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    Chapter 5   
 Molecular Imaging in Head and Neck 
Squamous Cell Carcinoma Patients                     

     Sjoukje   F.     Oosting      ,     Elisabeth   G.  E.     de Vries    , and     Max   J.  H.     Witjes   

          Introduction 

 Molecular imaging allows visualization of tumor biology in vivo [ 1 ]. Different pro-
cesses can be visualized, such as glucose metabolism, proliferation, and hypoxia. But 
also numerous ligands for receptors and other relevant targets in the tumor microenvi-
ronment have been labeled to be used as a tracer for molecular imaging. For positron 
emission tomography (PET) and single photon emission computerized tomography 
(SPECT) imaging, ligands are labeled with a radioactive nuclide, while for optical 
imaging ligands are labeled with a fl uorescent dye. Also for magnetic resonance imag-
ing (MRI), computerized tomography (CT), and ultrasound, specifi c contrast agents 
are available for molecular imaging [ 2 – 4 ]. Head and neck squamous cell carcinoma 
(HNSCC) is diagnosed in more than 500,000 patients worldwide per year. Many 
patients present with locally advanced disease, which has a poor prognosis with around 
50 % 5-year survival. Adequate staging and tumor delineation could enhance precision 
of surgery and radiotherapy, which may lead to a reduction of recurrences. PET imag-
ing has great potential to improve staging, while optical imaging is investigated for its 
ability to improve tumor delineation. Furthermore, molecular imaging can be used to 
visualize specifi c tumor characteristics that can be used for targeted treatment. 
Therefore, this chapter will focus on PET imaging and optical imaging in HNSCC.  
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    PET Imaging 

 Next to a role in diagnosis, staging, and response evaluation when combined with 
CT or MRI, PET imaging maybe useful for prognostication and radiotherapy treat-
ment planning. Furthermore, PET imaging can be used during drug development by 
demonstrating the distribution of a drug or treatment target [ 5 ]. The role of PET in 
the management of head and neck cancer patients has been summarized in an excel-
lent review by Cammaroto et al. [ 6 ]. Radionuclides that are frequently used for PET 
imaging in patients are fl uor-18 ( 18 F), copper-64 ( 64 Cu), zirconium-89 ( 89 Zr), and 
iodine-124 ( 124 I), which differ among others in half-life (1.8 h, 12.7 h, 78.4 h, and 
100.2 h, respectively). The half-life of the SPECT tracer indium-111 ( 111 In) is 
67.4 h. Antibodies have long half-lives of 1–3 weeks, which requires the use of 
radionuclides that also have long half-lives [ 7 ]. 

     18 F-Fluorodeoxyglucose PET 

 In HNSCC patients, many PET tracers have been tested but only  18 F-fl uorodeoxyglucose 
(FDG)-PET is incorporated in management guidelines. FDG-PET enables visual-
ization and quantifi cation of glucose metabolism which is enhanced in most tumors, 
but also in areas of infl ammation. The National Comprehensive Cancer Network 
(NCCN) Clinical Practice Guidelines for head and neck cancer (version 1, 2015) 
recommend the use of FDG-PET/CT for patients with lymph node metastasis in the 
neck of a squamous cell carcinoma (SCC), adenocarcinoma, and anaplastic or undif-
ferentiated epithelial tumors of an unknown primary site [ 8 ]. For patients with stage 
III and IV HNSCC, FDG-PET is considered optional because it may alter treatment 
decisions by upstaging patients. For response evaluation after chemoradiotherapy or 
radiotherapy alone, FDG-PET is recommended 12 weeks after completion of treat-
ment in patients with a clinical response, to guide the decision on neck dissection. A 
meta-analysis of mainly single center small studies demonstrated a high negative 
predictive value of FDG-PET/CT after chemoradiotherapy for persistent/recurrent 
disease [ 9 ]. A recent phase III trial compared FDG- PET/CT guided active surveil-
lance with planned neck dissection for HNSCC patients with locally advanced dis-
ease treated with primary radical chemoradiotherapy. The study showed that overall 
survival was equivalent. Moreover, in the surveillance arm only 20 % of the patients 
underwent a neck dissection, which resulted in fewer complications, better cost 
effectiveness, and similar quality of life [ 10 ]. 

