedures for this problem. Note that all
three include a concept constructor for capturing keys and functional dependen-
cies in object relational data sources and can express, for example, that no two
departments have the same manager, or that an employee’s pay grade determines
her salary. The constructor is called a path functional dependency (PFD).

Our contributions, in the order presented, are as follows. Note that, in pre-
senting them and for the remainder of the paper, we write partial−DLFD,
partial−CFD and partial−CFD∀

nc to refer, respectively, to DLFD, CFD and
CFD∀

nc when they are presumed to be modified to support partial functions in
the above fashion:

1. We introduce a semantics for PFDs when features are partial functions that
is entirely neutral on issues of feature existence, that is, on whether certain
kinds of objects must have or even can have values for particular features;1

2. We show that logical implication for partial−DLFD reduces to logical impli-
cation for DLFD, in the process showing that partial functions can be sim-
ulated in a straightforward fashion in this dialect; and

3. We show that logical implication for both partial−CFD and partial−CFD∀
nc

remains in PTIME by exhibiting refinements of existing respective PTIME
decision procedures for deciding logical implication with CFD and CFD∀

nc.

We conclude with summary comments and an outline of possible directions for
future work, with a particular focus on CFD∀

nc in the latter case: on partial
functions for a recent extension, and on relaxing syntactic restrictions to enable
straightforward partial function simulation, as we show is possible for DLFD.

2 Background and Definitions

In this section, we begin by reviewing the basic definitions for member dialects
of the DLF family in which features are interpreted as total functions, and then
proceed to introduce modifications that yield support for partial features, that
is, features that are instead interpreted as partial functions.

Note that DLs in this family do not forgo the ability to capture roles or indeed
n-ary relations in general. This can be accomplished with the simple expedient
of reification via features, and by using the above-mentioned PFD concept con-
structor common to these dialects to ensure a set semantics for reified relations.
Indeed, the first dialect we consider, DLFD, can capture very expressive role-
based dialects, including dialects with so-called qualified number restrictions,
inverse roles, role hirarchies, and so on [5].

1 Such issues can be (and we believe should be) explicitly addressed elsewhere in an
ontology.

On Partial Features in the DLF Family of Description Logics 531

Definition 1 (Feature-Based DLs). Let F and PC be sets of feature names
and primitive concept names, respectively. A path expression is defined by the
grammar “Pf :: = f.Pf | id” for f ∈ F. We define derived concept descriptions
by the grammar on the left-hand-side of Fig. 1.
An inclusion dependency C is an expression of the form C1 � C2. A terminology
(TBox) T consists of a finite set of inclusion dependencies. A posed question Q
is a single inclusion dependency.

Fig. 1. Syntax and semantics of DLFD/CFD concepts.

The semantics of expressions is defined with respect to a structure I = (�, ·I),
where � is a domain of “objects” and ·I an interpretation function that fixes the
interpretations of primitive concepts A to be subsets of � and primitive features
f to be total functions fI : � → �. The interpretation is extended to path
expressions, idI = λx.x, (f.Pf)I = PfI ◦fI and derived concept descriptions C
as defined in the centre column of Fig. 1.

An interpretation I satisfies an inclusion dependency C1 � C2 if CI
1 ⊆ CI

2 and
is a model of T (I |= T) if it satisfies all inclusion dependencies in T . The
logical implication problem asks if T |= Q holds, that is, if Q is satisfied in all
models of T . �

In the following, we simplify the notation for path expressions by allowing a
syntactic composition Pf1 .Pf2 that stands for their concatenation.

In this presentation, we do not consider so-called ABoxes (sets of assertions
about membership of individuals in descriptions) and the associated problem of
knowledge base consistency. However, these can be reduced to logical implication
problems involving posed questions that utilize value restrictions and equational
same-as descriptions [8].

Also note that the logical implication problem for TBoxes and posed ques-
tions characterized so far, that allow arbitrary concepts in inclusion dependen-
cies, is not decidable for a variety of reasons (e.g., see [7] for one case involving

532 D. Toman and G. Weddell

arbitrary PFDs and ABoxes encoded in the above manner). However, restric-
tions on occurrences of concept constructors has led to a number of decidable
fragments that range from light-weight to expressive dialects of feature-based
DLs. The restrictions that obtain DLFD, CFD and CFD∀

nc, the focus of our
attention, are given in Sect. 3 for the first case and in Sect. 4 for the remaining
two cases.

