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Abstract. We develop inference procedures for a recently proposed
model of probabilistic argumentation called PABA, taking advantages of
well-established dialectical proof procedures for Assumption-based Argu-
mentation and Bayesian Network algorithms. We establish the soundness
and termination of our inference procedures for a general class of PABA
frameworks. We also discuss how to translate other models of proba-
bilistic argumentation into this class of PABA frameworks so that our
inference procedures can be used for these models as well.
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1 Introduction

Standard Abstract Argumentation (AA [3]) is inadequate in capturing argumen-
tation processes involved probabilities such as the following.

Example 1 (Borrowed from [5]). John sued Henry for the damage caused to him
when he drove off the road to avoid hitting Henry’s cow.

– John: Henry should pay damage because Henry is the owner of the cow and
the cow caused the accident (J1).

– Henry: John was negligent as evidences at the accident location show that
John was driving fast. Hence the cow was not the cause of the accident (H1).

Let’s try to construct an AA framework F = (AR,Att) to represent the
judge’s beliefs. The judge may consider J1 as an argument proper, but not H1

because according to him, the evidences at the accident location gives only some
probability (p0) that John was driving fast; and even if John was driving fast,
the accident is caused by his fast-driving with some other probability p1. Hence
while the representation of J1 is quite simple: J1 ∈ AR, there is no perfect
representation for H1. H1 �∈ AR (resp. H1 ∈ AR) would mean that the judge
would undoubtedly find for John (resp. Henry). However, in fact the chance that
a party wins depends on the values that the judge assigns to p0 and p1.
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To remedy the above situation, several authors extend AA with probabil-
ity theory, resulting in different models of Probabilistic Argumentation. Of our
interest is the Probabilistic Assumption-based Argumentation framework of [5]
(PABA) extending an instance of AA called Assumption-based Argumentation
(ABA [2,4]). To anchor our contributions, let’s loosely recall some technicalities.
An ABA framework comprises inference rules in the form c ← b1, . . . bn, repre-
senting that proposition c holds whenever propositions b1, . . . bn hold (bi can be
an assumption but not c). An PABA framework is a triple (Ap,Rp,F) where
Ap is a set of (positive) probabilistic assumptions, Rp is a set of probabilistic
rules and F is an ABA framework. A probabilistic rule in PABA also has the
same form as an inference rule, except that its head is a proposition of the form
[α : x] representing that the probability of probabilistic assumption α is x.

Example 2 (Cont. Example 1). The judge’s beliefs is representable [5] by
PABAP = (Ap,Rp,F) where Ap = {p0, p1}; F consists of assump-
tions ∼ forceMajeure, ∼ johnNegligent (with contraries forceMajeure,
johnNegligent) and inference rules r1, . . . , r5; while Rp consists of probabilistic
rules r6, . . . , r9 where1

r1 : henryPay ← henryOwnerOfCow, cowCauseAccident,∼ forceMa
jeure

r2 : cowCauseAccident ←∼ johnNegligent r3 : henryOwnerOfCow ←
r4 : johnNegligent ← drivingFast, p1 r5 : drivingFast ← p0
r6 : [p0 : 0.8] ← r7 : [¬p0 : 0.2] ← r8 : [p1 : 0.75] ← r9 : [¬p1 : 0.25] ←

A possible world of PABAP = (Ap,Rp,F) is a complete truth assignment
over Ap. For a possible world ω, P (ω) refers to the probability of ω generated
by P (see Definition 6); and Fω denotes the revised version of F assuming that
ω is the actual world. Each ABA semantics sem induces a PABA semantics
Probsem stating the probability of the acceptability of a given proposition as
follows.

Probsem(π) =
∑

ω∈W:ABA Fω�semπ

P (ω)

where W is the set of all possible worlds; ABAFω �sem π states that π is
acceptable in ABAFω under semantics sem.

Example 3 (Cont. Example 2). There are four possible worlds, in which the
acceptability of proposition henryPay under any ABA semantics sem is shown
below. Clearly Probsem(henryPay) = 1 − P ({p0, p1}) = 1 − 0.8 × 0.75 = 0.4.