 Quantifi cation of tumor FDG uptake may also have prognostic value. A meta- 
analysis suggested that a low tumor standardized uptake value (SUV) is associated with 
a better disease free survival, a better overall survival, and improved local control [ 11 ]. 
In a large retrospective study from Denmark, tumor FDG uptake was shown to be an 
independent prognostic factor in patients who received radiotherapy as primary treat-
ment, with high tumor SUVmax corresponding to a worse failure free survival [ 12 ]. 

 Finally, FDG-PET is under investigation as a tool to improve radiotherapy (RT) 
treatment planning. The observation that local recurrence after radiotherapy 
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 frequently occurs in the area with the most intense FDG uptake has boosted trials 
that investigate FDG-PET based radiotherapy dose painting [ 13 ]. Two different 
strategies are applied: dose painting by contours, where a higher uniform RT dose 
is delivered to a target volume based on PET imaging; and dose painting by num-
bers, where on a voxel scale SUV is used to calculate RT dose.  

    Non-FDG PET Tracers 

 Apart from FDG, more than 20 PET tracers have been tested in HNSCC for imaging 
hypoxia, proliferation, amino acid metabolism, and other cellular processes and 
tumor characteristics (see Table  5.1 ). Especially imaging of tumor hypoxia is an 
area of active research.

   Table 5.1    Examples of studies with non-FDG PET tracers in HNSCC patients   

 Tracer  First author, year  Type  Target/process 

  18 F-FMISO  Rajendran, 2006 [ 14 ]  Nitroimidazole  Hypoxia 
  18 F-FAZA  Mortensen, 2012 [ 15 ]  Nitroimidazole  Hypoxia 
  18 F-HX4  Zegers, 2015 [ 16 ]  Nitroimidazole  Hypoxia 
  18 F-EF5  Komar, 2014 [ 17 ]  Nitroimidazole  Hypoxia 
  62 Cu-ATSM  Sato, 2014 [ 18 ]  Copper 

semicarbazone 
 Hypoxia 

  64 Cu-ATSM  Grassi, 2014 [ 19 ]  Copper 
semicarbazone 

 Hypoxia 

  18 F-FLT  Hoeben, 2013 [ 20 ]  Nucleoside  Proliferation, DNA 
synthesis 

  11 C-4DST  Ito, 2015 [ 21 ]  Nucleoside  Proliferation, DNA 
synthesis 

  11 C-MET  Wedman, 2009 [ 22 ]  Amino acid  Amino acid metabolism 
  18 F-FAMT  Kim, 2015 [ 23 ]  Amino acid  Amino acid metabolism 
  18 F-FET  Pauleit, 2006 [ 24 ]  Amino acid  Amino acid metabolism 
  18 F-FMT  Burger, 2014 [ 25 ]  Amino acid  Amino acid metabolism 
  11 C-Choline  Ito, 2010 [ 26 ]  Phospholipid 

precursor 
 Phospholipid biosynthesis 

  18 F-FCH  Parashar, 2012 [ 27 ]  Phospholipid 
precursor 

 Phospholipid biosynthesis 

  15 O-H 2 O  Komar, 2014 [ 17 ]  Water  Perfusion 
  68 Ga-DOTATOC  Schartinger, 2013 [ 28 ]  Octreotide  Somatostatin receptor 

expression 
  18 F-BPA  Tani, 2014 [ 29 ]  Boron-amino acid  Replicating cell/boron 

accumulation 
  18 F-5-FU  Hino-Shishikura, 2013 [ 30 ]  Cytotoxic 

chemotherapy 
 Replicating cell/drug 
distribution 

  89 Zr-Cetuximab  Heukelom, 2013 [ 31 ]  Antibody  EGFR expression, drug 
distribution 

  89 Zr-U36  Börjesson, 2009 [ 32 ]  Antibody  CD44v6 expression 
  124 I-F16SIP  Heuveling, 2013 [ 33 ]  Mini antibody  Fibronectin/angiogenesis 
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       Hypoxia Imaging 

