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Abstract. Recommender systems can be viewed as prediction systems
where we can predict the ratings which represent users’ interest in the
corresponding item. Typically, items having the highest predicted ratings
will be recommended to the users. But users do not know how certain
these predictions are. Therefore, it is important to associate a confidence
measure to the predictions which tells users how certain the system is in
making the predictions. Many different approaches have been proposed
to estimate confidence of predictions made by recommender systems. But
none of them provide guarantee on the error rate of these predictions.
Conformal Prediction is a framework that produces predictions with a
guaranteed error rate. In this paper, we propose a conformal predic-
tion algorithm with item-based collaborative filtering as the underlying
algorithm which is a simple and widely used algorithm in commer-
cial applications. We propose different nonconformity measures and
empirically determine the best nonconformity measure. We empirically
prove validity and efficiency of proposed algorithm. Experimental results
demonstrate that the predictive performance of conformal prediction
algorithm is very close to its underlying algorithm with little uncertainty
along with the measures of confidence and credibility.

Keywords: Recommender systems · Conformal prediction · Confi-
dence · Nonconformity measure

1 Introduction

Collaborative filtering (CF) is a very promising approach in recommender sys-
tems and is the most widely adopted technique both in academic research and
commercial applications. CF algorithms can be classified in two ways: in neigh-
borhood based approaches prediction and recommendation can be done either
by computing the similarities between users (user-based collaborative filtering
(UBCF) [16]) or similarities between items (item-based collaborative filtering
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(IBCF) [2]) and model-based approaches [17] use mathematical models for mak-
ing predictions. Many model-based algorithms are very complex which involves
estimation of large number of parameters. Moreover if the assumptions of the
model do not hold, it may lead to wrong predictions. On the other hand, neigh-
borhood approaches are very simple both in terms of underlying principles and
implementation while achieving reasonably accurate results. But UBCF does not
perform well when the active user is having too few neighbors and neighbors with
very low correlation to the active user [8]. In our paper, for the proposed con-
formal prediction algorithm we have chosen IBCF as the underlying algorithm
because of its large potential in research and commercial applications [12].

Most of the CF algorithms are limited to making only single point predic-
tions. Metrics such as MAE and RMSE [21] were proposed in the literature
to measure the prediction accuracy. But accuracy of individual predictions can
not be estimated using these measures, as these measures are used to predict
the overall accuracy of the recommendation algorithm. Some confidence estima-
tion algorithms have been proposed in the literature to estimate the confidence
of each prediction. But none of these algorithms provide an upper bound on
the error rate. In contrast, conformal predictors are able to produce confidence
measures specific to each individual prediction with guaranteed error rate.

Conformal Prediction (CP) [4,5] is the framework used in machine learning
(ML) to make reliable predictions with known level of significance or error prob-
ability. Moreover, CP is increasingly becoming popular due to the fact that it can
be built on top of any conventional point prediction algorithms like K-NN [6],
SVM [18], decision trees [19], neural networks [20] etc. The confidence measures
produced by CPs are not only useful in practice, but also their accuracy is com-
parable to, and sometimes even better than that of their underlying algorithms.
So we use CP to associate a confidence measure for each individual prediction
made by our chosen underlying algorithm.

The regions produced by any CP algorithm are automatically valid. But
efficiency in terms of tightness and usefulness of prediction regions depends on
the nonconformity measure (NCM) used by the CP algorithm. Moreover, we
can define many different NCMs for a given underlying algorithm and each of
these measures defines a different CP. So determining an efficient NCM based
on the underlying algorithm is one important step in CP. In this work, we define
different NCMs based on the underlying algorithm and empirically demonstrates
that the CP with simple NCM which is a variant of NCM used in K-NN [6]
performs well from both accuracy and efficiency perspectives.

Major contributions of this paper are: 1. Adaptation of conformal predic-
tion to Item-based collaborative filtering. 2. Define NCMs based on similarity
measure used in IBCF and empirically determine the best NCM. 3. Empirically
demonstrate validity and efficiency of our conformal prediction algorithm.

The rest of the paper is organized as follows: In the next section we dis-
cuss related work. In Sect. 3, we discuss general idea of conformal prediction. In
Sect. 4, we describe Item-based collaborative filtering. Section 5 describes our
proposed algorithm which apply conformal prediction on top of Item-based
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collaborative filtering and defines different NCMs based on IBCF. Section 6
details our experimental results and show the validity and efficiency of our pro-
posed conformal prediction algorithm. Finally, Sect. 7 gives our conclusions.

