
Exploiting Solving Phases for Mixed-Integer
Programs

Gregor Hendel

Abstract Modern MIP solving software incorporates dozens of auxiliary algorith-
mic components for supporting the branch-and-bound search in finding and improv-
ing solutions and in strengthening the relaxation. Intuitively, a dynamic solving
strategywith an appropriate emphasis on different solving components and strategies
is desirable during the search process. We propose an adaptive solver behavior that
dynamically reacts on transitions between the three typical phases of a MIP solving
process: The first phase objective is to find a feasible solution. During the second
phase, a sequence of incumbent solutions gets constructed until the incumbent is
eventually optimal. Proving optimality is the central objective of the remaining third
phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase
concept both with an exact recognition of the optimality of a solution, and provide
heuristic alternatives to make use of the concept in practice.

1 Introduction

The availability of sophisticated solving software technology based on the branch-
and-bound approach [8] has made Mixed integer programming (MIP) the modeling
tool of choice for many practical optimization problems. One of its main advantages
is that after termination, branch-and-bound provides a proof of optimality for the
best found solution. In many situations, however, practical limits on the run time and
memory consumption prevent the search from completing the proof, although the
solution found at termination might already be optimal. During the search process,
we typically observe three phases: The first phase until a feasible solution is found, a
second phase during which a sequence of improving solutions gets constructed, and
a third phase during which the remaining search tree must be fully explored to prove

The work for this article has been conducted within the Research Campus Modal funded by
the German Federal Ministry of Education and Research (fund number 05M14ZAM).

G. Hendel (B)
Konrad Zuse Zentrum für Informationstechnologie, Takustraße 7, 14195 Berlin, Germany
e-mail: hendel@zib.de

© Springer International Publishing Switzerland 2017
K.F. Dœrner et al. (eds.), Operations Research Proceedings 2015,
Operations Research Proceedings, DOI 10.1007/978-3-319-42902-1_1

3

4 G. Hendel

optimality. In [6] we empirically demonstrated that the MIP solver Scip [1] spends
more than 40% of its average solving time during the third phase.

Since every phase emphasizes a different goal of the solving process, it seems
natural to pursue these goals with different search strategies to achieve the phase
objective as fast as possible. Research on adaptive solver behavior that reacts on
solving phases naturally poses the question how the solver should guess that the
current incumbent is optimal prior to termination.

There has been little work on such heuristic criteria for deciding whether a solu-
tion can be assumed to be optimal. Such criteria cannot be expected to be exact
because the decision problem of proving whether a given solution is optimal is still
N P-complete in general, hence the term “heuristic”.

A bipartion of the solving process has already been suggested in the literature,
see [9] for an overview and further references, where the proposed strategies solely
involve the node selection in use. Our suggested three-phase approach gives a more
refined control of the solver behaviour.

The remainder of the paper is organized as follows:We formally introduceMixed-
Integer Programs and and the concept of solvingphases inSect. 2. Themainnovelty of
this paper are heuristic transitions for decidingwhen the solver should stop searching
for better solutions and concentrate on proving optimality. We present two heuristic
transitions that take into account global information of the list of open subproblems
in Sect. 3. We conclude with a computational study of the proposed adaptive solvers
in Sect. 4.

2 Solving Phases in Mixed Integer Programming

Let A ∈ R
m×n a real matrix, b ∈ R

m , c ∈ R
n , let l, u ∈ R

n∞ and I ⊆ {1, . . . , n},
where n,m ∈ N. A mixed-integer program (MIP) is a minimization problem P of
the form

copt := inf{ct x : x ∈ R
n, Ax ≤ b, l ≤ x ≤ u, x j ∈ Z ∀ j ∈ I }.

A vector y ∈ R
n is called a solution for P , if it satisfies all linear constraints, bound

requirements, and integrality restrictions of P . We callI the set of integer variables
of P . A solution yopt that satisfies ct yopt = copt is called optimal. The LP-relaxation
of P is defined by dropping the integrality restrictions. By solving the LP-relaxation
to optimality, we obtain a lower bound δ (also called dual bound) on the optimal
objective of P . All commercial and noncommercial general purpose MIP solvers
are based on the branch-and-bound procedure [8], which they extend by various
auxiliary components such as primal heuristics [5], cutting plane routines, and node
presolving techniques for improving the primal or dual convergence of the method.

Whenever there is an incumbent solution ŷ, we measure the relative distance
between ŷ and the optimal objective value copt in terms of the primal gap

Exploiting Solving Phases for Mixed-Integer Programs 5

γ :=

⎧
⎪⎨

⎪⎩

0, if copt = ct ŷ,

100 ∗ ct ŷ−copt

max{|ct ŷ|,|copt|} , if sig(copt) = sig(ct ŷ),

100, otherwise.