 Tumor hypoxia is associated with poor prognosis and resistance to treatment. Tumor 
hypoxia can be analyzed directly by measuring oxygen tension with an electrode, 
but this is an invasive procedure which does not take into account tumor heterogene-
ity. Hypoxia imaging on the other hand allows serial noninvasive assessment of 
tumor hypoxia, both of the primary tumor and of lymph node metastases. Multiple 
hypoxia PET tracers have been developed, mostly based on a nitroimidazole struc-
ture. These molecules freely diffuse through cell membranes but get trapped into 
cells in the presence of a low oxygen level [ 34 ,  35 ]. The most used hypoxia PET 
tracer is  18 F-fl uoromisonidazole ( 18 F-FMISO) which has recently been reviewed by 
Rajendran and Krohn [ 36 ]. Several, generally small single center,  18 F-FMISO PET 
studies have been published in HNSCC patients over the last 10 years (Table  5.2 ). 
In these studies, different parameters for quantifi cation were used, but also different 
reference tissues, different treatment schedules, and different timing of follow up 
imaging. This complicates interpretation and hampers robust conclusions. However, 
several studies showed that patient with more hypoxic tumors had a worse outcome 
[ 14 ,  37 ,  41 ,  44 ,  46 ,  50 ]. Furthermore, early reoxygenation during chemoradiother-
apy appears to be associated with a lower risk of recurrence [ 46 ,  50 ].

   Where prognostic markers provide information about outcome of patients inde-
pendent of treatment, predictive markers give information on the effect of a specifi c 
treatment strategy [ 51 ]. The prognostic value of hypoxia PET can potentially be 
used to guide treatment de-escalation in patients with nonhypoxic tumors with favor-
able prognosis and/or treatment escalation in patients with hypoxic tumors (Fig.  5.1 ). 
Currently a treatment de-escalation study is ongoing in patients with human papil-
lomavirus (HPV) positive oropharynx cancers that are nonhypoxic at baseline or 
show early re-oxygenation on repeat imaging (ClinicalTrials.gov Identifi er: 
NCT00606294). On the other end of the spectrum, in silico studies have demon-
strated the feasibility of increasing radiotherapy dose to hypoxic tumor subvolumes 
[ 53 – 57 ]. Currently two randomized studies are comparing standard chemoradio-
therapy with chemoradiotherapy using an increased radiation dose to hypoxic tumor 
subvolumes (ClinicalTrial.gov. Identifi ers: NCT02352792 and NCT01212354).

   Several therapeutic strategies have been developed to reduce tumor hypoxia 
during radiotherapy, including carbogen and nicotinamide, tirapazamine, and 
nimorazol [ 58 – 60 ]. Hypoxia PET may have predictive value by identifi cation of 
patients who benefi t from hypoxia targeting treatment. This could be investigated 
by using a biomarker stratifi ed study design (Fig.  5.2 ). Data from a sub study 
using  18 F-FMISO PET suggested that patients with hypoxic tumors derived ben-
efi t from treatment with tirapazamin, a cytotoxic drug with selective toxicity 
towards hypoxic cells [ 38 ]. Currently an international randomized phase III trial 
comparing chemoradiotherapy plus nimorazol with chemoradiotherapy plus pla-
cebo in patients with locally advanced HNSCC uses a hypoxic gene signature as 
stratifi cation factor but also tests predictive value of hypoxia PET in a subset of 
the patients (ClinicalTrials.gov Identifi er: NCT01880359). However, nimorazole 
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is a cheap drug with limited side effects, therefore it is doubtful if hypoxia PET is 
going to be implemented as predictive marker even if the positive and negative 
predictive values are high.

