Using Event Logs to Model Interarrival
Times in Business Process Simulation

Niels Martinl(g), Benoit Depairel, and An Caris'?

! Hasselt University, Agoralaan — Building D, 3590 Diepenbeek, Belgium
{niels.martin,benoit.depaire,an.caris}@uhasselt.be
2 Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussels, Belgium

Abstract. The construction of a business process simulation (BPS) model
requires significant modeling efforts. This paper focuses on modeling the inter-
arrival time (IAT) of entities, i.e. the time between the arrival of consecutive
entities. Accurately modeling entity arrival is crucial as it influences process
performance metrics such as the average waiting time. In this respect, the analysis
of event logs can be useful. Given the limited process mining support for this BPS
modeling task, the contribution of this paper is twofold. Firstly, an IAT input
model taxonomy for process mining is introduced, describing event log use
depending on process and event log characteristics. Secondly, ARPRA is intro-
duced and operationalized for gamma distributed IATs. This novel approach to
mine an IAT input model is the first to explicitly integrate the notion of queues.
ARPRA is shown to significantly outperform a benchmark approach which
ignores queue formation.

Keywords: Business process simulation - Process mining - Interarrival time
modelling

1 Introduction

Business process simulation (BPS) refers to the imitation of business process behavior
through the use of a simulation model. By mimicking the real system, simulation can
identify the effects of operational changes prior to implementation and contribute to the
analysis and improvement of business processes [7].

A BPS model is composed of several building blocks such as entities, activities and
resources [6]. This work is related to entities, which are dynamic objects that flow
through the system and on which activities are executed [2], e.g. passengers when
modelling an airline’s check-in process. As for each BPS model building block, several
modelling tasks are related to entities [6]. This paper focuses on the entity arrival rate,
i.e. the pattern according to which entities arrive in the process.

Accurately modelling entity arrival is crucial as it has a major influence on process
performance metrics such as the average waiting time or the flow time, i.e. the total time
spent in the system. To identify an interarrival time (IAT) input model, i.e. a parame-
terized probability distribution [3] for the time between the arrival of consecutive enti-
ties, inputs can be gathered by e.g. observing the process. However, as process

© Springer International Publishing Switzerland 2016
M. Reichert and H.A. Reijers (Eds.): BPM Workshops 2015, LNBIP 256, pp. 255-267, 2016.
DOI: 10.1007/978-3-319-42887-1_21

256 N. Martin et al.

observations are rather time-consuming, the presence of more readily available infor-
mation sources should be investigated. In this respect, process execution information
stored in event logs can be useful. Such files, originating from process-aware information
systems (PAIS) such as CRM-systems, contain events associated to a case, e.g. the start
of a passenger’s check-in, where a case is the event log equivalent for an entity. For each
event, information is recorded such as the associated activity and a timestamp [12]. This
work focuses on the use of process mining, i.e. the analysis of event logs, to support
IAT input model specification.

Despite the potential value of event log analysis to model the entity arrival rate,
research efforts on the topic are limited. Moreover, they implicitly assume that the first
recorded timestamp is the actual arrival of a case, which is not necessarily true. To this
end, this paper presents an IAT input model taxonomy for process mining, demonstrating
that the latter assumption is only appropriate under particular conditions. When these
do not hold, entity arrival times can no longer be directly retrieved from a log as queues
are formed for the first activity. Hence, novel modelling methods are required. In this
respect, this work presents anew algorithm, called ARPRA, which is the first to integrate
the notion of queues when mining an IAT input model.

The remainder of this paper is structured as follows. The following section illustrates
the importance of accurate IAT modelling and discusses the scarce related work. The
third section presents the aforementioned IAT input model taxonomy. The new algo-
rithm, APRRA, is discussed and evaluated in the fourth and fifth section, respectively.
The paper ends with a conclusion.

2 Preliminaries

2.1 Running Example and Problem Statement

Throughout this paper, the check-in process of a fictitious small airline will serve as a
running example. The process model is visualized in Fig. 1.

