
A Framework for Recommending Resource
Allocation Based on Process Mining

Michael Arias(B), Eric Rojas, Jorge Munoz-Gama, and Marcos Sepúlveda

Computer Science Department, School of Engineering,
Pontificia Universidad Católica de Chile, Santiago, Chile

{m.arias,eric.rojas}@uc.cl, {jmun,marcos}@ing.puc.cl

Abstract. Dynamically allocating the most appropriate resource to exe-
cute the different activities of a business process is an important challenge
in business process management. An ineffective allocation may lead to
an inadequate resources usage, higher costs, or a poor process perfor-
mance. Different approaches have been used to solve this challenge: data
mining techniques, probabilistic allocation, or even manual allocation.
However, there is a need for methods that support resource allocation
based on multi-factor criteria. We propose a framework for recommend-
ing resource allocation based on Process Mining that does the recom-
mendation at sub-process level, instead of activity-level. We introduce a
resource process cube that provides a flexible, extensible and fine-grained
mechanism to abstract historical information about past process execu-
tions. Then, several metrics are computed considering different criteria
to obtain a final recommendation ranking based on the BPA algorithm.
The approach is applied to a help desk scenario to demonstrate its use-
fulness.

Keywords: Resource allocation · Process mining · Business processes ·
Recommendation systems · Organizational perspective · Time perspec-
tive

1 Introduction

Dynamic resource allocation is an important and challenging issue within busi-
ness process management [8,20]. It can contribute significantly to the quality and
efficiency of business processes, improve productivity, balance resource usage,
and reduce execution costs. This article describes a framework that supports
resource allocation based on multi-factor criteria, considering both resources
capabilities, past performance, and resources workload.

An initial strategy is to assign to a given activity a resource whose profile is
closest to the profile required by the activity. However, this strategy does not
consider the current workload of the resource or how successful the resource
has been performing similar tasks in the past. To fill this gap, it is possible to
take advantage of historical information stored by today’s information systems
about business processes execution, knowing who executed what activity, when,
c© Springer International Publishing Switzerland 2016
M. Reichert and H.A. Reijers (Eds.): BPM Workshops 2015, LNBIP 256, pp. 458–470, 2016.
DOI: 10.1007/978-3-319-42887-1 37

A Framework for Recommending Resource Allocation 459

and how long it took. Moreover, recently it has been proposed to use historical
information stored in event logs to improve resource allocation using process
mining techniques [20].

Different mechanisms have been proposed to allocate resources to activi-
ties [6,8–12,16,18]. In [18], several workflow resource patters are identified. For
example, three allocation types defined are: capability-based allocation, history-
based allocation and role-based allocation. Capability-based allocation provides
a mechanism for allocating a resource to an activity through matching spe-
cific requirements for an activity with the capabilities of the potential range of
resources that are available to undertake it. History-based allocation involves the
use of information on the previous execution history of resources when determin-
ing which of them to allocate to a given activity. Role-based allocation assigns
a resource to an activity based on their position within the organization and
their relationship with other resources. In this article we consider the first two
and assume role-based allocation can be used a priori to filter the potential
resources. In capability-based allocation, usually a profile is defined for speci-
fying resources capabilities and activities requirements (cf. Table 1). Organiza-
tional models [13,16], and resource meta-models [6,10,18], have also been used
to represent resources capabilities. Among the resource allocation algorithms, we
can highlight: data mining techniques and machine learning algorithms to derive
allocation rules based on log events [9,11,12,16], and dynamic context-based
resource allocation based on Markov decision process [8] or resource allocation
based on hidden Markov models [10]. A more recent approach [6] allows spec-
ifying preferences for different resources using expressions based on a Resource
Assignment Language (RAL), and generating a resources ranking considering a
meta-model.

Table 1. Comparison with the related work.