2 Related Work

In this section we review existing methods proposed in the literature to estimate
confidence of CF algorithms. McNee et al. [7] estimate the confidence of an item
as support for the item. Mclaughlin and Herlocker [8] proposed an algorithm
for UBCF, which generates belief distributions for each prediction. Although
their algorithm is good at achieving good precision by making sure that more
popular items are recommended, they did not demonstrate the accuracy of their
algorithm. Adomavicius et al. [1] estimate the confidence based on rating vari-
ance of each item. Shani and Gunawardana [9] defines confidence as the system’s
trust in its recommendations. They proposed a method to estimate the confi-
dence of recommendation algorithms, but no experiments are provided due to
the broader scope of the chapter. Koren and Sill [10] formulated the problem
of confidence estimation as a binary classification problem and find whether
the predicted rating is within one rating level of the true rating. Although
confidence is associated with each item in the recommendation list, the pro-
posed confidence estimation algorithm is applicable only for their proposed CF
algorithm. Mazurowski [3] introduced three confidence estimation algorithms
based on resampling and standard deviation of predictions to predict confidence
of individual predictions.

But all of the above algorithms failed to provide an upper bound on the
error rate i.e., the probability of excluding the correct class label is guaranteed
to be smaller than a predetermined significance level. On the other hand, our CP
algorithms produce prediction regions with a bound on the probability of error.
When forced to make point predictions, the confidence of a prediction is 1− the
second largest p-value and this second largest p-value becomes the upper bound
on the probability of error. Moreover, with CP we can control the number of
erroneous predictions by varying the significance level, thus making it suitable
to different kinds of applications.

3 Conformal Prediction

In this section, we introduce the general idea behind conformal prediction [4,5].
We have a training set of examples Z = {z1, z2, ..., zl}. Each zi ∈ Z is a pair
(xi, yi);xi ∈ R

d is the set of attributes for ith example and yi is the class label
for that example. Our only assumption in CP is that all Zi

′s are independently
and identically distributed (i.i.d.). Given a new object our task is to predict
the class label yl+1. We try out all possible class labels yj for the label yl+1

and append zl+1 (=(xl+1, yl+1)) to Z. Then estimate the typicalness of the
sequence Z ∪ zl+1 with respect to i.i.d by using p-value function. Our prediction
for yl+1 is the set of yj for which p-value > ε, where ε is the significance level.
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One way of obtaining p-value function is by considering how strange each exam-
ple in our sequence is from all other examples. To measure these strangeness
values we use NCM. NCM A is a family of functions which assigns a numerical
score to each example zi indicating how different it is from the examples in the
set {z1, ..., zi−1, zi+1, ..., zn}.

NCM has to satisfy the following properties [4]:

1. Nonconformity score of an example is invariant w.r.t. permutations. i.e., for
any permutation π of 1, 2..., n

A(z1, z2, ..., zn) = (α1, α2, ..., αn) =⇒
A(zπ(1), zπ(2), ..., zπ(n)) = (απ(1), απ(2), ..., απ(n)).

(1)

2. A is chosen such that larger the value of αi stranger is zi to other examples.
p-value is computed by comparing αl+1 with all other nonconformity scores.

p(yj) =
#{i = 1, 2, ...., l + 1 : αi ≥ αl+1}

l + 1
. (2)

An important property of p-value is that ∀ε ∈ [0, 1] and for all probability
distributions P on Z,

P{{z1, z2, ..., zl+1} : p(yl+1) ≤ ε} ≤ ε. (3)

This original approach to CP is called Transductive Conformal Prediction
(TCP). The p-values obtained from CP for each possible classification can be
used in two different modes: Point prediction: for each test example, predict the
classification with the highest p-value. The confidence of this prediction is 1−
the second largest p-value and credibility is the highest p-value(credibility tells
how well the new item with the assumed label conforms to the training set of
items). Region prediction: given the ε > 0, output the prediction as the set of all
classifications whose p-value > ε with 1 − ε confidence that the true label will
be in this set. A method for finding (1 − ε) prediction set is said to be valid if
it has atleast 1 − ε probability of containing the true label. Efficiency of CP is
the tightness of prediction regions it produces. The narrower (small number of
labels) the prediction region the more efficient the conformal predictor is.