       PET Imaging Using Radiolabeled Antibodies 

 PET imaging with radiolabeled monoclonal antibodies, also called immuno-PET, 
can potentially be used to select patient for targeted treatment and for drug develop-
ment [ 5 ]. For HNSCC, the epidermal growth factor receptor (EGFR) blocking 

LA-HNSCC PET

Non hypoxic R

De-escalation

Standard of care

Standard of care

Escalation

RHypoxic

  Fig. 5.1    Study design using hypoxia PET as prognostic marker.  LA-HNSCC  locally advanced head 
and neck squamous cell carcinoma,  PET  positron emission tomography,  R  randomization. Patients 
with LA-HNSCC undergo hypoxia PET imaging before start of treatment. Patients with nonhy-
poxic tumors are randomized between standard of care and an experimental treatment de- escalation 
regimen. Patients with hypoxic tumors are randomized between standard of care and an experimen-
tal treatment intensifi cation regimen. Double enrichment design (After Freidlin et al. [ 52 ])       

LA-HNSCC PET

Hypoxia targeting + SOC

Hypoxia targeting + SOC

Placebo + SOC

Placebo + SOC

R

R

Non hypoxic

Hypoxic

  Fig. 5.2    Study design testing hypoxia PET as predictive marker.  LA-HNSCC  locally advanced 
head and neck squamous cell carcinoma,  PET  positron emission tomography,  R  randomization, 
 SOC  standard of care. Patients with LA-HNSCC undergo hypoxia PET imaging before start of 
treatment. Patients with nonhypoxic tumors as well as patients with hypoxic tumors are random-
ized between standard of care plus a hypoxia targeting drug and standard of care plus placebo. 
Biomarker stratifi ed design (After Freidlin, et al. [ 52 ])       
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antibody cetuximab is the only targeted therapy shown to be effective, in  combination 
with radiotherapy and in combination with chemotherapy [ 61 ,  62 ]. EGFR, also 
known as human epidermal growth factor receptor 1 (HER1), is a member of the 
human EGFR (HER) family that further consists of HER2, HER3, and HER4. 

 Preclinical research has shown that activation of HER3 after dimerization with 
HER2 limits activity of EGFR inhibition in HNSCC and that dual inhibition of 
EGFR and HER3 can overcome resistance to radiation and to EGFR inhibition [ 63 , 
 64 ]. Several agents targeting HER3 are currently under investigation in clinical tri-
als, including monoclonal antibodies directed against HER3, dual inhibitors of 
EGFR and HER3, and pan-HER monoclonal antibody mixtures and tyrosine kinase 
inhibitors. Immuno-PET using radiolabeled antibodies against EGFR and HER3 
could be useful to provide information on availability of the drug target and distribu-
tion of therapeutic antibodies in HNSCC patients.  

    EGFR Imaging 

 EGFR expression determined by immunohistochemistry has prognostic value in 
HNSCC, but is not a predictive biomarker for effi cacy of cetuximab [ 65 ]. This may 
be related to heterogeneity in EGFR expression but also to accessibility of the tumor 
to EGFR inhibitors. Tumor drug delivery is not solely dependent on expression of 
the target, but also determined by perfusion, permeability, interstitial pressure, and 
drug characteristics including size [ 66 ,  67 ]. Two preclinical studies investigating 
 64 Cu-cetuximab PET imaging in xenograft models reported a correlation between 
tumor uptake of  64 Cu-cetuximab and EGFR expression [ 68 ,  69 ]. A third study with 
 89 Zr-cetuximab PET imaging in tumor bearing mice showed tracer uptake in EGFR 
positive tumors, but no correlation between tracer uptake and EGFR expression was 
found [ 70 ]. This may however be related to the tracer dose used [ 71 ]. 