[18] [16] [12] [8] [10] [9] [11] [6] Proposed

Activity profile � �
Resource profile � � � � �
Performance & quality �
Resource meta-model � � � �
History � � � � � � � � �
Process mining tool � � �
Allocation at sub-process level �

In this article, we propose a framework for recommending resource allocation
based on process mining. We introduce a resource process cube that provides a
flexible, extensible and fine-grained mechanism to abstract historical information
about past process executions, extracted from process event logs. One difference
between our approach and the approaches proposed in the literature is that

460 M. Arias et al.

we consider sub-processes as the target allocation unit; however, it can also
be used to allocate resources at the activity level or at the process level, as a
whole (see Sect. 2). Also, several metrics are computed over the cube, considering
different criteria: fitting between resources capabilities and the expertise required
to perform an activity, and past performance (frequency, duration, quality and
cost). These metrics are combined to obtain a final recommendation ranking
based on the Best Position Algorithm (BPA). The request to recommend the
allocation of a resource is described as follows:

Definition 1 (Recommended Resource Allocation Request). A recom-
mended resource allocation request function is a function req(c, i, w) = rank,
that given a process characterization c, a resource allocation information (his-
torical and contextual) of the process execution i, and the weights describing the
importance of each criterion w, returns a ranking of the most suitable resources
to be assigned.

The remainder of the article explains the different elements of this request,
and it is structured as follows: in Sect. 2 the characterization of a resource alloca-
tion request is presented. Section 3 proposes the use of historical and contextual
information to measure six different process criteria for an accurate resource
allocation request. Section 4 presents the weighting of the different criteria and
the recommendation algorithm. The implementation of the approach and its
experimental evaluation is discussed in Sect. 5. Finally, the paper is concluded
and future work is discussed in Sect. 6.

2 Resource Allocation Characterization

The first necessary step for a proper resource allocation is to characterize the
request, i.e., what part of the process is the resource request for, and how similar
is this request to others in the past. Most of the approaches in the literature limit
that characterization to a simple activity level [9,10,12,16], i.e., a resource is
always assigned to a single activity of the process, and only historical information
of the execution of that activity is considered for future allocations.

In this article we propose a more flexible resource allocation characterization,
where the allocations are not done at an activity-level or a process-level, but at a
sub-process-level, i.e., the overall process is decomposed into sub-processes, and
a resource is allocated for the execution of each sub-process. The decomposition
of the process may be done manually using the own semantics of the process.
For instance, let us consider a help-desk process (HelpDesk), for a company that
provides support for both printers and servers. The process is decomposed by the
two levels of customer interaction: first-contact level 1 and expert level 2. Each
one of the two levels may correspond with a different sub-process. The decom-
position may also involve an automatic process decomposition [1], using some
of the decomposition approaches proposed in the literature, like Passages [3]
or Single-Entry Single-Exit (SESE) [14]. Notice that, by definition, an activ-
ity or the overall process are also sub-processes. Therefore, the flexible resource

A Framework for Recommending Resource Allocation 461

allocation characterization proposed allows also the classical allocations at the
activity or process levels. The usage of context dependent activity ordering is
seen as a current challenge within intention-centric business process domain [5].
Considering the execution context can be useful for selecting the appropriate
sub-process or select the required tasks for each process instance, allowing the
optimization of resource allocation. Additionally, the sub-process characteriza-
tion is combined with a typology characterization, i.e., the historical information
is classified and used depending on the typology of the request. For instance,
different typologies of processes may distinguish between normal/VIP clients,
English/Spanish/German languages, or Internet/call-center interactions. In the
HelpDesk example we consider two types of requests: printer-related and server-
related problems. Note that, increasing the number of typologies may narrow
the focus, but it may cause also a scarcity problem, i.e., not having enough
information of each typology for a proper recommendation.

Definition 2 (Characterization of a Resource Allocation Request).
A resource allocation request characterization c = (f1, . . . , fn) is a multi-factor
representation of the request properties. The two-factor characterization proposed
is a tuple c = (SP, T), where SP defines the sub-process where the resource is
being requested, and T is the typology of the process execution that request the
resource.

In HelpDesk, c1 = (level1, printer) and c2 = (level2, server) represent two
different request characterizations for the same help-desk process.

3 Resource Allocation Criteria

The simplest resource allocations rely on pure random assignments between
resources and requests. As it is shown in Table 1, more advanced systems base
their decisions on specific criteria, e.g., the resource that is estimated to spend
less time, or the one with more experience performing a task. In this article we
propose a six-dimension recommended allocation that uses both historical and
contextual information. The proposed dimensions are:

– Frequency Dimension: measures the rate of occurrence that a resource has
completed the requested characterization.