Possible world {p0, p1} {¬p0, p1} {p0, ¬p1} {¬p0, ¬p1}
henryPay is acceptable? no yes yes yes

1 Probabilistic values are made up for demonstration.
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Inference procedures for PABA are procedures computing Probsem(.) which
have been unexplored. Note that since an ABAF can be represented by an
PABA framework with empty sets Ap and Rp

2, inference procedures for PABA
subsume proof procedures for ABA, which have been developed in [2,4]. On the
other hand, given a proof procedure for ABA semantics sem, one can computing
Probsem(π) by checking if ABAFω �sem π for each possible world ω. Unfortu-
nately this naive approach always results in an exponential blowup since there
are as many as 2|Ap| possible worlds. It turns out that in the worst case we can
not avoid this exponential blowup since PABA subsumes Bayesian networks
known to be exponentially complex in the worst case. However, as there are
many inference algorithms Bayesian networks working efficiently in the average
case, they may exist inference procedures for PABA working efficiently in the
average case. In this paper, we aim at developing such inference procedures. We
establish the soundness and termination of our procedures for a general class
of PABA frameworks. We also implement them to obtain an PABA inference
engine capable of computing the credulous semantics and the ideal semantics of
PABA3. Empirical evaluations of the engine, however, remains a future work.

The paper is organized as follows: Sect. 2 is a review of abstract argumen-
tation and probabilistic assumption-based argumentation; Sect. 3 presents the
theoretical basis of our inference procedures; Sect. 4 presents our inference pro-
cedures (due to space limitation, we present only the computation of PABA’s
credulous semantics and skip proofs of lemmas and theorems); Sect. 5 discusses
translations of other models of probabilistic argumentation [7,8] into PABA in
order to widen the applicability of our contributions and concludes.

2 Background on Argumentation

2.1 Abstract Argumentation

An AA framework [3] is a pair (AR,Att) where AR is a set of arguments, Att ⊆
AR×AR and (A,B) ∈ Att means that A attacks B. S ⊆ AR attacks A ∈ AR iff
(B,A) ∈ Att for some B ∈ S. A ∈ AR is acceptable wrt to S iff S attacks every
argument attacking A. S is conflict-free iff S does not attack itself; admissible
iff S is conflict-free and each argument in S is acceptable wrt S; complete iff S is
admissible and contains every arguments acceptable wrt S; a preferred extension
iff S is a maximal (wrt set inclusion) complete set; the grounded extension iff
S is the least complete set; the ideal extension iff it is the maximal admissible
set contained in every preferred extensions. An argument A is accepted under
semantics sem ∈ {cr, gr, id}4, denoted AAF �sem A, iff A is in a sem extension.

2 ABA F �sem π iff wrt this PABA framework, Probsem(π) = 1.
3 See https://pengine.herokuapp.com.
4 Preferred/grounded/ideal semantics.

https://pengine.herokuapp.com
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2.2 Assumption-Based Argumentation

As AA ignores the internal structure of argument, an instance of AA called
Assumption-Based Argumentation (ABA [2,4]) defines arguments by deductive
proofs based on assumptions and inference rules. Assuming a language L consist-
ing of countably many sentences, an ABA framework is a triple F = (R,A, )
where R is a set of inference rules of the form r : l0 ← l1, . . . , ln (n ≥ 0)5, A ⊆ L
is a set of assumptions, and is a (total) one-to-one mapping from A into L,
where x is referred to as the contrary of x. Assumptions do not appear in the
heads of inference rules and contraries of assumptions are not assumptions.

A (backward) deduction of a conclusion π supported by a set of premises Q is
a sequence of sets S1, S2, . . . , Sn where Si ⊆ L, S1 = {π}, Sn = Q, and for every
i, where σ is the selected proposition in Si: σ �∈ Q and Si+1 = Si \ {σ}∪ body(r)
for some inference rule r ∈ R with head(r) = σ.

An argument for π ∈ L supported by a set of assumptions Q is a deduction d
from π to Q and denoted by (Q, d, π). An argument (Q, d, π) attacks an argument
(Q′, d′, π′) if π is the contrary of some assumption in Q′. For simplicity, we often
refer to an argument (Q, d, π) by (Q, π) if there is no possibility for mistake.

A proposition π is said to be credulously/groundedly/ideally accepted in
ABA F , denoted ABA F �cr π (resp. ABA F �gr π and ABA F �id π) if in
the AA framework consisting of above defined arguments and attacks, there is
an argument for π accepted under the credulous/grounded/ideal semantics.

2.3 Probabilistic Assumption-Based Argumentation

For clarity and modification, we break down the original definition of PABA
(Definition 2.1 of [5] into two Definitions 1 and 2 below, where Definition 2 in
fact slightly relaxes Definition 2.1 of [5], and as a result, our class of PABA
frameworks subsumes the class of PABA frameworks in [5]6. We also extend
the definition of PABA’s grounded semantics of [5] to define other semantics of
PABA.

