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Abstract. This study investigates the dynamic shortest path routing
(DSPR) problem in mobile ad-hoc networks. The goal is to find the
shortest possible path that connects a source node with the destination
node while effectively handling dynamic changes occurring on the ad-hoc
networks. The key challenge in DSPR is how to simultaneously keep track
changes and search for the global optima. A multi-memory based multi-
population memetic algorithm is proposed for DSPR in this paper. The
proposed algorithm combines the strength of three different strategies,
multi-memory, multi-population and memetic algorithm, aiming to effec-
tively explore and exploit the search space. It divides the search space by
multiple populations. The distribution of solutions in each population is
kept in the associated memory. The multi-memory multi-population app-
roach is to capture dynamic changes and maintain search diversity. The
memetic component, which is a hybrid Genetic Algorithm (GA) and local
search, is to find high quality solutions. The performance of the proposed
algorithm is evaluated on benchmark DSPR instances under both cyclic
and acyclic environments. Our method obtained better results when com-
pared with existing methods in the literatures, showing the effectiveness
of the proposed algorithm in handling dynamic optimisation.

Keywords: Dynamic shortest path routing · Memetic algorithms ·
Dynamic optimisation · Evolutionary algorithm

1 Introduction

This study is to establish a new method for solving the dynamic shortest path
routing (DSPR) problem under mobile ad-hoc networks (MANET) environments
where the topological structure of network keeps changing. MANET is made of
an arbitrary group of mobile devices such as mobile phones. Nodes may be
appearing or disappearing on the network due to factors like flat battery, poor
reception, interrupted services and so on [12]. Unfortunately optimisation algo-
rithms that have been proposed to solve static shortest path routing (SPR)
problem for MANETs are not directly suitable for DSPR [2,11,13]. Because
dealing with dynamic environments requires tracking changes and searching for
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optimal solutions simultaneously. One remedy to this issue is through maintain-
ing the search diversity so the search process can cope with problem changes
more effectively.

A multi-memory multi-population memetic algorithm (M-MMA) is therefore
proposed for DSPR. It is built upon a recently established memetic algorithm for
DSPR. Memetic algorithm incorporates local search algorithm with Genetic Algo-
rithm (GA) so local exploitation can be combined with exploration [5,10]. Our
algorithm introduces two extra components, multi-memory and multi-population
to further improve the search process. Multi-population is to divide a population of
solutions into several sub-populations [9]. Each sub-population occupies a different
region of the search space.An areawhichwas badbut becomes goodmaybe quickly
identified by the search. The second component multi-memory is to maintain the
solution distribution of each sub-population. The improvement of solutions in each
sub-population is done through memetic algorithm (MA). A well-known DSPR
simulator proposed by Yang et. al is used in our study [12]. Experiments show that
the proposed algorithm can achieve better performance compared to state-of-the-
art algorithms in the literature.

2 Problem Description

DSPR problems can be represented as an undirected connected graph in which
there are a set of nodes and a set of edges, G(V,E). Each node v (v ∈ V )
represents a mobile device or a wireless router. All nodes are connected by edges
that link adjacent nodes. Each edge is associated with a weight or a cost that
represents distance or the cost of communication between vi to vj . On a MANET
two nodes will be connected if they can reach each other for packet transmission.
Hence any two nodes within the radio transmission range of each other and
operating on the same channel will be connected. For each connection or edge,
a transmission delay is also added. Due to the dynamic nature of MANET, the
topology may change over time. An initial network G0 may change to G1, G2

to Gn.
The formal notation for DSPR in MANETs is presented in Table 1. This

notion is from [3]. The main goal to find the shortest possible path between
the source node s and the destination node t. The generated path is considered
feasible if it contains no loops (loop-free) and the total communication delay is
within the upper bound. When a change occurs in a MANET, meaning devices
joining or leaving the network, a DSPR algorithm should still be able to find
a feasible and shortest path to reconnect. Thus an effective DSPR algorithm
should response to a change very quickly regardless the nature of the change.
The objective functions of DSPR can be formulated as follow:

D(Pi) =
∑

l∈Pi(s,t)

di ≤ DELAY (1)

C(Pi) = min
Pi∈Gi

∑

l∈Pi(s,t)

cl (2)
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Table 1. Notation of DSPR for MANETs

G0(V0, E0) A graph representing the initial MANET

Gi(Vi, Ei) Graph of the MANET after the ith change

s Source node

t Destination node

Pi(s, t) Path from node s to r on graph Gi

l A link connecting two nodes

dl Transmission delay on link l

cl Communication cost of link l

D(Pi) Total transmission delay on path Pi

C(Pi) Total cost of path Pi

where DELAY is the delay upper bound. The total delay D(Pi) along the
transmission path from s to t should not exceed delay upper bound DELAY
and the total cost C(Pi) of the transmission should be minimum.