– Performance Dimension: measures the execution time that a resource has
achieved performing the requested characterization.

– Quality Dimension: measures the customer evaluation of the execution of the
requested characterization performed by a resource.

– Cost Dimension: measures the execution cost of the requested characterization
performed by a resource.

– Expertise Dimension: measures the ability level at which a resource is able to
execute a characterization.

– Workload Dimension: measures the actual idle level of a resource considering
the characterizations executed at the time.

462 M. Arias et al.

Notice that the flexible nature of the proposed framework allows the inclu-
sion of new dimensions, and the extension with other metrics proposed in the
literature. In the remainder of this section we formalize the historical and con-
textual information used on the resource allocation request, in terms of resource
process cubes and expertise matrices, respectively (Sect. 3.1), and we propose
metrics to assess each one of the dimensions (Sect. 3.2).

3.1 Resource Process Cube and Expertise Matrices

We define the resource process cube Q as the semantic abstracting all the histor-
ical execution information of the process to be analyzed. The resource process
cube is inspired by the process cubes presented in [2], and its definition is closer
to the well-known OLAP cubes [7], providing slice and dice operations for the
analysis of each specific characterization and resource.

Definition 3 (Resource Process Cube). Let r, c, and d, be a resource,
resource allocation request characterization, and dimension, respectively.
A resource process cube Q[r][c][d] abstracts all the historical information about
the resource r and the characterization c necessary to analyze the dimension d.
Similarly, Q[][c][d] abstracts the historical information about all resources for
the execution of the characterization c, and Q[r][][d] abstracts the information
for all the characterizations performed by r.

For example, in HelpDesk, given a characterization c1 = (level1, printer)
and a resource r1 = mike, Q[r1][c1][p] provides all the historical information
related about the performance, such as, what is the maximal and minimal time
mike needed to perform c1 (denoted as Q[r1][c1][p].max and Q[r1][c1][p].min,
respectively), or the average time required by mike to perform c1 (denoted as
Q[r1][c1][p].avg). Similarly, Q[][c1][p].max represents the maximal time required
considering all the resources.

Note that, the resource process cube is a high-level semantic abstraction of
the historical information, rather than an implementational definition. There-
fore, the cube can be implemented using any database (relational or non-
relational) or OLAP technology, and including, for example, pre-calculated val-
ues, or shared values among cells.

Besides historical information, the expertise dimension requires contextual
information, i.e., it compares the current level of expertise of each resource
with the desired level of expertise for the characterization to be performed.
In [15] the authors propose a Human Resource Meta-Model (HRMM) where the
expertise of the resources is classified by competencies, skills, and knowledge.
Based on that model, we represent the expertise of a resource r as an array of
naturals Er[1 : n], where each position represents a specific competence, skill
or knowledge, and the value of Er[i] range from ⊥i (usually 0 indicating the
lack of competence/skill/knowledge i) to �i (complete expertise on the compe-
tence/skill/knowledge i). The set of arrays for all the resources is known as the
expertise resource matrix. Similarly, we represent the desired level of expertise

A Framework for Recommending Resource Allocation 463

required for performing a characterization c as the array Ec[1 : n]. For instance,
given the characterization c1 = (level1, printer) and a resource r1 = mike,
Ec1 = [2, 2] denotes a mid-high required level (assuming � = 3 and ⊥ = 0
for both positions) on printer hardware (position 1) and printer software (posi-
tion 2), while mike has a low or non existent knowledge on printers denoted as
Er1 = [0, 1].

3.2 Resource Allocation Metrics

In this subsection we present metrics for each one of the six before mentioned
dimensions. All the metrics proposed are normalized between 0 and 1, and they
satisfy the set of properties proposed in [17]: validity (i.e., metric and property
must be sufficiently correlated), stability (i.e., stable against manipulations of
minor significance), analyzability (i.e., measured values should be distributed
between 0 and 1 with 1 being the best and 0 being the worst), and reproducibility
(i.e., the measure should be independent of subjective influence).

In the remainder of the section we consider a resource process cube Q repre-
senting the historical information of the process, and expertise matrices Er and
Ec representing the expertise information.