Duration ~ Tria(3,4,8)
Yes: 25%:| Resource: 1 luggage terminal
L]

No: 75% |-

No-

IAT ~ Gamma(oLf3)

Self ’ Provide Luggage O
check-in assistance check-in
Passenger .
arrivil E Assistance P;ssengelr
required? : Isposa
T . . ! f
Duration ~ Tria(4.5.7) Duration ~ Tria(5,9,20)
Resource: 1 terminal Resource: 1 staff member

Fig. 1. Running example

A small airline recently started operations at a local airport. To limit staff require-
ments, the airline installed a self check-in terminal. Arriving passengers follow the
terminal’s check-in procedure. When assistance is required, they can proceed to the

Using Event Logs to Model Interarrival Times 257

airline’s assistance desk. The final process step is the luggage check-in at the luggage
terminal. Based on limited process observations, the company assumes that activity
durations follow a triangular distribution and assistance is required for 25 % of the
passengers. All assumed parameters are annotated in Fig. 1, with minutes as the time
unit. Resource capacities are constant throughout the day.

The running example can be used to show the importance of accurate arrival rate
modelling. Suppose passenger IATs are gamma distributed, a more generic distribution
than the popular exponential distribution [5], with 1.50 and 5.80 as its shape and scale
parameters. Table 1 presents some process performance metrics for alternative param-
eter values. Note that the process will reach a steady state for each parameter set as the
utilization factor p is smaller than one for each activity in each scenario [4]. After 30
replications of 12 h, results show that deviations from the assumed IAT input model
parameters can have disproportionate effects on performance metrics. E.g. a 10% under-
estimation of the distribution parameters leads to an overestimation of the average flow
time and average waiting time for self check-in of 13.34 % and 70.80 %, respectively.
When the simulation study is used to e.g. evaluate the necessity of adding a second self
check-in terminal, a flawed IAT input model can lead to inappropriate decisions. This
shows the need for accurate entity arrival rate modelling.

Table 1. Effect of inaccurate IAT modelling

Gamma distr.
parameter (shape/
scale)

Average flow time

Average waiting time
for self check-in

Utilization self check-
in terminal

1.50/5.80 (assumed)

18.06

2.74

0.64

1.65/6.38 (+10 %)

15.80 (-12.51 %)

1.39 (—49.27 %)

0.53 (-17.19 %)

1.80/6.96 (+20 %)

14.78 (-18.16 %)

0.76 (-72.26 %)

0.45 (-29.69 %)

1.35/5.22 (-10 %)

20.47 (+13.34 %)

4.68 (+70.80 %)

0.73 (+14.06 %)

1.20/4.64 (=20 %)

32.82 (+81.73 %)

15.81 (+477.00 %)

0.90 (+40.63 %)

2.2 Related Work

Despite the importance of an accurate IAT input model and the fact that event logs
typically contain vast amounts of process execution information, thorough research on
how to use this information to support entity arrival rate modeling is lacking.

A dotted chart, representing the events of all cases by dots [11] can provide prelimi-
nary insight in the arrival rate. However, a mere visual inspection of a dotted chart is
insufficient to determine an appropriate IAT input model. The only reference on process
mining in a BPS context that briefly mentions arrival rate modelling is Rozinat et al. [9].
These authors calculate IATs as the difference between the first recorded timestamp of
two consecutive cases. Afterwards, an a priori assumed exponential distribution is fitted
on these IATs.

Both dotted charts and the approach of Rozinat et al. [9] implicitly assume that a
case arrives at its first recorded timestamp, which is not necessarily the case. As will be
shown in Sect. 3, queues for the first activity can cause entities to have arrived earlier
than their first registered timestamp. Despite the fact that queue formation is a common

258 N. Martin et al.

situation in real-life, research which takes this observation into account when mining
an IAT input model is lacking. When an entity’s entrance in the first activity’s queue is
recorded, as is the case in the recently introduced notion of Q-logs [10], this event’s
timestamp corresponds to entity arrival. However, hypothesizing the presence of a Q-
log is a strong assumption. de Smet [1] takes this into account by representing the process
as a set of queues based on an event log without queue-related events. However, entity
arrival in a particular queue is still equated to the start event timestamp. Consequently,
retrieving an IAT input model from a log without queue-related events remains an open
challenge, stressing the relevance of this work.