The two definitions that follow now introduce the necessary modifications to
our characterization of feature-based DLs to accommodate partial features, that
is, features that are interpreted as partial functions. Note that their presenta-
tion relies on our notational convention given in our introductory comments of
qualifying particular dialects with the word “partial” whenever we intend such
modifications to apply, as in partial−DLFD for example.

Definition 2 (Partial Features and Existential Restrictions). The syntax
of feature-based DLs is extended with an additional concept constructor of the
form ∃f , called an existential restriction. Semantics is updated as follows:

1. features f ∈ F are now interpreted as partial functions on � (i.e., the result
can be undefined for parts of �); and

2. the ∃f concept constructor is interpreted as {x : ∃y ∈ �.fI(x) = y}.

Also, in this setting, path functions (Pf) naturally denote composition of partial
functions yielding a partial function, equality (=) is true only when both of its
arguments are defined (in addition to being equal), set membership (∈) requires
only defined values to be members of its right hand side argument, etc.2 �

Observe that features are still functional, and that there is therefore no need for
a qualified existential restriction of the form ∃f.C, with the standard meaning
(∃f.C)I given by

{x : ∃y ∈ �.fI(x) = y ∧ y ∈ CI}.

Indeed, they can be simulated using the following identity:

∃f.C = ∃f
 ∀f.C.

Using this identity, we write ∃Pf in the following as shorthand for

∃f1
 ∀f1.(∃f2
 ∀f2.(. . . (∃fk) . . .)).

On interpreting the PFD constructor in the presence of partial features: the
minimum necessary (and we believe most natural) circumstance in which one
obtains a violation of a PFD inclusion dependency of the form

C1 � C2 : Pf1, . . . ,Pfk → Pf0

happens when all path functions Pf0, . . . ,Pfk are defined for a C1 object e1 and a
C2 object e2, and in which PfIi (e1) = PfIi (e2) holds only for i > 0. This yields the
2 This arrangement is common and is referred to as the strict interpretation of unde-
fined values.

On Partial Features in the DLF Family of Description Logics 533

following modification to the interpretation of PFDs in the presence of partial
features that we now adopt:

(C : Pf1, . . . ,Pfk → Pf0)I = {x : ∀y.y ∈ CI ∧ x ∈ (∃Pf0)I ∧ y ∈ (∃Pf0)I ∧
∧k

i=1(x ∈ (∃Pfi)I ∧ y ∈ (∃Pfi)I ∧ PfIi (x) = PfIi (y)) → PfI0 (x) = PfI0 (y)}.

Observe that this definition coincides with the original semantics of the PFD
constructor given in Fig. 1 when features are interpreted as total functions. Also
note that, without this modification to semantics, the strict interpretation of
undefined values would mean that satisfying the left-hand-side of a PFD would
imply the existence of “Pf0 paths” (and equality of the “endpoint” of these
paths), a circumstance that would violate feature existence neutrality of PFDs
mentioned in our introductory comments that seems desirable.

We now return to examples of constraints mentioned in our introductory
comments to illustrate the use of existential restrictions and PFDs in DLF
dialects with partial features. Each can be expressed in partial−DLFD and
partial−CFD∀

nc, and each but the second mentioning negation in partial−CFD:

1. EMP � ∃salary (every employee has a salary);
2. DEPT � ¬∃salary (departments do not have a salary);
3. DEPT � DEPT : manager → id (no two departments have the same man-

ager); and
4. EMP � EMP : paygrade → salary (employee pay grades determine salaries).

3 Expressive Feature Logics: The DLF Family

In this section, we consider the impact of partial features in expressive feature-
based description logics, namely in DLF and DLFD [5–7]. DLF allows both TBox
and posed question dependencies to contain concepts formed from primitive con-
cepts and bottom using negation, conjunction, disjunction, and restriction concept
constructors. DLFD in addition allows the PFD concept constructor to appear on
the right hand sides of inclusion dependencies. These restrictions on syntax yield
an expressive Boolean complete description logic with a logical implication prob-
lem that is complete for EXPTIME. Additional extensions, e.g., allowing PFDs on
the left-hand sides of inclusion dependencies or equational constraints in the posed
questions (or equivalently ABoxes) leads to undecidability [7].