4 Item Based Collaborative Filtering Algorithm

In IBCF, prediction and recommendation are based on item to item similarity.
The key motivation behind this scheme is that a user will more likely purchase
items that are similar to items he already purchased. This can be done as follows:
Assume that I is the set of all available items. For every target user ut, first the
algorithm looks into the set of items that he has rated (training set Ct) and
computes how similar they are to the target item it ∈ St (St set of test items for
the target user ut) using a similarity measure, and then selects k most similar
items {i1, i2, ..., ik}. Once the most similar items are found, the prediction is
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then computed by taking weighted average of the target user’s ratings on these
similar items. So two main tasks in IBCF are: computing item similarities and
rating prediction.

In order to apply CP to IBCF, it is appropriate to convert all ratings to
binary i.e., the user likes or dislikes the item. The reason for this is twofold: first,
uneven distribution of ratings in the data sets: For instance, more than 80 % of
all ratings in MovieLens 100 K are greater than 2 and nearly 70 % of all ratings
in Eachmovie are greater than 3. As a result, it becomes very difficult to identify
k most similar items consumed by the target user which are rated as 1 when
the target item rating is assumed as 1. Second, in [14] authors have shown that
user’s rating as the noisy evidence of user’s true rating. Therefore identifying k
most similar items which are rated as 1 when the new item rating is assumed as
1 does not make sense.

The simple way to convert all ratings to binary is as follows: take the middle
of the rating scale as the threshold (for instance, 3 in the rating scale of 1–6)
and assume all ratings greater than the threshold as liked and all other ratings
as disliked. But this approach works fine when the distribution of all ratings is
even which is not the case in most of the data sets. Other approach to convert
the ratings into binary is, compute the average rating for every user and consider
all ratings whose rating is greater than the average as liked and the all ratings
below this average as disliked. This is the best approach to deal with all types of
users including pessimistic, optimistic and strict users. For example, pessimistic
(optimistic) users who usually give low (high) rating to every item they consume,
we assume that they like items rated above their average rating and dislike items
rated below the average. Similarly, in case of strict users who rate every item
correctly according to whether they like that item or not (gives high rating
when they like and low rating when they do not like) in which case we assume
all ratings above the average (approximately equal to the middle of the rating
scale) as like and other ratings as dislike [13]. This ensures that our CP algorithm
have a reasonable number of liked and disliked items in the data set which makes
it easier to find k similar items when the target item is assumed as like or dislike.
Item similarity computation and prediction are done as follows:

– Item Similarity Computation: In our IBCF we have chosen cosine based sim-
ilarity measure to compute similarities among the items. Since, we do not
have rating values, our algorithm uses binary cosine similarity measure [15]
that finds the number of common users between the two items i and j and is
defined as follows:

similarity(i, j) =
#common users(i, j)

√
#users(i).

√
#users(j)

. (4)

The above equation will give the value in between [0,1]. Similarity(i, j) = 1
when these two items are rated by exactly same set of users. For simplicity,
we use this simple cosine similarity measure as our aim is not to improve
the accuracy of the algorithm, but to provide confidence to the predictions
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generated by the algorithm. We can use efficient similarity measures instead
of this simple measure to obtain more accurate results.

– Predicting the label (like or dislike): Once the similarities are computed, find
the k most similar items (k nearest neighbors) of the target item among the
consumed items of the target user. Then predict the label for the target item
as the most common label among its k nearest neighbors.

5 Application of TCP to IBCF

In this section we discuss how to build TCP on top of IBCF algorithm (a variant
of the algorithm in [6]). We first discuss the algorithm setup and then define
different NCMs based on IBCF algorithm. Finally, we present our TCP algorithm
with IBCF as an underlying algorithm.

5.1 Algorithm Setup

In order to apply CP, we need a training set of examples {z1, z2, ..., zl} and a test
example zl+1 for which we want to make the prediction. Here we discuss how
this is formulated in the context of IBCF. For every target user ut, there is a set
of items Wt rated by this user and we consider a part of Wt as the training set
Ct. For every item i ∈ Ct, user has assigned a label which tells whether the user
liked(+1) or disliked(−1) the item i. Therefore, Y = {+1, −1}. We also have a
test set of items St (Wt − Ct) for which we hide the actual labels assigned by
the user. Now, our task is to assign a label (which makes the current test item
conforms to the training set) to each of the test set items with an associated
confidence measure which is valid according to Eq. (3).