3 IAT Input Model Taxonomy for Process Mining

Defining an IAT input model requires insights in the entity arrival time. This entity
arrival time might or might not be directly observable in an event log, depending on the
process structure and logging characteristics. When arrival times are directly retrievable,
IATs can be calculated from the log and a probability distribution can be fitted. Other-
wise, more advanced techniques are required.

To structure the use of process mining in IAT input modeling, Fig. 2 introduces a
novel taxonomy. It takes into account four dimensions influencing the IAT modeling
approach that should be used: (i) the number of first activities in the process, (ii) whether
the first activity involves processing, (iii) whether resource limitations are present and
(iv) the logged event types. For the sake of clarity, the numerical references in Fig. 2
will also be used in the discussion below.

When focusing on processes with a single start activity (1), as is the case in the
running example, entity arrival times are directly available in the event log in two
taxonomy situations. Firstly, the entity arrival timestamp corresponds to the first activity
start timestamp when this activity involves no processing (1.1). Moreover, both the start
and end timestamp coincide in the absence of processing. Secondly, even when the first
activity requires processing, the modeler can proceed to direct IAT calculation when the
associated resources have an unlimited capacity and start events are recorded (1.2.1.1,
1.2.1.2). In both aforementioned situations, the implicit assumption made in dotted chart
analysis and by Rozinat et al. [9] outlined above is suitable.

In contrast, other taxonomy entries inhibit the exact determination of an entity’s
arrival time from an event log. Firstly, this is the case when unlimited resources are
available, but only end events are recorded (1.2.1.3). The discrepancy between entity
arrival and the first recorded timestamp corresponds to the first activity duration. Dealing
with this issue is beyond the scope of this work. Secondly, when the first activity requires
processing and the associated resources are limited (1.2.2), entities might have arrived
earlier than their first recorded timestamp as queues can be formed. In these cases,
assuming a correspondence between entity arrival and the first recorded timestamp
falsely ignores this notion of queues. Consequently, new methods are required to deter-
mine an IAT input model without exactly knowing the moment at which entities arrive,
taking into account queue formation. ARPRA, outlined in Sect. 4, is developed in this
context.

Using Event Logs to Model Interarrival Times 259
EVENT LOG

(1) SINGLE FIRST ACTIVITY

(1.1) First activity does not involve processing :H

. e . v
(1.2) First activity involves processing | FXACT ARRIVAL TIME
. AVAILABLE IN EVENT LOG
(1.2.1) First activity has unlimited resources x

> (1.2.1.1) Start and end event recorded
> (1.2.1.2) Only start event recorded

> (1.2.1.3) Only end event recorded }

v
| EXACT ARRIVAL TIME NOT

(1.2.2) First activity has limited resources AVAILABLE IN EVENT LOG
A

> (1.2.2.1) Start and end event recorded (Section 4.2)

> (1.2.2.2) Only start event recorded (Future work)

> (1.2.2.3) Only end event recorded (Future work)

> (2) MULTIPLE FIRST ACTIVITIES

. . APPLY TECHNIQUE FROM (1)
(2.1) Distinct arrival rate }—» FOR EACH FIRST ACTIVITY

. . APPLY TECHNIQUE FROM (1)
(2.2) Single arrival rate }—» AND ADD ROUTING LOGIC

Fig. 2. IAT input model taxonomy for process mining

The prior discussion focuses on processes with a single first activity. In reality,
multiple activities can instigate the process (2). Consider e.g. that the airline also
develops an online check-in platform as an alternative for the self check-in terminal.
Regarding arrival rate modeling, a distinct arrival rate might be specified for each of
these first activities or a single IAT input model might need to be defined. When every
first activity has its proper arrival rate (2.1), the appropriate technique from the single
first activity situation is applied for each of them. Conversely, suppose the modeler
wishes to create a simulation model that meets the workflow net requirements, only a
single source place and hence IAT input model is allowed [14]. In this case, no distinction
is made between the first activities and the appropriate method from case (1) is applied.
The single source place should be followed by a decision point determining the first
activity for a particular entity.