We now proceed to demonstrate that partial features can be effectively sim-
ulated in the original logics by introducing an auxiliary primitive concept G
that stands for existing or generated objects, and by using value restrictions to
assign membership of objects generated by the ∃f constructor to this concept.
All remaining inclusion dependencies are then simply preconditioned by this
auxiliary concept.

Formally, let T be a partial−DLF TBox in which all inclusion dependencies
are of the form � � C. We define a DLF TBox TDLF as

TDLF = {G � C[∃f → ∀f.G, for all f ∈ F] | � � C ∈ T }
∪ {∀f.G � G | f ∈ F},

534 D. Toman and G. Weddell

where G is a primitive concept not occurring in T . Note that the substitution
[∃f → ∀f.G, for all f ∈ F] is applied simultaneously to all occurrences of the
∃f constructor in the concept C.

Theorem 3. Let T be a partial−DLF TBox in which all inclusion dependencies
are of the form � � C. Then

T |= � � C if and only if TDLF |= G � C[∃f → ∀f.G, for all f ∈ F],

for G a fresh primitive concept.

Proof (sketch): For any I where I |= TDLF , we can define an interpretation
J = (GI , ·I|GI). It is easy to verify that J |= T and also that J |= � � C

since I |= G � C[∃f → ∀f.G, for all f ∈ F].

For the other direction, we need to extend a model J of T to a model I of TDLF
by setting GI = �J and by adding missing features connecting I to complete
F ∗ trees with all nodes in (¬G)I . This way, either I coincides with J or satisfies
dependencies in TDLF and G � C[∃f → ∀f.G, for all f ∈ F] vacuously. �

To extend this construction to the full partial−DLFD logic, it is sufficient to
encode the path function existence preconditions in terms of the auxiliary con-
cept G as follows: if A � B : Pf1, . . . ,Pfk → Pf0 ∈ T then

A
 (
k�

i=0

∀Pfi .G) � B
 (
k�

i=0

∀Pfi .G) : Pf1, . . . ,Pfk → Pf0 (1)

is added TDLFD. Here, we are assuming w.l.o.g. that A and B are primitive
concept names (DLFD allows one to give such names to complex concepts).

Theorem 4. Let T be a partial−DLFD TBox in which all inclusion depen-
dencies are of the form � � C or A � B : Pf1, . . . ,Pfk → Pf0. Then

T |= � � C if and only if TDLFD |= C � D[∃f → ∀f.G, for all f ∈ F], and
T |= A � B : Pf1, . . . ,Pfk → Pf if and only if TDLFD |= (1),

for G a fresh primitive concept.

Proof (sketch): Logical implication in DLFD can be reduced to logical implica-
tion in DLF [5–7]. Hence the claim holds by observing that (*) captures properly
the semantics of PFDs and then by appealing to Theorem 3. �

Corollary 5. Logical implication is EXPTIME-complete for partial−DLF and
for partial−DLFD. �

Similar results can be obtained for other members of the DLF family.

On Partial Features in the DLF Family of Description Logics 535

4 Tractable Logics: The CFD Family

We now consider how partial features impact logical consequence for light-weight
(PTIME) feature-based description logics, namely CFD [3,8] and CFD∀

nc [9,10].
Both of these logics allow the use of an ABox. Hence, PFDs must adhere to one
of the following two forms to avoid undecidability [7]:

1. C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or
2. C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf .f

(2)

With this restriction, originally introduced in [3], posed questions can contain
inclusion dependencies formed from concepts in Fig. 1 (with a few mild restric-
tions when tractability in the size of the posed question is required). For simplic-
ity, however, we assume that the concepts in the posed question Q = E1 � E2

adhere to the following grammar:

E ::= A | ⊥ | E
 E | ∀Pf .E | (Pf1 = Pf2).

More complex posed questions, e.g., ones that contain the PFD constructor [8],
can be equivalently expressed in the above grammar (perhaps as a sequence of
posed questions).

