A Multi-objective Time Segmentation
Approach for Power Generation
and Transmission Models

Viktor Slednev, Valentin Bertsch and Wolf Fichtner

Abstract The complexity of large-scale power system models often necessitates
the choice of a suitable temporal resolution. Nowadays, mainly simple heuristic
approaches are used. An adequate decision support related to power generation and
transmission optimisation in systems with a high RES share, however, requires pre-
serving the complex intra-period and intra-regional links within and between the
volatile electricity demand and supply profiles. Focussing on power systems opera-
tion, we are able to show that even an amount of less than 300 time segments may
be sufficient for the modelling of a whole year, if chosen carefully.

1 Introduction

The rapid expansion of renewable energy sources (RES) necessitates an extensive
structural rearrangement of the power system. The power grid plays a key role in this
context. In order to provide valuable decision support for power systems operation
and analyse grid utilisation, especially during times of peak load or generation,
models are needed which are able to consider a high regional and temporal input
data granularity. This requirement inevitably leads to a target conflict between model
complexity and computational intensity on the one hand and model accuracy on
the other hand. When simplifying the representation of time, it is therefore crucial
to minimise the loss of relevant information. In particular, in case of a combined
consideration of power generation and transmission in systems with a high RES share,
it is important to preserve the complex intra-period and intra-regional links within
and between the volatile electricity demand and supply profiles. So far, however,
mainly simple heuristic approaches are used (see e.g., [2-5]).
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We therefore propose a multi-objective optimisation approach for time segment
selection in Sect. 2 allowing for an explicit analysis of the sensitivity of the temporal
structure. Focussing on operating decisions in this paper, we present selected results
in Sect.3 and show that even an amount of less than 300 time segments may be
sufficient for the modelling of a whole year. In Sect.4, we conclude and indicate
needs for future research.

2 The Multi-objective Approach for Time Segment
Selection

The developed approach is aimed at representing the nodal profiles of electricity
demand and supply-dependent volatile RES generation of a specific year through a
subset of the initial hourly time structure. Preserving the complex intra-period and
intra-regional links within and between the volatile electricity demand and supply
profiles is a major challenge. The time segment selection is therefore based on the
solution of a two-step multi-objective integer optimisation problem.

An adequate generation and transmission optimisation within load flow con-
strained power system models is basically determined through local or global bot-
tlenecks. In consequence, the trade-off between selecting the critical hours for the
power grid usage and the typical periods for the unit dispatch constitutes a serious
challenge, especially as the critical hours are not known in advance. In the follow-
ing, we therefore choose extreme combinations of load, wind and solar photovoltaic
energy as constraints for the time segment selection. This approach is based on [1],
where the eight possible combinations of high and low electricity demand and feed-
in from wind and photovoltaic energy are used to define critical situations for grid
utilisation. For the following selection of time slices, the “/wp”-(load-wind-pv) con-
straint requires that at least one time segment in the reduced set is an element of the
critical “Iwp” sets (S™p)y.

As mentioned above, our overall target is to provide a time segment selection
which accounts for both, typical and extreme demand and supply profiles on a nodal
and global level and thus minimises the hourly deviations between the original and
reduced profiles. In Sect. 2.1, we therefore introduce our grid impact based error mea-
sure. In Sect.2.2, we subsequently describe the first step of our two-step approach,
i.e. the selection of ‘typical’ days by solving a multi-objective binary clustering
problem. In Sect. 2.3, we describe the second step of our two-step approach, i.e. the
intraday time slice reduction by means of constraint programming.