4 Overview of ARPRA

This section introduces ARPRA, an Arrival Rate Parameter Retrieval Algorithm, which
is the first algorithm integrating the queue notion when mining an IAT input model.
Queue formation for the first activity renders it impossible to calculate IATs directly
from the log as exact arrival times are unknown. This has to be taken into account to
avoid a bias in the IAT input model, which stresses ARPRA’s contribution.

260 N. Martin et al.

The first subsection presents the general principles of ARPRA, which are widely
applicable as it is e.g. defined independent of the used IAT probability distribution. The
second subsection operationalizes the algorithm for gamma distributed IATs.

4.1 Outline of ARPRA

The logic behind ARPRA, as visualized in Fig. 3, can be summarized as follows. Its
main input is the proportion of entities that queued upon arrival in the event log (g).
Given this percentage, the algorithm iteratively adjusts the parameter set (¥') of a partic-
ular IAT probability distribution (f) until the queue proportion in a simulated log (§)
matches the queue proportion from the original event log (g). After a pre-specified
number of matches (r) is obtained, an aggregated parameter set estimate (¥,;,.,.,) 1S
returned.

The remainder of this subsection will outline ARPRA in more detail. Consider a
PAIS-supported real-life process with an unknown probability distribution f(¥,,,,) for
the IATs and g(@,m,) for the first activity duration (FAD). This process generates an
event log, from which three ARPRA inputs are retrieved: the percentage of entities that

queued upon arrival (g), knowledge on the first activity duration (M) and an initial
estimate for the IAT distribution parameter set (y,). Executable definitions will be
provided in Sect. 4.2.

Besides the event log inputs, global parameters are required to use ARPRA. An IAT
probability distribution () needs to be put forward, which will determine the size of the
parameter set (V). Other global parameters that need to be specified are the tolerated
deviation from the queue proportion in the log (6), the size of the simulated log in each
iteration (77), the number of tolerable estimates required to end the algorithm () and the
number of additional iterations to verify the stability of the queue proportion associated
to the recorded tolerable estimates (v).

Based on the above event log inputs and global parameters, ARPRA can mine the
IAT input model. In Fig. 3, the rectangle representing ARPRA is subdivided in two parts
by a dashed line. The upper part refers to the identification of a series of candidate
parameter sets, the lower part reflects final output selection.

Given the IAT probability distribution (f) and initial parameter set (y,,), an initial
IAT input model is obtained. The process is simulated and the queue proportion () is
calculated from a simulated log. When § is outside a tolerance margin 6 from the original
event log queue proportion (g), the parameter set is adjusted and a new iteration starts.
Conversely, when g is between ¢ — 6 and g + 6, the solution of the current iteration is
recorded in @ and iteration continues. Iteration ends when a pre-specified number of
parameter set estimates are recorded, i.e. when |®| = r.