Note that, due to syntactic restrictions on TBox inclusion dependencies in
CFD and CFD∀

nc (see below), we will not be able to directly simulate partial
features as was done with DLF and DLFD above. However, the approach to
extending/modifying existing decision procedures for logical implication in the
respective logics is analogous: in both cases we introduce an additional unary
predicate D(x) to mark the necessarily existing objects and use this predicate to
restrict the applications of inclusion dependencies. This in turn simulates partial
features.

4.1 partial−CFD
To obtain a PTIME decision procedure for CFD, we need to further restrict the
inclusion dependencies allowed in the TBox T as follows:

1. left hand sides must be conjunctions of primitive concepts, and
2. right hand sides must be primitive concepts, conjunctions, value restrictions,

existential restrictions, and PFDs (obeying restrictions in (2)).

With these restrictions we can show that the logical implication problem for
partial−CFD is in PTIME. Our proof is based on encoding a given problem as
a collection of Horn clauses. The reduction introduces terms that correspond to
path expressions, and relies on the fact that the number of required terms is
polynomial in the size of the problem itself.

536 D. Toman and G. Weddell

Fig. 2. Expansion rules.

Definition 6 (Expansion Rules). Let T and Q be a partial−CFD terminol-
ogy and a posed question, respectively. We write CON(T ,Q) to denote the set
of all subconcepts appearing in T and Q, define PF(T ,Q) to be the set

{Pf .Pf ′ | Pf is a prefix of a path expression in Q and
Pf ′ is a feature occurring in T or id},

write CC to denote unary predicates for C ∈ CON(T ,Q), and introduce a unary
predicate D and a binary predicate E, with all predicates ranging over the uni-
verse PF(T ,Q). The expansion rules for a given terminology T , denoted R(T),
are defined in Fig. 2.3

A goal for each concept E is a set of ground assertions defined as follows:

GE =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{CA(id),D(id)} for E = A;
{C⊥(id),D(id)} for E = ⊥;
{E(Pf1,Pf2),D(Pf1),D(Pf2)} for E = (Pf1 = Pf2);
GE1 ∪ GE2 for E = E1
 E2; and
{CC(Pf ′ .Pf) | CC(Pf) ∈ GE′}
∪ {D(Pf ′ .Pf) | D(Pf) ∈ GE′}
∪ {E(Pf ′ Pf1,Pf ′ .Pf2) | E(Pf1,Pf2) ∈ GE′} for E = ∀Pf ′ .E′.

Given two concept descriptions E1 and E2, we say that

R(T) ∪ {CE1(id)} |= GE2

3 The last rule in the figure does not apply to partial−CFD and is added w.l.o.g. in
preparation for treating partial−CFD∀

nc. This rule is neither necessary nor applicable
in the partial−CFD case.

On Partial Features in the DLF Family of Description Logics 537

if GE2 ⊆ M for every minimal ground model M of R(T) over PF(T ,Q) that
contains CE1(id) and D(id). �

Intuitively, PF(T ,Q) represents a finite graph of objects, predicates E(Pf1,Pf2)
express equality of the objects at the end of paths Pf1 and Pf2, and predicates
CC′(Pf) express that the object at the end of path Pf is in the interpretation of
concept C ′.

Our PTIME result for the partial−CFD implication problem follows by a
simple check for goals occurring in a ground model for expansion rules generated
by a polynomial sized collection of path expressions.

Theorem 7. Let T be a partial−CFD terminology and Q a posed question of
the form E1 � E2. Then

T |= Q iff R(T) ∪ {CE1(id),D(id)} |= GE1 or
R(T) ∪ {CE1(id),D(id)} |= G∀Pf .⊥(id) for some Pf ∈ PF(T ,Q).

Proof (sketch): If C⊥(Pf) and D(Pf) for Pf ∈ PF(T ,Q) appear in M , where M is
the least model of R(T) ∪ {CE1(id)} R(T), then the concept E1 is unsatisfiable
w.r.t. T since only implied facts appear in M , and therefore the subsumption
holds for any E1 and T .