Frequency Dimension: Let Q[r][c][f].total be the number of times a resource
r has performed the characterization c. Let Q[][c][f].total be the number of cases
of characterization c. We define the metric as (1):

Frequency Metric(r, c) =
logarithm(Q[r][c][f].total) + 1
logarithm(Q[][c][f].total) + 1

(1)

We use a logarithmic scale since we are mainly interested in measuring dif-
ferent magnitude orders between potential resources.

Performance Dimension: Let Q[r][c][p].avg be an operation that returns the
average duration, considering only cases in which the resource r has taken part
in executing the characterization c. Let Q[][c][p].min and Q[][c][p].max be the
minimum and maximum duration for executing the characterization c. We define
the metric as (2):

Performance Metric(r, c) =
Q[][c][p].max − Q[r][c][p].avg
Q[][c][p].max − Q[][c][p].min

(2)

Quality Dimension: Let Q[r][c][q].avg be an operation that returns the average
quality, considering only cases in which the resource r has taken part in executing
the characterization c. Let Q[][c][q].min and Q[][c][q].max be the minimum and
maximum quality evaluation for the executed characterization c. We define the
metric as (3):

Quality Metric(r, c) =
Q[r][c][q].avg − Q[][c][q].min

Q[][c][q].max − Q[][c][q].min
(3)

464 M. Arias et al.

Cost Dimension: Let Q[r][c][co].avg be an operation that returns the average
cost, considering only cases in which the resource r has taken part in executing
the characterization c. Let Q[][c][co].min and Q[][c][co].max be the minimum and
maximum cost for the executed characterization c. We define the metric as (4):

Cost Metric(r, c) =
Q[][c][co].max − Q[r][c][co].avg
Q[][c][co].max − Q[][c][co].min

(4)

Expertise Dimension: To determine if a resource r is qualified to execute
a characterization c, we present two metrics that uses the expertise matrices
explained in Sect. 3.1. To evaluate this dimension, we compare the value of each
level of expertise Er with the corresponding value in Ec, in order to measure
the under-qualification or the over-qualification level of a resource. To define
the under-qualification metric, we first calculate an under-qualification degree
comparing each value as follows in (5):

under(i) =

{
Ec[i]−Er[i]
Ec[i]−⊥i

if Ec[i] ≥ Er[i]
0 otherwise

(5)

Then the metric to measure the under-qualification is defined as (6):

UnderQualification Metric = 1 − 1
n

√√√√ n∑
i=1

(
under(i)

)2 (6)

Symmetrically, to determine the over-qualification metric, we define (7):

over(i) =

{
Er[i]−Ec[i]
�i−Ec[i]

if Er[i] ≥ Ec[i]
0 otherwise

(7)

The metric to measure the over-qualification of a resource is then defined as (8):

OverQualification Metric = 1 − 1
n

√√√√ n∑
i=1

(
over(i)

)2 (8)

In both qualification metrics, n represents the number of expertise elements
in the matrix. We use the Euclidean distance because all expertise features are
equally relevant, are defined in the same scale, and to favor smaller differences in
all features at the same time. Notice that if the expertise of a resource r perfectly
match with the expertise required for a characterization c, the value for both
metrics will be 1.

Workload Dimension: Let Q[r][][w].total be a function that returns the num-
ber of cases in which a resource r is working at the moment when a new resource

A Framework for Recommending Resource Allocation 465

allocation request is required. Let Q[r][][w].top and Q[r][][w].bottom be the max-
imum and minimum number of cases that a resource can attend simultaneously.
We define the metric as (9):

Workload Metric(r, c) =
Q[r][][w].top − Q[r][][w].total
Q[r][][w].top − Q[r][][w].bottom

(9)

4 Recommended Resource Allocation

We face the challenge of allocating appropriate resources to execute character-
izations dynamically. We propose a recommendation system to create a final
resource ranking, considering the six dimensions presented in Sect. 3. The rec-
ommendation system is inspired on the portfolio-based algorithm selection [19].
To accomplish this goal, we consider the top-k queries, a technique that allows
to obtain the k most relevant items in a dataset. According with [4], to give an
answer to top-k queries we use m lists of n data items, so that each data item
has a local score in each list, and the lists are ordered accordingly to the local
score of its data items. With those lists, the BPA algorithm [4] can be used to
get the top-k results.