When r candidate parameter sets are recorded, the lower part of the rectangle in
Fig. 3 will select the final output. For each of the r candidate parameter sets, v additional
G values are determined and recorded in g, to verify if the initially recorded g, is repre-
sentative for parameter set \¥',. Given the fact that each simulated log is based on random
IAT draws from f('P), different § values can be obtained for the same parameter set \P.
This can be illustrated using the running example, assuming that passenger IATs follow

Using Event Logs to Model Interarrival Times 261

T TN -
S REALITY J1AT model: f(¥yeq)
,,\PAIS supported process. /' FAD model: 9(Orear)

generates _
IAT distribution: f
number of cases: n OE tolerance: &
FAD: g(~9) 2, number of required tolerable estimates: r

R . s
© O pnumber of simulated entities: 7

initial parameter set: Yy J gt
number of verification replications: v

log queue proportion: q

GLOBAL
EVENT LOG PARAMETERS
0.90),% = ¥, lf,&r.ﬁ,v
ARPRA iteration parameter set estimate: ¥
simulate process (f (), y(~9), i) simulated queue proportion: §

repeat while tolerable estimate list: ®
|®| < rand

bl simulated queue proportion list: s,
adjust ¥ +

verified tolerable estimate list: @,
iflg— gl< Sthend = & U [¥,] output parameter set: Wserecreq
V¥ € P Gy =[G
§q; = simulate process (F@,), g(@),7)
AGuse = Guse U @ (Vj €L, ...,v})
(Dv = va U [\'Pi !mEdian(qllSl)]

Woewea = (W] Wi €@, Al =il = min 19— a.])
| J-

¢output

IAT input model: f(Wseiected)

Fig. 3. Overview of ARPRA

a gamma distribution witha = 1.5and f = 5.80. After generating 2000 simulated logs
with the same first activity durations, the obtained § values for these logs range from
39.50 % to 64.25 % with a first and third quartile of 49.69 % and 54.50 %, respectively.
This shows the necessity to verify the representativeness of the queue proportion asso-
ciated to the candidate parameter sets. A verified tolerable estimate list @, is created in
which each parameter set from @ is recorded, together with the median value from its
associated g,

From @, the final output of ARPRA is retrieved, which is the recorded parameter
set ¥ that leads to the closest approximation of ¢. In case of ties, an aggregated parameter
set is returned by e.g. calculating the mean.

4.2 ARPRA Operationalization

To evaluate the performance of ARPRA, this subsection outlines an operationalization
for situation 1.2.2.1 in the taxonomy presented in Fig. 2. For the sake of clarity, this
subsection focuses on the key implementation concepts.

262 N. Martin et al.

4.2.1 Event Log Inputs

ARPRA requires three key event log inputs, which need to be operationalized to obtain
an executable algorithm. Firstly, the main input of ARPRA, the proportion of entities
that queued upon arrival (g), is mined by studying the first activity start timestamp of
consecutive entities. An entity had to wait when the execution of the first activity started
immediately after the first activity is completed for the previous entity. When this is the
case, e.g. for passenger 3 in Table 2, the value True is assigned to a boolean Queue.
Otherwise, this variable is set to False. Once the Queue value is determined, g can be
determined by dividing the number of cases for which Queue equals True by the total
number of cases.

Table 2. Illustration of Queue-value assignment

Passenger | Self check-in start Self check-in end Queue
1 26/05/2015 11:04:28 | 26/05/2015 11:09:07 | False
2 26/05/2015 11:14:55 | 26/05/2015 11:20:04 | False
3 26/05/2015 11:20:04 | 26/05/2015 11:25:40 | True
4 26/05/2015 11:27:42 | 26/05/2015 11:30:51 False

Secondly, initial parameter estimates y, are determined by fitting probability distri-
bution f on known IAT values in the original event log. IATSs are exactly known when
two consecutive entities did not queue upon arrival, i.e. have Queue = False.

Finally, a trace-driven approach is used regarding first activity durations [8], which
refers to the direct use of event log durations when simulated logs are created in
ARPRA’s iterations. This approach is selected because queue formation is influenced
by the interaction between entity arrival and activity duration. As a consequence,
ARPRA will use the first activity durations in the same order as observed in reality.
When the number of simulated entities (72) exceeds the number of entities described in
the event log (n), the observed FAD sequence is repeated.