3 Methodology

Our proposed M-MMA method combines the strengths of three strategies:
(1) multi-memory, (2) multi-population, (3) memetic algorithm. This approach
aims to search for good solutions while effectively respond to dynamic changes
occurred during the optimisation process. These three strategies are applied in
a sequence on a given problem instance as follows. Firstly, the multi-population
component divides the entire population into several sub-populations. Secondly,
the solutions of each sub-population is improved by memetic algorithm through
evolutionary operators including selection, crossover and mutation, and a local
search process. Thirdly, the memory mechanism is called to update the solutions
of each sub-population.

The flowchart of the algorithm is shown in Fig. 1. It first sets the parame-
ters, randomly create an initial population of solutions and evaluate their fitness
value. Next, it divides the population into m sub-populations. The aforemen-
tioned three strategies are then applied on each sub-population separately. Once
a change in the environment is detected, all solutions are merged into one big
population to be re-partitioned again. This process is repeated until the stopping
criteria is met. The details are discussed in the following subsections.

3.1 Set Parameters

The proposed algorithm has six parameters: the maximum number of iterations
(MaxIt), population size (Ps), memory size (Ms), crossover rate (CR), mutation
rate (MR) and the number of sub-populations (m). The value of each parameter
is set based on preliminary tests which are discussed in Sect. 4.3.
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Fig. 1. Flowchart of our Multi-memory Multi-population memetic algorithm

3.2 Initial Population

The population of solutions with size Ps are randomly generated. Each solution
is represented by one chromosome that is a one-dimensional array. Each gene
contains an integer number which represents the ID of a node on the MANET
G(V, E). The first and last genes are the source and destination nodes respec-
tively.

3.3 Evaluation

The fitness values of solutions, including the initial solutions, are calculated using
the following equation:

f(s) =

[
∑

l∈p(s,t)

Cl

]−1

(3)
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where f(Chi) represents the fitness value of chromosome (Chi), s and t represent
the source and destination nodes respectively, p(s, t) is the path between the
source node and destination node, l is the link between nodes in p(s, t) and C
is the cost of lth link. It can be seen that low cost leads to high fitness value,
hence having better chance to be selected for reproducing the next generation.

3.4 Multi-population

The multi-population component randomly divides the whole population into
m sub-populations. Each sub-population is to be optimised by MA. All sub-
populations interact with each other through merging and re-partitioning once
a change in the environment is detected.

3.5 Memetic Algorithm

Memetic algorithm (MA) is a well-known stochastic optimisation algorithm [5,6].
It is a hybrid scheme that combines the exploration aspect of population based
evolutionary search and the exploitation aspect of local search [8]. The MA in
this study hybridises genetic algorithm (GA) with local search.

3.6 Genetic Algorithm

Genetic algorithm (GA) is a well-known problem solving method inspired by
survival-of-the-fittest principle in nature [3]. In our method, each sub-population
has its own GA process which involves the following major steps.

– Selection: Selection picks up two solutions from the population for repro-
duction [3]. A pair-wise without replacement tournament selection scheme is
used here [4,12]. Solutions in a population are randomly paired. The better
one from each pair will be considered as winner for that tournament.

– Crossover: Crossover exchanges the genes of two selected solutions to gener-
ate new solutions of the next generation [3]. Single-point crossover operator is
used here [1,4,12]. In our method that single point selected as the crossover
point is always an intermediate node between the source node and the desti-
nation node. Hence the new solutions generated by crossover have same source
and destination. The probability of performing crossover is determined by the
crossover rate CR.

– Mutation: Mutation complements crossover in allowing the search to get out
from the local optima point [3]. A one-point mutation operator is used [1,7].
It first randomly chooses a point as the mutation point and then randomly
changes the values of all points behind that mutation point.
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– Repair procedure: Both crossover and mutation may generate infeasible
solutions which contain loops in the path. The repair procedure is to fix infea-
sible solutions and make feasible. It removes loops by eliminating duplicated
node and reconnecting the path with neighboured one [7,12].

3.7 Local Search

Local search aims to improve the convergence of the search process. Simple
descent is used in this work. It iteratively explores the neighbourhood area of a
given solution, seeking for a better alternative. In each iteration, a neighbour-
hood solution is generating by modifying the current solution using a replace
operator. This operator randomly select one node and then replace it with one
of its neighbouring nodes. The updated solution will be accepted if it is better
than the original one in term of the fitness measure. This iterative process con-
tinues until the termination condition of the local search is met. In our M-MMA
the local search will stop if there is no improvement after a predefined number of
iterations (see Sect. 4.3). To reduce computational cost, the local search is only
triggered if the fitness value of the new solution is no better than the worst one
in the population.