Definition 1 [5]. A probabilistic assumption-based argumentation (PABA)
framework P is a triple (Ap,Rp,F) satisfying the following properties

1. F = (R,A, ) is an ABA framework.
2. Ap is a finite set of positive probabilistic assumptions. Elements of

¬Ap = {¬p | p ∈ Ap} are called negative probabilistic assumptions7.
3. Rp is a set of probabilistic rules of the form

[α : x] ← β1, . . . , βn n ≥ 0, x ∈ [0, 1], α ∈ Ap ∪ ¬Ap.

where [α : x], called a probabilistic proposition, represents that the proba-
bility of probabilistic assumption α is x.

5 For convenience, define head(r) = l0 and body(r) = {l1, . . . ln}.
6 Any PABA framework in [5] is also an PABA framework in our extended definition,

but the reverse may not hold.
7 ¬ is the classical negation operator.
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Definition 2 [5]. PABA P = (Ap,Rp,F) is said to be well-formed if the
following syntactic constraints are satisfied.

1. For each probabilistic assumption α ∈ Ap ∪ ¬Ap

(a) α does not occur in A as well as in the head of any rule in R, and
(b) [α : x] does not occurs in the body of any rule in R or Rp.

2. If a rule of the form [α : x] ← β1, . . . , βn appears in Rp, then Rp also contains
a complementary rule [¬α : 1 − x] ← β1, . . . , βn

8.
3. For each probabilistic assumption α, there exists a set of probabilistic assump-

tions Paα ⊆ Ap such that for each maximally consistent subset {β1, . . . , βm}
of Paα ∪¬Paα, Rp contains a rule [α : x] ← β1, . . . , βm (and complementary
rule [¬α : 1 − x] ← β1, . . . , βm).

4. If two rules of the form r1 : [α : x] ← . . . and r2 : [α : y] ← . . . appear in Rp

and x �= y, then either conditions below holds
(a) body(r1) ⊂ body(r2) or body(r2) ⊂ body(r1).
(b) There is a probabilistic assumption α ∈ body(r1) such that ¬α ∈ body(r2)

Note that in [5], the well-formedness condition consists of constraints 1, 2, 4(a);
and a more rigid version of constraint 3 with Paα = ∅, which implies that for each
probabilistic assumption α, Rp must contain two rules of the forms [α : x] ←
and [¬α : 1 − x] ← (which, according to [5], encode the default/unconditional
probability of α). So the PABA given in Example 4 below9 is not well-formed
according to [5]. We do not require Paα = ∅ because we want to have Bayesian
PABA frameworks, defined as follows, to be well-formed.

Definition 3. An PABAP = (Ap,Rp,F) is said to include a Bayesian net-
work N = (G, CPTs),G = (V,E) where V consists of only binary variables,
if Ap,Rp represents the same probabilistic information as N 10. A Bayesian
PABA framework is an PABA framework that includes a Bayesian network.

Example 4. Below are a Bayesian PABAP = (Ap,Rp,F) and its network.

– F = (R,A, ) where A = {α, β, γ, η} and α = ¬α, β = ¬β, γ = ¬γ and
δ = ¬δ and R consists of r0 : ¬α ← α, p0 r1 : ¬α ← β, p1 r2 : ¬β ←
α, p2 r3 : ¬γ ← δ, p3 and r4 : ¬δ ← γ, p4

– Ap = {p0, p1, p2, p3, p4} and Rp consists of the following probabilistic rules
[p0 : .1] ← p2 [p0 : .9] ← ¬p2 [p1 : .95] ← p4 [p1 : .2] ← ¬p4
[p2 : .3] ← p3, p4 [p2 : .05] ← p3,¬p4 [p2 : .9] ← ¬p3, p4
[p2 : .5] ← ¬p3,¬p4 [p3 : .6] ← [p4 : .7] ←

8 In examples, we will not list complementary rules to save space.
9 We will use this framework in running examples from now on.

10 That is, each pair α, ¬α of probabilistic assumptions of P corresponds to truth
assignments of variable α ∈ V and vice versa; and each probabilistic rule in Rp

corresponds to one entry of an CPT in N and vice versa.
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For convenience, let’s adopt some notations wrt an PABAP = (Ap,Rp,F).

– A possible world is a maximal (wrt set inclusion) consistent subset of Ap ∪
¬Ap. A partial world is a subset (not necessarily proper) of a possible world.
W denotes the set of all possible worlds. For each ω ∈ W,

• ABAFω � (Rω,A, ) where Rω � R ∪ {p ←| p ∈ ω}
• ABAPω � (Rω ∪ Rp,A, ).
• AAPω denotes AA framework (AR Pω, AttPω) where AR Pω is the set

of arguments of ABA Pω, and Att Pω consists of three types of attacks
as defined by Definition 4.

– An argument with conclusion being a probabilistic proposition (resp., non-
probabilistic proposition) is referred to as a probabilistic argument (resp.
non-probabilistic argument).