4.2.2 Global Parameters

Values also need to be assigned to ARPRA’s global parameters. IAT distribution f is
equated to a gamma distribution: a two-parameter distribution with shape parameter o
and scale parameter f. When a =1, a gamma distribution corresponds to an exponential
distribution [5], which is commonly cited in simulation literature for IAT modeling
purposes [2, 5, 8, 13]. The gamma distribution is purposefully selected because it is more
generic, but still allows for the popular exponential IAT distribution. Hence,
¥ = {a. p}.

Besides f, several other global parameters need to be specified. In the operational-
ization, the queue proportion tolerance margin 6 = 0.01, the size of the simulated log
created in each iteration /i = n = 400 and the required number of tolerable parameter
sets (r) and the number of verification replications (v) are both set equal to 10.

Using Event Logs to Model Interarrival Times 263

4.2.3 Parameter Adjustment Method

A final key operationalization effort involves specifying a method to adjust ¥ across
iterations. To this end, the observation that the mean of a gamma distribution y equals
ap is used [5]. The mean IAT fixes the relationship between both parameters. Hence,
given the mean IAT, adjustments in one parameter automatically generates changes in
the other parameter. The mean IAT is mined from the original event log by considering
the time between the start timestamps of the first and last entity. Dividing the length of
this time frame by the number of arrivals in this period renders an approximation of u.
Given y, the adjustment of ¥ can be brought down to varying & and changing the value
of f according to the relationship § = p/ &. The adjustment of & across iterations occurs
as follows:

e When g > g + ¢ in the current iteration, too many entities have been queueing in the
simulated log. As a consequence, @ is increased for the following iteration as this
increases the mean IAT for a given scale parameter. The adjustment size is deter-
mined by applying a percentage increase to & corresponding to the percent point
deviation between ¢ and g. However, as there is no linear relationship between & and
g, this value is smoothed downward to avoid too large adjustments. More specifically,
it is rounded down to the nearest negative power of 10, e.g. a calculated adjustment
of 0.03 results in an actual increase in & of 1072 or 0.01.

e When g > g — 6 in the current iteration, too few entities have queued upon arrival.
Consequently, @ is decreased as this reduces the mean IAT for a given scale param-
eter. The size of the parameter decrease is determined analogously to the previous
situation.

o Wheng—-t<g<q+t, {&, i } is recorded in @. In order to explore the entire range
of parameter values that lead to tolerable queue percentages, a large adjustment
occurs to push g outside the tolerance limits in the next iteration. The direction of
this adjustment is determined by the value of g for the current and two prior iterations
compared to g. If § > ¢ in the current iteration, & is doubled for the next iteration to
reduce ¢, unless for the two prior iterations g < g. In the latter case, @ is halved to
explore another parameter region. The inverse holds when § < g in the current iter-
ation. When § = ¢q for the current iteration, the three prior iterations are taken into
consideration, where the third lag serves as a tie-breaker.

5 Evaluation

5.1 Experimental Design

The performance of ARPRA is evaluated using the operationalization outlined in
Sect. 4.2. As the presented algorithm aims to provide an improved method to mine an
IAT input model, its performance should be compared to a benchmark approach repre-
senting the state-of-the-art on the topic. Given ARPRA’s central premise that queue
formation cannot be ignored, the selected benchmark approach does not include the
notion of queues by assuming that entities arrive at their first recorded timestamp. Hence,

264 N. Martin et al.

a gamma distribution can directly be fitted on IATs calculated from the event log, based
on the first recorded timestamp of each case.

To compare ARPRA’s performance to the benchmark approach, the airline example
introduced in Sect. 2.1 is used. Given this setting, values for a and f are selected to
represent the real arrival process, which forms the basis to generate an event log. Solely
using this event log, parameter estimates are obtained using both the benchmark
approach and ARPRA. When ARPRA outperforms the benchmark technique, the
former’s output should correspond more closely to the real parameter values than the
latter’s. This experiment is repeated for 500 real IAT distribution parameters, where «
is randomly drawn from a uniform distribution between 1 and 2 and f from a uniform
distribution between 5.5 and 7. These boundaries are purposefully selected such that the
lower bound of the distribution mean af still leads to a steady state situation, as the
utilization factor p is smaller than one for each activity [4].