A primal gap of 0% means that the incumbent is an optimal solution, although this
might not be proven so far because the dual bound for P is less than the optimal
objective. Similarly, we use a dual gap γ ∗ to measure the relative distance between
copt and the proven dual bound δ.

In the context of solving phases, elapsed time since the solving process was
started plays an important role. All definitions such as the incumbent solution ŷ and
its objective (the primal bound) ct ŷ or its dual counter parts δ and the corresponding
gaps γ and γ ∗ can be translated into functions of the elapsed time. Let t∗1 > 0 denote
the point in time when the first solution is found or the first phase transition. The
primal gap function γ : [t∗1 ,∞] �→ [0, 100] measures the primal gap at every point
in time t ≥ t∗1 during solving by calculating the primal gap for the best incumbent
ŷ(t) found until t .

For the solving time T > 0 for P , we partition the solving time interval [0, T]
into three disjoint solving phases:

P1 := [0, t∗1 [, the Feasibility phase,

P2 := {t ≥ t∗1 : γ (t) > 0}, the Improvement phase,

P3 := {t ≥ t∗1 : γ (t) = 0, γ ∗(t) > 0}, the Proof phase.

Every solving phase is named after its main primal objective of finding a first and
optimal solution inP1 andP2, respectively, and proving optimality duringP3. We
presented promising strategies for each phase in [6]; During the Feasibility phase,
we search for feasible solutions with a two-stage node selection strategy combining
a uct [10] and depth-first strategy with restarts together with an inference branching
rule. The Improvement phase is conducted with the default search strategy of Scip
except for the use of uct inside Large Neighborhood Search heuristics. For the Proof
phase, we deactivate primal heuristics, and apply cutting planes periodically during
a depth-first search traversal of the remaining search tree. Note that a phase-based
solver that uses different settings after a heuristic phase transition remains exact; the
use of different settings based on the heuristic phase transition might only influence
the performance of the solver to finish the solving process.

The desired moment in time when a phase-based solver should switch from an
improvement strategy to a proof strategy is given by the second phase transition

t∗2 := supP1 ∪ P2.

Because of the practical impossibility to detect t∗2 exactly before the solving
process finishes, we dedicate the next section to introduce heuristic phase transitions
for our phase-based solver.

6 G. Hendel

3 Heuristic Phase Transitions

We propose to use properties of the frontier of open subproblems during the solving
process as heuristic phase transitions. Let Q denote the set of open subproblems.
We call Q ∈ Q an active node and denote by dQ the depth of Q in the search tree.
If the solving process has not found an optimal solution yet, there exists an active
node Q ∈ Q that contains it. We use the best-estimate [3] to circumvent the absence
of true knowledge about best solutions in the unexplored subtrees. After solving the
LP-relaxation of a node P with solution ỹP , the best-estimate defined as

ĉP = ct ỹP +
∑

j :(ỹP) j /∈Z
min{Ψ −

j · (
(ỹP) j − �(ỹP) j

)
, Ψ +

j · (�(ỹP) j� − (ỹP) j
)}

is an estimate of the best solution objective attainable from P by adding the mini-
mum pseudo-costs [3] to make all variables j ∈ I with fractional LP-solution val-
ues (ỹP) j /∈ Z integral, where we use average unit gains Ψ −

j , Ψ +
j over all previous

branching decisions. For active nodes Q ∈ Q, an initial estimate can be calculated
from the parent estimate and the branching decision to create Q.

Definition 1 (active-estimate transition) We define the active-estimate transition
as the first moment in time testim2 when the incumbent objective is smaller than the
minimum best-estimate amongst all active nodes, i.e.

testim2 := min
{
t ≥ t∗1 : cT ŷ(t) ≤ inf{ĉQ : Q ∈ Q(t)}} . (1)

In practice, the best-estimate may be very inaccurate and over- or underestimate
the true objective value obtainable from a node, which may lead to an undesirably
early or late active-estimate transition. In order to drop the use of the actual incum-
bent objective, we introduce another transition that compares all active and already
processed nodes only at their individual depths. Let the rank-1 nodes be defined as

Qrank-1(t) := {Q ∈ Q(t) : ĉQ ≤ inf{ĉQ′ : Q′ processed before t, dQ′ = dQ}}.

Qrank-1(t) contains all active nodes with very small lower bounds or near-integral
solutions with small pseudo-cost contributions compared to already processed nodes
at the same depth.

Definition 2 (rank-1 transition) The rank-1 transition is the moment in time when
Qrank-1(t) becomes empty for the first time:

t rank-12 := min{t ≥ t∗1 : Qrank-1(t) = ∅}. (2)

The main difference between the rank-1 and the active-estimate transitions is that
the former does not compare an incumbent objective with the node estimates. Note
that the rank-1 criterion Qrank-1 = ∅ is never satisfied as long as there exist active

Exploiting Solving Phases for Mixed-Integer Programs 7

nodes which are deeper in the tree than any previously explored node. The name of
this transition is inspired by a node rank definition that requires full knowledge about
the entire search tree at completion, see [6] for details.