Definition 4 [5]. Let A = (Q,α), A′ = (Q′, α′) be arguments in AR Pω for
some possible world ω. A attacks A′ if one of three conditions below holds:

1. (type-1 attack) A is a non-probabilistic argument and α is the contrary of
some assumption in Q′.

2. (type-2 attack) A,A′ are probabilistic arguments and A attacks A′ by speci-
ficity as defined by Definition 5.

3. (type-3 attack) α is a probabilistic assumption, A = (∅, α) and A′ is a
probabilistic argument with conclusion of the form [¬α : x].

Definition 5 [5]. Let A = (Q, δ, [α : x]) and A′ = (Q′, δ′, [β : y]) be probabilistic
arguments in AR Pω for some possible world ω. Further let δ = S1, S2, . . . , Sm,
δ′ = S′

1, S
′
2, . . . , S

′
n, and the rules used to derive S2 from S1 and S′

2 from S′
1 are

r1 and r′
1 respectively. A attacks A′ by specificity if body(r′

1) ⊂ body(r1).

The following definition extends the definition of Probgr(.) in [5]. Intuitively,
it tells how the probabilities of probabilistic assumptions, which are decided by
the grounded semantics, propagate to influence the probabilities of accepting
other propositions under an arbitrary semantics of argumentation.

Definition 6. The probability that a proposition π is acceptable wrt
semantics sem is Probsem(π) �

∑
ω∈W:ABA Fω�semπ

P (ω) where P (ω) �
∏

α∈ω:AA Pω�gr( ,[α:x])

x



158 N.D. Hung

For convenience, for a set S = {s1, s2, . . . , sn} of partial worlds, we use
P (s1 ∨ s2 · · · ∨ sn) to refer to

∑
ω∈W,s∈S:ω⊇s

P (ω).

Example 5 (Cont. Example 4). It is easy to verify that for any ω ∈ W:

– ABAFω �cr ¬α iff ω ⊇ {p1}. So Probcr(¬α) =
∑

ω∈W:ω⊇{p1}
P (ω) = P ({p1}).

– ABAFω �id ¬α iff ω ⊇ s1 or ω ⊇ s2 where s1 = {p1,¬p2} and s2 =
{p0, p1, p2}. Hence Probid(¬α) =

∑
ω∈W:ω⊇s1 or ω⊇s2

P (ω) = P (s1 ∨ s2).

In [5] Dung and Thang show that an PABA framework is probabilistic coherent
(

∑
ω∈W

P (ω) = 1) if it is probabilistically acyclic.

Definition 7. 1. The dependency graph of ABA F = (R,A, ) is a directed
graph of which nodes are sentences occurring in F and there is an edge from
node p to node q if and only if
(a) R contains a rule of the form p ← . . . , q, . . . , or
(b) p is an assumption in A and q is the contrary of p.

2. The dependency graph of PABA P = (Ap,Rp,F) is a directed graph obtained
from that of F by
(a) first, adding an edge from node p to a node q if Rp contains a rule of the

form [p : ] ← . . . , q, . . .
(b) then, for each p ∈ Ap, merging node ¬p with node p.

An PABA P is said to be probabilistically acyclic if there is no infinite
path starting from a probabilistic assumption in the dependency graph of P.

It turns out that probabilistic acyclicity is also sufficient for probabilistic
coherence in our class of PABA frameworks.

Lemma 1. Let P be an PABA framework as defined by Definitions 1 and 2. If
P is probabilistically acyclic, then

1. (Generalizing Lemma 2.1 of [5])
∑

ω∈W
P (ω) = 1.

2. 0 ≤ Probgr(π) ≤ Probid(π) ≤ Probcr(π) ≤ 1 for any proposition π11.

From now on, we restrict ourselves to probabilistically acyclic PABA frameworks
that satisfy Definitions 1 and 2.

3 Computing PABA Semantics: Theoretical Basis

In this section, we present the theoretical basis for our inference procedures12.

11 If π does not occur in P, then Probsem(π) = 0 for any semantics sem.
12 From now on we assume an arbitrary but fixed PABA P = (Ap, Rp, F) with F =

(R, A, ) if not explicitly stated otherwise.
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Definition 8. Let sem be an argumentation semantics and π be a proposition.
A partial world s is said to be sem-sufficient for π if ABAFω �sem π for any
partial world ω ⊇ s.

Note that if s is sem-sufficient for π then so is any super set of s.

Example 6 (Cont. Example 5). {p1} is cre-sufficient for ¬α; while both {p1,¬p2}
and {p0, p1, p2} are ideal-sufficient for ¬α.

Definition 9. Let sem be an argumentation semantics and π be a proposition.