In order to obtain the most appropriate resource, we need to generate an
ordered list of resources according to their metric scores in every dimension.
Before applying the algorithm, we need to combine all ordered metric score lists
considering the weights specified for each dimension, e.g., we could give more
importance to the cost and frequency dimensions, rather than quality or exper-
tise. If the user does not want to incorporate weights for the recommendation,
each m list is not modified; otherwise, each local score is multiplied by the
respective weight, generating updated m lists.

Giving the m lists, the final ranking can be calculated by applying the BPA
algorithm, which is used to find the k-data items that have the highest overall
score. BPA calculates the overall score for each data item, registering the best
seen positions, and maintain in a set Y the k-data items with the highest overall
score. The algorithm allows an iterative approach to access and evaluate the
resources based on their local score and the position in each list. If at same
point the set Y contains k-data items whose overall scores are higher than or
equal to a generated threshold, then there is no need to continue scanning the
rest of the lists. The output of the algorithm is an ordered list, where the final
score for each resource is stored. The first value represents the resource with the
highest overall score and therefore the best recommendation. For details on the
algorithm we refer the reader to [4].

5 Implementation and Experimental Evaluation

A real-life help desk process (HelpDesk) was selected to evaluate our approach.
We focused on two typologies: printers and servers. The HelpDesk process
includes two attention levels and their corresponding activities (sub-process 1

466 M. Arias et al.

and sub-process 2). For the executed experiments, event logs with different
amount of cases were simulated. The attributes for each case include Case
ID, Subprocess group, Process Typology, Resource, Cost, Customer Satisfaction
(Quality), Creation date, Closing date and Priority. Three experiments were
performed:

– Experiment 1: Calculate the top 3-queries processing over the sorted lists,
considering each single metric by itself.

– Experiment 2: Reproduce an scenario for 3 types of companies: a large size
called General Consulting, a small size called Service Guide, and a mid size
company named DeskCo. Specific weight values were defined for each scenario.

– Experiment 3: A similar scenario as the described in experiment 2, but
both the event log size and the amount of resources were increased. Due to
the variety in the resource quantity, we calculated the top-2 queries with 28
resources, preserve the top-3 with 20, and use top-5 queries with 70 resources.

Discussion: Table 2 specifies the parameters used in the different experiments
and their results. For experiments 1 and 2 (with 20 resources), an event log
was simulated, which includes 3 resources whose frequency of participation in

Table 2. Resource recommendations for the 3 experiments

Exp. Weights (%) # Cases #R SP1 #R SP2 Ranking Time (sec)

1.1 F:100 - others:0 1200 20 20 R06: 0.601 - R04: 0.593 - R05: 0.554 0.954

1.2 P:100 - others:0 1200 20 20 R03: 0.851 - R02: 0.833 - R01: 0.832 0.954

1.3 Q:100 - others:0 1200 20 20 R09: 0.913 - R07: 0.864 - R08: 0.808 0.954

1.4 C:100 - others:0 1200 20 20 R18: 0.962 - R20: 0.962 - R19: 0.959 0.954

1.5 U:100 - O:100 - others:0 1200 20 20 R12: 1.000 - R13: 1.000 - R14: 1.000 0.954

2.1 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

1200 20 20 R20: 0.647 - R03: 0.635 - R18: 0.632 11.122

2.2 F:025 - P:015 - Q:100

C:030 - U:075 - O:065

1200 20 20 R19: 0.802 - R14: 0.758 - R13: 0.754 11.565

2.3 F:050 - P:050 - Q:050

C:050 - U:050 - O:050

1200 20 20 R19: 0.725 - R03: 0.712 - R02: 0.675 10.897

3.1.1 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

1200 14 14 R01: 0.795 - R02: 0.788 - R14: 0.784 10.942

3.1.2 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

10000 14 14 R13: 0.769 - R02: 0.567 - R14: 0.758 17.160

3.1.3 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

100000 14 14 R13: 0.767 - R14: 0.765 - R02: 0.764 59.063

3.2.1 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

1200 20 20 R19: 0.649 - R20: 0.647 - R03: 0.635 11.122

3.2.2 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

10000 20 20 R01: 0.586 - R03: 0.582 - R02: 0.573 17.642

3.2.3 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

100000 20 20 R01: 0.834 - R20: 0.784 - R18: 0.783 58.913

3.3.1 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

1200 35 35 R03: 0.626 - R05: 0.618 - R04: 0.572 11.014

3.3.2 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

10000 35 35 R04: 0.608 - R05: 0.603 - R01: 0.599 17.739

3.3.3 F:010 - P:050 - Q:010

C:100 - U:015 - O:000

100000 35 35 R04: 0.593 - R02: 0.580 - R11: 0.428 58.637

F= Frequency, P= Performance, Q= Quality, C= Cost, U= Underqualified, O= Overqualified, R=