5.2 Nonconformity Measures (NCMs)

We propose different NCMs based on IBCF. First we introduce the terminology
to define NCMs. Since we are having only two labels, Y = {+1,−1}, we are
assuming that if y = 1 ȳ = −1 and vice-versa. Assume that similarityy

i is
vector which is a sorted sequence (in descending order) of similarity of an item
i with items ∈ Ct with the same label y and similarityȳ

i is a sorted sequence
(in descending order) of similarity of an item i with items ∈ Ct with the label
ȳ. The weight for the item i with label y, wy

i is defined as the sum of similarity
values of k most similar items with the label y among the set of rated items Ct

of the target user ut. Similarly wȳ
i is defined as the sum of similarity values of k

most similar items with the label ȳ among the items in Ct of the target user ut.

wy
i =

k∑

j=1

similarity(i, j)y. (5) wȳ
i =

k∑

j=1

similarity(i, j)ȳ. (6)

where k is the number of most similar items, similarity(i, j)y is jth most
similar item in similarityy

i , y is the label of the item i, similarity(i, j)ȳ is jth
most similar item in similarityȳ

i , ȳ is the label other than the label of item i.
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In what follows we define NCMs based on IBCF:

NCM1 = k − wy
i . (7) NCM2 =

1
wy

i

. (8) NCM3 =
wȳ

i

wy
i

. (9)

1. NCM1 & NCM2: The simple NCMs for an item i are as follows: The maxi-
mum value of the similarity function defined in Eq. (4) is 1. As a result, the
maximum value of wy

i becomes k. The higher the value of wy
i , the more con-

forming the item i is with respect to the other items. NCM1 will be high
when wy

i is small and smaller value of wy
i indicates that the item with label

y is nonconforming with other items of the same label. As a consequence,
the higher the value of NCM1, the stranger the item i is with respect to the
other examples with the same label according to the second property of NCM.
Similarly, smaller the value of wy

i the higher the value of NCM2. The higher
the value of NCM2, the more nonconforming the item i is with respect to the
other examples.

2. NCM3: A more efficient and a variant of NCM proposed in [6] can be defined
by taking into consideration wȳ

i along with wy
i in computing the nonconfor-

mity score. According to NCM3, example i with label y is nonconforming
when it is very similar to the items with label ȳ (high value of wȳ

i ) and
dissimilar to the items with label y (low value of wy

i ).

5.3 Item-Based Collaborative Filtering with TCP (IBCFTCP)

Algorithm 1 describes the application of TCP to IBCF in detail. For every item i
in St of the target user ut, try all possible labels in Y and compute the typicalness
of the sequence E resulting from appending i with the assumed label to Ct using
p-value function which in turn uses nonconformity values (calculated using any
of the NCMs discussed above) of all items in E. For region predictions, output
the prediction as the set of all labels whose p-values are > ε with confidence 1−ε
or in case of point predictions, output the label with the highest p-value with
confidence 1− the second highest p-value and credibility as the highest p-value.

6 Experimental Results

We tested our algorithm on four data sets: MovieLens 100K, MovieLens 1M,
MovieLens-latest-small and EachMovie. We randomly selected 50 users and for
each user first 60 % of the data is considered as training set and remaining 40 %
is taken as the test set. Details of data sets is given in Table 1. As TCP is a time
consuming approach and it increases with the number of items when applied to
IBCF, we do not conduct our experiments on data sets in other domains such
as books and music where there are large number of items. Moreover, we do
not compare our results with other state-of-the-art algorithms, as our aim is not
to improve the performance of the algorithm but to associate confidence to the
predictions made by the algorithm without compromising the performance.
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Algorithm 1. Item-based Collaborative Filtering with TCP
Input: k,ut,Ct,St,I,Y ,ε
for each i ∈ I do

for each j ∈ I do
Compute the similarity between i and j using Eq. (4)

end for
end for
for each i ∈ Ct do

Compute wy
i and wȳ

i

Compute nonconformity scores using any of the NCMs discussed above.
end for
for each i ∈ St do