1. A set S of partial worlds is said to be a sem-frame for π if each partial
world in S is sem-sufficient for π.

2. A sem-frame S for π is said to be complete if for each possible world ω ∈ W
where ABAFω �sem π, ω ⊇ s for some s ∈ S.

Example 7 (Cont. Example 5). For ¬α, S1 = {{p1}} is a complete cre-frame
while S2 = {{p1,¬p2}, {p0, p1, p2}} is a complete ideal-frame.

Note that there are multiple complete sem-frames for the same proposition.
For example, cre-frame {{p1}, {p1,¬p2}} is also complete for ¬α.

Theorem 1 below is at the heart of our inference procedures.

Theorem 1. If S = {s1, s2, . . . , sn} is a complete sem-frame for a proposition
π, then Probsem(π) = P (s1 ∨ s2 · · · ∨ sn).

So, continue Example 7, Probcr(¬α) = P ({p1}); Probid(¬α) = P ({p1,¬p2} ∨
{p0, p1, p2}).

4 Computing PABA Semantics: Inference Procedures

In this section we present our inference procedure computing PABA’s credulous
semantics. As Theorem 1 suggests, computing Probcr(π) could be done via two
steps: (1) generating a complete cre-frame S = {s1, s2, . . . , sn} for π; and (2)
computing P (s1 ∨ s2 · · · ∨ sn). To reduce the load in step 2, we would like, in
step 1, to arrive at a cre-frame “as small as possible”. To this end, we develop
the notion of cre-frame derivation (Subsect. 4.2), adapting on the notion of AB-
dispute derivation of [2,4] for computing ABA’s credulous semantics (recalled
in Subsect. 4.1), and the notion of base derivation in [9] used to organize search
spaces for dispute derivations in AA. In Subsect. 4.3, we shall show that if the
given PABA framework is Bayesian (see Definition 3), then existing Bayesian
network inference algorithms can be used to compute P (s1 ∨ s2 · · · ∨ sn).
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4.1 AB-Dispute Derivations

AB-dispute derivations [2,4] simulate a dispute between two fictitious play-
ers: proponent and opponent. Formally, a AB-dispute derivation is a sequence
of tuples 〈P0,O0, A0, C0〉 . . . 〈Pi,Oi, Ai, Ci〉 . . . , where Ai is the set of defense
assumptions (consisting of all assumptions occurring in the proponent’s argu-
ments) and Ci is the set of culprits (consisting of all opponent’s assumptions
that the proponent attacks). Multi-set Pi consists of propositions belonging to
any of the proponent’s potential arguments. Multi-set Oi consists of multi-sets of
propositions representing the state of all of the opponent’s potential arguments.

Definition 10 (Modified from [2,4]). An AB-dispute derivation in ABAF =
(R,A, ) using a selection strategy sl is a (possibly infinite) sequence of tuples
〈P0,O0, A0, C0〉, . . . , 〈Pi,Oi, Ai, Ci〉, 〈Pi+1,Oi+1, Ai+1, Ci+1〉 . . . where

1. Pi is a multi-set of propositions, Oi is a set of finite multi-set of propositions,
and Ai, Ci are set of assumptions.

2. For each step i ≥ 0, selection strategy sl selects a proposition σ ∈ Pi or
σ ∈ S ∈ Oi, and
(a) If σ ∈ Pi is selected then

i. if σ is an assumption then Pi+1 = Pi \ {σ} and Oi+1 = Oi ∪ {{σ}}13
ii. If σ is not an assumption, then there exists some rule σ ← Bd ∈ R

such that Ci ∩ Bd = ∅ and Pi+1 = Pi \ {σ} ∪ (Bd \ Ai) and Ai+1 =
Ai ∪ (A ∩ Bd)

(b) If S is selected in Oi and σ is selected in S then
i. If σ is an assumption, then

A. either σ is ignored, i.e. Oi+1 = Oi \ {S} ∪ {S \ {σ}}
B. or σ �∈ Ai and σ ∈ Ci and Oi+1 = Oi \ {S}
C. or σ �∈ Ai and σ �∈ Ci and

(C.1) if σ is an assumption, then Oi+1 = Oi \ {S} and Ai+1 =
Ai ∪ {σ} and Ci+1 = Ci ∪ {σ}
(C.2) otherwise Pi+1 = Pi ∪{σ} and Oi+1 = O\{S} and Ci+1 =
Ci ∪ {σ}

ii. If σ is not an assumption, then Oi+1 = Oi \ {S} ∪ {S \ {σ} ∪ Bd |
σ ← Bd ∈ R and Bd ∩ Ci = ∅}

Definition 11. 1. An AB-dispute derivation for a proposition π is such that
the first tuple 〈P0,O0, A0, C0〉 = 〈{π}, ∅,A ∩ {π}, ∅〉.