Otherwise, if R(T)∪{CE1(id)} � |= GE1 , then there must be a model M of R(T)∪
{CE1(id)} such that G �∈ M for some G ∈ GE1 . We construct an interpretation
IM such that IM |= T but IM � |= Q. The interpretation IM contains an object
o for each equivalence class defined on the set PF(T ,Q) by the interpretation
of E. The class membership of these objects is determined by the membership
of the corresponding path in the interpretations of the CC predicates in M.
Note that, due to the syntactic restriction imposed on PFDs, this is sufficient
to satisfy all PFDs in T since any precondition or a non-trivial consequence of
a PFD can only manifest on some path belonging to PF(T ,Q) and beginning
at the distinguished object o. To complete the construction of IM , we simply
attach a unique complete tree F∗ to each leaf node (i.e., a node that is missing
successors). Nodes of these complete trees belong to all primitive descriptions in
IM and thus satisfy T .

Conversely, assume R(T) ∪ {CE1(id)} |= GE1 but T � |= Q. Then there must be
an interpretation I and an object o ∈ � such that I |= T and o ∈ EI

1 − EI
2 .

Thus, there is a model MI of R(T) such that CE1(id) ∈ MI . In this model,
the element id ∈ PF(T ,Q) serves as the counterpart of the object o and the
interpretations of the predicates CC and E is extracted from I by navigating
all (pairs of) path functions in PF(T ,Q). However, since o �∈ EI

2 , it must be
the case that MI is a strict subset of the least model of R(T) ∪ {CE1(id)}; a
contradiction. �

Since the expansion rules are Horn clauses over a finite universe PF(T ,Q) of
polynomial size, we have the following:

Corollary 8. Let T be a terminology and Q a posed question in partial−CFD.
Then the implication problem T |= Q is complete for PTIME.

538 D. Toman and G. Weddell

Proof (sketch): The least model of R(T)∪{CE1(id)} can be obtained by using a
bottom-up construction of the least fix-point of the rules in time polynomial in
|T |+ |Q| (since all predicates in R(T) have a fixed arity). Hardness follows from
embedding Horn-SAT into reasoning with PFDs. �

In practice, elements of this set can be constructed on demand by using addi-
tional Horn rules in such a way that only path expressions needed to confirm
subsumption or non-subsumption are generated [4].

Note that neither partial−CFD nor CFD can be extended to allow disjoint-
ness (bottom (⊥)), negation (hence ¬∃f cannot be used), or disjunction on the
right hand sides of inclusion dependencies while maintaining PTIME decidability
of logical implication [8]. However, a similar technique as in the above develop-
ment can be used to handle partial features without impacting the complexity
of the logical implication problems.

4.2 partial−CFD∀
nc

partial−CFD∀
nc shares the PFD restrictions with partial−CFD. However, it

trades the ability to use conjunctions on the left hand sides of TBox inclusion
dependencies for the ability to express disjointness and conditional typing:

1. left hand sides must be primitive concepts or value restrictions, and
2. right hand sides must be a primitive concepts, negations of primitive concepts,

conjunctions, value restrictions, existential restrictions, and PFDs (again,
restricted as in (2)).

It is easy to see that every partial−CFD∀
nc TBox T is consistent (by setting all

primitive concepts to be interpreted as the empty set). It is, however, no longer
true that all primitive concepts (and their conjunctions) are trivially satisfiable.
For example, A � ¬A ∈ T forces A to be empty in every model of T .

Concept Satisfiability. The problem of concept satisfiability asks, for a given
concept C and TBox T , if there exists an interpretation I for T in which CI

is non-empty. Such problems can be reduced to the case where C is a primitive
concept A by simply augmenting T with {A � C}, where A is a fresh primitive
concept. Note that concept C can be a conjunction of other concepts since it
only appears on the right-hand side of an inclusion dependency. We proceed as
follows:

Definition 9 (Transition Relation for T). Let T be a partial−CFD∀
nc TBox

in normal form. We define a transition relation δ(T) over the set of states

S = PC ∪ {¬A | A ∈ PC} ∪ {∀f.A | A ∈ PC, f ∈ F} ∪ {∃f | f ∈ F}

and the alphabet F as follows:

C1
id−→C2 ∈ δ(T), if C1 � C2 ∈ T , and

∀f.A
f−→ A ∈ δ(T), if ∀f.A id ∗−→ ∃f ∈ δ(T),

On Partial Features in the DLF Family of Description Logics 539

where id is the empty letter transition, id ∗ is a sequence of id edges, f ∈ F,
A ∈ PC, and C1, C2 ∈ S. �

The transition relation allows us to construct non-deterministic finite automata
(NFA) that can be used for various reasoning problems on a partial−CFD∀

nc

TBox T . Note that, unlike common practice in automata theory, we use id for
the empty letter in transition relations. Given a primitive concept A and TBox
T , one can test for primitive concept satisfiability by using the following NFA,
denoted nfaAB(T):

(S, {A}, {B}, δ(T)),
with states induced by primitive concepts, their negations, and value restrictions,
with start state A, with the set of final states {B} ⊆ S, and with transition
relation δ(T). Intuitively, if Pf ∈ nfaAB(T) and o ∈ AI then PfI(o) is defined and
PfI(o) ∈ BI in every model I of T .

Theorem 10 (Concept Satisfiability). A is satisfiable with respect to the
TBox T if and only if

L(nfaAB(T) ∩ L(nfaA¬B(T) = ∅
for every B ∈ PC.

Proof (sketch): Assume A is non-empty and hence there is a ∈ AI . For a primi-
tive concept B ∈ PC, a word Pf in the intersection language of the two automata
above is a witness of the fact that PfI(aI) ∈ BI and PfI(aI) ∈ ¬BI must hold
in every model of T .

Conversely, if no such word exists, then one can construct a deterministic finite
automaton from nfaAB(T), using the standard subset construction, in which there
is not a state containing both B and ¬B reachable from the start state A. Unfold-
ing the transition relation of this automaton, starting from the state A and
labelling nodes by the concepts associated with the automaton’s states, yields a
tree interpretation that satisfies T (in particular in which all PFD constraints
are satisfied vacuously) and whose root provides a witness for satisfiability of A.

�

To test for emptiness of nfaAB(T), we use a graph connectivity algorithm that
non-deterministically searches for a (A,A) − (B,¬B) path in the (virtual) poly-
sized product automaton [2]; the following result is then immediate.

Corollary 11. Concept satisfiability with respect to partial−CFD∀
nc TBoxes is

complete for NLOGSPACE. �

Note that, as we remarked above, this procedure can be used to test for satisfi-
ability of conjunctions of concepts in CFD∀

nc as follows:
Lemma 12. A1
 . . .
 Ak is consistent in T if and only if A is satisfiable in
T ∪ {A � Ai | 1 ≤ i ≤ k}. �

It is, however, impossible to precompute all such inconsistent concepts since
this would require consideration of all possible types over PC (or finite subsets of
primitive concepts), a process essentially equivalent to constructing an equivalent
deterministic automaton which can require exponential time [2].

540 D. Toman and G. Weddell

Logical Implication. Logical implication for partial−CFD∀
nc TBoxes T and

posed questions Q can now be solved similarly to the CFD case. The main
difference lies in detecting inconsistencies caused by object membership in con-
junctions of (primitive) concepts that are necessarily empty in models of T . This
observation yields the following extension to R(T):

If D(Pf) and CA1(Pf), . . . ,CAk
(Pf) are in R(T) for some Pf ∈ PF(T ,Q)

and A1
 . . .
 Ak is not consistent in T then add C⊥(Pf) to R(T).

Note that partial−CFD∀
nc can be extended to allow ¬∃f on the right hand sides

of TBox dependencies (which would be handled analogously to negated primitive
concepts by the NFA in Theorem 10). Alltogether, we obtain following results
analogous to those in Sect. 4.1:

Theorem 13. Let T be a partial−CFD∀
nc terminology and Q a posed question

of the form E1 � E2. Then

T |= Q iff R(T) ∪ {CE1(id),D(id)} |= GE1 or
R(T) ∪ {CE1(id),D(id)} |= G∀Pf .⊥(id) for some Pf ∈ PF(T ,Q).

Proof (sketch): The proof is similar to the proof of Theorem 7: the necessary F ∗

trees are generated by unfolding δ(T) as in the Proof of Theorem 10. �

Corollary 14. Let T be a terminology and Q a posed question in
partial−CFD∀

nc. Then the implication problem T |= Q is complete for PTIME.
�

5 Summary and Future Work

In summary, we have shown how partial features coupled with a strict inter-
pretation of undefined values can be incorporated in the feature-based DLs
DLFD, CFD and CFD∀

nc, thus obtaining partial−DLFD, partial−CFD and
partial−CFD∀

nc, respectively. Our primary contributions have been to also show
that this can be done without impact on the complexity of their associated
logical inference problems. Indeed, with DLFD, this was achieved by showing
how partial−DLFD can be fully simulated in DLFD in an entirely transparent
fashion.