 Antibodies have a long half-life which implicates that in order to achieve a good 
tumor-to-background ratio and tumor-to-blood ratio, the optimal timing of imaging is 
around 7 days after tracer injection. To allow imaging within 24 h and repeat imaging 
early after start of treatment, antibody fragments of cetuximab (cetuximab- F(ab’) 2 ) 
have been developed and radiolabeled for SPECT and PET imaging [ 72 ,  73 ]. Imaging 
studies in head and neck cancer xenograft models using  111 In-cetuximab- F(ab’) 2  
SPECT have shown that localization of the tracer correlates with EGFR expression 
and that the model with the highest uptake was the most sensitive to cetuximab treat-
ment [ 72 ,  74 ]. Furthermore, increased tumor tracer uptake was found after radio-
therapy in a cetuximab sensitive HNSCC xenograft model, which was accompanied 
by translocation of EGFR to the tumor cell membrane [ 75 ]. On the other hand, in a 
cetuximab resistant tumor model, no increase in tumor tracer uptake after radiother-
apy occurred. Finally, treatment of human HNSCC xenograft models with radio-
therapy alone, cetuximab alone, or the combination demonstrated reduced tracer 
uptake in responding tumors while in resistant tumors an increase in tumor tracer 
uptake was found [ 75 ]. Therefore, translation of this molecular imaging  technique to 
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the clinic offers a promising tool for selecting patients who will benefi t from treat-
ment with cetuximab but it could also be useful as an early read- out of treatment 
effi cacy. Three clinical studies have started using  89 Zr-cetuximab PET imaging, one 
in HNSCC and two in colorectal cancer patients (ClinicalTrials.gov Identifi ers: 
NCT01504815, NCT02117466, NCT01691391) [ 31 ,  76 ]. The head and neck cancer 
trial was initiated as a randomized phase II study comparing cisplatin with cetuximab 
and standard radiotherapy with redistributed radiotherapy in a two by two factorial 
design. One of the objectives was to evaluate the predictive value of  89 Zr-cetuximab 
tumor uptake on a pretreatment PET scan [ 31 ]. Unfortunately the trial design has 
been changed and cetuximab treatment and cetuximab imaging are no longer part of 
the protocol (  https://clinicaltrials.gov/archive/NCT01504815/2014_08_21/changes    ).  

    HER3 Imaging 

 The HER3 antibodies lumretuzumab and patritumab have been labeled for PET 
imaging [ 77 ,  78 ]. In a phase I study, 13 patients with solid tumors expressing HER3, 
determined by immunohistochemistry, underwent imaging with  89 Zr-lumretuzumab 
PET before start of treatment with the same antibody [ 79 ]. Two patients with 
HNSCC were included in this study. The aim of the imaging part was to determine 
in vivo biodistribution and the ability of the antibody to target the tumor. In all 
patients, tracer uptake in tumor lesions was seen. Metastases in the bone and brain 
that were unknown were detected in three patients. Results of serial imaging during 
treatment to assess HER3 saturation are awaited. In another phase I study, dosime-
try of  64 Cu-DOTA-patritumab and receptor occupancy after a therapeutic dose patri-
tumab were investigated [ 78 ]. Three out of six patients in the receptor occupancy 
cohort had a negative PET scan, likely because patients were not preselected for 
HER3 tumor expression. In the remaining patients, receptor occupancy was ~42 %. 
Larger studies are needed to assess predictive value of immuno-PET for effi cacy of 
antibody therapy and/or for selecting the right treatment dose.  

    PET Imaging of Tumor Immunity 

 Cancer immunotherapy with immune checkpoint inhibitors has been a great break-
through for melanoma, non–small cell lung cancer and other tumor types and has 
shown very promising early results in head and neck cancer [ 80 ,  81 ]. Antibodies 
directed at programmed death 1 (PD-1) and its ligand PD-L1 are currently investi-
gated in phase III trials in HNSCC. To date there are no biomarkers that predict 
effi cacy of immune checkpoint inhibition, although in some tumor types expression 
of PD-L1 using immunohistochemistry is associated with a higher response rate. 
Expression of relevant targets for immunotherapy may vary between and within 
tumor lesions, and over time. Molecular imaging offers a noninvasive platform for 
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serial assessment of whole body target expression and antibody distribution. 
PET imaging of tumor immunity is in an early phase of development with no  clinical 
data available yet. One imaging study is currently ongoing in patients with triple 
negative breast cancer, bladder cancer and non–small cell lung cancer using 
 89 Zr-atezolizumab (PD-L1 antibody) PET before treatment with the same antibody 
(ClinicalTrials.gov Identifi er: NTC02453984). Two preclinical studies already 
demonstrated feasibility and specifi city of radiolabeled antibodies for PD-L1 
 imaging in tumor bearing mice [ 82 ,  83 ]. 