2. An AB-dispute derivation is said to be successful if it is ended by a tuple
〈∅, ∅, , 〉.

Example 8 (Cont.Example4).ConsiderABAF ′ obtained fromABAF by remov-
ing all probabilistic assumptions, i.e. F ′ contains r′

0 : ¬α ← α r′
1 : ¬α ← β

r′
2 : ¬β ← α r′

3 : ¬γ ← δ and r′
4 : ¬δ ← γ. The following table shows a successful

AB-dispute derivation for proposition ¬α in F ′. Note that in step 5 the proponent
reuses r′

1 : ¬α ← β but β is not added into P5.
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i Pi Oi Ai Ci By rule (of Definition 10) Remarks

0 {¬α} {} {} {} Proponent claims

1 {β} {} {β} {} 2.a.ii Proponent uses r′
1 : ¬α ← β

2 {} {{¬β}} {β} {} 2.a.i Opponent tries to attack β

3 {} {{α}} {β} {} 2.b.ii Opponent uses r′
2 : ¬β ← α

4 {¬α} {} {β} {α} 2.b.i.C1 Proponent selects α as a culprit

5 {} {} {β} {α} 2.a.ii Proponent reuses r′
1 : ¬α ← β

The following theorem states that AB-dispute derivations are sound for cred-
ulous acceptance in any ABA framework.

Theorem 2 (Theorem 4.3 in [2]). If 〈P0,O0, A0, C0〉, . . . , 〈Pn,On, An, Cn〉 is a
successful AB-dispute derivation for a proposition π, then An is an admissible
set of assumptions and supports π.

In their Theorem 4.4, the authors of [2] show that AB-dispute derivations
are not complete in general, but complete for the class of positively acyclic ABA
frameworks over finite languages. However AB-dispute derivation are indeed
complete for a larger class of positively acyclic and finitary ABA frameworks.

Definition 12. Let F = (R,A, ) be an ABA framework.

1. F is said to be finitary if for each node in the dependency graph of F , there
is a finite number of nodes reachable from it.

2. F is said to be positively acyclic if in the dependency graph of F , there is
no infinite directed path consisting solely non-assumption nodes.

Clearly ABA frameworks over finite languages are all finitary but not the
reverse. For example, the framework with R = {¬αi+1 ← αi | i ∈ {1, 2, . . . }}
and A = {α1, α2, . . . }, αi = ¬αi, is finitary but has an infinite language.

Theorem 3 (Generalizing Theorem 4.4 in [2]). Given a positively acyclic and
finitary assumption-based framework F .

1. If π is supported by an admissible set S of assumptions, then for any selection
strategy there is a successful AB-dispute derivation 〈P0,O0, A0, C0〉, . . . ,
〈Pn,On, An, Cn〉 for π where An ⊆ S.

2. There are no infinite AB-dispute derivations for any proposition.

In non-finitary and/or positively cyclic frameworks, credulously acceptable
propositions may not have successful AB-dispute derivations. For example, con-
sider a positively cyclic ABA framework with R = {¬α ← ¬α} and A = {α}
where α = ¬α. Clearly α is credulously acceptable but it has no success-
ful AB-dispute derivation. Note that the only AB-dispute derivation for α is

13 Silence about a component means it remains the same as the previous step. In this
case 2.a.i, for example, Ai+1 = Ai and Ci+1 = Ci.
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〈{α}, ∅, {α}, ∅〉, 〈∅, {{¬α}}, {α}, ∅〉, 〈∅, {{¬α}}, {α}, ∅〉, . . . which is infinite. Sim-
ilarly, q is credulously acceptable in a non-finitary ABA framework with R =
{q ← β}∪{¬β ← αi | i ∈ {1, 2, . . . }}∪{¬αi+1 ← ¬αi | i ∈ {1, 2, . . . }}∪{¬α1 ←}
and A = {β, α1, α2, . . . } where x = ¬x for each x ∈ A. However there are no
successful AB-dispute derivation for q.

To facilitate the presentations of our inference procedures in next sections, let
DSF (t, sl) refer the set of tuples that can immediately follow a tuple t of the form
〈P,O, A,C〉 in some AB-dispute derivation using selection strategy sl. From
Definition 10 part 2, DSF (t, sl) can be computed by the following procedure.