One avenue for future work would be to consider the impact on logical infer-
ence of alternative semantics for the interpretation of undefined values, in par-
ticular, on choosing the so-called Kleene semantics for equality. In this case,
“e1 = e2” is also true when both e1 and e2 have undefined values. Note that
doing so with DLFD would in fact necessitate changes to the semantics of the
PFD concept constructor to avoid undecidability of logical inference.4

In our introductory comments, we also hinted at possible directions for future
work relating to CFD∀

nc. The first concerns recent work that begins to explore

4 The details for this are beyond the scope of the paper.

On Partial Features in the DLF Family of Description Logics 541

how inverse features can be added to feature-based DLs, in particular, on adding
the ∃f−1 concept constructor. For example, logical inference has been shown to
be decidable in PTIME for CFDI∀−

nc [11], a dialect obtained by adding this
constructor to CFD∀

nc and by imposing additional syntactic restrictions, e.g., on
the syntax of PFDs, to avoid intractability for this problem. We conjecture that
our results for partial−CFD∀

nc can be extended to partial−CFDI∀−
nc , although

the development would be much less straightforward, and that the same applies
to the other two dialects that we have considered: that logical consequence for
partial − CFDI and partial − DLFDI is decidable in PTIME and EXPTIME,
respectively.

The second possible direction for future work relating to CFD∀
nc is an indirect

consequence of the ability to easily simulate partial−DLFD in DLFD. In par-
ticular, for this case, there remains little incentive to adopt partial−DLFD: to
non-trivially complicate the semantics of feature-based DLs, to add the existen-
tial restriction concept constructor, and so on. We conjecture that it is possible
to extend the syntax of CFD∀

nc to allow limited use of conjunction on left-
hand-sides of inclusion dependencies to enable simulating partial−CFD∀

nc in
CFD∀

nc in an analogous fashion, while preserving PTIME decidability for logical
consequence.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

2. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

3. Khizder, V.L., Toman, D., Weddell, G.: Reasoning about duplicate elimination
with description logic. In: Rules and Objects in Databases (DOOD, part of CL
2000), pp. 1017–1032 (2000)

4. Ramakrishnan, R.: Magic templates: a spellbinding approach to logic programs. J.
Logic Program. 11(3 & 4), 189–216 (1991)

5. Toman, D., Weddell, G.: On attributes, roles, and dependencies in description
logics and the ackermann case of the decision problem. In: Description Logics
2001, CEUR-WS, vol. 49, pp. 76–85 (2001)

6. Toman, D., Weddell, G.: On reasoning about structural equality in XML: a descrip-
tion logic approach. Theor. Comput. Sci. 336(1), 181–203 (2005)

7. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-
izens in description logics. J. Aut. Reason. 40(2–3), 117–132 (2008)

8. Toman, D., Weddell, G.E.: Applications and extensions of PTIME description
logics with functional constraints. In: Proceedings International Joint Conference
on Artificial Intelligence (IJCAI), pp. 948–954 (2009)

9. Toman, D., Weddell, G.E.: Conjunctive query answering in CFDnc: a PTIME
description logic with functional constraints and disjointness. In: AI 2013:
Advances in Artificial Intelligence - 26th Australasian Joint Conference, Dunedin,
New Zealand, pp. 350–361 (2013)

542 D. Toman and G. Weddell

10. Toman, D., Weddell, G.E.: Answering queries over CFD∀
nc knowledge bases. Tech-

nical report CS-2014-14, Cheriton School of Computer Science, University of
Waterloo (2014)

11. Toman, D., Weddell, G.: On adding inverse features to the description logic CFD∀
nc.

In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 587–599.
Springer, Heidelberg (2014)

	On Partial Features in the DLF Family of Description Logics
	1 Introduction
	2 Background and Definitions
	3 Expressive Feature Logics: The DLF Family
	4 Tractable Logics: The CFD Family
	4.1 partial-CFD
	4.2 partial-CFDnc

	5 Summary and Future Work
	References