for each y ∈ Y do
Update the similarity values of item i with other items
Compute wy

i and wȳ
i

Compute nonconformity score of i using any of the NCMs discussed above.
for each j ∈ Ct do

if label(j) = y then
if similarity(i, j)y > similarity(j, k)y then

recompute the nonconformity score of item j
end if

else if label(j) = ȳ then
if similarity(i, j)ȳ > similarity(j, k)ȳ then

recompute the nonconformity score of item j
end if

end if
end for
Compute the p-value(p(y)) of item i with label y

end for
prediction region = {y|p(y) > ε} with confidence 1-ε
OR
Assign the label y to item i such that max{p(+1),p(-1)} = p(y)
confidence = 1 - second highest p-value
credibility = highest p-value

end for

Here we compare performance of CP with the underlying algorithm (IBCF) in
terms of percentage of correct classifications (%CC) for different data sets and for
different k values. In our experiments, we considered 4 different k values: 5,10,15
and 20. In order to do this comparison, we have to make single point predictions,
since the underlying algorithm make only single point predictions. In single point
predictions we output a label with the highest p-value. In case, if both labels
share this p-value then we can take any one of these labels randomly. In our
experiments we take both labels: one that is same as the true label (conforming
one) and other one which is other than the true label (nonconforming one)
and compute the performance of CP algorithm separately for both cases. In
this way we can measure the certainty in predictions. In Table 2 we compare
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Table 1. Summary of data sets

Dataset #Users #Items #Ratings

MovieLens 100K 943 1682 100000

MovieLens 1M 6040 3952 1000209

MovieLens-latest-small 718 8915 100234

EachMovie 36656 1621 279983

the performance in terms of %CC of IBCFTCP with that of IBCF with both
conforming labels (CL) and nonconforming labels (NL). We got same results for
both NCMs1&2 in terms of %CC, validity and efficiency. So we do not show
their results separately. We also calculate the uncertainty in the predictions as
the percentage of items having more than one label (in our case both labels)
shares the highest p-value. As the percentage of uncertainty is increased the
deviation between performance of CP with conforming label and nonconforming
label will also be increased as shown in Table 2.