(a) If sl selects σ ∈ P, then
i. if σ is an assumption, then DSF (t, sl) = {〈P \ {σ},O ∪ {{σ}}, A,C〉}
ii. if σ is not an assumption, then DSF (t, sl) = {〈P \ {σ} ∪ (Bd \ A),O, A ∪

(A ∩ Bd), C〉 | σ ← Bd ∈ R and C ∩ Bd = ∅}
(b) If sl selects S ∈ O, then DSF (t, sl) = ∅ if S = ∅. Otherwise, let σ be the

sentence selected in S, and
i. if σ is an assumption, then DSF (t, sl) = {〈P,O\{S}∪{S\{σ}}, A,C〉}∪

δT where δT is computed as follows.
A. if σ ∈ A then δT = ∅.
B. if σ �∈ A and σ ∈ C, then δT = {〈P,O \ {S}, A,C〉}
C. if σ �∈ A and σ �∈ C, then
(C.1) if σ ∈ A then δT = {〈P,O \ {S}, A ∪ {σ}, C ∪ {σ}〉}
(C.2) otherwise, δT = {〈P ∪ {σ},O \ {S}, A, C ∪ {σ}〉}

ii. if σ is not an assumption, then DSF (t, sl) = {〈P,O′, A,C〉} where O′ =
O \ {S} ∪ {S \ {σ} ∪ Bd | σ ← Bd is a rule in R s.t. Bd ∩ C = ∅}

4.2 Cre-Frame Derivation

The following notion of cre-frame derivations extends the notion of AB-dispute
derivations to gradually construct complete cre-frames.

Definition 13. A cre-frame derivation in PABA P = (Ap,Rp,F) using a
selection strategy sl is a possibly infinite sequence T0, T1, . . . , Ti, . . . where

1. Ti is a set of pairs of the form (t, ω) where t is a tuple 〈P,O, A,C〉 as defined
in Definition 10 and ω is a partial world.

2. For each i, sl selects one pair (t, ω) ∈ Ti and a proposition σ from the P
component or O component of t, and Ti+1 = Ti \ {(t, ω)} ∪ ΔT where
(a) If σ is a probabilistic assumption not occurring in ω14, then ΔT = {(t, ω∪

{σ}), (t, ω ∪ {¬σ})}
(b) Otherwise ΔT = {(t′, ω) | t′ ∈ DSFω

(t, sl)}.

Definition 14. 1. A cre-frame derivation for a proposition π is a cre-frame
derivation that begins with T0 = {(〈{π}, ∅,A ∩ {π}, ∅〉, ∅)}15.

14 That is, neither σ nor its complement are elements of ω.
15 A is the set of assumptions in ABA F .
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2. A finite cre-frame derivation T0, . . . , Tn is said to be full if it can not
be extended further, or equivalently Tn contains only pairs of the form
(〈∅, ∅, , 〉, ). The set {ω | (〈∅, ∅, , 〉, ω) ∈ Tn} is called the derived frame.

Example 9 (Cont. Example 4). A full cre-frame derivation for ¬α is given in the
next page. Note that notation x means that x is selected by selection strategy.

Theorem 4 below says that cre-frame derivations provide a sound procedure
for generating complete cre-frames.

Theorem 4. If D is a full cre-frame derivation for a proposition π, then the
frame derived by D is a complete cre-frame for π.

So, continue Example 9, Theorem 4 says that {{p1}, {p1,¬p2}} is a complete
cre-frame for ¬α. Theorem 5 below says that cre-frame derivations provide a
terminating procedure for generating complete cre-frames in a general class of
PABA frameworks.

Theorem 5. In an PABAP = (Rp,Ap,F) where F is positively acyclic and
finitary, there are no infinite cre-frame derivations for any proposition.

4.3 Computing P (s1 ∨ · · · ∨ Sn)

For a set of partial worlds S = {s1, s2, . . . , sn}, let NDFS denote to the DNF
formula

∨n
i=1

∧|si|
j=1 pij where pij ∈ si. For example, if S = {{p1}, {p1,¬p2}} then

NDFS = p1 ∨ (p1 ∧ ¬p2).
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Lemma 2. Let P be an PABA including Bayesian network N . If S =
{s1, . . . , sn} is a set of partial worlds of P, then P (s1∨s2 · · ·∨sn) = PrN (NDFS)
where PrN is the probability distribution defined by N .

ContinueExample 4, the lemma says that P ({p1}∨{p1, ¬p2}) = PrN (p1∨(p1∧¬p2)).
So to compute P (s1∨s2 · · ·∨sn), one can compute PrN (NDFS) instead using

any BN inference algorithms. Doing so on N , one need to translate the query into
standard queries on N using the inclusion-exclusion rule. For example PrN (p1 ∨
(p1 ∧ ¬p2)) = PrN (p1) + PrN (p1 ∧ ¬p2) − PrN (p1 ∧ p1 ∧ ¬p2). Alternatively,
one could construct a new network NS by adding to N , for each i ∈ {1, . . . n},
one AND gate to compute

∧|si|
j=1 pij , and one OR gate to compute

∨n
i=1

∧|si|
j=1 pij

from the output of n AND gates. For example, if S = {{p1} ∨ {p1,¬p2}}, then
NS contains the following new nodes and edges. Clearly PrN (NDFS) equals
PrNS (Q), where Q the child of the OR gate.