4 Computational Results

We conducted a computational study to investigate the performance benefits of a
phase-based solver that reacts on phase transitionswith a change of its search strategy.
Apart from the default settings of Scipwe tested an oracle that detects the second
phase transition exactly, estim uses the active-estimate transition (1), and rank-1
the rank-1 transition (2). For the latter two, we also required that at least 50 branch-
and-bound nodes were explored. At the time a criterion is met, we assume that the
current incumbent is optimal and let the solver react on this assumption by switching
to settings for theProof phase.We testedwith a time limit of 2 h on the 168 instances
from three publicly available Miplib libraries [2, 4, 7]. We excluded four instances
for which no optimal solution value was known by the time of this writing.

In Table 1, we present the shifted geometric means of the measured running
times of the different settings with a shift of 10 s. We also show the percentage time
compared to default, the number of solved instances for every setting, and p-
values obtained from a two-sided Wilcoxon signed rank test that takes into account
logarithmic shifted quotients, see [6] for details. The oracle setting could solve
three instances more than the default setting. Over the entire test set, we observe
improvements in the shifted geometric mean solving time for every new setting,
where the highest improvement of 5.6%wasobtainedwith theoracle-setting.With
the rank-1 setting, we obtain a similar speed-up of 5.4%. Both are accompanied by
small p-values of 0.013 and 0.008. The table also shows the results for two instance
groups based on the performance of the slowest of the four tested algorithms. On
the 73 easy instances, oracle is slower than default by almost 5%, whereas
rank-1 is the fastest amongst the tested settings. The computational overhead of
the reactivated separation during the Proof phase seems to outweigh its benefits
on this easy group. The p-values, however do not reveal any of the settings to be
significantly different from default.

Table 1 Shifted geometric mean results for t (s) and number of solved instances

All instances Easy (max t ≤ 200) Hard (max t > 200)

solv. t (s) % p t (s) % p t (s) % p

default 127 257.0 100.0 11.7 100.0 1992.8 100.0

estim 129 245.0 95.3 0.905 11.7 100.7 0.521 1827.1 91.7 0.488

oracle 130 242.7 94.4 0.013 12.2 104.9 0.410 1766.3 88.6 0.000

rank-1 128 243.1 94.6 0.008 11.3 97.0 0.226 1832.9 92.0 0.026

8 G. Hendel

The results on the hard instances show more pronounced improvements with
all new settings by up to 11.4% obtained with the oracle setting. The setting
estim improves the time by 8.2% but the corresponding p-value of 0.488 does not
identify this improvement as significant. A smaller time improvement of 8% with
the rank-1 setting is indicated as significant by a p-value of less than 5%. This
result indicates a more consistent improvement over the entire test set for rank-1,
whereas the active-estimate transition could rather improve the performance on a
few outliers.

5 Conclusions

In our experiment, the use of a phase-specific solver adaptation could significantly
improve the running time, especially on harder instances. Furthermore, we intro-
duced two heuristic phase transitions that yielded performance improvements simi-
lar to what can be obtained in principle if we could determine the phase transitions
exactly, which is an important first step to make use of such adaptive solver behavior
in practice. We attribute the significant improvements with the exact and rank-1 tran-
sitions in particular to the judicious reactivation of cutting plane separation locally in
the tree at the cost of deactivating primal heuristics. Future work on solving phases
could comprise experiments with different heuristic phase transitions, or base the
work distribution between primal heuristics and separation on more local properties
that are specific to the subtree.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin
(2007)

2. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 1–12 (2006)
3. Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.: Experiments

in mixed-integer programming. Math. Program. 1, 76–94 (1971)
4. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer pro-

gramming library: MIPLIB 3.0. Optima 58, 12–15 (1998)
5. Fischetti, M., Lodi, A.: Heuristics in mixed integer programming. In: Cochran, J.J., Cox, L.A.,

Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research
and Management Science. Wiley, New York (2010). (Online publication)

6. Hendel, G.: Empirical analysis of solving phases in mixed integer programming. Master thesis,
Technische Universität Berlin (2014)

7. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D.,
Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)

8. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems.
Econometrica 28(3), 497–520 (1960)

Exploiting Solving Phases for Mixed-Integer Programs 9

9. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed
integer programming. INFORMS J. Comput. 11(2), 173–187 (1999)

10. Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding combinatorial optimization with UCT. In:
Beldiceanu, N., Jussien, N., Pinson, E. (eds.) CPAIOR. Lecture Notes in Computer Science,
vol. 7298, pp. 356–361. Springer, New York (2012)

	Exploiting Solving Phases for Mixed-Integer Programs
	1 Introduction
	2 Solving Phases in Mixed Integer Programming
	3 Heuristic Phase Transitions
	4 Computational Results
	5 Conclusions
	References