5.2 Evaluation Results

As indicated in Sect. 5.1, ARPRA’s evaluation consists of approximating real parame-
ters of the IAT distribution using both the benchmark approach and ARPRA. The
random draws for @ and § from the aforementioned uniform distributions to create an
event log are visualized in Fig. 4a and b. These show that the drawn values are to a large
extent evenly spread and span the entire range of possible values. The queue proportion
in the event log, a guiding concept for ARPRA, is represented in Fig. 4c. The mean ¢
equals 49.17 %, with minimum and maximum values of 18.25 % and 93.00 %, respec-
tively.

70 60- 140+
.60 S50- 1201
3 3 3
§501 5 G100
3 340 3
3, 3 3
240- &= &= 807
V] @30+]
230+ 2 2 60
[l [} [}
E E20- E
3201 3 3 40-
S]]
10 107 20
0- L 0- 0-
1.01.11.21.3141.51.61.71.81.92.0 55 57 59 6.1 63 65 6.7 6.9 0.00.10.20.30.40.50.60.70.80.91.0
real alpha real beta queue proportion in event log
a
@ (b) ©

Fig. 4. Occurrence of (a) real, (b) real and (c) real queue proportion

For each of the 500 experiments, the deviation between the estimated parameters
and its real value is recorded. ARPRA outperforms the benchmark approach in 498
experiments because ARPRA provides a better approximation of both the real a and £.
For the remaining 2 experiments, results are mixed, i.e. one parameter is better approxi-
mated by the benchmark approach and the other one by ARPRA. As a consequence, the
benchmark approach never outperforms ARPRA. Moreover, the t-test in Table 3 shows
that, at a 5% significance level, ARPRA delivers an unbiased estimator for the real

Using Event Logs to Model Interarrival Times 265

parameter values, i.e. no consistent over- or underestimation is observed. In contrast,
the benchmark approach renders biased estimates for both a and f.

Table 3. Results t-test on deviation between real parameters and ARPRA output

Parameter t-value p-value 95% confidence
interval

Shape parameter « 1.07 0.2869 [-0.006; 0.021]

Scale parameter f 1.94 0.0533 [-0.001; 0.029]

Regarding the magnitude of the performance difference, key results are reported in
Table 4. To put the observed deviations into perspective, Table 4 considers the
percentage deviation from the real value. The results confirm that ARPRA renders more
accurate approximations of the real parameters than the benchmark approach. For
instance: the mean deviation from the real shape parameter equals 184.70 % for the
benchmark approach and only 0.74 % for ARPRA. For the sake of completeness, the
statistical significance of the performance difference is verified using a paired t-test. The
null hypothesis is tested that the mean absolute value of the percentage deviation is the
same for the benchmark approach and ARPRA. Table 5 shows highly significant differ-
ences and, hence, the null hypothesis can be rejected at a 5 % significance level. The
benchmark approach leads to much larger deviations than ARPRA.

Table 4. Percentage deviation between real parameters and obtained estimates

Key figure Benchmark approach ARPRA

Shape parameter a

Mean deviation 184.70 % 0.74 %

Quartile 1/ Quartile 3 70.66 % / 205.00 % -8.40 % / 8.66 %
Standard deviation 211.47 % points 15.51 % points
Scale parameter f

Mean deviation -54.79 % 1.42 %

Quartile 1/ Quartile 3 —66.90 % / —41.10 % —8.46 % /1 8.73 %
Standard deviation 17.17 % points 16.39 % points

Table 5. Paired t-test of absolute value of percentage deviation from real @ and f

Parameter t-value p-value 95% confidence
interval

Shape parameter « 28.69 <22.107'° [155.08; 191.51]

Scale parameter f 57.31 <22.107'° [41.36; 44.30]

It can be concluded that ARPRA presents an important improvement over the bench-
mark approach. Consequently, it is shown that queue formation has to be taken into
account when mining an IAT input model. Given the implications of inaccurate IAT

266 N. Martin et al.

input models, illustrated in Sect. 2.1, BPS model construction can benefit from ARPRA
when an IAT input model needs to be mined from an event log.