Resource and others= Other dimensions

A Framework for Recommending Resource Allocation 467

the case resolution in HelpDesk is higher compared to the other resources of
the same level. Equally, it was simulated the existence of 3 resources that have
better resolution time resolving cases, 3 resources that perform better in quality,
3 resources that present the lowest costs, and 3 resources that fit the expertise
level required.

In experiment 1, it is possible to observe that the best specified resources
for each dimension are the expected, existing a clear correlation between the
proposed metric for each dimension.

In experiment 2, for each company different weights are specified, accord-
ing to the priorities for each one (e.g., General Consulting (exp. 2.1) has an
interest for cheaper and faster solutions; Service guide (exp. 2.2) gives more
importance to quality services and DeskCo (exp. 2.3) prefers giving a medium
value to all dimensions). Considering the criteria established in the Resource
Allocation Request function, complex and high calculation results are obtained
faster and simpler. If top-3 queries are applied, the results for each company
establish a ranking with the recommended resources, different from experiment
1. The recommended resources are different for each company, proving that our
approach produces resource recommendations based on the given requests. For
example, for the General Consulting Company, R20, R03 and R18 are recom-
mended under the criterion of low cost but balanced with the resolution mean
time. For DeskCo, R19, R03 and R02, are the suitable ones to accomplish the
activities based on the criteria established in the request.

In experiment 3 (exp. 3.1.1 to exp. 3.3.3) a similar scenario to the exper-
iment 2 was executed, but with changes on the amount of cases and resources
per attention level. Logs with 1.200, 10.000, 100.000 and 500.000 cases were
considered; and the amount of resources are 28, 40 and 70. Figure 1a displays
the behavior of the processing time according to the amount of cases. As it
can be seen, when more historical data is used to make the recommendation,
a linear relation appears between the time and the log size. If the log size is
larger, the information to be processed by the cube is larger and higher is the
time to generate the ranking, but this dependency is linear. This proves that it
is possible to process large amounts of information through the technique and
get quick response times, and if its required, it is possible to include additional
dimensions to get a better recommendation. Figure 1b displays that the result
of using the BPA algorithm is not dependent of the number of resources used
at the allocation request moment. It was proven, in an experimental way, it is
possible to obtain the recommended resources ranking without having to visit
all positions in the ordered list, thanks to the threshold management and the
early stop condition of the BPA algorithm. This confirms that the results of the
BPA algorithm are constant regarding the amount of resources given to resolve
the top-k queries problem, which could be very useful for companies with high
quantity of resources.

468 M. Arias et al.

Fig. 1. Performance analysis

6 Conclusions and Future Work

We proposed a flexible framework for dynamically allocating the most appro-
priate resources to execute a sub-process. Our contributions are fourfold. First,
while other approaches focus only on a single process perspective, the proposed
framework considers the organizational, time and case perspectives. We define
specific dimensions to assess different resource features: frequency, performance,
quality, cost, expertise, and workload. Secondly, unlike others approaches in the
literature that consider resource allocation only at an activity level, the proposed
framework considers it at a generic sub-process level (an activity can be seen as
a specific-case). Third, the resource allocation request, together with a precise
characterization of both resources and activities, provide a fine-grained degree of
customization. Finally, the conceptual framework is designed to be generic and
extensible, being able to adapt to any company-specific scenario.

Our work has been implemented and tested in a HelpDesk scenario, and the
experimental results show that given a specific characterization it is possible
to obtain a final ranking of recommended resources based on multi-factor cri-
teria. We tested the BPA algorithm with different event log sizes and resource
amounts. We observed a linear relation between the algorithm performance and
the log size. Moreover, the BPA algorithm confirms its efficiency to compute
top-k results independent of the amount of resources.

