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Abstract The prize-collecting Steiner tree (PCST) problem is a broadly studied
problem in combinatorial optimization. It has been used to model several real world
problems related to utility networks. More recently, researchers have started using
PCSTs to study biological networks. Biological networks are typically very large
in size. This can create a considerable challenge for the available PCST solving
methods. Taking this fact into account, we have developedmethods for the PCST that
efficiently scale up to large biological network instances. Namely, we have devised a
heuristic method based on the Minimum Spanning Tree and a matheuristic method
composed of a heuristic clustering phase and a solution phase. In this work, we
provide a performance comparison for these methods by testing them on large gene
interaction networks. Experimental results are reported for the methods, including
running times and objective values of the solutions.

1 Introduction

The prize-collecting Steiner tree is a well known problem in combinatorial optimiza-
tion and graph theory. Within the concept of the PCST, given an undirected network
G = (V ,E), where nodes are associated with prizes pj ≥ 0 and arcs are associated
with costs ce > 0, the goal is to construct a sub-graph G′ = (V ′,E′) that has a tree
structure. The researchers have studied different variants of the PCST problem in
the literature. One of the broadly studied variant is known as Goemans–Williamson
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Minimization [1], where the objective is to identify a tree for a given graph by mini-
mizing the total cost of arcs in a tree andminimizing the total prize of nodes excluded
from the tree. This corresponds to the minimization of the following expression:

GW(G′) =
∑

e∈E′
ce +

∑

v/∈V ′
pv (1)

The PCST has been successfully applied to model several real-world problems
in utility networks. Recently, researchers have realized its application to biological
networks for discovering the hidden knowledge [2]. Based on this idea, we have
applied the PCST to gene interaction networks, where nodes correspond to genes
and arcs represent the mutual information between genes. The PCST potentially
captures the portion of graphs where genetic aberrations and mutations are highly
present. Basically, biological interaction networks are large in size, and this can
be remarkable challenge for existing PCST methods. By considering this fact in our
previous studies, we have developedmethods for the PCST that efficiently scale up to
large biological network instances for analyzing the function of genes. In this work,
we extensively test previously developed methods on generated gene interaction
networks, and compare their performance on large networks.

2 Related Work

The pioneeringworkwas performed by [3] in the PCST literature. The nodeweighted
Steiner tree problem was proposed in [4], in which the specific set of nodes have to
be covered by output tee. The state-of-the-art exact methods were presented in [5,
6], where the PCST was formulated by means of mixed integer linear programming
(MILP) and a branch-and-cut algorithms was employed to solve underlining MILP.
Some heuristic and matheuristic algorithms were studied in [1, 7, 8].

There some studies in the literature [2, 9–11] that already applied the PCST for
functional analyses of protein interaction networks. As a result of these studies,
the authors identified unknown functions of some proteins. They validated their
computational findings by biological experiments. This shows the potential of the
PCST to generate promising results while analyzing interaction networks.

3 Methodology

Usually, biological interaction networks are complex and huge in size. The PCST
belongs to the class of NP-hard problems, where it is time consuming to obtain
solutions for large graphs. This was the primary limiting factor for available PCST
methods being applied on gene interaction networks. To enable the application of
the PCST on biological networks, we have developed a heuristic and a matheuristic
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solution methods in our previous studies. The methods are shortly outlined in the
following subsection.

3.1 The MST-Based Heuristic

This heuristic method is based on the iterative solution of Minimum Spanning Tree
(MST) problems. Given an undirected network G = (V ,E) and a user-defined para-
meter α, the heuristic constructs a complete network G1 = (V1,E1) within the first
iteration, where V1 : v only composed of nodes with pv > α and E1 : (i, j) corre-
sponds to the shortest path distance between nodes i and j. The algorithm starts
solving the problem by considering the nodes with prize p(v) ≥ α at the first itera-
tion. Afterwards, the algorithm solves a MST onG1 and obtains a tree T1 = (V

′
1,E

′
1)

with the cost of C1. In the second iteration, the heuristic constructs next complete
network G2 = (V2,E2), where V2 : v formed by all nodes of tree from previous iter-
ation v ∈ V

′
1, and E2 : (i, j) corresponds to the shortest path distance between nodes i

and j. Again, the algorithm computes a MST on G2 and obtains a tree T2 = (V
′
2,E

′
2)

with the cost of C2. If C2 ≥ C1, the algorithm terminates. Otherwise, the heuristic
continues generating complete graph and solving MST problems until the cost of
current tree gets bigger or equal to the cost of the previous tree. Then, the algorithm
prunes the leaf nodes of the tree in order to further decrease the cost, and obtains final
solution. The interested reader may refer to [12] for further details of the heuristic
method.