3.8 Change Detection

This part checks whether there is a significant difference in the environment,
meaning Gn is different with Gn+1. If that is positive then the search process
of all sub-populations will terminate. Otherwise, a new generation will start for
every sub-population.

3.9 Multi-memory

The main role of memory is to ensure that the solutions of each sub-population
are well scattered over the landscape. So changes can be dealt with more
promptly. At each generation, redundant solutions in the population are removed
and replaced with solutions stored in the memory. In this study three different
types of memories are introduced. Each type stores a set of solutions described
below. Each MA process is randomly assigned with one type of memory:

1. M1: a set of random solutions.
2. M2: the best solutions from the previous generations.
3. M3: a set of solutions generated by modifying existing best solutions.
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3.10 The Stopping Criteria

M-MMA terminates if the maximum number of generations is reached. Other-
wise, when a change is detected all sub-populations will be combined to form a
large population which will be again divided to multi-population search for the
new MANET topology.

4 Experiments

This section describes our experiments including the simulation of dynamic
MANET, the performance evaluation metric and the parameter settings of M-
MMA.

4.1 The Simulation of Dynamic Environments

The dynamic simulator for MANET and the network topology instances are
introduced by [12]. The simulator first generates a square region of 200 × 200,
where the x axis coordinate and y axis coordinate are set between [0, 200).
Next, it randomly places 100 nodes and establish links between them. Nodes
are linked if the Euclidean distance is less than the given radio transmission
Range, where, Range is set to 50. Each link is randomly assigned a cost and
delay. The delay upper bound is twice the minimum end-to-end delay, same as
that in [12]. These steps will continue until all connections are created and the
network is established.

To simulate a dynamic aspect, the initial topology will be changed over the
time by modifying a number of selected nodes. Two parameters, R and M are
to control the dynamic environment. R represents the number of generations
between consecutive changes, while M represents the severity of change. For
instance, if R is set to 5 then the topology will be changed for every 5 gen-
erations during evolution. If M is set to 2 this mean at each change 2 nodes
will be randomly selected and changed. Each node must be either in active or
sleep mode. If a selected node is active, its status will be changed into inactive.
Similarly if a node is inactive, then it will be activated to join the network.

The simulator instances consists of four series of different characteristics.
These sets are namely series #1, series #2, series #3, and series #4. Two dif-
ferent dynamic environments are considered in this paper: acyclic dynamic envi-
ronment (series #2, #3 and #4) where there is no repeat of topology and cyclic
dynamic environment (represented by series #1) where the repeat of topology
is permitted. In series #2, #3 and #4, M is set to 2, 3 and 4, respectively. In
series #1, M is equal to 2. Network topology 1 is set the same as the last one,
topology 21.
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4.2 Performance Evaluation Metric

In this paper, we use the overall off-line performance (FOFF ) to evaluate the
performance of the proposed M-MMA. This measurement is also used by others
for algorithm comparisons [12]. It can be calculated as follows:

FOFF =
1

Maxgen

Maxgen∑

i=1

(
1

Nrun

Nrun∑

j=1

∑

l∈p(s,t)

Cbest
l,i,j ) (4)

where Maxgen and Nrun represent the maximum number of generations and
the total number of runs respectively. Cbest

l,i,j is the cost of a link on the path of
the best solution at the ith generation during the jth run. The lower the FOFF

value, the better the performance. Note this measurement is different with the
objective function shown in Formula 3. The objective function is to guide the
search.

4.3 Parameter Settings

The proposed algorithm has seven different parameters that need to be set by
user. To tune these parameters, a series of preliminary experiments were con-
ducted to find out the most appropriate value for each of these parameters.
We tested the proposed M-MMA 30 independent runs with different parameters
combinations. The best parameter values are listed in Table 2.

Table 2. The parameter settings

M-MMA Parameter Tested values Suggested value

Population size (PS) 10, 20, 30, 40, 50, 60, 70 30

Crossover rate (CR) 0.3, 0.5, 0.7, 0.9 0.7

Mutation rate (MR) 0.1, 0.3, 0.6 , 0.9 0.1

Number of sub-population (m) 3, 5, 7 , 10 5

Consecutive non-improvement iterations 5, 10, 15 , 20 5

Memory size 1–20 8

5 Results and Discussions

The experimental results are presented here and compared with other meth-
ods. M-MMA was tested on four series of network instances for cyclic dynamic
environments and the acyclic dynamic environments.
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5.1 Results Under Cyclic Dynamic Environment

M-MMA is compared with the following three algorithms taken from the litera-
ture for cyclic dynamic environment:

1. MEGA:Genetic algorithm with memory scheme [12].
2. MRIGA: Memory and random immigrants GA [12].
3. MIGA: Memory based immigrants GA [12].