 Another interesting strategy is to use molecular imaging as an early read-out of 
treatment response. PD1 and PD-L1 antibodies are supposed to act by augmenting 
the activity of tumor infi ltrating cytotoxic T lymphocytes. Activated T lymphocytes 
express interleukin-2 (IL-2) receptor. SPECT imaging with radiolabeled IL-2 
( 99m Tc- IL2) has successfully been used in patients for visualization of activated T 
lymphocytes in atherosclerotic plaques and in melanoma [ 84 ,  85 ]. For IL-2 PET 
imaging, which allows more sensitive and more precise quantifi cation than SPECT, 
 18 F-IL2 has been developed and validated preclinically [ 86 ,  87 ]. 

 The subset of lymphocytes that can eliminate tumor cells are CD8 expressing 
cytotoxic T cells. Antibody fragments against murine CD8 have successfully been 
labeled with  64 Cu and showed specifi c uptake in lymph nodes and spleen of antigen 
positive mice [ 88 ]. If this technique can successfully be translated to the clinic, it 
would allow to study in vivo tumor T cell infi ltration which appears to be a prereq-
uisite for immunotherapy to be effective. 

 Another important class of immune cells affecting tumor behavior are the tumor 
associated macrophages (TAMs). The subset of M2 macrophages appears to have a 
tumor promoting and cytotoxic T cell suppressive effect [ 89 ]. Macrophage deplet-
ing drugs are currently investigated in clinical trials. M2 macrophages specifi cally 
express the macrophage mannose receptor (MMR). Radiolabeled antibody frag-
ments targeting MMR have been developed for PET imaging and showed specifi c 
uptake in tissues and tumors expressing MMR in mice [ 90 ]. MMR imaging could 
be helpful in the process of drug development, for patient selection, and as a read 
out for treatment effi cacy.   

    Optical Imaging 

 Optical molecular imaging is a much more recent fi eld of research, and evidence 
from clinical studies is still scarce. Optical imaging techniques use illumination with 
light of different wave lengths, ranging from safe ultraviolet range (350–400 nm), 
and the visible spectrum (400–750 nm) to infrared regions (750–1000 nm). 
Penetration of light is limited due to scattering and absorption, which vary substan-
tially in different target tissues. Generally, in the range of 350–1000 nm, light pen-
etration is deeper with increasing wavelength. Near-infrared (NIR) fl uorescence 
imaging can visualize structures up to 8 mm below the surface, depending on the 
optical properties of the target tissue [ 91 ]. Several optical spectroscopy and imaging 
technologies have been and are currently investigated in HNSCC, including Raman 
spectroscopy, narrow band imaging, autofl uorescence and exogenous fl uorophore 
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imaging, optical coherence tomography, confocal laser endomicroscopy, and confo-
cal refl ectance microscopy [ 92 ]. Optical imaging is currently investigated for its 
potential to differentiate malignant lesions from normal tissue, and from benign and 
premalignant lesions. Optical imaging can be used during endoscopy but also intra-
operatively to guide surgical resection margins. However, in cancer diagnosis, most 
optical techniques are either diffi cult to apply in vivo (i.e., Raman spectroscopy) or 
have not shown to yield suffi cient specifi city to support routine clinical use. Only in 
certain fi elds optical imaging techniques have shown to aid the clinician in diagnos-
tic procedures. For instance, narrow band imaging helps to identify (pre)malignant 
lesions in head and neck cancer [ 93 ]. Here we present examples of molecular optical 
imaging using fl uorescently labeled molecules that target specifi c tumor characteris-
tics to improve the contrast between cancer and non-cancer tissue. 