Table 2. Performance comparison of IBCF with IBCFTCP with CLs and NLs

Dataset Number of Algorithm

nearest

neighbors

IBCF IBCFTCP

NCMs1&2 NCM3

%CC Uncertainty %CC Uncertainty %CC Uncertainty

CL NL CL NL CL NL

MovieLens
100 K

5 0.668 0.668 0 0.6964 0.6492 0.0472 0.6764 0.6708 0.0056

10 0.7178 0.6086 0.1092 0.7002 0.652 0.0481 0.6793 0.6715 0.0077

15 0.6654 0.6654 0 0.6917 0.6494 0.0423 0.6741 0.668 0.0061

20 0.6861 0.6232 0.0629 0.6868 0.6492 0.0376 0.6715 0.6668 0.0047

MovieLens 1M 5 0.6899 0.6899 0 0.7226 0.675 0.0476 0.6993 0.6944 0.0049

10 0.7469 0.6317 0.1152 0.7181 0.6739 0.0442 0.7002 0.6948 0.0055

15 0.6903 0.6903 0 0.7189 0.6746 0.0442 0.7014 0.6967 0.0047

20 0.7269 0.6592 0.0677 0.7179 0.6739 0.044 0.6989 0.694 0.0049

MovieLens-
latest-
small

5 0.612 0.612 0 0.6421 0.5929 0.0492 0.6246 0.6113 0.0133

10 0.6948 0.5388 0.1559 0.6494 0.6026 0.0468 0.6353 0.6244 0.0109

15 0.6148 0.6148 0 0.6462 0.6122 0.034 0.6338 0.6265 0.0073

20 0.6678 0.5636 0.1042 0.6441 0.6092 0.0349 0.6314 0.6235 0.0079

EachMovie 5 0.6798 0.6798 0 0.732 0.6344 0.0976 0.6941 0.6842 0.0099

10 0.7454 0.6114 0.134 0.723 0.6376 0.0855 0.6904 0.6839 0.0065

15 0.6758 0.6758 0 0.7146 0.6419 0.0727 0.686 0.6776 0.0084

20 0.7053 0.6242 0.0811 0.701 0.645 0.056 0.6792 0.6742 0.005

From Table 2 when CLs are considered, the CP algorithm (for all NCMs)
is outperforming IBCF for odd k values (5 & 15) due to its slightly higher
uncertainty values compared to IBCF, whereas IBCF is performing better for
even k values (10 & 20) because of its significantly higher uncertainty values.
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In case of NLs, CP with NCMs1&2 is showing performance improvement for even
k values and lower performance for odd k values (5 &15) compared to IBCF. On
the other hand, CP with NCM3 is outperforming IBCF for all k values when NLs
are taken into account. From Table 2 we can say that NCM3 is the best NCM
(shown in bold numbers) as it is showing good performance with less uncertainty
compared to NCMs1&2. Although NCMs1&2 are outperforming NCM3 in terms
of %CC when CLs are taken into consideration, these are not good NCMs, as
this improvement is due to uncertain predictions produced by these NCMs and
though IBCF with CLs is performing well for even values of k compared to CP
with NCM3, this is also because of high uncertainty involved in predictions made
by IBCF. Uncertainty of IBCF for odd k values is 0 (because in this case there
is no possibility of obtaining equal number of +1 s and −1 s) and for even k
values its uncertainty is even greater than IBCFTCP with NCMs1&2.

All CPs are automatically valid. Notice that in IBCFTCP the training set
and test set of items differ from user to user in contrast to CP in ML where the
training set and test sets are fixed for the whole algorithm. So, it is necessary to
show that the validity is satisfied for each user. The validity of CP with NCM3
for each user for different data sets and for k = 5 is shown in Fig. 1 (We got
similar results for validity and efficiency for other k values. Because of space
limitations we are not showing their results). Although validity for each user is
also satisfied for NCMs1&2 we did not show the results here because NCM3 is
the best NCM in terms of prediction accuracy as shown in Table 2 and efficiency
(which will be discussed in the following paragraphs). From Fig. 2 we can see
that the error values (validity) of most of the users are within the bounds of ε.

Fig. 1. Validity of IBCFTCP for different data sets (left to right:Movielens 100 K,
Movielens 1M, Movielens-small-latest and Eachmovie)

Figure 2 shows average validity of IBCFTCP for different data sets and for
different NCMs for k = 5. From Fig. 2, it is clear that prediction regions produced
by CP with all NCMs are valid and follows a straight line as required.

Usefulness of CPs depend on its efficiency. Vovk et al. [11] proposed ten
different ways of measuring the efficiency of CPs. In our experiments we use
Observed Excess criterion which gives the the average number of false labels
(ANFL) included in the prediction set at significance level ε. The formula to
calculate ANFL is:

ANFL =
∑|St|

i=1 |Γ ε
i \ Ti|

|St| . (10)
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Fig. 2. Validity Fig. 3. ANFL

where Γ ε
i is the prediction region for the ith test item at significance level ε, Ti

is the true label of the ith test element, |St| is the total number of test items.
The efficiency of CP algorithm in terms of ANFL for different data sets,

different NCMs and for k = 5 is shown in Fig. 3 shows that CP with NCM3 is
producing less number of false labels compared to NCMs1&2. From Fig. 3, we
can observe that the number of false labels are decreasing with the decrease of
confidence level (if we go from higher to lower confidence levels).

In addition to ANFL we use three other criteria to compute the efficiency
of CP: 1. % of test elements having prediction regions with single label. 2. % of
test elements having prediction regions with more than one label. 3. % of test
elements having empty prediction region. A CP is said to be efficient when the %
of second and third criteria are relatively small whereas the % of first should be
high especially at higher confidence levels (50–99%). Our algorithm is optimal
in the sense that it produces 0 % empty prediction regions from 70–99% confi-
dence levels and < 20 % from 50–70 % confidence levels, while showing moderate
performance in minimizing the second one and maximizing the first one at these
confidence levels. The % of test elements having prediction regions producing
single labels at different confidence levels for different data sets, different NCMs
and for k = 5 is shown in Fig. 4. From Fig. 4 we can observe that NCM3 is
outperforming NCMs1&2, in producing the higher number of prediction regions
with single labels. The % of single labels produced by NCMs1&2 never exceed
20 % at any confidence level, whereas NCM3 is producing sufficiently large %
of single labels especially from 30 %–90 % confidence levels. Figure 5 shows the
% of correct predictions among the % of single labels produced by NCM3 at
each confidence level. From Fig. 5 we can see that the % of correct predictions at
any confidence level is > 60%. The % of test elements having prediction regions
with more than one rating at different confidence levels is shown in Fig. 6. In
this case also NCM3 is performing better than NCM1&2 as NCM3 is producing
less number of prediction regions with multiple labels compared to NCMs1&2
at all confidence levels and in case of NCM3 this number is zero from 0–60 %
confidence levels. The % of test elements having empty prediction regions at
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different confidence levels is shown in Fig. 7. In this case also NCM3 is giving
good results compared to NCMs1&2 by producing less number of empty pre-
diction regions compared to NCMs1&2 and this number is zero from 70–99%
confidence levels.