Series #1 instances are used here. Parameter M is set to 2, while R value,
time for change, is set to 5, 10, and 15 respectively. Series #1 contains 101
topologies. The maximum number of generations for R=5, R=10 and R=15 is
505, 1010 and 1515, respectively.

Table 3 shows the results of M-MMA. Results from other three methods,
MEGA, MRIGA and MIGA on series #1 are also listed. The best results are
highlighted in bold. Observing these results we see the superb performance of
our proposed M-MMA comparing with MEGA, MRIGA and MIGA. M-MMA
outperformed these algorithms on all instances.

Table 3. Results under cyclic dynamic environment

Algorithm Series #1

R=5 R=10 R=15

M-MMA 432.427 418.686 416.811

MEGA 464.935 427.622 442.997

MRIGA 437.23 440.984 430.033

MIGA 480.446 461.834 445.168

To examine the search behaviour of our M-MMA as well as MEGA, MRIGA
and MIGA, the search progress over 500 generations for R=5 is plotted in Fig. 2.
As can be seen from the figure, M-MMA is consistently at the bottom of the
figure. It is most stable one during the whole the search process. In comparison
other methods fluctuate when a change occur. This illustrates that our M-MMA
is an effective solution method for handling DSPR problem with cyclic changes.

5.2 Results Under Acyclic Dynamic Environments

In this set of experiments under acyclic dynamic environment, our M-MMA is
compared with another three methods proposed for this situation. These meth-
ods are:

1. EIGA: Elitism based immigrants genetic algorithm [12].
2. RIGA: Random immigrants genetic algorithm [12].
3. HIGA: Hybrid immigrants genetic algorithm [12].



A Multi-memory Multi-population Memetic Algorithm 415

Fig. 2. Search progress of four algorithms on Series #1, R= 5

Series #2, Series #3, and Series #4 are used here. Each series involves 21
different network topologies. The M values are set to 2, 3 and 4. The R value
are set to be 5, 10 and 15 respectively. The maximum number of generations for
these three values are 105, 210 and 315, respectively. So all 21 topologies can be
included in the experiments.

Table 4 shows the results from these four methods. The best average result
on one row is highlighted in bold. As can be seen from the table, our M-MMA
outperformed EIGA, RIGA and HIGA on all series. This good performance is
mainly the result of multi-memory and multi-population which can preserve the
diversity during the search process while removing redundant solutions.

The search progress of the four algorithms are plotted in Fig. 3 on Series #2,
Series #3, and Series #4 when R=5. As can be seen from the figure our M-
MMA again exhibits its stability under these dynamic environments. M-MMA
was the lowest curve on these plots and stayed consistently low when changes
occur. These changes on the network caused high path cost, or a spike on the
figure, when using other three methods. This comparison shows that the pro-
posed M-MMA can quickly adjust itself to the changes under acyclic dynamic
environment.

Table 4. Results under acyclic dynamic environments

Series #2 Series #3 Series #4

R=5 R=10 R=15 R=5 R=10 R=15 R=5 R=10 R=15

M-MMA 427.142 421.01 417.643 460.124 429.75 424.749 446.732 434.839 431.69

EIGA 447.743 446.371 436.565 462.619 485.471 448.524 489.762 468.438 462.937

RIGA 433.838 435.886 440.587 461.19 450.352 445.263 475.543 461.819 464.737

HIGA 445.381 467.776 455.333 490.962 497.276 452.422 506.962 487.052 498.724
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Fig. 3. Search progress of four algorithms on Series #2, #3, #4 (R= 5)
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6 Conclusion

This study proposed a multi-memory multi-population memetic algorithm for
dynamic shortest path routing problems in mobile ad-hoc networks. The pro-
posed algorithm divides a population of solutions into several sub-populations
to perform search separately over different parts of the search space. It use a
multi-memory mechanism to store solutions for each sub-population so good
solutions can be preserved to cope with future changes. Memetic algorithm,
which hybridises genetic algorithm and local search, is performed on each sub-
population to find high quality solutions for that sub-population.

The proposed method has been evaluated on four series of shortest path rout-
ing problems under different dynamic environment. Six different state-of-the-art
methods were introduced for comparison. The results shown that our method
can handle both cyclic and acyclic dynamic changes without modifications. More
importantly the shortest paths found by the proposed method are better than
paths found by other methods. Further analysis shows that the search perfor-
mance of the proposed M-MMA is very stable. It can quickly adjust itself to
fit with the new environment. The search is consistent yet efficient in terms of
coping with dynamic changes. We conclude that the proposed multi-memory
multi-population memetic algorithm is an effective and competitive approach in
solving dynamic shortest path routing problems. It can accommodate changes
well while performing search. It is a good candidate for dynamic MANETs.

In our future study we will examine the exact contribution of the memory
and multi-population components. So the performance may be further improved,
the computational cost may be reduced. In addition more instances will be intro-
duced to facilitate further validation and extension.
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