    EGFR Imaging 

 In the fi rst clinical trial on molecular optical imaging in HNSCC patients, cetuximab 
labeled with the NIR fl uorescent dye IRDye800 was systemically injected 3–4 days 
before surgery in a dose fi nding study [ 94 ,  95 ]. Wide fi eld NIR imaging was per-
formed at day 0, day 1, and immediately before surgery, and closed fi eld NIR imag-
ing of fresh tissue slices of 4–5 mm was done. After histologic preparation, a 
corresponding slide was analyzed with a fl uorescence scanning system for compari-
son with immunohistochemistry. Cetuximab-IRDye800 specifi cally accumulated in 
tumor lesions with a sharp demarcation of the tumor border. The mean fl uorescence 
intensity signal was highly correlated with EGFR expression (Fig.  5.3 ) [ 94 ]. 
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  Fig. 5.3    Co-localization of fl uorescence signals of cetuximab-IRDye800CW and epidermal 
growth factor receptor ( EGFR ) expression. Representative hemotoxylin/eosin ( H&E ) image indi-
cating tumor ( T ) and normal ( N ) with corresponding EGFR expression immunohistochemistry 
stain and fl uorescence image [ 94 ]       
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However, in tumor areas with necrosis and in areas with mature, differentiated kera-
tinizing cancer cells, fl uorescence was low despite high EGFR expression. The lat-
ter might be explained by loss of ligand binding affi nity of EGFR during maturation 
[ 94 ]. Of interest, the highest tracer dose (62.5 mg/m 2 ) suggested receptor saturation 
according to the authors, because the tumor-to-background ratio seemed to have 
reached a plateau. This raises the question whether the standard therapeutic cetux-
imab loading dose of 400 mg/m 2  followed by weekly doses of 250 mg/m 2  might be 
too high, and imposes unnecessary off-target effects. However, tumor-to-back-
ground ratio may also be reduced due to a higher background fl uorescence which 
occurs by increasing the cetuximab-IRDye800 dose. The study also revealed 
cetuximab- IRDye800 localization in sebaceous glands and basal cells which might 
be related to the skin toxicity that is frequently seen during cetuximab therapy. This 
novel imaging technique is an interesting tool for intraoperative use to lower the rate 
of involved or close surgical margins. Next to this, studying the localization of the 
cetuximab-IRDye800 in histological slides of the excised tumor may add another 
dimension to the pathology report which could be useful in determining postopera-
tive strategies.

   In a xenograft study of human oral cavity squamous cell carcinoma, fl uorescent opti-
cal imaging was used to investigate whether tumor uptake of the cetuximab- IRDye800 
could be improved by pretreatment with bevacizumab, a monoclonal antibody targeting 
human vascular endothelial growth factor A (VEGF-A) [ 96 ]. Neoadjuvant bevaci-
zumab administration but not simultaneous bevacizumab increased cetuximab-
IRDye800 tumor accumulation. This was accompanied by a higher pericyte coverage 
of tumor blood vessels compared to mice that did not receive bevacizumab, which 
suggests vascular normalization. Translating such a study design to the clinic could 
provide important information on effective treatment combinations and schedules. 

 Quantum dots (QDs) are semiconductor nanocrystals with a wide excitation and 
a small emission spectrum that can be conjugated to antibodies and peptides for 
molecular optical imaging. The size of QDs determines emission wave length, 
which can vary from the UV to the NIR range. A NIR QD800-EGFR antibody has 
been used for in vivo imaging of mice with a human orthotopic oral cavity squa-
mous cell carcinoma [ 97 ]. Specifi c binding to tumor cells with a high signal-to- 
noise ratio up to 6 h after intravenous injection was demonstrated. 

 Another interesting development is topical application of a fl uorescently labeled 
EGF peptide (EGF-Alexa 647) for early detection of oral neoplasia [ 98 ]. Immediately 
after excision, oral neoplastic lesions and paired normal tissue biopsies were incu-
bated with EGF-Alexa 647 showing a consistently higher fl uorescent signal in 
lesions which corresponded with EGFR immunohistochemistry. Clinically appli-
cable conjugates are under development.  