The implementation of the developed time segment selection approach is based
on MATLAB and GAMS. MATLAB is used for the data handling and preprocessing,
such as the calculation of the clustering distances and the critical sets as well as for
the calculation of the initial MIP start solutions, based on a k-Means clustering. The
multi-objective binary clustering problem is implemented in GAMS and solved with
CPLEX.
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2.1 A Grid Impact Based Error Measure

We evaluate the reduction of a time series to its characteristic values based on the
resulting error’s impact on the solution space. In direct current optimal power flow
approaches (DC-OPF), the solution space is determined by the load flow equations:

Pr=& - Py, (1)

where the relation between the bus injection P;,; and the branch flow Py is determined
through the power transfer distribution factor (PTDF) matrix @. Splitting the bus
injection into a variable and fix part by defining the electricity demand and RES-E
feed-in as exogenous parameters, and clustering the original right hand side injection
vector along the temporal dimension, the impact of the resulting deviation E of the
underlying values to their representative within the cluster on the original solution
can be expressed by:

P—®.-P7 = P>

e i+ P -E. 2
The impact of a clustering policy on the solution space of the load flow equations is
therefore given by the product of the cluster distance of the right hand side parameters
of a specific hour with the PTDF matrix. Reducing the resulting (L x 1) vector, where
L corresponds to the number of branches / (1 < [ < L), by the L, norm, we can define
the single hour distance c¢ for a deviation from the exogenous bus injection:

1/2
c= (Z(cp ~E)2) . (3)

leL

2.2 Selection of the ‘Typical’ Days (Step 1)

In the first step, the ‘typical’ days are selected based on the clustering of the 365 daily
24-h vectors of a year subject to a minimisation of a distance function. In order to
include constraints for the time segment selection, a multi-objective combinatorial
optimisation is chosen. Restricting the definition of typical days to elements of the
underlying vector set, an optimal clustering for a given cluster number (CL/") may
be obtained based on Eqs. (4)-(6)

> xa=1, )

deDSS (d)
Zxd$a§M~x(}, (5)
deD
> x=cL™, (6)

deD
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wherex; € {0, 1}, x, ; € {0, 1} and x,, ; denotes the binary clustering decision of rep-

resenting day d through the profile of d under a certain mapping policy.! Demanding
that each day is assigned to exactly one typical day (Eq. 4), the selection of the typical
x5 is defined by the Big-M method (Eq.5). The implementation of the preliminary
discussed constraints of the time segment selection is achieved by demanding the
critical sets S*7 to be nonempty under the current clustering decision:

> ox=l. )

deshr(d)

For handling the multiple objectives of selecting ‘typical’ time slices for every energy
conversion technology and energy consumption profile on a nodal and global basis,
the PTDF based error measure defined above is used. Basically, this approach allows
reducing the multiple objectives to a single distance which captures the impact
of clustering the residual load bus injection vector from a flow based point of
view. In order to avoid a balancing between the different bus injection types (load,
wind and photovoltaic energy), which may be undesirable in the further model-
based processing, we define the 24h clustering distance for all target dimensions
t € {load, wind, pv, residual load} as follows:

2
Crdd = Z(Z Pt - (Vn,r,d,h — V;Jﬁyh)) , (8)

he(l,...,24} leL \neN

where v and V' are the hourly nodal profile vectors defined over the set of 24-h vectors
of an underlying year and ¢, ; is the power transfer distribution factor, determining
the impact of an injection at bus n on the flow over branch /. Based on the reduced
coefficient matrix of the clustering distance and the binary decision variable x,, 5, we
obtain the following clustering costs:

Yo = zcr,d,fi “Xad €))
d.d

For an optimisation of the remaining multiple dimensions of the clustering cost a
general goal programming formulation is chosen:

min, oz =078 4+ (1 —a) - 25, (10)
with A= Z w - L (1)
y{f’lln

t€{load, wind, pv, residual load}

IRestricting the mapping to a subset of days D5 (d) may be desirable, e.g., to avoid a mapping of
profiles from working days to weekends.
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> w22 (12)
y.;nm
Y =y +pr —ng (13)

where 7/ and 7/~ represent the weighted positive percentage deviations from the
minimal cost targets ¥ based on the L; and L., norm for a multi-objective opti-
misation with a focus on an efficient or balanced solution, respectively.