5 Related Work and Conclusions

One of the early known models of Probabilistic Argumentation (PA) is the
one of Dung and Thang [5] (DT’s PAA) defined as a triple (F ,W, P ) where
F = (AR,Att) is a standard AA framework, W is a set of possible worlds
such that each ω ∈ W defines a set of arguments ARω ⊆ AR, and P is a
probability distribution over W. DT’s PAA defines the grounded probability
of argument A by the sum of probabilities of possible worlds in which A is
groundedly accepted16, but, following AA’s style, abstracts from: (1) the rep-
resentation of possible world; (2) the construction of ARω for each possible
world ω; and (3) the representation and computation of P (ω). So the authors in
the same work [5] combine DT’s PAA with Assumption-based Argumentation
(ABA [2,4]) to introduce PABA where: (1) a possible world represented by a con-
junction of so-called probabilistic assumptions; (2) arguments of ARω are con-
structed from inference rules and assumptions (as in ABA) together with facts
representing the occurrences of probabilistic assumptions in ω; and (3) P (ω) is
represented by means of so-called probabilistic rules and computed by grounded
semantics. Inference procedures for PABA, however, remain unexplored. To our
best knowledge, our work is the first developing PABA inference procedures but
there have been many works done on other models of PA, focusing on different
computational issues. For example, Li et al. in [8] use a Monte-Carlo simula-
tion to approximate the probability of a set of arguments consistent with an

16 That is, Probgr(A) �
∑

ω∈W:(ARω,Att∩(ARω×ARω))�grA

P (ω).
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argumentation semantics in their model of Probabilistic Abstract Argumenta-
tion (Li’s PAA). The complexity of this problem is recently investigated in [6].
In [1], Doder and Woltran translates Li’s PAA frameworks into formulas in a
probabilistic logic, so obtaining, as a by-product, a schematic way to compute
the above probability precisely using solvers for probabilistic logic. However
the authors did not explore this direction further to develop inference proce-
dures for Li’s PAA. Interestingly, to use our inference procedures for computing
Li’s PAA, we just need a simple translator as follows. Consider a Li’s PAA
framework (F , PAR, PAtt). Recall that F = (AR,Att) is a standard AA frame-
work, PAR : AR → [0, 1] and PAtt : Att → [0, 1] are probability distributions
over AR and Att. PAR(A) is interpreted as the probability of the event that
A actually occurs as an argument (denoted ar(A)); and PAtt((A,B)) is inter-
preted as the probability of the event that A attacks B (denoted att(A,B)),
conditional to a joint event ar(A) ∧ ar(B). Events in {ar(A) | A ∈ AR} are
assumed to be pair-wise independent, and att(A,B) is assumed to depend only
on ar(A) and ar(B). In other words, the probability distribution over all events
{ar(A) | A ∈ AR} ∪ {att(A,B) | (A,B) ∈ Att} is defined by a Bayesian network
of the pattern in the next page. A possible world is an AA framework (AR′, Att′)
where AR′ ⊆ AR and Att′ ⊆ Att∩(AR′×AR′) with probability of the join event∧
A∈AR′

ar(A)
∧

A∈AR\AR′
¬ar(A)

∧
(A,B)∈Att′

att(A,B)
∧

(A,B)∈Att\Att′
¬att(A,B).

Finally, the semantics of Li’s PAA is as follows: the probability that argument
A is accepted equals the sum of probabilities of possible worlds in which A is
accepted. So, in translating a Li’s PAA framework (F , PAR, PAtt) into an PABA
framework we would like P to be Bayesian and contains
an assumption A, for each argument A ∈ AR, such that the probability of the
acceptability of assumption A in P equals the probability that argument A is
accepted according to Li’s PAA semantics. The readers can easily verify that
P can be defined as follows: A = {A | A ∈ AR} with A = ¬A; R = {¬A ←
¬ar(A) | A ∈ AR} ∪ {¬B ← A, att(A,B) | (A,B) ∈ Att}; Ap = {ar(A) |
A ∈ AR} ∪ {att(A,B) | (A,B) ∈ Att} and Rp represent the described Bayesian
network. Readers can also simplify this translation for subclasses of Li’s PAA
frameworks such as those in [7] where attacks are all certain given the presences
of involved arguments (i.e. PAtt((A,B)) = 1 for any (A,B) ∈ Att).
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