    Integrin α v β 3  Imaging 

 Integrin α v β 3  is expressed by endothelial cells during angiogenesis in many cancers, 
including HNSCC, and by some tumor cells. Peptides containing an arginine- 
glycine- aspartic acid (RGD) sequence bind to α v β 3  integrin. A tetravalent RDG 
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peptide labeled with a NIR fl uorescent molecule (AngioStamp800) is commercially 
available for preclinical optical imaging. Using this probe in an α v β 3  expressing 
orthotopic HNSCC xenograft model, Atallah et al. operated 12 mice with the use of 
integrin α v β 3  imaging and 12 mice with visual guidance only [ 99 ]. In the fi rst group, 
after visual complete resection, tumor beds contained fl uorescent spots in all mice, 
and 35 out of 37 specimens of these fl uorescent spots contained tumor foci. 
Furthermore, recurrence free survival after 2 months was 75 % in mice that had α v β 3  
integrin imaging guided surgery compared to 25 % in mice resected without optical 
imaging. In a second study by the same group, mice were followed for lymph node 
recurrence after resection of orthotopic HNSCC [ 100 ]. Intraoperative integrin α v β 3  
imaging correctly identifi ed clinical and subclinical lymph node metastases in these 
mice. 

 Quantum dots conjugated with RGD (QD800-RGD) have also been used for 
integrin α v β 3  imaging in mice bearing HNSCC. The xenografted human oral 
squamous cell carcinoma cell line did not express integrin α v β 3  but specifi c tar-
geting of tumor vessels in this mouse model resulted in clear tumor fl uorescence 
with the highest tumor-to-background ratio 6 h after intravenous injection of 
QD800-RGD [ 101 ].  

    Other Optical Imaging Targets 

 Cancer cells display aberrant glycosylation of cell surface proteins and lipids with 
increased sialic acid content. This has been exploited for optical imaging using topi-
cal application of wheat germ agglutinin (WGA) conjugated with fl uorophores in 
the UV range (Alexa Fluor 350) and NIR range (Alexa Fluor 647)[ 102 ]. Ex vivo 
imaging of tumor and normal mucosa biopsies of patients with HNSCC demon-
strated a satisfactory signal-to-noise ratio. 

 Another characteristic of many cancers is overexpression of cyclooxygenase-2 
(COX-2). Fluorocoxib, a COX-2 targeted NIR probe, has been developed for optical 
imaging [ 103 ]. Specifi c uptake in COX-2 overexpressing human HNSCC xeno-
grafts was demonstrated with an optimal signal-to-noise ratio at 7 days post injec-
tion in mice. 

 Interestingly, also a NIR dye conjugated PD-L1 antibody was successfully tested 
in tumor bearing mice [ 83 ]. 

 Finally, also tumor M2 macrophage recruitment has been visualized with optical 
imaging using an antibody against MMR (αCD206) conjugated with NIR dyes in a 
murine breast cancer model [ 104 ,  105 ].   

    Future Perspectives 

 Molecular imaging with radiolabeled ligands for PET imaging provides whole body 
information on distribution of targets and/or drugs with low resolution. Optical 
imaging gives local information with very high resolution but with limited 
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penetration. These complementary techniques can be used simultaneously by inject-
ing molecules labeled with a fl uorescent dye and a radionuclide [ 106 ]. 

 Furthermore, for optical imaging, several tumor characteristics have already 
been analyzed simultaneously by using probes with different excitation wavelengths 
in preclinical studies [ 107 ]. 

 Molecular imaging cannot replace anatomical imaging or biopsies but can poten-
tially provide additional information to improve diagnosis and treatment of 
HNSCC. Before implementation, large well powered clinical studies are needed to 
assess its added value. Alternatively, data from multiple small studies can be com-
bined which could be facilitated by creating ware houses with imaging data. The 
currently publicly available databases for genomics could serve as a role model in 
this respect. However, standardization of techniques and endpoints is critical for 
combined analysis.     
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