Fig. 4. % of single labels Fig. 5. % of correct predictions

Fig. 6. % of multiple labels Fig. 7. % of empty labels

The mean confidence and mean credibility of single point predictions pro-
duced by IBCFTCP is shown in Table 3. We also calculated mean difference
between highest p-value and lowest p-value for all test ratings. We will get confi-
dence predictions when this difference is high. From Table 3, we can observe that
this difference for NCM3 is around 50 %, whereas it is only around 15 % with
NCMs1&2. Also, the mean confidence and mean credibility values produced by
CP with NCM3(shown in bold numbers) are better than that of NCMs1&2.

In summary, NCM3 is the best NCM compared to NCMs1&2 in terms of
prediction accuracy and efficiency. Moreover, when restricted to make single
point predictions, mean confidence and credibility values produced by CP with
NCM3 are higher than that of NCMs1&2.
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Table 3. Mean confidence and mean credibility of IBCFTCP

Number of Performance Dataset

nearest measure

neighbors

MovieLens 100K MovieLens 1M MovieLens-latest-small EachMovie

NCMs 1&2 NCM3 NCMs 1&2 NCM3 NCMs 1&2 NCM3 NCMs 1&2 NCM3

5 mean
confidence

0.5841 0.8643 0.5864 0.8718 0.5881 0.8346 0.5738 0.865

mean p1 - p2 0.1183 0.4949 0.1144 0.4933 0.1379 0.4965 0.1064 0.4942

mean
credibility

0.5347 0.6306 0.5284 0.6216 0.5503 0.662 0.5335 0.6293

10 mean
confidence

0.5902 0.8663 0.5903 0.8761 0.5907 0.8397 0.585 0.8681

mean p1 - p2 0.125 0.4905 0.1191 0.4933 0.1392 0.4982 0.1218 0.496

mean
credibility

0.5353 0.6242 0.5292 0.6172 0.5489 0.6586 0.5377 0.6279

15 mean
confidence

0.598 0.8666 0.5947 0.8782 0.595 0.8446 0.5939 0.8666

mean p1 - p2 0.1352 0.4896 0.1256 0.4932 0.1443 0.5012 0.1357 0.4977

mean
credibility

0.5376 0.623 0.5313 0.615 0.5496 0.6567 0.5425 0.6311

20 mean
confidence

0.6063 0.8675 0.5994 0.8783 0.6 0.8468 0.6021 0.8662

mean p1 - p2 0.147 0.4927 0.1327 0.4931 0.1505 0.5017 0.1499 0.5003

mean
credibility

0.541 0.6253 0.5337 0.6148 0.5509 0.655 0.5484 0.6341

7 Conclusions

In this work, we show the adaptation of CP to IBCF and proposed different
NCMs for CP based on the underlying algorithm. Using our CP algorithm we
are associating confidence values to each prediction along with the guaranteed
error rate unlike IBCF which produces only bare predictions. Our algorithm is
tested on different data sets and we experimentally proved that NCM3 is the
best NCM compared to NCMs1&2 in achieving the prediction accuracy as good
as the underlying algorithm with little uncertainty and also in producing efficient
prediction regions. When making single point predictions, the mean confidence
and credibility values produced by the proposed algorithm are reasonably high.
Although our algorithm failed in producing large percentage of single labels at
90–99 % confidence levels (desired confidence levels in medical applications) we
can use this algorithm to make predictions in certain recommendation domains
such as movies, books, news articles, restaurants, music and in tourism where
the confidence level of 50 %–90 % is acceptable.
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