6 Conclusion

This paper focused on process mining support for IAT modelling when constructing a
simulation model. The main contribution of this work is twofold. Firstly, an IAT input
model taxonomy for process mining is developed, showing that the current approach in
literature is only appropriate when no queues are formed for the start activity. Secondly,
ARPRA is introduced, which is the first to explicitly take the notion of queues into
account when mining an IAT input model. When the algorithm is operationalized for
gamma distributed IATs, the conducted experiments show that: (i) ARPRA provides an
unbiased estimator for both distribution parameters and (ii) ARPRA significantly
outperforms a benchmark approach ignoring queue formation.

Future work will focus on the development of a more advanced parameter search
strategy, taking into account the non-linear relationship between the distribution param-
eters and the queue proportion. Moreover, a sensitivity analysis will be performed to
investigate ARPRA’s sensitivity to the queue proportion in the original log, the size of
the original log, etc. Finally, ARPRA can be extended to mine an IAT input model when
() no a priori distribution is assumed, (ii) input model distributions and/or parameters
vary over time, (iii) only start or end events are recorded and (iv) more complex resource
behavior such as batch processing is present in the process under consideration.

References

1. de Smet, L.: Queue mining: combining process mining and queuing analysis to understand
bottlenecks, to predict delays, and suggest process improvements. Master thesis, Eindhoven
University of Technology (2014)

2. Kelton, W.D., Sadowski, R.P., Zupick, N.B.: Simulation with Arena. McGraw-Hill, New
York (2015)

3. Henderson, S.G.: Input modeling uncertainty: why do we care and what should we do about
it. In: Proceedings of the 2003 Winter Simulation Conference, pp. 90-100 (2003)

4. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill, New York
(2010)

5. Law, A.M.: Simulation Modeling and Analysis. McGraw-Hill, New York (2007)

6. Martin, N., Depaire, B., Caris, A.: The use of process mining in a business process simulation
context: overview and challenges. In: Proceedings of the 2014 IEEE Symposium on
Computational Intelligence and Data Mining, pp. 381-388 (2014)

7. Meldo, N., Pidd, M.: Use of business process simulation: a survey of practitioners. J. Oper.
Res. Soc. 54(1), 2—-10 (2003)

8. Robinson, S.: Simulation: the Practice of Model Development and Use. Wiley, Chichester
(2004)

9. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models.
Inform. Syst. 34(3), 305-327 (2009)

10.

11.

12.

13.

14.

Using Event Logs to Model Interarrival Times 267

Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining — predicting delays
in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42-57. Springer,
Heidelberg (2014)

Song, M., van der Aalst, W.M.P.: Supporting process mining by showing events at a glance.
In: Proceedings of the 17th Annual Workshop on Information Technologies and Systems, pp.
139-145 (2007)

van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Heidelberg (2011)

van der Aalst, W.M.P.: Business process simulation survival guide. BPM Center Reports no.
BPM-13-11 (2013)

van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, HM.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, desirability and
analysis. Form. Asp. Comput. 23, 333-363 (2011)

	Using Event Logs to Model Interarrival Times in Business Process Simulation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Running Example and Problem Statement
	2.2 Related Work

	3 IAT Input Model Taxonomy for Process Mining
	4 Overview of ARPRA
	4.1 Outline of ARPRA
	4.2 ARPRA Operationalization
	4.2.1 Event Log Inputs
	4.2.2 Global Parameters
	4.2.3 Parameter Adjustment Method

	5 Evaluation
	5.1 Experimental Design
	5.2 Evaluation Results

	6 Conclusion
	References