3.2 The Clustering Matheuristic

The matheuristic algorithm was devised by combination of a heuristic clustering
algorithm and an exact PCST solver. The main idea of the matheuristic was to divide
the large graph into smaller graph clusters, and to solve each cluster separately using
exact solver. The heuristic clustering algorithm clusters the nodes according to the
all-pairs shortest path distance. Then, smaller graphs are constructed by inducing
the nodes in the same cluster. Every smaller graph is solved by using exact PCST
solver. Important to note that any exact solver could be used as inner solver at this
stage. We have adapted the method proposed by [5] to our approach, and used it as
an exact solver due to its efficiency. In [5], the PCST was formulated by MILP, and
a branch-and-cut algorithm was proposed to solve the formulation. The interested
reader may refer to [13] for further explanation of the matheuristic method.
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4 Experimental Results

In this section, we test the MST-based heuristic and the clustering matheuristic
method on large gene interaction network instances, and compare their performance.
The benchmark instances are generated based on gene expression profiling data of
Diffuse Large B-Cell Lymphoma (DLBCL) cancer patients available online in Gene
Expression Omnibus repository.1 There two subtypes of DLBCL cancer that are: the
germinal center B cell (GCB) and an activated B cell (ABC). The goal is to identify
a set of genes that are relevant for subtype classification. The networks are generated
by using the multiplicative model of ARACNE [14] algorithm, which is a powerful
tool for the reconstruction of gene interaction networks. ARACNE uses the mutual
information among genes for the network reconstruction. We used two parameters
(eps = 0.01, eps = 0.05) fed into ARACNE in order to generate the test instances.
In these networks, every arc represents the interaction between two genes and its
weight is labeled as the pairwise correlation of expression values of genes. Each
node is labeled with prize pv = |EABC − EGCB|, where EABC and EGCB are the mean
value of gene expression of ABC and GCB cancer patients for corresponding gene,
respectively. All of the nodes have positive prize pv > 0 in generated instances.

The computational experiments have been performed on amachine equippedwith
an Intel(R) Xeon(R) CPU E5320 1.86GHz processors and 32 GB of shared memory.
A single core was used for the experiments.

Table1 summarizes the results of both methods for gene interaction network
instances generated with the parameter eps = 0.01. The first three columns of the
table show the names and the sizes of test instances, respectively. From the fourth
to the ninth columns we report the objective values and running times of the MST-
based heuristic method [12], in which the algorithm employs different values for
the parameter α. The tenth and eleventh columns present the objective values and
execution times of the clustering matheuristic method [13].

Table2 delivers the results of theMST heuristic and clustering matheuristic meth-
ods for interaction network instances generated with the parameter eps = 0.05.

According to the results of the tables, both methods, the MST heuristic and clus-
teringmatheuristic, were able to provide solutions in a reasonable time. The solutions
obtained by the clustering matheuristic are considerably better than the MST heuris-
tic in terms of solution cost for these instances. The MST heuristic also was able to
obtain good quality solutions, and the running times of the instances are improved
by decreasing the parameter α. The primary reason for elaborated execution times is
the decay in parameter α, where the larger set of nodes are considered in computa-
tions during the first iteration. The general pattern of the solution cost is decreased
by lowering the α from 0.5 to 0.3 and 0.1, however, lowering the α to 0.0 did not
improve the cost further. The main reason for this is the MST heuristic was designed
for large networks that have smaller number of positive nodes pv > 0. In contrast,
the clustering matheuristic method was developed for large networks where most of
the nodes have positive prizes pv > 0. The parameter α can be used to tune a trade

1http://www.ncbi.nlm.nih.gov/geo/.

http://www.ncbi.nlm.nih.gov/geo/
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off between the quality and running time for the MST heuristic. The α can be set to a
reasonably higher value in order to analyze large interaction networks fast, and also
not losing too much from the optimality.

5 Conclusions

In this study, we have compared a MST-based heuristic and a clustering matheuris-
tic methods developed for large prize-collecting Steiner tree problems generated
from real biological data describing gene interaction networks. Experimental results
support that the performance of the clustering matheuristic is better than the MST
heuristic method in terms of solution quality for the interaction network instances,
however, MST heuristic also can be used to analyze large interaction networks in a
quick manner by tuning the α parameter.
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