2.3 Intraday Time Slice Reduction (Step 2)

A further reduction of the time slice number on an intraday basis is similarly modelled
to the previous clustering of the daily 24-h vectors. Restricting the definition of the
optimal time slices of the previously selected typical days to the underlying 24 h of
a day and the set of possible aggregations of subsequent hours on a two hour level or
three hour level (during the night), an optimal aggregation of time slices for a given
upper limit (75"") may be obtained by:

> xp,=1 Vh, (14)

tseTS(ts,h)

> D xg,=24 Vh, (15)

ts€TS(ts,h) heTS(ts,h)

D> xg=TS™, (16)

deb 1s€TS(1s,h)

with x; o € {0, 1}, TS = {zsy, ..., 1554} and
ts; = {1}, v 1504 = {hp4} for 1—hour intervals ,
tsrs5 = {hy, hy}, o 1547 = {23, hps} for 2—hour intervals , (17)
18548 = {h], hy, h3}, L. 0S54 = {hzz, hy3, h24}f0}’ 3—hour intervals ,

where x; - denotes the binary decision of clustering the corresponding hours of the
previously selected optimal typical day d € D. Similar to the clustering in step 1,
Eq. (14) defines that each underlying value is assigned to exactly one cluster, while
Eq. (15) demands that the combinations of the time slices need to represent the 24 h
of a day. Analogously to step 1, the constraints of the time segment selection are
defined by requiring that the critical sets S"” should be nonempty under the current

clustering decision:
> gLzl (18)

(d, ts) €S (d, ts)
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Given a known clustering policy of 24-h vectors D(d, d), the distance function for
the clustering of time slices is defined as follows:

2
Crdis = z Z Z(Z D1 (Vn,r,d,h - V;,r,;l,h)) . (19)

dED(d,;]) heTS(ts,h) leL \neN

Based on the reduced coefficient matrix of the clustering distance and the binary
decision variable x; , , we obtain the following clustering costs:

V‘[ = Z Ct,;l,rs : x;l.,ls N (20)

Zlef),tseTS

For an optimisation of the remaining multiple dimensions of clustering costs, a con-
straint programming formulation is chosen, with the goal of finding the efficient
supported solutions. Due to computational efficiency, the four target dimensions
(load, wind energy, pv, residual load) are reduced to two target dimensions based on
the L; norm (efficiency objective) and L., norm (balancing objective). The algorith-
mic implementation of the first phase of the two phase method corresponds to [6]. A
detailed explanation is therefore omitted.

3 Selected Results

A time segment selection based on simulated transmission grid injection data of
2012 shows that the right hand side error of the load flow restriction (Eq. 2) becomes
rather insensitive above a certain temporal resolution. An intraday reduction of the
time structure showed no significant increase of the error in the range of 14 to 21
typical days illustrating that the marginal gain of additional time segments decreases
after a number of approximately 300 time segments (see Fig. 1).

Obviously, an even lower potential load flow error could be achieved with the
same temporal resolution, in the event that the multi-objective nature of the problem
or the need of including extreme situations could be ignored. In this case, a less
advanced and quicker clustering technique, such as a k-Means clustering approach
could be utilised. In our application, however, the multi-objective nature and extreme
situations cannot be ignored. Nevertheless, Fig. 1 visualises the impact of the pro-
posed new PTDF-based distance measure. Despite the higher degree of freedom in
optimisation, a k-Means clustering is not able to outperform the proposed multi-
dimensional approach for time slice selection if the proposed PTDF-based distance
measure is not applied.
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4 Conclusions and Outlook

We proposed a structured, multi-objective approach for time segment selection to
handle the complexity of large-scale power system models. In this paper, we focussed
on time segment selection for power systems operation optimisation with a special
emphasis on power grid utilisation. Our approach is therefore aimed at preserving
both, intra-period and intra-regional links within and between the volatile electricity
supply and demand profiles. We could show that even an amount of less than 300
time segments may be sufficient for the modelling of a whole year, if chosen care-
fully. Future enhancements of the approach should include the extension to power
generation and transmission expansion planning problems, simulation-based sensi-
tivity analyses, accounting for variations between the importance of load, wind and
solar energy profiles respectively, as well as further validation studies for a series of
realistic energy economic problems.
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