As future work, we plan to extend the comparison with existing works in order
to generate a comprehensive theoretical analysis and enhance the experimental
evaluation. We aim to evaluate the effectiveness and the efficiency of alternative
approaches and compare them with our framework in a partial or complete way.
We plan to use artificial scenarios and case studies with real data to validate our
recommendation technique. This could be useful to compare the results obtained
by other approaches and real resource allocations, with the ones proposed by
our framework. Incorporate new dimensions to the resource process cube for
improving the analysis may also be considered. This work attempts to encourage
organizations to use real performance time, quality and cost data, to generate
better resource allocations.

A Framework for Recommending Resource Allocation 469

Acknowledgments. This work is partially supported by Comisión Nacional de Inves-
tigación Cient́ıfica – CONICYT – Ministry of Education, Chile, Ph.D. Student Fellow-
ships, and by University of Costa Rica Professor Fellowships.

References

1. van der Aalst, W.M.P.: Decomposing petri nets for process mining: a generic app-
roach. Distrib. Parallel Databases 31(4), 471–507 (2013)

2. van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down
event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM
2013. LNBIP, vol. 159, pp. 1–22. Springer, Heidelberg (2013)

3. van der Aalst, W.M.P., Verbeek, H.M.W.: Process discovery and conformance
checking using passages. Fundam. Inform. 131(1), 103–138 (2014)

4. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for efficient top-k
query processing. Inf. Syst. 36(6), 973–989 (2011)

5. van Beest, N., Russell, N., ter Hofstede, A.H.M., Lazovik, A.: Achieving intention-
centric BPM through automated planning. In: 7th IEEE International Conference
on Service-Oriented Computing and Applications (SOCA 2014), Matsue, Japan,
November 17–19, 2014, pp. 191–198 (2014)

6. Cabanillas, C., Garćıa, J.M., Resinas, M., Ruiz, D., Mendling, J., Ruiz-Cortés,
A.: Priority-based human resource allocation in business processes. In: Basu, S.,
Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 374–388.
Springer, Heidelberg (2013)

7. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
ACM Sigmod Rec. 26(1), 65–74 (1997)

8. Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. Data Knowl. Eng. 70(1), 127–
145 (2011)

9. Huang, Z., Lu, X., Duan, H.: Mining association rules to support resource allocation
in business process management. Expert Syst. Appl. 38(8), 9483–9490 (2011)

10. Koschmider, A., Yingbo, L., Schuster, T.: Role assignment in business process
models. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business Process Manage-
ment Workshops. Lecture Notes in Business Information Processing, vol. 99, pp.
37–49. Springer, Heidelberg (2012)

11. Liu, T., Cheng, Y., Ni, Z.: Mining event logs to support workflow resource alloca-
tion. Knowl. Based Syst. 35, 320–331 (2012)

12. Liu, Y., Wang, J., Yang, Y., Sun, J.: A semi-automatic approach for workflow staff
assignment. Comput. Ind. 59(5), 463–476 (2008)

13. Ly, L.T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from
event-based data. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 177–190. Springer, Heidelberg (2006)

14. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46, 102–122 (2014)

15. Oberweis, A., Schuster, T.: A meta-model based approach to the description of
resources and skills. In: AMCIS, p. 383 (2010)

16. Rinderle-Ma, S., van der Aalst, W.M.P.: Life-cycle support for staff assignment
rules in process-aware information systems (2007)

17. Rozinat, A., van der Aalst, W.M.P.: Conformance testing: measuring the alignment
between event logs and process models. BETA Research School for Operations
Management and Logistics (2005)

470 M. Arias et al.

18. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

19. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. CoRR abs/1111.2249 (2011)

20. Zhao, W., Zhao, X.: Process mining from the organizational perspective. In: Wen,
Z., Li, T. (eds.) Foundations of Intelligent Systems. Advances in Intelligent Systems
and Computing, vol. 277, pp. 701–708. Springer, Heidelberg (2014)

	A Framework for Recommending Resource Allocation Based on Process Mining
	1 Introduction
	2 Resource Allocation Characterization
	3 Resource Allocation Criteria
	3.1 Resource Process Cube and Expertise Matrices
	3.2 Resource Allocation Metrics

	4 Recommended Resource Allocation
	5 Implementation and Experimental Evaluation
	6 Conclusions and Future Work
	References

